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Abstract
In 2004 Atserias, Kolaitis and Vardi proposed OBDD-based propositional proof systems that
prove unsatisfiability of a CNF formula by deduction of identically false OBDD from OBDDs
representing clauses of the initial formula. All OBDDs in such proofs have the same order of vari-
ables. We initiate the study of OBDD based proof systems that additionally contain a rule that
allows to change the order in OBDDs. At first we consider a proof system OBDD(∧, reordering)
that uses the conjunction (join) rule and the rule that allows to change the order. We exponen-
tially separate this proof system from OBDD(∧)-proof system that uses only the conjunction rule.
We prove two exponential lower bounds on the size of OBDD(∧, reordering)-refutations of Tseitin
formulas and the pigeonhole principle. The first lower bound was previously unknown even for
OBDD(∧)-proofs and the second one extends the result of Tveretina et al. from OBDD(∧) to
OBDD(∧, reordering).

In 2004 Pan and Vardi proposed an approach to the propositional satisfiability problem
based on OBDDs and symbolic quantifier elimination (we denote algorithms based on this ap-
proach as OBDD(∧, ∃)-algorithms). We notice that there exists an OBDD(∧,∃)-algorithm that
solves satisfiable and unsatisfiable Tseitin formulas in polynomial time. In contrast, we show
that there exist formulas representing systems of linear equations over F2 that are hard for
OBDD(∧, ∃, reordering)-algorithms. Our hard instances are satisfiable formulas representing sys-
tems of linear equations over F2 that correspond to some checksum matrices of error correcting
codes.
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1 Introduction

An ordered binary decision diagram (OBDD) is a way to represent Boolean functions [3]. A
Boolean function is represented as a branching program with two sinks such that on every
path from the source to a sink variables appear in the same order. This restriction on the
order of variables allows to handle the diagrams (compute binary Boolean operations on
diagrams, compute projections, or test satisfiability) very efficiently.

Atserias, Kolaitis and Vardi [1] proposed an OBDD-based proof system. This system
is meant to prove that a given CNF formula is unsatisfiable. For some order of variables
π we represent clauses of the input formula as a π-ordered BDD; we may derive a new
OBDD applying either the conjunction rule or the weakening rule. (The authors of [1]
supplied the system with one more rule – the projection, which derives ∃xD from D; we
consider this rule as a special case of the weakening rule, so we do not need to allow it
explicitly). A proof in this system is a derivation of an OBDD that represents the constant
false function. We refer to this proof system as the OBDD(∧,weakening)-proof system. The
OBDD(∧,weakening)-proof system simulates Cutting Plane with unary coefficients and thus
it is stronger than Resolution. This proof system provides also short refutations for the
formulas that represent unsatisfiable systems of linear equations over F2 [1], while linear
systems are hard for Resolution. This observation motivates the study of the OBDD-based
algorithms (notice that the popular DPLL and CDCL algorithms correspond to tree-like and
DAG-like Resolutions).

Several exponential lower bounds are known for different versions of OBDD-proof
systems. Segerlind [16] proved an exponential lower bound for the tree-like version of
OBDD(∧,weakening)-proof system using the communication complexity technique proposed
in [2]. Krajíček [10] proved an exponential lower bound for the DAG-like version of it using
monotone feasible interpolation. Several papers study the OBDD-based proof system that
has only one inference rule – the conjunction rule (we refer to this system as OBDD(∧)-proof
system). Groote and Zantema [8] showed that Resolution does not simulate OBDD(∧).
Tveretina, Sinz and Zantema [18] proved the lower bound 2Ω(n) for the pigeonhole principle
PHPn+1

n in the OBDD(∧)-proof system and proved that OBDD(∧) does not simulate Resolu-
tion. Friedman and Xu [6] proved an exponential lower bound for the complexity of random
unsatisfiable 3-CNF formulas in restricted versions of OBDD(∧)-proof systems (with a fixed
order of the variables) and an exponential lower bound for the running time on random
unsatisfiable 3XOR formulas of restricted versions of OBDD(∧)-proof systems (with fixed
orders of application of rules).

An interesting approach to solving propositional satisfiability was suggested by Pan and
Vardi [15]. They proposed an algorithm that chooses some order π on the variables of the
input CNF formula F and creates the current π-ordered BDD D that initially represents
the constant true function, and a set of clauses S that initially consists of all clauses of the
formula F . Then the algorithm applies the following operations in an arbitrary order:
1. conjunction (or join): choose a clause C ∈ S, delete it from S and replace D by the

π-ordered BDD representing C ∧D;
2. projection (or ∃-elimination): choose a variable x that has no occurrence in the clauses

from S and replace D by the π-ordered BDD representing ∃xD.
When S becomes empty, the algorithm stops and reports “unsatisfiable” if D represents
the constant false function and “satisfiable” otherwise. Every particular instance of this
algorithm uses its own strategies to choose an order of variables π and an order of application
of the operations. We refer to these algorithms as OBDD(∧,∃)-algorithms.
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The lower bounds for the OBDD(∧,weakening)-proof systems mentioned above imply
the same lower bounds for the OBDD(∧,∃)-algorithms.

