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Abstract
We show that checking if a given hypergraph has an automorphism that moves exactly k vertices
is fixed parameter tractable, using k and additionally either the maximum hyperedge size or the
maximum color class size as parameters. In particular, it suffices to use k as parameter if the
hyperedge size is at most polylogarithmic in the size of the given hypergraph.

As a building block for our algorithms, we generalize Schweitzer’s FPT algorithm [ESA 2011]
that, given two graphs on the same vertex set and a parameter k, decides whether there is an
isomorphism between the two graphs that moves at most k vertices. We extend this result to
hypergraphs, using the maximum hyperedge size as a second parameter.

Another key component of our algorithm is an orbit-shrinking technique that preserves per-
mutations that move few points and that may be of independent interest. Applying it to a
suitable subgroup of the automorphism group allows us to switch from bounded hyperedge size
to bounded color classes in the exactly-k case.
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1 Introduction

The Graph Automorphism problem GA asks whether a given graph has a nontrivial auto-
morphism. We additionally require the automorphism to have small weight. The weight of a
permutation is the number of its non-fixpoints. We are interested in the following problems:

GA≤k: Given a graph X = (V,E) and k ∈ N, does X have a nontrivial automorphism that
moves at most k vertices?

GI≤k: Given two graphs X1 = (V,E1) and X2 = (V,E2) on the same vertex set and k ∈ N,
is there an isomorphism from X1 to X2 that moves at most k vertices?
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7:2 Parameterized Complexity of Small Weight Automorphisms

Likewise, let GA=k and GI=k denote the exact weight-k automorphism and isomorphism
problems, respectively. By HGA=k, HGA≤k, HGI=k and HGI≤k we denote the hypergraph
versions of these problems.

In [12], Schweitzer showed that GI≤k parameterized by k is in FPT, giving a kO(k) poly(n)
time algorithm for it. Schweitzer’s algorithm can easily be adapted to also solve GA≤k.

Our results. In Section 3, we generalize Schweitzer’s result [12] to hypergraphs with hyper-
edge size bounded by d, giving (dk)O(k2) poly(N) time algorithms for HGI≤k and HGA≤k
(throughout the paper we use N to denote the size |V | · |E| of the input hypergraphs).
Consequently, for hypergraphs with poly(logN) size hyperedges the problems remain in FPT
when parameterized only by k. Note that although Hypergraph Isomorphism is known to
be reducible to Graph Isomorphism, there is no known reduction from HGI=k to GI=k (or
from HGI≤k to GI≤k).

In Section 4 we consider HGI≤k for vertex-colored hypergraphs of unbounded hyperedge
size. For hypergraphs with color classes of size at most b, we obtain a (kb!)O(k2) poly(N)
time algorithm.

In Section 6, we use color coding [1] to give FPT algorithms for HGA=k parameterized
by k and additionally either by the maximum hyperedge size d or by the maximum color
class size b; the runtime bounds are the same as those mentioned above. In particular, it
follows that GA=k parameterized only by k is in FPT. For general hypergraphs we show
that HGA=k is in FPTGI.

In contrast to the above results, if X is a colored graph with red and blue vertices and
we want to test if X has a nontrivial automorphism π that moves at most k blue vertices
then the problem is W[1]-hard. This confirms a claim from [5, Exercise 9.02] (see also [6,
Exercise 20.3.2]). As the hint given there does not work out and we require quite different
ideas, we have included our proof in Section 7.

Related work. The parametric dual to GA≤k asks for an automorphism that has at most k
fixpoints. It is NP-complete even when restricted to k = 0, where it is known as the fixpoint
free automorphism problem [11].

A fundamental problem in algorithmic coding theory is the minimum weight codeword
problem: Given a system of linear equations Ax = 0 over F2 as instance, the problem is
to find the minimum weight of a nonzero solution to it. It is known to be NP-hard even
to approximate to a constant factor [15, 10]. The parameterized complexity of its decision
version (called Even) is also well studied [7, 2].

Even. Given a binary matrix A defining the linear code Ax = 0 over F2 and a parameter k,
is there is a non-zero codeword of weight at most k?

Whether Even is in FPT or W[1]-hard remains open. In contrast, ExactEven (which
asks for a codeword of weight exactly k) is known to be W[1]-hard [7, 2]. It is interesting
to compare this to our result that GA=k is in FPT. A natural generalization is to consider
permutation groups G ≤ Sn as input, where G is given by a generating set S, and ask for a
permutation in G of minimum weight. Formally, the problem of interest1 is:

PermCode. Given S with G = 〈S〉 ≤ Sn and a parameter k ∈ N, does G \ {id} contain a
permutation of weight at most k?

1 It is called Hamming Distance Minimum Weight Problem in [4].
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PermCode generalizes both GA≤k and Even. Indeed, an instance (X, k) of GA≤k can
be transformed into an instance (S, k) of PermCode by computing a generating set S for
the automorphism group of X. Computing this efficiently requires a GI oracle.

Let (A, k) be an instance of Even, where A has n columns. It can be reduced to an
instance (S, 2k) of PermCode with G = 〈S〉 ≤ S2n as follows: Using Gaussian elimination,
compute from A an n× r matrix B over F2 whose columns generate the solution space of
Ax = 0, where r is the solution-space dimension. For each column (b1, . . . , bn)T of B, include
in S the permutation in S2n that, for 1 ≤ i ≤ n, transposes 2i and 2i− 1 if bi = 1 and fixes
2i and 2i− 1 if bi = 0.

