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—— Abstract

Security of cryptographic applications is typically defined by security games. The adversary,
within certain resources, cannot win with probability much better than 0 (for unpredictability
applications, like one-way functions) or much better than % (indistinguishability applications for
instance encryption schemes). In so called squared-friendly applications the winning probability
of the adversary, for different values of the application secret randomness, is not only close to
0 or % on average, but also concentrated in the sense that its second central moment is small.
The class of squared-friendly applications, which contains all unpredictability applications and
many indistinguishability applications, is particularly important for key derivation. Barak et
al. observed that for square-friendly applications one can beat the “RT-bound”, extracting secure
keys with significantly smaller entropy loss. In turn Dodis and Yu showed that in squared-friendly

applications one can directly use a “weak” key, which has only high entropy, as a secure key.

In this paper we give sharp lower bounds on square security assuming security for “weak” keys.
We show that any application which is either (a) secure with weak keys or (b) allows for entropy
savings for keys derived by universal hashing, must be square-friendly. Quantitatively, our lower
bounds match the positive results of Dodis and Yu and Barak et al. (TCC’13, CRYPTO’11)
Hence, they can be understood as a general characterization of squared-friendly applications.

While the positive results on squared-friendly applications where derived by one clever ap-
plication of the Cauchy-Schwarz Inequality, for tight lower bounds we need more machinery. In
our approach we use convex optimization techniques and some theory of circular matrices.
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1 Introduction

When analyzing security of cryptographic primitives one typically assumes access to perfect
randomness. In practice, we are often limited to imperfect sources of randomness. An
important research problem is to understand when this “weak” randomness can be used to
substitute or extract ideal randomness.
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1.1 Key derivation

Ideal and real settings. For any cryptographic primitive (like encryption or signatures),

which needs a “random” m-bit string R to sample the secure key', we compare two different

settings:

(a) ideal setting: R is perfectly random: uniform and independent of any side information
available to the attacker

(b) real settings: there is only an imperfect entropy source X and the secure key R needs to
be derived from X. The attacker may have some side information about X, in particular
the additional randomness used to derive R from X.

The security of the primitive is parametrized by €, which is the success probability (for

so called unpredictability applications) or the advantage (for so called indistinguishability

applications) of an attacker with certain resources?.

Generic approach and the entropy loss. The general way to derive a secure key is to
“extract” the randomness from X by a seeded extractor. In particular, the Leftover Hash
Lemma implies that if the min-entropy of X is at least m + L then H(X), H, where H is
randomly chosen function from a universal family, is d-close to uniform with § = v/2=L. This
means that if an application is e-secure for uniform R, then the same application keyed with
R = H(X), and even published H, is €'-secure with

€ <e+ V2L, (1)

where the entropy loss L is the difference between the entropy of X and m. Note that from
Equation 1 it follows that we need L = 2log(1/¢) to obtain (roughly) the same security
¢’ = 2¢. Unfortunately, if we want the security against all statistical tests, this loss is necessary
for any extractor, as implied by the so called “RT-bound” [6].

Need for better techniques for cryptographic applications. The RT-bound does not
exclude the possibility of deriving a secure key wasting much less than 2log(1/€) bits of
entropy for particular applications. Saving the entropy, apart from scientific curiosity, is a
problem of real-word applications. Minimizing the entropy loss is of crucial importance for
some applications where it affects efficiency (for example in the elliptic-curve Diffie-Hellman
key exchange) and sometimes the entropy amount we have is bounded (e.g. biometric data)
than the required length of a key; see also the discussion in [1]. Hence, better techniques than
simple extracting are desired. Below we discuss what is known about possible improvements
in key derivation for cryptographic applications.