Pan and Vardi [15] investigated some specific strategies and compared them with DPLL
based SAT solvers and compared the strategies with SAT solvers based on OBDDs without
quantifier eliminations (we call them OBDD(∧)-algorithms). Experiments showed in par-
ticular that OBDD(∧,∃)-algorithms are faster than OBDD(∧)-algorithms and DPLL based
algorithms on many natural formulas.

One of these formulas was PHPn+1
n . The result of [4] implies that an OBDD(∧,∃)-algorithm

can solve PHPn+1
n in polynomial time in compare to OBDD(∧)-algorithms and DPLL based

algorithms.

1.1 Statement of the problem
It is known that changing the order of the variables in an OBDD can be performed in time
polynomial in the sizes of the input and the output. So it seems to be very restrictive to
use the same order of variables in all OBDDs in the proof. Hence we propose to supply the
proof system with a supplementary rule that dynamically reorders the variables in OBDDs.

In OBDD-proofs, the reordering rule may be applied to an arbitrary OBDD from the
proof but the conjunction rule may be applied only to OBDDs with the same order since the
verification of the application of the conjunction to OBDDs in different orders is hard (this
problem is indeed coNP-complete, see [14, Lemma 8.14]).

The first aim of this paper is to prove lower bounds for the OBDD-based algorithms and
proof systems that use the reordering rule. The second aim is to show that reordering of the
variables is really useful; we give examples of formulas that are hard for the OBDD-based
proof systems without reordering and easy with reordering.

1.2 Our results
In Section 3 we consider the OBDD(∧, reordering)-proof system. We prove two exponential
lower bounds for the size of a OBDD(∧, reordering)-derivation of the pigeonhole principle
PHPn+1

n and Tseitin formulas based on constant-degree algebraic expanders. The lower bound
for pigeonhole principle extends the result of Tveretina et al. [18] from OBDD(∧)-proofs to
OBDD(∧, reordering)-proofs. (Besides, we believe that our argument is simpler than the
proof in [18]). The result for Tseitin formulas, to the best of out knowledge, was not known
even for the more restrictive OBDD(∧)-proofs. In both arguments we use the same strategy.

At first step, we prove an exponential lower bound on the size of the OBDD-representation
for an appropriate satisfiable formula. Assume for simplicity that the original unsatisfiable
formula is minimally unsatisfiable. Roughly speaking, the satisfiable formula under
consideration is equal to the original unsatisfiable formula with one canceled clause. For
example, for the pigeonhole principle the appropriate satisfiable formula would be PHPnn;
for the Tseitin formulas such an appropriate formula is a satisfiable Tseitin formula. This
part of the proof is quite cumbersome but it involves only rather elementary techniques
of lower bounds for OBDD.
Consider the last derivation step. It consists in the conjunction for F1 and F2 in the
same order π. Our goal is to prove that at least one of F1 and F2 has an exponential size.
Both F1 and F2 are satisfiable and they are conjunctions of different sets of clauses from
the initial formulas. The idea is to construct partial substitutions ρ1 and ρ2 with the
same support such that the formula F1|ρ1 ∧ F2|ρ2 is isomorphic to the satisfiable formula
from the first step. Then any OBDD representation of F1|ρ1 ∧ F2|ρ2 has exponential size.

STACS 2017
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Hence, the size of either F1|ρ1 or F2|ρ2 is large for the order π. Thus, the size of either
F1 or F2 is large for the order π.

Though our method has limitations, it may be applied to not minimally unsatisfiable
formulas as well. Roughly speaking, our proof requires that all minimally unsatisfiable
subformulas of the formula have simple structures. For example, our proof for PHPn+1

n

transfers to onto-FPHPn+1
n almost literally since the unique minimal unsatisfiable subformula

of onto-FPHPn+1
n is exactly PHPn+1

n . We do not believe that the same technique applies to a
random 3-XOR.

In Section 4 we construct an example of a family of formulas that are easy for the
OBDD(∧, reordering)-proof system but hard for the OBDD(∧)-proof system.

In Section 5 we study OBDD(∧,∃, reordering)-algorithms. At first, we notice that there
exists an OBDD(∧,∃)-algorithm that solves satisfiable and unsatisfiable Tseitin formulas in
polynomial time. In contrast, we show that there exist formulas representing systems of linear
equations over F2 that are hard for OBDD(∧,∃, reordering)-algorithms. More specifically,
we describe a randomized construction of a family of satisfiable formulas Fn on n variables
in O(1)-CNF such that every OBDD(∧,∃, reordering)-algorithm runs at least 2Ω(n) steps on
Fn.

