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Abstract
We consider the problem of clearing a system of interconnected banks that have been exposed to
a shock on their assets. Eisenberg and Noe [9] showed that when banks can only enter into simple
debt contracts with each other, then a clearing vector of payments can be computed in polyno-
mial time. In this paper, we show that the situation changes radically when banks can also enter
into credit default swaps (CDSs), i.e., financial derivative contracts that depend on the default of
another bank. We prove that computing an approximate solution to the clearing problem with
sufficiently small constant error is PPAD-complete. To do this, we demonstrate how financial net-
works with debt and CDSs can encode arithmetic operations such as addition and multiplication.
Our results have practical impact for network stress tests and reveal computational complexity
as a new concern regarding the stability of the financial system.
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1 Introduction

We consider systems of banks (or other financial institutions) that are connected by financial
contracts. Due to a shock on their assets, some of the banks may not be able to meet their
obligations towards other banks, thus forcing them into bankruptcy (or default). We study
the clearing problem in this setting, i.e., the problem of computing a collection of payments
between each pair of banks that are in accordance with standard bankruptcy law. Since
banks’ contractual relationships can be complex and are often cyclic, designing good clearing
mechanisms is a nontrivial task.1

In their seminal paper, Eisenberg and Noe [9] devised an efficient clearing mechanism
for financial systems. Their mechanism relies on the assumption that banks can only enter
into simple debt contracts, i.e., loans from one bank to another. We argue, however, that the
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growing importance of financial derivative contracts makes it necessary to reconsider the
question if today’s financial networks can still always be efficiently cleared. Specifically, credit
default swaps (CDSs), which are contracts that are only triggered when a reference entity
goes into default, have received only little attention in a network context so far. Market
participants use CDSs to insure themselves against a default of the reference entity or to
place a speculative bet on this event. Because the reference entity can itself be a financial
institution, CDSs create new dependencies that do not exist in pure debt networks.

In prior work [17], we have shown that if no money is lost in the bankruptcy process
(i.e., banks do not incur default costs), then clearing payments always exist. However, our
proof uses a non-constructive fixed point argument so that the question remained open if one
could devise an efficient algorithm to actually find a clearing payment vector in this case.

In the present paper, we answer this question in the negative: we show that the problem
FindClearing of finding an approximately clearing vector of payments in a financial network
with debt and CDSs and without default costs is PPAD-complete even for a sufficiently
small constant error bound. This implies that the problem does not have a polynomial-
time approximation scheme (PTAS) unless P=PPAD and thus needs to be considered
computationally intractable.

More in detail, we proceed as follows: we first describe a simplified variant of our model
from [17] that only applies to the case without default costs (Section 3). We next argue
that since solutions to the clearing problem can be irrational, FindClearing needs to
be considered as an approximation problem. We define the notion of an ε-approximately
clearing vector and we show that it makes the FindClearing problem well-posed and a
member of PPAD (Section 4). Having done this, we describe our main contribution, namely
a reduction from the problem of finding an approximate solution of a generalized circuit to
FindClearing, establishing that FindClearing is PPAD-hard. We do this by composing
financial system gadgets, i.e., fragments of financial networks that encode specific operations
such as addition, subtraction, scaling, comparison, and Boolean operations like NOT and
OR (Section 5).

Our results contribute to the literature on complexity in financial networks [3]. By
studying financial networks from a computation perspective, we are able to accurately
describe the effect of introducing a new class of financial products into the system in terms
of computational complexity. Our hardness result has practical relevance for stress tests, in
which regulators such as the European Central Bank evaluate the stability of the financial
system under an array of adverse economic scenarios. We argue that, because of the complex
interdependencies in real financial networks, future stress tests should take network effects
into account, which would essentially require regulators to compute clearing payments. The
approximation quality would be defined by the regulator and must thus be kept flexible.
The fact that no PTAS for the clearing problem exists (unless P=PPAD) now implies that
financial networks with CDSs cannot be reliably stress tested, which by itself poses a risk to
the stability of the financial system.

2 Related Work

Prior work on financial networks has primarily focused on financial contagion, i.e., how
small shocks may amplify to system-wide losses. Researchers have studied which network
topologies are particularly susceptible to such effects [2, 10, 1] as well as developed measures
for an individual bank’s contribution to the risk of contagion [1, 4, 12].

The clearing problem was first studied by Eisenberg and Noe [9], who showed that in
debt networks without default costs, clearing payments always exist and can be computed
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in polynomial time. Rogers and Veraart [14] extended their result to debt networks with
default costs.

Since all aforementioned pieces of work use a weighted graph as the underlying model of
the financial network, they cannot accurately represent the ternary relationship introduced
by a credit default swap between the holder, the writer, and the reference entity. We filled
this gap in prior work [17] by devising a new model that can represent networks of debt and
CDSs. We showed that the clearing problem in these networks is significantly more complex
than in the debt-only case: if default costs are present, then clearing payments may not even
exist and it is NP-hard to decide if they do. In the present paper, we study the case without
default costs.

An extension of the clearing problem is to determine the maximum total loss an adversary
could inflict on a financial system given a budget of shocks to banks. The problem is known
[11] to be intractable in cross-ownership networks (which are similar to debt networks) despite
the clearing problem being solvable in polynomial time.

The PPAD complexity class [13] is best known for the problem of computing a Nash
equilibrium, the hardness of which was shown by reduction from generalized circuits [7, 5, 6,
15]. Our work builds on this technique, and in particular on Rubinstein’s [15] PPAD-hardness
result for constant accuracy. To the best of our knowledge, we are the first to implement
generalized circuits using financial networks and, together with our prior work on the case
with default costs, we are the first to present a computational complexity result for the
clearing problem in financial networks.

3 Formal Model

Our model is based on the model by Eisenberg and Noe [9], which was restricted to debt
contracts. We define an extension to credit default swaps. We adjust the notation where
necessary. The model used in this paper is a simplified version of the one we previously
introduced in [17], where default costs were also modeled. In this paper, we only consider
financial systems without default costs.

We consider a two-period model:
Period 0: Each bank receives an initial endowment called its external assets. Banks enter
into bilateral contracts with each other. No bank is in default.
Period 1: Banks’ external assets change due to an exogenous shock. All banks must
make payments according to their contractual commitments from period 0 and the new
external assets.

