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Abstract
Despite decades of intensive research, efficient – or even sub-exponential time – distribution-free
PAC learning algorithms are not known for many important Boolean function classes. In this
work we suggest a new perspective on these learning problems, inspired by a surge of recent
research in complexity theory, in which the goal is to determine whether and how much of a
savings over a naive 2n runtime can be achieved.

We establish a range of exploratory results towards this end. In more detail,
1. We first observe that a simple approach building on known uniform-distribution learning

results gives non-trivial distribution-free learning algorithms for several well-studied classes
including AC0, arbitrary functions of a few linear threshold functions (LTFs), and AC0 aug-
mented with modp gates.

2. Next we present an approach, based on the method of random restrictions from circuit com-
plexity, which can be used to obtain several distribution-free learning algorithms that do not
appear to be achievable by approach (1) above. The results achieved in this way include
learning algorithms with non-trivial savings for LTF-of-AC0 circuits and improved savings for
learning parity-of-AC0 circuits.

3. Finally, our third contribution is a generic technique for converting lower bounds proved using
Nečiporuk’s method to learning algorithms with non-trivial savings. This technique, which
is the most involved of our three approaches, yields distribution-free learning algorithms for
a range of classes where previously even non-trivial uniform-distribution learning algorithms
were not known; these classes include full-basis formulas, branching programs, span programs,
etc. up to some fixed polynomial size.
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1 Introduction

Simple concepts are easy to learn, while complicated ones are harder to learn. Some of the
earliest and most fundamental work in computational learning theory aims at elucidating
this truism from a theoretical computer science perspective: can we understand how the
algorithmic complexity of learning Boolean functions (i.e. the running time required by
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learning algorithms) scales with the computational complexity of the functions being learned?
Achieving such an understanding was first articulated as an explicit goal in (indeed, arguably
the explicit goal of) Valiant’s landmark paper “A theory of the learnable” [42]:

“The results of learnability theory would then indicate the maximum granularity of
the single concepts that can be acquired without programming. In summary, this
paper attempts to explore the limits of what is learnable as allowed by algorithmic
complexity. The identification of these limits is a major goal of the line of work
proposed in this paper.”

So, more than thirty years later, how has learning theory fared in achieving these goals?
Perhaps disappointingly, the roster of concept classes (classes of Boolean functions over
{0, 1}n) for which efficient learning algorithms have been developed in Valiant’s original
distribution-independent PAC learning model, or in other similarly general learning frame-
works, is quite short. Classes that are known to be learnable in polynomial time include
linear threshold functions (LTFs) and degree-k polynomial threshold functions for k = O(1)
[9] (subsuming the classes of k-CNF, k-DNF [42] and k-decision lists [38]); parity functions
and F2 polynomials of constant degree [20, 13], and not much more. (If membership queries
are allowed, then a few other classes are known to be distribution-independent PAC learnable
in polynomial time, such as decision trees of polynomial size [10, 6] and regular languages
computed by polynomial-size DFAs [1].) In fact, only a relatively small number of natural
Boolean function classes are additionally known to be learnable even if we only require
sub-exponential time for the learning. DNF formulas of poly(n) size can be learned in
2Õ(n1/3) time [27], poly(n)-sparse F2 polynomials can be learned in 2Õ(n1/2) time [19], and
de Morgan formulas of size s can be learned in time nO(s1/2) [37].

Even simple generalizations of the above-mentioned subexponential-time-learnable func-
tion classes have remained frustratingly out of reach for the distribution-independent PAC
model. Prominent examples here include the class of poly(n)-size depth-3 AC0 circuits,
and intersections of even just two LTFs over {0, 1}n: despite extensive research effort, no
positive algorithmic results are known for these classes (hence, needless to say, for their
generalizations as well). This is quite a disappointment, given the rich variety of natural
Boolean function classes that have been intensively studied in concrete complexity over the
past several decades: well-known examples include AC0 (augmented in various ways with
more exotic gates such as modp gates, majority gates, threshold gates, and the like), SYM+

circuits, various classes of branching programs, functions of a few LTFs, and more. These
functions play a starring role in concrete complexity theory, but learning theorists cannot
even score an autograph.1

This work: A change of perspective

In this paper we propose a new point of view on the challenging learning problems discussed
above. Since the quest for polynomial or even sub-exponential time distribution-independent
learning algorithms has been unsuccessful, we suggest that a more fruitful perspective may
be to study the question of whether, and how much of, a savings over a naive 2n running
time can be achieved for these learning problems. We thus are interested in obtaining learning

1 We note that in the (significantly) easier uniform-distribution learning model, in which the learner
need only succeed w.r.t. the uniform distribution over {0, 1}n, positive learning results are known for
functions of a few LTFs [26, 16] and AC0 [29] as well as some generalizations of these classes [15, 11]; we
will have occasion to revisit these results later.
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algorithms that run in time 2n−s(n) for some savings function s(n) which is as large as
possible. (To use a hackneyed metaphor, instead of expecting a brim-full glass, we are now
hoping for a mouthful of water at the bottom. . . )

While this appears to be a new lens through which to view learning problems, we stress that
the point of view which we advocate here has been a mainstay in computational complexity for
a long time. Well-known results give non-trivial upper bounds (mildly better than 2n) on the
running time of satisfiability or (exact) counting algorithms for k-CNFs, general CNFs, and a
host of NP-hard or #P-hard problems (see e.g. [33, 39, 32, 40, 14, 21, 4, 7, 22]). Williams’s
breakthrough connection [43, 44] linking non-trivial savings of satisfiability algorithms to
circuit lower bounds has intensified the interest in results of this sort for richer circuit classes,
and even more recently there has been a surge of interest in questions of a similar flavor
because of the connections that have been established between hypotheses like SETH and
prominent questions in algorithm design (see e.g. the survey of [45]).

In this paper we explore some first questions in the study of what can be learned with
non-trivial savings; happily, it turns out that this new perspective yields a rich bounty of
positive results. As our main contribution, we present three techniques and show how each
technique yields new learning algorithms of the sort we are interested in. Cumulatively, our
results achieve the first non-trivial savings for many well-studied circuit classes; however,
several natural questions about learning with non-trivial savings are left open by our work.
We hope (and expect) that further results extending our knowledge of “non-trivially learnable”
function classes will follow.

A quick and dirty proof of concept

Before describing our main results, for the sake of intuition we sketch a simple argument
showing that AC0 indeed admits a non-trivial distribution-free learning algorithm (more
precisely, one whose running time is 2n−nΩ(1/d) for poly(n)-size depth-d AC0). The argument
is based on Håstad’s switching lemma [17] which, roughly speaking, states that any depth-d,
poly(n)-size AC0 circuit F collapses to a shallow decision tree with very high probability
under a random restriction. This can be shown to imply that if {0, 1}n is partitioned into
translations of a random subcube (corresponding to all possible settings of the live variables
of a random restriction), then with very high probability almost every such subcube has
the property that if F is restricted to the subcube, then F collapses to a shallow decision
tree. Since it is possible to learn such a shallow decision tree relatively efficiently (in time
much less than the number of points in its domain, i.e. in the subcube), this means that
by learning F separately on each subcube it is possible to achieve a significant savings over
brute-force search on every “good” subcube, i.e. on almost every subcube. Trading off the
fraction of bad subcubes (which corresponds to the failure probability of the switching lemma,
and decreases with the dimension of the subcubes) against the number of subcubes (which
provides a lower bound on the running time of this learning approach, and which increases
as the dimension of the subcubes decreases) and working out the parameters, the running
time of this simple-minded approach comes out to be 2n−nΩ(1/d) .

