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—— Abstract

We study the problem of finding the worst-case size of the result Q(D) of a fixed conjunctive query
Q applied to a database D satisfying given functional dependencies. We provide a characterization
of this bound in terms of entropy vectors, and in terms of finite groups. In particular, we show
that an upper bound provided by Gottlob, Lee, Valiant and Valiant [9] is tight, and that a
correspondence of Chan and Yeung [5] is preserved in the presence of functional dependencies.
However, tightness of a weaker upper bound provided by Gottlob et al., which would have
immediate applications to evaluation of join queries [11], remains open. Our result shows that
the problem of computing the worst-case size bound, in the general case, is closely related to
difficult problems from information theory.
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1 Introduction

Given a conjunctive query @ we would like to determine the least bound « € R such that for
every database D, the inequality

QD)| < ¢- D" (1)

holds, for some multiplicative factor ¢ depending only on Q). Above, |D| denotes the size of the
largest table in the database D, and |Q(ID)| denotes the size of the result of the query applied
to D. In the general problem which is the main focus of this paper, we may additionally
impose some functional dependencies. Define o(Q) as the infimum of all values « for which
there exists a multiplicative factor ¢ so that (1) holds for all databases D satisfying the given
functional dependencies. Note that defining |D| as the sum of the sizes of the tables in D
would result in the same value of a(Q), since this would increase |D| by at most a constant
factor (the number of relations in D), and this constant can be accommodated by ¢ in (1).

For example, if Q1(x,y,z) = R(z,y) A S(y, z) and there are no functional dependencies,
then it is not difficult to see that |Q1(D)| < |R(D)| - |S(D)| < |DJ?, so in 1 we can take
a = 2, and it is not difficult to see that a(Q1) = 2. Now consider the natural join query
Q2(x,y,2) = R(z,y) ANS(y,z) NT(z,z). A trivial bound gives a(Q2) < 3. However, since
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Q2(D) C Q1 (D) for every D, it follows that a(Q2) < 2. With some effort, one can show that
in the absence of functional dependencies, a(Q2) = 3/2. This follows from a result due to
Atserias, Grohe and Marx [1], which characterizes «(Q) when the query @ is a natural join
query (without projections, self-joins and attribute renamings), and there are no functional
dependencies, which we recall now.

Consider the hypergraph whose vertices are the variables appearing in @), and for each
relation name R in ) there is a hyperedge containing those variables which appear in R.
A fractional edge packing of a hypergraph assigns a positive rational number to each of
its vertices, so that for every hyperedge, the numbers assigned to the adjacent vertices
sum up to at most 1. The total weight of a fractional edge packing is the sum of the
numbers assigned to all the vertices. Define AGM(Q) as the largest possible total weight
of a fractional edge packing of the hypergraph associated to Q. The AGM bound then
states that AGM(Q) = a(Q), in the absence of functional dependencies. For example, the
hypergraph obtained from the query Q- is the triangle, and assigning 1/2 to each vertex
gives a fractional edge packing with total weight 3/2, which is the largest possible. Hence,
a(Q2) = AGM(Q2) = 3/2. Note that AGM(Q) can be computed using linear programming.

In this paper, we make progress towards characterizing the value «(Q) in the presence of
functional dependencies. In particular, we show that a(Q) can be characterized in two ways:
as an entropy bound H(Q), and in terms of a number GC(Q) derived from systems of finite
groups. The bound «(Q) < H(Q) was observed by Gottlob et al. [9]. We provide a matching
lower bound «(Q) > H(Q) based on a construction using finite groups. Unfortunately, we do
not know how to compute the value a(Q). Our results indicate that the problem is closely
connected to notorious problems from information theory.

Note that the paper [9] also gives a weaker bound a(Q) < H(Q) < h(Q), where h(Q) is
obtained by relaxing the entropy cone to the polymatroid defined by Shannon inequalities
(see Corollary 8). The question whether a(Q) = h(Q) remains open. Note that h(Q) can be
computed using linear programming. Moreover, a(Q) = h(Q) would prove optimality of an
algorithm computing Q(D), recently provided by Khamis et al. [11].

Throughout most of the paper, we focus on natural join queries. A gentle introduction
to entropy and natural join queries, and the relationship between them is given in the
preliminaries (Section 2). In the following section, Section 3, we state our main results
and their consequences. The main result is proved by first characterizing the value H(Q)
(Section 4), then adapting upper bounds and the tightness proof from the work of [5] to the
setting with functional dependencies (Sections 5 and 6). In Section 7 we discuss how to treat
general conjunctive queries and in Section 8 we show some preliminary results concerning
the computation of the result Q(D).

Comparison with previous work. The work of Chan and Yeung [5] establishes a two-way
relationship between entropy vectors and group vectors. Our construction of databases from
group systems, presented in Section 5, although reminiscent of their construction of entropy
vectors from group systems, was independent of that work and was motivated by the coloring
construction of Gottlob et al. [9] and their example showing its suboptimality. Nevertheless,
it is only fair to say that the development of Section 5 is a straightforward adaptation of a
construction of Chan and Yeung [5] in the database setting. As a consequence, we extend
their correspondence to a three-way correspondence between group vectors, entropy vectors,
and vectors induced from databases. The easier direction, from databases to entropy vectors,
was implicit in the paper by Gottlob et al. [9], however, the other direction was missing. For
completeness, we present all proofs.
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More importantly, however, we demonstrate that in all directions, the correspondences
preserve functional dependencies. Some of these preservation results are rather obvious:
if a group vector satisfies certain functional dependencies, then the corresponding entropy
vector satisfies them too — this has been observed in Proposition 3 of [4] — and so does the
corresponding database (see Proposition 18 below). In Section 6 we analyse the construction
of group vectors from entropy vectors from [14] and demonstrate that it preserves functional
dependencies. Also, to prove Theorem 5, we need to prove that functional dependencies
behave well with respect to topological closure (cf. Lemma 12). Reassuming, the main
contribution of this paper can be seen as a detailed study of the preservation of functional
dependencies in the framework proposed by Chan and Yeung.

