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Abstract
We determine the complexity of all constraint satisfaction problems over partial orders, in par-
ticular we show that every such problem is NP-complete or can be solved in polynomial time.
This result generalises the complexity dichotomy for temporal constraint satisfaction problems
by Bodirsky and Kára. We apply the so called universal-algebraic approach together with tools
from model theory and Ramsey theory to prove our result. In the course of this analysis we also
establish a structural dichotomy regarding the model theoretic properties of the reducts of the
random partial order.
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1 Motivation and the result

Reasoning about temporal knowledge is a common task in various areas of computer science,
including artificial intelligence, scheduling, computational linguistics and operations research.
Usually temporal constraints are expressed as collections of relations between time points
or time intervals. A typical computational problem is then to determine whether such a
collection is satisfiable or not.

A lot of research in this area concerns only linear models of time. In particular there exists
a complete complexity classification of satisfiability problems for linear temporal constraints
in [8]. However, many times more complex time models are helpful, for instance in the
description of distributed and concurrent systems. In his influential paper [21] Lamport
suggested to model time or, to be more precise, the precedence relation in such systems by a
partial order. Since then a lot research on distributed computing is based on his approach
(e.g. [22], [1], [17], [28]). Thus studying the satisfiability of constraints over partial orders is
not only of theoretical, but also of practical interest.

The complexity of a small subclass of these computational problems has already been
studied in [14]. We will provide a complete classification, showing that every constraint
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47:2 A Complexity Dichotomy for Poset Constraint Satisfaction

satisfaction problems over partial orders is either solvable in polynomial time or is NP-
complete. In the following we give a more formal definition:

Let Φ be a finite set of quantifier-free formulas in the language consisting of a binary
relation symbol ≤. We define Poset-SAT(Φ) as the following computational problem:

Poset-SAT(Φ):
Instance: Variables {x1, . . . , xn} and a conjunction ψ(x1, . . . , xn) of formulas that are
obtained from formulas φ ∈ Φ, by substituting the free variables of φ by variables from
{x1, . . . , xn};
Question: Is there a partial order (A;≤) such that ψ(x1, . . . , xn) is satisfied in A, i.e.,
ψ(a1, . . . , an) holds for some elements a1, . . . , an ∈ A?

Our main result then states as the following complexity dichotomy:

I Theorem 1. Let Φ be a finite set of quantifier-free ≤-formulas. Then the computational
problem Poset-SAT(Φ) is in P or NP-complete.

For the sake of illustration, we give two examples of Poset-SAT problems:

I Example 2. Let x < y := x ≤ y ∧ ¬(y ≤ x). An instance of Poset-SAT({<}) consists of
a set of variables {x1, . . . , xn} and a conjunction ψ of formulas xi < xj . An instance is a
yes-instance if and only if ψ does not contain formulas xi1 < xi2 , . . . , xin−1 < xin

, xin
< xi1 .

The existence of such cycles in ψ can be verified in polynomial time. So Poset-SAT({<}) is
in P.

It is not hard to see that an instance of Poset-SAT({<}) is satisfied in a partial order if
and only if it is satisfied in any extension of it to a linear order. However, this is not
true for general Poset-SAT problems; let us in the following denote by Temp-SAT(Φ) the
problem that asks, if there is a linear order satisfying a given instance of Poset-SAT(Φ). The
Temp-SAT problems were completely classified in [8] under the name of temporal CSPs. The
complexities of Temp-SAT(Φ) and Poset-SAT(Φ) can be different even for very simple Φ as
the following example shows:

I Example 3. For short let x ⊥ y denote the formula ¬(x ≤ y ∨ y ≤ x) that defines the
incomparability relation on partial orders, and let x 6⊥ y denote its negation. By our results,
in particular Theorem 17, Poset-SAT({⊥, 6⊥}) is an NP-complete problem. On the other
hand it is easy to see that Temp-SAT({⊥, 6⊥}) is solvable in polynomial time.

However, every Temp-SAT problem can be stated as a Poset-SAT problem: Let Φ be a
finite set of quantifier-free order formulas that are, without loss of generality, in conjunctive
normal form. Then, for every φ ∈ Φ, let φ′ be the formula obtained by exchanging every
negative literal ¬(x ≤ y) by y < x and let Φ′ be the collection of all such formulas φ′. Thus
all formulas in Φ′ are positive in the language consisting of < and ≤. It is not hard to
prove that Temp-SAT(Φ) is the same problem as Poset-SAT(Φ′). Hence our complexity
classification for Poset-SAT problems can be regarded as a strengthening of the complexity
classification of temporal CSPs in [8].

