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Abstract
Instances of computational problems do not exist in isolation. Rather, multiple and correlated
instances of the same problem arise naturally in the real world. The challenge is how to gain
computationally from correlations when they can be found. [DGH, ITCS 2015] showed that
significant computational gains can be made by having access to auxiliary instances which are
correlated to the primary problem instance via the solution space. They demonstrate this for
constraint satisfaction problems, which are NP-hard in the general worst case form.

Here, we set out to study the impact of having access to correlated instances on the complexity
of polynomial time problems. Namely, for a problem P that is conjectured to require time nc for
c > 0, we ask whether access to a few instances of P that are correlated in some natural way can
be used to solve P on one of them (the designated "primary instance") faster than the conjectured
lower bound of nc.

We focus our attention on a number of problems: the Longest Common Subsequence (LCS),
the minimum Edit Distance between sequences, and Dynamic Time Warping Distance (DTWD)
of curves, for all of which the best known algorithms achieve Õ(n2) runtime via dynamic pro-
gramming. These problems form an interesting case in point to study, as it has been shown that
a O(n2−ε) time algorithm for a worst-case instance would imply improved algorithms for a host
of other problems as well as disprove complexity hypotheses such as the Strong Exponential Time
Hypothesis.

We show how to use access to a logarithmic number of auxiliary correlated instances, to design
novel o(n2) time algorithms for LCS, EDIT, DTWD, and more generally improved algorithms
for computing any tuple-based similarity measure - a generalization which we define within on
strings. For the multiple sequence alignment problem on k strings, this yields an O(nk logn)
algorithm contrasting with classical O(nk) dynamic programming.

Our results hold for several correlation models between the primary and the auxiliary in-
stances. In the most general correlation model we address, we assume that the primary instance
is a worst-case instance and the auxiliary instances are chosen with uniform distribution sub-
ject to the constraint that their allignments are ε-correlated with the optimal allignment of the
primary instance. We emphasize that optimal solutions for the auxiliary instances will not gen-
erally coincide withan optimal solutions for the worst case primary instance.

We view our work as pointing out a new avenue for looking for significant improvements
for sequence alignment problems and computing similarity measures, by taking advantage of
access to sequences which are correlated through natural generating processes. In this first work
we show how to take advantage of mathematically inspired simple clean models of correlation
– the intriguing question, looking forward, is to find correlation models which coincide with
evolutionary models and other relationships and for which our approach to multiple sequence
alignment gives provable guarantees.
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1 Introduction

A recent work of Dinur, Goldwasser, and Lin [6] which appeared in ITCS 2015 puts forth the
following thesis: "Instances of computational problems of interest rarely exist in isolation,
rather, multiple and correlated instances of the same problem arise naturally in the real
world. The challenge is not to find settings which present correlated instances, but how
to take advantage of correlations when they exist." Obvious examples are in biology where
learning genotype to phenotype mappings of an organism can draw on data from multiple
specimens with highly correlated DNA; or when multiple files are stored on (or transmitted
over) the same error-prone medium, then error patterns in one file may be correlated to error
patterns in other files which can be useful for error detection and recovery.

Indeed [DGH, ITCS 2015] show that significant computational gains can be made in
solving instances of intractable combinatorial problems, when additional auxiliary instances
are available which are correlated to the primary instance via the solution space. In particular,
they show for several correlation models on the auxiliary instances polynomial time algorithms
for constraint satisfaction problems which are NP-hard in the traditional worst case single-
instance setting. Similarly, the work of Heninger et al [8] provides examples of number-
theoretic problems where correlated cryptographic keys for the RSA function chosen due
to poorly designed pseudorandom number generators enable efficient factorization of the
RSA moduli involved. The works of [6] and [8] show that access to a polynomial number of
auxiliary (but correlated) instances can enable us to find a polynomial time solution to an
otherwise intractable problem.

In this paper, we set out to study the impact of having access to correlated instances
on the complexity of tractable problems. Namely, for a polynomial time problem P, we
ask whether we can use access to multiple instances of P that are correlated in some natural
way, to solve P on one of them – the designated "primary instance" of size n– faster than the
conjectured lower bound of nc.

The question of which polynomial time problems to study is non-obvious. To draw
meaningful conclusions from an algorithmic improvement to a polynomial time problem,
one should choose problems which are at the same time classical and well-studied and for
which there is hopefully some formal evidence to the complexity barrier they face, possibly
in the form of a conditional lower bound. An approach for showing conditional lower bounds
on a problem P which has gained significant prominence in the last few years and dates
back to 1995[7], is to assume a lower bound on the complexity of one long standing open
problem Q such as 3SUM or orthogonal-vectors and show a fine-grained reduction of Q to P
which implies that any significant algorithmic improvement to P will imply an algorithmic
improvement to Q. Another approach has been to show exact polynomial time lower bounds
on P under complexity conjectures such as the Strong Exponential Time Hypothesis(SETH)
which was introduced by Impagliazzo and Paturi[10] and asserts that solving satisfiability
cannot be done significantly faster than exhaustive search.

This "conditional lower bound approach" has been successfully applied, as we detail below,
[4, 1, 5] to various problems which compute similarity measures between strings, sequences
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and curves, including computing the Longest Common Subsequence (LCS) between pairs and
k-tuples of strings (kLCS), computing the minimal Edit Distance (EDIT) between pairs of
strings and the dynamic time warping distance (DTWD) between curves. All these problems
are currently addressed by dynamic programming algorithms which run in quadratic time.

These particular problems are not only the focus of intense theoretical study in the last
few years, but arise in natural real-world settings according to some natural generating
processes which is suggestive of the availability of multiple correlated instances. For example,
the LCS and EDIT sequence alignment problems are often used in identifying conserved
sequence regions across a group of sequences of DNA, RNA or proteins hypothesized to be
evolutionarily related, or as aid in establishing evolutionary relationships by constructing
phylogenetic trees. The dynamic time warping distance applied to signals over time can
compare temporal data such as video and audio to detect whether an audio or video sequence
is a sped up version of another audio or video sequence. Finally, we remark that to the best
of our knowledge there are no known sub-quadratic algorithms for solving LCS, EDIT or
DTWD on uniform (vs. worst case) input distributions nor are conditional lower bounds
known, although this fascinating challenge has been raised in a multitude of works.

Looking ahead, in this work we will study and demonstrate how the availability of a
logarithmic number of auxiliary instances which are correlated to primary instances of
the LCS, EDIT and DTWD problems for several natural correlation modes enables us to
overcome the quadratic complexity barrier.

But which correlation model over auxiliary instances should be assumed? In this first
work we show how to take advantage of mathematically inspired simple and yet natural and
clean models of correlation. The intriguing question, looking forward, is to find correlation
models which coincide with evolutionary models and other relationships and for which our
approach to multiple sequence alignment gives provable guarantees. We view our work as
pointing out a novel direction to look for significant improvements, by taking advantage of
access to sequences which are correlated through natural processes.

Our algorithmic approach departs from the dynamic programming approaches. It builds
on the primary and auxiliary instances to construct new instances over a slightly larger
alphabet for which solving the LCS (EDIT and DTWD respectively) can be done in sub-
quadratic time and from which the optimal answer for the primary instance can be extracted.
Rather than develop a different algorithm for each problem, we define a general notion
of a tuple-based similarity measure which captures the LCS, EDIT and DTWD similarity
measures on strings as special cases. We will show an algorithm for computing any tuple-based
similarity measure over strings as long as access to correlated instances is available.

