
List Approximation for Increasing Kolmogorov
Complexity
Marius Zimand

Dept. of Computer and Information Sciences, Towson University, Towson, MD,
USA
mzimand@towson.edu

Abstract
It is impossible to effectively modify a string in order to increase its Kolmogorov complexity. But
is it possible to construct a few strings, not longer than the input string, so that most of them
have larger complexity? We show that the answer is yes. We present an algorithm that on input
a string x of length n returns a list with O(n2) many strings, all of length n, such that 99% of
them are more complex than x, provided the complexity of x is less than n. We obtain similar
results for other parameters, including a polynomial-time construction.

1998 ACM Subject Classification F.1.1 Models of computation, F.2 Analysis of Algorithms and
Problem Complexity

Keywords and phrases Kolmogorov complexity, list approximation, randomness extractor

Digital Object Identifier 10.4230/LIPIcs.STACS.2017.58

1 Introduction

The Kolmogorov complexity of a binary string x, denoted C(x), is the minimal description
length of x, i.e., it is the length of a shortest program (in a fixed universal programming
system) that prints x. We analyze the possibility of modifying a string in an effective way
in order to obtain a string with higher complexity, without increasing its length. Strings
with high complexity exhibit good randomness properties and are potentially useful because
they can be employed in lieu of random bits in probabilistic algorithms. It is common to
define the randomness deficiency of x as the difference |x| − C(x) (where |x| is the length
of x), and to say that the smaller the randomness deficiency is, the more random is the
string. In this sense, we want to modify a string so that it becomes “more” random. As
stated, the above task is impossible because clearly any effective modification cannot increase
Kolmogorov complexity (at least not by more than a constant): If f is a computable function,
C(f(x)) ≤ C(x) +O(1), for every x. Consequently we have to settle for a weaker solution,
and the one we consider is that of list-approximation. List approximation consists in the
construction of a list of objects guaranteed to contain at least one element having the desired
property. Actually, we try to obtain a stronger type of list approximation, in which, not just
one, but most of the elements in the list have the desired property. More precisely, we study
the following question:

Question. Is there a computable function which takes as input a string x and outputs
a short list of strings, which are not longer than x, such that most of the list’s elements
have complexity greater than C(x)?

Without the restriction that the length is not increased, the problem is easy to solve by
appending a random string (see the discussion in Section 2). The restriction not only makes

© Marius Zimand;
licensed under Creative Commons License CC-BY

34th Symposium on Theoretical Aspects of Computer Science (STACS 2017).
Editors: Heribert Vollmer and Brigitte Vallée; Article No. 58; pp. 58:1–58:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2017.58
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

58:2 List Approximation for Increasing Kolmogorov Complexity

the problem interesting, but also amenable to applications in which the input string and the
modified strings need to be in a given finite set. The solution that we give can be readily
adjusted to handle this case.

The problem of increasing Kolmogorov complexity has been studied before by Buhrman,
Fortnow, Newman, and Vereshchagin [3]. They show that there exists a polynomial-time
computable f that on input x of length n returns a list of strings, all having length n, such
that if C(x) < n, then there exists y in the list with C(y) > C(x) (this is Theorem 14 in [3]).
In the case of complexity conditioned by the string length, they show that it is even possible
to compute in polynomial time a list of constant size. That is f(x) is a list with O(1)-many
strings of length n and if C(x | n) < n, then it contains a string y with C(y | n) > C(x | n)
(this is Theorem 11 in [3]).

As indicated above we are after a stronger type of list approximation: We want on input
x and δ > 0 to construct a short list of strings not longer than x with the property that a
fraction of (1− δ) of its elements have complexity larger than that of x. There are several
parameters to consider. The first one is the size of the list. The shorter is the list, the better
is the approximation. Next, the increasing-complexity procedure that we seek will not work
for all strings x. Recall that C(x) ≤ |x|+O(1) and if x is a string of maximal complexity at
its length, then there simply is no string of larger complexity at its length. In general, for
strings x that have complexity close to |x|, it is difficult to increase their complexity. Thus,
a second parameter is the bound on the complexity of x for which the increasing-complexity
procedure succeeds. The closer this bound is to |x|, the better is the procedure. The third
parameter is the complexity of the procedure. The procedure is required to be computable,
but it is preferable if it is computable in polynomial time.

We show the following three results, each one beating the other two with respect to one
of these three parameters. The first result exhibits a computable list-approximation for
increasing Kolmogorov complexity that works for any x with complexity C(x) < |x|.

I Theorem 1 (Computable list of polynomial size for increasing Kolmogorov complexity). There
exists a computable function f that on input x ∈ {0, 1}∗ and a rational number δ > 0, returns
a list of strings of length |x| with the following properties:
1. The size of the list is O(|x|2)poly(1/δ),
2. If C(x) < |x|, then (1 − δ) fraction of the elements in the list f(x) have Kolmogorov

complexity larger than C(x).