Our complexity classification is based on the classification of reducts of the random partial
order in [23] and the techniques from universal algebra and Ramsey theory that have been
developed in [12].

An essential part of the proof is to determine all the model-complete cores of reducts of the
random partial. This allows us to sift out those problems that are covered by already known
complexity classifications. In other similar classification projects, such as the classification of
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phylogeny constraint satisfaction problems [6] or CSPs over Henson graphs [9], the authors
only had to deal with one model-complete core after this step. In the case of the Poset-SAT
problems, however, we saw us confronted with four such model-complete cores. We therefore
expected many tedious case distinctions in our proof. But, quite surprisingly, we were able
to handle them all in the same way. It turned out that the relation

Low(x, y, z) := (x < y ∧ x⊥z ∧ y⊥z) ∨ (x < z ∧ x⊥y ∧ y⊥z)

is in a certain sense the only source of NP-completeness in all these cases. The same strategy
could be helpful to simplify the proof of future classification results. We will explain the
details in Section 5.

2 Strategy and structural insight

2.1 Poset-SAT(Φ) as a constraint satisfaction problem
In this section we translate the Poset-SAT(Φ) problems to constraint satisfaction problems
(CSPs) of certain relational structures. Let Γ be a structure in a finite relational language τ .
A first order τ -formula is called primitive positive, if it is of the form ∃x1, . . . , xn(φ1∧· · ·∧φk),
where all φi are atomic τ -formulas or equations. The constraint satisfaction problem of Γ, or
short CSP(Γ), is the problem of deciding whether a given primitive positive sentence is true
in Γ. CSPs of finite structures are a well-studied topic in complexity theory. Feder and Vardi
famously conjectured in [16] that every constraint satisfaction problem of a finite structure
is either in P or NP-complete, which, under the assumption of P 6=NP would make finite
CSPs to the biggest known class of problems in NP that avoid NP-intermediate problems.
However we are going to consider CSPs of structures with infinite domain. For infinite CSPs
the dichotomy does not hold; all possible complexities can appear, up to polynomial time [4].
However for Poset-SAT, the machinery developed by Bodirsky and Pinsker in [12] will allow
us to prove out result.

Every Poset-SAT problem can be restated as a constraint satisfaction problem of a
structure that is first-order definable in the random partial order P = (P ;≤), a well-known
structure in model theory. The random partial order is the unique countable partial order
that is both

homogeneous, i.e., every isomorphism between finite substructures of P extends to an
automorphism of P, and
universal, i.e., it contains an isomorphic copy of every finite partial order.

As a countable homogeneous structure in a finite relational language, P has several nice
properties; in particular the theory of P has quantifier elimination and is ω-categorical, i.e.
it has a unique countable model up to isomorphism. For more model-theoretical background
on homogeneous structures we refer to [18].

Let Φ now be a given set of quantifier-free ≤-formulas. We define ΓΦ as the relational
structure that has P as a domain and contains for every φi ∈ Φ a relation Ri, consisting
of all the tuples in P satisfying φi. So all the relations of ΓΦ are first order definable in P.
Following an established convention [29, 11] we call ΓΦ a reduct of P. By the universality of
P it is straightforward to see that Poset-SAT(Φ) is essentially the same problem as CSP(ΓΦ).

Also the opposite direction holds: By the quantifier elimination of P, every reduct Γ of
P can be defined by a set of quantifier-free formulas ΦΓ. It is not hard to see that CSP(Γ)
is the same problem as Poset-SAT(ΦΓ). So the class of Poset-SAT problems corresponds
exactly to the CSPs of reduct of P.

STACS 2017



47:4 A Complexity Dichotomy for Poset Constraint Satisfaction

Note that the reformulation of Poset-SAT as constraint satisfaction problem would also
work with any other universal partial order. However, the choice of the random partial
order is not arbitrary, since the concept of homogeneity plays a central role in infinite valued
CSPs: On one hand the class of reducts of homogeneous structures is a wide generalisation
of the class of finite structures and CSPs of such structures appear often as natural problems
in many areas of computer science, e.g. in phylogenic analysis, computational linguistics,
temporal and spatial reasoning and many others (see [4] for reference).

