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Abstract
Let P be a planar n-point set in general position. For k ∈ {1, . . . , n − 1}, the Voronoi diagram
of order k is obtained by subdividing the plane into regions such that points in the same cell
have the same set of nearest k neighbors in P . The (nearest point) Voronoi diagram (NVD)
and the farthest point Voronoi diagram (FVD) are the particular cases of k = 1 and k = n − 1,
respectively. It is known that the family of all higher-order Voronoi diagrams of order 1 to K for
P can be computed in total time O(nK2 + n logn) using O(K2(n −K)) space. Also NVD and
FVD can be computed in O(n logn) time using O(n) space.

For s ∈ {1, . . . , n}, an s-workspace algorithm has random access to a read-only array with
the sites of P in arbitrary order. Additionally, the algorithm may use O(s) words of Θ(logn)
bits each for reading and writing intermediate data. The output can be written only once and
cannot be accessed afterwards.

We describe a deterministic s-workspace algorithm for computing an NVD and also an FVD
for P that runs in O((n2/s) log s) time. Moreover, we generalize our s-workspace algorithm for
computing the family of all higher-order Voronoi diagrams of P up to order K ∈ O(

√
s) in

total time O
(

n2K6

s log1+ε K · (log s/ logK)O(1)), for any fixed ε > 0. Previously, for Voronoi
diagrams, the only known s-workspace algorithm was to find an NVD for P in expected time
O((n2/s) log s + n log s log∗ s). Unlike the previous algorithm, our new method is very simple
and does not rely on advanced data structures or random sampling techniques.
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1 Introduction

In recent years, we have seen an explosive growth of small distributed devices such as tracking
devices and wireless sensors. These devices are small, have only limited energy supply, are
easily moved, and should not be too expensive. To accommodate these needs, the amount of
memory on them is tightly budgeted. This poses a significant challenge to software developers
and algorithm designers: how to create useful and efficient programs in the presence of strong
memory constraints?

Memory constraints have been studied since the introduction of computers (see for
example Pohl [27]). The first computers often had limited memory compared to the available
processing power. As hardware progressed this gap became smaller, other concerns became
more important, and the focus of algorithms research shifted away from memory-constrained
models. Memory constraints are again an important problem to tackle with these new devices
as well as huge datasets available through cloud computing.

An easy way to model algorithms with memory constraints is to assume that the input
is stored in a read-only memory. This is appealing for several reasons. From a practical
viewpoint, writing to external memory is often a costly operation, e.g., if the data resides on
a read-only medium such as a DVD or on hardware where writing is slow and wears out the
hardware, such as flash memory. Similarly, in concurrent environments, writing operations
may lead to race conditions. Thus, from a practical viewpoint, it is useful to limit or simply
disallow writing operations. From a theoretical viewpoint, this model is also advantageous:
keeping the working memory separate from the (read-only) input memory allows for a more
detailed accounting of the space requirements of an algorithm and for a better understanding
of the required resources. In fact, this is exactly the approach taken by computational
complexity theory to define complexity classes that model sublinear space requirements, such
as the complexity class of problems that use logarithmic amount of memory space [3].

Some of the earliest results in this setting concern the sorting problem [24, 25]. Suppose
we want to sort data items whose total description complexity is n bits, all of them residing
in a read-only memory. For our computations we can use a workspace of O(b) bits freely
(both read and write operations are allowed). Then it is known that the time-space product
must be Ω(n2) [13], and a matching upper bound for the case b ∈ Ω(logn) ∩O(n/ logn) was
given by Pagter and Rauhe [26] (b is the available workspace in bits). A result along these
lines is known as a time-space trade-off [28].

The model used in this work was introduced by Asano et al. [6], following similar earlier
models [14, 17]. Asano et al.provided constant workspace algorithms for many classic problems
from computational geometry, such as computing convex hulls, Delaunay triangulations,
Euclidean minimum spanning trees, or shortest paths in polygons [6]. Since then, the model
has enjoyed increasing popularity, with work on shortest paths in trees [7] and time-space
trade-offs for computing shortest paths [4, 20], visibility regions in simple polygons [9, 11],
planar convex hulls [10, 18], general plane-sweep algorithms [19], or triangulating simple
polygons [4, 5, 2]. We refer the reader to [21] for a deeper survey of the latest results.

Let us specify our model more precisely: we are given a planar point set P of n points
stored in a read-only array that allows random access. Furthermore, we may use O(s)
variables (for a parameter s ∈ {1, . . . , n}) for reading and writing. We assume that all the
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data items and pointers are represented by Θ(logn) bits. Other than this, the model allows
the usual word RAM operations.

We consider the problem of computing various Voronoi diagrams for P , namely the
nearest point Voronoi diagram NVD(P ), the furthest point Vornoi diagram FVD(P ), and the
family of higher-order Voronoi diagrams up to a given order K ∈ O(

√
s). In most workspaces,

the output cannot be stored explicitly. Thus, we require that the algorithm reports the edges
of the Voronoi diagrams one-by-one in a write-only data structure (once written, they cannot
be read or further modified). Note that we may report edges of the Voronoi diagrams in any
order, but we are not allowed to report an edge more than once.

Previous Work. If we forego memory constraints, it is well known that both NVD(P ) and
FVD(P ) can be computed in O(n logn) time using O(n) space [8, 12]. For computing a single
order-k Voronoi diagram, the best randomized algorithm takes O(n logn+nk log k) expected
time [16] using O(nk) space, and the best deterministic algorithm takes O(nk log1+ε k ·
(logn/ log k)O(1)) time [15] and O(nk) space, for ε > 0 (as usual, the big O notation hides
multiplicative factors that depend on ε). The family of all higher-order Voronoi diagrams up
to order K can be computed in O(nK2 + n logn) time using O(K2(n−K)) space [1, 23].