We define the elements of the financial system in period 1.

Banks and External Assets

We denote by N a finite set of n banks. For any bank i P N let ei ě 0 denote the external
assets of i as of period 1. Let e “ peiqiPN denote the vector of all external assets.

Contracts

There are two types of contracts: debt contracts and credit default swap contracts (CDSs).
Every contract gives rise to a conditional obligation to pay a certain amount, called a liability,
from its writer to its holder. Banks that are unable to fulfill their obligations are said to
be in default. The recovery rate ri of a bank i is the share of its liabilities it is able to pay.

ITCS 2017
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Thus, ri “ 1 if i is not in default and ri ă 1 if i is in default. Let r “ priqiPN denote the
vector of all recovery rates.

A debt contract obliges the writer i to unconditionally pay a certain amount to the holder
j in period 1. This amount is called the notional of the contract and is denoted by cHi,j . A
credit default swap obliges the writer i to make a conditional payment to the holder j in
period 1. The amount of this payment depends on the default of a third bank k, called the
reference entity. Specifically, the payment amount of the CDS contract from i to j with
reference entity k and notional cki,j is cki,j ¨ p1´ rkq.

Note that when banks enter into contracts, there would typically be an initial payment.
For example, debt contracts arise because the holder lends an amount of money to the writer,
and holders of CDSs pay a premium to obtain them. In our model, any initial payments
have been made in period 0 and are implicitly reflected by the external assets.

The contractual relationships between all banks are represented by a 3-dimensional matrix
c “ pcki,jqiPN, jPN, kPNYtHu. The entry cHi,j is the total notional of the debt contracts from
i to j and the entry cki,j for k P N is the total notional of CDS contracts from i to j with
reference entity k. Zero entries indicate the absence of the respective contract. The set of
contracts can alternatively be represented as an edge-weighted directed hypergraph.

We require that no bank enters a contract with itself (i.e., cki,i “ 0 for all k P N Y tHu

and i P N). We further require that any bank that is a reference entity in a CDS must be a
writer of some debt contract (i.e., for all i P N , if

ř

k,lPN c
i
k,l ą 0, then

ř

jPN c
H

i,j ą 0). Both
requirements are needed to rule out pathological cases. They are always assumed to hold in
the following.

For any bank i, the creditors of i are the banks that are holders of contracts for which
i is the writer, i.e., the banks to which i owes money. Conversely, the debtors of i are the
writers of contracts of which i is the holder, i.e., the banks by which i is owed money. Note
that the two sets can overlap: for example, a bank could hold a CDS on one reference entity
while writing a CDS on another reference entity, both with the same counterparty.

Financial System Without Default Costs

A financial system without default costs (or, for the purpose of this paper just a financial
system) is a tuple pN, e, cq where N is a set of banks, e is a vector of external assets, and c is
a 3-dimensional matrix of contracts. The length of a financial system is the total number of
bits needed to describe the tuple, including all numeric values.

Liabilities, Payments, and Assets

Given a recovery rate vector r, for any two banks i, j, the liabilities of i to j at r are the
amount of money that i has to pay to j if recovery rates in the financial system are given by
r, denoted by li,jprq. They arise from the aggregate of all debt and CDS contracts from i

to j:

li,jprq :“ cHi,j `
ÿ

kPN

cki,j ¨ p1´ rkq.

The total liabilities of i at r are the aggregate of all liabilities that i has towards other banks
given the recovery rates r, denoted by liprq:

liprq :“
ÿ

jPN

li,jprq.
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Figure 1 Example financial system.

The actual payment pi,jprq from i to j at r can be lower than li,jprq if i is in default. By the
principle of proportionality, a bank that is in default makes payments for its contracts in
proportion to the respective liabilities:

pi,jprq :“ ri ¨ li,jprq.

The total assets aiprq of a bank i at r consist of its external assets ei and the incoming
payments to i:

aiprq :“ ei `
ÿ

jPN

pj,iprq.

Clearing Recovery Rate Vector

So far, r was just a candidate vector of recovery rates. We define what it means to be
clearing:

I Definition 3.1 (Clearing Recovery Rate Vector). A recovery rate vector r is called clearing
for a financial system without default costs X “ pN, e, cq if, for all banks i P N , we have:

ri “ min
ˆ

1, aiprq
liprq

˙

if liprq ą 0. (1)

We also call a clearing recovery rate vector a solution.

Note that recovery rates of banks with zero liabilities are left unconstrained. While
this might seem unintuitive at first, it corresponds exactly to our definition of the recovery
rate: if there are no liabilities, then the “share of its liabilities bank i is able to pay” is
not well-defined. Forcing the recovery rate to 1 in this case would introduce an artificial
discontinuity because aiprq

liprq
may converge to a value strictly below 1 while liprq converges to

zero.2,3

2 In the literature, (1) is often used directly as the definition of the recovery rate rather than “the share
of its liabilities bank i is able to pay.” Because we are always looking for a clearing recovery rate vector,
the two definitions coincide.

3 Eisenberg and Noe [9] define clearing payments, rather than recovery rates, by requiring that banks
with sufficient assets pay their liabilities in full and banks without sufficient assets pay out all their
assets proportionally to creditors. It is easy to show that this is equivalent to our definition.
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Example and Visual Language

Figure 1 shows a visual representation of an example financial system. There are three banks
N “ tA,B,Cu, drawn as circles, with external assets of eA “ 0, eB “ 2, and eC “ 1, drawn
as rectangles on the banks. Debt contracts are drawn as blue arrows from the writer to the
holder and they are annotated with the notionals cHB,A “ 2 and cHB,C “ 1. CDS contracts
are drawn as orange arrows where a dashed line connects to the reference entity and are
also annotated with notionals: cBA,C “ 1. A clearing recovery rate vector for this example is
given by rA “ 1, rB “ 2

3 , and rC “ 1. The liabilities arising from this recovery rate vector
are lB,Aprq “ 2, lB,Cprq “ 1, and lA,Cprq “

1
3 . The clearing payments are pB,Aprq “ 4

3 ,
pB,C “

2
3 , and pA,Cprq “

1
3 . This is the only solution for this system.

