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Abstract
We consider the evaluation of first-order queries over classes of databases with local bounded
expansion. This class was introduced by Nešetřil and Ossona de Mendez and generalizes many well
known classes of databases, such as bounded degree, bounded tree width or bounded expansion.
It is known that over classes of databases with local bounded expansion, first-order sentences
can be evaluated in pseudo-linear time (pseudo-linear time means that for all ε there exists an
algorithm working in time O(n1+ε)). Here, we investigate other scenarios, where queries are
not sentences. We show that first-order queries can be enumerated with constant delay after a
pseudo-linear preprocessing over any class of databases having locally bounded expansion. We
also show that, in this context, counting the number of solutions can be done in pseudo-linear
time.
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1 Introduction

Query evaluation is a fundamental task in databases and a vast literature is devoted to the
complexity of this problem. Given a database D and a query q the goal is to compute the
set q(D) of all solutions for q over D. Unfortunately, the set q(D) might be way bigger
than the database itself as the number of solutions could be exponential in the arity of the
query. It can therefore be unrealistic to compute all solutions, even for small queries. One
could imagine many scenarios to overcome this situation. We could for instance only want to
compute the number of solutions or just compute the k most relevant solutions relative to
some ranking function.

We consider here the complexity of the enumeration of the set q(D), i.e. generating one
by one all the solutions for q over D. In this context two parameters play an important role.
The first one is the preprocessing time, i.e. the time it takes to produce the first solution. The
second one is the delay, i.e. the maximum time between the output of any two consecutive
solutions. An enumeration algorithm is then said to be efficient if these two parameters are
small. For the delay, the best we can hope for is constant time: depending only on the query
and independent from the size of the database. For the preprocessing time an ideal goal
would be linear time: linear in the size of the database with a constant factor depending on
the query. When both are achieved we say that the query can be enumerated with constant
delay after linear preprocessing.
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Constant delay enumeration after linear preprocessing cannot be achieved for all queries.
However, for restricted classes of queries and databases several efficient enumeration algo-
rithms have been obtained. This is the case for instance for first-order (FO) queries over
databases with bounded degree [3, 11], monadic second-order (MSO) queries over databases
with bounded tree-width [2, 13] and FO queries over databases with bounded expansion [12].
Bounded expansion is a large class of databases as it contains in particular all structures
excluding at least one minor (planarity, bounded tree-width etc.) and all structures of
bounded degree [16].

In some scenarios only pseudo-linear preprocessing time has been achieved. A query can
be enumerated with constant delay after a pseudo-linear preprocessing time if for all ε there
exists an enumeration procedure with constant delay and preprocessing time in O(||D||1+ε).
This is the case for FO queries over databases with low degree [4].

A special case of enumeration is when the query is boolean. In this case the preprocessing
computes the answer to the query. In order to be able to enumerate queries of a given
language efficiently, it is therefore necessary to be able to solve the boolean case efficiently.

It has been shown recently that boolean FO queries could be computed in pseudo-
linear time over nowhere dense databases [9]. Nowhere dense is an important class of
databases generalizing bounded expansion [16]. Amongst classes of databases closed under
sub-databases, Nowhere dense is the largest possible class enjoying efficient evaluation for
FO queries [14].

It’s a major open problem to show that over nowhere dense databases the boolean case
can be extended to a constant delay enumeration for FO queries of higher arities.

In this paper we make one step towards solving this problem, extending the bounded
expansion result to databases having local bounded expansion. Local bounded expansion lies
strictly between bounded expansion and nowhere dense. It requires that for all r the class of
neighbors of radius r has bounded expansion. It contains for instance all databases having
local bounded tree-width, or excluding locally a minor. It strictly extends bounded expansion
as there exist classes of local bounded tree-width that do not have bounded expansion [7].

For FO queries over a class of databases with local bounded expansion we provide:
an enumeration procedure with constant delay after pseudo-linear preprocessing,
a pseudo-linear time algorithm counting the number of solutions.