2 The New Results

We set out to study the impact of access to correlated instances on the complexity of
polynomial time problems. The immediate questions which comes to mind is which problems
and for which correlations

2.1 The problems: Any tuple-based Similarity Measure
We address the following problems.

Longest Common Subsequence (LCS): Given two strings x and y over an alphabet Σ, find
the maximum length of not necessarily consecutive substring common to both.
Minimum Edit Distance (EDIT): Given two strings x and y over alphabet Σ, find the
minimum number of insert character, delete character and replace character by another
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character operations to apply to x to obtain y.
Dynamic Time Warping Distance (DTWD): Given two input strings x and y over an
alphabet Σ compute the minimal cost of any allowed traversal of the two strings from
first character to last where at each traversal step, one advances forward on at least x or
y, and the cost is the sum over all time steps of the distance between the current entries.
Namely, the sum of the distances between each pair of the traversal When the distances
are restricted to {0, 1} we refer to the problem as DTWD0,1

k-Longest Common Subsequence (k-LCS) : Given k strings over alphabet Σ, find the
maximum length not necessarily consecutive substring common to all k strings

Each of the above problems computes a different measure of similarity between pairs (or
tuples) of strings, but all share a common feature which makes them amenable to speedups
using correlated instances. Namely, the value of each of these similarity measures is the
optimum over a set of values which only depend on the locations of the alignment. When this
is the case, we will show that we can use a correlation model where the alignment stays the
same ( or with higher probability than uniform stays the same) in the correlated instances,
to give a faster algorithm for finding this optimal alignment.

Formally, we define tuple based similarity measure which generalizes of all of the above
and design an algorithm for any tuple based similarity measure, instead of treating each
problem separately.

Main Definition: Let Σ denote an alphabet and let f : Σm1 × Σm2×, ...,×Σmk → R be a
real valued function over k strings of lengths m1, ...,mk whose output we informally think of
as a measure of similarity between the strings. We say that f is a tuple-based similarity
measure if there exists:

a set of allowable k-tuples S ⊆
⋃
m1,m2,...,mk

P([m1]× [m2]× ...× [mk]) where P denotes
the power set, (these can be viewed as the set of allowable "pseudo-alignments" where
multiple positions in one string can match to the same position in another string) and
a cost function C defined on pseudo-alignments S ∈ S s.t. C(S) is computable in time
Õ(|S|) and f(x1, x2, ..., xk) = max{C(S): S ∈ S s.t. ∀(i1, i2, ..., ik) ∈ S, x1[i1] = x2[i2] =
... = xk[ik]}
(or f(x1, x2, ..., xk) = min{C(S): S ∈ S s.t. ∀(i1, i2, ..., ik) ∈ S, x1[i1] = x2[i2] = ... =
xk[ik]})

We note that this definition provides a generalization of the alignment gadget of [5]
(where k = 2) which captures what is needed to have an improved algorithm given correlated
instances. Bringmann and Kunnemann [5] introduce the notion of an alignment gadget, and
show that any problem with an alignment gadget cannot be solved in strongly subquadratic
time. Our definition is more general than theirs in that we do not restrict ourselves to looking
at alignments: multiple positions in one string can match to the same position in another
string. On the other hand, we only look at measures where the function is determined by
the positions of the matches, whereas the gadgets of [5] speak of general measures.

It is easy to see that LCS is a pair-based similarity measure when we take C(S) = |S|;
the allowed sets of tuples are all possible alignments, and the maximum over all sets of
alignments of C(S) is precisely the length of the longest common subsequence. In section 3,
we prove that computing EDIT and DTWD are each a special case of a pair-based similarity
measure.
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2.2 The Models of Correlation Models over Auxiliary: Exact and
Relaxed

The choices of which auxiliary instances (and which correlations) to consider for the LCS,
k-LCS, EDIT , and DTWD problems are tailor-made to the problems themselves. Indeed,
one may argue that this will likely always be the case, as our hope is to consider correlations
which would come up via natural generating processes of problem instances.

For example, in bioinformatics, sequence alignment is a way of arranging the sequences
of DNA, RNA, or proteins to identify regions of similarity that may be a consequence of
functional, structural, or evolutionary relationships between the sequences. Although we
expect that only certain parts of the genome will be in common between multiple organisms,
these parts will have a much higher rate of matching than random chance. Thus, which
correlations between genomic sequences one may expect are dictated by evolutionary process
which would be highly problem specific.

To describe distributions over the auxiliary instances, we use the framework of generating
processes suggested by [6] to describe distributions over instances where correlations are
defined between the solutions of the primary and auxiliary instance. A generating process
GPri,Aux,t for a problem P proceeds as follows: initialize the process with primary instance
I of P drawn from primary distribution Pri. Let S be an underlying solution to I. Then
choose t auxiliary instances {Ij}j=1,...,t from a distribution Aux conditioned on S in some
fashion. The algorithm designer is given the tuple of t+ 1 instances I, I1, ..., It and is tasked
with finding a solution to I.

We consider two generating models, which apply for any tuple-based similarity measure,
but are easiest to first illustrate for the LCS problem.

Let Pri denote a distribution over pairs of strings of lengths m over alphabet Σ.

Exact LCS Correlation Model GenLCSPri(m, t) : Draw a pair of strings (x, y) from Pri.
Let the longest common sub-sequence of (x, y) be at locations ~a = (a1, ...an) in x and
locations ~b = (b1, ..., bn) in y. Then choose auxiliary instances (x1, y1),...,(xt, xt) uniformly in
Σm1 × Σm2 subject to the condition that each pair (xj , yj) contains a common sub-sequence
at locations ~a and ~b. Namely, xjai = yjbi for all j, for 1 ≤ i ≤ n.

We next relax the restriction that each of the auxiliary instance pairs (xj , yj) contain
a common (although not the longest) subsequence at the locations ~a and ~b of the longest
common subsequence of the primary instance (x, y). Instead, we require that in each of the
locations in (xj , yj) which coincide with locations of the longest common subsequence of x
and y, the strings xj and yj agree with probability slightly higher than 1

2 .
Let Pri denote a distribution over pairs of strings of lengths m over alphabet Σ.

Relaxed LCS Correlation Model GenLCS2Pri(m, t, ε) : Draw a pair of strings (x, y) of
length m each from Pri. Let the longest common sub-sequence of (x, y) be at locations
~a = (a1, ...an) in x and locations ~b = (b1, ..., bn) in y. Then choose auxiliary instances
(x1, y1),...,(xt, xt) uniformly in Σm×Σm. Next, for each pair (xj , yj) and for each 1 ≤ i ≤ n,set
xj [ai] := yj [bi] with probability ε and leave unchanged with probability 1− ε.

Correlations Models for General Tuple Based Similarity Measures

We are now ready to describe the models stated in terms of any tuple-based similarity measure
on strings. We again consider two generating processes, an exact and a relaxed one.

