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Abstract
Entropy games and matrix multiplication games have been recently introduced by Asarin et al.
They model the situation in which one player (Despot) wishes to minimize the growth rate of
a matrix product, whereas the other player (Tribune) wishes to maximize it. We develop an
operator approach to entropy games. This allows us to show that entropy games can be cast
as stochastic mean payoff games in which some action spaces are simplices and payments are
given by a relative entropy (Kullback-Leibler divergence). In this way, we show that entropy
games with a fixed number of states belonging to Despot can be solved in polynomial time. This
approach also allows us to solve these games by a policy iteration algorithm, which we compare
with the spectral simplex algorithm developed by Protasov.
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1 Introduction

1.1 Entropy games and matrix multiplication games
Entropy games have been introduced by Asarin et al. [5]. They model the situation in which
two players with conflicting interests, called “Despot” and “Tribune”, wish to minimize or to
maximize a topological entropy representing the freedom of a half-player, “People”. Entropy
games are special “matrix multiplication games”, in which two players alternatively choose
matrices in certain prescribed sets; the first player wishes to minimize the growth rate of the
infinite matrix product obtained in this way, whereas the second player wishes to maximize it.
Whereas general matrix multiplication games are hard in general (computing joint spectral
radii is a special case), entropy games correspond to a tractable subclass of multiplication
games, in which the matrix sets have the property of being invariant by row interchange, the
so called independent row uncertainty (IRU) assumption. In particular, Asarin et al. showed
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6:2 The Operator Approach to Entropy Games

in [5] that the problem of comparing the value of an entropy game to a given rational number
is in NP ∩ coNP, giving to entropy games a status somehow comparable to other important
classes of games with an unsettled complexity, including mean payoff games, simple stochastic
games, or stochastic mean payoff games, see [4] for background.

Another motivation to study entropy games arises from risk sensitive control [13, 14, 3]:
as we shall see, essentially the same class of operators arise in the latter setting. Further
motivations originate from symbolic dynamics [21, Chapter 1.8.4].

1.2 Contribution
We first show that entropy games, which were introduced as a new class of games, are
equivalent to a class of zero-sum mean payoff stochastic games with perfect information,
in which some action spaces are simplices, and the instantaneous payments are given by a
Kullback-Leibler entropy. Hence, entropy games fit in a classical class of games, with a “nice”
payment function over infinite action spaces.

To do so, we introduce a more expressive variant of the model of Asarin et al [5], called
here extended entropy games for clarity, in which the initial state is prescribed (the initial
state is chosen by one player, People, in the original model). This extension is needed to
develop an operator approach and derive consequences from it. We show that the main results
known for stochastic mean payoff games with finite actions space, namely the existence of the
value and the existence of optimal positional strategies, are still valid for extended entropy
games (Theorems 2 and 3). This is derived from a model theory approach of Bolte, Gaubert,
and Vigeral [8], together with the observation that the dynamic programming operators of
extended entropy games are definable in the real exponential field. Another consequence
of the operator approach is the existence of Collatz-Wielandt optimality certificates for
entropy games, Theorem 12. When specialized to the one player case, this leads to a convex
programming characterization of the value, Corollary 13, which can also be recovered from a
characterization of Anantharam and Borkar [3].

This leads us to our main result, Theorem 14, showing that (extended) entropy games
in which Despot has a fixed number of significant states (states with a nontrivial choice)
can be solved in polynomial time. Thus, entropy games are somehow similar to stochastic
mean payoff games, for which an analogous fixed-parameter tractability result holds (by
reducing the one player case to a linear program). This also reveals a fundamental asymmetry
between the players Despot and Tribune: our approach does not lead to a polynomial bound
if one fixes the number of states of Tribune. The proof relies on several ingredients: ellipsoid
method, separation bounds between algebraic numbers, results from Perron-Frobenius theory.

The operator approach also allows one to obtain practically efficient algorithms to solve
entropy games. In this way, the classical policy iteration of Hoffman-Karp [19] can be
adapted to entropy games. We report experiments showing that when specialized to one
player problems, policy iteration yields a speedup by one order of magnitude by comparison
with the “spectral simplex” method recently introduced by Protasov [23].

Let us finally complete the discussion of related works. The formulation of entropy
games in terms of “classical” mean payoff games in which the payments are given by a
Kullback-Leibler entropy builds on known principles in risk sensitive control [14, 3]. It can
be thought as a version for two player problems of the Donsker-Varadhan characterization of
the Perron-eigenvalue [11]. A Donsker-Varadhan type formula for risk sensitive problems,
which can be applied in particular to Despot-free player entropy games, has been recently
obtained by Anantharam and Borkar, in a wider setting allowing an infinite state space [3].
In a nutshell, for Despot-free problems, the Donsker-Varadhan formula appears to be the
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(convex-analytic) dual of the Collatz-Wielandt formula. Chen and Han [10] developed a
related convex programming approach to solve the entropy maximization problem for Markov
chains with uncertain parameters. We also note that the present Collatz-Wielandt approach,
building on [2], yields an alternative to the approach of [5] using the “hourglass alternative”
of [20] to produce concise certificates allowing one to bound the value of entropy games.
Finally, the identification of tractable subclasses of matrix multiplication games can be traced
back at least to the work of Blondel and Nesterov [7].