Key derivation for unpredictability applications. It is known that unpredictability applic-
ations directly tolerate weak keys, provided that the entropy deficiency is not too big. More
precisely, any unpredictability application which is e-secure with the uniform m-bit key, is
also € = 2%e-secure for any key of entropy m — d. If we have a source X that has “enough”
entropy but its length is too big, we can condense it to a string of length m with almost full
entropy. Essentially, since we achieve a very good condensing rate: any X of m + loglog(1/e)
bits of entropy can be condensed to an m bit string with the entropy deficiency d = 3 which

! In applications like block-ciphers, R is the key itself. In other applications like RSA encryptions, R is
used to sample public or secret keys. We will simply refer to R as the key.
2 For example bounded running time, circuit size or the number of oracle queries.
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is € = 23e-close to uniform?, we are able to derive a key (roughly) equally secure as the
uniform key, with the entropy loss only L = O (loglog(1/¢)), i.e. actually without entropy
waste [4].

Key derivation for indistinguishability applications. The situation for indistinguishability
applications is completely different. For the one-time pad which needs an m-bit uniform
key, a key of even m — 1 bits of entropy might be insecure[l]. For some applications we
can overcome this difficulty if the winning probability of the adversary, as a function of
the key, is not only close to 1/2 on average, but also concentrated around 1/2. Recall that
the advantage of an attacker, for a particular key, is defined as the difference? between the
winning probability and 1/2. One introduces the following two interesting properties:

(a) strong security: the absolute advantage is small on average (close to the advantage)
(b) square security: the squared advantage is small on average (close to the advantage)
Property (a) provides basically the same bounds as for the unpredictability applications.
Namely, we can apply a weak key directly, losing a factor 2¢ in the security where d is the
entropy deficiency. Unfortunately, this holds only for a very limited class of applications.
Property (b) offers slightly worse bounds but is satisfied for a wide class of indistinguishability
applications, called “squared-friendly”. One can use a “weak key” directly with a squared-
friendly application achieving security of roughly V/2de where € is the security with the
uniform key and d is the entropy deficiency [5]. Alternatively, if we want to obtain security
O(e) instead of O(y/€), one can use universal hashing to extract an e-secure key with the
entropy loss reduced by half[1] , i.e. up to L = log(1/¢€). The improvement in the security
analysis over the “standard” Leftover Hash Lemma (LHL) comes from restrictions on the
class of the test functions, imposed by the squared-friendly assumption.

1.2 Our results

In what follows we assume that P is an arbitrary indistinguishability application which
needs an m-bit uniform key. We give tight lower bounds on the amount of square security
(the expected square of the attacker’s advantage) or strong-security (the expected absolute
average of the attacker’s advantage) that is necessary for an application to be secure with
weak keys, that is keys with entropy deficiency. The notion of entropy here is either the
min-entropy or the collision entropy. Collision entropy is less restrictive than min-entropy
and is a natural choice to applications involving hash functions, like the LHLS. It is equally
good for squared-friendly applications as min-entropy. Therefore, as remarked in [5], results
for collision entropy are more desired. Nevertheless, we provide bounds for both entropy

notions®.

Summary of our contribution. We characterize squared-friendly applications by their “nice”
features. Namely, we show that square-friendly applications are precisely those applications
which are secure with weak keys or offers improvements in the entropy loss for a key derived

Thus, for condensing we lose incomparably less in the amount than for extracting.

In indistinguishability games, an adversary needs to guess a bit at the end of the game. Since he can
flip his answer, any bias indicates that his guess is better than a random answer.

For some applications we may prefer LHL over other extractors because of its simplicity, efficiency and
nice algebraic features[1].

Actually collision entropy is more challenging and our observations on strong security are known in
folklore, but we study also the min-entropy case for the sake of completeness.
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by the LHL. Hence the current state of art is optimal: we cannot do better key derivation
than for squared-friendly applications unless we build a theory on stronger than collision
entropy requirements for weak keys (which would be in some sense inconvenient because of a
natural connection between collision entropy and hash functions).

Any application secure with weak keys has large square-security. The following results
was proved by Dodis and Yu:

» Theorem ([5]). Applications which are o-square-secure with the uniform key, i.e. when
the averaged squared advantage of any attacker is less than o, are € = V/290-secure with any
key of collision entropy at least m — d.

The following question is therefore natural

Q: If P is secure for all keys of high (collision or min-) entropy, how much square-
security does it have?

We give an answer in the following two theorems. The first is actually trivial and perhaps
known in folklore.