ITCS 2017
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The first generating process draws primary instances from a primary distribution, and
auxiliary instances from the auxiliary distribution conditioned on the optimal set of tuples
for the primary instances matching in each auxiliary instance. The second generating process
will be similar to the first generating process, but instead of making the contents of the
locations indicated by the optimum tuple always match in the auxiliary instances, there will
only be a higher probability of matching in these locations.

Let f be a tuple-based similarity measure with allowed sets of tuples S and cost function C.

Exact General Generating Model GenPri,Aux(f, k, ~m, t): First draw from the primary
distribution Pri strings x1, x2, ..., xk of lengths ~m = m1,m2, ...,mk where location tuples
S = {(a11, a21, ..., ak1), ..., (a1n, a2m, ..., akn)} = arg min{C(S) : S ∈ S s.t. ∀(i1, i2, ..., ik) ∈
S, x1[i1] = x2[i2] = ... = xk[ik]}. Next, draw t auxiliary tuples (x(i)

1 , x
(i)
2 , ..., x

(i)
k ) from

distribution Aux conditioned on ∀(j1, j2, ..., jk) ∈ S, x
(i)
1 [j1] = x

(i)
2 [j2] = ... := x

(i)
k [jk]

∀1 ≤ i ≤ t and output the primary and auxiliary instances drawn.
The main restriction in the above correlation model is that the optimal set of tuple

locations must also induce a matching set of tuples for every auxiliary instance. Let us now
relax this restriction to give faster algorithms when the optimal set of tuples only has a
higher probability of inducing a matching set of tuples in the auxiliary instances.

Relaxed Generating Model GenPri,Aux(f, k, ~m, t, ε): First draw from the primary distri-
bution Pri strings x1, x2, ..., xk of lengths
~m = m1,m2, ...,mk where location tuples S = {(a11, a21, ..., ak1), ..., (a1n, a2m, ..., akn)} =
arg min{C(S) : S ∈ S s.t. ∀(i1, i2, ..., ik) ∈ S, x1[i1] = x2[i2] = ... = xk[ik]}. Next, draws
t auxiliary tuples (x(i)

1 , x
(i)
2 , ..., x

(i)
k ) from distribution Aux Finally, set x(i)

1 [j1] = x
(i)
2 [j2] =

... := x
(i)
k [jk] with probability ε for all tuples (j1, j2, ..., jk) ∈ S and output the primary and

auxiliary instances drawn.

Important Discussion on on Correlation Models: A word of caution is in order. One
should be careful not to consider correlations which trivialize the problem.

An example of such trivializations would be access to "too many" auxiliary instances.
Whereas in [6] "too many" would correspond to more than a polynomial number of
instances, in the current work it would be more than a linear number of auxiliary
instances. Indeed, a logarithmic number of additional instances suffice to get a marked
improvement.
Another forbidden trivialization would be access to auxiliary "easy" instances for which
the correlation enables trivial extraction of the answer for the primary instance. This is
avoided in the exact correlation model as follows. Recall that the primary instance (x, y)
can be selected in a worst case manner, whereas the auxiliary instances are selected at
random subject to the condition that in each auxiliary pair xj and yj share a common
subsequence at the same locations that primary x and y contain the longest common
subsequence. However, we emphasize that the longest common subsequence for any of the
auxiliary pairs, does not generally coincide with the longest common subsequence for the
primary pair (x, y) . Therefore, we can not extract the solution to the LCS of (x, y) from
a solution to one of the auxiliary pairs (xj , yj). Indeed, our solutions need l = O(logn)
auxiliary instances to be able to compute the solution to the primary instance and does
not solve the LCS on auxiliary pairs (xj , yj). We also emphasize that the actual substring
at the ~a locations of xj does not agree with the substring at the ~a locations of the primary
instance x, nor does the substring at the ~b locations of yj match the substrings at the ~b
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locations of y, only the substring at locations ~a of xj is required to match the substring
at locations ~b of yj .1

2.3 The New Algorithms in Exact and Relaxed Correlation Models
We start by describing our results for the LCS generating processeses.

Theorem 1 (LCS with exact correlation model) There exists an algorithm which on input
((x, y), (x1, y1), ..., (xt, yt) generated according to the exact correlation model
GenLCSPri(m, t) defined above for Pri being a worst case distribution solves the LCS
problem on string pair (x, y ) and runs in expected time O(m logm) for t = O(logm) where
the expectation is taken over the choices of auxiliary inputs in GenLCSPri(m, t).

The key technical insight for the aforementioned theorem is that it is now possible to
construct a new instance of the LCS problem over an extended alphabet where each character
corresponds to a vector in Σl+1 and which now has enough structure ( as opposed to the
primary worst case instance) to be solved in sub-quadratic time. Essentially, each character
in a position of the new LCS instance is determined by the characters in the original primary
and auxiliary instances at the same position. When the number of auxiliary instances is
large enough and the distribution is uniform, it will mean that the probability of any two
non-matching positions having the same values for each of the auxiliary instances is small.
This means that any positions that match on every auxiliary instance belong to the longest
common subsequence with high probability. It is then possible to use hashing on the extended
alphabet symbols to find the positions of the longest common subsequence.

The LCS results described are a special case of a general algorithm applied to any
tuple-based similarity measure.

Main Theorem 2 (tuple-based similarity measures with exact correlation model) Let f
be a tuple-based similarity measure on k strings of lengths ~m = m1, ...,mk over alphabet
Σ with no overlapping tuples. There exists an algorithm that finds f(x1, x2, ..., xk) in time
Õ(kn logn+ |S|) where |S| is the size of the largest allowed set of tuples on a primary instance
x1, x2, ..., xk and auxiliary instances (x(1)

1 , x
(1)
2 ..., x

(1)
k ), ..., (x(t)

1 , ..., x
(t)
k ) with t = O(logn)

drawn from GenPri,Aux(f, k, ~m, t) with Pri worst-case and Aux uniform.
Note that in all of the similarity measures of interest, |S| is of linear size in the input length.

Main Corollary 3
On a primary instance x1, ..., xk of lengths ~m and O(logn), where n = maxm1, ...,mk,
auxiliary instances of k-LCS drawn from
GenPri,Aux(LCS, k, ~m,O(logn)) with Pri worst-case and Aux uniform, we can find the
longest common subsequence of the primary instance in time Õ(nk).

1 Interestingly, as we mentioned above, the induced distribution over the auxiliary instances produced by
the exact correlation model, coincides with the semi-random model proposed by [3] in their work on
the smooth complexity analysis of the EDIT problem. Recall, that they consider perturbing a worst
case pair of strings (x, y) to (x′, y′) by randomly and independently choosing each of the characters
of x′ and y′ in locations which were not part of the longest common subsequence of x and y; whereas
for locations of x and y which are part of the longest common subsequence, x′ and y′ are forced to
contain the same randomly chosen character. The existence of a linear time approximation algorithm
for longest common subsequence for the (x′, y′) distribution, as shown by [3], does not seem to be useful
directly for finding an approximate (nor exact) solution for LCS on (x, y) .
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On a primary instance x1, x2 of lengths m and n and O(log maxm,n) auxiliary instances
of EDIT drawn from GenPri,Aux(EDIT, 2, {m,n}, O(log maxm,n)), we can find the
minimum edit distance between the primary sequences in time Õ(m+ n).
On a primary instance of x1, x2 of lengthsm and n and O(log maxm,n) auxiliary instances
of 0-1 DTWD drawn from GenPri,Aux(DTWD0,1, 2, {m,n}, O(log maxm,n)) with Pri
worst-case and Aux uniform, we can find the dynamic time warping distance of the
primary instance in time Õ(m+ n).