2 Entropy games

2.1 Entropy games with prescribed initial state

An extended entropy game Γeent is a perfect information game played on a finite directed
weighted graph G. There are 2 players, “Despot”, “Tribune”, and a half-player with a
nondeterministic behavior, “People”. The set of nodes of the graph is written as the disjoint
union D ∪ T ∪ P , where D,T and P represent sets of states in which Despot, Tribune, and
People play. We assume that the set of arcs E is included in (D × T ) ∪ (T × P ) ∪ (P ×D),
meaning that Despot, Tribune, and People alternate their actions. A weight mpd, which
is a positive real number, is attached to every arc (p, d) ∈ P ×D. All the other arcs in E
have weight 1. An initial state, d̄ ∈ D, is known to the players. A token, initially in node d̄,
is moved in the graph according to the following rule. If the token is currently in a node
d belonging to D, then, Despot chooses an arc (d, t) ∈ E and moves the token to node t.
Similarly, if the token is currently in a node t ∈ T , Tribune chooses an arc (t, p) ∈ E and
moves the token to node p. Finally, if the token is in a node p ∈ P , People chooses an arc
(p, d′) ∈ E and moves the token to a node d′ ∈ D. We will assume that every player has at
least one possible action in each state in which it is his or her turn to play. In other words,
for all d ∈ D, the set of actions {(d, t) ∈ E} must be nonempty, and similar conditions apply
to t ∈ T and p ∈ P .

A history of the game consists of a finite path in the digraph G, starting from the initial
node d̄. The number of turns of this history is defined to be the length of this path, each arc
counting for a length of one third. The weight of a history is defined to be the product of
the weights of the arcs arising on this path. For instance, a history (d0, t0, p0, d1, t1, p1, d2, t2)
where di ∈ D, ti ∈ T and pi ∈ P , makes 2 and 1/3 turn, and its weight is mp0d1mp1d2 .

A strategy of Player Despot is a map δ which assigns to every history ending in some
node d in D an arc of the form (d, t) ∈ E. Similarly, a strategy of Player Tribune is a map τ
which assigns an arc (t, p) ∈ E to every history ending with a node t in T .

For every integer k, we define as follows the game in horizon k with initial state d̄,
Γeent(k, d̄). We assume that Despot and Tribune play according to the strategies δ, τ . Then,
People plays in a nondeterministic way. Therefore, the pair of strategies δ, τ allows for
different histories. The payment received by Tribune, in k turns, is denoted by Rk

d̄
(δ, τ). It

is defined as the sum of the weights of all the paths of the digraph G of length k with initial
node d̄ determined by the strategies δ and τ : each of these paths corresponds to different
successive choices of People, leading to different histories allowed by the strategies δ, τ . The
payment received by Despot is defined to be the opposite of Rk

d̄
(δ, τ), so that the game in

horizon k is zero-sum. In that way, the payment Rk
d̄
measures the “freedom” of People,

Despot wishes to minimize it whereas Tribune wishes to maximize it.
We say that the game Γeent(k, d̄) in horizon k with initial state d̄ has the value V k

d̄
and

that δ∗, τ∗ are optimal strategies of Despot and Tribune if for all strategies δ, τ of Despot

STACS 2017



6:4 The Operator Approach to Entropy Games

and Tribune, we have the saddle point property:

Rk
d̄
(δ, τ∗) > Rk

d̄
(δ∗, τ∗) = V k

d̄
> Rk

d̄
(δ∗, τ) . (1)

If the value V k
d̄

exists for all choices of the initial state d̄, we define the value vector of the
game Γeent(k, ·) in horizon k, to be V k := (V kd )d∈D ∈ RD.

We now define the infinite horizon game Γeent(∞, d̄), in which the payment received by
Tribune is given by

R∞
d̄

(δ, τ) := lim sup
k→∞

(Rk
d̄
(δ, τ))1/k

and the payment received by Despot is the opposite of the latter payment. (The choice of
limsup is somehow arbitrary, we could choose liminf instead without affecting the results
which follow.) The value V∞

d̄
of the infinite horizon game Γeent(∞, d̄), and the optimal

strategies in this game, are still defined by a saddle point condition, as in (1), the payment
Rk
d̄
(δ, τ) being now replaced by R∞

d̄
(δ, τ).

We denote by V∞ = (V∞d )d∈D ∈ RD the value vector of the infinite energy game
Γeent(∞, ·).

We associate to the latter games the dynamic programming operator F : RD → RD, such
that, for all X ∈ RD, and d ∈ D,

Fd(X) = min
(d,t)∈E

max
(t,p)∈E

∑
(p,d′)∈E

mpd′Xd′ . (2)

The existence of the value for the finite horizon game follows from a standard dynamic
programming argument.

I Proposition 1. The value of the extended entropy game in horizon k, Γeent(k, ·), does exists.
The value vector V k of this game is determined by the relations V 0 = e, V k = F (V k−1),
k = 1, 2, . . . , where e is the unit vector of RD.