Two comments: First, we note that we will improve significantly on this running time
in Section 3, using a more sophisticated instantiation of this idea, and will achieve this
improved running time even for various augmentations of AC0 circuits. Second, it may not
be completely clear how to run a separate copy of a distribution-free learning algorithm on
each subcube in the above sketch. This will become clear in Section 2 when we describe the
formal model (based on online learning, or equivalently the model of exact learning from
equivalence queries) that we will use for all of our positive results (and which is well-known
to imply distribution-free PAC learnability).

ITCS 2017
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Relation to previous work: compression of Boolean functions

We have already explained how our goal of achieving non-trivial savings for learning is directly
inspired by work aiming towards this goal for the algorithmic problems of satisfiability and
counting. Another line of research which is more closely related to our study of non-trivial
learning is the recent work on “compression” of Boolean functions that was initiated by [12].
A compression algorithm for a class C (such as the class of AC0 circuits) is a deterministic
algorithm which is given as input the 2n-bit truth table of a function in C, must run in time
polynomial in its input length (i.e. in 2O(n) time), and must output any Boolean circuit C,
computing f , such that the size of C is less than the trivial 2n/n bound.

Deterministic learning is easily seen to be at least as hard as compression; we discuss the
exact relation between the two tasks in more detail in Section 2, after we have given a precise
definition of our learning model. Our learning algorithms, which are randomized, imply
randomized variants of almost all of the compression results in [12], in several cases with new
and simpler proofs. We also establish non-trivial learning results (and hence randomized
compression results) for many classes for which compression results were not previously
known. These classes include LTF-of-AC0, arbitrary functions of o(n/ logn) LTFs, n1.99-size
switching networks, n1.49-size switching-and-rectifier networks, n1.49-size non-deterministic
branching programs, and n1.49-size span programs; in fact, for the last four of these classes
we obtain deterministic compression algorithms.

1.1 Our techniques and results

To begin, in Section 2.1 we make the simple observation that uniform-distribution PAC
learning algorithms can be converted to exact learning algorithms with membership quer-
ies simply by “patching up” the ε · 2n points where an ε-accurate hypothesis is in error.
(This observation was already employed by [11] in the context of compression.) Using
known uniform-distribution learning results, this straightforward approach gives non-trivial
distribution-free learning algorithms for several well-studied classes including AC0, arbitrary
functions of a few LTFs, and AC0 augmented with modp gates.

However, as we explain in Section 3, there are uniform-distribution learning algorithms
(such as the algorithms of [15, 24] for LTF-of-AC0 circuits) which for technical reasons do
not yield exact learning algorithms with non-trivial savings. To address this, in Section 3 we
show how the method of random restrictions from circuit complexity can be employed to
obtain non-trivial learning algorithms in settings where the approach of Section 2.1 does not
apply. Recall that, roughly speaking, the “method of random restrictions” refers to a body
of results showing that certain types of Boolean functions “collapse” to simpler functions
with high probability when they are hit with a random restriction fixing a random subset
of input variables to randomly chosen constant values. Our approach is based on learning
the simpler functions that result from random restriction and thereby obtaining an overall
savings in learning the original unrestricted function. This is similar to the “quick and dirty”
proof of concept sketched earlier, but by adapting a recent powerful “multi-switching” lemma
of Håstad [18] to our learning context, we are able to achieve a significantly better savings
than the “quick and dirty” argument which uses only the original [17] switching lemma. Via
this approach we obtain exact learning algorithms for LTF-of-AC0 and parity-of-AC0 that
match the savings of our learning algorithm for AC0 from Section 2.1. As indicated above the
uniform-distribution approach of Section 2.1 does not give a result for LTF-of-AC0, while for
parity-of-AC0 circuits our random restriction approach yields significantly improved savings
over the results achieved for this class in Section 2.1. Furthermore, for both these classes
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our learning algorithms based on random restrictions do not require membership queries
(in contrast to the uniform-distribution based approach, which does require membership
queries).

Our third and most involved technique for non-trivial learning is based on Nečiporuk’s
celebrated lower bound method: in Section 4 we give a generic translation of lower bounds
proved using Nečiporuk’s method to non-trivial exact learning algorithms. Roughly speaking,
Nečiporuk’s lower bounds are established by showing that low complexity functions have few
subfunctions (and exhibiting explicit functions that have many subfunctions, and hence must
have high complexity). We give an exact learning algorithm that achieves non-trivial savings
for classes of functions that have few subfunctions. A key technical component of our learning
algorithm is a pre-processing-based technique for executing many copies of the classical
halving algorithm in a highly efficient amortized manner. While simple, this technique
appears to be new and may be of use elsewhere. We thus obtain a single unified learning
algorithm that achieves non-trivial savings for a broad range of function classes, including
full-basis binary formulas of size n1.99, branching programs of size n1.99, switching networks of
size n1.99, switching-and-rectifier network of size n1.49, non-deterministic branching programs
of size n1.49, and span programs of size n1.49. Our learning results recapture the [12]
compression results for n1.99-size formulas and branching programs with a new and simpler
proof, and give the first compression results for the other classes of switching networks,
switching-and-rectifier networks, non-deterministic branching programs, and span programs
listed above.

2 Preliminaries

The learning model we consider

The distribution-independent PAC model has several parameters (a confidence parameter
which is usually denoted δ, and an accuracy parameter usually denoted ε) which make precise
statements of running times somewhat unwieldy. In this paper we will work in a elegant
model of online mistake-bound learning [30] which is well known to be equivalent to the
model of exact learning from equivalence queries only [2] and to be even more demanding
than the distribution-independent PAC learning model [2, 8]. A brief description of this
model is as follows: Let C be a class of functions from {0, 1}n to {0, 1} that is to be learned
and let f ∈ C be an unknown target function. The learning algorithm always maintains a
hypothesis function h : {0, 1}n → {0, 1} (more precisely, a representation of h in the form of
a Boolean circuit computing h). The learning process unfolds in a sequence of trials: at the
start of a given trial,

If h(x) = f(x) for all x ∈ {0, 1}n then the learning algorithm has succeeded and the
process stops.
Otherwise a counterexample – an arbitrary x such that h(x) 6= f(x) – is presented to the
learning algorithm, and the learning algorithm may update its hypothesis h before the
start of the next trial.

The running time of a learning algorithm in this framework is simply the worst-case
running time until the algorithm succeeds (taken over all f ∈ C and all possible sequences of
counterexamples). We will also sometimes have occasion to consider an extension of this model
in which at each trial the learning algorithm may, instead of receiving a counterexample, at
its discretion choose instead to make a membership query (i.e. to submit a string x ∈ {0, 1}n
of its choosing to the oracle, and receive the value f(x) in response). This is the well-studied
framework of “exact learning from membership and equivalence queries” [2].

ITCS 2017
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We will also have occasion to consider randomized exact learning algorithms. We say
that a randomized algorithm learns class C in time T (n) if for any target function f ∈ C,
the algorithm succeeds with probability at least 1− δ (over its internal coin tosses) after at
most T (n) · log(1/δ) time steps. While many of the learning results we present will be for
randomized exact learning algorithms, in the rest of this section for simplicity we confine our
discussion to deterministic learning algorithms.