In the next result, we improve the list size, making it linear in |x| (for constant δ). The
price is that the procedure works only for strings x with a slightly lower complexity.

I Theorem 2 (Computable list of linear size for increasing Kolmogorov complexity). There
exists a computable function f that on input x ∈ {0, 1}∗ and a rational number δ > 0, returns
a list of strings of length |x| with the following properties:
1. The size of the list is O(|x|)poly(1/δ),
2. If C(x) < |x| − log |x| − log log |x|, then (1− δ) fraction of the elements in the list f(x)

have Kolmogorov complexity larger than C(x).

Further reducing the list size remains an interesting open question. We could not establish
a lower bound, and, as far as we currently know, it is possible that even constant list size
may be achievable.

In the next result, the complexity-increasing procedure runs in polynomial time in the
following sense. The size of the list is only quasi-polynomial, but each string in the list is
computed in polynomial time.

M. Zimand 58:3

I Theorem 3 (Polynomial-time computable list for increasing Kolmogorov complexity). There
exists a function f that on input x ∈ {0, 1}∗ and a constant rational number δ > 0, returns a
list of strings of length |x| with the following properties:
1. The size of the list is bounded by 2O(log3 |x|),
2. If C(x) < |x| − O(log3 |x|), then (1 − δ) fraction of the elements in the list f(x) have

Kolmogorov complexity larger than C(x), and
3. The function f is computable in polynomial time in the following sense: there is a

polynomial time algorithm that on input x, i computes the i-th element in the list f(x).

Note that the procedure in Theorem 3 can be readily converted into a polynomial-time
probabilistic algorithm, which uses O(log3 |x|) random bits to pick at random which element
from the list to return.

This paper is inspired by recent list approximation results regarding another problem
in Kolmogorov complexity, namely the construction of short programs (or descriptions) for
strings. We recall the standard setup for Kolmogorov complexity, which we also use here.
We fix an universal Turing machine U . The universality of U means that for any Turing
machine M , there exists a computable “translator” function t, such that for all strings p,
M(p) = U(t(p)) and |t(p)| ≤ |p|+O(1). For the polynomial-time constructions we also require
that t is polynomial-time computable. If U(p) = x, we say that p is a program (or description)
for x. The Kolmogorov complexity of the string x is C(x) = min{|p| | p is a program for x}.
If p is a program for x and |p| ≤ C(x) + c, we say that p is a c-short program for x. Using
a Berry paradox argument, it is easy to see that it is impossible to effectively construct a
shortest program for x (or, even a, say, n/2-short program for x). Remarkably, Bauwens
et al. [1] show that effective list approximation for short programs is possible: There is an
algorithm that, for some constant c, on input x, returns a list with O(|x|2) many strings
guaranteed to contain a c-short program for x. They also show a lower bound: The quadratic
size of the list is minimal up to constant factors. Teutsch [7] presents a polynomial-time
algorithm with similar parameters, except that the list size is larger than quadratic, but
still polynomial. The currently shortest list size for a polynomial time list approximation is
given by Zimand [10]. Closer to the stronger type of list approximation in this paper, are
the probabilistic list approximation results for short programs from Bauwens and Zimand [2]
and Zimand [11]. A polynomial-time probabilistic algorithm from [2], on input (x, k) returns
a string p of length bounded by k + O(log2 n) such that, if the promise k = C(x) holds,
then, with 0.99 probability, p is a program for x. In [11], it is shown that the promise can be
relaxed to k ≥ C(x). The survey paper [8] presents most of these results. In this paper, we
build on the techniques in [2, 11].

2 Techniques and proof overview

We start by explaining why an approach that probably first comes to mind cannot lead to a
result with good parameters, such as those obtained in Theorem 1 with a more complicated
argument.

Given that we want to modify a string x so that it becomes more complex, which in a
sense means more random, a simple idea is to just append a random string z to x. Indeed, if
we consider strings z of length c, then C(xz) > C(x) + c/2, for most strings z, provided c is
large enough. Let us see why this is true. Let k = C(x) and let z be a string that satisfies
the opposite inequality, that is

C(xz) ≤ C(x) + c/2 . (1)