Very few memory-constrained algorithms that compute Voronoi diagrams exist in the
literature. Asano et al. [6] showed that NVD(P ) can be found in O(n2) time in a O(1)
workspace. Korman et al. [22] gave a time-space trade-off for computing Voronoi diagrams.
Their algorithm is based on random sampling and achieves an expected running time of
O((n2/s) log s+ n log s log∗ s)) using O(s) words of workspace.

Results. In this paper we introduce a time-space trade-off algorithm that improves these
results, and gives a simpler and more flexible approach to obtain the diagrams. In Section 3
we show that the approach of Asano et al. [6] can be used to compute FVD(P ). In Section 4
we introduce a new time-space trade-off for computing NVD(P ) and FVD(P ). Unlike the
approach of Korman et al. [22], this new algorithm is deterministic, and slightly faster (it
runs in O((n2/s) log s) time using O(s) words of workspace).

Finally, in Section 5, we use the s-workspace algorithm as a base in a novel pipelined
fashion to compute the family of all Voronoi diagrams of order 1 to K ∈ O(

√
s) in total time

O
(

n2K6

s log1+ε K · (log s/ logK)O(1)), for ε > 0, using O(s) words of workspace. The main
idea is to compute edges of the different Voronoi diagrams simultaneously. To compute the
edges of a diagram we use edges of the previous order Voronoi diagram. However, this needs
to be coordinated carefully, in order to prevent edges from being reported multiple times.

2 Preliminaries and Notation

Throughout the paper we denote by P = {p1, . . . , pn} a set of n ≥ 3 sites in the plane.
We assume general position, which here means that no three sites of P lie on a common
line and no four sites of P lie on a common circle. The nearest point Voronoi diagram of
P , NVD(P ), is obtained by classifying the points in the plane according to their nearest
neighbors in P . To define our terminology, we recall some classic and well-known properties
of NVD(P ) [8, 12]. For each site p ∈ P , the open set of points in R2 that have p as their
unique nearest neighbor in P is called the Voronoi cell of p. Each Voronoi edge between two
points p, q ∈ P consists of all points in the plane with p, q as their only two nearest neighbors.
Whenever it exists, the Voronoi edge is a subset of the bisector B(p, q) of p, q defined as the
line containing all points that are equidistant to p and q. Note that our general position
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Figure 1 An illustration of Fact 3.2: if p is on conv(P ), we can find a ray that intersects the
boundary of Cn−1(p).

assumption together with n ≥ 3 guarantees that each Voronoi edge is an open segment or
halfline. Finally, Voronoi vertices are the points in the plane that have exactly three nearest
neighbors in P . By general position, every point in R2 is either a Voronoi vertex, or it lies
on a Voronoi edge or in a Voronoi cell. The Voronoi vertices and the Voronoi edges form the
set of vertices and edges of a plane graph whose faces are the Voronoi cells. The complexity
of this graph is O(n).

The farthest point Voronoi diagram of P , FVD(P ), is defined analogously. Farthest
Voronoi cells, edges, and vertices are obtained by replacing the term “nearest neighbor”
by the term “farthest neighbor” in the respective definitions. Again, the farthest Voronoi
vertices and edges constitute the vertices and edges of a plane graph of complexity O(n).
However, unlike in NVD(P ), in FVD(P ) it is not necessarily the case that all sites in P have
a corresponding cell in FVD(P ). In fact, the sites with non-empty farthest Voronoi cells
correspond exactly to the sites on the convex hull of P , conv(P ). Furthermore, all the cells
in FVD(P ) are unbounded, and hence FVD(P ), considered as a plane graph, is a tree.

Now for k ∈ {1, . . . , n − 1}, the Voronoi diagram of order k is obtained by classifying
the points in the plane according to the set of their nearest k neighbors in P . We denote
the k-order Voronoi diagram of P by VDk(P ). Observe that NVD(P ) = VD1(P ) and
FVD(P ) = VDn−1(P ). For each subset Q ⊂ P of k sites from P , we denote the Voronoi
cell of order k of Q by Ck(Q). We know that VDk(P ) is a plane graph of complexity
O(k(n− k)) [8, 23]. For simplicity, the Voronoi cell of p ∈ P in NVD(P ) and FVD(P ) are
denoted respectively by C1(p) and Cn−1(p).

3 A Constant Workspace Algorithm for FVDs and NVDs

We are given a planar n-point set P = {p1, . . . , pn} in a read-only array, and our task is to
report the edges of NVD(P ) and of FVD(P ) using only a constant amount of additional
workspace. First, we show how to find a single edge of a cell of NVD(P ) or of FVD(P ).
Then, we extend this approach to find all the edges of NVD(P ) and FVD(P ). We summarize
the properties of FVD(P ), that are required by our algorithms, in the following two facts.
See, e.g., the book by Aurenhammer, Klein, and Lee [8] for more details.

I Fact 3.1. Let P be a planar n-point set in general position and p ∈ P . The cell Cn−1(p)
is empty if and only if p is in the interior of the convex hull of P . If p is on the convex hull
of P and r, l ∈ P are the two adjacent sites of p on conv(P ), then both a subset of B(p, l)
and a subset of B(p, r) are unbounded edges of Cn−1(p).