2 Preliminaries

To fix notation, we recall some notions concerning databases and entropy. We assume a
fixed schema %, which specifies a finite set of attributes V(X), a finite set of relation names,
and for each relation name R, a finite set V(R) C V(X) of attributes of R. If X is a set of
attributes, then a row with attributes X is a function r assigning to each z € X some value
rlz]. If r is a row with attributes X and Y C X then by r[Y] we denote the restriction of
rto Y. A table with attributes X is a finite set of rows with attributes X. A database D
over X specifies for each relation name R in ¥ a table with attributes V(R). A natural join
query is a set @ of relation names in X; we denote V(Q) = UREQ V(R). Such a query can
be applied to a database D, yielding as result the table Q(D) consisting of those rows r with
attributes V(Q) such that r[V(R)] € R(D) for every R € Q.

We say that a database D satisfies a functional dependency R : X — x — where X is a
set of attributes and x is a single attribute — if for any two rows w, v of R(D), u[X] = v[X]
implies u[z] = v[z].

For the rest of this paper, fix a schema ¥ and a set of functional dependencies F. Every
database D is assumed to be over this schema, and to satisfy F. Define a(Q) as the smallest
value « for which there exists a constant ¢ such that (1) holds for all databases D over X
which satisfy the functional dependencies in F. For convenience, we define |D| to be the
maximal size of a relation in D.

» Remark. Observe that since @) is a natural join query and in the definition of a(Q) we are
interested in maximizing |Q(D)| while keeping |D| bounded, we may assume that 3 contains
only the relation symbols which appear in @ (as D would have the remaining tables empty
anyway) and furthermore, that if R : X — =z is a functional dependency in F, then also

S : X — x is a functional dependency in F, for every relation name S such that X C V(S).

Therefore, we may simply write that F contains the functional dependency X +— x instead
of writing R : X — =.

For a database D (over X, satisfying F), denote

a(@.m) = “EZ. (@)

Convention. Throughout this paper we will define several real-valued parameters of the
form v(Q, x), where @ is a query and z is some object. For a fixed query @, we denote by
sup, ¥(Q, z) the supremum, and by lim sup, v(Q, z) the limit superior over all values z, for
which the value v(Q, x) is defined. In particular, limsup, v(Q, ) is the smallest value s in
R U {—00, +0o0} such that for every real e > 0, there are only finitely many 2’s such that
v(Q, z) is defined and larger than s + €.

15:3
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Limit superior vs. supremum. The following lemma will simplify several formulations and
proofs throughout this paper.

» Lemma 1. Let Q be a natural join query Q. Then o(Q) = lim supp a(Q, D) = supp a(Q, D).

Proof. We omit the easy proof that «(Q) = limsupy(Q,D), and prove only the second
equality. To show that supp a(Q, D) < limsupp a(Q, D), we use the following construction.
For a database D and a natural number n, let D™ be the database defined so that the
rows of R(D™) are n-tuples of rows of R(D), and for such a row r = (rq,...,7,), we define
rlz] = (r1]z],...,ra[z]) for an attribute x € V(R). It is easy to check that D™ satisfies the
same functional dependencies as D, and that |[D"| = |D|™ and |Q(D)| = |Q(D)|™. In particular,
a(@,D") = a(Q,D). It follows that if |D| > 1, then by choosing n arbitrarily large, we
have arbitrarily large databases D" with a(Q,D") = «(Q,D). Therefore, lim supp a(Q, D) >
supp a(Q, D), the other inequality being obvious. <

Entropy. In this paper, we only consider random variables taking finitely many values.
Formally, a random variable X is a measurable function X : 2 — V from a fixed probability
space (£2,P) of events to a finite set V. In this paper, however, it is not harmful to assume
that € is a finite probability space, in which case every function X : Q — V is a random
variable. By Im(X) C V we denote the set of values v such that P[X = v] > 0, where
P[X = v] is a shorthand for P[{w € Q: X(w) = v}].

For a random variable X taking values in a finite set V', define the entropy of X as
HX)=- Zvelm(X) Dy log py,, where p, = P[X = v]. Clearly, the entropy of X only depends
on the distribution of X. Also, the maximal possible entropy of a random variable with
values in a finite set V' is equal to log |V, and is attained by the uniform distribution on V|
as follows from Jensen’s inequality applied to the convex function — log(z).

Upper bound. We recall an upper bound on «(Q, D), observed by Gottlob et al. [9]. Fix a
natural join query (). Let U be a random variable U taking as values rows with attributes
V(). For a set of attributes X C V(X), define U[X] to be the random variable whose
value is the restriction of the value of U to the set of attributes X. In particular, U[X] is a
random variable whose values are rows with attributes X, and Im(U[V(R)]) is a table with
attributes V(R). We say that U satisfies a functional dependency Y +— « if the table Im(U)
satisfies the functional dependency Y — x. We write Yz to denote the set Y U {z}. We say
that a vector h € RP(V(Q) gatisfies a functional dependency YV + z if h(Y) = h(Yz). The
following lemma is immediate.

» Lemma 2. U satisfies a functional dependency Y — x iff the vector hU satisfies Y +— z.

We remark that in information theory, hY (Y) = hY(Y'x) can be expressed using condi-
tional entropy as H( Ulx] | U[Y] ) =0or hY(z | Y) = 0.
For a random variable U which satisfies every functional dependency in F, define
HUNVEQ)
maxXpexn H(U[V(R)D

The following is an observation from [9].

H(Q,U) =

(H)

» Lemma 3. Let Q be a natural join query. For a database D, let Up be a random variable
which picks a row of Q(D) uniformly at random. Then a(Q,D) < H(Q, Up).