In particular, this shows that the hardness results for Even also apply to PermCode,
even when the latter is restricted to groups with orbit size 2. In Section 5, we prove that
PermCode for a permutation group G is reducible in polynomial time to PermCode for a
subgroup G′ of G whose orbits are of size bounded by the parameter k. We use this reduction
in our algorithms for HGA=k.

2 Preliminaries

A permutation group G is a subgroup of Sym(V ), where Sym(V ) is the group of all permuta-
tions on a finite set V . If V = [n] we denote Sym(V ) by Sn. We denote the image of v ∈ V
under a permutation π by vπ and sometimes also by π(v). For a subset U ⊆ V , we write
Uπ = π(U) = {uπ | u ∈ U}. We apply permutations from left to right so that vϕπ = (vϕ)π.

We write H ≤ G when H is a subgroup of G. If ϕ is an element of G then Hϕ denotes
the coset {πϕ | π ∈ H}. For S ⊆ Sym(V ), the group 〈S〉 generated by S is the smallest
subgroup of Sym(V ) containing S. For an element v ∈ V , the set {vπ | π ∈ G} is the G-orbit
of v. In case G = 〈{π}〉 we call the resulting set {πi(v) | i ∈ N} also the π-orbit of v.

The analysis of our algorithms relies on some measures on permutations. The support
of π ∈ Sym(V ) is supp(π) = {u ∈ V | uπ 6= u}, i.e., the set of non-fixpoints of π. Its
complexity compl(π) is the size of supp(π) minus the number of π-orbits having size at least 2.
Equivalently, compl(π) is the minimum number of transpositions whose product is π.

I Definition 2.1. Let G ≤ Sym(V ) and π ∈ Sym(V ); this includes the case π = id.
1. A permutation σ ∈ Gπ \ {id} has minimal support in Gπ if there is no ϕ ∈ Gπ \ {id}

with supp(ϕ) ( supp(σ).
2. A permutation σ ∈ Gπ \ {id} has minimal complexity in Gπ if there are no ϕ ∈ G \ {id}

and ψ ∈ Gπ \ {id} with σ = ϕψ and compl(σ) = compl(ϕ) + compl(ψ), i.e., if for every
way to express σ as the product of a minimum number of transpositions σ = τ1 · · · τcompl(σ)
and every i ∈ {2, . . . , compl(σ)} it holds that τi · · · τcompl(σ) /∈ Gπ.

In particular, these notions apply to elements of the automorphism group Aut(X) of a
graph X and to elements of the coset Iso(X,Y ) of isomorphisms between two graphs X and Y.

I Lemma 2.2. Let Gπ be a coset of a permutation group G and let σ ∈ Gπ \ {id}. Then
for some ` ≥ 1 there are σ1, . . . , σ`−1 ∈ G with minimal complexity in G and σ` ∈ Gπ

with minimal complexity in Gπ such that σ = σ1 · · ·σ` and supp(σi) ⊆ supp(σ) for each
i ∈ {1, . . . , `}. Moreover, all these inclusions become equalities if π = id and σ has minimal
support in G.

Proof. If σ has minimal complexity in Gπ, we have ` = 1 and σ1 = σ. Otherwise, there are
ϕ ∈ G\{id} and ψ ∈ Gπ\{id} such that σ = ϕψ and compl(σ) = compl(ϕ)+compl(ψ). This
implies supp(ϕ) ⊆ supp(σ) and supp(ψ) ⊆ supp(σ), and these inclusions become equalities

STACS 2017



7:4 Parameterized Complexity of Small Weight Automorphisms

if π = id and σ has minimal support in G. If ϕ and ψ do not have minimal complexity
in G and Gπ, respectively, they can be decomposed further. This process terminates, as
ϕ and ψ both have lower complexity than σ. J

3 Bounded hyperedge size

Let X = (V,E) and Y = (V,E′) be hypergraphs such that for each e ∈ E we have |e| ≤ d.
We show that a nontrivial element π ∈ Iso(X,Y ) of weight at most k, if it exists, can be
found in (dk)O(k) poly(N) time.

This generalizes Schweitzer’s result [12] shown for usual graphs, to hypergraphs of
bounded hyperedge size. In order to find an isomorphism π between two given graphs
such that π has support size at most k, Schweitzer’s algorithm constructs π by iteratively
adding transpositions that bring the input graphs closer to each other. To find suitable
transpositions, it explores a search tree of depth k and degree

(2k
2
)
. In each step, it computes

a candidate set of at most 2k vertices and tries all transpositions among them. For each
isomorphism π between the input graphs that has support size at most k, this candidate set
contains two vertices that are in the same orbit of π. Vertex covers play a crucial role in
computing the candidate set. To extend this algorithm to hypergraphs of bounded hyperedge
size, we need a generalization of vertex covers.

I Definition 3.1. Let X be a hypergraph on a vertex set V, and let C ⊆ V. A hyperedge e
of X is q-covered by C if |e∩C| ≥ min(q, |e|). The set C is a q-strong vertex cover of X if it
q-covers every hyperedge of X.

I Definition 3.2. Let X and Y be hypergraphs on a vertex set V. X4Y is the hypergraph
with edge set E(X)4E(Y ) and having as vertex set the union of all edges in E(X)4E(Y ).