Our proof for enumeration follows a classical scheme. Our first ingredient is Gaifman’s
theorem, decomposing a formula into local ones with distance constraints. In order to
evaluate the local formulas we would need to compute local neighborhoods. However this
would not be linear as each neighborhood may be of linear size and we have linearly many
of them. Our second key ingredient is the result that one can compute in pseudo-linear
time a representative “cover” of the database by means of neighborhoods [9]. Because these
neighborhoods have bounded expansion we can use the bounded expansion case in order to
evaluate the local formulas. It remains to take care of the distance constraints and this is
the main technical contribution of this paper.

The paper is organized as follows. We start by giving a new proof of the boolean case in
Section 5. We then extend it to constant delay enumeration in Section 6 and to counting in
Section 7.

Related work. Our presentation for the model checking, Section 5, uses the same tricks
that were used in [7] to lift the model checking from the bounded tree-width case to the local
bounded tree-width case. The model checking results presented in Section 5 were already
obtained in [5] with a very similar argument. We give the proofs again here for completeness
and in order to fix the notations.
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An algorithm for counting in linear time the number of solutions for FO queries over
classes of databases with “nice” local bounded tree-width was presented in [6]. The restriction
“nice” requires that the neighborhood cover can be computed in linear time and that one
part of the cover intersects only a constant number of other parts. It is more restrictive
than the one we use, given by [9], and is designed to make the counting easy with a simple
exclusion/inclusion argument. This argument does not seem to extend to the cover we have
and our algorithm for counting, presented in Section 7, is done by induction on the number
of free variables.

In [10] a labeling scheme was presented for first-order queries over graphs with “nice”
local bounded tree-width. If constant delay enumeration may be derived from the labeling
scheme, this one is computed in polynomial time while we aim for pseudo-linear time. It
is unclear whether this result can be generalized to classes of graphs with local bounded
expansion using the tools we develop in this paper.

2 Preliminaries

For a positive integer k, [k] denotes the set {1, · · · , k}. Thereafter, ε will always denote an
element of R+, p, r, s, i, j and k positive integers and f a function of N→ N.

Databases and First-Order queries. A relational signature σ is a tuple (R1, . . . , Rs) where
each Ri is a relational symbol of arity ri. By database, we mean a finite structure over a
relational signature σ, that is a tuple D = (D,RD

1 , . . . , R
D
s ), where D, the domain of D, is a

finite set and for each i, RD
i is a subset of Dri . If D is a database and A ⊆ D a subset of its

universe, we denote by D[A] the database given by the substructure of D induced by A. We
fix a classical encoding of structures as input, see for example [1]. We denote by ||D|| the
size of (the encoding of) D. Without loss of generality we assume that the domain D comes
with a linear order. If not, we arbitrarily choose one, for instance the one induced by the
encoding of D. This order induces a lexicographical order among the tuples over D.

A query is a first-order (FO) formula built from atomic formulas, “x = y” andRi(x1, . . . , xri),
and closed under boolean combinations, ∧,∨,¬, existential and universal quantifications,
∃,∀. We write q(x) if x are the free variables of q. The length of x is called the arity of the
query. Queries of arity 0 are called sentences. The size of q is written |q|.

We write D |= q(ā) to denote the fact that ā is a solution for q over D. We write q(D)
to denote the set of tuples a such that D |= q(a).

Given a database D and a sentence q, the problem of testing whether D |= q or not is
called the model checking problem. It may be restricted to a class C of databases.

Model of computation and complexity. As usual when dealing with linear time, we use
Random Access Machines (RAM) with addition and uniform cost measure as a model of
computation.

All problems encountered in this paper have two inputs, a database D and a query q.
However they play different roles as ||D|| is large while |q| is small. We therefore consider
the data complexity point of view. We say that a problem is linear time if it can be solved
in time O(||D||). Here, and in the rest of the paper, the constants hidden behind the “big
O” depend on q. We say that a problem is pseudo-linear time if, for all ε, it can be solved
in time O(||D||1+ε). In this case the constant factor also depends on ε. If a subroutine of
a procedure depending on ε produces an output of size O(||D||ε) we will then say that the
output is pseudo-constant.