» Theorem. Let d > 1. Suppose that P is e-secure with any key of min-entropy at least
m —d. Then P is €'-strongly secure with € = O(e).

The second one is more interesting

» Theorem (Informal). Let d > 1. If P is e-secure with any key of collision entropy at least
m — d, then P is o-square-secure with o = O(€?).

The bounds in both cases are tight. Note that if the entropy deficiency d is bounded then
our lower bound perfectly (up to a constant factor) matches the result of Dodis and Yu for
any P.

Square Security is necessary to improve key derivation by condensing collision entropy.
In the previous paragraph, we discussed the case when the entropy deficiency d is bounded
away from 0. However, sometimes we intentionally extremely condense collision entropy so
that this gap is close to 0, to achieve better than O(v/€) security at the price of starting
with more than m-bits of entropy. For e-secure square friendly applications one can derive
by universal hashing a (roughly) e-secure key from any source having m + log(1/¢) bits of
min-entropy (or even collision entropy) [1]. Let us briefly discuss this result. The proof of
the classical Leftover Hash lemma consists of two separate claims:

(a) Universal hash functions can extremely condense collision entropy.

(b) Distributions of extremely high collision entropy are close to uniform.

More precisely, in the first step one applies a random function from a universal family to
“condense” the collision entropy of X from m + L bits, where L > 0, to an m-bit string with
m —log(1+271) ~ m — 2% bits of collision entropy 7. In the next step one shows that any
m-bit random variable with collision entropy at least m — €2
L = 2log(1/€) is enough to obtain e-security. As observed by Barak et al. [1], for e-secure
applications which are in addition e-square-secure, it suffices to start with m — € bits of the
collision entropy in step (b), which reduces by half, i.e. up to L =log(1/¢) (comparing to
the RT-bound), the entropy loss needed to achieve e-closeness.

is e-close to uniform. Thus,

7 Conditioned on the choice of the function, which can be thought as a seed for the condenser.
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» Theorem ([1]). Suppose that P with a uniform m-bit key is e-secure and o-square secure.
Let R be any key of collision entropy at least m — d (possibly given some side information).
Then P keyed with R is € -secure with € = € + /(2% — 1), even if the used hash function is
published. In particular, for 0 = O(e) and d = O(e) we obtain € = O(e).

Applying this to R being X condensed by universal hashing we get

» Corollary ([1]). Suppose that P with a uniform m-bit key is e-secure and o-square secure
(that is, average squared advantage of attackers is not bigger than o). Suppose that X has
min-entropy (or collision entropy) at least m + L and let R be an m-bit key derived by
universal hashing. Then P keyed with R is € -secure with € = ¢ + V2~ Lo, even if the used
hash function is published. In particular, € = O(e) for o = O(e) and L = log(1/e).

The first result motivates the following question about weak keys with the entropy deficiency
close to 0.

Q: Suppose that an application P is secure for all keys of extremely condensed collision
entropy, possibly given side information. How much square-security does P have?

We give an answer in the following theorem

» Theorem (Informal). Let d < 1 and suppose that P is e-secure with all keys of collision
entropy at least m — d (possibly given side information, like the condenser’s seed). Then P is
o-square secure with ¢ = O(max(d, € /d)).

Our theorem, applied for d = €, shows the full converse of the observation of Barak et al. A
good illustrative example is the case of the Leftover Hash Lemma. As mentioned, universal
hash functions condense m + log(1/¢) bits of entropy into an m-bit string with m — e bits
of entropy. If we use universal hash functions only as a condenser (which is exactly how
we use them in the LHL), then we have a “black-box” equivalence between distributions of
collision entropy at least m — e and hashes of distributions having at least m +log(1/¢) bits of
entropy®. If follows then that we want to reduce the entropy loss by half to L = log(1/¢) and
achieve e-security, then our application must be e-square secure. This lower bound matches
the positive result of Barak et al. [1] and, since is holds for any application, can be viewed as
a general characterization of squared-friendly applications.