The plan of the proof is as follows.
We prove that if C ⊆ {0, 1}n is the set of codewords of a list-decodable code that allows
to correct 2

3n of erasures, then every OBDD that represents the characteristic function
of C (χC) has a big size (this size proves to be close to the number of all codewords in
the code). Moreover, this property holds even for the projections of χC onto any 1

6n

coordinates. Notice that a similar result was known for error-correcting codes with large
enough minimal distance (see for example the paper of Duris et al. [5]). Guruswami [9]
showed that the codes with large enough minimal distance are erasure list-decodable but
the opposite statement does not hold.
We give a randomized construction of the required linear code. This construction is based
on random checksum matrix. We use the codes of Gallager [7] that contain O(1) ones
per row. We prove that such a random code with a high probability enjoys the following
expansion property: every 1

6n columns of the matrix contain ones in almost all rows.
We consider the execution of an OBDD(∧,∃, reordering)-algorithm on a CNF formula
that corresponds to the CNF representation of the checksum matrix of the code. We
study two cases:
1. the algorithm applies the projection rule less than n

6 times;
2. the projection rule is applied at least n

6 times.
In the first case, we focus on the OBDD at the end of the execution of the algorithm;
its size should be exponential due to the properties of the code. In the second case,
we consider the first moment in the computational process when we apply exactly n

6
projection operations. By the expansion property, OBDD D is a projection of almost the
entire formula, thus its size should be close to the size of the OBDD of the characteristic
function of the code. That is, the size of D should be large enough.

As we mentioned above, the previously known lower bounds for tree-like and DAG-like
OBDD(∧,weakening)-proofs imply lower bounds for OBDD(∧,∃)-algorithms. So, what is
new in our results comparative to the lower bounds proven by Segerlind [17] and Krajíček
[10]? First of all, our lower bound also works for the reordering operation. The second
advantage of our construction is that we come up with quite a natural class of formulas (our
formulas represent linear systems of equations that define some error correcting codes), while
the constructions in [17] and [10] seem to be rather artificial. Further, we prove the lower
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bound 2Ω(n) for a formula with n variables, whereas the previously known lower bounds are
of the type 2nε (for some ε < 1/5). Besides, we proposed a new technique that might be
applicable for other classes of formulas.

1.3 Open problems
The first open problem is to prove a superpolynomial lower bound for the OBDD(∧,weakening,
reordering)-proofs. The second open problem is to separate the OBDD(∧,weakening,
reordering) and the OBDD(∧,weakening) proof systems.

2 Preliminaries

2.1 Ordered binary decision diagrams
An ordered binary decision diagram (OBDD) is a data structure that is used to represent
Boolean function [3]. Let Γ = {x1, . . . , xn} be a set of propositional variables. A binary
decision diagram is a directed acyclic graph with one source. Every vertex of the graph is
labeled by a variable from Γ or by constants 0 or 1. If a vertex is labeled by a constant, then
it is a sink (has out-degree 0). If a vertex is labeled by a variable, then it has exactly two
outgoing edges: one edge is labeled by 0 and the other edge is labeled by 1. Every binary
decision diagram defines a Boolean function {0, 1}n → {0, 1}. The value of the function for
given values of x1, . . . , xn is computed as follows: we start a path at the source and on every
step we go along the edge that corresponds to the value of the variable at the current vertex.
Every such path reaches the vertex labeled by the constant; this constant is the value of the
function.

Let π be a permutation of the set {1, . . . , n}. A π-ordered binary decision diagram (BDD)
is a binary decision diagram such that on every path from the source to a sink every variable
has at most one occurrence and variable xπ(i) can not appear before xπ(j) if i > j. An
ordered binary decision diagram (OBDD) is a π-ordered binary decision diagram for some
permutation π. The size of an OBDD is the number of vertices in it.

OBDDs have the following nice property: for every order of variables every Boolean
function has a unique minimal OBDD. For a given order π, the minimal OBDD of a function
f may be constructed in polynomial time from any π-ordered BDD for the same f . There are
also known polynomial-time algorithms that efficiently perform the operations of conjunction,
negation, disjunction and projection (operation that maps diagram D computing Boolean
function f(x, y1, . . . , yn) to diagram D′ computing Boolean function ∃x f(x, y1, . . . , yn)) to
π-ordered ODDs [13]. There is an algorithm running in time polynomial in the size of the
input and the output that gets as input a π-ordered diagram A, a permutation ρ and returns
the minimal ρ-ordered diagram that represents the same function as A [13].

2.2 OBDD-proofs
If F is a CNF formula, we say that the sequence D1, D2, . . . , Dt is an OBDD-derivation of
F if Dt is an OBDD that represents the constant false function, and for all 1 ≤ i ≤ t, Di is
an OBDD that represents a clause of F or can be obtained by one of the following inference
rules:
1. (conjunction or join) Di is a π-ordered OBDD, that represents Dk ∧Dl for 1 ≤ l, k < i,

where Dk, Dl have the same order π;
2. (weakening) there exists a j < i such that Dj and Di have the same order π, and Dj

semantically implies Di, that is every assignment that satisfies Dj also satisfies Di;
3. (reordering) Di is an OBDD that is equivalent to an OBDD Dj with j < i.