ICDT 2017
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Neighborhoods and bounded expansion. Fix a database D of domain D. The Gaifman
graph of D is the non-directed graph which set of vertices is D and which edges are the pairs
{a, b} such that a and b occur in a tuple of some relation of D. Given two elements a and b
of D, the distance between a and b is the length of a shortest path between a and b in the
Gaifman graph of D. The notion of distance extends to tuples in the usual way.

Given a positive integer r, the r-neighborhood of a in D is the substructure of D induced
by the elements of D at distance at most r from a. It is denoted by ND

r (a). Similarly we
define ND

r (ā) as the union of the r-neighborhoods of the elements of ā.
Given a graph G with a linear order on its vertices, and two of its vertices a, b, we say

that b is weakly r-accessible from a if there exists a path of length at most r between a and
b such that b is smaller than all vertices of the path.

A class of graphs C has bounded expansion if for all r, there is a constant Nr, such that
for all graphs G of C, there is a linear order on the vertices of G, such that for all vertex
a of G, the number of vertices weakly r-accessible from a is bounded by Nr [16]. This is a
robust class of graphs with many equivalent definitions [16]. The precise definition will not
be important for this paper as we will use this notion via its known algorithmic properties,
in particular the fact that constant-delay enumeration algorithms exists for any class of
databases with bounded expansion, see Section 3.

It is easy to see that if C has bounded expansion then the class of all subgraphs of all
graphs of C also has bounded expansion.

A class C of graphs has local bounded expansion if, for any radius r, the class Cr of all
subgraphs of all r-neighborhoods of all graphs in C, has bounded expansion [16].

A class C of databases has (local) bounded expansion if the class of their Gaifman graphs
has the same property.

Normal form for FO queries. We will make use of Gaifman Normal Form and Gaifman
Locality Theorem for FO queries. This is rather classical in this context.

For all r there exists FO queries distr(y, x̄) expressing the fact that y is at distance at
most r from x̄. A query q(x̄) is said to be r-local if all its quantifications are relative to
elements at distance at most r from one of its free variables x̄. This can be achieved using
quantifications of the form ∃y distr(y, x̄) ∧ · · · and ∀y distr(y, x̄)→ · · · .

It is known as Gaifman Normal Form that for any FO query there is an r such that the
query is equivalent to a boolean combination of r-local queries and sentences of the form

∃x1 . . . xk

( ∧
1≤i≤j≤k

dist(xi, xj) > 2r ∧
∧

1≤i≤k
ψ(xi)

)
,

where ψ is r-local. A proof can be found for example in [15].
For r-local queries q(x̄) it is convenient to refine this normal form in order to know which

of the free variables are close together. Any r-local query q(x) is equivalent to a disjunction
of the form:

∨
(x1;...;xp)∈P (x)

α1(x1) ∧ . . . ∧ αp(xp) ∧ τr(x1; . . . ;xp), (1)

where:
P (x) is the set of partitions of x.
αi(xi) is r-local.
τr(x1; . . . ;xp) express the fact that the distance between xi and xj is bigger than 2r and
that no refinement of P has this property. We will sometime refer to τr as a distance type.
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Note that this implies that each αi is (r|xi|)-local around any of its free variables, hence in
particular the first one. Notice also that in (1) the disjunction is strict: no two outputs can
satisfy two disjuncts. We will use this fact later to reduce our attention to a single disjunct.

Counting and enumeration. The counting problem is, given a database D and a query q,
to compute the number of solutions to q over D, i.e. the size of q(D), noted #q(D).

We will now focus on the enumeration problem. An enumeration algorithm for a database
D and a query q is divided into two consecutive phases:

a preprocessing phase,
an enumeration phase, outputting one by one and without repetitions the set q(D).

The preprocessing time of the enumeration algorithm is the time taken by the preprocessing
phase. Its delay is the maximum time between any two consecutive outputs.

One can view an enumeration algorithm as a compression algorithm computing a repre-
sentation of q(D) together with a streaming decompression algorithm. We aim for constant
delay and pseudo-linear preprocessing time enumeration algorithms. By this we mean that
for all ε, there is a preprocessing phase working in time O(||D||1+ε) and an enumeration phase
with constant delay. Note that the multiplicative constants, for both the preprocessing phase
and the delay, may depend on q and on ε.