Besides being a clean and attractive learning model, learnability in the exact learning
model (optionally augmented with membership queries) is well known to imply learnability
in the distribution-independent PAC model (correspondingly augmented with membership
queries). More precisely, if a class C is learnable in time T (n) using Q(n) queries in the exact
model, then by a standard argument2 C is learnable to confidence 1− δ and accuracy 1− ε
in the PAC model in time TPAC = O(T (n)

ε ln(T (n)
δ )) using O(Q(n)

ε ln(Q(n)
δ )) queries.

Non-trivial savings

It is easy to see that any class C can be learned in time poly(n) · 2n in our model via a simple
memorization-based approach; our goal in this work will be to come up with algorithms
whose running time is 2n−s(n) where the savings s(n) is as large as possible. We say that any
savings function s(n) = ω(logn) is non-trivial. We observe that the conversion from exact
learning to distribution-independent PAC learning described above preserves learnability
with non-trivial savings: learnability with non-trivial savings in our exact model implies
learnability to any 1/poly(n) accuracy and confidence in the PAC model with non-trivial
savings (since if T (n) = 2n−ω(logn) and ε, δ = 1/poly(n) then TPAC = 2n−ω(logn)).

Deterministic learning implies compression

As mentioned in the introduction, now that we have a precise definition of our learning model
it is easy to verify that any class of functions that admits a non-trivial deterministic learning
algorithm admits a compression algorithm. To see this, observe that our learning algorithms
(i) are not given the full truth table of f as input, and (ii) must run in time strictly less than
2n (as opposed to 2O(n) for compression), while (iii) a learning algorithm in our framework
must (like a compression algorithm) ultimately construct a circuit computing f that has size
less than 2n/n. We may summarize this discussion in the following observation:

I Observation 1. Let C be a class of n-variable Boolean functions that has a deterministic
exact learning algorithm using membership and equivalence queries with savings s(n) =
ω(logn) (i.e. in time 2n−s(n)). Then there is a deterministic algorithm that compresses C to
circuits of size 2n−s(n).

As an application of this observation, consider the class of size-S read-once branching
programs (ROBPs) over x1, . . . , xn. Since every such size-S ROBP is a deterministic finite
automaton with S nodes over the binary alphabet {0, 1} accepting only n-bit strings, Angluin’s
deterministic exact learning algorithm [1] (which uses membership and equivalence queries)
can learn any such ROBP in time O(S2). By Observation 1, this implies an algorithm that
compresses 2n/2−s(n)/2-size ROBPs to circuits of size O(2n−s(n)). This recovers a compression
result for this class that was previously obtained by Chen et al. in the paper [12] that initiated
the study of compression algorithms (see their Theorem 3.8).

2 See e.g. Section 2.4 of [2], replacing the expression “i ln 2” by “ln(2i2)”.
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2.1 A first simple approach based on uniform-distribution learning
In contrast with the state of affairs for distribution-independent PAC learning, a more
significant body of results is known for uniform-distribution PAC learning (as we will
see later in this section). In this section we describe a simple approach by which some
uniform-distribution PAC learning algorithms – roughly speaking, those which have a good
dependence on the accuracy parameter ε – can easily be translated into non-trivial exact
learning algorithms.

The simple approach, which was already suggested in [11] in the context of compression,
is as follows. Using membership queries, we may simulate uniform random examples (x, f(x))
and run the uniform-distribution learning algorithm to obtain an ε-accurate hypothesis h
in time T (n, 1/ε, log(1/δ)). Then we use at most ε · 2n equivalence queries to identify and
correct all of the (at most ε · 2n) many points on which h is incorrect. Since updating the
hypothesis after each equivalence query can clearly be done in time poly(n) we thus obtain
the following:

I Claim 2. Let C be a class of n-variable Boolean circuits such that there is a uniform-
distribution PAC learning algorithm (which may possibly use membership queries) running in
time T (n, 1/ε, log(1/δ)), which with probability 1− δ outputs an ε-accurate hypothesis. Then
there is a randomized exact learning algorithm for C which uses membership and equivalence
queries and runs in time

poly(n) ·min
ε>0

{
T (n, 1/ε, log(1/δ)) + ε · 2n

}
. (1)

First application of Claim 2: Learning AC0 circuits

The seminal work of Linial, Mansour, and Nisan [29] established Fourier concentration
bounds for size-M depth-d circuits, and showed how these bounds straightforwardly yield
uniform-distribution learning algorithms. An essentially optimal strengthening of the
Fourier concentration bound of [29] was recently obtained by Tal [41], who showed that
there exists a universal constant c > 0 such that every size-M depth-d circuit C sat-
isfies

∑
|S|≥c logd−1(M) log(1/ε) Ĉ(S)2 ≤ ε. Via the connection between Fourier concentra-

tion and uniform-distribution learning established by [29], this implies that the class of
size-M depth-d circuits can be learned to accuracy ε by a randomized algorithm in time
poly

((
n

≤c logd−1(M) log(1/ε)
))
· log(1/δ). Consequently, by Claim 2, taking ε = 2−Θ(n/(logM)d−1)

we get a randomized exact learning algorithm which uses membership and equivalence queries
which runs in time poly(n) · 2n−Ω(n/(logM)d−1). We note that this matches the circuit size
given by the compression theorem of [12] for such circuits.

Learning functions of k LTFs

Gopalan et al. [16] have given a randomized uniform-distribution membership-query algorithm
that learns any function of k LTFs over {0, 1}n in time O((nk/ε)k+1). Choosing ε = 2−

n
k+2

in Claim 2, we get a randomized exact learning algorithm which uses membership and
equivalence queries and runs in time poly(n) · 2

k+1
k+2n = poly(n) · 2n−

n
k+2 , thus achieving a

non-trivial savings for any k = o(n/ logn), and a linear savings for any constant k.

Learning AC0[p] circuits

A recent exciting result of [11] gives a randomized uniform-distribution membership-query
algorithm for learning the class of n-variable size-M depth-d AC0[p] circuits to accuracy ε

ITCS 2017
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in time 2(log(Mn/ε))O(d) . By Claim 2, taking ε = M · 2−nΘ(1/d) , we get a randomized exact
learning algorithm which uses membership and equivalence queries and runs in time 2n−nΩ(1/d)

for all circuits of size M ≤ 2nc/d for some absolute constant c > 0.

3 Beyond uniform-distribution learnability: Learning via random
restrictions

As noted briefly in Section 2.1, in order for Claim 2 to give a non-trivial savings for exact
learning the running time T (n, 1/ε, log(1/δ)) of the uniform-distribution learning algorithm
must not depend too badly on 1/ε. This requirement limits the applicability of Claim 2; to
see a concrete example of this, let us consider the class of all poly(n)-size, depth d = O(1)
LTF-of-AC0 circuits (so such a circuit has an arbitrary linear threshold function as the output
gate with poly(n) many poly(n)-size depth-(d− 1) AC0 circuits feeding into the threshold
gate). Uniform-distribution learning results [15, 24] are known for this class, based on Fourier
concentration which is established via known upper bounds on the average sensitivity of
low-degree polynomial threshold functions. As discussed in [15], the best running time
that can be achieved for learning via this approach is n(logn)O(d)/ε2 , which would follow
from a conjecture of Gotsman and Linial, known to be best possible, upper bounding the
average sensitivity of low-degree polynomial threshold functions. (The current state of the art
learning algorithms, based on Kane’s upper bound [24] on the average sensitivity of low-degree
polynomial threshold functions which nearly matches the Gotsman-Linial conjecture, have a
slightly worse running time.) As a result of this poor dependence on ε, the value of (1) is
Ω(2n/

√
n), so no non-trivial savings is achieved. We note that even for the d = 1 case of a

single linear threshold gate as the function to be learned, the best possible running time of a
learning algorithm based on Fourier concentration is nΩ(1/ε2) (see Theorem 23 of [26]).