I Fact 3.2. Let P be a planar n-point set in general position. Let p ∈ P be on conv(P ) and
let l, r ∈ P be its adjacent sites on conv(P ). Let b be the intersection point of B(p, l) and
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B(p, r). Then, the ray γ from p towards b intersects the boundary of Cn−1(p) (not necessarily
at b); see Figure 1.

I Lemma 3.3. Let P be a planar n-point set in general position in a read-only array. For any
p ∈ P , we can determine whether Cn−1(p) is empty, in O(n) time and constant workspace.
Furthermore, if Cn−1(p) is not empty, we can find a ray that intersects the boundary of
Cn−1(p) in the same time and space.

Proof. By Fact 3.1, it suffices to check whether p lies inside conv(P ). This can be done using
simple gift-wrapping: Pick an arbitrary site q ∈ P \{p}. Scan through P and find the sites pcw
and pccw in P which make, respectively, the largest clockwise angle and the largest counter-
clockwise angle with the ray pq, such that both angles are at most π. Thus, pcw and pccw are
easily obtained in O(n) time using constant workspace. If the angle pcwppccw (that contains
q) is larger than π, then p is inside conv(P ) and consequently Cn−1(p) is empty. Otherwise,
p is on conv(P ), and both pcw and pccw are its adjacent sites on conv(P ). By Fact 3.2, the
ray from p through B(p, pcw) ∩B(p, pccw) intersects the boundary of Cn−1(p). J

I Lemma 3.4. Let P be a planar n-point set in general position in a read-only array. Suppose
we are given a site p ∈ P and a ray γ that emanates from p and intersects the boundary of
C1(p) (or Cn−1(p)). Then, we can report the edge e of C1(p) (or Cn−1(p)) that intersects γ,
in O(n) time using O(1) words of workspace.

Proof. For all sites p′ ∈ P , we consider the bisector B(p, p′). Among all these bisectors, we
find the bisector `e that intersects γ closest to (farthest from) p. The edge e is a subset of `e.
We can find `e by scanning the sites of P and storing the closest (farthest) bisector so far
in each step. To find the portion of `e that forms a Voronoi edge in NVD(P ) (or FVD(P )),
we do a second scan of P . For any p′ ∈ P we check where B(p, p′) intersects `e. Each such
intersection removes a section from `e which cannot appear in NVD(P ) (or FVD(P )). From
each infinite side of `e, there is at most one intersection that removes the biggest portion
of `e and thus defines the endpoint of e from that side. Thus, in each step we store only the
most restricted intersection from each side (if it exists). Overall, we can find the edge e of
C1(p) (or of Cn−1(p)) in O(n) time using O(1) words of workspace. J

I Theorem 3.5. Suppose we are given a planar n-point set P = {p1, . . . , pn} in general
position in a read-only array. We can find all the edges of NVD(P ) (or of FVD(P )) in O(n2)
time using O(1) words of workspace.

Proof. We restate the strategy that was previously used by Asano et al. [6] for NVD(P ).
We give the details and show that a similar strategy works for FVD(P ).

We go through the sites in P one by one. In step i, we process pi ∈ P to detect all
edges of C1(pi) (or Cn−1(pi)). To do this, we first need a ray γ to apply Lemma 3.4. For
NVD(P ) we choose a ray γ from pi to an arbitrary site of P \ {pi}. In this way, we know
that γ intersects the boundary of C1(pi). For FVD(P ) first check if the Voronoi cell of pi is
non-empty. If so, we use Lemma 3.3 to find a ray γ that intersects the boundary of Cn−1(pi).
From here on, the algorithms for enumerating the edges of NVD(P ) and FVD(P ) are similar.
Having the ray γ at hand, we use Lemma 3.4 to find an edge e of C1(pi) (or of Cn−1(pi)).
We consider the ray γ′ from pi to the left endpoint of e (if it exists), and we apply Lemma 3.4
to find the adjacent edge e′ of e in C1(pi) (or in Cn−1(pi)). Note that the ray will now
hit both e and e′. This can be fixed by making a symbolic perturbation to γ′ so that only
e′ is hit. We proceed in a similar manner to find further edges of C1(pi) (or Cn−1(pi)) in
counterclockwise direction. The process continues until we reach e again or until we find an
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9:6 Improved Time-Space Trade-Offs for Computing Voronoi Diagrams

unbounded edge of C1(pi) (or of Cn−1(pi)). In the latter case, we start again from the right
endpoint of e (if it exists), and we find the remaining edges of C1(pi) (or of Cn−1(pi)) in
clockwise direction, stopping the process when the current edge is unbounded.

Using this process we detect each edge twice (i.e., edges that are a subset of B(pi, pj)
will be detected when processing pi and pj). To avoid reporting the same edge twice, when
we find an edge e of C1(pi) (or of Cn−1(pi)) with e ⊆ B(pi, pj) we report e if and only if
i < j. Since NVD(P ) (or FVD(P )) has O(n) edges, and reporting one edge takes O(n) time
and O(1) words of workspace, the result follows. J

4 Obtaining a Time-Space Trade-off

Now we adapt the previous algorithm to a time-space trade-off in which we have a workspace
of O(s) variables. As before, we are given a planar n-point set P = {p1, . . . , pn} in general
position in a read-only array, and we would like to report the edges of NVD(P ) or FVD(P ) as
quickly as possible. For this, we first show how to find one edge of s different cells of NVD(P )
or FVD(P ) simultaneously. After that, we describe how to coordinate these simultaneous
searches to find all the edges of NVD(P ) or FVD(P ).