We stress that we are not concerned with the question whether or not it is “rational” for
the banks to form a certain financial system: contracts might have been entered for reasons
exogenous to the system or simply for cash transfers at time 0.

We are now ready to re-state an existence result which we have previously shown in [17].

I Theorem 3.2 (Existence of Solutions [17]). For every financial system without default costs,
there exists a clearing recovery rate vector.

Proof Outline. The proof rests on the fact that the right-hand side of equation (1) in
Definition 3.1 is continuous as a function of r. Assume WLOG that N “ t1, . . . , nu. For
i P N let

ρi : r0, 1sn Ñ 2r0,1s

ρiprq :“
#

tminp1, aiprqliprq
qu if liprq ą 0

r0, 1s if liprq “ 0

and define ρ : r0, 1sn Ñ 2r0,1sn by ρprq :“
Śn

i“1 ρiprq.
Clearly, a recovery rate vector r is clearing iff it is a fixed point of the set-valued function

ρ, i.e., iff r P ρprq. To show that such a fixed point exists, one applies Kakutani’s fixed point
theorem for set-valued functions with a closed graph (a generalization of Brouwer’s fixed
point theorem for continuous functions). J

4 Defining the FindClearing Search Problem

We have just seen a non-constructive proof that a solution for a given financial system always
exists. In this section, we define the corresponding total search problem. Since there are
financial systems where all solutions contain irrational numbers (a simple example is provided
in Appendix A), the best we can hope for is an algorithm that computes a recovery rate
vector that is in some sense approximately clearing.

There are many ways to relax the definition of clearing recovery rate vectors to receive a
concept of an approximate solution. The approach we will use in this paper is to relax the
function ρ from the proof of Theorem 3.2. For x P R let rxs :“ minp1, maxp0, xqq. For ε ě 0
write y “ x˘ ε to mean that |x´ y| ď ε if x and y are scalars and }x´ y} ď ε if x and y
are vectors, where } ¨ } is the supremum norm. We also use the notation “˘ε” in compound
expressions such as rx ˘ εs to indicate a range of possible values. This notation formally



S. Schuldenzucker, S. Seuken, and S. Battiston 32:7

corresponds to interval arithmetic. For ε ě 0 and i P N “ t1, . . . , nu let

ρεi prq : r0, 1sn Ñ 2r0,1s

ρεi prq :“
#

r
aiprq
liprq

˘ εs if liprq ą 0
r0, 1s if liprq “ 0

and let ρε : r0, 1sn Ñ r0, 1sn be defined accordingly.

I Definition 4.1 (Approximately Clearing Recovery Rate Vector). Fix a financial system
without default costs and let ε ě 0. A recovery rate vector r is called ε-approximately
clearing or an ε-solution if it is a fixed point of the set-valued function ρε, i.e., if r P ρεprq.
For clarity, we refer to solutions that are not approximate as exact solutions.

Our definition of an approximate solution has many desirable properties from an economic
and technical point of view. We provide a discussion in Appendix B. Note in particular
that if r is an ε-solution and liprq ą 0, then ri “ raiprqliprq

s ˘ ε, though the converse does not
necessarily hold.

It is easy to see that for any ε ą 0, there always exists an ε-solution of finite length.
To guarantee that there is also an ε-solution of polynomial length, we make an additional
assumption that we call non-degeneracy.4 We can then state our search problem.

I Definition 4.2 (Non-degenerate Financial System). A financial system without default costs
X “ pN, e, cq is called non-degenerate if each bank that writes a CDS also writes a debt
contract or has strictly positive external assets.

I Definition 4.3 (ε-FindClearing Problem). For any parameter ε ą 0, ε-FindClearing
is the following total search problem: given a non-degenerate financial system without default
costs, find an ε-solution.

The following lemma establishes that under the assumption of non-degeneracy, sufficiently
“short” approximate solutions always exist in the vicinity of exact solutions, thus making
ε-FindClearing a well-posed search problem. The converse is not in general true: there can
be additional approximate solutions that are not close to any exact solution. While this is
unfortunate, it appears to be unavoidable for an approximate solution concept; for example,
the well established concept of approximate Nash equilibrium also has this property.

I Lemma 4.4 (ε-FindClearing is Well-posed and in PPAD).
1. If X “ pN, e, cq is a non-degenerate financial system without default costs and ε ą 0, then

there exists an ε-solution of length polynomial in the length of X and the length of ε.
2. For any ε ą 0, the problem ε-FindClearing is in PPAD.

Proof Outline (full proof in Appendix C). We define a function F such that any ε-approxi-
mate fixed point of F gives rise to an ε-solution ofX. We prove that sinceX is non-degenerate,
F has a polynomial Lipschitz constant. The lemma follows using standard techniques. J

5 FindClearing is PPAD-hard

Our main contribution in this paper is the proof that ε-FindClearing is PPAD-hard, and
thus PPAD-complete, for a sufficiently small constant ε.

4 It is an open question whether or not ε-solutions of polynomial length are also guaranteed to exist when
this assumption is not made.
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I Theorem 5.1. There exists an ε ą 0 such that the ε-FindClearing problem is PPAD-
hard.

The theorem immediately implies:

I Corollary 5.2. There is no polynomial-time approximation scheme that computes an
ε-solution for a given financial system without default costs and a given ε, unless P = PPAD.

Towards a proof of the theorem, we proceed in two steps: we first introduce a variant of
Rubinstein’s [15] generalized circuit framework and we show that the problem of finding an
approximate solution of a generalized circuit in this framework is still well-posed and PPAD-
complete (Section 5.1). We then reduce this problem to ε-FindClearing (Section 5.2).

5.1 Generalized Circuits
A generalized circuit consists of a collection of interconnected arithmetic or Boolean gates.
In contrast to regular arithmetic or Boolean circuits, generalized circuits may contain cycles,
making the problem of finding a solution (or stable state) of the circuit a non-trivial fixed
point problem. Rubinstein [15] introduced a framework for generalized circuits that is already
well-suited for our purposes. To make our reduction to financial systems as simple as possible,
we slightly adapt Rubinstein’s definition by assuming a reduced set of gates.