STACS 2017

58:4 List Approximation for Increasing Kolmogorov Complexity

Given a shortest program for xz and a self-delimited representation of the integer c, which
is 2 log c bits long, we obtain a description of x with at most k + c/2 + 2 log c bits. Note
that from different z’s satisfying (1), we obtain in this way distinct (c/2 + 2 log c)-short
programs for x. By a theorem of Chaitin [4] (also presented as Lemma 3.4.2 in [5]), for any
d, the number of d-short programs for x is bounded by O(2d). Thus the number of strings z
satisfying (1) is bounded by O(2c/2+2 log c). Since for large c, O(2c/2+2 log c) is much smaller
than 2c, it follows that most strings z of length c satisfy the claimed inequality (the opposite
of (1)). Therefore, in this way we can obtain a list with a constant number of strings and
most of them have complexity larger than C(x). The problem with appending a random z to
x, is that this operation not only increases complexity (which is something we want) but also
increases length (which is something we don’t want). The natural way to get around this
problem is to first compress x to close to minimal description length using the probabilistic
algorithms from [2, 11] described in the Introduction, and then to append z. However, the
algorithms from [2, 11] compress x to length C(x) + O(logn), where n is the length of x.
After appending a random z of length c, we obtain a string of length C(x) +O(logn) + c,
and for this to be n (so that length is not increased), we need C(x) ≤ n−O(logn)− c. Thus,
in this way we cannot obtain a procedure that works for all x with C(x) < n, such as the
one from Theorem 1.

Our solution is based on a more elaborate construction. The centerpiece is a type of
bipartite graph with a low congestion property. Once we have the graph, we view x as a
left node, and the list f(x) consists of some of the nodes at distance 2 in the graph from x.
(A side remark: Buhrman et al. [3] use graphs as well, namely constant-degree expanders,
and they obtain the lists also as the set of neighbors at some given distance.) In our graph,
the left side is L = {0, 1}n, the set of n-bit strings, the right side is R = {0, 1}m, the set of
m-bit strings, and each left node has degree D. The graphs also depend on three parameters
ε,∆, and t, and for our discussion it is convenient to also use δ = ε1/2 and s = δ ·∆. The
graphs that we need have two properties. The first one is a low congestion requirement which
demands that for every subset B of left nodes of size at most 2t, (1− δ) fraction of nodes
in B share (1− δ) fraction of their right neighbors with at most s other nodes in B.1 The
second property is that each right node has at least ∆ neighbors.

Let us now see how to use such graphs to increase Kolmogorov complexity in the list-
approximation sense. Suppose we have a graph G with the above properties for the parameters
n, δ,∆, D, s, and t. We claim that for each x of length n and with complexity C(x) < t, we
can obtain a list with D ·∆ many strings, all having length n, such that at least a fraction
of (1 − 2δ) of the strings in the list have complexity larger than C(x). Indeed, let x be a
string of length n with C(x) = k < t. Consider the set B = {x′ ∈ {0, 1}n | C(x′) ≤ k}. Note
that the size of B is bounded by 2t. A node that does not have the low-congestion property
is said to be δ-BAD(B). By the low-congestion of G, there are at most δ|B| elements in B
that are δ-BAD(B). It can be shown that x is not δ-BAD(B). The reason is, essentially,
that the strings that are δ-BAD(B) can be enumerated and they make a small fraction of B
and therefore can be described with less than k bits. Now, to construct the list, we view
x as a left node in G and we “go-right-then-go-left.” This means that we first “go-right,”
i.e., we take all the D neighbors of x, and for each such neighbor y we “go-left,” i.e., we
take ∆ of the y’s neighbors and put them in the list. Since x is not δ-BAD(B), (1− δ)D of
its neighbors have at most s = δ ·∆ elements in B. Overall, only 2δ ·D ·∆ of the strings

1 More formally, for all B ⊆ L with |B| ≤ 2t, for all x ∈ B, except at most δ|B| elements, all neighbors y
of x, except at most δD, have degB(y) ≤ s, where degB(y) is the number of y’s neighbors that are in B.

M. Zimand 58:5

in the list can be in B, and so at least a fraction of (1− 2δ) of the strings in the list have
complexity larger than k = C(x). Our claim is proved.

For our main results (Theorem 1, Theorem 2, and Theorem 3), we need graphs with
the above properties for different settings of parameters. Such graphs can be obtained
from randomness extractors, which have been extensively studied in the theory of pseudo-
randomness (for example, see Vadhan’s monograph [9]). The graphs required by Theorem 1
and Theorem 2 are constructed using the probabilistic method in Lemma 5, and the graph
required by Theorem 3 is obtained in Lemma 6 from a randomness extractor of Raz, Reingold,
and Vadhan [6].

3 Balanced graphs

We define here formally the type of graphs that we need. We work with families of graphs
Gn = (L,R,E ⊆ L×R), indexed by n, which have the following structure:
1. Vertices are labeled with binary strings: L = {0, 1}n, R = {0, 1}n−a, where we view L as

the set of left nodes, and R as the set of right nodes. The parameter a can be positive or
negative, and in absolute value is typically small (less than poly(logn)).

2. All left nodes have the same degree D, D = 2d is a power of two, and the edges outgoing
from a left node x are labeled with binary strings of length d.

3. We allow multiple edges between two nodes. For a node x, we write N(x) for the multiset
of x’s neighbors, each element being taken with the multiplicity equal to the number of
edges from x landing into it.