I Lemma 4.1. Suppose we are given a set V = {v1, . . . , vs} of s sites in P , and for each
i = 1, . . . , s, a ray γi emanating from vi such that γi intersects the boundary of C1(vi) (or
FVD(P )). Then we can report for each i = 1, . . . , s, the edge ei of C1(vi) (or FVD(P )) that
intersects γi, in O(n log s) total time using O(s) words of workspace.

Proof. For ease of reading we provide the proof only for NVD(P ) (the proof for FVD(P ) is
obtained by simply replacing NVD(P ) by FVD(P )). The algorithm has two phases. In the
first phase, for i = 1, . . . , s, we find the line `i that contains ei, and in the second phase, for
i = 1, . . . , s, we find the portion of `i which is in NVD(P ), i.e., we find the endpoints of ei.

The first phase proceeds as follows: we select the first batch Q1 = {p1, . . . , ps}, of s sites
of P , and we compute NVD(V ∪ Q1). Since V ∪ Q1 has O(s) sites, we can compute it in
O(s log s) time using O(s) workspace. Now, for i = 1, . . . s, we find the edge e′i ∈ NVD(V ∪Q1)
of the cell of vi that intersects γi, we store the line spanned by e′i in `i, and proceed to the
next batch of s sites. In general in step j, for j = 1, . . . , n/s, we select Qj which is the jth
batch of s sites of P , and we compute NVD(V ∪ Qj). Then, for i = 1, . . . , s, we find the
edge of the cell of vi in NVD(V ∪Qj) that intersects γi. We update `i to the line spanned
by this new edge only if it intersects γi closest to vi.

We claim that after all n/s batches of P have been scanned, `i is the line that contains
the edge of C1(vi) that intersects γi. To see this, recall that the edge ei in NVD(P ) lies
on a bisector between vi and another site p ∈ P \ {vi}. Thus, this line is among the lines
considered in NVD(V ∪Qj), for j = 1, . . . , n/s.

In the second phase, we again process P in batches of size s. In the first step, we take
the first batch of s sites of P , Q1 = {p1, . . . , ps}, and we again compute NVD(V ∪Q1). For
i = 1, . . . , s, we find the portion of `i inside the cell of vi in NVD(V ∪ Q1), and we store
it in ei. In step j, for j = 1, . . . , n/s, we select Qj , the jth batch of s sites of P , and we
compute NVD(V ∪Qj). For i = 1, . . . , s, we update the endpoints of ei (the new ei is simply
the intersection of the previous ei and the cell of vi in NVD(V ∪Qj)). At the end of step
j, the variable ei represents the best candidate that we have found so far. In other words,
ei contains the portion of `i whose nearest site is vi (among the sites V ∪j

k=1 Qk). Further
note that, due to the Voronoi properties, ei is a connected subset of `i (that is, a ray or a
segment). In particular, it can be described with its at most two endpoints. Thus, after n/s
steps, ei is the edge of C1(vi) that intersects γi.
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In each step of each phase, we construct a Voronoi diagram in O(s log s) time using O(s)
workspace. Since the total number of steps is n/s, the running time of the algorithm is
O(n log s). At each step we store only O(s) sites (and a constant amount of information on
each site), so the space bounds are not exceeded. J

Now we can describe our algorithm. We repeatedly use Lemma 4.1 to find an edge of s
different sites at once. Once all edges of a site have been found, it is discarded and we
proceed to the next one. Since the Voronoi diagram has O(n) edges and at each iteration we
find s edges, after O(n/s) steps, fewer than s sites will remain to be processed. At this step
we stop using Lemma 4.1. We do so because if the number of edges remaining to be found for
each site is unbalanced, we cannot afford to continue using Lemma 4.1 (each iteration will
still cost O(n log s) to execute but o(s) edges would be found). Instead, we will treat these
remaining sites differently. We say that a site is small if all of its edges are found while using
Lemma 4.1, and big otherwise. By the way in which our algorithm works, small sites have
O(n/s) edges in their Voronoi cell, but big ones may have many edges (if they are among
the last sites to be processed they do not have necessarily many edges).

Our algorithm has three phases. In the first phase we process the whole input to detect
which sites are the big ones (no edge will be reported in this phase). The second phase scans
the input again and reports all edges that belong to a bisector between a small site and some
other site. The third and final phase reports edges between two big sites.

First phase. Recall that the aim of this phase is to identify the big sites. We describe how
we use Lemma 4.1 in more details. We want to scan all sites whose associated Voronoi cell
is nonempty. For NVD(P ), this is trivial since all sites have a nonempty cell in NVD(P ).
Hence, it suffices to scan them sequentially. The starting ray can be constructed in the
same way as in Theorem 3.5. If we are interested in computing FVD(P ) instead, we use the
algorithm of Darwish and Elmasry [18]. This algorithm reports all sites that belong to the
convex hull of P in O( n2

s log n ) time using O(s) words of workspace. Sites are reported one by
one in clockwise order along the convex hull. Thus, we will use the output of the algorithm
of Darwish and Elmasry as our input instead: we run their algorithm storing any sites that
would be reported. Whenever we gathered s sites, we pause the execution of the convex hull
computation and process those sites. Whenever more sites are needed, we simply resume the
execution of the convex hull algorithm. Since sites are reported in clockwise order, whenever
a site is reported we know both of its neighbors. This allows us to use Fact 3.2 to find a
starting ray for each site.