Recall that a strategy is said to be positional or is called a policy if the decision taken at a
given stage depends only on the last state which has been visited. The following theorem
follows from Theorem 9 stated in Section 3, by using an equivalence with a special class of
stochastic mean payoff games with infinite actions spaces, through log-glasses.

I Theorem 2. The infinite horizon extended entropy game has a value and it has optimal
positional strategies. Moreover, for all initial states d, V∞d = limk→∞(V kd )1/k.

The following result is deduced from Theorem 11, using the same technique as for Theorem 2.
We denote by PD (resp. PT ) the set of policies (i.e., positional strategies) of Despot (resp.
Tribune). If one fixes a strategy δ ∈ PD or τ ∈ PT , we end up with a one player infinite
horizon entropy game (a two player game in which either Despot or Tribune has no options),
whose value is denoted by V∞d (δ, ?) (resp. V∞d (?, τ)). Similarly, if we fix the two strategies,
we end up in a game in which only People has options, and the value of this game, denoted
by V∞d (δ, τ), coincides with R∞

d̄
(δ, τ).

I Theorem 3. We have

V∞d = min
δ∈PD

V∞d (δ, ?) = max
τ∈PT

V∞d (?, τ) .

Moreover, for all δ ∈ PD and for all τ ∈ PT ,

V∞d (δ, ?) = max
τ ′∈PT

V∞d (δ, τ ′), V∞d (?, τ) = min
δ′∈PD

V∞d (δ′, τ),
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I Example 4. Take D = {d1, d2, d3}, T = {t1, t2, t3, t4}, P = {a, b, c, d}, E = {(d1, t1),
(d1, t2), (d2, t2), (d3, t3), (d3, t4), (t1, a), (t2, a), (t2, b), (t3, c), (t3, d), (t4, c), (a, d1), (b, d2),
(b, d3), (c, d2), (d, d2), (d, d3)} and mpdi

= 1 for all p ∈ P and 1 6 i 6 3 such that (p, di) ∈ E.
The corresponding graph and dynamic programming operator are given by:

F1(X) = min
(
X1, max(X1, X2 + X3)

)
,

F2(X) = max
(
X1, X2 + X3

)
,

F3(X) = min
(

max(X2, X2 + X3), X2
)
.

One can check that V k = (1, φk+1, φk), where φ0 = φ1 = 1 and φk+2 = φk + φk+1 is
the Fibonacci sequence. Hence, by Theorem 2, the value vector of this entropy game is
V∞ = (1, ω, ω) where ω := (1 +

√
5)/2.

2.2 The original entropy game model
The original entropy game model of Asarin et al. [5] is a zero-sum game defined in a similar
way, up to a difference: in their model, the initial state is not prescribed. The payment of
Tribune in horizon k, instead of being Rk

d̄
(δ, τ), is the quantity R̄k(δ, τ), defined now as the

sum of weights of all paths of length k starting at a node in D and ending at a node in D.
Hence, R̄k(δ, τ) =

∑
d∈D R

k
d(δ, τ). The payment of Tribune can be defined in their game as

follows R̄∞(δ, τ) = lim supk→∞(R̄k(δ, τ))1/k. This game is denoted by Γent(∞), we denote
by V̄∞ the value of this game, which is shown to exist in [5].

Note that in the initial model in [5], the weights mpd′ are equal to 1. The generalization
to weighted entropy games, in which the weights mpd′ are integers is discussed in Section
6 of [5]. The case in which the weights mpd′ take rational values can be reduced to the
latter case by multiplying all the weights by an integer factor. Therefore, we will ignore the
restriction that mpd′ = 1 in our definition of Γent(∞) and will refer to the entropy game
model with rational weights as the entropy game model. The next result, which can be
deduced from the existence of the value of the extended entropy game (Theorem 2 above),
shows that the value of the original entropy game can be recovered from the value vector of
the extended one:

I Proposition 5. The value of the original entropy game Γent(∞) coincides with the maximum
of the values of the extended entropy games Γeent(∞, d), taken over all initial states: V̄∞ =
maxd∈D V∞d .

I Example 6. This is illustrated by the game of Example 4. In the original model of [5], the
value, defined independently of the initial state, is (1 +

√
5)/2, whereas our model associates

to the initial state d1 a value 1 which differs from the values of d2 and d3.

In [5], entropy games were compared with matrix multiplication games. We present
here this correspondence in the case of general weights mpd′ . Given policies δ ∈ PD and
τ ∈ PT , let A(δ) ∈ RD×T and B(τ) ∈ RT×D be such that A(δ)dt = 1 if t = δ(d) and 0
otherwise, and B(τ)td = mτ(t)d if (τ(t), d) ∈ E and 0 otherwise, for all (d, t) ∈ D × T . We
shall think of A(δ) and B(τ) as rectangular matrices. Then R̄k(δ, τ) = ‖(A(δ)B(τ))k‖1,

STACS 2017



6:6 The Operator Approach to Entropy Games

where for any A ∈ RD×D, Ak denotes its kth power and ‖A‖1 =
∑
dd′ |Add′ | its `1 norm.