I Definition 5.3 (Generalized Circuit and Approximate Solution). A generalized circuit is
a collection of nodes and gates, where each node is labeled input of any number of gates
(including zero) and output of at most one gate. Inputs to the same gate are distinguishable
from each other. Each gate has one of the following types:

For each ζ P r0, 1s the constant gate Cζ with no inputs and one output.
Arithmetic gates: addition and subtraction gates, denoted C` and C´, with two inputs
and one output; for each ζ ą 0 the scale by ζ gate Cˆζ with one input and one output.
For each ζ P p0, 1q the compare to ζ gate Cąζ with one input and one output.
Boolean gates: C with one input and one output and C_ with two inputs and one
output.

The length of a generalized circuit is given by the number of nodes, the size of the mapping
from nodes to inputs and outputs of gates, and the length of any ζ values involved.

If ε ě 0 and C is a generalized circuit, then an ε-approximate solution (or ε-solution) to
C is a mapping that assigns to each node v of C a value xrvs P r0, 1s such that at any gate
of type g with inputs a1, . . . , al and output v the respective condition from Figure 2 holds.

I Definition 5.4 (ε-GCircuit Problem). For any parameter ε ą 0, ε-GCircuit is the
following total search problem: given a generalized circuit, find an ε-solution.

Note how the comparison gadget Cąζ is brittle: its value is arbitrary if xra1s is close to ζ.
This property is crucial for our second step of describing generalized circuits via financial
systems because the function ai

li
that ultimately defines an approximate solution is always

continuous while a non-brittle comparison gadget, yielding low values for xra1s ă ζ and
high values for xra1s ě ζ, would correspond to a discontinuous function. We further use
approximate Boolean values 0˘ ε and 1˘ ε instead of exact Boolean values 0 and 1 since the
latter are not attainable if there can be ε errors at each bank. Note how chains of Boolean
gadgets do not accumulate errors, but chains of arithmetic gadgets do.

It is well accepted in the literature that ε-GCircuit is well-posed and in PPAD. We
provide a simple lemma for our variant of ε-GCircuit for completeness. PPAD-hardness,
and thus PPAD-completeness, of the ε-GCircuit problem for constant ε follows by reduction
from Rubinstein’s variant. Both proofs can be found in Appendix D.
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g “ Cζ ñ xrvs “ ζ ˘ ε

g “ C` ñ xrvs “ rxra1s ` xra2ss ˘ ε

g “ C´ ñ xrvs “ rxra1s ´ xra2ss ˘ ε

g “ Cˆζ ñ xrvs “ rζ ¨ xra1ss ˘ p1` ζq ε
g “ Cąζ ñ xra1s ď ζ ´ ε ñ xrvs “ 0˘ ε

xra1s ě ζ ` ε ñ xrvs “ 1˘ ε
g “ C ñ xra1s “ 0˘ ε ñ xrvs “ 1˘ ε

xra1s “ 1˘ ε ñ xrvs “ 0˘ ε
g “ C_ ñ xra1s “ 0˘ ε and xra2s “ 0˘ ε ñ xrvs “ 0˘ ε

xra1s “ 1˘ ε or xra2s “ 1˘ ε ñ xrvs “ 1˘ ε

Figure 2 Conditions to hold at the different gates in an ε-solution of a generalized circuit.

I Lemma 5.5 (ε-GCircuit is Well-posed and in PPAD).
1. If C is a generalized circuit and ε ą 0, then there exists an ε-solution for C of length

polynomial in the length of C and the length of ε.
2. For any ε ą 0, the ε-GCircuit problem is in PPAD.

I Lemma 5.6. There exists an ε ą 0 such that the ε-GCircuit problem is PPAD-hard.

5.2 Reduction from Generalized Circuits to Financial Systems
We now reduce the GCircuit problem to the FindClearing problem. To do so, we
construct financial system gadgets, i.e., fragments of financial systems where the recovery
rate of an output bank is given (approximately) by a function of certain input banks.

I Definition 5.7 (Financial System Gadget). A financial system gadget G is a polynomial-time
computable function mapping a financial system without default costs X “ pN, e, cq to a
new financial system X 1 “ pN 1, e1, c1q in the following way:

Given are X, a set of input banks a1, . . . , al P N where l depends on the gadget, and an
output bank v P N such that v has no assets or liabilities in X, i.e., ev “ ckv,j “ ckj,v “ 0
for all j P N and k P N Y tHu.
X 1 consists of X together with some new banks and contracts.
For any ε and any ε-solution r1 of X 1, the restriction r :“ r1|N is an ε-solution for X.
For any ε and any ε-solution r of X, there is an ε-solution r1 of X 1 such that r1i “ ri for
all i P Nztvu.

In addition to these properties, gadgets typically establish some relationship between the
recovery rates of the input and output banks. We usually label input banks a and b instead
of a1 and a2 for the sake of readability.

We will now describe our gadgets: addition gadgets, scaling and comparison gadgets, and
Boolean gadgets. Some of the gadgets, shown in Figures 3–6, are fundamental while the
others are defined as combinations of the fundamental ones. We use our graphical language
for financial systems where we draw the (existing) input and output banks as dotted circles
and the new banks as solid circles. Our gadgets add assets and liabilities to the output bank
and CDS references to the input banks. This ensures that gadgets only restrict the recovery

ITCS 2017
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s v t
ζ 12 0

Figure 3 Constant Gadget: extension of an existing financial system with output bank v by new
banks s, t and contracts such that rv “ ζ ˘ ε.

s v t
1

a

12 0

Figure 4 Inverter Gadget: extension of an existing financial system with input bank a and output
bank v by new banks s, t and contracts such that rv “ 1´ ra ˘ ε.

rate of the output bank based on the recovery rates of the input banks, but not vice versa,
and gadgets applied to different output banks do not conflict. In a final step, we iteratively
apply our gadgets starting from a financial system with no contracts to receive a financial
system that corresponds to a given generalized circuit. Our gadgets will be accurate up to
an error of 3ε. We will later compensate for the factor 3 by choosing ε by factor 3 smaller.
All gadgets lead to non-degenerate financial systems.