Using considerably more complex algorithms and in particular techniques to find Hamming
nearest neighbors, we extend the techniques to show the following for the relaxed correlation
model.

Theorem 4 (LCS with relaxed correlation model) Let ε ∈ [0, 1
2 ]. There exists an algorithm

which on a tuple of input instances (x, y), (x1, y1), ..., (xt, yt) drawn from GenLCS2Pri(m, t, ε)
solves the LCS on string pair (x, y) with probability at least 2/3 for t = Ω(logm) and runs
in expected time O(tn1+d) for d < 1 (i.e sub quadratic time). (where the probability and
runtime expectation is taken over the choices of auxiliary inputs inGenLCS2Pri(m, t, ε) .

Stating the general theorem for similarity measures.

Main Theorem 5 (tuple-based similarity measure with relaxed correlation model) Let
f be a tuple-based similarity measure on k strings of lengths ~m = m1, ...,mk over alphabet
Σ with no overlapping tuples. There exists an algorithm that finds f(x1, x2, ..., xk) in time
O(|S| + n2−Ω(ε1/3/ log(1/ε))) where |S| is the size of the largest allowed set of tuples on a
primary instance (x1, x2, ..., xk) and auxiliary instances (x(1)

1 , x
(1)
2 ..., x

(1)
k ), ..., (x(t)

1 , ..., x
(t)
k )

drawn from GenPri,Aux(f, k, ~m, t, ε) with t = O(logn) ,Pri worst-case and Aux uniform.

Main Corollary 6
On a primary instance x1, ..., xk of lengths ~m and O(logn), where n = maxm1, ...,mk,
auxiliary instances of k-LCS drawn from GenPri,Aux(LCS, k, ~m,O(logn), ε) with Pri

worst-case and Aux uniform, we can find the longest common subsequence of the primary
instance in time O(n2−Ω(ε1/3/ log(1/ε))).
On a primary instance x1, x2 of lengths m and n and O(log maxm,n) auxiliary instances
of EDIT drawn from
GenPri,Aux(EDIT, 2, {m,n}, O(log maxm,n), ε), we can find the minimum edit distance
between the primary sequences in time O((m+ n)2−Ω(ε1/3/ log(1/ε))).
On a primary instance of x1, x2 of lengthsm and n and O(log maxm,n) auxiliary instances
of 0-1 DTWD drawn from GenPri,Aux(DTWD0,1, 2, {m,n}, O(log maxm,n), ε) with Pri
worst-case and Aux uniform, we can find the dynamic time warping distance of the
primary instance in time O((m+ n)Ω(ε1/3/ log(1/ε))).

2.4 Another correlation model and results for EDIT
In addition to the correlation model implied for computing the min edit distance (EDIT),
we consider another model which may be more natural to consider and show an efficient
algoritme for EDIT in this model.

Consider the following generating process. Let π1, π2, ..., πk be the minimum sequence
of edits needed to transform x to y. The auxiliary instances are random pairs of n-bit
strings whose minimum edit sequence are the same as for the primary instance. Namely,
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for auxiliary pair x(1), y(1), y(1) is obtained from x(1) using the same edit sequence which
transformed x to y. Somewhat more generally, consider a worst case instance (x, y) and
auxiliary instances (x(1), y(1)), (x(2), y(2)), ..., with x(i)= x with each character changed with
probability ε ∈ [0, 1] and y(i) = πk(πk−1(...(π1(x(i)))...)). This is the distribution on which
our algorithms perform.

Theorem 7(Solve EDIT exactly with O(log n) instances) There exists an algorithm A

which on inputs generated as above solves the EDIT (x, y) for a worst case primary instance
and auxiliary instances as above such that on O(logn) auxiliary instances , the algorithm
computes EDIT (x, y) with high probability and runs in expected time O(n logn) .

2.5 Overview of Techniques

The main idea of this paper is a new algorithm for solving similarity measure problems with
correlated instances. This algorithm is significantly different than the dynamic programming
algorithms that are used in the absence of correlated instances.

Given a tuple-based similarity measure, our goal is to find the set of tuples of locations
which form the optimal (e.g. longest in LCS) solution to the primary instance (x1, ..., xk).
With correlated instances, consider a tuple of locations (e.g. (i1, ..., ik) in (x1, ..., xk)), then
in our exact correlation model, if these locations are not part of optimal solution these will
be detected by comparing them across all instances, primary and auxiliary. This is the case
as the correlation model makes it unlikely that even a pair of locations (iu, iv), which are not
part of a matching tuple in the primary instance, would have the same value in the primary
instances and all auxiliary instances.

Thus, algorithmically we can look at pairs of positions and determine whether they are
in the same tuple by comparing them across all instances, primary and auxiliary. We do not
need to do this for all pairs; we can use hashing to map pairs to each other, using the fact
that similar pairs will be in the same tuple, and thereby find the tuples that determine the
value of the similarity measure. The use of hashing proceeds as follows. First, we construct
vectors out of the same position for the primary instance and each auxiliary instance for all
of the strings. Then, we construct a hash table out of the vectors for the first string, and use
the hash function to determine which vectors in the other strings are the same as vectors in
the first string.

This idea works as is for the exact correlation model where pairs of locations in tuple
of the optimal solution are guaranteed to contain the same value in all auxiliary instances,
but fails when we relax this to the model where contents of such location pairs only have a
higher probability of being the same.

In this case, if two locations were part of the same tuple, when we consider the vectors
obtained from the auxiliary instances at those locations, they will be closer to each other
than vectors obtained from positions which are not part of the same tuple. As a result, the
nearest neighbors of the vector corresponding to a position are the vectors corresponding to
the positions in the same tuple. Then, we can use algorithms that find nearest neighbors
faster than brute-force search to find the tuples. Thus we can solve instances generated by
the relaxed correlation model not in nearly linear time like the exact correlation model, but
still significantly faster than the best known algorithms for the problem without correlated
instances.
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2.6 Related Works
We review the relevant results known in the literature for the EDIT,LCS, and DTWD
problems.

Backurs and Indyk [4] have shown that if EDIT – the minimum number of insertions,
deletions, and substitutions needs to transform one string into another – can be computed
in time O(n2−δ) for some constant δ > 0, then the satisfiability of CNF formulas with n
variables and m clauses can be solved orm one string into anothertime poly(m)2εn for a
constant ε > 0. This would violate the Strong Exponential Time Hypothesis (SETH). A
O(n2−δ) algorithm for EDIT would also imply a sub-quadratic algorithm for the orthogonal
vector problem and a host of others.

Abboud, Backurs and Williams [1] addresses (among other problems) the LCS problem.
They show that an O(n2−ε) algorithm for the LCS of two sequences of length n over a constant
size alphabet would refute SETH and show a sub-quadratic algorithm for the orthogonal
vectors problem and a host of others. For finding the longest subsequence common to k
input sequences, it is similarly argued that achieving O(nk−ε) for any ε > 0 is unlikely in [1].