On the other hand homogeneity helps to transfer the algebraic techniques from finite-
domain constraint satisfaction problems to infinite structures.

2.2 The universal algebraic approach
Our new aim thus is to classify all CSPs of reducts Γ of the random partial order P. We
use the universal-algebraic approach to constraint satisfaction; in this section we explain its
basic principles and give an outline of the proof.

A relation R is primitive positive definable or pp-definable in Γ if there is a primitive
positive formula φ(x1, . . . , xn) in the language of Γ such that (a1, . . . , an) ∈ R if and only
if φ(a1, . . . , an) holds in Γ. If R is pp-definable in Γ, the CSP induced by the extended
structure (Γ, R) reduces to CSP(Γ) in polynomial time, as Jeavons observed in [19]. So we
have to study the reducts of P only up to pp-interdefinability.

We say a function f : Pn → P preserves a relation R ⊆ P k if for all t̄1, . . . , t̄n ∈ R also
the component-wise computed tuple f(t̄1, . . . , t̄n) lies in R. Otherwise we say f violates R.
By the polymorphism clone Pol(Γ) we denote the set of all finitary functions that preserve all
relations of Γ. This set is closed under composition and contains all projections. Furthermore
it is closed with respect to the topology of pointwise convergence, i.e. the topology on Pol(Γ)
given by basis open neighbourhoods of the form {g : Pn → P : g|An = f |An} of f : Pn → P ,
where A is a finite set. It is well-known that for ω-categorical Γ the relations preserved by all
elements of Pol(Γ) are exactly those that are primitive positive definable in Γ (see e.g. [10]).
So reducts with the same polymorphism clone induce CSPs of the same complexity. Hence
our aim is to understand the polymorphism clones of reducts of P.

The tools that we use to study those clones were invented by Bodirsky and Pinsker and
used to classify the phylogeny CSPs [6], the CSPs of reducts of the random graph [12], and
of all other homogeneous graphs [9]. A key component is the use of Ramsey theory and
the concept of canonical functions. A short introduction can be found in [26], an extended
survey in [4]; we will discuss this usage of Ramsey theory only very briefly in our paper.

We start in Section 3, by classifying the endomorphism monoids of reducts Γ of P (in
other words we study the unary part of Pol(Γ)). This step generalises the main result of [23],
which says that there are exactly five automorphism groups of reducts of P. By our proof we
also identify all the cases in which the complexity is already known from the classification
of temporal CSPs in [8]. After that, only CSPs of reducts whose automorphism group lies
dense in the endomorphism monoid are left unclassified.

The next proof step is to study in every such case which NP-hard relations can appear,
and to prove, with the help of the universal-algebraic approach, that these are the only ones.
Since already the proof of [23] was quite involved, it would be reasonable to expect that also
our proof splits up in many case distinctions. But quite surprisingly, in Section 5 we are
able to reduce several cases to the one where the relations < and ⊥ are primitively positive
definable. We can do so by fixing finitely many constants in the reduct and constructing a
pp-interpretation of (P ;<,⊥) in this extended structure. This strategy could also be helpful
in other CSP classifications.
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As in previous results in [8], [12], [6] and [9], our complexity dichotomy corresponds to a
structural dichotomy expressible in the language of model theory and universal algebra:

I Theorem 4. Let Γ be a reduct of the random partial order and let ∆ be its model-complete
core. Then exactly one of the following cases applies:

There are polymorphisms f and endomorphisms e1, e2 of ∆ such that

e1(f(x, y)) = e2(f(y, x))

or there are polymorphisms f and endomorphisms e1, e2, e3 such that

e1(f(x, x, y)) = e2(f(x, y, x)) = e3(f(y, x, x))

holds for all x, y ∈ ∆. In this case CSP(Γ) is in P.
An extension of ∆ by finitely many constants pp-interprets all finite structures. In this
case CSP(Γ) is NP-complete.

The concept of pp-interpretability mentioned in Theorem 4 is a natural generalisation
of pp-definability: A pp-interpretation of a structure ∆ in Γ is a surjective partial map
I : Γn → ∆ such that the domain of I and the preimage of every relation of ∆ (including
equality) are pp-definable in Γ. If there is a pp-interpretation of ∆ in Γ, then CSP(∆) reduces
to CSP(Γ) in polynomial time.