5.2.1 Addition Gadgets

The simplest gadget establishes a fixed recovery rate at the output bank:

I Lemma 5.8 (Constant Gadget). Let ζ P r0, 1s. There is a financial system gadget with no
input banks and with output bank v such that if r is an ε-solution, then rv “ ζ ˘ ε.

Proof. Consider the gadget in Figure 3. We have asprq
lsprq

ě 2 ě 1 ` ε. It is easy to see
that this implies that rs “ 1 in any ε-solution. Thus, s pays in full and avprq “ ζ and
lvprq “ 1 ě avprq, so in an ε-solution rv “ avprq

lvprq
˘ ε “ ζ ˘ ε. J

An important building block for the following constructions is a gadget that “inverts”
the recovery rate of a bank.

I Lemma 5.9 (Inverter Gadget). There is a financial system gadget with input bank a and
output bank v such that if r is an ε-solution, then rv “ 1´ ra ˘ ε.

Proof. Consider the gadget in Figure 4. Since lvprq “ 1 we have in any ε-solution that
rv “ avprq ˘ ε and avprq “ 1´ ra. J

We can now define the sum and difference gadgets:

I Lemma 5.10 (Sum Gadget). There is a financial system gadget with input banks a and b
and output bank v such that if r is an ε-solution, then rv “ rra ` rbs ˘ 3ε.
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s v t
1

a’

1

b’

14 0

Figure 5 Sum Gadget: extension of an existing financial system with input banks a and b and
output bank v by new banks s, t and contracts that translate ra ` rb.

Proof. Apply inverter gadgets (Lemma 5.9) to both a and b and call the output banks a1
and b1, respectively. Now consider the gadget in Figure 5. We have

rv “ r1´ ra1 ` 1´ rb1s ˘ ε
“ rra ` rb ˘ 2εs ˘ ε
“ rra ` rbs ˘ 3ε. J

I Lemma 5.11 (Difference Gadget). There is a financial system gadget with input banks a
and b and output bank v such that if r is an ε-solution, then rv “ rra ´ rbs ˘ 3ε.

Proof. Apply an inverter gadget (Lemma 5.9) to a and call the output bank a1. Apply the
gadget in Figure 5 to a1 and b1 :“ b and call the output bank u. From the proof of the
previous lemma we know that

ru “ r1´ ra ` rbs ˘ 2ε

where the error is by one ε lower because we used one inverter gadget less. Now apply an
inverter to u and call the output bank v. To show that rv is as desired, we distinguish two
cases:

If ra ď rb, then 1´ra`rb ě 1, so ru “ 1˘2ε and thus rv “ 1´ru˘ε “ 0˘3ε “ rra´rbs˘3ε
as required.
If ra ě rb, then 1 ´ ra ` rb ď 1, so ru “ 1 ´ ra ` rb ˘ 2ε and thus rv “ 1 ´ ru ˘ ε “

ra ´ rb ˘ 3ε “ rra ´ rbs ˘ 3ε as required. J

5.2.2 Scaling and Comparison
Towards the scaling and comparison gadgets, we introduce a versatile tool that can be used
to re-scale and shift recovery rates.

I Lemma 5.12 (Amplifier Gadget). Let K and L be real numbers such that K ă L, K ă 1,
and L ą 0. Note that K ď 0 and L ě 1 are allowed. Let

f : r0, 1s Ñ r0, 1s

fpraq :“
„

1
L´K

ra ´
K

L´K



.

Note that f is monotonically increasing with fpKq “ 0 and fpLq “ 1.
There is a financial system gadget with input bank a and output bank v such that if r is

an ε-solution, then rv “ fpraq˘ pδ` 1qε where δ “ 1´K
L´K . The construction can be performed

in time polynomial in the lengths of L and K.

ITCS 2017
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s u t
γ

a

1

v
δ 1

µ 0 0

Figure 6 Amplifier Gadget: extension of an existing financial system with input bank a and
output bank v by new banks s, t, u and contracts that translate the function f from Lemma 5.12.
Let µ “ 2pγ ` δq.

Proof. Consider the gadget in Figure 6 with

γ :“ 1
1´K

δ :“ 1´K
L´K

.

Let r be an ε-solution. We have

ru “ rγp1´ raqs ˘ ε
rv “ rδp1´ ruqs ˘ ε.

By replacing the first relation into the second one, we receive

rv P rδ p1´ prγp1´ raqs ˘ εqqs ˘ ε
Ď rδ p1´ rγp1´ raqsqs ˘ pδ ` 1q ε
“ rδ p1´ pγp1´ raqqqs ˘ pδ ` 1q ε

“ rδ ´ δγ ` δγras ˘ pδ ` 1q ε “
„

´
K

L´K
`

1
L´K

ra



˘ pδ ` 1q ε

where the third line is because rδp1´ zqs “ rδp1´ rzsqs for any z ě 0 and the last line is by
simple algebra. Thus, rv is as desired. J

We receive a scaling gadget by choosing K “ 0:

I Corollary 5.13 (Scale by Constant Gadget). Let ζ ą 0. There is a financial system gadget
with input bank a and output bank v such that if r is an ε-solution, then rv “ rζras˘ p1` ζqε.
The construction can be performed in time polynomial in the length of ζ.

Proof. Use an amplifier gadget (Lemma 5.12) with K “ 0 and L “ 1
ζ . Then fpraq “ rζras

and δ “ ζ. J

We receive a gadget that acts like the brittle comparison gate Cąζ by choosing K and
L closely together around a central point ζ. The gadget is less “brittle” the closer K and
L are together, but this also increases the value δ and thus the output error of the gadget.
To compensate for this, we first introduce a gadget that converts a wide range of values to
approximate Boolean values with threshold 3ε.
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I Corollary 5.14 (Reset Gadget). There is a financial system gadget with input bank a and
output bank v such that if r is an ε-solution, then if ra ď 1

4 , then rv “ 0˘ 3ε and if ra ě 3
4 ,

then rv “ 1˘ 3ε.