Regardless of the order in which we process the sites, we keep s sites from P in memory.
Now we apply Lemma 4.1 to compute, for every site in memory, one edge of its cell. Once the
edge is computed, as in Theorem 3.5, we update the rays to look for the next edge of each
cell. Whenever all edges of a cell have been found we remove the corresponding site from
memory, and we insert the next site from P into the working memory. Since the Voronoi
diagram has O(n) edges, and at each iteration we find s edges, after O(n/s) steps, fewer
than s sites remain in memory, and all the other sites of P have been processed.

When the first phase of the algorithm ends, we identified the big sites (those remaining
to be processed). Since they cannot be more than s, we store them explicitly sorted (say, in
increasing index) in a table B so that membership queries can be answered in O(log s) time.
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9:8 Improved Time-Space Trade-Offs for Computing Voronoi Diagrams

Second phase. The second phase is very similar to the first one1: pick s sites to process,
use Lemma 4.1 to find an edge for each site, once all edges of a site have been found, replace
it with another site, and continue until only big sites remain. The main difference is that
we now report every edge of the diagram that we compute provided that (i) it does not lie
on a bisector between two big sites, and (ii) it has not been reported before. The second
condition is detected as follows: suppose while scanning the cell of vi we find an edge e that
lies on the bisector of vi and vj . We report e only if either (iia) both vi and vj are small
sites and i < j, or (iib) vi is a small site and vj is a big site.

Third phase. The aim of the third phase is to report every edge of the diagram that is on
the bisector between two big sites. For this, we compute the Voronoi diagram of the big sites
in O(s log s) time. Let EB denote the set of its edges. The edges of EB that are also present
in the Voronoi diagram of P are the ones that need to be reported (note that possibly only a
portion of these edges need to be reported).

In order to confirm which edges of EB remain in the diagram we proceed in a similar way
as the second scan of Lemma 4.1: in each step we compute the Voronoi diagram of B and a
batch of s sites of P . For any edge of EB , we check whether it is cut off in the new diagram.
If so, we update its endpoints in EB and we continue with the next batch of s sites of P .
After processing all the sites of P , the remaining O(s) edges in EB that have not become
empty constitute all the edges of the Voronoi diagram of P which are on a bisector of two
big sites. Notice that in this procedure, in contrast to Lemma 4.1, we report O(s) edges that
are not necessarily incident to s different cells.

I Theorem 4.2. Let P = {p1, . . . , pn} be a planar n-point set in general position stored in a
read-only array. We can report edges of NVD(P ) (or FVD(P )) in O((n2/s) log s) time using
O(s) words of workspace.

Proof. Lemma 4.1 certifies that edges reported in the second phase are part of NVD(P ) (or
FVD(P )). Also, conditions (iia) and (iib) make sure that no edge is reported more than once.
The reasoning for edges reported in the third phase is similar. Clearly, if an edge e ∈ NVD(P )
(or e ∈ FVD(P )) is between two big sites, the same edge (possibly a superset) must also be
present in NVD(B) (or FVD(B)). The reverse inclusion follows from exhaustiveness: for
each edge of NVD(B) (or FVD(B)) we consider all sites of P and for each one, we remove
only the portion of the edge that is on the wrong side of the bisector.

Now we argue about running time. Computationally speaking, the most expensive part
of the algorithm is in the O(n/s) executions of Lemma 4.1 that are done in the first and
second phases. Other than that, creating table B needs O(s log s) time, and we make O(n)
lookups in B, two per edge of NVD(P ) (or FVD(P )). Each lookup needs O(log s) time, so
O(n log s) in total. The third phase makes a single scan of the input, thus it takes O(n log s)
time. For the Farthest Voronoi algorithm we also compute the vertices of the convex hull
using the approach of Darwish and Elmasry [18] for which the running time is o((n2/s) log s),
so non-critical.

During the execution of the algorithm we store only s sites that are currently being
processed (along with O(1) information attached to each of them), the structure B of less
than s big sites, the batch of s sites being processed (and its associated Voronoi diagram).
All of this can be stored using O(s) words of workspace, as claimed. J

1 Indeed, the first and second phases are so similar that they can be merged. However, as we will see
afterwards, this is not possible for higher order Voronoi diagrams. Thus, for coherence we split the
phases even for the k = 1 case.
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5 Higher-Order Voronoi Diagrams

We now consider the case of higher-order Voronoi diagrams. More precisely, we are given an
integer K ∈ O(

√
s), and we would like to report the edges of all Voronoi diagrams of order

up to K. For this, we generalize our approach from the previous section, and we combine
it with a recursive procedure: for k = 1, . . . ,K − 1, we compute the edges of VDk+1(P ) by
using previously computed edges of VDk(P ). To make efficient use of available memory,
we perform the computations of VDk(P ) in a pipelined fashion, so that in each stage, the
necessary edges of the previous Voronoi diagram are available.