An approach based on random restrictions

In this section we show that by taking a more direct approach than Claim 2, it is possible to
achieve a non-trivial savings for LTF-of-AC0 circuits, and to improve on the results achievable
via Claim 2 for the class of Parity-of-AC0 circuits, which is covered by the final learning result
in Section 2.1. An additional advantage of this random restriction based approach is that
(unlike the uniform distribution approach based on Claim 2) the resulting exact learning
algorithms do not require membership queries, only equivalence queries.

This approach is based on the method of random restrictions; it is reminiscent of the
simple “proof of concept” from the Introduction (though we will ultimately instantiate it
with a more sophisticated switching lemma than Håstad’s original switching lemma [17]).
Roughly speaking the approach works as follows: Let Rp denote the distribution over n-
variable random restrictions (i.e. over {0, 1, ∗}n) that independently sets each coordinate
to 0, 1, or ∗ with probabilities 1−p

2 , 1−p
2 and p respectively. Let C be the class of functions

that we would like to learn, and let C′ be some other class of functions (which should be
thought of as “simpler” than the functions in C). If we have (i) a switching lemma type
statement establishing that for ρ ← R, any f ∈ C with high probability collapses under
ρ to a function in C′, and (ii) an exact algorithm A that can learn functions in C′ in time
significantly faster than brute force, then we can achieve nontrivial savings by (a) drawing a
random restriction ρ← R, (b) partitioning {0, 1}n into translates of the |ρ−1(∗)|-dimensional
subcube corresponding to the unfixed variables of ρ, and (c) running the algorithm A on
each of the 2n−|ρ−1(∗)| many such subcubes. By (i), for most subcubes we will achieve a
significant savings over a brute-force 2|ρ−1(∗)| running time for that subcube; even “paying
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full fare” for the (few) remaining bad subcubes, this results in an overall algorithm with
non-trivial savings.

We make this discussion formal in the following lemma:

I Lemma 3. Let C and C′ be two classes of Boolean functions, where C =
⋃
n≥1 Cn and

functions in Cn are n-variable Boolean functions and likewise for C′. Suppose that C and C′
are such that for some value 8

n ≤ p < 1, we have
1. (switching lemma from C to C′) For every function f ∈ Cn,

Pr
ρ←Rp

[
f � ρ does not belong to C′|ρ−1(∗)|

]
≤ α(n); (2)

2. (efficient learnability of C′) There is an exact learning algorithm A for C′ that uses
equivalence queries only and runs in time T (`) = 2o(`) when it is run on a function in C′`.
Then there is a randomized exact learning algorithm for Cn which uses equivalence queries

only, outputs a correct hypothesis with probability 1− δ, and runs in time

poly(n) ·
(

2n−pn/2 · T (pn/2) + α(n) · 2n
)
· log(1/δ). (3)

Proof. The randomized exact learning algorithm executes a sequence of at most O(log(1/δ))
independent stages, halting the first time a stage succeeds. We will show below that each
stage succeeds in producing an exactly correct hypothesis with probability at least 0.35, and
runs in time poly(n) ·

(
2n−pn/2 · T (pn/2) + α(n) · 2n

)
; the lemma follows easily from this.

Each stage consists of two substages and is structured as follows. In the first substage, the
exact learning algorithm draws a random restriction ρ← Rp. By a standard multiplicative
Chernoff bound (using p ≥ 8

n ) we have that |ρ−1(∗)| < pn/2 with probability at most
exp(−pn/8) < e−1; if |ρ−1(∗)| < pn/2 then this stage ends in failure, otherwise the algorithm
continues to the second substage (described in the next paragraph). Let Cρ be the subcube
of {0, 1}n (of dimension |ρ−1(∗)| and containing 2|ρ−1(∗)| many points) corresponding to the
live variables of ρ, and let Cρ,translates be the set of all 2|n−ρ−1(∗)| many disjoint translates
of Cρ which together cover {0, 1}n. We say that a translate Cρ + z ∈ Cρ,translates (viewing
addition as being over F2) of Cρ is bad if the translated restriction ρ+ z (whose ∗’s are in
the exact same locations as those of ρ) corresponding to Cρ + z is such that f � (ρ+ z) does
not belong to C′, and we say that ρ is bad if more than a 4α(n) fraction of the 2|n−ρ−1(∗)|

translates of Cρ are bad. By Markov’s inequality applied to (2), we have that ρ ← Rp
is bad with probability at most 1/4. We thus have that with overall probability at least
1− 1/4− e−1 > 0.35 over the draw of ρ← Rp, the stage proceeds to the second substage
with a restriction ρ that is not bad (and that satisfies |ρ−1(∗)| ≥ pn/2).

In the second substage, the exact learning algorithm then runs 2|n−ρ−1(∗)| copies of
algorithm A in parallel, each one to learn the (` = |ρ−1(∗)|)-variable function which is
f � (Cρ + z) for one of the translates of Cρ. This can be done using equivalence queries only:
the overall hypothesis at each time step is obtained from the 2|n−ρ−1(∗)| many hypotheses
(one for each subcube) in the obvious way. Each counterexample received allows one of
the 2|n−ρ−1(∗)| copies of algorithm A (the one running over the subcube that received the
counterexample) to update its hypothesis. Let M(`) ≤ T (`) be the maximum number of
counterexamples that A can ever receive when it is run on a function in C′`. Within each
subcube, if the copy of A running in that subcube receives more than M(`) counterexamples,
then since that subcube must be bad, the overall exact learning algorithm switches from
running A on that subcube to running a naive equivalence-query learning algorithm that
simply builds a truth table (and takes time at most poly(n) · 2|ρ−1(∗)|, the number of points
in the subcube).
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The second substage carries out this process until either
(i) no counterexample is provided (meaning that all 2|n−ρ−1(∗)| copies of the algorithm

have obtained an exactly correct hypothesis, and thus the overall combined hypothesis
is exactly correct and the stage succeeds), or

(ii) more than 4α(n)2n−` copies of the algorithm have each received more than M(`)
counterexamples; since this can only happen if ρ is bad, in this case the stage halts and
ends in failure.
We observe that case (i) must occur if ρ is not bad, and hence case (i) occurs and the

stage succeeds with overall probability at least 0.35. In either case the running time for the
stage is at most

poly(n) ·
(

2|n−`| · T (`) + 4α(n)2n−` · (T (`) + 2`)
)

< poly(n) ·
(

2|n−`| · T (`) + 4α(n)2n−` · (2 · 2`)
)

< poly(n) ·
(

2n−pn/2 · T (pn/2) + α(n) · 2n
)

time steps, where the first summand on the LHS upper bounds the total running time of all
the learning algorithms that are running over non-bad subcubes, and the second summand
bounds the total running time of all the learning algorithms that are running over the (at
most 4α(n)2n−`) many bad subcubes. As discussed at the beginning of the proof, this
establishes the lemma. J

3.1 An application of Lemma 3: learning LTF-of-AC0 and Parity-of-AC0

In this subsection we use Lemma 3 to obtain non-trivial exact learning algorithms for
LTF-of-AC0 and Parity-of-AC0 circuits. As discussed at the start of Section 3, it does not
seem possible to obtain a non-trivial exact learning algorithm for LTF-of-AC0 using known
uniform-distribution learning results. The learning algorithm for Parity-of-AC0 that we give
in this subsection achieves significantly better savings than the algorithm from Section 2.1,
and moreover does not require membership queries.