By Theorem 4 our result is also in accordance with the algebraic dichotomy conjecture
for CSPs over finitely bounded homogeneous structure (see [2]). We will give a proof sketch
of Theorem 4 in the following sections; the complete proof can be found in the extended
version of this paper, which is available as arXiv preprint [20]. The sections in the extended
version correspond to the sections of the same name in the extended paper.

3 A preclassification by model-complete cores

By Aut(Γ) we denote the automorphism group and by End(Γ) the endomorphism monoid of
a structure Γ. Both are also topological objects with respect to the topology of pointwise
convergence. A countable structure Γ is called a model-complete core if Aut(Γ) is dense in
End(Γ). Every countable ω-categorical structure Γ is homomorphically equivalent to a unique
model-complete core ∆, meaning that there exists a homomorphism from Γ to ∆ and vice-
versa [3]. Since the CSPs of homomorphically equivalent structures are equal, one can work
with model-complete cores instead. In many complexity classification projects it has been
proven that working with model-complete cores is more manageable than non-model-complete
core structures. Moreover recently a dichotomy complexity conjecture for infinite-domain
CSPs has been stated in [2] that, as for finite CSPs, talks about the model-complete cores of
a structure.

In this section we sketch the proof of the following proposition, which essentially calculates
the model-complete cores of the reducts of the random partial order.

I Proposition 5. Let Γ be a reduct of P. Then at least one of the following cases applies:
1. End(Γ) contains a constant function,
2. End(Γ) contains an injection g< that preserves < and maps P onto a chain,
3. End(Γ) contains an injection g⊥ that preserves ⊥ and maps P onto an antichain,
4. The automorphism group Aut(Γ) is dense in End(Γ).

STACS 2017



47:6 A Complexity Dichotomy for Poset Constraint Satisfaction

In the first case the model-complete core of Γ contains only one element and CSP(Γ) is
trivial. In the second case, by taking the image of Γ under g< we obtain a structure that
is isomorphic to a reduct of the rational order (Q;<) (and homomorphically equivalent to
Γ). Hence CSP(Γ) belongs to the temporal CSPs classified in [8]. This applies for instance
to Example 2 from the introduction, where CSP(P ;<) is essentially the same problem as
CSP(Q, <). Case 3 similarly allows a reduction of CSP(Γ) to the CSP of a reduct of (Q; 6=).
These CSPs were already studied in [7] and are also part of the classification [8].

By Proposition 5 only the CSPs of the reducts in case 4 are left unclassified. There are
exactly five different possible automorphism groups of reducts of P. If we turn the random
partial order P upside-down, the obtained partial order is again isomorphic to P. Hence
there exists a bijection l: P → P such that for all x, y ∈ P we have x < y if and only if
l (y) < l (x). By �: P → P we denote the rotation on a random filter, a bijective function
introduced in [23] and further studied in [24] that rotates the partial order, in a certain way,
around a generic upwards closed set.

Let F be a subset of the symmetric group of P . For short let 〈F 〉 denote the smallest
closed group containing Aut(P) and the functions in F . Let F be the topological closure of
F in the topological space of all functions in PP . Then the reducts of P are classified up to
automorphisms by the following result:

I Theorem 6 (Theorem 1 in [23]). Let Γ be a reduct of P. Then Aut(Γ) is equal to Aut(P),
〈l〉, 〈�〉 or 〈l,�〉 or the full symmetric group of P .

We define the following relations on P that can be seen as generalisation of the betweenness
relation, the cyclic ordering and the separation relation on the rational order (cf. [15]):

Betw(x, y, z) :=(x < y ∧ y < z) ∨ (z < y ∧ y < x),
Cycl(x, y, z) :=(x < y ∧ y < z) ∨ (z < x ∧ x < y) ∨ (y < z ∧ z < x)∨

(x < y ∧ x⊥z ∧ y⊥z) ∨ (y < z ∧ x⊥y ∧ x⊥z) ∨ (z < x ∧ y⊥z ∧ y⊥x),
Sep(x, y, z, t) :=(Cycl(x, y, z) ∧ Cycl(y, z, t) ∧ Cycl(x, y, t) ∧ Cycl(x, z, t))∨

(Cycl(z, y, x) ∧ Cycl(t, z, y) ∧ Cycl(t, y, x) ∧ Cycl(t, z, x)).