STACS 2017
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We consider several different OBDD-proof systems with different sets of allowed rules. When
we need to denote some specific proof system, we indicate the rules specific for this system
in brackets. For example, the OBDD(∧)-proof system uses only the conjunction rule and
hence we may assume that all OBDDs in a proof have the same order. We use the notation
π-OBDD(∧)-proof if all diagrams in this proof have order π.

2.3 OBDD-algorithms for SAT

Pan and Vardi [15] proposed for the Boolean satisfiability problem the following family of
algorithms based on OBDDs and symbolic quantifier elimination.

The algorithm gets as an input a CNF formula F , it chooses some order π on the variables
and creates a π-ordered OBDD D (which initially is equal to the constant true function) and
a set of clauses S (which initially consists of all clauses of the formula F ). While S is not
empty the algorithm applies one of the following three operations:
1. (join or conjunction) delete some clause C from S and replace D by a π-ordered BDD

that represents the conjunction D ∧ C;
2. (projection) choose a variable x that has no occurrences in the clauses from S and replace

D by a π-ordered BDD for the function ∃x D;
3. (reordering) choose a new order on variables π′ and replace D by the equivalent π′-ordered

diagram. Assign π := π′. (Note that Pan and Vardi did not consider this rule in [15]).
After every step of the algorithm, the following invariant is mainteined: F is satisfiable if and
only if

∧
C∈S

C ∧D is satisfiable. After the termination of the algorithm the set S is empty;

if the diagram D has a path from the source to a vertex labeled by 1, then the algorithm
returns “Satisfiable” and returns “Unsatisfiable” otherwise.

We refer to the algorithms of this type as OBDD(∧,∃, reordering)-algorithms. Besides,
we use a similar notation for algorithms that use some of the rules: we just enumerate the
used rules in the brackets. For example, the OBDD(∧)-algorithms use only the conjunction
rule and the OBDD(∧,∃)-algorithms use only the conjunction and projection rules.

Since join and projection for OBDDs may be performed in polynomial time and reordering
may be performed in time polynomial on the sizes of the input and the output, the running
time of an OBDD(∧,∃, reordering)-algorithm are polynomially related with the total sum of
the sizes of all values in the diagram D. We ignore the time spent on choosing π and other
operations with the permutation.

2.4 Error-correcting codes

By a code we mean a subset of binary strings with a fixed length. A code C ⊆ {0, 1}n has
a relative distance δ if for any two codewords c1, c2 ∈ C the Hamming distance between c1
and c2 is at least δn.

A linear code a set of all n-bits vectors x = (x1 . . . xn) from some linear subspace in Fn2 .
If k is the dimension of this space, then the ratio k/n is called the rate of the code.

A linear code can be specified by a system of linear equations. For a code of dimension
k this system should consist of m ≥ n− k linear equations involving n variables. The set
of all solutions of the system should give exactly our code, so the rank of the system must
be equal to n − k. If we require in addition that the equations in the system are linearly
independent, then the number of equations is equal to m = n− k. The matrix of this linear
system is called a checksum matrix of the code.
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For a checksum matrix (hij) over F2 we say that a column i intersects a row j, if hij = 1.
Further, we say that a tuple of columns 〈i1, . . . , is〉 intersects some row j if at least one of
the columns i1, . . . , is intersects row j.

We say that a code C recovers a fraction of ρ erasures by a list of size L (or C is
(ρ, L)-erasure list-decodable) if for any w ∈ {0, 1, ?}n such that the number of “?′′ in w does
not exceed ρn, there exist at most L elements in C that are consistent with w. A string
s ∈ {0, 1}n is consistent with w if for all i, wi ∈ {0, 1} implies si = wi.

I Theorem 1 ([9, Lemma 2]). If C is a code with relative distance δ, then for every ε > 0
the code C is ((2− ε)δ, 2

ε )-erasure list-decodable.

3 Lower bounds for OBDD(∧, reordering)

3.1 Tseitin formulas
In this Section we prove an exponential lower bound on the size of OBDD(∧, reordering)-
proofs of Tseitin formulas.