From this, one deduces that R̄∞(δ, τ) = ρ(A(δ)B(τ)), where ρ(A) denotes the spectral radius
of the matrix A. Moreover, let A and B denote the sets of all matrices of the form A(δ) and
B(τ) respectively, and let AB be the set of all matrices AB with A ∈ A and B ∈ B. The
sets A, B and AB are subsets of matricesM satisfying the property that all elements ofM
have same dimension and ifMi is the set of ith rows of the elements ofM, thenM is the
set of matrices the ith row of which belongs toMi. Such a property defines the notion of
IRU matrix sets (for independent row uncertainty sets) in [5]. The following property proved
in [5] is the analogue of Theorem 3, V∞d being replaced by V̄∞:

V̄∞ = min
A∈A

max
B∈B

ρ(AB) = max
B∈B

min
A∈A

ρ(AB) . (3)

A more general property is proved in [2, Section 8], as a consequence of the Collatz-Wielandt
theorem (see Theorem 12 below).

3 Stochastic mean payoff game with Kullback-Leibler payments

We next show that extended entropy games are equivalent to a class of mean payoff games
in which some action spaces are simplices, and payments are given by the Kullback-Leibler
divergence.

To the extended entropy games Γeent, we associate a family of stochastic zero-sum games
with Kullback-Leibler payments, denoted Γkl and defined as follows. These new games are
still played on the weighted digraph G. For any node p ∈ P , we denote by Ep := {(p, d) ∈ E}
the set of actions available to People in state p, and we denote by ∆p the set of probability
measures on Ep. Therefore, an element of ∆p can be identified to a vector ν = (νp,d)(p,d)∈Ep

with nonnegative entries and sum 1. The actions of Despot and Tribune in the states d ∈ D
and t ∈ T are the same in the games Γkl and in the games Γeent. However, the two games
have different rules when the state is in P , since the nondeterministic half-player, People, is
now replaced by a standard probabilistic half-player, Nature. In the game Γkl, Tribune, who
arrived in a state p ∈ P by choosing first an action in some state t ∈ T , so that (t, p) ∈ E,
has to play again in state p, by choosing a probability measure ν ∈ ∆p. Then, Nature chooses
the next state d according to probability νp,d, and Tribune receives the payment −Sp(ν;m),
where Sp(ν;m) is the relative entropy or Kullback-Leibler divergence:

Sp(ν;m) :=
∑

(p,d)∈Ep

νpd log(νpd/mpd) .

An interesting special case arises when m ≡ 1, as in [5]. Then, Sp(ν;m) = Sp(ν) :=∑
(p,d)∈Ep

νpd log νpd is nothing but the Shannon entropy of ν.
A history in the game Γkl now consists of a finite sequence (d0, t0, p0, ν0, d1, t1, p1, . . . ),

which encodes both the states and actions which have been chosen. A strategy δ of Despot
is still a function which associates to a history ending in a state in d an arc (d, t) in
Ed := {(d, t) ∈ E}. A strategy of Tribune has now two components (τ, π), τ is a map
which assigns to a history ending in a state in t an arc (t, p) ∈ E, as before, whereas
π assigns to the same history and to the next state p = τ(d) chosen according to τ a
probability measure on ∆p. To each history corresponds a path in G, obtained by ignoring
the occurrences of probability measures. For instance, the path corresponding to the history
h = (d0, t0, p0, ν0, d1, t1, p1) is (d0, t0, p0, d1, t1, p1). Again, the number of turns of a history
is defined as the length of this path, each arc counting for 1/3. So the number of turns
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of h is 1 and 2/3. Choosing strategies δ and (τ, π) of both players and fixing the initial
state d0 = d̄ determines a probability measure on the space of histories h. We denote
by rk

d̄
(δ, (τ, π)) := −E

(
Sp0(ν0;m) + · · · + Spk−1(νk−1;m)

)
the expectation of the payment

received by Tribune, in k turns, with respect to this measure, We also consider the infinite
horizon or mean payoff game Γkl(∞, d̄), in which the payment of Tribune is now

r∞
d̄

(δ, (τ, π)) = lim sup
k→∞

k−1rk
d̄
(δ, (τ, π)) .

We define the value of the game in horizon k, vk
d̄
, and the value of the infinite horizon game,

v∞
d̄
, as well as optimal strategies, by saddle point conditions, as in Section 2.1. We have the

following dynamic programming principle.

I Proposition 7. The value vector vk = (vkd)d∈D in horizon k of the stochastic game
with Kullback-Leibler payments, Γkl, does exists. It is determined by the relations v0 = 0,
vk = f(vk−1), k = 1, 2, . . ., where

fd(x) = min
(d,t)∈E

max
(t,p)∈E

log
( ∑

(p,d′)∈E

mpd′ exp(xd′)
)
, (4)

and we have vkd = log V kd .

The explicit form of f in (4) originates from the following expression of the Legendre-Fenchel
transform of Shannon entropy, which is a classical result in convex analysis, see e.g. [25].