Bringmann and Kunnermann [5] provide a lower bound for dynamic time warping distance,
the minimum cost of a traversal of two strings where at each step, at least one of the strings
moves forward, and the cost is the sum of the distances at each step. This problem is also
solvable using dynamic programming, and [5] show that an O(n2−ε) that finds the dynamic
time warping distance would refute SETH. Their proof uses the concept of an alignment
gadget, which we will generalize with our notion of pair-based similarity measures.

We also mention work on the smoothed complexity of the EDIT distance problem. Recall,
that the smoothed complexity of an algorithm by Spielmann and Teng [12], analyzes for an
input x the expected behavior of the algorithm on correlated inputs which are the result of
subjecting x to perturbations (e.g. flip its bits with a certain probability).

Andoni and Krauthgamer [3] study of the smoothed complexity of EDIT in the following
perturbation model. Given two adversarially chosen binary input strings with common
longest subsequence A , eacn character of the input strings is replaced independely (with
some fixed probability p) with one restriction: the same perturbation is applied in both
strings to the charcters in locations of the common longest subsequence A. They then show
a constant factor approximation algorithms for EDIT which runs in nearly linear time for
such perturbed instances.The existence of a linear time approximation algorithm for the
LCS of (x′, y′) distribution, as shown by [3], does not seem to be useful directly for finding
an approximate (nor exact) solution for the LCS of (x, y). Looking ahead, the stringest
dostributions which we consider (which we call “exact correlation model”) over auxiliary
instances to a primary instance x essentially coincides with the [3] perturbation model applied
to x.

We remark that the approach of smoothed analysis in general and the work of [3] in
particuar, differs from our study and results in several aspects. First, in contrast to smoothed
analysis our goal is not an analysis of when the problem becomes easier (or harder) but
rather the development of algorithms which take advantage of (and when) extra correlated
information is available in addition to an original input. Second, we solve the exact version
of the min-EDIT distance problem on the primary worst case input pair itself with high
probability (over the perturbed instances) whereas they approximate the min-EDIT distance
on a perturbed instance.

Having said that, there is an interesting interplay between the explorations of smoothed
analysis and improving algorithmics by access to correlated instances . That is, one may
consider any distribution induced by semi-random models over problem instances both as
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distributions for which smoothed complexity can be studied, or as distributions over the
auxiliary correlated instances which are available for improving algorithms on a primary
worst case instance.

Finally, we note that the idea of using larger alphabets to make the longest common
subsequence problem easier is related to work of Hunt and Szymanski [9]. In this paper, they
show that if r is the number of pairs of locations that are the same in the two sequences,
there is an algorithm to compute the longest common subsequence of two strings of length n
in time O((r+ n) logn). Thus, if the number of matching pairs is small, the longest common
subsequence can be computed easily. This idea is present in our work as well; when we
consider correlated instances to make a new pair of sequences over a larger alphabet, the
matching pairs will just be the pairs that are part of the longest common subsequence of the
primary instance. Although the algorithm we use to find the longest common subsequence is
different, the fundamental concept is the same.

2.7 Roadmap to The paper
The rest of the paper will proceed as follows. In Section 2, we will give the definition of a
tuple-based similarity measure. We will also introduce the definitions of longest common
subsequence, edit distance, and dynamic time warping distance and then show that LCS,
EDIT, and a restricted version of DTWD are all tuple-based similarity measures. In Section
3, we define the correlation models used in the rest of the paper. We are then able to proceed
to the results in Section 4. Section 4.1 covers the exact correlation model and Section 4.2
covers the relaxed correlation model. We leave the discussion of the other model for edit
distance to the appendix.

3 A generalization of similarity measures

The longest common subsequence problem, edit distance problem, and dynamic time warping
distance problem all have similar features which make them amenable to speedups using
correlated instances. The feature that we will be looking at is the fact that the value of each
of these similarity measures is the optimum over a set of values which only depend on the
locations of the alignment. If this is the case, we will show that we can use a correlation
model where the alignment stays the same to give a faster algorithm for finding this optimal
alignment. The following definition provides a criterion which ensures that a similarity
measure will have a good algorithm given correlated instances.

I Definition 1. Let f be a function that takes k strings and outputs a number, which we
think of as a measure of similarity between the strings. f is a tuple-based similarity measure
on strings x1, ..., xk if there exist S ⊆

⋃
m1,m2,...,mk

P([m1] × [m2] × ... × [mk]) of allowed
sets of tuples, where m1, ...,mk correspond to the length of each string, along with a function
c(S) computable in time Õ(|S|) such that
f(x1, x2, ..., xk) = maxS∈S,∀(i1,i2,...,ik)∈Sx1[i1]=x2[i2]=...=xk[ik] c(S) or
f(x1, x2, ..., xk) = minS∈S,∀(i1,i2,...,ik)∈Sx1[i1]=x2[i2]=...=xk[ik] c(S).

I Definition 2. A pair-based similarity measure is a tuple-based similarity measure for tuples
of size 2.

The motivation for this definition is to provide a generalization of the alignment gadget of
[5] that captures the property we need to achieve faster algorithms given correlated instances.
In [5], they introduce the notion of an alignment gadget, and show that any problem with an
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alignment gadget cannot be solved in strongly subquadratic time. Our definition is more
general than theirs in that we do not restrict ourselves to looking at alignments; multiple
positions in one string can match to the same position in another string. However, we only
look at measures where the function is determined by the positions of the matching pairs;
this is for reasons related to the correlation model that will become apparent.

We denote the ith character of a string x over an alphabet Σ by x[i].

I Definition 3. A longest common subsequence of two strings x, y ∈ Σ∗ (LCS(x, y)) of
length m is a largest set of pairs (a1, b1), ..., (am, bm) such that 1 ≤ a1 < a2 < ... < am ≤ n,
1 ≤ b1 < b2 < ... < bm ≤ n, and x[ai] = y[bi] for i ∈ {1, ...,m}.

I Definition 4. A longest common subsequence of k strings (LCS(x[1], x[2], ..., x[k])) of
strings x[1], x[2], x[3], ..., x[k] is a largest set of tuples
(a1[1], a2[1], ..., ak[1]), ..., (a1[m], a2[m], ..., ak[m]) with 1 ≤ aj [1] < aj [2] < ... < aj [m] ≤ n for
all j ∈ {1, ..., k} and x1[a1[i]] = x2[a2[i]] = ... = xk[ak[i]] for all i ∈ {1, ...,m}

It is easy to see that LCS is a tuple-based similarity measure when we take c(S) = |S|;
the allowed sets of tuples are all possible alignments, and the maximum over all sets of
alignments of c(S) is precisely the length of the longest common subsequence.

I Definition 5. The edit distance (EDIT ) between two strings x, y is the minimum number
of insertions, deletions, and character substitutions it takes to get from x to y. EDIT (x, y) =
LEVx,y(|x|, |y|), where

LEVx,y(i, j) =


max i, j if min i, j = 0

min


LEVx,y(i, j − 1)
LEVx,y(i− 1, j)
LEVx,y(i− 1, j − 1) + 1ai 6=bj

and 1ai 6=bj =
{

1 if ai 6= bj
0 if ai = bj

.

I Proposition 1. EDIT is a pair-based similarity measure.