Square security is necessary for reducing the entropy loss in the LHL. As remarked in the
discussion in the previous paragraph, we can heuristically identify the set of randomly “hashed”
high entropy distributions with the set of distributions of extremely high collision entropy
(conditioned on the choice of a hash function as the uniform “seed”). This “equivalence”, is
reasonable for the “black-box” use of hash functions. However, it is natural to ask if we can
prove it formally. That is, we ask if square security is necessary for improvements in the
entropy loss for key derived not by a general “black-box” collision entropy condenser but
precisely by hashing.

Q: Suppose that an application P is secure for any key derived by applying a randomly
chosen (almost) universal hash function to a min-entropy source, even if the hash
function is published. Suppose that the entropy loss vs security trade-off is significantly
better than (pessimistic) RT-bound. Is P square-secure?

8 Because the only information that a general condenser provides is about the entropy in its output.
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We give an affirmative answer and a lower bound that (almost) matches the results of [1] for
any application.

» Theorem (The improved LHL [1] is tight for any application, informal). Let e = 2=(1=8)m
where B is some small positive number. Then there exists an e-universal family H of hash
functions from n to m bits, efficiently commutable and samplable with the use of n? uniformly
random bits, with the following property: for any application P, if for every source X of

min-entropy at least k = m + log(1/€e) and H chosen randomly from H we have that P is
1-33/2
secure with the key H(X) and published H, then P must be o-square-secure with c = € 1-8

This theorem for 8 close to 1 (exponential but meaningful security) shows that el—o().
square-security is necessary for saving log(1/¢) bits of entropy in deriving an e-secure key by
universal hashing (which is almost tight since e-square-security is enough.

Square-security bounds are generally optimal. The improved bound for applications which
are square-secure is generally optimal, as observed in [4]. We provide an alternative proof of
this result, using our techniques.

» Theorem 1 (Square-friendly bounds are generally optimal [4]). For any n, k < n, and
d € (0,1) there exists an application which has §-square security but for some key of Renyi

entropy at least k it achieves only security € = 2 (\/ 2"—’“5).

The proof appears in the full version. The advantage of our proof is that it abstracts a
general condition for this bound to be satisfied. In particular, similar bounds can obtained
for all so called “strongly secure” applications, where attacker’s advantage is nearly zero
except a tiny subset of “weak” keys where the attacker wins with heavy advantage.

1.3 Our techniques

Our main technical contribution is an explicit characterization of a distribution which
maximizes the expectation of a given function, subject to collision entropy constraints. We
show that the worst-case distribution has the shape similar to the function, up to a transform
which involves taking a threshold and scaling, as illustrated in Figure 1. We apply this
characterization to settings where we want to find the distribution of keys which maximizes
the attacker advantage. We stress that with our characterization one can compute optimal
security with weak keys. Previous works [5, 1] obtained good bounds with the Cauchy-
Schwarz inequality only, however these techniques cannot be extended to obtain optimal or
lower bounds, as we do.

1.4 Organization of the paper

In Section 2 we provide the basic notations and definitions for security, square-security and
entropy. In Section 3 we discuss the known positive result. Our key auxiliary result on
optimization problems with collision entropy constraints is presented in Section 4. The lower
bounds are given in Section 5.

2 Preliminaries

Basic notions. The min entropy of X is Ho (X) = log(1/ max, Pr[X = z]). The collision
probability of X is CP(X) =) Pr[X = z]?, that is CP(X) = Pr[X = X’] where X’ is an
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r

Figure 1 The shape of the best-advantage key distribution (under collision entropy constraints).
In application the function D(r) equals the advantage of an attacker on the key 7.

independent copy of X. The collision entropy of X is Hy = CP(X) and the conditional
collision entropy H2(X|Z) equals —log (E,. z CP(X|z=.)). The statistical distance of X
and Y (taking values in the same space) is A(X;Y) =" |Pr[X = z] — Pr[Y = z]|.