I Lemma 8. The function x 7→ log(
∑

16i6n e
xi) is convex and it satisfies

log
( ∑

16i6n
exi
)

= max
∑

16i6n
νi(xi − log νi); νi > 0, 1 6 i 6 n,

∑
16i6n

νj = 1 .

The following result shows that the extended entropy game Γeent is equivalent to the
stochastic mean payoff game Γkl, through logarithmic glasses. Theorem 2 above is deduced
from it. We define the projection of a pair of strategy (δ, (τ, π)) in Γkl to be the strategy
(δ, τ) in Γeent.

I Theorem 9. The stochastic mean payoff game with Kullback-Leibler payments, Γkl(∞, ·),
has a value. For all states d ∈ D, we have

v∞d = log V∞d , v∞d = lim
k→∞

1
k
vkd .

Moreover, the optimal strategies of Γeent(k) are precisely the projections of the optimal
strategies of Γkl(k), for all k integer or equal to ∞.

This theorem shows that extended entropy games are particular stochastic mean payoff
games (with compact action spaces). Asarin et al. [5] remarked that the special deterministic
entropy games, in which People has only one possible action in each state, can be reencoded
as deterministic mean payoff games. This can also be recovered from our approach: in this
deterministic case, the simplices ∆p are singletons and the entropy function vanishes.

We next sketch the derivation of Theorem 9 from a result of Bolte, Gaubert and Vigeral [8]
on the escape rate of nonexpansive mappings that are definable in an o-minimal structure.
A map f is nonexpansive with respect to a norm ‖ · ‖ if ‖f(x) − f(y)‖ 6 ‖x − y‖. Recall
that an o-minimal structure [12, 28] consists, for each integer n, of a family of subsets
of Rn. A subset of Rn is said to be definable with respect to this structure if it belongs

STACS 2017



6:8 The Operator Approach to Entropy Games

to this family. It is required that definable sets are closed under the Boolean operations,
under every projection map (elimination of one variable) from Rn to Rn−1, and under the
lift, meaning if A ⊂ Rn is definable, then A × R ⊂ Rn+1 and R × A ⊂ Rn+1 are also
definable. It is finally required that when n = 1, definable subsets are precisely finite unions
of intervals. A function f from Rn to Rk is said to be definable if its graph is definable.
An important example of o-minimal structure is the real exponential field Ralg,exp. The
definable sets in this structure are the subexponential sets [28], i.e., the images under the
projection maps Rn+k → Rn of the exponential sets of Rn+k, the latter being sets of the
form {x | P (x1, . . . , xn+k, e

x1 , . . . , exn+k ) = 0} where P is a real polynomial. A theorem of
Wilkie [29] implies that Ralg,exp is o-minimal, see [28].

If f : Rn → Rn is nonexpansive in any norm, given any 0 < α < 1, we define the
discounted value vector zα ∈ Rn by f(αzα) = zα. This vector exists and is unique (apply
Banach fixed point theorem to the contraction mapping x 7→ f(αx)).

I Theorem 10 ([8]). Let f : Rn → Rn be nonexpansive in any norm, and suppose that f
is definable in an o-minimal structure. Then, the limit limk→∞ fk(0)/k does exists, and it
coincides with the limit limα→1−(1− α)zα.

The vector zα is nothing but the value of the discounted variant of the stochastic game Γkl,
where α is the discount factor. The map f in (4) is nonexpansive in the sup-norm, and it is
definable in the real exponential field. So Theorem 10 can be applied to it. The existence of
the limit in Theorem 9 is deduced from this result.

A policy in a discounted game is said to be Blackwell optimal if it is optimal for all
discount factors sufficiently close to one. The existence of Blackwell optimal policies is a
basic feature of perfect information zero-sum stochastic games with finite action spaces
(see [24, Chap. 10] for the one-player case, the two-player case builds on similar ideas, e.g. [15,
Lemma 26]). It allows one to reduce the mean payoff problem to the discounted problem.
We next show that this result has an analogue for entropy games. We shall say that a pair of
strategies (δ, τ) ∈ PD × PT is Blackwell optimal if there is a real number 0 < α0 < 1 such
that, for all α ∈ (α0, 1), (δ, τ) is the projection of a pair of optimal policies (δ, (τ, π)) in the
discounted version of the game Γkl. The fact that the value of the entropy games commutes
with maxima and minima of policies (Theorem 3) is derived by combining Theorem 10 with
the following result, whose proof relies, again, on an o-minimality argument.

I Theorem 11. The stochastic perfect information game with Kullback-Leibler payments,
Γkl, has Blackwell optimal strategies.