For the following results, let X and Y be two non-identical hypergraphs on the same
vertex set V and let π be an isomorphism from X to Y with |supp(π)| ≤ k.

I Lemma 3.3. Let C be a q-strong vertex cover of X4Y such that no two distinct points
in C belong to the same π-orbit. Then for no hyperedge e of X4Y with |e ∩ C| ≤ q it holds
that e ∩ supp(π) ⊆ C.

Proof. Let e = {u1, . . . , ut} ∈ E(X)4E(Y ) be a hyperedge such that u1, . . . , us ∈ C and
us+1, . . . , ut 6∈ C for some s ≤ q. Suppose, to the contrary, that e ∩ supp(π) ⊆ C, i.e.,
uπi = ui for i ∈ {s+ 1, . . . , t}. W.l.o.g. let e ∈ E(X)\E(Y ). Let ` be the length of the π-orbit
of e. It is the least positive integer such that π`(e) = e. We claim that πi−1(e) ∈ E(X)
implies πi(e) ∈ E(X), for 1 ≤ i < `. This contradicts π`−1(e) 6∈ E(X), which follows from
π`(e) = e 6∈ E(Y ) because π is an isomorphism from X to Y.

To prove the claim, fix any j ∈ {1, . . . , s} with πi(uj) 6= uj . Such a j must exist because
otherwise πi(e) = e for i < `, contradicting the definition of `. As uj ∈ C and no two
distinct points in C belong to the same π-orbit, it follows that πi(uj) 6∈ C, implying that
πi(e) is not q-covered by C and thus cannot be contained in E(X)4E(Y ). Finally, as
π is an isomorphism from X to Y, πi−1(e) ∈ E(X) implies that πi(e) ∈ E(Y ), but since
πi(e) 6∈ E(X)4E(Y ), it follows that πi(e) ∈ E(X). J

I Lemma 3.4. If C is a q-strong vertex cover of X4Y such that no two distinct points in C
belong to the same π-orbit, then C ∪ supp(π) is a (q + 1)-strong vertex cover of X4Y.

Proof. For all hyperedges e of X4Y with |e∩C| ≤ q we have e∩supp(π) 6⊆ C by Lemma 3.3.
Hence, supp(π) covers at least one additional vertex in each such hyperedge. J
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Algorithm 1 CandidateSetk,d(X 4Y )

1 Input: The symmetric difference X4Y of two hypergraphs X 6= Y on vertex
2 set V = [n] containing some hyperedge of size at most d
3 Output: A candidate set C of size at most dk that contains for any isomorphism
4 π ∈ Iso(X,Y ) with |supp(π)| ≤ k two elements belonging to the same π-orbit
5 C0 ← ∅; q ← 0
6 while X4Y has a (q + 1)-strong vertex cover Cq+1 ⊇ Cq with |Cq+1| ≤ |Cq|+ k

7 and q < d do q ← q + 1
8 return Cq

I Lemma 3.5. If C is a q-strong vertex cover for X4Y and some hyperedge e of X4Y has
size at most q, then C contains two distinct points belonging to the same π-orbit.

Proof. As C is a q-strong vertex cover and e has size at most q it follows that C contains e.
If no two distinct points in C belong to the same π-orbit, then Lemma 3.3 implies that
C does not even contain e ∩ supp(π), a contradiction. J

Lemmas 3.4 and 3.5 suggest the following algorithm for computing a candidate set; it
can be plugged into Schweitzer’s isomorphism test [12, Algorithm 1], cf. Algorithm 2 below.

Observe that, by construction, Algorithm 1 returns a candidate set Cq of size at most dk.
The following lemma shows that Cq also has the other desired property and gives an FPT
bound on the running time of the procedure.

I Lemma 3.6. If X,Y are hypergraphs such that X4Y has an hyperedge of size at most d,
and π is an isomorphism from X to Y with |supp(π)| ≤ k, then the set Cq returned by
CandidateSetk,d(X4Y ) contains two vertices in the same π-orbit. Moreover, the running
time of the procedure is O(dk+1 poly(N)), where N is the length of the encoding of X4Y.

Proof. Observe that C0 = ∅ is a 0-strong vertex cover. Lemma 3.4 guarantees that for
q < d, the condition of the while-loop can only be violated if Cq contains two vertices in
the same π-orbit. Furthermore, Lemma 3.5 guarantees that this also holds in the case that
q reaches the value d.

It remains to show the bound on the running time. The only critical step is to
extend a q-strong vertex cover Cq of X4Y to a (q + 1)-strong one Cq+1 in Line 6.
This can be reduced to finding a hitting set S of size at most k for the hypergraph{
e ∈ E(X)4E(Y )

∣∣ e \ Cq 6= ∅ ∧ |e ∩ Cq| = q
}

and taking Cq+1 = Cq ∪ S. The latter
problem is fixed parameter tractable by the classical bounded search tree technique in time
O(dk poly(N)) (see, e.g., [8, Theorem 1.14]). J

The following is a search version of Schweitzer’s algorithm adapted to hypergraphs.
Finding all isomorphisms of support size at most k is not possible in FPT time; e.g.

between two complete graphs there are Ω(nk) of them. However, the following lemma shows
that Algorithm 2 finds a meaningful subset of them.