These relations allow us to describe the topological closures of the groups in Theorem 6
as endomorphism monoids:

I Lemma 7.
1. End(P ;<,⊥) = Aut(P)
2. End(P ; Betw,⊥) = 〈l〉
3. End(P ; Cycl) = 〈�〉
4. End(P ; Sep) = 〈l,�〉

Note that the topological closure of the symmetric group is the set of injective functions
on P , therefore it contains the function g⊥. So in order to prove Proposition 5 we need to
show that whenever End(Γ) is not equal to one of the monoids in Lemma 7, it contains a
constant function, g< or g⊥. This can be proven, similarly to Theorem 6, with the method
of canonical functions.

The type of a tuple ā of elements of Γ is the set of all the first-order formulas φ(x̄) such
that φ(ā) holds in Γ. A function from a structure ∆ to a structure Γ is called canonical if it
maps tuples of the same type in ∆ to tuples of the same type in Γ.

There is an extension of P by a linear order relation ≺ such that x < y implies x ≺ y

and (P ;≤,≺) is a homogeneous structure. We know from [25] that (P ;≤,≺) is a Ramsey
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structure. Without specifying the details, this fact together with results from [13], guarantees
the existence of canonical functions with helpful properties for our analysis of endomorphism
monoids:

I Lemma 8 (Lemma 14 in [13]). Let f : P → P and c1, . . . , cn ∈ P . Then there exists a
function g : P → P such that
1. g is generated by f and Aut(P), i.e., g lies in the smallest closed monoid containing f

and Aut(P)
2. g(ci) = f(ci) for i = 1, . . . n.
3. Regarded as a function from (P,≺, c1, . . . , cn) to P, g is canonical.

Proof sketch of Proposition 5. Let Γ be a reduct of P. Assume for example that End(Γ) is
not contained in 〈l,�〉. By Lemma 7 there is a tuple c̄ ∈ P 4 and a function f ∈ End(Γ) such
that c̄ ∈ Sep but f(c̄) 6∈ Sep. By Lemma 8 we can assume that f is canonical, when seen as a
function from (P ;≤,≺, c̄) to (P ;≤). A combinatorial analysis of possible canonical functions
shows that then f generates g<, g⊥ or a constant. The details of this analysis of canonical
functions are quite technical and left out in this short version of the paper. Following this
strategy one can show that, whenever End(Γ) is not equal to one of the monoids in Lemma 7,
it has to contain g<, g⊥ or a constant. J

4 The case where < and ⊥ are pp-definable

In this section we consider all reducts of P whose endomorphism monoids are equal to Aut(P),
trying to identify NP-hard relations that can appear. The following lemma will be of help in
this analysis.

I Lemma 9 (Bodirsky, Kára [8]). Let Γ be a relational structure and let R ⊆ Dk be a union of
at most m orbits (i.e. minimal invariant sets) of the component-wise action of Aut(Γ) on Dk.
If Γ has a polymorphism f that violates R, then Γ also has an at most m-ary polymorphism
that violates R.

By Lemma 9 the relations < and ⊥ are primitive positive definable in a reduct Γ of P if
and only if End(Γ) = Aut(P).

It is straightforward to see that CSP(P ;<,⊥) and CSP(P ;≤,⊥) both are in P. They are
part of a bigger class of CSPs that can be computed in polynomial time. Let e< : P 2 → P

be an embedding of the structure (P ;<)2 into (P ;<); in other words e< is an injective
function such that e<(x, y) < e<(x′, y′) if and only if x < y and x′ < y′. Similarly let e≤
be an embedding of (P ;≤)2 into (P ;≤). A more general result in [5] implies that these two
operations can be used to characterised so-called Horn-tractable structures:

I Lemma 10. Let Γ be a reduct of P. Suppose that e≤ ∈ Pol(Γ). Then CSP(Γ) is in P and
every relation in Γ is equivalent to a conjunction of Horn formulas in (P ;≤), i.e. formulas
of the form:

xi1 ≤ xj1 ∧ xi2 ≤ xj2 ∧ · · · ∧ xik
≤ xjk

→ xik+1 ≤ xjk+1 or
xi1 ≤ xj1 ∧ xi2 ≤ xj2 ∧ · · · ∧ xik

≤ xjk
→ ⊥.