4 Applying the Collatz-Wielandt theorem to entropy games

The classical Collatz-Wielandt formulæ provide the following characterizations of the spectral
radius ρ(M) of a nonnegative matrix M :

ρ(M)= inf{λ > 0 | ∃X ∈ intRD+ , MX 6 λX}= max{λ > 0 | ∃X ∈ RD+ \ {0}, MX = λX},

where RD+ denotes the nonnegative orthant of RD, and intRD+ its interior, i.e, the set of
positive vectors. This has been extended to non-linear, order preserving and continuous
self-maps of the standard positive cone [22, 2]. In particular, the following result can be
derived from the non-linear Collatz-Wielandt formulæ in these works.
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I Theorem 12 (Corollary of [2]). The value V̄∞ of the original entropy game Γent (with a
free initial state) coincides with any of the following expressions

inf{λ > 0 | ∃X ∈ intRD+ , F (X) 6 λX} (5)
max{λ > 0 | ∃X ∈ RD+ \ {0}, F (X) = λX} (6)
max{λ > 0 | ∃X ∈ RD+ \ {0}, F (X) > λX} , (7)

where F is the dynamic programming operator (2).

The value of these expressions is called the non-linear spectral radius of F . The Collatz-
Wielandt formulæ are helpful to establish strong duality results, like (3), see also [1] for
an application to mean payoff games and tropical geometry. Our main interest here lies in
the following application of (5). We say that a state d of Despot is significant if the set of
actions of Despot in this state, {(d, t) ∈ E}, has at least two elements (i.e., Despot has to
make a choice in this state). We say that an entropy game is Despot-free if the Despot player
does not have any significant state. A Despot-free game is essentially a one (and half) player
problem, since the minimum term in the corresponding dynamic programming operator (2)
vanishes. Indeed, for each d ∈ D, there is a unique node t such that (d, t) ∈ E, and we define
the map σ : D → T by σ(d) = t. The following corollary, which follows from Theorem 12 by
making the change of variables µ = log λ and x = logX, is also a special case of a result of
Anantharam and Borkar [3].

I Corollary 13. The logarithm of the value of a Despot-free entropy game is given by

inf µ, µ ∈ R, x ∈ RD,

µ+ xd > log(
∑
d′∈D

mp,d′e
xd′ ) for all d ∈ D, p ∈ P such that (σ(d), p) ∈ E . (8)

5 Polynomial time solvability of entropy games with a few significant
Despot positions

By solving strategically an (extended) entropy game, we mean, finding a pair of optimal
policies. We assume from now that the weights mp,d are integers. Since policies are
combinatorial objects, solving strategically the game is a well posed problem in the Turing
(bit) model of computation. Once optimal policies are known, the value of the game, which
is an algebraic number, can be obtained as the Perron root of an associated integer matrix.
Our main result is the following.

I Theorem 14. Despot-free entropy games can be solved strategically in polynomial time.

We indicate here the main arguments of proof.
Step 1. Reduction to the irreducible case. First, we associate to a Despot-free extended

entropy game a projected digraph Ḡ, with node set D and an arc d→ d′ if there is a path
(d, t, p, d′) in the original digraph G. We say that the game is irreducible if Ḡ is strongly
connected. It is not difficult to see that in a Despot-free extended entropy game, the value of
a state d is the maximum of the value of the irreducible games corresponding to the different
strongly connected components of Ḡ to which d has access under some policy of Tribune
(this is a special case of a more general known property, see [15, Th.29]). Hence, we will
assume that the game is irreducible in the rest of the proof.

The following result is a consequence of the non-linear Perron-Frobenius theorem in [16].
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I Lemma 15. The value of an irreducible Despot-free extended entropy game is independent
of the initial state. Moreover, there is a vector U ∈ intRD+ and a scalar λ∗ > 0 such that
F (U) = λ∗U , and λ∗ coincides with the value of any initial state in this game.

Thanks to this lemma, we will speak of “value” without making explicit the initial state. We
set W := max(p,d)∈Emp,d and n := |D|.

Step 2. Reduction to a convex program with bounded feasible set. To prove Theorem 14,
we apply the ellipsoid method. To do so, we must replace the convex program (8) by
another convex program whose feasible set is included in a ball B2(a,R), (the Euclidean
ball with center a and radius R), and contains a Euclidean ball B2(a, r), where log(R/r) is
polynomially bounded in the size of the input. The following key lemma allows us to do so.

I Lemma 16. Suppose the game is Despot-free and irreducible. Then, the value λ∗ of the
game is such that 1 6 λ∗ 6 nW . Moreover, there exists a vector U ∈ intRn+ such that
F (U) = λ∗U , and for all d ∈ D, 1 6 Ud 6 (nW )n−1.

We denote by K the set of pairs (u, µ) ∈ RD × R ' Rn+1, such that

f(u) 6 µe+ u, 0 6 ud 6 (n− 1)dlog(nW )e, 0 6 µ 6 dlog(nW )e+ 2 , (9)

where dte denotes the smallest integer greater than or equal to t, and f is given by (4),
recalling that e denotes the unit vector of Rn. By combining Corollary 13, Lemma 15 and
Lemma 16, we arrive at the following result.

I Proposition 17. The value of a Despot-free irreducible entropy game coincides with the
exponential of the value of the convex program: minµ, (u, µ) ∈ K. Moreover, B2(a, r) ⊂ K ⊂
B2(a,R) where a = (e, dlog(nW )e+1) ∈ RD×R, r := 1/3, and R := 2

√
D + 1(n−1) log(nW ).