A bipartite graph of this type can be viewed as a function EXT : {0, 1}n × {0, 1}d →
{0, 1}n−a, where EXT(x, y) = z iff there is an edge between x and z labeled y. We want
EXT to yield a (k, ε) randomness extractor whenever we consider the modified function
EXTk which on input (x, y) returns EXT(x, y) from which we cut the last n− k bits. Note
that the output of EXTk has k − a bits.

From the function EXTk, we go back to the graph representation, and we obtain the
“prefix” bipartite graph Gn,k = (L = {0, 1}n, Rk = {0, 1}k−a, Ek ⊆ L×Rk), where in Gn,k
we merge the right nodes of Gn that have the same prefix of length k − a. Since we allow
multiple edges between nodes, the left degrees in the prefix graph do not change. However,
right degrees may change, and as mk gets smaller, right degrees typically get larger due to
merging.

The requirement that Gn,k is a (k, ε) randomness extractor means that for every subset
B ⊆ L of size |B| ≥ 2k, for every A ⊆ Rk,∣∣∣∣ |Ek(B,A)|

|B| ×D
− |A|
|Rk|

∣∣∣∣ ≤ ε, (2)

where Ek(B,A) is the set of edges between B and A in Gn,k.
We also want to have the guarantee that each right node in Gn,t has degree at least ∆,

where ∆ and t are parameters.
Accordingly, we have the following definition.

I Definition 4. A graph Gn = (L,R,E ⊆ L×R) as above is (ε,∆, t)-balanced if the following
requierments hold:
1. For every k ∈ {1, . . . , n}, let Gn,k be the graph corresponding to EXTk described above.

We require that, for every k ∈ {1, . . . , n}, Gn,k is a (k, ε) extractor, i.e., Gn,k has the
property in Equation (2).

2. In the graph Gn,t, every right node with non-zero degree has degree at least ∆.

STACS 2017

58:6 List Approximation for Increasing Kolmogorov Complexity

In our applications, we need balanced graphs in which the neighbors of a given node can
be found effectively, or even in time that is polynomial in n. As usual, we consider families
of graphs (Gn)n≥1, and we say that such a family is computable if there is an algorithm that
on input (x, y), where x is a left node, and y is the label of an edge outgoing from x, outputs
z, where z is the right node where the edge y lands. If the algorithm runs in time polynomial
in n, we say that the family (Gn)n≥1 is explicit. For polynomial-time list approximation, we
actually need a stronger property which essentially states that going from right to left can
also be done in polynomial time (see the “Moreover...” part in Lemma 6).

The following two lemmas provide the balanced graphs that are used in the proofs of the
main result as explained in the proof overview in Section 2.

I Lemma 5.
(a) For every sufficiently large positive integer n, every rational ε > 0, and every positive

integer constant ∆, there is a computable (ε,∆, t)-balanced graph Gn = (L = {0, 1}n, R =
{0, 1}m, E ⊆ L × R), with left degree D = 2d = O(n2 · (1/ε)2), m = n + 2 logn, and
t = n.

(b) There exists a constant c, such that for every sufficiently large positive integer n,
every rational ε > 0, and every positive integer constant ∆, there is a computable
(ε,∆, t)-balanced graph Gn = (L = {0, 1}n, R = {0, 1}m, E ⊆ L × R), with left degree
D = 2d = O(n · (1/ε)2), m = n+ d− 2 log(1/ε)− c, and t = n− logn− log logn.

The proof of Lemma 5 is by the standard probabilistic method, and is presented in
Section 5.1.

I Lemma 6. There exists a constant c such that for every positive integer n, every rational
ε > 0, and every positive integer ∆ ≤ 2n, there is an explicit (ε,∆, t)-balanced graph Gn =
(L = {0, 1}n, R = {0, 1}m, E ⊆ L×R), with left degree D = 2d, for d = O(log3(n) log2(1/ε)),
m = n− c · d, and t = n−max(0, log ∆− c · d).

Moreover, there is an algorithm that on input (z, y) (and n), where z ∈ R = {0, 1}m and
y ∈ {0, 1}d computes a list of ∆ left neighbors of z reachable from z by edges labeled y, or
NIL if there are less than ∆ such neighbors. This algorithm computes the list implicitly, in
the sense that given an index i, it returns the i-th element in the list in time polynomial in n
and log i.

The proof of Lemma 6 is based on a randomness extractor of Raz, Reingold, and Vadhan [6]
and is presented in Section 5.2.

Let us now proceed to the proofs of Theorem 1, Theorem 2, and Theorem 3.

4 Proofs of Theorem 1, Theorem 2, and Theorem 3

The theorems have essentially identical proofs, except that balanced graphs with different
parameters are used. The following lemma shows a generic transformation of a balanced
graph into a function that on input x produces a list so that most of its elements have
complexity larger than C(x).

I Lemma 7. Suppose that for every constant δ > 0, there is t = t(n), a = a(n), and a
computable (respectively, explicit and satisfying the property stated in the “moreover” part
of Lemma 6) (δ2, (1/δ)∆, t)- balanced graph Gn = (Ln = {0, 1}n, Rn = {0, 1}n−a, En ⊆
Ln ×Rn), with ∆ = 2(1/δ2) ·D · 2a, where D is the left degree.