We begin with some preliminary remarks. We call a cell C of VDk(P ) a k-cell, and we
represent it as the set of k sites that are closest to all points in C. Similarly, we call a vertex
v of VDk(P ) a k-vertex, and we represent it as a set of k+2 sites of P , namely k−1 sites that
are closest to v, and the three sites that come next in the distance order and are equidistant
to v. Finally, the edges of VDk(P ) are called k-edges. We represent them in a somewhat
unusual manner: each edge of VDk(P ) is split into two directed half-edges, such that the
half-edges are oriented in opposing directions and such that each half-edge is associated with
the k-cell to its left. A half-edge e is represented by k+ 3 sites of P : the k− 1 sites closest to
e, the two sites that come next in the distance order and are equidistant to e, and two more
sites needed to define the vertices at the endpoints of e. The order of the vertices encodes
the direction of the half-edge. The half-edge is directed from the tail vertex to the head
vertex. We will need several well-known properties of higher-order Voronoi diagrams: (I)
let Q1, Q2 ⊂ P be two k-subsets such that the k-cells Ck(Q1) and Ck(Q2) are non-empty
and adjacent (i.e., share an edge e). Then, the set Q = Q1 ∪Q2 has size k + 1, and Ck+1(Q)
is a non-empty (k + 1)-cell [23]. (II) Let Q ⊂ P be a (k + 1)-subset such that Ck+1(Q) is
non-empty. Then, the portion of VDk(P ) restricted to Ck+1(Q) is identical to (i.e., has the
same vertices and edges as) the portion of FVD(Q) restricted to Ck+1(Q). Furthermore, the
edges of FVD(Q) in Ck+1(Q) do not intersect the boundary, but their endpoints either lie
in the interior of Ck+1(Q) or coincide with vertices of Ck+1(Q). Hence, every (k + 1)-cell
contains at most O(k + 1) k-edges and at least one k-edge, and these edges form a tree [23].
(III) Every k-vertex is either also a (k−1)-vertex or also a (k+ 1)-vertex. In particular, every
vertex appears in exactly two Voronoi diagrams of consecutive order. We call a k-vertex old,
if it is also a (k − 1)-vertex, and new otherwise. (All 1-vertices are new).

Next, we describe a procedure to generate all (directed) (k+ 1)-half-edges, assuming that
we have the k-half-edges at hand. Later, we will combine these procedures in a space-efficient
manner. At a high level, our idea is as follows: let e be a k-half-edge. By property (II),
the half-edge e lies inside a (k + 1)-cell C. We will see that we can use e as a starting
point to report all half-edges of C, similarly as in Lemma 4.1. However, if we repeat this
procedure for every k-half-edge, we may report a (k+ 1)-half-edge Ω(k) times. This will lead
to problems when we combine the algorithms for computing the different orders. To avoid
this, we do the following. We call a k-half-edge relevant if its tail vertex lies on the boundary
of the (k + 1)-cell that contains it. For each (k + 1)-cell C, we partition the boundary of C
into intervals of (k + 1)-half-edges that lie between two consecutive tail vertices of relevant
k-half-edges. We assign each interval to the relevant k-half-edge of its clockwise endpoint.
Now, our algorithm goes through all k-half-edges. If the current k-half-edge e is not relevant,
the algorithm does nothing. Otherwise, it reports the (k + 1)-half-edges of the interval
assigned to e. This ensures that every half-edge is reported exactly once. As in the previous
section, we distinguish between big and small cells in VDk+1(P ), lest we spend too much
time on cells with many incident edges. A more detailed description follows below.
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The following lemma describes an algorithm that takes s k-half-edges and for each of
them either determines that it is not relevant or finds the first edge of the interval of
(k + 1)-half-edges assigned to it.

I Lemma 5.1. Suppose we are given s different k-half-edges ek
1 , . . . , e

k
s represented by the

subsets E1, . . . , Es of P . There is an algorithm that, for i = 1, . . . , s, either determines
that ek

i is not relevant, or finds ek+1
i , the first (k + 1)-edge of the interval assigned to ek

i .
The algorithm takes total time O(nk log1+ε k · (log s/ log k)O(1)) and uses O(ks) words of
workspace.

Proof. Our algorithm proceeds analogously to Lemma 4.1. First, we inspect all k-half-edges
ek

i . If the additional site defining the tail vertex of ek
i is one of the k + 1 sites defining ek

i

(i.e., the sites which are closest in the distance order to ek
i ), then the tail vertex of ek

i lies in
the interior of a (k + 1)-cell, and the edge is not relevant. Otherwise, the tail vertex will be
an old (k + 1)-vertex, and we need to determine the first (k + 1)-half-edge for the interval
assigned to ek

i . Let I be the set of all indices i such that ek
i is relevant.

To determine the first half-edge of each interval, we process the sites in P in batches of size
s. In each iteration, we pick a new batchQ of s sites. Then, we construct VDk+1(⋃

i∈I Ei ∪Q
)

in O(sk log1+ε k · (log s/ log k)O(1)) time [15]. By construction, the tail vertex of each ek
i with

i ∈ I belongs to the resulting diagram. Thus, we iterate over all batches, and for each ek
i , we

determine the edge fk+1
i that appears in one of the resulting diagrams such that (i) fk+1

i

is incident to the tail vertex of ek
i ; (ii) fk+1

i is to the right of the directed line spanned by
ek

i ; and (iii) among all such edges, fk+1
i makes the smallest angle with ek

i . We need O(n/s)
iterations to find fk+1

i . Now, for each i ∈ I, the desired (k + 1)-half-edge ek+1
i is a subset of

fk+1
i . Thus, as in Lemma 4.1, we perform a second scan over P to find the other endpoint
of ek+1

i . We orient ek+1
i such that the cell containing ek

i lies to the left of it.
It follows that we can process s edges of VDk(P ) in O(nk log1+ε k · (log s/ log k)O(1)) time

using a workspace with O(ks) words to store the s different subsets for the edges. J

The algorithm from Lemma 5.1 is actually more general. If, instead of a k-half-edge ek
i

that lies inside a (k + 1)-cell C, we have a (k + 1)-half-edge ek+1
i that lies on the boundary

of C, the same method of processing P in batches of size s allows us to find the next
(k+ 1)-half-edge incident to C in counterclockwise order from ek+1

i . These two kinds of edges
can be handled simultaneously.