Step 3. Show the existence of a polynomial time approximate separation oracle [17] for the
program of Proposition 17. The non-trivial separating half-spaces are obtained by computing
the differential of the logarithmic expressions in (8). To do so, we use the fact that the values
of the logarithm and exponential function can be approximated in polynomial time [9].

Step 4. Show that if any two policies of Tribune yield different values λ and λ′, then, |λ−λ′|
is bounded below by a rational number ηsep > 0 whose number of bits is polynomially bounded
in the size of the input. This relies on separation results between algebraic numbers [27],
since the value of a strategy of Tribune is an eigenvalue of a n × n matrix with integer
coefficients bounded by the number W .

Step 5. Synthesize an optimal strategy of Tribune from an approximate solution of the
program in Proposition 17.

To any policy τ of Tribune, we associate a dynamic programming operator F τ , which
is the self-map of RD defined by F τd (X) =

∑
(τ(σ(d)),d′)∈Emτ(σ(d))d′Xd′ . In other words,

F τ (X) = MτX, where Mτ = (mτ(σ(d))d′)d,d′∈D is a |D| × |D| matrix with nonnegative
entries.

To explain our method, we make first the restrictive assumption that for every policy
τ , the matrix Mτ is irreducible. In particular, we can take an optimal policy τ∗. By a
standard result of Perron-Frobenius theory [6], Mτ∗ has a left eigenvector π with positive
entries, associated to the maximal eigenvalue λτ∗ := ρ(Mτ∗), called Perron root. Hence,
πMτ∗ = λτ

∗
π. Since τ∗ is optimal, λτ∗ = λ∗. Moreover, by applying Lemma 16 to the linear

map U 7→ (Mτ∗)TU , where T denotes the transposition, we deduce that πd/πd′ 6 (nW )n−1.
For any rational number ε > 0, the ellipsoid algorithm, applied to the optimization

problem of Proposition 17, yields in polynomial time a vector u and a scalar µ such that
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f(u) 6 (log λ∗ + ε)e + u and λ∗ 6 exp(µ) 6 λ∗ exp(ε). Taking U := (Ud)d∈D with Ud :=
exp(ud), we get F (U) 6 λ∗ exp(ε)U . We choose any policy τ such that F (U) = MτU .
Therefore, τ(σ(d)) is chosen to be any term attaining the maximum when evaluating Fd(U).
We claim that τ is optimal if ε is sufficiently small.

To show the latter claim, we observe that Mτ∗U 6 F (U). Moreover, for all d ∈ D,
0 6 πd(λ∗ exp(ε)Ud − Fd(U)) 6 πd(λ∗ exp(ε)Ud − (Mτ∗(U))d) 6

∑
d′∈D πd′(λ∗ exp(ε)Ud′ −

(Mτ∗U)d′) = π(λ∗ exp(ε)U − Mτ∗U) = λ∗(exp(ε) − 1)πU . Using πd/πd′ 6 (nW )n−1

and Ud/Ud′ 6 (nW )n−1, we deduce that F (U) > λU , where λ := λ∗[exp(ε) − (exp(ε) −
1)n(nW )2(n−1)]. Since, MτU > λU , we have ρ(Mτ ) > λ. It follows that we can choose
ε > 0, with a polynomially bounded number of bits, such that λ > λ∗− ηsep. Moreover, since
λ∗ is the maximum of the values of all the policies, λ 6 λ∗. By definition of the separation
parameter ηsep, this implies that λ = λ∗, and so the policy τ of Tribune which we just
constructed is optimal, showing the claim.

When some policies τ yield a reducible matrix Mτ , the synthesis of the optimal policy τ
still exploits the same idea with an additional technicality, since we can only guarantee that
the inequality Fd(U) > λUd is valid for every state d such that πd > 0.

Theorem 3, showing that V∞d = minδ∈PD
V∞d (δ, ?), allows us to solve an entropy game

by enumerating the policies δ ∈ PD and solving the Despot-free entropy game determined by
each δ. This leads to an algorithm with execution time

(∏
d∈D |Ed|

)
TD-free, where the factor

TD-free is polynomial in the size of the input. We have in particular:

I Corollary 18. Entropy games in which Despot has a fixed number of significant states can
be solved strategically in polynomial time.

6 Multiplicative policy iteration algorithm and comparison with the
spectral simplex method of Protasov

The equivalence between extended entropy games and some special class of stochastic mean
payoff games, through logarithmic glasses (see Section 3), allows us to adapt classical
algorithms for one or two player zero sum games, such as the value iteration and the policy
iteration algorithm. We next present a multiplicative version of the policy iteration algorithm,
which follows by adapting policy iteration ideas of Hoffman and Karp [19] and Rothblum [26].

To simplify the presentation, we consider first a Despot-free entropy game. Without
loss of generality, we assume that D = T = {1, . . . , |T |} and σ is the identity. Let F τ and
Mτ , τ ∈ PT , be defined as in the previous section. If Mτ is irreducible, in particular if
all its entries are positive, Mτ has an eigenvector Xτ > 0, associated to the Perron root
λτ := ρ(Mτ ). Moreover, Xτ is unique up to a multiplicative constant and is called a Perron
eigenvector. If all the matrices Mτ , τ ∈ PT are irreducible, one can construct the following
multiplicative version of the policy iteration algorithm.