Security of indistinugishability and unpredictability applications. Consider any applica-
tion whose security is defined by a security game between an attacker A and a challenger C(r),
where 7 is an m-bit key derived from U, in the “ideal” setting and from some distribution
R in the “real” setting. For every key r we denote by Wina(r) the probability (over the
randomness used by A and C) that the adversary A wins the game when challenged on the
key r. The advantage of the adversary A on the key r is defined, depending on the type of
the application (unpredictability, indistinugishability) as follows:

Adva(r) L Wina (r), (unpredictability) (2)

of \r . 1
Adva(r) & Wina(r) — X (indistingusihability) (3)

Now we define the security in the ideal and real models as follows:

» Definition 2 (Security in the ideal and real model). An application P is (7, €)-secure in the
ideal model if

| E Adva(r)| <e (4)

r<Upm

for all attackers A with resources less than T'. We say that P is (7, €)-secure in the (m—d)-reals
if for every distribution R of collision entropy at least m — d

| B Adva(r)| <, (5)

for all attackers A with resources less than 7.

» Remark (Strong security in the ideal model). If E,. ¢ |Adva(r)| < € in the above setting
then we say that P is (T, €)-strongly secure (in the ideal model).

Square security. Finally, we define the notion of square-security (in the ideal model)

» Definition 3 (Square security). An application P is (T, €)-square-secure if

E Adva(r)® <e, (6)

r<Upm

for all attackers A with resources less than T'.
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Security in the presence of side information. Sometimes we need to consider stronger
adversaries, which has additional information S. For example, this is always the case where
the weak key has been derived from an entropy source using public randomness.

» Definition 4 (Security in the presence of side information). Given a side information S € S,
an application P is (T, €)-secure in the (m — d)-realy model if for every distribution R such
that Ho(R|S) > m — d we have

E A <6
wagl, B Adva(rn )l < @

for all attackers A with resources less than 7. In the ideal model P is (T)¢)-secure if
maxses | Err,, Adva(r, s)| < € and (T, €)-square-secure if maxses | E, y,, Adva(r, 5)?| < €
for all attackers A with resources less than 7'

» Remark. Note that in the nonuniform setting, security and square security in the ideal

model with and without side information coincide.

3 Square security — positive results

Improved key derivation for square-secure applications. Let D be an arbitrary real-valued
function on {0,1}"™ and let Y be an arbitrary m-bit random variable with collision entropy
H(X) > m—d. By the Cauchy Schwarz Inequality one obtains [5, 1] the following inequalities

VED(U,,)? - V24, (8)

VarD(Um) S/ 24 — 1. (9)

N //\

ED(Y) — ED(U )

When the side information S is present, and Hy(Y'|S) > m — d, we get

ED(Y,S) < VED(U,,, 5)? - V24, (10)
ED(Y)—ED(Uy) g\/ E VarD(U,, s)- /24 — 1. (11)

These inequalities, applied to D = Advp link the security in the real model with the entropy
deficiency of a weak key and the security in the ideal model. In particular, one obtains the
following results, already mentioned in Section 1.1.

» Theorem 5 ([5]). Suppose that P is (T,0)-square secure in the ideal model. Then it is
(T, €) secure in the (m — d)-realy model with e = V2%

» Theorem 6 ([1, 5]). Suppose that an application P in the ideal model is (T, €)-secure and
(T, 0)-square-secure. Then it is (T, d) secure in the real (m—d)-model with § = e++/(2¢ — 1)o.

Theorem 5 states that a weak key can be used directly in a square-secure application provided
that the entropy deficiency is not too big. The second theorem deals with the case where the
deficiency is extremely small. It is essentially important when one notices that universal hash
functions condense collision entropy at a very good rate. Theorem 6 yields the following
important corollary

» Corollary 7 (Improved LHL, [1]). Suppose that P is as above. Let X be an n-bit random

variable of collision entropy at least m+ L, let H be a le—umversal family offunctzons from

n to m bits and let H be a random member of H. Then P keyed with H(X) is € -secure with
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€ <e+/o(y+27L) against all adversaries with resources T and given H. In other words,
for all A with resources T we have

E A < m ;
iy By a AV ) S € yfo by +27) (12)

In particular, for v < € and o < 4e we achieve security € < 3e with only &, = log(1/€) bits of
the entropy loss.

Summing up, when we want to derive a secure key for an e-square-secure application from a

source X, we have two options

(a) We condense (if necessary) X by hashing into a string with small entropy deficiency.
From a source which has m — O(1) bits of entropy we derive a O(/€)-secure key.