I Corollary 5.2. Suppose we are given s half-edges e1, . . . , es such that each ei is either
a k-half-edge or a (k + 1)-half-edge. Then, we can find in total time O(nk log1+ε k ·
(log s/ log k)O(1)) and using O(ks) words of workspace a sequence f1, . . . , fs of (k + 1)-
half-edges such that, for i = 1, . . . , s, we have
1. if ei is a relevant k-half-edge, then fi is the first (k + 1)-half-edge of the interval for ei;
2. if ei is k-half-edge-that is not relevant, then fi =⊥; or
3. if ei is a (k + 1)-half-edge, then fi is the counterclockwise successor of ei.

I Lemma 5.3. Using two scans over all k-half-edges, we can report the (k + 1)-half-edges in
batches of size at most s such that each (k + 1)-half-edge is reported exactly once. This takes
O
(

n2k2

s log1+ε k · (log s/ log k)O(1)) time using O(ks) words of workspace.

Proof. The algorithm consists of three phases: In the first phase, we keep s half-edges
e1, . . . , es such that each ei is either a k-half-edge or a (k+ 1)-half-edge. In each iteration, we
apply Corollary 5.2 to these half-edges, to obtain s new (k+1)-half-edges f1, . . . , fs. Now, for
each i = 1, . . . , s, three cases apply: (i) fi =⊥, i.e., ei was not relevant. In the next iteration,
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we replace ei with a fresh k-half-edge; (ii) fi 6=⊥. Now we need to determine whether fi is
the last half-edge of its interval. For this, we check whether the head vertex of fi is a new
(k + 1)-vertex. As in Lemma 5.1, this can be done by checking whether the additional site
that determines the head vertex of fi is among the k + 2 sites determining fi. If fi is not
the last half-edge of its interval, we set ei to fi for the next iteration; otherwise, we set ei to
a fresh k-half-edge. We repeat this procedure until there are no fresh k-half-edges left.

The remaining k-half-edges in the working memory are incident to the big (k + 1)-cells.
We store them in an array Bk+1, sorted according to the lexicographic order of the indices
of their sites. We emphasize that in the first phase, we do not report any (k + 1)-edge.

In the second phase, we repeat the same procedure as in the first phase. However, this
time we report (i) every (k+ 1)-half-edge incident to a small (k+ 1)-cell; and (ii) the opposite
direction of every (k + 1)-half-edge e incident to a small (k + 1)-cell, so that the (k + 1)-cell
on the right of e is a big (k + 1)-cell. We use Bk+1 to identify the big cells.

In the third phase we report every (k+ 1)-half-edge e that is incident to a big (k+ 1)-cell,
while the (k + 1)-cell on the right of e is also a big (k + 1)-cell. Let {Bk+1} denote the
sites that define the big (k + 1)-cells. We construct VDk+1({Bk+1}) in the working memory.
Then, we go through the sites in P in batches of size s, adding the sites of each batch
to VDk+1({Bk+1}). While doing this, as in the algorithm for Lemma 4.2, we keep track
of how the edges of VDk+1({Bk+1}) are cut by the new diagrams. In the end, we report
all (k + 1)-edges of VDk+1({Bk+1}) that are not empty. By report, we mean report two
(k + 1)-half-edges in opposing directions. As we explained in the algorithm for Lemma 4.2,
these (k + 1)-half-edges cover all the (k + 1)-half-edges incident to a big (k + 1)-cell, while
their right cell is also a big (k + 1)-cell.

Regarding the running time, the first and the second phase consists of O(nk/s) applications
of Corollary 5.2 which takes O

(
n2k2

s log1+ε k · (log s/ log k)O(1)) time. Sorting the big (k+ 1)-
cells in Bk+1 takes O(ks(log k + log s)) steps: we sort the indices of the sites of each big
(k + 1)-cell in O(k log k) steps. Then we sort the big cells, where each comparison in the
lexicographic order requires O(k) steps, for a total of O(ks log s) steps.

A query in Bk+1 takes O(k log k + log s) time: given a query (k + 1)-cell C we sort its
indices in O(k log k) time. Then we use binary-search to find cells in Bk+1 with the same
first index as C. Among these, we continue the binary-search with comparing the second
indices, and so on. Thus, in each step we compare only one index of two (k + 1)-cells, and
either the size of search set is halved, or the search continues with the next index of C. Thus,
searching a cell C with sorted index in Bk+1 requires O(k + log s) time.

The algorithm performs at most two searches in Bk+1 per each (k + 1)-half-edge, for a
total of O(nk) edges. In the third phase, constructing a (k + 1)-order Voronoi diagram of
O(ks) sites takes O(sk log1+ε k · (log s/ log k)O(1)) time. We repeat it O(n/s) times, which
takes O(nk log1+ε k · (log s/ log k)O(1)) time in total.