I Lemma 3.7. Let X 6= Y be two hypergraphs on the vertex set V with hyperedge size bounded
by d, and let c, k ∈ N. Then the set returned by ISOk,d(X,Y, c) is a subset of Iso(X,Y )
containing every complexity-minimal isomorphism ϕ from X to Y with |supp(ϕ)| ≤ k and
compl(ϕ) ≤ c. Further, ISOk,d(X,Y, c) runs in time O

(
(dk)O(ck) poly(N)

)
, where N is the

length of the encodings of X and Y.

STACS 2017



7:6 Parameterized Complexity of Small Weight Automorphisms

Algorithm 2 ISOk,d(X,Y, c)

1 Input: Two hypergraphs X and Y on vertex set V = [n] with hyperedge size bounded
2 by d and a natural number c ≤ k that bounds the recursion depth
3 Output: A set P of isomorphisms from X to Y
4 if X4Y is empty then return {id}
5 P ← ∅
6 if c > 0 then
7 C ← CandidateSetk,d(X4Y )
8 foreach v1, v2 ∈ C with v1 6= v2 do
9 P ′ ← ISOk,d(X,Y (v1v2), c− 1)

10 P ← P ∪ {ϕ′ · (v1v2) | ϕ′ ∈ P ′} // compose with (v1v2) ∈ Iso(Y (v1v2), Y )
11 return

{
ϕ ∈ P

∣∣ |supp(ϕ)| ≤ k
}

Proof. Clearly, the set returned by ISOk,d(X,Y, c) only contains isomorphisms from X to Y.
It remains to show that every complexity-minimal isomorphism ϕ from X to Y with

|supp(ϕ)| ≤ k and compl(ϕ) ≤ c is in this set. By Lemma 3.6, the candidate set C contains
two vertices v1 and v2 that belong to the same orbit of ϕ. Thus we get ϕ = ϕ′ · (v1v2) for
some ϕ′ with compl(ϕ′) = compl(ϕ)−1. Note that if ϕ′ 6= id then ϕ′ has minimal complexity
in Iso(X,Y (v1v2)). Indeed, ϕ′ = ϕ1ϕ

′
2 with ϕ1 ∈ Aut(X) \ {id}, ϕ′2 ∈ Iso(X,Y (v1v2)) and

compl(ϕ′) = compl(ϕ1) + compl(ϕ′2) would imply ϕ = ϕ1ϕ2 with ϕ1 ∈ Aut(X) \ {id},
ϕ2 = ϕ′2 · (v1v2) ∈ Iso(X,Y ) and compl(ϕ) = compl(ϕ1) + compl(ϕ2), contradicting that
ϕ has minimal complexity in Iso(X,Y ).

Now it suffices to show that when v1 and v2 are considered in the loop starting in Line 8,
the permutation ϕ′ is contained in the set returned by ISOk,d(X,Y (v1v2), c− 1). This follows
by induction on the complexity of ϕ, with the base case ϕ = id taken care of by Line 4.

To show the bound on the running time, it suffices to observe that the depth of the
recursion tree is c and, as |C| ≤ dk, there are O

(
(dk)2c) recursive calls in total. In each call,

it takes O(dk+1 poly(N)) time to compute C (Lemma 3.6), and the rest of the work is linear
in the size of the recursion tree. J

We remark that an isomorphism ϕ in the set P returned by ISOk,d has minimal complexity
if and only if there is no σ ∈ P with compl(σ) < compl(ϕ) and compl(ϕ) = compl(ϕσ−1) +
compl(σ); note that this condition can be checked in polynomial time.

I Theorem 3.8. Given two hypergraphs X 6= Y with hyperedge size bounded by d, it can
be decided in time O

(
(dk)O(k2) poly(N)

)
whether there is an isomorphism from X to Y of

support size at most k, where N is the length of the encodings of X and Y.

Proof. The algorithm runs ISOk,d(X,Y, k) and accepts if the returned set is not empty. Every
isomorphism ϕ from X to Y with |supp(ϕ)| ≤ k trivially satisfies compl(ϕ) ≤ k and can be
decomposed by Lemma 2.2, obtaining a minimal-complexity isomorphism ϕ′ from X to Y
with supp(ϕ′) ⊆ supp(ϕ). By Lemma 3.7, ϕ′ is in the set returned by ISOk,d(X,Y, k). J

We conclude this section by showing how to decide the problem HGA≤k for hypergraphs
with hyperedge size bounded by d in time O

(
(dk)O(k2) poly(N)

)
.

I Theorem 3.9. Given a hypergraph X on n vertices with hyperedge size bounded by d,
the algorithm AUTk,d(X) enumerates all complexity-minimal automorphisms of X with sup-
port size at most k (plus possibly some more that do not have minimal complexity) in
O
(
(dk)O(k2) poly(N)

)
time.
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Algorithm 3 AUTk,d(X)

1 Input: A hypergraph X on vertex set V = [n] with hyperedge size bounded by d.
2 Output: A set P of automorphisms of X.
3 P ← ∅
4 foreach v1, v2 ∈ V do
5 P ′ ← ISOk,d(X,X(v1v2), k − 1)
6 P ← P ∪ {ϕ′ · (v1v2) | ϕ′ ∈ P ′} // compose with the isomorphism (v1v2)
7 from X(v1v2) to X
8 return