Proof. By definition of a natural join query, the values of Up[R] are rows of R(ID). Then
H(Q,Up) > a(Q,D) since H(Up) = log |Q(D)| and H(Up[R]) < log |R(D)| by the fact that
the uniform distribution maximizes entropy. |
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Entropy cone. Fix a finite set X. Let U = (U,)zex be a family of random variables indexed
by X. For Y C X, let U[Y] denote the joint random variable (Uy)ycy. The random variable
U[Y] can be seen as a random variable taking as values tuples indexed by Y. Consider the
real-valued function hY from subsets of X, such that hY(Y) = H(U[Y]) for Y C X; the
function RV can be also seen as a vector in RP(X) . Vectors of the form hY € RPX) | where U
is a family of random variables indexed by X, are called entropy vectors (or entropic vectors)
with ground set X [16].

The set of all entropy vectors with ground set X forms a subset of RP(X) denoted I'%.

Its topological closure T% is a convex cone. The sets I'%; and I} are well studied, however,
to date, they lack effective descriptions when |X| > 4. It is known that the closed cone I'}
is a polyhedron if |X| < 3, and is not a polyhedron if |X| > 3 (i.e. it is not described by
finitely many linear inequalities). Entropy vectors h € I'%; (and hence, by continuity, also all
h € T%) satisfy the submodularity property, expressing Shannon’s inequality for information:

MY UZ)+h(YNZ)<hY)+h(Z) forY,ZCX. (2)

Groups, actions and cosets. We use basic notions from algebra. We refer the reader to [12]
for background. If G is a group and H is its subgroup, then a (left) coset of H in G is a
subset of G of the form gH = {gh: h € H} € G/H. Let G/H denote the coset space, i.e.,
the set G/H = {gH : g € G} of all cosets of H in G.

For a finite group G and a set X, recall that a (left) action of G on X is a mapping
G x X — X denoted (g,x) — g -z, such that (g-h)-x=g¢g-(h-x) for g,h € G and x € X,
and e-x =z for z € X and e the identity element of G. We say that the action is transitive
if for every xz,y € X there is g € G such that g-x = y. The stabiliser of a point z € X (for a
given action of G on X) is the subset {g € G : g-x = x} of G; this is in fact a subgroup of G.

Note that if H is a subgroup of G, then G acts transitively on G/H, where the action is
given by ¢’ - gH = (¢'g)H for ¢', g € G; transitivity of this action follows from the fact that
for g,g' € G, (¢'9)"tgH = g’H. Every transitive action of G on some set X arises in this
way, i.e., is isomorphic to the action of G on G/H, from some subgroup H of G (namely,
one can take H as the stabilizer of any element z € X).

3 Main result and consequences

In this section, we give a brief overview of the main result of the paper, and its consequences.

Main result. For a relation name R in a schema X, by V(R) we denote the set of attributes
of R. For X C V(R) and = € V(R), we write R : X + x to denote the functional dependency
(fd) requiring that in R, the values of attributes X determine the value of the attribute x.
The value a(Q) is defined as in the introduction, taking into account all databases D over
the schema ¥ which satisfy a given set of functional dependencies F. We associate another
value H(Q) to a query @, as follows.

» Definition 4. Fix a schema 3 and a set of functional dependencies F. Let @) be a natural
join query with attributes X. Let H(Q) be the maximal! value of h(X), for h ranging over
g, satisfying:

! Note that the supremum of h(X) is attained by some entropy vector h, since the function h +— h(X) is

continuous, and the set of entropy vectors satisfying the given constraints is compact, as we use I'%.
This will not necessarily hold in other places throughout this paper.

15:5
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h(V(R)) <1 for R € Q,
WMZU{z})=h(Z) foreveryfd R:Z— zin F.

The main result of this paper is the following.
» Theorem 5. Let Q be a natural join query. Then o(Q) = H(Q).

» Remark. The inequality a(Q) < H(Q) is straightforward, and was observed in [9] (see
Lemma 3). However, as we discuss in Remark 4, the inequality o(Q) > H(Q) is more
involved.

Symmetric databases. The proof of the AGM bound (cf. [1] or Section 3.1 below) shows
that in the absence of functional dependencies, the databases ID for which the size-increase
%ngf)l achieves the bound «(Q) are of a very simple, specific form: each table is a full
Cartesian product. It follows from [9] that in the presence of functional dependencies, this is
no longer the case: databases of this form, satisfying the given functional dependencies, are
arbitrarily far from reaching the value of a(Q).

In this paper, we improve the construction of worst-case databases in the presence of
functional dependencies, by constructing databases which are arbitrarily close to achieving
the bound «(Q). Interestingly, these databases have a very symmetric structure, and their
construction uses finite groups. Our construction of databases from groups is very similar to
a construction from [5].

For a fixed group G, by a G-symmetric database we mean a database D together with an
action of GG on the set of all values appearing in all tables of D, such that the componentwise
action of G on (the rows of) each table R(ID) is transitive (the componentwise action is given
by (g-7)[x] = g- (r[z]) for g € G,r € R(D) and = € V(R)). A symmetric database is a
database D which is G-symmetric for some finite group G. Intuitively, in each table of a
symmetric database, all rows are the same, up to permutation. Symmetric databases are
very regular. For example, if a database D represents a graph G (i.e., it has one relation E,
which is symmetric) and if D is symmetric, then the graph G is regular (all vertices have the
same degree), vertex transitive (for any two vertices there is an automorphism of G mapping
the first one to the second) and edge transitive (for any two edges there is an automorphism
of G mapping the first one to the second).

The second main result of this paper is the following.

» Theorem 6. Fix a schema 3, functional dependencies F, and a natural join query Q. Then,

for each € > 0 there are arbitrarily large symmetric databases D with % > a(Q) —e.

This can be seen as a structure result for worst-case databases. Apart from that, symmetric
databases are essential in our proof of the lower bound given in Theorem 5.