Proof. We observe that if every alignment has a unique minimum sequence edit associated
with it, then the proposition follows as the set of pairs corresponding to a location unchanged
by the minimum sequence of edits in the first string and the location where it moved to
in the second string is an alignment, and thus taking the minimum over all alignments of
the edit distance that preserves the alignment gives us the minimum edit distance. Thus
it suffices to show that this is the case. Suppose that (a1, b1), ..., (ak, bk) is the set of pairs
that are unchanged when the edit operation is applied. We claim that the minimum number
of edits leaving these pairs unchanged is equal to

∑k
i=0 max (ai+1 − ai − 1, bi+1 − bi − 1) if

this is true. To see this, the edit takes x[ai] to y[bi], and thus everything between x[ai]
and x[ai+1] must be matched to things between y[bi] and y[bi+1]. This edit distance is
equal to max (ai+1 − ai − 1, bi+1 − bi − 1). Thus, the minimum number of edits leaving this
set of pairs unchanged is

∑
max (ai+1 − ai − 1, bi+1 − bi − 1). Therefore the minimum edit

distance is the minimum of this function over all sets of matching pairs that satisfy the
constraint that for any i, j, either ai < aj and bi < bj or ai > aj and bi > bj . J

I Definition 6. A traversal of two sequences x, y of length m,n respectively is a list of pairs
(a1, b1), ..., (at, bt) such that (a1, b1) = (1, 1), (at, bt) = (m,n), and (ai+1, bi+1) is either
(ai + 1, bi), (ai, bi + 1), or (ai + 1, bi + 1).



D. Holden and S. Goldwasser 13:13

I Definition 7. The dynamic time warping distance (DTWD) between two strings x, y is
the minimum cost of a traversal of the two strings. The cost of a traversal is the sum of the
distances between each pair of the traversal.

I Proposition 2. DTWD when the distances are 0 and 1 (DTWD0,1) is a pair-based
similarity measure.

Proof. Let (a1, b1), ..., (ak, bk) be the set of pairs with x[ai] = y[bi] in order in the traversal
with the minimum cost. Similarly to the edit distance situation, the traversal must match
everything between x[ai] and x[ai+1] and y[bi] and y[bi+1], and the dynamic time warping
distance here is

∑k−1
i=1 max bi+1 − bi − 1, ai+1 − ai − 1 because none of these were included

in matching pairs because of the definition of a traversal. Then, determining the minimum
dynamic time warping distance is equivalent to determining the minimum of this quantity over
all subsets of traversals. This means that DTWD0,1 is a pair-based similarity measure. J

4 Correlation models for tuple-based similarity measures

In this section we will define the way primary and auxiliary instances are generated by
our generating processes. The first generating process draws primary instances from the
primary distribution, and auxiliary instances from the auxiliary distribution conditioned
on the optimal set of tuples for the primary instances matching for each auxiliary instance.
This does not mean that the values at the locations specified by each tuple are the same
between the primary and auxiliary instances; it indicates that the contents of the strings in
an auxiliary instance at the locations indicated by the tuple will be the same. The second
generating process will be similar to the first generating process, but instead of making the
locations always match, there will be a higher probability of matching locations being the
same.

I Definition 8. Suppose that f is a tuple-based similarity measure with allowed sets of tuples
S and cost function c. Let l be the number of correlated instances, k be the number of strings
that f is a measure on, and let m1, ...,mk be the length of each string.

The generating process GenPri,Aux(f, k, ~m, l) draws x1, x2, ..., xk of length m1,m2, ...,mk

respectively from Pri with the allowed set of tuples
S = {(a11, a21, ..., ak1), ..., (a1m, a2m, ..., akm)} =
arg minS∈S|∀(i1,i2,...,ik)∈S,x1[i1]=x2[i2]=...=xk[ik] c(S). Then, it outputs l tuples
(x(i)

1 , x
(i)
2 , ..., x

(i)
k ) drawn from Aux⊗n conditioned on ∀(j1, j2, ..., jk) ∈ S, x(i)

1 [j1] = x
(i)
2 [j2] =

... = x
(i)
k [jk].

I Definition 9. Suppose that f is a tuple-based similarity measure with allowed sets of tuples
S and cost function c. Let l be the number of correlated instances, k be the number of strings
that f is a measure on, ε be the probability that a given tuple is matching for an auxiliary
instance, and let m1, ...,mk be the length of each string.

The generating process GenPri,Aux(f, k, ~m, l, ε) draws x1, x2, ..., xk of length
m1,m2, ...,mk from Pri with the allowed set of tuples
S = {(a11, a21, ..., ak1), ..., (a1m, a2m, ..., akm)} =
arg minS∈S|∀(i1,i2,...,ik)∈S,x1[i1]=x2[i2]=...=xk[ik] c(S). Then, it outputs l tuples
(x(i)

1 , x
(i)
2 , ..., x

(i)
k ) drawn from Aux⊗n and then we make x(i)

1 [j1] = x
(i)
2 [j2] = ... = x

(i)
k [jk]

with probability ε for all tuples (j1, j2, ..., jk) ∈ S.
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x1
(0) x2

(0) xk
(0)

x1
(1)

x1
(l) x2

(l) xk
(l)

x2
(1) xk

(1)

Primary

Auxiliary

...

...

...

...

...

......

(x1)[i] tuple (i1,...,ik)

Figure 1 This shows the structure of the primary and auxiliary instances. The instance column
is delineated in green, and a tuple in the primary instance is shown in red.

5 Results

5.1 Exact correlation model
What correlations should we expect to provide advantages? For tuple-based similarity
measures, we should expect information about what the optimal set of tuples is to give us
a speedup. In the model that we are considering, each location tuple in the optimal set of
tuples of our primary instance will also be a set of locations with the same value in each
auxiliary instance. For example, consider the two sequences 1010010 and 1101100. The
longest common subsequence between the two sequences is 10110, so we can expect auxiliary
instances to look like abc∗∗de and ∗abcde∗, where a, b, c, d, e have the same value and ∗ is a
wildcard.

This correlation model is not just solving a random instance of the problem. The goal is
to find the optimal set of tuples for the primary instance. There are no guarantees on the
distribution for the primary instance; the primary instance is worst-case. As a result, the
problem is not equivalent to finding the optimal set of tuples for an auxiliary instance, and
thus finding the correlations is not the same as solving a random instance of the original
problem.

I Definition 10. The instance column (x)[i] is defined as follows. Suppose we have strings
(x1, x2, ..., xk) which are primary instances, which we will refer to (x(0)

1 , x
(0)
2 , ..., x

(0)
k ), and

auxiliary instances
(x(1)

1 , x
(1)
2 , ..., x

(1)
k )..., (x(l)

1 , x
(l)
2 , ..., x

(l)
k ). Then, we denote (x(0)

j [i], x(1)
j [i], ..., x(n)

j [i]) = (xj)[i]
for any j ∈ {1, ..., k}.

Given the correlation model, we know that two characters in each auxiliary instance
will be equal with probability 1 if they belong to a tuple in the optimal set of tuples and
with probability less than 1 otherwise. This suggests the following algorithm which runs
in O(kn logn) time, or O(n logn) if k is constant. If we are given auxiliary instances from
GenPri,Aux(f, k, ~m, l) with Pri a worst-case distribution and Aux the uniform distribution,
we can construct buckets indexed by elements of Σl+1 and the entries of each bucket are the
indices of the columns that have the same value as the bucket’s index. Then, it looks up the
columns of string 1 to see where the matches are. Find proceeds in three steps; first, for the
last k − 1 strings, it puts each column of the string in the corresponding bucket in the set of
buckets for that string. Next, it checks the columns of string 1 against the columns of string
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2 to see which positions in string 1 are part of tuples. Then, we construct the set of tuples
by looking up the positions in strings 2 through k that match to positions in string 1.