{
ϕ ∈ P

∣∣ |supp(ϕ)| ≤ k
}

Proof. Clearly, all elements in the returned set are automorphisms of X with support size
at most k. The fact that every complexity-minimal automorphism ϕ with |supp(ϕ)| ≤ k is
found follows from Lemma 3.7 using the same decomposition argument as in the proof of the
latter. Also the time bound follows immediately from Lemma 3.7. J

We remark that there is no FPT algorithm that enumerates all automorphisms with
support size at most k (including those that do not have minimal support), as e.g. Kn has∑k
i=1
(
n
k

)
k! such automorphisms, which is not an FPT number. However, by Lemma 2.2

each σ ∈ Aut(X) \ {id} with support size at most k can be written as a product of minimal-
complexity automorphisms of X with support size at most k. Thus σ ∈ 〈S〉, where S is the
set returned by AUTk,d(X).

4 Bounded color class size

In this section we consider vertex colored hypergraphs using the maximum color class size b
as an additional parameter. We call a colored hypergraph b-bounded if the size of each
of its color classes is bounded by b. We give an FPT algorithm for HGI≤k for b-bounded
hypergraphs. More precisely, given hypergraphs X = (V,E) and Y = (V,E′) along with a
partition C = {C1, C2, . . . , Cm} of V into (pairwise disjoint) color classes Ci with |Ci| ≤ b,
our algorithm will compute in time O

(
(kb!)O(k2) poly(N)

)
a color-preserving isomorphism

from X to Y of weight at most k (if it exists). For a permutation π ∈ Sym(V ) let C[π] =
{Ci ∈ C | ∃v ∈ Ci : vπ 6= v} be the subset of color classes that intersect supp(π). Suppose
π ∈ Iso(X,Y ) is an isomorphism of weight at most k and that C[π] = {Ci1 , Ci2 , . . . , Ci`},
` ≤ k/2. In order to search for the color classes in C[π] we will apply the color-coding
method of Alon-Yuster-Zwick [1]. Consider the FKS [9] family H of perfect hash functions
h : [m] → [`]. We can use each h ∈ H to partition the color classes C1, C2, . . . , Cm into
` bags B1, . . . ,B`, where Bj contains all color classes Ci labeled with h(i) = j. Since H is a
perfect family of hash functions, some h ∈ H is good for π in the sense that the color classes
Ci1 , . . . , Ci` all have distinct labels in [`], i.e., {h(i1), h(i2), . . . , h(i`)} = [`].

For j ∈ [`], we define the hypergraphs Xj = (Vj , Ej) and Yj = (Vj , E′j) as follows:
Vj =

⋃
Bj , Ej = {e ∩ Vj | e ∈ E}, and E′j = {e ∩ Vj | e ∈ E′}.

Notice that if h ∈ H is good for the target isomorphism π ∈ Iso(X,Y ), then the restriction
of π to Vj is an isomorphism from Xj to Yj that moves only vertices of exactly one color
class in Bj . We say that a color class Ci ∈ Bj allows to move a hyperedge e ∈ E if there is an
isomorphism π ∈ Iso(Xj , Yj) that moves only vertices of color class Ci and (e∩Vj)π 6= e∩Vj .
We denote the set of all color classes Ci ∈ Bj that allow to move e by Moversj(e) and define

STACS 2017



7:8 Parameterized Complexity of Small Weight Automorphisms

Movers(e) =
⋃`
j=1 Moversj(e). The next claim shows that the size of Movers(e) is bounded

by
∑`
j=1 log|E′j | ≤ ` log|E′| = ` log|E|.

I Claim. For each j ∈ [`] and each hyperedge e ∈ E, there at most log|E′j | many color
classes Ci ∈ Bj that allow to move e.

Proof of the claim. Suppose there are t > log|E′j | many color classes Cj1 , . . . , Cjt
∈ Bj that

allow to move e. Let πjr
∈ Iso(Xj , Yj), for r ∈ [t], be corresponding isomorphisms such that

πjr
fixes all color classes in Bj except Cjr

and (e ∩ Vj)πjr 6= e ∩ Vj . Clearly, for each subset
T ⊆ [t], the product

∏
r∈T πjr is in Iso(Xj , Yj) and all the images

(∏
r∈T πjr

)
(e ∩ Vj), for

T ⊆ [t], are distinct. Hence the total number of distinct edges in E′j , generated as such
images of (e ∩ Vj), will be 2t > |E′j | which is impossible. J

Now we show the main result of this section. Before proceeding we introduce a definition
that is important for the rest of the paper.

I Definition 4.1. Let X = (V,E) and Y = (V,E) be two hypergraphs with color class set
C = {C1, . . . , Cm} and let π ∈ Sym(V ). For a subset C′ ⊆ C[π] define the permutation πC′ as

πC′(v) =
{
vπ, if v ∈

⋃
C′,

v, if v 6∈
⋃
C′.

An isomorphism π 6= id from X to Y is said to be color-class-minimal, if for any set C′ with
∅ ( C′ ( C[π], the permutation πC′ is not in Iso(X,Y ).

We notice that all isomorphisms having minimal support are also color-class-minimal.
Another immediate consequence of Definition 4.1 is the following lemma for decomposing
automorphisms of hypergraphs.