Simple statistics. We state without proof a result generalizing Theorem 5, whose proof can
be obtained in a similar way. In Theorem 5, intuitively, we were interested in the worst-case
size of Q(DD), assuming the maximal table of D has a given size (which is manifested by the
inequality A(V(R)) < 1 for all R). Knowing the precise sizes of all tables in D may lead
to better bounds on Q(D), as we show below. For a database D over the schema of @, its
simple log-statistics is the vector sls(D) = (log [R(D)|) geg -

» Theorem 7. Fix a schema X and a set of functional dependencies F. Let Q be a natural
join query with attributes X, and let s = (sr)req be a vector of nonnegative real numbers.
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Let 3(Q, s) be the mazimal value of h(X), for h ranging over T'% and satisfying:

hV(R)) < sr for R € Q,
MZU{z})=h(Z) foreveryfdR:Z— zin F.

Then supp log |Q(D)| = lim supp log |Q(D)| = B(Q, s), where D ranges over all finite databases
satisfying the functional dependencies F and such that sls(D) < s componentwise.

Theorem 5 is an immediate consequence of Theorem 7, obtained by setting sr = log |D| for
each R € @, and using the fact that @ is a cone, since we can divide the vector obtained by
Theorem 7 by any positive number (in our case, log |D|) and still get a vector from T'%. It is
straightforward to verify that this new vector is a solution postulated by Theorem 5.

In this paper, we present in detail only the proof of Theorem 5. The proof of Theorem 7
proceeds similarly, and will be presented in the full version of the paper [8].

3.1 Consequences

We now show how some results known previously can be obtained as consequences of The-
orem 5 (in fact, of the easier, upper bound a(Q) < sup;; H(Q, U) presented in Section 2.) The
results from Section 3.1 are not used in this paper, and are presented only for completeness.

Relaxing the condition in Definition 4 that h € T'% to the condition that h is submodular
gives the following upper bound on a(Q), which is equivalent to a bound in [9]. For a query
@ and functional dependencies F, consider the maximal? value of h(X) for h ranging over
RP(X) | satisfying:

h(0) =0 (3)

h(Y) < h(Z) forY C Z C X, (4)

h(Y UZ)+h(Y NZ)<h(Y)+h(Z) forY,ZCX, (5)
h(V(R)) <1 for R € Q, (6)

hZU{z}) =h(Z) for every fd R: Z — z in F. (7)

Denote the above optimum by h(Q). Since the conditions describing h(Q) are a relaxation
of the conditions describing H(Q), from a(Q) < H(Q) we get the following.

» Corollary 8 ([9]). For a conjunctive query Q and functional dependencies F, a(Q) < h(Q).

Note that the bound h(Q) can be computed by linear programming, where the number of
variables is exponential in the size of Q). Unfortunately, the question whether a(Q) = h(Q)
for every query @ and functional dependencies, stated in [9], remains open. Recently, Khamis,
Ngo and Suciu [11] provided an algorithm for computing Q(D) in the presence of functional
dependencies, in time O(|D|@)) (where O hides polylogarithmic factors), which is optimal
assuming the tightness of the above bound.

We now show how the AGM bound follows from Corollary 8. Note that the original
proof [1] of the AGM bound used Shearer’s Lemma from information theory and strong
duality of linear programs. The proof presented below only uses Shannon information
inequalities, manifested in Corollary 8. A function h € RP(X) | is modular if it satisfies

BY) = Xy h({y}) for ¥ € X.

2 The maximum is attained, as follows by a simple compactness argument.
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» Lemma 9. In absence of functional dependencies, the optimum h(Q) is attained by a
modular function h € RP(X),

Proof. Let h € RP(X) be a function satisfying conditions (3)-(6), with maximal possible
value of h(X). In particular, h is submodular. We show that h can be in fact taken modular.
Denote by Py, the set?® of functions r : X — R satisfying #(Y) < h(Y) for Y C X,
where 7(Y) is shorthand for ) _ 7(z). Consider the linear optimization problem of finding
r € P, which maximizes the value #(X) = > _ 7(x). It follows from general principles (see
g. [13], Section 3) that the so-called “greedy algorithm” gives an optimal solution 7 to this
problem, defined by

r(z;) = h({z1,...,2;}) — h({z1,...,2i_1}) fori=1,...,n,

where n = | X| and z1,9,...,x, is a fixed enumeration of the elements of X. In our special
case it is sufficient and not difficult to check that conditions (3) and (5) imply #(Y") < h(Y)
for all Y C X. Optimality of # then follows from the fact that #(X) = Y1 r(z;) =
h(X) — h(0) = h(X). By modularity, # satisfies conditions (3)-(5), and it also satisfies
condition (6) because #(Y) < h(Y) for all Y. Since #(X) = h(X), this proves the lemma. <«

(X) are uniquely determined by their values for singletons,

Since modular functions h € RY
and automatically satisfy conditions (3)-(5), we conclude that in the absence of functional
dependencies, h(Q) is equal to the maximal value of Y . r(z) for r € R satisfying
> 2eV(R) r(xz) <1 for R € Q. Such functions r are by definition real-valued edge packings of
the hypergraph associated to @, and the maximal possible total weight of such a packing is

equal* to AGM(Q). Hence we get the following.
» Corollary 10. In the absence of functional dependencies, a(Q) < h(Q) = AGM(Q).

We remark that [1] also prove a matching lower bound a(Q) > h(Q) in the absence of
functional dependencies, thus proving h(Q) = a(Q) = AGM(Q).

We remark that Theorem 7 can be used to derive the following, more precise variant of
the AGM bound. A fractional vertex covering of a hypergraph is an assignment of rational
weights to hyperedges, so that for every vertex, the sum of the weights assigned to the
adjacent hyperedges is at least 1. By strong duality for linear programming, the smallest
total weight of a fractional vertex covering is equal to the largest total weight of a fractional
edge packing.

» Corollary 11 ([1]). In the absence of functional dependencies, |Q(D)| < [[gcq [R(D)[*7,
where (Wr)req s any fractional vertex covering of the hypergraph associated to Q.