This algorithm has a dual version, in which maximization is replaced by minimization.
Then, the Hoffman-Karp’s idea [19] is readily adapted to the multiplicative setting: a sequence
δk is constructed in a similar way as τk in the dual version of Algorithm 1, except that in
Step 3, λδk and Xδk are computed by applying Algorithm 1 to the dynamic programming
operator F δk in which the strategy of Despot is fixed to δk. We call this the multiplicative
Hoffman-Karp algorithm. A variation of the original proof shows that this algorithm,
implemented in exact arithmetics, terminates and is correct if for any pair of policies of the
two players, the associated transition matrix is irreducible.

In [23], Protasov introduced the Spectral Simplex Algorithm. His algorithm is a variant
of Algorithm 1 in which the policy is improved only at one state, which is the first state t
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Algorithm 1 Multiplicative policy Iteration for Despot-free entropy game.
1: Initialize k = 1, τ0, τ1 6= τ0 randomly.
2: while τk 6= τk−1 do
3: Compute the Perron root λτk and a Perron eigenvector Xτk of Mτk .
4: Compute a new policy τk+1 such that, for all t ∈ T ,

τk+1(t) ∈ argmax
τ(t)∈P, τ∈PT

F τt (Xτk

) = argmax
p∈P, (t,p)∈E

∑
t′∈T, (p,t′)∈E

mp,t′X
τk

t′ ,

and set τk+1(t) = τk(t) if this choice is compatible with the former condition.
5: k ← k + 1
6: end while
7: return the optimal policy τk, the Perron root λτk and Perron eigenvector Xτk of Mτk .

Table 1 Comparing multiplicative policy iteration with spectral simplex.

Number of states 10 20 30 40 50 60 70 80 90 100

Time : Policy Iteration 0.0018 0.0037 0.0057 0.0095 0.0115 0.0141 0.0171 0.0283 0.0308 0.0363
Time : Spectral Simplex-D 0.0026 0.0083 0.0158 0.0317 0.0433 0.0511 0.0797 0.1261 0.1533 0.1950
Time : Spectral Simplex 0.0034 0.0149 0.0350 0.0934 0.1419 0.1615 0.3070 0.5835 0.7418 1.0257
Iterations : Policy Iteration 3 3 3.4 3 3 3 3.2 3.2 3 3.2
Iterations : Spectral Simplex-D 5.6 7.4 10.2 10 11.8 13.4 14.8 14.2 16 17.2
Iterations : Spectral Simplex 15.4 22 40.8 53.4 57.8 83 87 102.2 106.8 122.8

such that Ft(Xτk ) > λτ
k

Xτk

t . We also considered another version of Algorithm 1, in which
we change the policy at only one state t, which maximizes the expression Ft(Xτk )− λτk

Xτk

t .
We shall refer to this algorithm as “Spectral Simplex-D” since this is analogous to Dantzig’s
pivot rule in the original simplex method [30].

We next report numerical experiments in the case of Despot-free entropy game, in order
to compare Protasov’s spectral simplex algorithm (with the improvement of Dantzig’ pivot
rule) with the multiplicative Policy Iteration algorithm (Algorithm 1). In Table 1, these
algorithms are respectively named “Policy Iteration”, “Spectral Simplex” and “Spectral
Simplex-D”.

We constructed random Despot-free instances in which D = T has cardinal n, and every
coordinate of the operator is of the form Ft(X) = max16p6q

∑
t′ A

p
tt′Xt′ , where (Aptt′) is a

3-dimensional tensor whose entries are independent random variables drawn with the uniform
law in [0, 1]. All the results below are the average made over 10 simulations, they concern
the situation in which the number of actions q is kept constant, equal to 10, whereas n varies.
The time is given in seconds. The number of “iterations” denotes the number of times that
the algorithm goes through the main loop, regardless of how many operations are performed
inside the loop. The computations were performed on Matlab R2016a, using an Intel(R)
Core(TM) i7-6500 CPU @ 2.59GHz processor with 12,0Go of RAM.

Spectral Simplex-D appears to be more efficient than the Spectral Simplex algorithm with
its original rule [23]. Both algorithms are experimentally outperformed by policy iteration,
by one order of magnitude, when n→∞.
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7 Concluding remarks

We developed an operator approach for entropy games, relating them with risk sensitive
control via non-linear Perron-Frobenius theory. This leads to a theoretical result (polynomial
time solvability of the Despot-free case), and this allows to adapt policy iteration to these
games. Several issues concerning policy iteration in the spectral setting remains unsolved. A
first issue is to understand what kind of approximate eigenvalue algorithms are best suited.
A second issue is to identify significant classes of entropy games on which the Hoffman-Karp
type policy iteration algorithm can be shown to run in polynomial time (compare with [30, 18]
in the case of Markov decision processes).

Acknowledgments. We thank all the referees for their comments. We thank especially one
referee for detailed suggestions and for pointing out reference [10].
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