In order to apply Lemma 3 we need a suitable switching lemma from C to C′ and a
learning algorithm for C′. Looking ahead, for LTF-of-AC0 the class C′ will be the class
of low-degree polynomial threshold functions, and for Parity-of-AC0 it will be the class of
low-degree F2 polynomials. We can use the same switching lemma for both results; to
describe the switching lemma we need, we recall some terminology from [18]. Let G be a
family of Boolean functions. A decision tree T is said to be a common `-partial decision tree
for G if every g ∈ G can be expressed as T with depth-` decision trees hanging off its leaves.
(Equivalently, for every g ∈ G and root-to-leaf path π in T , we have that g � π is computed
by a depth-` decision tree.)

If g is a Boolean function and C is a class of circuits, we say that g is computed by a
(t, C)-decision tree if g is computed by a decision tree of depth t (with single Boolean variables
xi at internal nodes as usual) in which each leaf is labeled by a function from C. We write
DTk to denote the class of depth-k decision trees.

We use a recent powerful switching lemma for multiple DNFs due to Håstad [18] (a similar
switching lemma was independently obtained by [21]):3

3 We note that this multi-switching lemma is the key technical ingredient in [41]’s sharpening of the [29]
Fourier concentration result which gave our AC0 learning result in Section 2.1.
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I Theorem 4 ([18] multi-switching lemma). Let F = {F1, . . . , FS} be a collection of depth-2
circuits with bottom fan-in w. Then for any t ≥ 1,

Pr
ρ←Rp

[
F � ρ does not have a common (logS)-partial DT of depth ≤ t

]
≤ S(24pw)t.

We will use the following simple corollary for AC0 circuits augmented with some gate G
on top as our “switching lemma from C to C′” in Lemma 3 (see Appendix A for the proof):

I Corollary 5. Let G be any Boolean function, and let F be a size-S depth-(d+ 1) G ◦ AC0

circuit (where we view G as a single gate at the output of the circuit). Then for p =
1
48 (48 logS)−(d−1) and any t ≥ 1,

Pr
ρ←Rp

[
F � ρ is not computed by a (2dt, G ◦ DTlogS)-decision tree

]
≤ d · S · 2−t.

For the exact learning results we need, we recall the following well-known facts (the first
follows easily from [31], see e.g. [19], and the second follows easily from Gaussian elimination):

I Fact 6.
1. There is an exact learning algorithm (using equivalence queries only) that learns degree-d

polynomial threshold functions (PTF) over ` Boolean variables in time poly(
(
`
≤d
)
).

2. The same running time holds for exact learning degree-d F2 polynomials (again using
equivalence queries only).

All the pieces are now place for our exact learning algorithms for LTF-of-AC0 and
parity-of-AC0:

I Theorem 7.
1. There is an exact learning algorithm (using equivalence queries only) that learns the class

of size-S depth-(d+ 1) LTF-of-AC0 circuits over {0, 1}n in time S · 2n−n/O(logS)d−1 .
2. The same running time holds for exact learning size-S depth-(d+ 1) Parity-of-AC0 (again

using equivalence queries only).

Proof. We prove part (1) first (part (2) is almost identical). Let C′ be the class of all PTFs
of degree 2dt+ logS (where t will be chosen later). We observe that any LTF ◦DTlogS circuit
computes a PTF of degree logS, and moreover that any (2dt, LTF ◦ DTlogS)-decision tree
computes a PTF of degree 2dt+logS. Applying part (1) of Fact 6, Corollary 5, and Lemma 3
with p as in Corollary 5 and choosing t = 0.1pn/(2 ·2d), we get the desired learning algorithm.
Part (2) follows similarly but now using the observation that any (2dt,PAR◦DTlogS)-decision
tree computes an F2 polynomial of degree 2dt+ logS. J

4 Learning with non-trivial savings via Nečiporuk’s method

In this section we present our third technique for learning with non-trivial savings. This
technique is based on Nečiporuk’s method, which gives a lower bound on the complexity
of a function f (in various computational models such as formula size, branching program
size, etc.) in terms of the number of subfunctions of f . In more detail, Nečiporuk’s theorem
essentially says that if the variables of f can be partitioned into disjoint subsets S1, S2, . . .

such that the product, across all i, of (the number of distinct subfunctions than can arise
when all variables in [n] \ Si are fixed to constants in all 2n−|Si| possible ways) is large,
then f must have high complexity. Our technique is based on a contrapositive view: if
f is a function of “not too high” complexity, then in any partition of the variables into
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“large” equal-size subsets, S1, S2, . . . there must be some Si over which f has “not too many”
distinct subfunctions – in particular, far fewer than 2n−|Si|, the number of distinct subcubes
corresponding to the restrictions that fix all variables in [n] \Si. We show that this structure
(having “few” subfunctions over a “large” subset of variables) can be exploited to learn f
with non-trivial savings.

Warmup: Compression

In Section 4.1 we first develop this idea for the easier problem of compression rather than
learning. We obtain a new and simpler algorithm and analysis recovering the deterministic
compression results of [12] for n1.99-size full-basis binary formulas and n1.99-size branching
programs. ([12] had to develop new high-probability analyses of shrinkage under random
restrictions using novel martingale arguments and combine these analyses with a generalization
of the greedy set-cover heuristic, whereas we only use the statement of Nečiporuk’s theorem
in a black-box way together with short and elementary arguments.) Thanks to the generality
of Nečiporuk’s method, our algorithm and analysis also yields new deterministic compression
results for switching networks of size n1.99, switching-and-rectifier networks of size n1.49,
non-deterministic branching programs of size n1.49, and span programs of size n1.49.

Learning

Progressing from compression to learning, next in Section 4.2 we describe how pre-processing
can be used to create a data structure which enables a highly efficient implementation of the
classic “halving algorithm” from learning theory. While a naive implementation of the halving
algorithm to learn an unknown function from a class of N functions over an M -element
domain takes time O(NM), we show that by first carrying out a pre-processing step taking
time MO(logN) it is possible to run the halving algorithm in time only poly(logN, logM),
an exponential savings. This means that if we need to run the halving algorithm many
times, by first running the pre-processing step (which needs to be done only once) we can
carry out these many runs of the halving algorithm in a highly efficient amortized way.
Intuitively, running the halving algorithm many times is precisely what we need to do in our
Nečiporuk-based learning approach: if S is the “large” subset of variables such that f has
“not too many” subfunctions over S, then we will run the halving algorithm 2n−|S| times,
once for each possible subcube keeping the variables in S free, to learn the corresponding
2n−|S| different restrictions of f .