To deduce the above corollary from Theorem 7, repeat the reasoning used above when
deriving Corollary 10 from Theorem 5, by relaxing the condition h € T'% in Theorem 7 to
submodularity of h, and apply strong duality for linear programming. We leave the details
to the interested reader.

3 (Called the polymatroid associated with the submodular function h.
4 Tt follows from general principles of linear programming that a linear program with rational coefficients
is optimized by a fractional solution.
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Geometric inequalities. As noted elsewhere [15, 7, 2], Corollary 11 provides an upper
bound on the size of a finite set in multi-dimensional space, in terms of the sizes of its
projections. It implies the discrete versions of many inequalities from geometry and analysis,
such as Holder’s inequality, Cauchy-Schwartz inequality, Loomis-Whitney inequality, Bollobés-
Thomason inequality, Friedgut’s inequality.

4  Characterization of H(Q)

In this section, we relate the value H(Q) from Definition 4 in terms of H(Q,U), as
supy H(Q,U) (cf. Proposition 14). Recall that according to our convention, the supremum
ranges over all random variables U which satisfy the given functional dependencies. Note
that the inequality H(Q) > supy H(Q,U) follows from Definition 4 and the fact that the
entropy vector hy associated to U also satisfies the functional dependencies by Lemma 2.
The remaining inequality H(Q) < supy H(Q,U) requires a more careful explanation. This
is because H(Q) is defined as a supremum for h € I‘:,(Q) which are limits of a sequence
hi,ha, ... of entropy vectors, and such that i (and not hq, hs, .. .) satisfies the given functional
dependencies. Therefore, to prove Proposition 14, we need the following.

» Lemma 12. Let h € F@(Q) be a vector satisfying functional dependencies F. Then there

exists a sequence of random variables {Vy }nen such that h = lim, WV, and each V,
satisfies F.

Proof. Lemma 12 will be proven by induction on the size of F. Let {U,}nen be a sequence
of random variables such that h = lim,_,., hU» satisfies a functional dependency X s v,
and moreover each random variable U,, satisfies a set of functional dependencies F. We
construct a sequence of random variables {V}, },,en such that each random variable V;, satisfies
FU{X + y}, and lim,, oo b = h.

Let us focus on a single random variable U = U,,. We partition the table Im(U) into sets
Ay, Ag, ..., so that each A; satisfies the functional dependency X +— y, as follows. For each
row r € Im(U[X]) proceed as follows. Choose a row 1 € Im(U[Xy]) extending r, which is
attained by the random variable U[Xy] with the greatest probability. Add to the set Ay
all rows ] € Im(U) which extend r;. After that choose a row ro € Im(U[Xy]) extending r,
which is attained by the random variable U[Xy] with the second greatest probability. Add
to the set Ag all rows 4 € Im(U) which extend r2. And so on.

At the end of this process, observe that each table A; satisfies the dependency X — y.

Let A be a random variable which indicates to which set A; the tuple from Im(U[X])
belongs. In other words, A =14 <& U € A;. We omit the proof of the following lemma.

» Lemma 13. H(A) <2 - HU[y)|U[X])

Let V' be the following modification of U. Each attribute value in the set A; gets a new
prefix A;_ attached to its name, so the sets of possible attribute values in sets A; and A; are
disjoint for 7 # j. After such a procedure, the entropy of the attributes could be increased,
but not more than by H(A).

We will show that setting V,, to V gives the desired result. The random variable V'
satisfies the dependencies F U {X +— y} on each set A; by definition of the set A4;. As
presented during the construction, for any set of attributes Z, the entropy of V[Z] can differ
from U[Z] at most by 2- H(U[y] | U[X]). Since lim,,_,oo H(Uyn[y] | Un[X]) = 0 we get that

lim,,—y00 AV = lim,,—yo0 AY". <

Lemma 12 proves the following.
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» Proposition 14. Let Q be a natural join query. Then H(Q) = sup, H(Q,U).
From Lemma 3 and Proposition 14 we get the following.
» Lemma 15. In the presence of functional dependencies, a(Q) < H(Q).

Therefore, to prove Theorem 5, it remains to show that «(Q) > H(Q).

» Remark. To prove a(Q) > H(Q), it would be enough to construct, for a given random
variable U a database D satisfying the same functional dependencies, and such that «(Q, D) >
H(Q,U). Tt is not clear how to construct such a database, even if U attains each row with
rational probability (this is without loss of generality — see Lemma 22), or even with uniform
distribution (this assumption would require justification, since H(Q) < «(Q) implies that for
every entropy vector h there is a database D which achieves the same size-increase; we can
then consider the uniform distribution Up on the results Q(ID), as in Lemma 3). Our proof
of Theorem 5 does not follow such a direct approach, but rather constructs a database from
a system of finite groups constructed from the random variable U.

In Sections 5 and 6 we introduce a new parameter GC(Q) and prove the inequalities
a(Q) > GC(Q) and GC(Q) > H(Q). This, together with Lemma 15, will finish the proof of
Theorem 5.

5 Lower bounds

In this section, we prove a lower bound a(Q) > GC(Q). This bound will be obtained by
a series of more and more refined constructions of databases. We start from recalling a
construction using colorings due to Gottlob et al. [9]. We then improve this bound to vector
space colorings, and finally, to group systems. In the entire Section 5, fix a natural join query
Q@ over a schema ¥, and a set of functional dependencies F.

5.1 Colorings

A coloring of @ is a function f assigning finite sets to V(Q). We say that f satisfies a
functional dependency X — z if f(z) C f(X), where f(X) denotes U,y f(y). For a
coloring f of @ which satisfies all functional dependencies in F, define

[/ (V(Q))]
maxpex |f(V(R))]’

c@. f)= (©)
and let C'(Q) = sup; C(Q, f).

The following proposition is proved in [9], and amounts to constructing a database D
from a given coloring f. In the following section we will extend this construction to vector
space colorings.

» Proposition 16 ([9]). Let Q be a natural join query. Then o(Q) > C(Q).