A Tseitin formula TSG,c is based on an undirected graph G(V,E) with degree bounded
by a constant d. Every edge e ∈ E has the corresponding propositional variable pe (in
fact variables for loops are not used). There is a function c : V → {0, 1}, we call it the
labelling function. For every vertex v ∈ V we write down a formula in CNF that encodes∑
u∈V :(u,v)∈E,u 6=v p(u,v) ≡ c(v) (mod 2). The conjunction of the formulas described above

is called a Tseitin formula. If
∑
v∈U c(v) = 1 for some connected component U ⊆ V , then

the Tseitin formula is unsatisfiable. Indeed, if we sum up (modulo 2) all equalities stated in
vertices from U we get 0 = 1 since every variable has exactly 2 occurrences. If

∑
v∈U c(v) = 0

for every connected component U , then the Tseitin formula is satisfiable ([19, Lemma 4.1]).
Note that if formulas TSG,c and TSG,c′ are satisfiable and c 6= c′ then TSG,c and TSG,c′

are different functions since any satisfying assignment of TSG,c can not satisfy TSG,c′ .
In the following, we denote the number of connected components of a graph G by ]G.

I Theorem 2. Let graph G with vertices V and edges E have the following property: for
some m ∈ [|E|] and k > 0 for all subsets E′ ⊆ E of the size m the inequality ]G′ + ]G′′ ≤ k
holds, where G′ and G′′ are graphs with vertices V and edges E′ and E \ E′ respectively. If
TSG,c is satisfiable then any OBDD for TSG,c has at least 2|V |−k vetices on the distance m
from the source.

Proof. Let us fix an order π of the variables of TSG,c (i.e. π orders the edges of G). Let
E′ be the set of the first m edges in this order. We show that there are at least 2|V |−k
substitutions to the variables from E′ such that applying each of these substitutions to TSG,c
results in 2|V |−k different functions. It implies that the size of every OBDD representing
TSG,c has at least 2|V |−k vetices on the distance m from the source, since these substitutions
correspond to paths in the OBDD with different endpoints.

Let c′ : V → {0, 1} be a labeling function that corresponds to a partial substitution with
support E′: in every vertex v, c(v) is the sum modulo 2 of the values of all edges from E′

that are incident to v. Note that making a partial substitution to a Tseitin formula TSG,c
gives as the resulting formula again a Tseitin formula – some formula TSG′′,c+c′ , where G′′
is a graph with vertices V and edges E \ E′, and c+ c′ is the sum of the functions c and c′
modulo 2.

We will prove a lower bound for the number of different c′ such that they can be obtained
by a substitution and TSG′′,c+c′ is satisfiable. The required properties of c′ can be described

STACS 2017
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by a system of linear equations with variables c′(v) for v ∈ V : for every connected component
U of graph G′ with vertices V and edges E′ we put down the equation:

∑
v∈U c

′(v) = 0
(this subsystem states that c′ can be obtained by a substitution or in other words that
TSG′,c′ is satisfiable) and for each connected component W of G′′ we put down the equation:∑
v∈W c(v) + c′(v) = 0 (this subsystem corresponds to the satisfiability of TSG′′,c+c′).
The system has a solution since TSG,c is satisfiable. There are |V | variables and at

most ]G′ + ]G′′ ≤ k equations. Hence there is at least 2|V |−k solutions. Different solutions
corresponds to different satisfiable formulas TSG′′,c+c′ and thus to different functions. J

We will apply Theorem 2 to algebraic expanders.

I Definition 3. A graph G with vertices V and edges E is an (n, d, α)-algebraic expander, if
|V | = n, the degree of any vertex in V equals d and the absolute value of the second largest
eigenvalue of the adjacency matrix of G is not greater than αd.

It is well known that for all α > 0 and all large enough constants d there exists a family
Gn of (n, d, α)-algebraic expanders. There are explicit constructions such that Gn can be
constructed in poly(n) time [12]. Also, it is known that a random d-regular graph is a good
enough expander with high probability.

I Theorem 4. Let G(V,E) be an (n, d, α)-algebraic expander for α < 1
2 . Then for any

E′ ⊆ E if |E′| = n
4d , then ]G

′ + ]G′′ ≤ n(1− ε) + 2, where G′ is a graph with vertices V and
edges E′, G′′ is a graph with vertices V and edges E \ E′ and ε = 1

8d(αd+1) −
1
d2 . Note that

ε > 0 if α < 1/32 and d ≥ 4.

I Corollary 5. If graph G is an (n, d, α)-algebraic expander for α < 1
32 and d ≥ 4, and a

Tseitin formula TSG,c is satisfiable, then the size of any OBDD for TSG,c is 2Ω(n).

Proof. Follows from Theorems 2 and 4. J

I Theorem 6. Let G be an (n, d, α)-algebraic expander with d ≥ 50, α < 1
32 . Then any

OBDD(∧, reordering)-proof of any unsatisfiable Tseitin formula TSG,c has the size at least
2Ω(n).

Sketch of the Proof. We consider the last step of the proof: the conjunction of OBDDs F1
and F2 is the identically false function but both F1 and F2 are satisfiable. Both F1 and
F2 are conjunctions of several clauses of TSG,c. We use that a satisfiable Tseitin formula
based on an expander has only exponential sized OBDDs. Moreover, if the underlying graph
differs from some expander by o(n) edges, then any of its OBDD representations has also an
exponential size, since the number of connected component of graphs G′ and G′′ in Theorem 4
changes by at most o(n).