Finally, in Section 4.3 we describe and analyze our general learning algorithm based on
Nečiporuk’s method. The algorithm has three stages: in the first stage, membership queries
are used to randomly sample subcubes corresponding to S, which are exhaustively queried to
learn the subfunctions they contain. In this way the first stage constructs a set A containing
all “important” subfunctions (ones that occur in “many” subcubes); crucially, thanks to the
Nečiporuk argument, the set is not too large (since there are “few” distinct subfunctions in
total, important or otherwise). The second stage performs the above-described pre-processing
on the set A of subfunctions, and the third stage runs the halving algorithm over all 2n−|S|
subcubes corresponding to S in the efficient amortized way described above. This results in a
hypothesis which is exactly correct on every subcube containing an “important” subfunction;
by definition there are only “few” subcubes that contain non-important subfunctions, and
the hypothesis can be patched up on those subcubes at relatively small cost.
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4.1 Compression based on having few subfunctions
Given f : {0, 1}n → {0, 1} and S ⊆ [n], let RS denote the set of all 2n−|S| restrictions that
leave precisely the variables in S free and assign either 0 or 1 to each element of [n] \ S in all
possible ways. Let Num(f, S) denote the number of distinct functions from {0, 1}S to {0, 1}
that occur in {f � ρ}ρ∈RS (i.e. that occur as subfunctions of f).

I Lemma 8 (Compression based on few subfunctions). Fix any partition S1, S2, . . . , Sn1−δ of
[n] into equal-size subsets Si of size nδ each, where δ > 0. Let C be a class of n-variable
functions such that for each f ∈ C there is a set Si such that Num(f, Si) ≤ 2nβ , where β < 1.
Then there is a compression algorithm for C running in time 2O(n) with savings nδ (i.e. given
as input the truth table of any f ∈ C, the algorithm outputs a circuit computing f of size
poly(n) · 2n−nδ).

Proof. Fix f ∈ C, and say that any i ∈ [n1−δ] for which Num(f, Si) ≤ 2nβ is good. The
compression algorithm works as follows:
1. For i = 1, 2, . . . check whether i is good by building a sorted list of all the distinct

subfunctions occuring in {f � ρ}ρ∈RSi . This can be done in time 2O(n). The hypothesis of
the lemma ensures that some i is good; in the following steps for notational simplicity we
suppose that i = 1 is good. So at this point the algorithm has a sorted list L containing
at most 2nβ truth tables (each being an 2nδ -bit string), and for every ρ ∈ RS1 the truth
table of f � ρ is in the list.

2. Iterate across all ρ ∈ RS1 to construct a function Φ : RS1 → [2nβ ] such that for
each ρ ∈ RS1 the value of Φ(ρ) is the index j such that the truth table of f � ρ is
the j-th element of the list L. (Note that the description length of the function Φ is
|RS1 | · log(2nβ ) = poly(n) · 2n−nδ .) This can be done in time 2O(n).

3. Finally, the compression algorithm outputs a circuit which works as follows: given
input x ∈ {0, 1}n, let ρx be the element of RS1 that is consistent with x (fixing the
variables in [n] \ S1 according to x). The circuit outputs the appropriate output bit
(corresponding to the bit-string x restricted to the coordinates in S1) from the Φ(ρx)-th
truth table of L. This circuit computes f and is of size poly(n) · (|RS1 | + 2nδ · |L|) =
poly(n) · (2n−nδ + 2nδ · 2nβ ) ≤ poly(n) · 2n−nδ , and this step can be done in time 2O(n).

J

Given Lemma 8, a direct invocation of the lower bounds provided by Nečiporuk’s method
for various computational models gives the following corollary, providing a wide range of
deterministic compression results. We refer the reader to [23] for detailed definitions of all
the computational models mentioned in Corollary 9.

I Corollary 9. Boolean n-variable functions computable by computational model A of size S
are compressible in time 2O(n) to circuits of size at most 2n−nε for a fixed ε > 0, where
1. A = full-basis binary formulas, S = n1.99;
2. A = branching programs, S = n1.99;
3. A = switching networks, S = n1.99;
4. A = switching-and-rectifier networks, S = n1.49;
5. A = non-deterministic branching programs, S = n1.49;
6. A = span programs, S = n1.49.

Proof. We first give the argument for (1), full-basis binary formulas and S = n1.99. We take
δ = 0.004 in Lemma 8, so 1− δ = 0.996. Let f be any n-variable function with a full-basis
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binary formula of size at most n1.99. We recall that Nečiporuk’s lower bound for full-basis
formula size of f (denoted L(f)) implies that

1
4

n0.996∑
i=1

log(Num(f, Si)) ≤ L(f) ≤ n1.99,

so there is some i ∈ [n0.996] such that log(Num(f, Si)) ≤ 4n0.994 < n0.995, so we have
β = 0.995 and obtain the claimed compression result from Lemma 8.

The arguments for (2) and (3) follow similarly, using

τ ·
n0.996∑
i=1

log(Num(f, Si))
log log(Num(f, Si))

≤ S(f) ≤ BP (f)

(see e.g. Theorem 15.1 of [23]) for some absolute constant τ , where BP (f) denotes the
branching program size of f and S(f) denotes the switching network size of f .

(4) and (5) also follow similarly, recalling that Nečiporuk’s method gives

1
4 ·

n0.996∑
i=1

√
log(Num(f, Si)) ≤ RS(f) ≤ NBP (f)

(see [34]), where RS(f) denotes the rectifier-and-switching network size of f and NBP (f)
denotes the non-deterministic branching program size of f . Finally, for (6) we recall that

1
2 ·

n0.996∑
i=1

√
log(Num(f, Si)) ≤ SPAN(f)

(see Theorem 1 of [25]), where SPAN(f) denotes the span program size of f . J

4.2 More efficient implementation of the halving algorithm via
pre-processing

We begin by recalling the halving algorithm [3, 2, 30] and its running time when it is executed
over a domain X of M points to learn an unknown function that is promised to belong to a
set C of at most N (known) functions, where each function in C may be viewed simply as
a truth table of length M . (In the context of the previous subsection the domain size M
corresponds to 2nδ , the number of points in each subcube, and N corresponds to 2nβ , the
number of subfunctions.) Recall that after a set A of labeled examples has been received,
the version space of A is the subset of functions in C that are consistent with A. At each
stage in the halving algorithm’s execution, its current hypothesis is the majority vote over
the version space of the labeled examples received thus far. Before any counterexamples
have been received, initially the version space is all of C; thus the first thing that the halving
algorithm does is spend NM time to (a) read the entire bit-matrix corresponding to the
current version space C (think of this matrix as having N columns, which are the truth
tables of the functions in the class, and M rows corresponding to the points in the domain)
and (b) for each row compute and record the majority vote over the elements in this row
(which is the initial hypothesis). The halving algorithm gets a counterexample, and then
updates its version space; since its hypothesis was the majority vote of all functions in the
previous version space, at least half of the columns (the functions that are inconsistent with
the counterexample) are erased, and the size of the version space goes down by at least 1/2.
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To form the next hypothesis the halving algorithm spends at most (N/2)M time to read
the matrix corresponding to the current version space and for each row compute and record
the majority vote over the surviving elements in this row. This proceeds for at most logN
steps, after which the version space must be of size one, and this sole surviving function
must be the unknown target function. In the i-th stage the time required is (N/2i)M so the
overall runtime is O(NM). (Note that if the halving algorithm were performed separately
and independently Z times (corresponding in our setting to the Z = 2n−|S| many distinct
subcubes), the overall runtime would be ZNM > 2n, which is too expensive for learning
with non-trivial savings.)