It is shown in [9] that the value C'(Q) can be computed by a linear program. In the
case without functional dependencies, this program is dual to the program for AGM(Q), so

C(Q) = AGM(Q) = (Q).
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5.2 Vector space colorings

In the presence of functional dependencies, there are queries @ for which a(Q) > C(Q), as
shown in the paper [9], by elaborating an example proposed by Daniel Marx, and using
Shamir’s secret sharing scheme. Inspired by that construction and Blakley’s secret sharing
scheme, in this section we define a new parameter VCk(Q) based on vector spaces, and
generalized later in Section 5.3 to GC(Q) based on arbitrary groups. We study the relations
between these parameters and C'(Q). We note that the development of Section 5.2 and the
inequalities involving the parameter VCk (Q) proved in Section 5.3 are not needed for proving
a(Q) > GC(Q) and our main result (Theorem 5), but we present them in order to relate our
parameters VCg(Q) and later GC(Q) to the coloring number C(Q), and also to provide a
gradual introduction to the most general parameter GC(Q) defined in Section 5.3.

We consider vector spaces over a fixed finite field K. If V is a vector space, X is a set,
and V. is a subspace of V' for x € X, then by »__ V, we denote the smallest subspace of
V' containing every V, for z € X (we refer to [10] for background on vector spaces).

A wvector space coloring of @ is a pair V = (V, (V,)zev(@)), where V is a vector space
and (V,)zev(q) is a family of its subspaces. For such a coloring, define Vy =3 V, for
Y CV(Q). We say that V satisfies a functional dependency Y — « if V, C Vi-. For a vector
space coloring V satisfying all the functional dependencies in F, define

dim(VV(Q) )
maxprex dlm(Vv(R)) ’

VCk(Q,V) = (VC)

Let VCk(Q) = supy, VCk(Q, V).
» Proposition 17. Let Q be a natural join query. Then VCg(Q) > C(Q).

Proof. The inequality VCk(Q) > C(Q) is obtained by defining for a coloring f a vector space
coloring V with V = Kclers 1, = Rf(@) C K where Colors = Usevig) f(@), and
K/(®) embeds into K" in the natural way, by extending a vector with zeros on coordinates

in Colors — f(x). It is easy to see that )V satisfies the same functional dependencies as f,
and that VCx(Q,V) = C(Q, f). This proves VCx(Q) > C(Q). <

5.3 Group systems

We relax the notion of a vector space coloring, by considering finite groups, as follows. Let
G be a finite group and (Gu)zev(g) be a family of its subgroups. For a set of attributes
X € V(Q), denote by Gx the group Gx = [\,cx Gz, and by G/Gx the space of (left)
cosets, {gGx : g € G}. We call the pair G = (G, (G.)zecx) & group system for Q, and say
that it satisfies a functional dependency X — x if Gx C G, (note the duality with respect
to vector space colorings, with U replaced by N and C replaced by 2). For a group system G
satisfying all the functional dependencies in F, define

GOQ9) = Sanen (081G /Gy im]) (GO)
and let GC(Q) = supg GC(Q, G).
» Proposition 18. Let QQ be a natural join query. Then

a(@Q) > GC(Q) > VO(Q). ®)
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Proof. Call a group system G a vector space system if it consists of a vector space V', treated
as a group with addition, and its subspaces (V;).ex, treated as subgroups of V. The second
inequality in (8) is an immediate consequence of the following lemma, which is an application
of vector space duality (see e.g. [10]).

» Lemma 19. For every vector space coloring V there is a vector space system V* satisfying
the same functional dependencies as V, and such that VCg(Q,V) = GC(Q, V*).

Proof. If V is a vector space, let V* denote its algebraic dual, i.e., the space of all linear
functions from V to K (with addition and multiplication by scalars defined coordinatewisely).
If L is a subspace of V, then let L+ C V* denote the set of functionals f € V* which
vanish on L, i.e., f(L) € {0}. For a vector space coloring V = (V, (Va)zev(q)) let V* =
(V*,(Vi")zev(q))- Using the standard facts (L1NLg)* = L{+ Ly and Ly C Lo iff LT 2 Ly,
one easily checks that V* satisfies the same functional dependencies as V. Furthermore, from
dimV = dim V* and

dim(L*) = dimy — dim L = log |V|/log |K| — log |L|/ log |K| = log |V/L|/ log K],
VCk(Q,V) = GC(Q, V*) follows easily. <

It remains to prove the inequality a(Q) > GC(Q). To this end, from a group system G
we construct a database D satisfying the same functional dependencies, and such that

a(@,D) = GC(Q,9). (9)

For a relation name R and an element g € G, let 7, be the row such that r4[z] = gG, €
G/G, for every attribute x € V(R). Define D by setting R(D) = {r, : g € G}, for every
relation name R. The following lemma implies immediately that the database DD satisfies the
same functional dependencies as G.

» Lemma 20. Fiz a group G, a family (G.)zex of subgroups of G, and a subgroup Gy C G
such that Go 2 (\,cx G- For any given g € G, the cosets (9G4)zcx determine gGo, i.e.,
for every two elements g, h € G, if gG, = hG, for all x € X, then gGy = hGy.

Proof. If GG; is a subgroup of Gy then ¢G; C gGj, and gG is determined by gG; as follows:
9Go = {k-h:h € gGi,h € Go}. Applying this observation to Gy = [,y G, yields that
gGo is determined by g((,cx Gz) = Npex (9G2)- <

Next we show (9). For each relation name R, consider the mapping fr : G — R(D), where
fr(g) = ry. Clearly, the mapping is onto R(ID). To compute the size of its image, we analyse
the kernel of fr and observe that {h : ry = r,} = gGvy(r) for every g € G. In particular,
|R(D)| = |G/Gv(ryl- Similarly, we verify that |Q(D)| = |G/Gv(g)|- Equation (9) then
follows. By Lemma 1, this proves a(Q) > GC(Q). <

» Remark. The database D constructed in the above proof is G-symmetric. Indeed, the
values appearing in the database are cosets the form ¢gG, (where z € V(Q)) and G acts
(from the left) on such cosets in the obvious way. Moreover, the action of G on each table
R(D) is isomorphic to the action of G on G/Gv (g, in particular, it is transitive. Also, if I
is G-symmetric and D™ is defined as in the proof of Lemma 1, then D™ is G™-symmetric.
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6 Tightness

Lemma 15 and Proposition 18 show that H(Q) > a(Q) > GC(Q) for every natural join
query @, in the presence of functional dependencies. In this section, we close the circle by
proving the following.