Note that F1 and F2 together contains all clauses of TSG,c. The main case is the following:
there are two nonadjacent vertices u and v such that F1 does not contain a clause Cu that
corresponds to the vertex u and F2 does not contain a clause Cv that corresponds to v. We
consider two partial substitutions ρ1 and ρ2 that are defined on edges adjacent with u and
v and on the edges of the shortest path p between u and v. The substitutions ρ1 and ρ2
assign opposite values to edges from the path p and are consistent on all other edges. The
substitution ρ1 satisfies Cv and refutes Cu and ρ2 satisfies Cu and refutes Cv.

By the construction F1|ρ1 ∧ F2|ρ2 is the satisfiable Tseitin formula based on the graph
that is obtained from G by deletion of the vertices u and v and all edges from the path p (it
is also possible that this formula does not contain some clauses for the vertices from p). The
size of an OBDD representation of such a formula is exponential since the difference of the
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underlying graph from the expander is at most o(n). (Note that p is the shortest path in the
expander, thus p contains at most O(logn) edges). Hence we get that either F1 or F2 has an
exponential size in the given order. J

3.2 Pigeonhole principle
Let m and n be integers and pi,j be different variables; pi,j states whether the ith pigeon
is in the jth hole or not. A formula PHPmn has two types of clauses. Clauses of the first
type (long clauses) states that every pigeon is in at least one hole:

∨n
j=1 pi,j for all i ∈ [m].

Clauses of the second type (short clauses) states that in every hole there is at most one
pigeon: ¬pi,k ∨ ¬pj,k for all k ∈ [n] and all i 6= j ∈ [m].

I Theorem 7. Any OBDD(∧, reordering)-proof of the pigeonhole principle formula PHPn+1
n

has size at least 2Ω(n).

4 OBDD(∧, reordering) is stronger than OBDD(∧)

In this section we give an example of a family of unsatisfiable formulas Φn that have
OBDD(∧, reordering)-proofs of polynomial size while all OBDD(∧)-proofs have size at least
2Ω(n).

I Theorem 8. Let Ψn(x1, x2, . . . , xn) be a family of unsatisfiable formulas of size poly(n)
that satisfies the following conditions:

there exists an order τ such that Ψn has τ -OBDD(∧) refutation of the size poly(n);
there exists a polynomial p(n), a function k : N→ N with k(n) ≤ log p(n) and permuta-
tions σ1, σ2, . . . , σ2k(n)∈Sn such that for any permutation π ∈ Sn there exists i ∈ [2k(n)]
such that any πσi-OBDD(∧)-proof of Ψn has the size at least 2Ω(n).

Then the formula

Φn(w1, w2, . . . , wk, x1, x2, . . . , xn) =
2k(n)∧
i=1

(
(w = i− 1)→ Ψ(xσi(1), xσi(2), . . . , xσi(n))

)
has an OBDD(∧, reordering)-proof of the size poly(n), but any OBDD(∧)-proof has the size
at least 2Ω(n). Here the equality w = i−1 means that w1w2 . . . wk(n) is a binary representation
of the integer i − 1. We assume that Φn is written in CNF as follows: we add a clause
¬(w = i− 1) to every clause of Ψ(xσi(1), xσi(2), . . . , xσi(n)).

The similar construction was used by Segerlind [17] in order to show that tree-like OBDD(∧,
weakening) does not sumulate Resolution.

Sketch of the Proof. The lower bound. Consider an OBDD(∧)-proof T of the formula Φn,
let τ be the order of the variables x1, x2, . . . , xn that is induced by the order from T . By the
statement of the theorem, there exists 1 ≤ i ≤ 2k such that all (τσi)-OBDD(∧)-proofs of
Ψ have at least exponential size. We make a substitution w = i − 1 to the proof T . This
substitution converts the proof of Φn into a proof of Ψn with the order τσi. Hence, T has an
exponential size.

The upper bound. Since there exists a polynomial sized OBDD(∧)-proof of Ψn, then for
all i there is an order πi (we may assume after the permutation π the variables w get the
leftmost positions) such that there is a πi-OBDD(∧) derivation of the diagram representing
w 6= i − 1. From all such diagrams for different i we may construct a polynomial sized
refutation of Φn, since w contains only O(logn) variables. J
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Now we construct a family of unsatisfiable formulas Ψn that satisfies the conditions of The-
orem 8. We use an argument similar to the proofs of the lower bounds for OBDD(∧, reordering)-
proofs. At first, we construct a function that has the sizes of OBDD representations in
different orders close to the required sizes of proofs for Ψn.

Let EQn : {0, 1}2n → {0, 1} be the equality predicate on pairs of n-bits strings. We denote
it EQn(x1, x2, . . . , xn, y1, . . . , yn); in this notation the value of EQn is true iff x1x2 . . . xn =
y1y2 . . . yn.