Overall, the running time of the algorithm simplifies to O
(

n2k2

s log1+ε k ·(log s/ log k)O(1)).
The algorithm uses a workspace of O(sk) words, for running Corollary 5.2, for storing big
(k + 1)-cells and for constructing Voronoi diagrams of size O(ks). J

Now, in order to find k-half-edges for all k = 1, . . . ,K, we proceed as follows: first,
we compute s 1-edges (notice that we report every 1-edge as two 1-half-edges in opposing
directions). Then, we apply Lemma 5.3 in a pipelined fashion to obtain k-half-edges for
all k = 2, . . . ,K. In each iteration, the algorithm from Lemma 5.3 consumes at most s
k-half-edges from the previous order and produces at most 2s (k+ 1)-half-edges to be used at
the next order. This means that if we have between s and 3s new k-half-edges available in a
buffer, then we can use them one by one whenever the algorithm for computing k-half-edges
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Algo 1

I II, III

B1

P

E1
b

Algo k

Bk

Ek
b

Algo k + 1

Bk+1

E1
w Ek

w Ek+1
w

Algo K

BK

EK
w

EK
bI II, III I II, III I II, III

Figure 2 This diagram shows the algorithm in stage k. For i = 1, . . . , K, Algo i is the algorithm
for computing i-edges. The roman numerals I, II and III refer, respectively, to the first, second and
third phase of Algo i. The white and the tiled rectangles are, respectively, active and inactive parts
in stage k of the main algorithm. Ei

w, Ei
b and Bi indicate memory cells, and they are, respectively,

the working memory of Algo i, the buffer for i-edges, and the big i-cells. The algorithm in stage k,
does not use the tiled memory cells, and it uses the gray ones only for reading the data that has
been produced in previous stages. The arrows show reading from or writing to memory cells, and
the dashed arrows are inactive in stage k. In stage k, all the k-half-edges are reported and the big
(k + 1)-cells are inserted into Bk+1 for being used in the next stages.

in Lemma 5.3 requires such a new k-half-edge. Whenever a buffer falls below s half-edges,
we run the algorithm for the previous order until the buffer size is again between s and 3s.
Applying this idea for all the orders k = 1, . . . ,K − 1, we need to store K − 1 buffers, each
containing up to 3s half-edges for the corresponding diagram. Furthermore, for each diagram,
we need to store the current workspace required by the algorithm to produce new edges (as
in Lemma 5.3). Since a k-edge is represented by O(k) sites from P , the buffer for k-edges
requires O(ks) words of memory. We denote it by Ek

b . Furthermore, by Lemma 5.3, the new
k-edges can be found using O(ks) words of workspace, which we denote by Ek

w.

I Theorem 5.4. Let K ∈ O(
√
s) and P = {p1, . . . , pn} be a planar n-point set in general

position, given in a read-only array. We can report all the edges of VD1(P ), . . . ,VDK(P ) in
O
(

n2K6

s log1+ε K · (log s/ logK)O(1)) time using a workspace of size O(s).

Proof. We compute the half-edges of VD1(P ), . . . ,VDK(P ) simultaneously, in a pipelined
fashion. For k = 1 we use the algorithm of Theorem 4.2 and for k = 2, . . . ,K, we run
the algorithm from Lemma 5.3 to compute k-edges. The algorithm for computing VDk(P ),
has its own working memory, denoted by Ek

w and an output buffer Ek
b . In addition, it has

an array Bk to store the big k-cells for being used in the second and third phase of the
algorithm. Each of these arrays should be able to store O(s′) half-edges and cells of VDk(P ),
for s′ = s/K2. Since we need O(k) sites to represent a k-half-edge or a k-cell, the total space
requirement for all algorithms is O(s).

We now describe how the simultaneous algorithms interact. Our algorithm works in
stages. In stage 0, we perform only the first phase of Theorem 4.2, to find the O(s′) big cells
of VD1(P ), and we store them in B1. Now we know the big 1-cells. Then, in stage 1, we
perform the second phase of Theorem 4.2 to find and report the half-edges of VD1(P ) in
batches of size at most 2s′, and we store these 1-half-edges in E1

b . Whenever we have at least
s′ half-edges in E1

b , we pause the algorithm of Theorem 4.2, and we perform the first phase
of Lemma 5.3 to find half-edges of VD2(P ) with E1

b as input. Whenever the algorithm for
VD2(P ) requires new 1-half-edges, and the buffer E1

b falls below s′ half-edges, we continue
running the algorithm for VD1(P ). When the algorithm for VD2(P ) has consumed all
1-half-edges and there are less than s′ half-edges in E2

w, then we stop the algorithm for
VD2(P ) . The half-edges in E2

w represent the big cells of VD2(P ), and we store them in B2.
This concludes stage 1.
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In general, in stage k of the algorithm, we identified the big cells B1, . . . , Bk of the first
k diagrams. We perform the second and the third phase of Theorem 4.2 and Lemma 5.3 in a
pipelined fashion to generate the half-edges of VD1(P ), . . . ,VDk(P ) and store them in the
buffers E1

b , . . . , E
k
b . We report the half-edges of VDk(P ) and if k 6= K, we also use Ek

b as an
input of the first phase of Lemma 5.3, which gives us Bk+1 for the next stage; see Figure 2.
Using this procedure, we report every half-edge of VD1(P ), . . . ,VDK(P ) exactly once.

Regarding the running time, in each stage k = 1, . . . ,K, we have to compute all diagrams
VD1(P ), . . . ,VDk(P ), using Lemma 5.3. This takes O

(
n2k3

s′ log1+ε k · (log s′/ log k)O(1)) time.
The running time for stage 0 is negligible. The complete algorithm takes O

(
n2K4

s′ log1+ε K ·
(log s′/ logK)O(1)) time, which is O

(
n2K6

s log1+ε K · (log s/ logK)O(1)), in terms of s. J
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