» Proposition 21. Let Q be a natural join query. Then GC(Q) > H(Q).

Together with Proposition 18 and Lemma 15, this proves that H(Q) = a(Q) = GC(Q).

As noted in Proposition 14, this gives Theorem 5. Moreover, from the observation in
Remark 5.3, it follows that the bound «(Q) can be approximated by (arbitrarily large)
symmetric databases, proving Theorem 6.

All the necessary ideas to prove the proposition are present in the proof of the result of
Chan and Yeung [5]. However, we cannot directly apply that theorem, since we need to keep
track of the functional dependencies. In the rest of Section 6, we present a self-contained
proof of Proposition 21, following [14].

For the rest of this section, fix a random variable U, taking values in a finite set of rows
with attributes X, and satisfying the functional dependencies F.

We say that a random variable V' is rational if for every value v € Im(V'), the probability
that V achieves v is a rational number. The following lemma follows easily from the density
of rationals among the real numbers.

» Lemma 22. For every number € > 0 there exists a rational random variable V' satisfying
the same functional dependencies as U, and such that |hY — hY|| < & with respect to the
euclidean norm on RF(X)

To prove Proposition 21, we proceed as follows. For each rational random variable U
satisfying the given functional dependencies, we will find a sequence of group systems Gy
satisfying the functional dependencies F, and such that

lim GO(Q, G) = H(Q.U), (10)
From that, Proposition 21 follows:

H(Q) P”:’J'”sng@,U) b2 sup H(Q,U) ‘?sngC(Q,g)_GC@).

U rational

From now on, let U be a rational random variable satisfying the functional dependencies F.

We will show that there exists a sequence of group systems witnessing (10).

Let ¢ € N be a natural number such that for each row r € Im(U) the probability P[U = r|
can be represented as a rational number with denominator ¢. For k = ¢, 2q, 3q, . .. let Ag be
a matrix whose columns are indexed by attributes, containing exactly k - P[U = r] copies of
the row r, for every row r € Im(U). Notice that k- P[U = r] is always a natural number,
and that Ay has exactly k rows in total.

Let G* denote the group of all permutations of the rows of Ay. For a set of attributes
Y C X, let G% denote the subgroup of G* which stabilizes the submatrix Ax[Y] of Ay, i.e.,

Gy ={ocecG¥| o(r)[y] = rly] for each r € Ay, and y € Y}.

Denote G’EZ} by G¥. In particular, G} = G’;. The following lemma is immediate.

yeYy

» Lemma 23. Suppose that U satisfies the functional dependency Y ~ x. Then G% C Gk.
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We define Gy, as (G*,(G¥),ex). By Lemma 23, G is a group system satisfying the
functional dependencies F. It remains to prove (10).

Fix a set of attributes Y C X. For a row r € Im(U[Y]), let p, denote P[U[Y] = r]. Since
r occurs exactly k - p, times as a row of A.[Y], it follows that G¥ is isomorphic to the
product of symmetric groups Hrelm(U[Y]) Sk-p,. (where Sk, is the symmetric group of all
permutations of the copies of the row r). In particular, |G%.| = I ctm@py (k- pr)!. Using
Stirling’s approximation we get the following (ay ~ by signifies limy_, oo ag /b = 1):

k
log <||gl§/|) = log <H k! ) ~ | klog(k) — Z (k-po)log (k- py) | ~

r€Im(U[Y])(k “pr)!

relm(U[Y])
- Z (k- pr)(log (k- pr —logk)) ~ (k) - Z prlogp, ~ k- H(U[Y)).
relm(U[Y]) relm(U[Y])
In particular,
log(|G*|/IG%]) ko H(U)
GC(Q,G") = 0 =H(Q.,U).
)= g log(GH /|G ) maneq HONVER)) @)

This yields (10), proving Proposition 21, which together with Lemma 15 and Proposition 18
gives H(Q) = GC(Q) = «(Q) and finishes the proof of Theorem 5. The more general
Theorem 7 is proved similarly. Moreover, Theorem 6 follows from Remark 5.3.

7 General conjunctive queries

The previous sections concern natural join queries: conjunctive queries without existential
quantifiers (or projections), in which the variables name coincides with the name of the
attribute of the relation in which it appears (in particular, the same variable name cannot
occur in the scope of one conjunct, and there are no equalities). In this section, we discuss
how to treat arbitrary conjunctive queries.

7.1 Set semantics

Define a natural conjunctive query to be a query of the form @ = IY @Q’, where Q' is a
natural join query over the schema ¥, and Y C V(X). The set of free variables of Q is
V(Q) = V(X) — Y. For a database D over the schema X, define Q(D) as T[V(Q)], where
T = Q'(D). In other words, Q(D) is the table Q’(D) restricted to the free variables of Q.
This is the so-called set-semantics, since the result T[V(Q)] is a set of rows, i.e., each row
occurs either 0 or 1 times.

As explained in [9] for each conjunctive query @ there exists a natural conjunctive query
S, such that a(Q) = «(S). Such S can be constructed in a purely syntactical way from @ by
the chase procedure. Because of this, we only consider natural conjunctive queries.