Proof. Apply the amplifier gadget (Lemma 5.12) with K “ 1
4 and L “ 3

4 . We have
δ ` 1 “ 5

2 ă 3. If ra ď 1
4 , then fpraq “ 0, so rv “ fpraq ˘ p1 ` δqε “ 1 ˘ 3ε. Likewise for

ra ě
3
4 . J

I Corollary 5.15 (Brittle Comparison to Constant Gadget). Let ζ P r0, 1s. There is a financial
system gadget with input bank a and output bank v such that if ε ď 1{18 and r is an ε-solution,
then if ra ď ζ ´ 3ε, then rv “ 0˘ 3ε and if ra ě ζ ` 3ε, then rv “ 1˘ 3ε. The construction
can be performed in time polynomial in the length of ζ.

Proof. We apply two constructions involving the amplifier gadget (Lemma 5.12): first we
apply an amplifier to a as an input bank with K :“ ζ ´ 3ε and L :“ ζ ` 3ε. Call the output
bank u. We have δ “ 1´K

L´K “
1´ζ`3ε

6ε ď 1`3ε
6ε “ 1

6ε `
1
2 . So this gadget has output error

pδ ` 1qε ď 1
6 `

1
2ε` ε ď

1
4 . Thus, if ra ď K, then ru ď 1

4 and if ra ě L, then ru ě 3
4 . Now

apply a reset gadget (Corollary 5.14) to u as the input bank to receive the desired lower
output error of 3ε. J

5.2.3 Boolean Gadgets
We can re-use the addition gadgets from above to build Boolean gadgets, translating OR
into “`” and NOT into “1´ x” (inversion). We use the reset gadget to prevent errors from
propagating.

I Lemma 5.16 (Boolean Gadgets). There are financial system gadgets with input banks a
and b and output bank v such that if ε ď 1{36 and r is an ε-solution, then
1. (OR) If ra “ 0˘ 3ε and rb “ 0˘ 3ε, then rv “ 0˘ 3ε.

If ra “ 1˘ 3ε or rb “ 1˘ 3ε, then rv “ 1˘ 3ε.
2. (NOT) If ra “ 0˘ 3ε, then rv “ 1˘ 3ε.

If ra “ 1˘ 3ε, then rv “ 0˘ 3ε.

Proof. 1. Apply a sum gadget (Lemma 5.10) to a and b and call the output bank u. Now
apply a reset gadget (Corollary 5.14) to u and call the output bank v. We know that
ru “ rra ` rbs ˘ 3ε. If ra ě 1´ 3ε or rb ě 1´ 3ε, then ru ě 1´ 6ε ě 3

4 , so rv “ 1˘ 3ε. If
ra, rb ď 3ε, then ru ď 9ε ď 1

4 , so rv “ 0˘ 3ε.
2. Apply similarly an inverter gadget (Lemma 5.9) and then a reset gadget. It is easy to

show that the construction behaves as desired. J

5.2.4 Completing the PPAD-hardness Proof
We combine our gadgets to model generalized circuits, thus reducing ε-GCircuit to ε1-
FindClearing (with 0 ă ε1 ă ε) and proving PPAD-hardness of ε-FindClearing:

Proof of Theorem 5.1. Let ε ą 0 be arbitrary. We reduce ε-GCircuit to ε1-FindClearing
where ε1 :“ ε

3 . Assume that we are given a generalized circuit C with n nodes and m gates.
Construct a financial system via the following algorithm.

Start with a system X0 consisting of n banks, 0 external assets for each bank, and no
contracts. Identify the n banks with the nodes of C.
Consider the gates of C in any order. For each t “ 1, . . . ,m do the following:

Consider the t-th gate of C. Let g be the type, a1, . . . , al the inputs, and v the output
of this gate.

ITCS 2017
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Apply the gadget from above corresponding to g to Xt´1 with input banks a1, . . . , al
and output bank v. Call the resulting financial system Xt.

Let X :“ Xm.

For t “ 0, . . . ,m let Ct be C restricted to the first t gates. We show by induction on t that
the ε1-solutions of Xt correspond to ε-solutions of Ct. For t “ 0, the statement is clear.
For t ą 0, and assuming the statement for t ´ 1, it follows from the fact that the bank
corresponding to the output of the t-th gate has no assets or liabilities in Xt´1 and then
from the definition of a financial system gadget and our above lemmas. By definition of the
gadgets, each Xt, and thus X, is non-degenerate. J

I Remark. The intermediate systemsXt in the above construction may violate our assumption
that any bank that is a reference entity in a CDS must be a writer of some debt contract
(cf. Section 3). This happens when gadgets refer to a reference entity that is an output
bank of another gadget that has not yet been executed. We can circumvent this problem by
temporarily replacing such banks by a financial sub-system that fulfills all our assumptions
and in which one of the banks can attain any recovery rate in some solution.5 Alternatively,
it is easy to show that not having the assumption does not lead to any problems in the proof.

6 Conclusion

In this paper, we have studied the problem of computing clearing payments in financial
networks with debt and credit default swap (CDS) contracts and without default costs. We
have shown that compared to debt-only networks, the addition of CDSs turns the clearing
problem from being solvable exactly in polynomial time into an approximation problem that is
PPAD-complete even when the desired approximation quality is kept constant. Consequently,
no polynomial-time approximation scheme exists unless P=PPAD.

Further analysis shows that even very simple classes of financial systems can exhibit
PPAD-hardness as long as banks are allowed to hold CDSs in a naked fashion, i.e., without
also holding a corresponding debt contract from the reference entity.6 Note that all our
gadgets use naked CDSs, and they also seem to require them. Given this, future work should
investigate whether financial networks in which naked CDSs are banned admit a polynomial-
time algorithm for the clearing problem, similar to debt-only networks. We conjecture that
this is the case. Another important task for future research is to find algorithms for general
financial networks with CDSs that may not have polynomial worst-case running time, but are
fast in practice. These algorithms could work by successively updating the set of defaulting
banks in a systematic fashion. All algorithms for realistic financial systems must in addition
be able to deal with non-linearities in the function ai

li
.
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5 Such a financial system is described in [17, Figure 3, δ “ γ “ 1].
6 We omit the analysis here due to space constraints. The interested reader is referred to our working
paper [18]. For a discussion of naked CDSs, cf. Appendix B and [17].
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Figure 7 Financial System without default costs where the unique solution is irrational.