The following lemma shows that the halving algorithm can be implemented exponentially
more efficiently after an initial pre-processing stage. (Crucially, the pre-processing can
be done only once even if the halving algorithm will be run many times; this leads to a
tremendous amortized savings.) While simple, we are not aware of previous work giving an
efficient amortized implementation of the halving algorithm.

I Lemma 10. Given a class C of N functions over an M-point domain X, there is a
pre-processing procedure that (i) can be carried out in time MO(logN) and (ii) creates a data
structure DS such that given access to DS, the halving algorithm can be run to learn an
unknown f ∈ C in time poly(logN, logM). (Consequently, given access to DS, the halving
algorithm can be run Z times to learn a sequence f1, . . . , fZ of functions from C in total time
Z · poly(logN, logM).)

Proof. We first describe the data structure DS and then establish (i) by explaining how it
can be constructed in MO(logN) time. We then establish (ii) by showing how DS can be used
to run the halving algorithm efficiently.

The data structure DS

We say that a size-i sample is a set of precisely i labeled pairs (x1, y1), . . . , (xi, yi) where
x1, . . . , xi may be any i distinct elements of X and (y1, . . . , yi) may be any bit-string in {0, 1}i.
We write SAMPi to denote the set of all size-i samples, so |SAMPi| =

(
M
i

)
· 2i ≤ (2M)i.

Observe that some elements of SAMPi may not be consistent with any function f ∈ C, while
others may be consistent with many elements of C.

The data structure DS consists of logN different “structures” which we refer to as
S0, . . . ,S1+logN . The i-th structure Si is a set of (at most) (2M)i many “i-substructures”
{Si,samp}samp∈SAMPi which are indexed by elements of SAMPi. Given an element samp =
{(x1, y1), . . . , (xi, yi)} ∈ SAMPi, an i-substructure Si,samp has two parts: the “main part”
MAIN(Si,samp) and one additional function (which we explain and give notation for below).
The main part MAIN(Si,samp) is the subset of C that contains precisely those concepts in
C that are consistent with samp, i.e. those functions f ∈ C that have f(xj) = yj for all
j ∈ [i]. The one additional function is MAJ(MAIN(Si,samp)), the function that outputs, on
any input x ∈ X, the majority vote over all the concepts in MAIN(Si,samp). This concludes
the description of a generic i-substructure Si,samp, and thus concludes the description of the
i-th structure Si.

For example, the zeroth structure S0 consists of only one 0-substructure (since there is
only one “empty sample” with no labeled pairs); call this 0-substructure S0,samp∅ . We have
MAIN(S0,samp∅) = C (since every concept is consistent with the empty sample) and the one
additional function is just the first hypothesis that the halving algorithm uses, the majority
vote across C.
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Construction of DS

Suppose that Si−1, the (i − 1)-st structure, has been constructed by the pre-processing
procedure. The structure Si is built from Si−1 as follows. Si has exactly 2i

(
M
i

)
substructures,

one for each possible samp of size i. Consider such a samp = {(x1, y1), . . . , (xi, yi)}, and
let samp′ be {(x1, y1), . . . , (xi−1, yi−1)}, its length-(i − 1) prefix. Since MAIN(Si−1,samp′)
has been constructed already as part of Si−1, given xi it is easy to enumerate over the
functions in MAIN(Si−1,samp′) and partition them into two groups; the functions f for
which f(xi) = 0 will go into MAIN(Si−1,samp′∪{(xi,0)}) and the ones for which f(xi) = 1
will go into MAIN(Si−1,samp′∪{(xi,1)}). Finally once we have MAIN(Si−1,samp′∪{(xi,yi)}) it is
straightforward to read the corresponding matrix and construct the one additional function
MAJ(MAIN(Si−1,samp′∪{(xi,yi)})). It is not hard to see that the total size of Si, and the total
time required to build it from Si−1, is at most (2M)i ·O(NM). Even when i = logN this is
at most O(N ·M logN ·NM) = MO(logN).

Using DS to run the halving algorithm efficiently

Now we describe how to emulate the halving algorithm in total time poly(logN, logM) given
access to the structures S0, . . . ,SlogN . The initial hypothesis of the halving algorithm is the
additional function MAJ(MAIN(S0,samp∅)), i.e. the majority vote over all functions in C, so
the emulator for the halving algorithm need only “point to” this portion of DS to construct
its initial hypothesis. On receiving a first labeled counterexample (x1, y1), the hypothesis
of the halving algorithm is then precisely MAJ(MAIN(S1,{(x1,y1)})); conveniently, this has
been pre-computed as part of S1, so the emulator again only needs to point to this portion
of DS to construct its second hypothesis. On receiving a second labeled counterexample
(x2, y2), the emulator updates its hypothesis by pointing to MAJ(MAIN(S2,{(x1,y1),(x2,y2)}))
as its hypothesis, and so on. This goes on for at most logN stages, and it is clear that each
stage requires time at most poly(logN, logM), giving (ii) as claimed. J

4.3 The general learning result based on Nečiporuk’s method
With Lemma 10 in hand, we are ready to state and prove our general learning result based
on Nečiporuk’s method. As suggested earlier, the approach is to first do random sampling
to identify the “important” subfunctions (ones which occur in many subcubes), then run
the pre-processing procedure using these important subfunctions and the halving algorithm
to efficiently learn over all subcubes containing important subfunctions, patching up the
hypothesis on any subcubes that do not contain important subfunctions.

I Lemma 11 (Learning based on few subfunctions). Fix any partition S1, S2, . . . , Sn1−δ of
[n] into equal-size subsets Si of size nδ each, where δ > 0. Let C be a class of n-variable
functions such that for each f ∈ C there is a set Si such that Num(f, Si) ≤ 2nβ , where β < 1
and moreover β + δ < 1. Then there is a randomized exact learning algorithm for C that uses
membership and equivalence queries and achieves savings nδ.

Proof. We describe a randomized learning algorithm which works on S1 and achieves the
claimed runtime bound with high probability if Num(f, S1) ≤ 2nβ . If the algorithm runs
for more than the claimed number of steps while working on S1, it aborts and restarts, this
time working on S2, and so on. Hence in the following discussion we assume without loss of
generality that Num(f, S1) ≤ 2nβ .

The learning algorithm works on S1 in three stages as described below.
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First stage: Identify important subfunctions

Recall that RS1 is the set of all 2n−|S1| = 2n−nδ restrictions that leave precisely the variables
in S1 free. Let g1, . . . , gNum(f,S1) be the subfunctions that occur in {f � ρ}ρ∈RS1

. For
i ∈ [Num(f, S1)] let pi denote the fraction of the 2n−nδ subcubes in RS1 that have gi as the
subcube there. We say that a subfunction gi is important if pi ≥ ε/(10 · Num(f, S1)) (we
will specify the value of ε later). Let F ′ ⊆ {g1, . . . , gNum(f,S1)} be the set of all important
subfunctions.