Then there exists a computable (respectively, polynomial-time computable) function f that
on input a string x and a rational number δ > 0 returns a list containing strings of length |x|
and

M. Zimand 58:7

1. The size of the list is 2(1/δ)3D22a,
2. If C(x) ≤ t, then (1− 2δ) of the elements in the list have complexity larger than C(x).

Proof of Lemma 7. We can assume without loss of generality that 1/δ is sufficiently large
(for the following arguments to be valid) and also that it is a power of 2. Let ε = δ2. Thus,
∆ = 2(1/ε) ·D · 2a. Let x be a binary string of length n, with complexity C(x) = k. We
assume that k ≤ t. We explain how to compute the list f(x), with the property stipulated in
the theorem’s statement.

We take Gn to be the (ε, (1/δ) ·∆, t)-balanced graph with left nodes of length n promised
by the hypothesis. Let Gn,t be the “prefix” graph obtained from Gn by cutting the last n− t
bits in the labels of right nodes (thus preserving the prefix of length t− a in the labels).

The list f(x) is computed in two steps:
1. First, we view x as a left node in Gn,t and take N(x), the multiset of all neighbors of x

in Gn,t.
2. Secondly, for each p in N(x), we take Ap to be a set of (1/δ)∆ neighbors of p in Gn,t (say,

the first (1/δ)∆ ones in some canonical order). We set f(x) =
⋃
p∈N(x)Ap (if p appears

np times in N(x), we take Ap in the union also np times; note that f(x) is a multiset).
Note that all the elements in the list have length n, and the size of the list is |f(x)| =
(1/δ)∆ ·D = (1/δ)3D22a.

The rest of the proof is dedicated to showing that the list f(x) satisfies the second item
in the statement. Let

Bn.k = {x′ ∈ {0, 1}n | C(x′) ≤ k},

and let Sn,k = blog |Bn,k|c. Thus, 2Sn,k ≤ |Bn,k| < 2Sn,k+1. Later we will use the fact that

Sn,k ≤ k ≤ t. (3)

We want to use the properties of extractors for sources with min-entropy Sn,k and therefore
we consider the graph Gn,Sn,k

, which is obtained, as we have explained above, from Gn by
taking the prefixes of right nodes of length Sn,k − a. To simplify notation, we use G instead
of Gn,Sn,k

. The set of left nodes in G is L = {0, 1}n and the set of right nodes in G is
R = {0, 1}m, for m = Sn,k − a.

We view Bn,k as a subset of the left nodes in G. Let us introduce some helpful terminology.
In the following all the graph concepts (left node, right node, edge, neighbor) refer to the
graph G. We say that a right node z in G is (1/ε)-light if it has at most (1/ε) · |Bn,k|·D

|R|
neighbors in Bn,k. A node that is not (1/ε)-light is said to be (1/ε)-heavy. Note that

(1/ε) · |Bn,k| ·D
|R|

≤ (1/ε)2Sn,k+1 ·D
2Sn.k · 2−a = ∆,

and thus an (1/ε)-light node has at most ∆ many neighbors in Bn,k.
We also say that a left node in Bn,k is δ-BAD with respect to Bn,k if at least a δ fraction of

the D edges outgoing from it land in right neighbors that are (1/ε)-heavy. Let δ-BAD(Bn,k)
be the set of nodes that are δ-BAD with respect to Bn,k.

We show the following claim.

I Claim 8. At most a 2δ fraction of the nodes in Bn,k are δ-BAD with respect to Bn,k.
(In other words: for every x′ in Bn,k, except at most a 2δ fraction, at least a (1 − δ)

fraction of the edges going out from x′ in G land in right nodes that have at most ∆ neighbors
with complexity at most k.)

STACS 2017

58:8 List Approximation for Increasing Kolmogorov Complexity

We defer for later the proof of Claim 8, and continue the proof of the theorem.
For any positive integer k, let

Bk = {x′ | C(x′) ≤ k and k ≤ t(|x′|)}.

Let Ik = {n | k ≤ t(n)}. Note that |Bk| =
∑
n∈Ik

|Bn,k|. Let x′ ∈ Bk, and let n′ = |x′|. We
say that x′ is δ-BAD with respect to Bk if in Gn′ , x′ is δ-BAD with respect to Bn′,k. We
denote δ-BAD(Bk) the set of nodes that are δ-BAD with respect to Bk. We upper bound
the size of δ-BAD(Bk):

|δ-BAD(Bk)| =
∑
n′∈Ik

|δ-BAD(Bn′,k)|
≤
∑
n′∈Ik

2δ · |Bn′,k| (by Claim (8))
= 2δ

∑
n∈Ik

|Bn′,k|
= 2δ|Bk|
≤ 2δ · 2k+1.