(b) If we want more security, we can condense X even stronger, with deficiency extremely
close to 0, sacrificing some entropy amount. From a source which has m+log(1/e) —O(1)
bits of entropy we derive a O(e)-secure key.

In every case we obtain the meaningful security, in particular even if entropy amount we start

with is smaller than the length of the key we need. The application of a generic extractor in

such a case gives no security guarantee! For more examples and applications we refer the

reader to [5] and [1].

Security and square security — mathematical insight. It is worth of mentioning that
the idea behind square security is, conceptually, simple and natural. All we need is the
concentration of the adversary’s winning probability, which is guaranteed by the small first
central or second central moment.

What applications are square-secure? It is known that PRGs, PRFs and one-time pads
cannot have good square security[2]. In turn, many applications such as such as stateless
chosen plaintext attack (CPA) secure encryption and weak pseudo-random functions (weak
PRFs), can be proven to be “square-friendly” that is they have square-security roughly
the same as the standard security. The general method to prove that security implies
square-security is the so called “double run trick” [1, 5].

4  Optimization: auxiliary results

Our main technical tool is a characterization of a distribution that maximizes the expectation
of a given function under the collision entropy constraints. It has a nice geometrical interpret-
ation, as the best shape is simply a combination of a threshold and scaling transformation,
see Figure 1.

» Lemma 8 (Maximizing the expectation subject to collision entropy constraints). Let D : S —
[0,1] be a function on a finite set S and let Y* be any optimal solution to the following
problem

maximize ED(Y)
v (13)
subject to Hy(Y) > k

where the mazimum is taken over all random variables Y taking values in S. Then there
exist numbers A = 0 and t € R such that Y™ satisfies the following condition

max(D(z) —¢,0) = APy« (z) forallxz € S. (14)

57:9
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In particular VarD'(U) = % where D'(z) = max(D(x) — t,0). Moreover, if values of D(-)
are all different, then we have A > 0 and A, t are unique.

» Remark. If values of D(:) are all different, then A > 0 (see Appendix A).

» Corollary 9. We have the following identities ED'(U,,) = ﬁ, ED'(Un)* = ;;gg, and

ED'(Y*) = (1?'59‘)/\ (D, 0, Y*, \, t and D" are as in Theorem 8).

5 Square security — lower bounds

5.1 Weak keys with the entropy deficiency bounded away from 0

We start with the following results, which states that every indistinguishability application
which is secure with all keys of high min-entropy must be strongly secure. The proof is
relatively easy and appears in the full version.

» Theorem 10. Suppose that an indistinguishability application P, which needs an m-bit
key, is (T, ¢€)-secure in the (m — d)-reals,model, for some d > 1. Then P is (T, 2¢)-strongly
secure. The bound 2¢ here is tight.

More challenging and more interesting is the case of an application secure with all keys of
high collision entropy.

» Theorem 11. Suppose that an indistinguishability application P, which needs an m-bit key,
is (T, €)-secure in the (m — d)-realy model, for some d > 1. Then P is (T, 0)-square-secure
with o = 4¢2

Note that for bounded d the level of square security perfectly matches the positive result of
Dodis and Yu (Theorem 5). We also show (see the end remark in the proof) that this bound
is tight up to a constant factor and thus we cannot get the bound O (62 / 2d), which would
exactly match to the positive result in Theorem 5 for all d. The proof is heavily based on
Theorem 8 and appears in the full version.

5.2 Weak keys with the entropy deficiency close to 0
Below we provide a lower bound when the entropy deficiency is close to 0.

» Theorem 12. Suppose that P, which uses an m-bit key, is (T, €)-secure in the (m — d)-
realy model (possibly with side information). Then P is o-square-secure with o < e+

max (Qd -1, 235_21). In particular, if d < 1 then o < 2max(d, %)

The proof is based on Theorem 8 and appears in the full version. From this we see that
Theorem 6 for d = € is tight.