Suppose that e< ∈ Pol(Γ). Then CSP(Γ) is in P and every relation in Γ is equivalent to a
conjunction of Horn formulas in (P ;<), i.e. formulas of the form:

xi1 C1 xj1 ∧ xi2 C2 xj2 ∧ · · · ∧ xik
Ck xjk

→ xik+1 Ck+1 xjk+1 or
xi1 C1 xj1 ∧ xi2 C2 xj2 ∧ · · · ∧ xik

Ck xjk
→ ⊥,

where Ci ∈ {<,=} for all i = 1, . . . , k + 1.
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A polynomial time algorithm for these Horn-tractable structures can be constructed
similarly to the algorithm for Horn clauses in Boolean SAT: By resolution, one can substitute
the input in polynomial time by a set of positive literals. The satisfiability of these literals
can then also be checked in polynomial time, as in Example 2.

We are now going to show that every reduct Γ of P with End(Γ) = Aut(P) that does not
have e< or e≤ as polymorphism induces an NP-complete CSP. Let us define the relation

Low(x, y, z) := (x < y ∧ x⊥z ∧ y⊥z) ∨ (x < z ∧ x⊥y ∧ y⊥z).

It is easy to see that every endomorphism of Low is injective and that Low is not preserved
by e< or e≤. In fact Low can be used to characterise all reducts that do not have e< or e≤
as polymorphisms:

I Proposition 11. Let Γ be a reduct of P such that End(Γ) = Aut(P). Then either
the relation Low is pp-definable in Γ or,
one of the functions e<, e≤ is a polymorphism of Γ.

The proof of this result is quite technical and makes up a large part of the long version
of this paper. Here we only give a short proof sketch.

Proof sketch of Proposition 11. Assume that Low is not pp-definable in Γ. By Lemma 9
there has to be a binary f ∈ Pol(Γ) that violates Low. Using the homogeneity of P we
can even further assume that there are elements a, b, c ∈ P such that (a, b, c) ∈ Low, but
(f(a, a), f(b, c), f(c, b)) /∈ Low. We now make again use of canonical functions, however, with
the following generalisation of Lemma 8:

I Lemma 12 (Lemma 21 in [13]). Let f : P r → P and c1, . . . , cn ∈ P . Then there exists a
function g : P r → P such that
1. g is generated by f and Aut(P), i.e. lies in the smallest closed clone containing f and

Aut(P);
2. the restriction of g to {c1, . . . , cn}r is equal to f ;
3. regarded as a function from (P,≺, c1, . . . , cn)r to P, g is canonical.

By Lemma 12 we can assume that f is canonical, when seen as a function from the
structure (P ;≤,≺, a, b, c)2 to (P ;≤). An analysis of all possible such canonical functions
shows that f together with End(Γ) has to generate e< or e≤. For reasons of space, we omit
this combinatorial analysis here; it can be found in Section 7 of the extended paper [20]. J

We remark that one can even show that every f : P 2 → P preserving Low has to be
dominated, meaning that x < x′ implies f(x, y) < f(x′, y′) and x⊥x′ implies f(x, y)⊥f(x′, y′),
or that f satisfies the symmetric conditions for its second coordinate. This fact is proven in
the extended version of the paper. It only remains to show that CSP(P ; Low) is NP-complete
to prove the complexity dichotomy for the case where < and ⊥ are pp-definable.

The Boolean 3-satisfiability problem is a well-studied NP-complete problem [27]. It can be
written as CSP({0, 1}; XOR, 3OR) with XOR = {(0, 1), (1, 0)} and 3OR = {0, 1}3\{(0, 0, 0)}.
In practice we often show the NP-hardness of CSP(Γ) by finding a pp-interpretation of
({0, 1}; XOR, 3OR) or another Boolean NP-complete structure in Γ. We remark that if such
a pp-interpretation exists, every finite structure has a pp-interpretation in Γ.