In the first stage we draw A := 20n · 2nβ/ε independent uniform random elements of RS1 ,
and for each one we spend 2nδ many membership queries to exhaustively learn the associated
truth table in time poly(n) ·2nδ ; let F ⊆ {g1, . . . , gNum(f,S1)} be the set of all the subfunctions
that are discovered in this way. For any given fixed important subfunction, the probability
that it is not included in F is at most (1−ε/(10 ·Num(f, S1)))A ≤ (1−ε/(10 ·2nβ ))A < 1/22n,
so a union bound over all (at most 2nβ ) important subfunctions gives that with probability
at least 1− 1/2n the set F contains the set F ′ of important subfunctions (for the rest of the
algorithm’s analysis and execution we suppose that indeed F contains F ′). We observe that
by the definition of F ′, at most an ε/10 fraction of all ρ ∈ RS1 are such that f � ρ do not
belong to F ′, and hence at most an ε/10 fraction of all ρ ∈ RS1 are such that f � ρ do not
belong to F .

Note that the total running time for the first stage of the algorithm is 2nδ ·poly(n) ·2nβ/ε.

Second stage: Do the pre-processing on F

Next, the algorithm performs the pre-processing described in the previous subsection on the
N = |F | functions in F , each of which is defined over the M = 2nδ -size domain {0, 1}S1 .
Since N ≤ 2nδ we have that this takes time at most MO(logN) < 2O(nβ ·nδ).

Third stage: Run the halving algorithm in parallel over all Z := 2n−nδ subcubes in
RS1 using the data structure DS from Lemma 10

In the amortized analysis of the halving algorithm with pre-processing given in the previous
subsection, we assumed that every execution of the halving algorithm was performed on a
target function that actually belonged to the class C. In our current setting there may be up
to (ε/10) · 2n−nδ many subcubes that contain functions that are not in F . When the halving
algorithm is run over a subcube that contains a subfunction in F , it will correctly converge
to the target subfunction over that subcube after at most logN ≤ nβ many counterexamples,
and the efficient implementation of the halving algorithm via pre-processing will work correctly
over that subcube. This will happen on at least 1− ε/10 fraction of all 2n−nδ subcubes. For
the remaining (at most (ε/10) · 2n−nδ ) subcubes that have a subfunction not on our list, the
halving algorithm may not work correctly. If, in a given subcube, the version space ever
vanishes (note that if this happens it must happen after at most logN counterexamples from
that subcube), or it has size greater than one after logN counterexamples, then it must be
the case that that subcube’s subfunction does not belong to F . In this case the algorithm
uses 2nδ membership queries to “patch up” the hypothesis over this subcube (which can be
done in time poly(n) · 2nδ). This happens for at most (ε/10) · 2n−nδ subcubes. Thus, the
total running time of this stage will be at most

(time on subcubes with subfunctions in F ) + (time on other subcubes)

≤ Z · poly(logN, logM)) + (ε/10) · 2n−n
δ

· poly(n) · 2n
δ

≤ poly(n) ·
(

2n−n
δ

+ (ε/10) · 2n
)
.
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Hence the total running time for all stages can be upper bounded by

2n
δ

· poly(n) · 2n
β

/ε+ 2O(nβ ·nδ) + poly(n) ·
(

2n−n
δ

+ (ε/10) · 2n
)
.

Recalling that by assumption β + δ < 1, we may take ε = 2−n/2, and the overall running
time is at most poly(n) · 2n−nδ . J

4.4 Instantiating Lemma 11 using Nečiporuk’s lower bounds
The proof of Corollary 9 extends unchanged to give our concrete learning results based on
Nečiporuk’s lower bounds:

I Corollary 12. There is a randomized exact learning algorithm, using membership and
equivalence queries, to learn Boolean n-variable functions computable by computational model
A of size S in time 2n−nε for a fixed ε > 0, where A and S can be instantiated as in items
(1)–(6) of Corollary 9.

5 Conclusion

We initiated the study of learning algorithms with non-trivial savings and gave a range
of such learning algorithms for various natural circuit classes. There are many intriguing
problems left open by our work, we list a few.

Our learning algorithms of Sections 3 and 4 are based on influential lower bound techniques
in circuit complexity, namely the method of random restrictions and Nečiporuk’s lower
bound method. Can other proof techniques from circuit complexity, such as Razborov’s
method of approximations for monotone circuit lower bounds [35, 36] or the “polynomial
method” for various classes of constant-depth circuits [5], similarly be leveraged to obtain
non-trivial learning algorithms?
Related to the previous item, there are several prominent circuit classes for which lower
bounds are known but we do not yet have non-trivial learning algorithms; examples
include intersections of poly(n) many LTFs, de Morgan formulas of size n2.99, monotone
formulas of significantly sublinear depth, monotone circuits of polynomial size, etc. Can
we develop learning algorithms with nontrivial savings for these classes?
We strongly suspect that many of our learning results, specifically the ones for AC0,
LTF-of-AC0, parity-of-AC0, and all the classes covered by Corollary 12, are best possible
given the state of the art of circuit lower bounds. If we had deterministic learning
algorithms then this would follow from the work of [28] (see their Theorem 1). Is it
possible to design deterministic algorithms for these classes (or alternatively, to extend
Theorem 1 of [28] to cover randomized learning algorithms)?
Finally, we close with an ambitious twist on the previous bullet: in the spirit of recent
celebrated work [43, 44] wringing exciting new circuit lower bounds from non-trivial
satisfiability algorithms, is it possible to leverage ideas from non-trivial learning algorithms
to obtain new circuit lower bounds?
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A Proof of Corollary 5

Proof. We shall assume that the depth-(d+ 1) circuit F is layered, meaning that for any gate
g it contains, every directed path from an input variable to g has the same length (converting
an unlayered circuit to a layered one increases its size only by a factor of d). We prove the
corollary with a failure probability of S · 2−t for such layered circuits. Let Si denote the
number of gates in layer i (at distance i from the inputs), so S = S1 + · · ·+ Sd.

We begin by trimming the bottom fan-in of F : applying Theorem 4 with F being the
S1 many bottom layer gates of F (viewed as depth-2 circuits of bottom fan-in w = 1) and
p0 := 1/48, we get that

Pr
ρ←Rp0

[
F � ρ is not a (t, G ◦ AC0(depth d, bottom fan-in logS))-decision tree

]
≤ S1 · 2−t.

Let F (0) be any good outcome of the above, a (t, G ◦ AC0(depth d, bottom fan-in logS))-
decision tree. Note that there are at most 2t many AC0(depth d, fan-in logS) circuits at the
leaves of the depth-t decision tree. Applying Theorem 4 to each of them with p1 := 1/(48 logS)
(and the ‘t’ of Theorem 4 being 2t) and taking a union bound over all 2t many of them, we
get that

Pr
ρ←Rp1

[
F (0) � ρ is not a (t+ 2t, G ◦ AC0(depth d− 1, fan-in logS))-decision tree

]
≤ S2 · 2−2t · 2t = S2 · 2−t.

Repeat with p2 = . . . = pd−1 := 1/(48 logS), each time invoking Theorem 4 with its ‘t’
being the one more than the current depth of the decision tree, so at the j-th invocation
Theorem 4 is invoked with its ‘t’ being 2j−1. The claim then follows by summing the S12−t,
S22−t, . . . , Sd2−t failure probabilities over all d stages and the fact that

d−1∏
j=0

pi = 1
48 ·

1
(48 logS)d−1 . J
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