Note that the set δ-BAD(Bk) can be enumerated given k and δ. Therefore a node x′ that
is δ-BAD with respect to Bk can be described by k, δ and its ordinal in the enumeration
of the set δ-BAD(Bk). We write the ordinal on exactly k + 2 − log(1/δ) bits and δ in a
self-delimited way on 2 log log(1/δ) bits (recall that 1/δ is a power of 2), so that k can be
inferred from the ordinal and δ. It follows that if x′ is δ-BAD with respect to Bk, then,
provided 1/δ is sufficiently large,

C(x′) ≤ k + 2− log(1/δ) + 2 log log(1/δ) +O(1) < k. (4)

Now, recall our string x ∈ {0, 1}n which has complexity C(x) = k. The inequality (4) implies
that x cannot be δ-BAD with respect to Bk, which means that (1− δ) of the edges going
out from x land in neighbors in G having at most ∆ neighbors in Bk. The same is true if
we replace G by Gn,t, because, by the inequality (3), right nodes in G are prefixes of right
nodes in Gn,t.

Now suppose we pick at random a neighbor p of x in Gn,t, and then find a set Ap of
(1/δ) ·∆ neighbors of p in Gn,t. Then with probability 1 − δ, only a fraction of δ of the
elements of Ap can be in Bk. Recall that we have defined the list f(x) to be

f(x) =
⋃

p neighbor of x in Gn,t
Ap.

It follows that (1− 2δ) of elements in f(x) have complexity larger than C(x) and this ends
the proof. J

It remains to prove Claim 8.

Proof of Claim 8. Let A be the set of right nodes that are (1/ε)-heavy. Then

|A| ≤ ε|R|.

Indeed the number of edges between Bn,k and A is at least |A| · (1/ε) · |Bn,k|·D
|R| (by the

definition of (1/ε)-heavy), but at the same time the total number of edges between Bn,k and
R is |Bn,k| ·D (because each left node has degree D).

Next we show that

|δ-BAD(Bn.k)| ≤ 2δ|Bn,k|. (5)

M. Zimand 58:9

For this, note that G is a (Sn,k, ε) randomness extractor and Bn,k has size at least 2Sn,k .
Therefore by the property (2) of extractors,

|E(Bn,k, A)|
|Bn,k| ·D

≤ |A|
|R|

+ ε ≤ 2ε.

On the other hand the number of edges linking Bn,k and A is at least the number of edges
linking δ-BAD(Bn,k) and A and this number is at least |δ-BAD(Bn,k| · δD. Thus,

|E(Bn,k, A)| ≥ |δ-BAD(Bn,k)| · δD.

Combining the last two inequalities, we obtain

|δ-BAD(Bn,k)|
|Bn,k|

≤ 2ε · 1
δ

= 2δ.

End of the proofs of Claim 8 and of Lemma 7. J

Theorem 1, Theorem 2 , and Theorem 3 are obtained by plugging into the above
lemma the balanced graphs from Lemma 5 and Lemma 6. More precisely, Theorem 1
is obtained by using Lemma 7 with the balanced graph promised by Lemma 5(a), with
parameters ε = δ2, and ∆ = 2(1/δ2) · D · 2−2 logn = O(1). Theorem 2 is obtained by
using Lemma 7 with the balanced graph promised by Lemma 5(b), with parameters ε = δ2,
and ∆ = 2(1/δ2) · D · 2−(d−2 log(1/ε)−c) = O(1). Finally, Theorem 3 is obtained by using
Lemma 7 with the balanced graph promised by Lemma 6, with parameters ε = δ2, and
∆ = 2(1/δ2) ·D · 2cd = 2O(log3 n).

5 Construction of balanced graphs

5.1 Proof of Lemma 5
We prove part (b), where the relations between parameters are somewhat tighter. The proof
of part (a) is similar. We use the probabilistic method. For some constant c that will be fixed
later, we consider a random function EXT : {0, 1}n × {0, 1}d → {0, 1}n+d−2 log(1/ε)−c. We
show the following two claims, which imply that a random function has the desired properties
with positive probability. Since the properties can be checked effectively, we can find a graph
as stipulated in part (b) by exhaustive search. We use the notation from Definition 4 and
from the paragraph preceding it.

I Claim 9. For some constant c, with probability ≥ 3/4, it holds that for every k ∈ {1, . . . , n},
in the bipartite graph Gn,k = {L,Rk, Ek ⊆ L×Rk}, every B ⊆ L = {0, 1}n of size |B| ≥ 2k,
and every A ⊆ Rk = {0, 1}k+d−2 log(1/ε)−c satisfy∣∣∣∣ |Ek(B,A)|

|B| ×D
− |A|
|Rk|

∣∣∣∣ ≤ ε. (6)

I Claim 10. For every sufficiently large positive integer n, with probability ≥ 3/4, every
right node in the graph Gn,n−logn−log logn has at least ∆ neighbors in L.