5.3 Leftover Hash Lemma as a Key Derivation Function
Finally, we consider the case of a key derived by hashing.

» Theorem 13. Let o € [1,2] and let € > 0. Suppose that an application P, which uses
an m-bit secure key, has the following property: for every n-bit source X of min-entropy
k= m+ alog(1l/e), and every efficient e*-universal family H of hash functions from n to m
bits, we have

E Adva(H(X), H) < Ce,
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for some constant C' and all adversaries A with resources at most T. Then P is (T,0)-
square-secure with

| W

o<

- max (2*’”/26“/2, A(C + 1)22’”/252*“/2) . (15)

For e > 27 we get ¢ = O (27”/262_0‘/2). In particular, if @ = 1 and e = 2-(=A)™ for
1-38/2

some 3 > 0 then 0 = O (2=(1734/2m) = O (e -5 ) Thus, any application P which
allows deriving an €-secure key with ¢ = O(e) and entropy loss L = log(1/e) must be
oc=0 (61_0(1))—square—secure. On the positive side we know that o-square-security with

o = ¢ is enough (Theorem 7).

» Corollary 14 (The Improved LHL is tight for any application). For any application P, the
security guarantee in the improved Leftover Hash Lemma (Theorem 7) cannot be improved by
more than a factor V). Note that we require H to be efficiently computable and samplable,
in order to exclude some (possible) “pathological” counterexamples.

The proof of Theorem 13 relies on some advanced facts from matrices theory. We briefly
sketch our approach, the full proof appears in the full version. The key technical fact we
prove is that the hashes of high-min-entropy distributions are really mapped onto high
collision entropy distributions (with quantitative parameters good enough for our purposes).
Once we have a such a correspondence, we reduce the problem to Theorem 12. To this end,
we consider the probability Pr[H(x) = y] that = is hashed into y as a matriz with rows
y and columns x and observe use this matrix to obtain a linear map which realizes that

correspondence. To obtain a map with a good behavior, we fill it using some special “pattern’
which ensures nice algebraic properties and simplifies inverting.

6 Conclusion

We show that the technical condition called square security introduced in previous works of
Dodis,Yu (TCC’13) and Barak et al. (CRYPTO’11), is not only sufficient but also necessary
for better security with weak keys used directly.
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A  Proof of Theorem 8

Proof. Our problem is equivalent to the following constrained maximization problem over
RIS

maximize D(z)p(z
(p(2))- €RISI ; (w)p(z)
subject to —p(x) <0 forallz e S

D o) =1 (16)

x

D ople)? <27

x

The corresponding Lagrangian is given by
L((p(2))25 (M (2))as A2y As) = > D(@)p(a) + Y Mi(@)p(@) — Ay (Z p(x) — 1)

— A3 (ZP(CE)Z - 2k> (17)

Note that the equality constraint is linear, the inequality constraints are convex and, since
k < n, there exists a vector p = p(x) such that p(z) > 0 for all z, > p(x) = 1 and
>, p(x)? < 2%, This means that Slater’s Constraint Qualification is satisfied and the strong
duality holds [3]. In this case the Karush-Kuhn-Tucker (KKT) conditions imply that for the
optimal solution p = p* we have

D(z) = =Ai(z) + A2 + Asp™ (@) (18)

where A\ (z) > 0 for all z, A3 > 0 and Ay € R are the Lagrange Multipliers, satisfying the
following so called “complementary slackness” condition

Ve A(z)=0 if p*(x) > 0,

N =0 (@) <27 (19)

The characterization in Equation 14 follows now by setting A = A3 and t = \o. Indeed, by
Equation 18, Equation 19 and Aj(x) > 0 we get

max(D(z) — A2,0) = max(—A1(x) + A3p*(2),0) = Asp* ().

Finally, note that if all values of D(-) are different then in Equation 18 we cannot have
A3 = 0, because then Equation 19 implies that D is constant on the support of p* (which
has at least two points provided that k > 0). To proof the uniqueness part, observe that if
there exists a different pair (¢, \’) for the same optimal solution p*, then for all x such that
p*(x) > 0 we have

Vo € supp(p*) D(x) =t+ \p*(z) +t' = Np*(x), (20)

and, since the case A\ = X' cannot happen because it implies t = ¢/, we get p*(x) = ;:A,. <
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