I Proposition 9. In the order x1, y1, x2, y2, . . . , xn, yn the function EQn has an OBDD
representation of the size 3n+ 2.

Proof. The proof can be easily done by induction, using the following equation:
EQn(x1, x2, . . . , xn, y1, . . . , yn) = (x1 = y1) ∧ EQn−1(x2, . . . , xn, y2, . . . , yn). J

The proof of the following lemma is similar to the proof of the Ω(n) lower bound on the
best communication complexity of the shifted equality function [11, Example 7.9].

I Lemma 10. Let σi for i ∈ [n] be a cyclic permutation of the variables y that maps
yj to yi+j mod n+1 for any j ∈ [n]. Formally σi(j) = j for j ∈ [n] and σi(n + j) =
n + (i + j − 1 mod n) + 1 for j ∈ [n]. Then for any order π on 2n variables there exists
i ∈ [n] such that every πσi-OBDD representation of EQn has the size at least 2Ω(n).

Now we are ready to construct a formula that may be used in Theorem 8. Consider a formula
Ψn(x, y, z) from 3n + 1 variables (here x, y are vectors of n variables and z is a vector of
n+ 1 variables) that is the conjunction of CNF representations of the following conditions:
xi = yi for all i ∈ [n]; z0; (xi = yi)→ (zi−1 → zi) for all i ∈ [n]; ¬zn. Note that Ψn(x, y, z)
is unsatisfiable since we have that xi = yi for all i; it implies that zi = 1 for all i, but zn
should be zero. The following statement is straightforward.

I Proposition 11. Ψn has a OBDD(∧)-proof of polynomial size in the order
z0, x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn.

I Lemma 12. For any order π on the variables x, y, z the size of a π-OBDD(∧)-proof of Ψn

is at least 1
10
√
S, where S is the size of the shortest π′-OBDD representation of EQn(x, y),

where π′ is the order induced by π on the variables x, y.

I Theorem 13. There exists an unsatisfiable CNF formula Φn of size poly(n) such that
there exists a polynomial size OBDD(∧, reordering)-proof of Φn but every OBDD(∧)-proof
of Φn has the size 2Ω(n).

Proof. By Lemma 12 for every order π a size of π-OBDD(∧)-proof of Ψn is at least 1
10
√
S,

where S is the size of the shortest π′-OBDD representation of EQn and π′ is the order induced
by π. By Lemma 10 there exists a family of permutations σi of [2n] for i ∈ [n] such that for
every order τ there exists an i ∈ [n] such that the size of any τσi-OBDD(∧)-proof of Ψn is
at least 2Ω(n). By Proposition 11 there exists a required order τ and a τ -OBDD(∧)-proof of
Ψn of size poly(n). Theorem 8 gives a construction of the desired formula Φn. J

5 OBDD(∧, ∃, reordering)-algorithms

It is known that OBDD(∧,∃)-algorithms can prove PHPn+1
n in polynomial time [4]. Now we

show that the Tseitin formulas are also easy for OBDD(∧,∃)-algorithms.
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I Proposition 14. There exists an OBDD(∧,∃)-algorithm that solves Tseitin formulas in
polynomial time.

Sketch of the Proof. Notice that the projection of two linear equations over the common
variable is just the sum of these equations. Since every variable has exactly two occurrences
in Tseitin formulas, we can sum up all equations in every connected component. J

Now we show that there are satisfiable linear systems over F2 that are hard for OBDD
(∧,∃, reordering). At first we notice that every OBDD for a characteristic function of a good
enough code has at least exponential size.

I Theorem 15. Let C ⊆ {0, 1}n be a ( 1
2 +ε, L)-erasure list decoding code. Then every OBDD

representing the characteristic function of C has the size at least |C|L2 .
Moreover, for every tuple of k ∈ [2εn] different indices i1, . . . , ik ∈ [n] every OBDD for

the Boolean function ∃xi1 . . . ∃xik χC(x1, . . . , xn) has the size at least |C|L2 .

I Lemma 16. Let A be an m× n checksum matrix of a (ρ, L)-erasure list decodable code.
The matrix A′ is the result of deleting r rows from A. Then A′ is a checksum matrix of a
(ρ, 2rL)-erasure list-decodable code.

I Theorem 17. Let C ⊆ {0, 1}n be a linear code with relative distance 1
3 such that the

checksum matrix H of the code C has the following properties:
H has size αn× n, where α ∈ (0; 1) is a constant;
every row of H contains at most t(n) ones, where t is some function;
every 1

6n columns of H intersect (contains ones in) at least (α − δ)n rows, where δ ∈
(0, 1−α

2 ) is a constant.
Let the formula Fn be the standard representation of H(x) = 0 as a t-CNF of size at most
αn2t(n)−1t(n) (every equation is represented in a straightforward way, without any additional
variables). Then every OBDD(∧,∃, reordering)-algorithm runs on the formula Fn for at least
2Ω(n) steps.