Proof of Claim 9. First we fix k ∈ {1, . . . , n} and let K = 2k and N = 2n. Let us consider
B ⊆ {0, 1}n of size |B| ≥ K, and A ⊆ Rk. For a fixed x ∈ B and y ∈ {0, 1}d, the probability
that EXTk(x, y) is in A is |A|/|Rk|. By the Chernoff bounds,

Prob
[∣∣∣∣ |Ek(B,A)|
|B| ×D

− |A|
|Rk|

∣∣∣∣ > ε

]
≤ 2−Ω(K·D·ε2).

STACS 2017

58:10 List Approximation for Increasing Kolmogorov Complexity

The probability that relation (6) fails for a fixed k, some B ⊆ {0, 1}k of size |B| ≥ K and
some A ⊆ Rk is bounded by 2K·D·ε2·2−c ·

(
N
K

)
· 2−Ω(K·D·ε2), because A can be chosen in

2K·D·ε2·2−c ways, and we can consider that B has size exactly K and there are
(
N
K

)
possible

choices of such B’s. If D = Ω((n− k)/ε2) and c is sufficiently large, the above probability is
much less than (1/4)2−k. Therefore the probability that relation (6) fails for some k, some
B and some A is less than 1/4. J

Proof of Claim 10. We use a standard “coupon collector” argument. Let t = n − logn−
log logn. LetN = 2n and C = 2c, where c is the constant for which Claim 9 holds.. We work in
the bipartite graph Gn,n−logn−log logn = (L,R,E ⊆ L×R) in which every left node has degree
D = 2d, L = {0, 1}n, and R = {0, 1}m, where m = (n− logn− log logn+ d− 2 log(1/ε)− c).
For a left node x, an edge labeled y ∈ {0, 1}d and a right node z, we say that (x, y) hits z if
the y-labeled edge outgoing from x lands in z. We want to show that with high probability
each z is hit at least ∆ times. Let us order {0, 1}n × {0, 1}d in, say, lexicographical order
{(x, y)1 < (x, y)2 < . . . < (x, y)ND}. We define ∆ groups of “shooting” at R by taking
(x, y)1, . . . (x, y)r in the first group, (x, y)r+1, . . . (x, y)2r in the second group, and so on with
r left nodes in each group, where r will be fixed later. The probability that a fixed z is not
hit by some (x, y)i is (1− 1/|R|) ≤ e−1/|R|. The probability that a fixed z is not hit by any
element in a given group is at most e−r/|R| and the probability that there exists some z ∈ R
that is not hit by a given group is bounded by |R|e−r/|R|. We take r = |R|(ln |R|+ ln(4∆)),
and the above probability is bounded by 1/(4∆). Therefore, the probability that some z in
R is not hit by some group in the set of ∆ groups is at most 1/4. Note that r ·∆ ≤ ND,
provided n is large enough, and thus all the groups fit into {0, 1}n × {0, 1}d. J

End of the proof of Lemma 5. J

5.2 Proof of Lemma 6.
The construction relies on the randomness extractor of Raz, Reingold, and Vadhan [6].

I Theorem 11 (Theorem 22, (2) in [6]). There exists a function EXT : {0, 1}n × {0, 1}d →
{0, 1}m, computable in time polynomial in n, with the following properties:
(1) d = O(log3(n) log2(1/ε)),
(2) m = n− c · d, for some constant c,
(3) For every k ≤ n, the function EXTk obtained by computing EXT and cutting the last

n− k bits of the output is a (k, ε) extractor,
(4) For every y ∈ {0, 1}d(n), the function fy(x) = EXT(x, y) is a linear function from

(GF[2])n to (GF[2])m (where we view x ∈ {0, 1}n as an element of (GF[2])n in the
natural way). In other words, EXT(x, y) = Ay · x, where Ay is an m-by-n matrix with
entries in GF[2], computable from y in time polynomial in n.

Note. Item (4) is not explicitly stated in [6], so we provide here a short explanation. The
construction given in [6] of EXT : {0, 1}n ×{0, 1}d → {0, 1}m, views x as the specification of
a function ux(·, ·) of two variables (in a way that we present below), defines some functions
g1(y), h1(y), . . . , gm(y), hm(y), each one computable in time polynomial in n, and then sets

EXT(x, y) = ux(g1(y), h1(y)), . . . , ux(gm(y), hm(y)), (7)

i.e., the i-th bit is ux(gi(y), hi(y)). Thus, it is enough to check that fv,w(x) = ux(v, w) is
linear in x. Let us now describe ux. The characteristic sequence of ux is the Reed-Solomon
code of x. More precisely, for some s, x is viewed as a polynomial px over the field GF[2s].