The definition of a(Q) can be lifted without modification to natural conjunctive queries.
The generalization of Theorem 5 has the expected form:

» Theorem 24. Fix o relational schema X and a set of functional dependencies F. Let Q
be a natural conjunctive query over the schema X. Then a(Q) is equal to the mazimal value
of vv(q), for v ranging over F{,(E) and satisfying:

vv(r) <1 for R € Q,
Vzu{y = vz for every fd Z — z in F.
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The proof of the lower bound is exactly the same as the proof of Theorem 5. However
the proof of the upper bound has to be modified slightly, as described below.

For a query @ = 3Y. @', define H(Q,U) and H(Q) as in Section 2. We then have the
following analogue of Lemma 15, proving the upper bound.

» Lemma 25. For a natural conjunctive query @ = 3Y. Q’, a(Q) < H(Q).

Proof. For a database D, let Up be the random variable with values in Q'(D), described as
the result 1’ of the following process: first choose uniformly at random a row r € Q(D), and
then, choose uniformly at random a row 7’ € Q'(ID) such that [V (Q)] = r.

By definition, the random variable Up[V(Q)] is uniformly distributed on Q(D). Now we
get that:

B log |Q(D)| _ HU[V@Q)
(D) = maxpeq log|R(D|)  maxgeq log|R(D)]
H(Up[V(Q)) _
= e HU V) @0
By a similar argument as in the proof of Lemma 15, we derive that a(Q) < H(Q). <

8 Evaluation

In this section, we give some rudimentary results bounding the worst-case complexity of
computing the result of a query Q(D), for a given database D. In the absence of functional
dependencies, it was originally shown in [1] that Q(D) can be computed from D in time
proportional to [D|*@)*1 which was later improved to [D|*(@) by Ngo et al. [15]. In the
bounds presented below, there is an additional factor |D|™, where m is a parameter depending
on the functional dependencies, defined below. Recently, Khamis et al. [11] showed how to
compute the result in time O(|D|*(@)) in the presence of functional dependencies, i.e., in
almost optimal time assuming that the bound a(Q) < h(Q) of Gottlob et al. [9] is tight.

Let F be a set of functional dependencies over attributes X. A minimal component C' is an
inclusion-minimal nonempty set of attributes C' C X with the property that whenever Y +— x
is a functional dependency with Y N C nonempty, then z € C. For a set X’ C X, define
F[X'] to be the set of functional dependencies over X’ which consists of those functional
dependencies Y — z from F, such that Y C X".

We say that a set of attributes S C X spans F, if the smallest subset S of X containing
S and closed under functional dependencies (i.e., Y + x and Y C S implies 2 € S) is equal
to X. We say that F has width m if it has a set of size at most m which spans it. We
inductively define the iterative width by saying that F has iterative width m if either the set
of attributes is empty, or for every its minimal component C, F[C] has width m, and if M
is the set of attributes which belong to the minimal components, then F[X — M] also has
iterative width m.

» Example 26. If F is an empty set of functional dependencies over a nonempty set of
attributes, then F has iterative width 1. The set of dependencies = — y,y — z,z — x has
width 1, since it is spanned by {z}. It also has iterative width 1. Finally, let X = {z,y, z}
and F consist of the functional dependency {z,y} — z. Then F has width 2, since the set
{z,y} spans it. The only minimal component is {z}, and F[{z}] and F[{z,y}] have width 1
and 2, respectively. Hence F has iterative width 2.
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Let D be a database and let C' be a minimal component. For a row r over attributes
X, denote by r/C the row with attributes X such that r/C|x] = r[z] for x € X — C and
r/Clz] = x for x € X NC. Therefore, r/C is obtained by replacing each value of an attribute
in C by a placeholder, storing the name of the attribute. Denote by D/C the database
obtained from I by replacing in each table R, every row r by the row r/C. Clearly, we have
the following.

» Lemma 27. The database D/C can be computed from D in linear time.
The following lemma is immediate, by the fact that C' is a minimal component.
» Lemma 28. The database D/C satisfies all the functional dependencies of Q.

Note, however, that the database D/C usually satisfies more functional dependencies
than ID, namely, it satisfies all functional dependencies () — z, for z € C.

» Lemma 29. Let C be a minimal component, and suppose that F[C] has width m. Then, for
a given database D, the result Q(D) can be computed from Q(D/C) in time O(|Q(D/C)|-|D|™).

Very roughly, the algorithm proceeds by computing, for all s € Q(ID/C) and all rows r over a
spanning set for C' and with admissible values, the row compatible with s and r (if it exists),
and adding it to the result. We omit the details, due to lack of space.

By iteratively applying Lemma 29, we obtain the main result of this section.

» Proposition 30. Fiz a natural join query Q@ and functional dependencies F of iterative

width m. There is an algorithm which for a given database D computes Q(D) in time
O(|p|*(@+m).

Observe that when the set F of functional dependencies is empty, Proposition 30 gives the
algorithm from [1], whose running time is O(|D|*(@)*1) since then F has iterative width 1.

9 Conclusion and future work

We characterized the worst-case size-increase for the evaluation of conjunctive queries, in
two ways: in terms of entropy and in terms of finite groups. Our construction improves a
construction from [9]. We also presented a rudimentary result concerning the evaluation of
natural join queries.

We see several directions of a possible future work. The first direction is to try to
prove tightness of the bound a(Q) < h(Q) from Corollary 8, due to [9]. This would yield
computability of a(Q), as h(Q) can be computed using linear programming. Moreover,
together with the recent results of Khamis et al. [11], this would give an almost optimal
O(|D|*(@) algorithm for computing the results of joins.

Computing H(Q) directly looks hard, and probably would require a deeper understanding
of entropy, and the entropy cone in particular. By comparison, we note that in cryptography
and information theory the seemingly similar optimization problem of finding the optimal
information rate in access structures [3] (a security system which can be used as a secret
sharing scheme) is considered notoriously difficult [6]. This demonstrates that optimization
problems over the entropy cone can be very difficult.

The fractional edge cover was useful in the analysis of the Hypercube algorithm [2], an
algorithm for parallel evaluation of queries. Perhaps some ideas from the current paper can
also be applied in the parallel setting.
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