A Irrational Solutions

I Example 1.1 (Irrational Solutions). Figure 7 shows a financial system the unique solution
of which is irrational. To see this, note that by the contract structure r is clearing iff

rA “
1
2rB , rB “

1
2´ rA

,

and rC is left unconstrained. One easily verifies that the unique solution in r0, 1s2 to this
system of equations is given by

rA “ 2´
?

2, rB “ 1´ 1
?

2
.

B Properties of Approximate Solutions

Our definition of an approximate solution is well motivated from an economic point of view:
assume that a bank A holds a debt contract of notional γ from bank B as well as a CDS on
B from a highly capitalized bank C with the same notional. This contract pattern is called
a covered CDS and it was the original use case CDSs were designed for: the CDS insures the
debt contract. While nowadays, a large part of the CDSs are traded naked (i.e., they do not
have this property), the covered case serves as a benchmark to which extent our solution
concept is natural.

We describe the effect of ε errors in recovery rates on the three banks. If the insurer C is
highly capitalized (its assets are greater than its liabilities by a factor 1` ε), then C never
defaults (rC “ 1) and the assets of A are

γrB ` γp1´ rBqrC “ γ.

That is, the covered CDS acts as a “full” insurance that eliminates A’s dependence on B.
This property is not affected by ε errors in the recovery rates of any bank. On the other
hand, the writer C of the CDS might incur higher or lower liabilities due to errors in rB , but
this difference is bounded by εγ. Finally, the recovery rate of B might be up to ε lower or
higher than aBprq

lBprq
. If it is lower, then B may keep up to εγ of its assets even though it is in

default. If it is higher however, then B must make up to εγ in payments from money it does
not have. This money would have to come from an external entity such as a government
institution or the clearing mechanism itself. This is why clearing mechanisms should seek
ε-solutions where ε is small compared to the inverse notionals in the system.

The following elementary properties serve as an indication that our definition of an
approximate solution is also natural from a technical point of view. They are all easy to
validate.
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I Proposition 2.1 (Natural Properties of Approximate Solutions). Fix a financial system
without default costs.
1. Any r is a 1-solution. r is a 0-solution iff it is an exact solution.
2. If ε ď ε1, then any ε-solution is also an ε1-solution.
3. r is an ε-solution iff r is an ε1-solution for all ε1 ą ε.
4. Given r and ε, one can check in polynomial time if r is an ε-solution.

C Proofs from Section 4

The following lemma lets us express ε-FindClearing as the problem of finding an approxi-
mate fixed point of a certain Lipschitz continuous function. Then the lemma follows using
standard techniques.

I Lemma C.1. Let X “ pN, e, cq be a non-degenerate financial system without default costs
and let ε ą 0. Assume WLOG that N “ t1, . . . , nu. Define the function

F : r0, 1` εsn Ñ r0, 1` εsn

Fipsq :“
#

r
aiprssq
liprssq

s
1`ε

if liprssq ą 0
1` ε if liprssq “ 0

where rxs1`ε :“ minp1 ` ε, maxp0, xqq and rss :“ prs1s, . . . , rsnsq. Then the following
hold:
1. F is Lipschitz continuous with a Lipschitz constant polynomial-time computable from X

and ε.
2. If s is an ε-approximate fixed point of F , then rss is an ε-solution of X.

Proof. Part 1: It is sufficient to show that each Fi has an appropriate Lipschitz constant.
So let i P N . By non-degeneracy, bank i must fall into one of three cases: it either writes
no contracts at all, or writes a debt contract, or has positive external assets. If i writes no
contracts, then Fi is constant 1` ε.

If i writes a debt contract, then liprssq ą 0 for all s, so

lFipsq “

„

aiprssq

liprssq

1`ε
“

ˆ

r ¨ s
1`ε

˝
ai
li
˝ r ¨ s

˙

psq.

The functions r ¨ s1`ε and r ¨ s are Lipschitz with constant 1. For ai
li
, we find a bound on the

partial derivatives. We have

B aili

Brk
“

Bai
Brk

li ´ ai
Bli
Brk

l2i

“
plk,i ´

ř

j rjc
k
j,iq ¨ li ` ai ¨

ř

j c
k
i,j

l2i
.

where the second line is easily seen by expanding ai and li. The numerator is bounded from
above in absolute value by

N i
k :“

˜

cHk,i `
ÿ

j

cjk,i

¸

¨

˜

ÿ

j

cHi,j `
ÿ

j,l

cli,j

¸

`

˜

ei `
ÿ

j

cHj,i `
ÿ

j,l

clj,i

¸

¨
ÿ

j

ckj,i

and the denominator is bounded from below by Di :“ p
ř

j c
H

i,jq
2. Thus, the partial derivative

is bounded by Nik
Di and this bound is polynomial in X.

ITCS 2017
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If i has positive external assets, then let Li :“ ts | liprssq ą eiu. For s R Li, we have
Fipsq “ 1 ` ε and further Fipsq Ñ 1 ` ε as liprssq Ñ ei. On Li, one receives a Lipschitz
constant for the restriction of raiprssqliprssq

s
1`ε

to Li by applying the same reasoning as above
with Di :“ e2

i . Thus, Fi is the continuous union of two Lipschitz continuous functions and
thus itself Lipschitz with the constant being the maximum of the two Lipschitz constants,
namely maxk N

i
k

Di
.

Part 2: Let s be an ε-approximate fixed point of F . Assume WLOG that liprssq ą 0.
Let i P N and let s̃i :“ aiprssq

liprssq
P r0,8q. We have Fipsq “ rs̃is1`ε and si “ Fipsq ˘ ε and thus

si “ rs̃is
1`ε

˘ ε

ñ rsis P
”

rs̃is
1`ε

˘ ε
ı

“ rs̃i ˘ εs

where the last equality is easily seen by case distinction on s̃i ě 1` ε and s̃i ă 1` ε. Thus,
rss is an ε-solution at i. J

Proof of Lemma 4.4. Part 1: Let X and ε be given and consider the function F from
Lemma C.1. Let K be the Lipschitz constant and recap that K is polynomial in X and ε.
Since F is continuous on a compact domain, by Brouwer’s fixed point theorem, it has an
(exact) fixed point s. Let δ “ ε

K`1 . Let s1 be defined by s1i :“ δtδ´1siu. That is, s1i is si
rounded to multiples of δ. s1 has length n ¨L where L is the length of δ, and L is polynomial
in the lengths of X and ε.7 Further,

›

›s1 ´ F ps1q
›

› ď
›

›s1 ´ F psq
›

›`
›

›F ps1q ´ F psq
›

›

“
›

›s1 ´ s
›

›`
›

›F ps1q ´ F psq
›

›

ď δ `Kδ “ p1`Kqδ “ ε.