M. Zimand 58:11

The elements of GF[2s] are viewed as s-dimensional vectors over GF[2] in the natural way.
Note that in this view the evaluation of px at point v is a linear transformation of x, i.e.,
px(v) = Avx for some s-by-n matrix Av with entries from GF[2]. Finally, ux(v, w) is defined
as the inner product w · px(v) and therefore ux(v, w) = (wAv)x, and thus it is a linear
function in x. Now we plug hi(y) as w and gi(y) as v, and we build the matrix Ay, by taking
its i-th row to be hi(y)Agi(y). Using the Equation (7), we obtain item (4) in the theorem.

Now let us proceed to the actual proof of Lemma 6. The function EXT from Theorem 11
defines the explicit bipartite graph Gn. Let t = n−max(0, log ∆− c · d). By removing the
last n− t bits in each right node we obtain the graph Gn,t. We only need to check that in the
bipartite graph Gn,t = (Lt = {0, 1}n, Rt = {0, 1}mt , Et ⊆ Lt ×Rt) (where mt ≤ n− log ∆),
every right node with non-zero degree has degree at least ∆. This follows easily from the
linearity of EXTt(x, y) defined to be EXT(x, y) from which we cut the last n− t bits.

Indeed, let z in {0, 1}mt be a right node with non-zero degree. This means that there
exist x and y such that EXTt(x, y) = z. Since the function fy(x) = EXTt(x, y) is linear in
x, it follows that {x′ | EXT(x′, y) = z} = {x′ | Ay · x′ = z} (i.e., the preimage of z) is an
affine space over GF[2] with dimension at least n−mt ≥ log ∆, and therefore z has degree
at least ∆. Moreover, given y, we can find ∆ preimages of z in time polynomial in n, by
solving the linear system. J

Acknowledgments. The author is grateful to Bruno Bauwens for his insightful observations.

References
1 B. Bauwens, A. Makhlin, N. Vereshchagin, and M. Zimand. Short lists with short programs

in short time. In Proceedings of 28th IEEE Conference on Computational Complexity,
Stanford, California, USA, 2013.

2 Bruno Bauwens and Marius Zimand. Linear list-approximation for short programs (or the
power of a few random bits). In IEEE 29th Conference on Computational Complexity,
CCC 2014, Vancouver, BC, Canada, June 11-13, 2014, pages 241–247. IEEE, 2014. doi:
10.1109/CCC.2014.32.

3 H. Buhrman, L. Fortnow, I. Newman, and N. Vereshchagin. Increasing Kolmogorov com-
plexity. In Proceedings of the 22nd Annual Symposium on Theoretical Aspects of Computer
Science, pages 412–421, Berlin, 2005. Springer-Verlag Lecture Notes in Computer Science
#3404.

4 Gregory J. Chaitin. Information-theoretic characterizations of recursive infinite strings.
Theor. Comput. Sci., 2(1):45–48, 1976.

5 R. Downey and D. Hirschfeldt. Algorithmic randomness and complexity. Springer Verlag,
2010.

6 Ran Raz, Omer Reingold, and Salil P. Vadhan. Extracting all the randomness and reducing
the error in Trevisan’s extractors. J. Comput. Syst. Sci., 65(1):97–128, 2002. doi:10.1006/
jcss.2002.1824.

7 Jason Teutsch. Short lists for shortest descriptions in short time. Computational Complexity,
23(4):565–583, 2014. doi:10.1007/s00037-014-0090-3.

8 Jason Teutsch and Marius Zimand. A brief on short descriptions. SIGACT News, 47(1):42–
67, March 2016.

9 Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer
Science, 7(1-3):1–336, 2012. doi:10.1561/0400000010.

10 Marius Zimand. Short lists with short programs in short time – A short proof. In Arnold
Beckmann, Erzsébet Csuhaj-Varjú, and Klaus Meer, editors, Language, Life, Limits – 10th
Conference on Computability in Europe, CiE 2014, Budapest, Hungary, June 23-27, 2014.

STACS 2017

http://dx.doi.org/10.1109/CCC.2014.32
http://dx.doi.org/10.1109/CCC.2014.32
http://dx.doi.org/10.1006/jcss.2002.1824
http://dx.doi.org/10.1006/jcss.2002.1824
http://dx.doi.org/10.1007/s00037-014-0090-3
http://dx.doi.org/10.1561/0400000010

58:12 List Approximation for Increasing Kolmogorov Complexity

Proceedings, volume 8493 of Lecture Notes in Computer Science, pages 403–408. Springer,
2014. doi:10.1007/978-3-319-08019-2_42.

11 Marius Zimand. Kolmogorov complexity version of Slepian-Wolf coding. CoRR,
abs/1511.03602, 2015. URL: http://arxiv.org/abs/1511.03602.

http://dx.doi.org/10.1007/978-3-319-08019-2_42
http://arxiv.org/abs/1511.03602

	Introduction
	Techniques and proof overview
	Balanced graphs
	Proofs of Theorem 1, Theorem 2, and Theorem 3
	Construction of balanced graphs
	Proof of Lemma 5
	Proof of Lemma 6.