I Lemma 4.2. Let X = (V,E) be a hypergraph with color class set C = {C1, C2, . . . , Cm}.
Each nontrivial automorphism π of X can be written as a product of nontrivial color-class-
minimal automorphisms π1, π2, . . . , π` of X, where the support color class sets C[πi], for
1 ≤ i ≤ `, are pairwise disjoint and form a partition of the support color class set C[π].

We now describe an algorithm that computes isomorphisms between hypergraphs by
building them color class by color class. Let {B1, . . . ,B`} be a partition of the color class set
C = {C1, C2, . . . , Cm} and let k = k1 + · · · + k`. Then we call a permutation π ∈ Sym(V )
(k1, . . . , k`)-good for {B1, . . . ,B`}, if each bag Bj contains exactly one of the color classes
in C[π] (say Cij ) and |supp(π) ∩ Cij | = kj for j = 1, . . . , `.

The following lemma shows that Algorithm 4 finds a meaningful set of isomorphisms.

I Lemma 4.3. Let X 6= Y be two b-bounded hypergraphs. Then the set returned by the algo-
rithm ColoredIsok1,...,k`,b,B1,...,B`

(X,Y, id) contains all color-class-minimal isomorphisms ϕ
from X to Y that are (k1, . . . , k`)-good for B1, . . . ,B`. Furthermore, Algorithm 4 runs in time
O
(
(b!)k poly(N)

)
.

Proof. Let ϕ be such an isomorphism, and let π = ϕC′ for some subset C′ ( C[ϕ] of the color
classes that intersect supp(ϕ). We show by induction on the number of color classes in C[ϕ]\C′
touched by supp(ϕ) but not by supp(π) that ColoredIsok1,...,k`,b,B1,...,B`

(X,Y, π) finds ϕ. If
this number is 0, we have ϕ = π, and Line 5 ensures that ϕ is found. Otherwise, the color-
class-minimality of ϕ implies that π 6∈ Iso(X,Y ). Since ϕ is (k1, . . . , k`)-good for B1, . . . ,B`,
for any hyperedge e ∈ E(X) with eπ 6∈ E(Y ), there is a bag Bj with supp(π) ∩

⋃
Bj = ∅
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Algorithm 4 ColoredIsok1,...,k`,b,B1,...,B` (X,Y, π)

1 Input: Hypergraphs X and Y on vertex set V = C1 ∪ · · · ∪ Cm with color classes
2 Ci of size |Ci| ≤ b and a permutation π ∈ Sym(V )
3 Output: A set P of color-preserving isomorphisms from X to Y
4 if π is a (k1, . . . , k`)-good isomorphism from X to Y for B1, . . . ,B` then
5 return {π}
6 else
7 P ← ∅
8 pick a hyperedge e ∈ E(X) with eπ 6∈ E(Y )
9 foreach bag Bj with supp(π) ∩

⋃
Bj = ∅ do

10 foreach color class C ∈ Moversj(e) do
11 foreach σ ∈ Sym(V ) with supp(σ) ⊆ C and |supp(σ)| = kj do
12 P ← P ∪ ColoredIsok1,...,k`,b,B1,...,B`

(X,Y, πσ)
13 return P

and a color class C ∈ Moversj(e) such that |C ∩ supp(ϕ)| = kj . By the inductive hypothesis,
ϕ is found in the iteration of the inner loop where σ = ϕ{C}.

To show the bound on the running time, it suffices to observe that the recursion tree
has degree bounded by |Movers(e)| · |Sym(C)| ≤ k log|E| · b! and depth bounded by k/2, and
that all steps in each recursive call can be implemented in O(N) time. J

To compute all color-class-minimal isomorphisms between two b-bounded hypergraphs
X 6= Y of support size exactly k, we add an initial branching over all ` ∈ [k] and all FKS
partitions B1, . . . ,B` of C and trying all partitions k = k1 + · · ·+ k`. This adds only an extra
kO(k) factor and yields the algorithm ColoredIsok,b(X,Y ) for computing all color-class-
minimal isomorphisms from X to Y of support size exactly k. Further, we can also handle the
case X = Y, i.e., computing all color-class-minimal automorphisms of support size exactly k,
by adding another initial branching over all color classes to choose the first one that is
permuted. This adds the number of vertices n as an additional factor to the running time and
yields the algorithm ColoredAutk,b(X) for computing all color-class-minimal automorphisms
of X with support size exactly k.

I Theorem 4.4. Given two b-bounded hypergraphs X and Y on vertex set V = [n] and k ∈ N,
the set of all color-class-minimal isomorphisms from X to Y with support size exactly k can
be computed in O

(
(kb!)O(k2) poly(N)

)
time, where N is the size of the input hypergraphs.

As each isomorphism having minimum support size k is also color-class-minimal, we can
state the following corollary.

I Corollary 4.5. There is an algorithm for HGI≤k that decides for two given b-bounded
hypergraphs X and Y in time O

(
(kb!)O(k2) poly(N)

)
if there is an isomorphism from X to Y

of weight at most k and computes such an isomorphism if it exists.

5 Shrinking orbits while preserving small weight permutations

In this section, we show how to reduce instances of the PermCode problem to other instances
on subgroups with orbit sizes bounded by the parameter k.