Also adding constants does not change the complexity of a CSP, by the following lemma:

I Lemma 13 (Corollary 3.6.25 in [4]). Let Γ be an ω-categorical model-complete core and
c1, c2, . . . , ck be constants of Γ. Then CSP(Γ) is polynomially equivalent to CSP(Γ, c1, c2,
. . . , ck).
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Thus to prove the NP-hardness of a CSP of a ω-categorical model-complete core we
often add sufficient constants to the structure and then construct a pp-interpretation of an
NP-hard structure in the resulting structure.

I Lemma 14. Let a, b ∈ P be constants such that a⊥b. Then there is a primitive positive
interpretation of ({0, 1}; XOR, 3OR) in (P ; Low, a, b). Hence CSP(P ; Low) is NP-complete.

Proof. Let D := {x ∈ P : Low(x, a, b)}, D0 := {x ∈ D : x < a} and D1 := {x ∈ D : x < b}.
We define I : D → {0, 1} by setting I(x) = 0 if x ∈ D0 and I(x) = 1 if x ∈ D1. We claim
that I is a pp-interpretation of ({0, 1}; XOR, 3OR) in (P ; Low, a, b).

Clearly the domain D and also the sets D0 and D1 are pp-definable in (P ; Low, a, b). Let

Abv(x, y, z) := (y < x ∧ x⊥z ∧ y⊥z) ∨ (z < x ∧ x⊥y ∧ z⊥y)

be the, in a sense, dual of Low. The relation Abv is not preserved by e< and e≤. By
Proposition 11 we know that Low is pp-definable in Abv. For symmetry reasons also Abv is
pp-definable in Low. The equation I(x) = I(y) holds if and only if ∃z Abv(b, x, z)∧Abv(b, y, z).
Hence the preimage of equality under I is pp-definable in (P ; Low). Furthermore

(I(x), I(y)) ∈ XOR ↔ ∃u, v ∈ D (I(x) = I(u)∧ I(x) = I(v)∧Abv(a, u, v)∧Abv(b, u, v)).

Let R(x, y, z, t) := ∃u Abv(u, y, z) ∧ Abv(x, u, t). Then R(x, y, z, t) implies that x is
greater than at least one of the elements {y, z, t}. One can show the following equivalence:

I(x1, x2, x3) ∈ 3OR ↔ ∃y1, y2, y3 ∈ D (R(a, y1, y2, y3) ∧
3∧

i=1
I(xi) = I(yi)).

So I is a pp-interpretation of ({0, 1}; XOR, 3OR) in (P ; Low, a, b) and CSP(P ; Low, a, b) is
NP-complete. Adding finitely many constants to a model-complete core does not increase the
complexity of the induced constraint satisfaction problem by a result in [3]. So CSP(P ; Low)
is NP-complete. J

As an immediate consequence we get the following corollary of Proposition 11:

I Corollary 15. Let Γ be a reduct of P such that End(Γ) = Aut(P). Then
either the relation Low is pp-definable in Γ and CSP(Γ) is NP-complete,
or one of the functions e<, e≤ is a polymorphism of Γ and CSP(Γ) is in P.

5 Hardness of Betw, Cycl and Sep

By Proposition 5 we are left with the reducts Γ of P whose endomorphism monoids are
equal to 〈l〉, 〈�〉 or 〈l,�〉. As it turns out, in all these cases the induced CSPs are NP-
hard. Interestingly, we can prove this fact for all three cases in the same way: After fixing
finitely many constants, which is a feasible reduction by Lemma 13, we can construct a
pp-interpretation of (P ;<,Low) in the structure. To be more precise the following holds:

I Proposition 16. Let Γ be a reduct of P such that End(Γ) is equal to 〈l〉, 〈�〉 or 〈l,�〉.
Then there are elements c1, . . . , cn ∈ P and a subset X ⊆ P such that

(X;≤) is isomorphic to P;
X is pp-definable in (Γ, c1, . . . , cn);
the restrictions of < and Low to X are pp-definable in (Γ, c1, . . . , cn).

Hence the identity mapping on X is a pp-interpretation of (P ;<,Low) in Γ, and CSP(Γ) is
NP-complete.
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Proof. We demonstrate the proof only for the case, where End(Γ) = 〈�〉. The other cases
are discussed in the extended paper [20]. Note that the relation Cycl is an orbit of 〈�〉 on P 3.
So Lemma 9 implies that Cycl is primitive positive definable in Γ. Without loss of generality
let Γ = (P ; Cycl).