In Find, the Hj are arrays of buckets where ((xj)[i], i) is stored for j = 2, ..., n, and A is
the array of k-tuples in the longest common subsequence. Hj [s] denotes the contents of the
bucket for the jth string, and is filled iff there exists i such that (xj)[i] = s. Ai,j is the index
in the jth string of the ith entry of the longest common subsequence.

I Theorem 1. Suppose we have a pair-based similarity measure or a k-tuple-based similarity
measure with no overlapping tuples. If we are given a primary instance x1, x2, ..., xk and
auxiliary instances x(1)

1 , x
(1)
2 ..., x

(1)
k , ..., x

(l)
1 , ..., x

(l)
k with l = O(logn) drawn from

GenPri,Aux(f, k, ~m, l) with Pri worst-case and Aux uniform, FIND finds f(x1, x2, ..., xk) in
time Õ(kn logn+ |S|), where S is the largest set of tuples in S and n = maxm1, ...,mk.

Proof. If A is the optimal set S∗ from the primary instance, we can compute
f(x1, x2, ..., xk) = c(A) in Õ(|S∗|). Then, we will show that given the primary and auxiliary
instances, the algorithm finds find the optimal set of tuples for the primary instance. Let
(i1, ..., ik) ∈ S∗. By the definition of the correlation model, we will have that (x1)[i1] =
(x2)[i2] = ... = (xk)[ik] because the tuple is one of the optimal tuples in the primary
instance which means that this is a matching tuple in both the primary and auxiliary
instances. Suppose that we have a tuple (i1, i2, ..., ik) not in S∗. Then, the probability
that x(j)

1 [i1] = x
(j)
2 [i2] for a given i is 1/2, so then the probability of equality for all j is

1
2O(logn) <

1
3n2 . Taking a union bound over all pairs, we see that the probability of any tuple

not in S∗ having (x1)[i1] = (x2)[i2] is at most 1/3, so therefore with probability at least 2/3,
every tuple with (x1)[i1] = (x2)[i2] = ... = (xk)[ik] will be be in S∗. Thus, with probability
at least 2/3, every hash collision corresponds to a tuple, and therefore A is the optimal set
tuples for the primary instance. J

Algorithm 1: Find(f, x1, x2, ..., xk, x
(1)
1 , ..., x

(1)
k , ..., x

(l)
1 , ..., x

(l)
k )

Put columns into buckets
1 For j = 2, ..., k

2 Construct the array Hj with elements linked lists.
3 For i = 1, ...., n

4 Add ((xj)[i], i) to Hj [(xj)[i])].
5 Make the n × k array A.
6 m = 1

Check which positions in string 1 are part of tuples in S∗

7 For i = 1, ..., n

8 For (v, j) in H2[(x1)[i]]
9 If (x1)[i] = v

10 Am,1 = i

11 Am,2 = j

12 m = m + 1
Match positions in strings 2 through k to positions in string 1

13 For s = 3, ..., k

14 For l = 1, ..., m

15 i = Al,1

16 If Hs[(x1)[i]] is empty
17 Remove Al and skip to the next l

18 For (v, j) in Hs[(x1)[i]]
19 If (x1)[i] = v

20 Am,s = j

21 Output c(A).
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I Corollary 1. If we are given a primary and O(logn), where n = maxm1, ...,mk, auxiliary
instances of k-LCS drawn from GenPri,Aux(LCS, k, ~m,O(k logn)) with Pri worst-case and
Aux uniform, we can find the longest common subsequence of the primary instance in time
Õ(nk).

I Corollary 2. If we are given a primary and O(log maxm,n) auxiliary instance of EDIT
drawn from GenPri,Aux(EDIT, 2, {m,n}, O(log maxm,n)), we can find the minimum edit
distance between the primary sequences in time Õ(m+ n).

I Corollary 3. If we are given a primary and O(log maxm,n) auxiliary instances of DTWD01
drawn from
GenPri,Aux(DTWD0,1, 2, {m,n}, O(log maxm,n)) with Pri worst-case and Aux uniform,
we can find the dynamic time warping distance of the primary instance in time Õ(m+ n).

5.2 Relaxed correlation models
In the preceding section, we established that under a strict correlation model, we are able to
find the solution to problems such as longest common subsequence and edit distance much
faster than current lower bounds suggest if we did not have auxiliary instances. The main
restriction is that the optimal set of tuples must also be a matching set of tuples for every
auxiliary instance. When we talk about a matching tuple, we are referring to a tuple such
that the characters at the locations specified by the tuple are the same. In this section, we
will show how to relax this condition to give faster algorithms when a tuple in the optimal
set of tuples only has a higher probability of being a matching tuple.

The main difficulty here is identifying the correct tuples. In the previous case, this was
easy, because we could use the fact that every member of a correct tuple would be the same
for each auxiliary instance. Then it sufficed to look at locations where the values matched
up for each auxiliary instance, and we could use hashing to find these matching locations. In
this case, we do not have this guarantee; we only have the guarantee that locations which are
in the same tuple will have a higher probability of being the same in an auxiliary instance.
This guarantee still allows us to find the elements of a tuple given its first element, as now
the Hamming distance between two columns in the same tuple will be less than if they are
not in the same tuple with high probability, and then we use faster algorithms for Hamming
nearest neighbors such as the one in [2].

The following lemma will guarantee that the nearest neighbors of the column corresponding
to the values of a position on the primary instance and auxiliary instances are the columns
corresponding to the positions that are part of a tuple in the optimal set of tuples for the
primary instance and has the first position in it also. As a result, this means that if we run
a Hamming nearest neighbors algorithm on the columns, we will be able to find which tuples
were the optimal tuples for the primary instance and thus compute the optimal value of the
function for the primary instance.

I Definition 11. 1a=b is 1 if a = b and 0 otherwise.

I Lemma 1. Suppose we have x1, x2, ..., xk and x(1)
1 , x

(1)
2 , ...x

(1)
k , ..., x

(l)
1 , x

(l)
2 , ..., x

(l)
k drawn

from GenPri,Aux(f, k, ~m, lε) with Pri worst-case and Aux uniform. Let j ∈ {2, ..., k}, a ∈
{1, ...,m1} and b ∈ {1, ...,mj}. Then, for any δ such that 0 < δ < 1/2 + ε, if a = i1 and
b = ij for some (i1, ..., ik) ∈ S∗, the optimal set of tuples for the primary instance,

Pr[Em[1
x

(m)
1 [a]=x(m)

j
[b]] ≤ 1/2 + ε− δ] ≤ e−

(δ/(1/2+ε))2l
2
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and otherwise

Pr[Em[1
x

(m)
1 [a]=x(m)

j
[b]] ≥ 1/2 + δ] ≤ e−4δ2l/3

Proof. We use the form of the Chernoff bound given in [11]: for X a sum of independent
random variables X1, ..., Xn taking values {0, 1} with expectation µ, we have that Pr[X ≤
(1 − δ)µ] ≤ e−δ

2µ/2 and Pr[X ≥ (1 + δ)µ] ≤ e−δ
2µ/3 for 0 < δ < 1. The first inequality

is proven by plugging in µ = (1/2 + ε) ∗ l into the first Chernoff bound and noting that
the expectation is the sum of the indicator random variables divided by l, and the second
inequality follows similarly. J

Given this result, we can now use an algorithm to find Hamming nearest neighbors to
find the optimal set of tuples. The best algorithm is the one of [2], which runs in time
n2−Ω(ε1/3/ log(1/ε)) to find the approximate nearest neighbors. What follows is the algorithm,
treating finding the Hamming nearest neighbors as a black box.