STACS 2017
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Algorithm 5 PermCode reduction

1 Input: A generating set A of a group G = 〈A〉 ≤ Sn and a parameter k
2 Output: A generating set B for a subgroup 〈B〉 ≤ G with orbits of size bounded by k
3 while G has an orbit O of size more than k do
4 pick u ∈ O
5 compute a generating set B for Gu using the Schreier-Sims algorithm [13]
6 G← 〈B〉
7 return B

I Lemma 5.1. There is a polynomial-time algorithm that on input an instance (A, k) of
PermCode, where G = 〈A〉 ≤ Sn and k ∈ N, computes an equivalent instance (B, k) with
G′ = 〈B〉 ≤ G and the property that every orbit of G′ has size bounded by k. Moreover, for
every π ∈ Gwith |supp(π)| ≤ k there is a π′ ∈ G′ with |supp(π′)| = |supp(π)|.

Proof. The reduction is an application of the following simple group-theoretic observation.

I Claim. Let O be a G-orbit of size more than k and let u be any point in O. Then,
for any element π ∈ G of support size |supp(π)| ≤ k, there is an element π′ ∈ Gu with
|supp(π′)| = |supp(π)| where Gu = {ϕ ∈ G | uϕ = u}.

To prove the claim, we only have to consider the case that u ∈ supp(π), since otherwise
π ∈ Gu. Let v be a point in O \ supp(π) and let σ ∈ G such that vσ = u. Then it follows
immediately that the permutation π′ = σ−1πσ belongs to Gu and has the same support size
as π. The claimed reduction is given by the following simple algorithm that stabilizes points
in orbits of size larger than k until no such orbits exist anymore.

The correctness of the reduction is a direct consequence of the claim above. Further,
the reduction is polynomial-time computable as the Schreier-Sims algorithm has polynomial
running time and the while loop runs for at most n iterations. J

6 Exact support size

In this section we show that the problem HGA=k of computing automorphisms of support
size exactly k is also solvable in FPT for hypergraphs having hyperedges or color classes of
bounded size. We will first focus on hypergraphs having hyperedges of size bounded by d and
show that the HGA=k problem for such graphs is FPT reducible to the HGA=k problem
for k-bounded hypergraphs.

We stress that Schweitzer’s algorithm [12], for ordinary graphs, cannot guarantee finding
isomorphisms of weight exactly k. This is because exact weight k isomorphisms (and
automorphisms), unless of minimal complexity, may not get enumerated in either Schweitzer’s
algorithm [12] or our generalization in Section 3 to bounded hyperedge size hypergraphs.

However, each weight k automorphism is expressible as a product of automorphisms
enumerated by the search. We state this as a simple corollary of Lemma 2.2 and Theorem 3.9.

I Corollary 6.1. Let X be a hypergraph with hyperedges of size bounded by d and let S be
the set returned by the algorithm AUTk,d(X). Then the subgroup G = 〈S〉 of Aut(X) contains
all automorphisms of X of weight at most k. In particular, G includes all automorphisms of
weight exactly k.
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I Lemma 6.2. Let X = (V,E) be a hypergraph with hyperedges of size bounded by d. In
FPT time we can reduce the search for an exact weight k automorphism of X to finding an
exact weight k automorphism of X that is vertex colored with k-bounded color classes.

Proof. Let X = (V,E) be a hypergraph with hyperedges of size bounded by d. Applying
Theorem 3.9, we can enumerate the set B of all complexity-minimal automorphisms of X
that are of weight at most k. Clearly, any weight at most k automorphism (including the
exact weight k ones) of X is in the subgroup G = 〈B〉 of Aut(X). Next, we can apply
Lemma 5.1 to the permutation group G and replace it by the subgroup G′ whose orbits are
of size at most k such that if G has an exact weight k automorphism then G′ also has an
exact weight k automorphism.

We can designate the orbits of G′ (which are all of size at most k) as color classes of X
to obtain a k-bounded hypergraph. I.e. we assign different colors to vertices that are in
different orbits of G′ and consider only color-preserving automorphisms. Clearly, the exact
weight k automorphisms of X that survive in G′ are also color-preserving automorphisms of
this k-bounded colored version of hypergraph X. J

I Theorem 6.3. There is an algorithm for HGA=k for b-bounded hypergraphs X = (V,E)
that decides in time (kb!)O(k2) poly(N) if there is an exact weight k automorphism of X and
computes such an automorphism if it exists.

Proof. We apply the algorithm of Theorem 4.4 to enumerate the set A of all color-class-
minimal automorphisms of X of weight at most k in time (kb!)O(k2) poly(N). By Lemma 4.2,
we know that for any exact weight k color-preserving automorphism π of X there is an
` ≤ k such that π is expressible as π = π1π2 . . . π`, where each πs is a color-class-minimal
automorphism of X of weight at most k and C[πs], for 1 ≤ s ≤ `, forms a partition of C[π].
I.e. each candidate πs is in the enumerated set A. Let C[π] = {Ci1 , Ci2 , . . . , Cir}, where
r ≤ k (because only k vertices are moved by π).

We will again use color coding [1] to search for the πs, 1 ≤ s ≤ `. Let H be the FKS family
of perfect hash functions h : [m] → [r], where m is the total number of color classes in X,
and r ≤ k, as above, is the number of color classes in C[π]. For each j ∈ [r] define the bags
Bj = {Ci | h(i) = j}. By the property of the FKS family, there is some h such that for
j = 1, . . . , r, each bag Bj contains exactly one color class from C[π]. Notice the following
simple claim.