Proof. The code C has the relative distance 1
3 . Hence, C is ( 7

12 , 8)-erasure list-decodable
by Theorem 1, choosing ε = 1

4 . We consider the execution of an OBDD(∧,∃)-algorithm
on the formula Fn. We prove that at some moment size of a diagram D will be at least
2Ω(n). Assume that the algorithm during its execution applies the projection operation
at least k = 1

6n times. We consider the diagram D just after the first moment when the
algorithm applies the projection operation k times. Let D represent a function of type
∃y1, . . . , yk φ(x1, . . . , xn−k, y1, . . . , yk), where φ is the conjunction of several clauses from Fn.
The projection operation on a variable x can be applied only if all clauses from S do not
depend on x. Then all clauses corresponding to the linear equations with the variable x must
be among clauses of φ. By the assumption of the theorem any k columns of H have ones
in at least (α− δ)n rows. Thus, φ contains all clauses from the representation of (α− δ)n
equations and possibly several other clauses from other equations.

Lemma 16 implies that φ is a characteristic function of a ( 7
12 , 8 ·2

δn)-erasure list-decodable
code. The number of satisfying assignments of φ is at least the number of solutions of the
system Hx = 0, hence size of the code defined by φ is at least 2(1−α)n. By Theorem 15
size of every OBDD for ∃y1, . . . , yk φ(x1, . . . , xn−k, y1, . . . , yk) is at least 2(1−α)n2−2δn 1

16 >

2(1−α−2δ)n−4 for every order of variables.
If the algorithm applies the projection operations less than 1

6n times, the argument is
similar; we just need to consider the last diagram D. J
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In the next section, we will show that there exist linear codes matching the requirements
of Theorem 17. These constructions together with Theorem 17 imply the following result:

I Corollary 18. For all large enough n there exists a CNF formula of size O(n) with n

Boolean variables, such that every OBDD(∧,∃, reordering)-algorithm runs on this formula at
least 2Ω(n) steps.

6 Code construction

In this section, we use Low Density Parity Codes (LDPC) of Gallager [7] with quite standard
parameters (a constant number of ones in each row and in each column of the checksums
matrix). We supplement the usual definition of LDPCs with a rather nonconventional
property of uniformity. In what follows we prove that most random Gallager’s codes with
suitably chosen parameters enjoy this property.

First of all we recall the classic construction of random LDPC from [7]. Let us fix some
integer parameters t, r, and n (assuming that t divides n). Define the “basic” matrix A of
size (n/t)× n as a concatenation of t copies of the identity matrix (n/t)× (n/t).

Notice that each column of A contains one non-zero element; in each row of A there
are exactly t non-zero elements. Further, we consider the family of all matrices H of size
(rn/t)×n that consist of r horizontal “blocks” of size (n/t)×n, where each block is obtained
as a permutation of columns of A. It is easy to see that in each column of this matrix there
are r ones, and in each row there are exactly t ones. We introduce the uniform distribution on
all matrices of this type. We can interpret these matrices H as checksums matrices of some
linear codes. Gallager proved that most of these codes have rather large minimal distance.

I Proposition 19 (see [7]). Most (say, at least 90%) of matrices in Gallager’s family define
a linear code with parameters approaching Gilbert–Varshamov bound. More precisely, for
every δ ∈ (0, 1

2 ) and for every t there exists r = r(t) such that for large enough n most
matrices from the defined family have the minimal distance ≥ δn. Moreover, the ratio r(t)/t
approaches h(2δ) as t goes to infinity, where h(x) = −x log x− (1− x) log(1− x) (the binary
entropy). This means that the rate of the code can be made arbitrarily close to 1− h(2δ)
(i.e., to the Gilbert–Varshamov bound).

A family of linear codes defined above can be specified by parameters r, t, n. However, it
is more convenient to specify these codes by another triple of numbers – by (δ, t, n) (assuming
that the value r = r(δ, t, n) is defined implicitly as the minimal integer such that most
codes of the family have the minimal distance greater than δn). Now we can state the main
technical lemma of this section.

I Lemma 20. For all β ∈ (0, 1), γ < 1, and δ ∈ (0, 1
2 ), for all large enough t most (say, at

least 90%) of linear codes from Gallager’s family with parameters (δ, t, n) satisfy the following
property: every βn columns in the checksum matrix of the code intersect at least a fraction γ
of all rows of the matrix.

I Corollary 21. For the distribution defined above, the system of linear equations Hx = 0
with probability close to 1 can be represented as a CNF of size O(n).

Thus, we obtain Corollary 18 for CNF of size O(n) (with n Boolean variables). In other
words, for everyN there exists a CNF formula of sizeN such that every OBDD(∧,∃, reordering)-
algorithm runs on this formula at least 2Ω(N) steps.
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