Find-Relaxed(f, x1, x2, ..., xk, x
(1)
1 , ..., x

(1)
k , ..., x

(l)
1 , ..., x

(l)
k , ε)

1 Make an n× k array A.
2 For i = 1, ...,m1
3 For j = 2, ..., k and t = 1, ...,mk, find all vectors (xj)[t] that are less than

(1/2− ε/2) ∗ l away from (x1)[i] in Hamming distance using the algorithm for
approximate nearest neighbors

4 Add the tuple of all these vectors to A
5 Compute c(A).

I Theorem 2. Suppose we have a pair-based similarity measure or a k-tuple-based simil-
arity measure with no overlapping tuples f . Let l = 1000 logn. With probability at least
2/3 − o(1), the preceding algorithm computes f(x1, ..., xk) given correlated instances from
GenPri,Aux(f, k, ~m, l, ε) with Pri worst-case and Aux uniform in time
O(|S|+ n2−Ω(ε1/3/ log(1/ε))), where S is the largest set of tuples in S and n = maxm1, ...,mk.

Proof. Given 1000 logn instances, we can use the lemma to say that for any two columns,
with probability 1/n3 they do not correspond to a tuple and have Hamming distance less than
1/2− ε/4 or they do correspond to a tuple and have Hamming distance more than 1/2− 3ε/4.
Taking a union bound gets us that the probability that this holds for any pair of columns is
less than k/n. This means that the nearest neighbors of every column are the columns that
it shares a tuple with, with probability 1− o(1). Then in time O(n2−Ω(ε1/3/ log(1/ε))) using
the algorithm of [2] we can find the optimal set of tuples S∗ with probability 2/3. Then in
time |S| we can compute c(S∗) = f(x1, ..., xk). J

I Corollary 4. If we are given a primary and O(logn), where n = maxm1, ...,mk, auxiliary
instances of k-LCS drawn from GenPri,Aux(LCS, k, ~m,O(k logn), ε) with Pri worst-case and
Aux uniform, we can find the longest common subsequence of the primary instance in time
O(n2−Ω(ε1/3/ log(1/ε))).

I Corollary 5. If we are given a primary and O(log maxm,n) auxiliary instance of EDIT
drawn from GenPri,Aux(EDIT, {m,n}, 2, O(log maxm,n), ε), we can find the minimum edit
distance between the primary sequences in time O(n2−Ω(ε1/3/ log(1/ε))).

I Corollary 6. If we are given a primary and O(log maxm,n) auxiliary instances of DTWD01
drawn from GenPri,Aux(DTWD01, {m,n}, 2, O(log maxm,n), ε) with Pri worst-case and
Aux uniform, we can find the dynamic time warping distance of the primary instance in time
O(n2−Ω(ε1/3/ log(1/ε))).
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6 Another correlation model for edit distance

I Definition 12. The generating process GeneditPri,Aux,ε(n, l) draws x, y of length n and a
sequence of character insertions, deletions, and substitutions π1, π2, ..., πk that is the min-
imum sequence of edits needed to transform x to y from Pri. The output is
x, y, x(1), y(1), x(2), y(2), ..., x(l), y(l), with x(i) being x with each character changed with prob-
ability ε and y(i) = πk(πk−1(...(π1(x(i)))...)).

Suppose that we have two strings x, y for which we want to compute the minimum edit
distance. If our auxiliary instances have the same sequence of edit operations, then with 3 logn
auxiliary instances the probability that (x)i = (y)j and xi did not to yj during the sequence
of inserts, deletes, and changes is less than 1/n3. This means that we can find the parts of
the original string that are preserved under the edit and their new positions. Our algorithm
works as follows. First, we get O(logn) auxiliary instances from GeneditPri,Aux,ε, where Pri
is worst-case, and then put the (y)j in buckets and check which (x)i have (x)i = (y)j . Then,
with the pairs (a1, b1), ..., (ak, bk), the edit distance is

∑k
i=0 max ai+1 − ai − 1, bi+1 − bi − 1

with high probability. This algorithm obviously runs in O(n logn) time.
In Find-EDIT, the array H of buckets is used to store (y)i, and COMMONPAIRS

holds the i, j such that (x)i = (y)j .

Algorithm 2: Find-EDIT(x, y, x(1), y(1), ..., x(l), y(l))

1 Initialize an n× 2 array COMMONPAIRS.
2 Construct an array H of size n of linked lists.
3 For j = 1, ..., n
4 Add ((y)j , j) to H[(y)j ].
5 For i = 1, ..., n
6 For (v, j) in H[(x)i]
7 If (x)i = v add (i, j) to COMMONPAIRS.
8 Output

∑k
i=0 max (ai+1 − ai − 1, bi+1 − bi − 1),

where ((a1, b1), (a2, b2), ..., (ak, bk)) = COMMONPAIRS.

I Claim 1. The algorithm Find-EDIT on O(logn) instances generated by
GeneditPri,Aux,ε(n, l) with Pri worst-case and Aux uniform works and runs in time
O(n logn) with probability at least 7/8. 2

Proof. Suppose that xi did not move to yj by the original sequence of edits. Then, the
probability that x(k)

i = y
(k)
j is 1/2 because they were drawn independently uniformly at

random. Suppose we have 2 logn+3 auxiliary instances. This means that the probability that
(x)i = (y)j is at most 1/8n2 because each auxiliary instance is independent. Taking a union
bound means that the probability that there is a pair xi, yj where xi does not correspond to
yj and (x)i = (y)j is at most ‘/8. Thus, the hashing finds the pairs (a1, b1), ..., (ak, bk) with
probability at least 7/8 in expected time O(n logn). We claim that the edit distance is equal
to
∑k
i=0 max (ai+1 − ai − 1, bi+1 − bi − 1) if this is true. To see this, the original edit takes

xai to ybi , and thus everything between xai and xai+1 must be matched to things between ybi
and ybi+1 . This edit distance is equal to max (ai+1 − ai − 1, bi+1 − bi − 1). Suppose that the
edit distance was less. Then there must be a coordinate xc or yd that was in the original string.

2 Recall that GeneditPri,Aux,ε outputs auxiliary instances where the first string is a perturbation of the
original string and the second string is obtained by applying the same edits to the first string.
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But then, we could extend this to a smaller edit for the entire string than the original edit,
which is a contradiction. Thus, the edit distance is at least max (ai+1 − ai − 1, bi+1 − bi − 1),
and this is achieved by the original edit, because none of them are preserved. The running
time is O(n logn) because each loop takes time O(n logn). J
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