I Claim. The total number of partitions of the set {i1, i2, . . . , ir} into ` sets is bounded by 2r`
and we can cycle through all such partitions in time 2O(r`).

One of the 2r` many partitions, say I1 t I2 t · · · t I` of {i1, i2, . . . , ir} will be the partition
such that C[πs] = {Ci | i ∈ Is}, 1 ≤ s ≤ `. Assume we are considering this partition
I1 t I2 t · · · t I`. Then in |A| time we partition A into subsets As, with 1 ≤ s ≤ `, defined by

As =
{
ψ ∈ A

∣∣ Ci ∈ C[ψ] iff i ∈ Is
}
.

Finally, we can try all partitions k = k1 + k2 + · · ·+ k` (there are at most 22k many). For
each partition we look for an element πs of weight exactly ks in As in time |As|poly(N). J

I Corollary 6.4. There is an algorithm for HGA=k for hypergraphs X with hyperedges of
size bounded by d that decides in time dO(k)2O(k2) poly(N) if there is an exact weight k
automorphism of X and computes such an automorphism if it exists.
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Proof. By Lemma 6.2 we can transform X = (V,E) into a hypergraph with k-bounded color
classes in time (dk)O(k) poly(|V |, |E|) such that X has an exact weight k automorphism if
and only if there is an exact weight k color-preserving automorphism of X. Hence, we can
apply the algorithm of Theorem 6.3 to solve the problem. J

I Remark. For the general case of hypergraphs of unbounded edge size it is easy to see that
we have an FPTGI algorithm for the problem HGA=k to find an exact weight k automorphism
(and hence it is unlikely to be W[1]-hard). We use the GI oracle in order to first compute
a generating set for Aut(X) and then using Lemma 5.1 we can reduce the instance to a
k-bounded hypergraph to which Theorem 6.3 can be applied.

7 The Colored Graph Automorphism problem is W[1]-hard

The ColoredGraphAutomorphism problem [5, p. 460] is defined as follows: given a
red/blue graph X = (R,B, E) and the parameter k ∈ N, does X have a color-preserving
automorphism whose support contains exactly k vertices in B (the blue vertices)?

Exercise 9.0.2 in [5] (Exercise 20.3.2 in [6]) is to show that this problem is W[1]-hard. The
book gives a reduction, as hint, from the Weighted Antimonotone 2-CNF-Sat problem.
The exercise is to show that the input formula has a weight k satisfying assignment if and
only if the constructed graph has an automorphism that moves exactly 2k blue vertices. This
hint does not work: the resulting graph has no nontrivial automorphisms. However, we now
present a proof for the W[1]-hardness of ColoredGraphAutomorphism by giving an FPT
reduction from ExactEven, which is known to be W[1]-hard [7].

I Theorem 7.1. ExactEven is FPT reducible to ColoredGraphAutomorphism.

Proof. The reduction is based on a gadget in [3, 14] for simulating a circuit with parity
gates as an instance of Graph Isomorphism. Let ⊕ denote the addition in F2. We define the
undirected graph X2 = (V,E) by V =

{
xa, ya, za

∣∣ a ∈ {0, 1}} ∪ {ua,b ∣∣ a, b ∈ {0, 1}} and

E =
{

(xa, ua,b), (yb, ua,b), (ua,b, za⊕b)
∣∣ a, b ∈ {0, 1}}.

This graph gadget simulates a fan-in 2 parity gate. The x and y vertices encode the
inputs of the gate while the z vertices encode the output. Any automorphism in the graph
mapping the input nodes corresponding to any 0-1 input values for the gate, must map the
output nodes according to the value of the parity gate being simulated.

I Lemma 7.2 ([14]). For any a, b ∈ {0, 1}, there is a unique automorphism ϕ of X2 that
maps xi to xa⊕i and yi to yb⊕i for i ∈ {0, 1}. Moreover, this automorphism maps zi to za⊕b⊕i.

For the simulation of a circuit with fan-in 2 parity gates, one has to construct a parity
gadget for each gate, and connect by an edge the output nodes of the gadgets (z nodes)
with the input nodes (x and y nodes) of the corresponding gadget as indicated in the circuit
description. Any automorphism of the constructed graph mapping the input nodes as the
input values of the circuit (x0 to xa if the input value of the x gate is a ∈ {0, 1}) must map
node z0 from the output gate to zb, where b is the output value of the circuit.

Now for the reduction from ExactEven: given a system of equations S, we construct a
red/blue graph X = (R,B, E) in the following way: For every variable ei in the system we
define two blue vertices e0

i and e1
i in B. These are the only blue vertices in the construction.

For every equation ei,1 ⊕ · · · ⊕ ei,ki = 0 in S we want to translate the property that the
number of variables being set to 1 in this equation has to be even. For this, we can consider
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the circuit (formula) of fan-in 2 parity gates that computes the addition modulo 2 of the
variables in the equation, and transform this circuit into a graph as described above. To
ensure that no automorphism permutes the vertices z0 and z1 of the output gate, we add an
additional neighbor to z0. To ensure that any automorphism stabilizes the set {e0

i , e
1
i } for

each i, we add a vertex ei adjacent to both e0
i and e1

i , and also add i additional neighbors
to ei. Now there is an assignment with exactly k ones satisfying all the equations in the
system if and only if there is an automorphism in X moving exactly 2k blue vertices. J
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