Let c, d be two constants in P such that c < d and let X := {x ∈ P : c < x < d} =
{x ∈ P : Cycl(c, x, d)}. By a back-and-forth argument it is easy to show that P and
(X;≤) are isomorphic. For x, y ∈ X we have that x < y is equivalent to Cycl(c, x, y). The
incomparability relation x⊥y is also pp-definable in X as follows:

∃a, b, c, d (x < a < c ∧ x < b < d ∧ y < c ∧ y < d)∧
(Cycl(x, a, y) ∧ Cycl(x, b, y) ∧ Cycl(y, c, b) ∧ Cycl(y, d, a) ∧ Cycl(b, d, c) ∧ Cycl(a, c, d)).

The two maps e< : P 2 → P and e≤ : P 2 → P do not preserve Cycl. By Proposition 11
we have that Low is pp-definable in (P ;<,⊥,Cycl). So the identity on X gives us a pp-
interpretation of (P ; Low) in (P ; Cycl, c, d), which concludes the proof. J

We observed that in the already existing complexity classifications, certain proof parts
could have been simplified using the same principle, i.e. fixing finitely many constants in a
model-complete core reduct, to obtain the relations of the underlying homogeneous structure.

So it is natural to ask, if Proposition 16 works in general: Let ∆ be a homogeneous
structure and Γ be a reduct of ∆ that is a model-complete core. Can we then extend ∆
by finitely many constants c1, . . . , cn such that the identity mapping on a definable subset
of (Γ, c1, . . . , cn) pp-interprets ∆? The answer to this question is negative: A non-trivial
counterexample is given by the random ordered graph ∆ = (G;E,<) and the random
tournament Γ = (G;T ) defined by T (x, y) := x 6= y ∧ (x < y ↔ E(x, y)).

6 Classification

We sum up the results of the last two sections:

I Theorem 17. Let Γ be a reduct of P in a finite relational language and a model-complete
core. Then exactly one of the following two cases holds:

One of the relations Low, Betw, Cycl, Sep is pp-definable in Γ. An extension of Γ by
finitely many constants pp-interprets all finite structures and CSP(Γ) is NP-complete.
Pol(Γ) contains e< or e≤ and CSP(Γ) is in P.

Proof. If Low is pp-definable in Γ, the statement holds by Lemma 14. Next, assume that
one of the relations Betw, Cycl or Sep is pp-definable in Γ. By Proposition 16 we have a
pp-interpretation of (P ; Low) in Γ. By the transitivity of pp-interpretations and Lemma 14
we can obtain a pp-interpretation of ({0, 1}; XOR, 3OR) in Γ, extended by finitely many
constants. Hence all finite structure are pp-interpretable in an extension of Γ by finitely
many constants. At last, assume that Low, Betw, Cycl, Sep are not pp-definable in Γ.
By Proposition 5 we have End(Γ) = Aut(P) and therefore, by Corollary 15, e< or e≤ is a
polymorphism of Γ and CSP(Γ) is in P. J

Theorem 17 allows us to prove our main result.

Proof of Theorem 4. By Proposition 5 we know that the model-complete core of Γ is equal
to a one-element set, a reduct of (Q, <) or to Γ itself. In the first two cases the dichotomy
in Theorem 4 holds by the analysis in [8], see also Theorem 10.1.1. in [4]. If Γ itself
is a model-complete core, the dichotomy holds by Theorem 17 and the observation that
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there are endomorphisms α, α′ ∈ End(P) such that e<(x, y) = α(e<(y, x)) respectively
e≤(x, y) = α′(e≤(y, x)). J

We identified the problems Poset-SAT(Φ) with CSPs of reducts Γ of P, so also the
complexity dichotomy for Poset-SAT(Φ) in Theorem 1 is true.

We remark that also the “meta-problem” of deciding if Poset-SAT(Φ) is NP-complete
for a given finite set of formulas Φ, is decidable. The main result in [13] implies that
determining whether a quantifier-free formula in P is pp-definable in a given reduct Γ of P, is
a decidable problem. Hence it is also decidable to tell if Γ is a model-complete core. If Γ is a
model-complete core, the list of NP-hard relations in Theorem 17 allows us also to decide
whether CSP(Γ) is NP-complete. A similar list exists for the case where the model-complete
core of Γ is a reduct of the rational order in [8].
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