Hence, s1 is an ε-approximate fixed point of F and thus an ε-solution.
Part 2: Proof by reduction to the PPAD-complete generic Brouwer problem [8]:

Given an efficient algorithm for the evaluation of a function F : r0, 1sn Ñ r0, 1sn, a
Lipschitz constant K for F , and an accuracy ε ą 0, compute a point x such that
}F pxq ´ x} ď ε.

We apply the generic Brouwer problem to the function F from Lemma C.1. It is easy
to see that one may replace the domain r0, 1s by r0, 1` εs without changing the problem in
any significant way (e.g., by scaling inputs and outputs of F by a factor 1` ε and replacing
ε by ε

1`ε ě
1
2ε). Again by Lemma C.1, we know that the output of the Brouwer problem

gives rise to an ε-solution for X. J

D Proofs from Section 5.1

Proof of Lemma 5.5. We show that the approximate solutions of a circuit correspond to
the approximate fixed points of a certain Lipschitz continuous function. The statement of
the lemma then follows like in the proof of Lemma 4.4.

7 We assume here that numbers are encoded as fractions of binary integers. Alternatively, one could
choose δ to be the largest power of two ď ε

K`1 .



S. Schuldenzucker, S. Seuken, and S. Battiston 32:19

For given C and ε define gate functions fg : r0, 1sl Ñ r0, 1s, where l P t0, 1, 2u, as follows:

rLlfCζ :“ ζ

fC`pa, bq :“ ra` bs
fC´pa, bq :“ ra´ bs
fCˆζ paq :“ rζ ¨ as

fCąζ paq :“
„

1
2εa`

1
2 ´

ζ

2ε



Note that fCąζ is monotonically increasing with fCąζ pζ´εq “ 0 and fCąζ pζ`εq “ 1. All gate
functions are Lipschitz with constant K :“ maxp2, ζmax,

1
2ε q where ζmax is the maximum ζ

such that C has a Cˆζ gate.
Let N “ t1, . . . , nu be the set of nodes in the circuit. We define a function F : r0, 1sn Ñ

r0, 1sn. For x P r0, 1sn and i P N let Fipxq be defined as follows:
If i is an output of a gate g and the inputs of g are nodes a1, . . . , al, then Fipxq :“
fgpxa1 , . . . , xalq.
If i is output of no gate, then Fipxq :“ xi.

Any ε-approximate fixed point of F is an ε-solution of C, though the converse does not hold.
Since all gate functions are Lipschitz with constant K, so is F .

The first part of the lemma now follows just like in the proof of the first part of Lemma 4.4:
if x is an exact fixed point of F and x1 is x rounded to multiples of δ :“ ε

K`1 , then x
1 is an

ε-approximate fixed point of F and thus an ε-solution of C and has polynomial length. It is
not a problem that K depends on ε.

The second part of the lemma follows by reduction to the generic Brouwer problem just
like in the proof of the second part of Lemma 4.4. This in fact proves that the weakly harder
problem of computing an ε-solution where ε is not a parameter, but part of the input, is
still in PPAD. It is again not a problem that K depends on ε because the generic Brouwer
problem takes the Lipschitz constant as an input, just like ε. J

Proof of Lemma 5.6. Rubinstein [15] proved that the following variant of the ε-GCircuit
problem is PPAD-hard for some ε:
1. Scaling is only allowed8 by values ζ ď 1 and has error ˘ε instead of ˘p1` ζqε.
2. There are two additional, redundant gates: C“ is a gate that (approximately) copies its

input and C^ implements an approximate AND operator.
3. The comparison gate compares two inputs rather than compare one input to a constant.
For the first point, note that if ζ ď 1, then our Cˆζ gate has error p1` ζqε ď 2ε and thus we
can achieve Rubinstein’s error bound by considering an ε

2 -solution instead. The second point
does not make the problem any harder because we can express C“ as Cˆ1 and C^ via the
identity x^ y “  p x_ yq.

Towards the third point, we show how to emulate the behavior of a binary comparison
gate. Let a1 and a2 be the inputs and v the output of the would-be binary comparison
gate. The expected behavior is that xrvs “ 0 ˘ ε if xra1s ď xra2s ´ ε and xrvs “ 1 ˘ ε if
xra1s ě xra2s ` ε.

We rewrite the expression xra1s ă xra2s to use only comparison to a constant in a way
that is robust against ε errors and cut-off at 0 and 1: construct, by combining the appropriate

8 This assumption can be found in the full version of Rubinstein’s paper [16].
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gates, a sub-circuit corresponding to the expression p 1
2 ` pa1 ´ a2qq ´ pa2 ´ a1q and call the

output node of that circuit u. If ε1 ą 0 and xr ¨ s is an ε1-solution, then xrus “ ũ˘ 4ε1 where

ũ “

„„

1
2 ` rxra1s ´ xra2ss



´ rxra2s ´ xra1ss



“

„

1
2 ` xra1s ´ xra2s



.

Note that xra1s ă xra2s ô ũ ă 1
2 . Add a Cą 1

2
gate with input u and output v.

Now assume WLOG that ε ď 1
2 , let ε

1 “ ε
5 , and let xr ¨ s be an ε1-solution. Then

xra1s ď xra2s ´ εñ ũ ď
1
2 ´ ε “

1
2 ´ 4ε1 ´ ε1

ñ xrus ď
1
2 ´ ε

1

ñ xrvs “ 0˘ ε1 “ 0˘ ε.

Analogously xra1s ě xra2s ` ε ñ xrvs “ 1˘ ε.
Altogether, we can construct from any circuit C in Rubinstein’s [15] framework a circuit

C 1 in our reduced framework such that the ε
5 -solutions of C 1 are ε-solutions of C. This

concludes the proof. J
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