All our enumeration procedures will output their tuples in lexicographical order. We will
see that this is useful for queries in disjunctive normal form.

For the sake of readability, in the reminder of the paper, we only consider classes of
graphs. All results and proofs can be easily adapted to the database case using standard
techniques.

3 Main results

We will build on several known results over classes of databases with bounded expansion.
The first is a linear time model checking algorithm for sentences:

I Theorem 1 (Dvorak-Kral-Thomas [5]). Let C be a class of graphs with bounded expansion.
Then the model checking problem for FO queries over C can be solved is linear time.

The second one solves the unary query case:

I Theorem 2 (Dvorak-Kral-Thomas [5]). Let C be a class of graphs with bounded expansion
and let q(x) be a query with one free variable. We can compute the set q(G) in linear time.

For queries with bigger arities, we cannot hope to evaluate their output in linear time
anymore. A constant delay enumeration algorithm after linear preprocessing time has been
obtained by Kazana and Segoufin in [12]. We present their result using a stronger statement
than enumeration that will be useful for us later. Here ≥ is the lexicographical order on
tuples over the domain. Recall that the constant factor depends on the query.

I Theorem 3 (Kazana-Segoufin [12]). Let C be a class of graphs with bounded expansion.
Then there is an algorithm such that for all graph G in C, and for any FO query q, after a
preprocessing in linear time, on input any tuple a, the algorithm computes in constant time
the minimal tuple b such that:

b ≥ a
G |= q(b)

If there is no such tuple (i.e. a is bigger than all solutions), it outputs Null.

ICDT 2017
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Our first result extends Theorem 3 to classes with local bounded expansion, replacing
linear preprocessing time with pseudo-linear preprocessing time:

I Theorem 4. Let C be a class of graphs with local bounded expansion. Then there is an
algorithm such that for all graph G in C, and for any FO query q, after a preprocessing
in pseudo-linear time, on input any tuple a, the algorithm computes in constant time the
minimal tuple b such that:

b ≥ a
G |= q(b)

If there is no such tuple (i.e. a is bigger than all solutions), it outputs Null.

It immediately yields the constant delay enumeration after pseudo-linear preprocessing
time.

I Corollary 5. The enumeration of first-order query over class of graphs with local bounded
expansion can be done with constant delay, after pseudo-linear preprocessing. Moreover the
output tuples are given in lexicographiacal order.

Our second result shows that counting the number of solutions can be done in pseudo-linear
time.

I Theorem 6. Let C be a class of graphs with local bounded expansion and q(x) be a first-order
query. Then for all graph G in C, we can compute #q(G) in pseudo-linear time.

Our proof works by induction on the arity of the query. It uses a partition of the database
into representative neighborhoods that we describe next. It then combines this partition
with the bounded expansion case.

4 Neighborhood covers and partitions

Because of the definition of local bounded expansion it is natural to examine the neighborhoods
of our graphs. However, the sum of the sizes of all neighborhoods could be quadratic in the
size of the input, which is too big as we aim for pseudo-linear time algorithms. To overcome
this we selects some representative neighborhoods that cover the entire graph. The result
presented here actually works for the more general notion of nowhere dense1 graphs and is
based on [9].

A (r, s)-neighborhood cover of a graph G is a set T of bags U1, . . . , Uω such that:
∀a ∈ G, ∃λ ≤ ω NG

r (a) ⊆ Uλ
∀λ ≤ ω, ∃a ∈ G Uλ ⊆ NG

s (a)

The size of the cover T is the sum of the bag sizes: ||T || =
∑
λ≤ω
||Uλ||. Its degree is the

number δ(T ) := maxa∈G |{λ ≤ ω | a ∈ Uλ}|.

I Theorem 7 (Grohe et al. [9]). Let C be a nowhere-dense class of graphs. Then for all integer
s and for all graph G in C, we can compute in pseudo-linear time a (s, 2s)-neighborhood
cover of G with a pseudo-constant degree. In particular the size of the neighborhood cover is
pseudo-linear.

1 Nowhere dense requires that for all r, the number of weakly r-accessible nodes is pseudo-constant,
instead of constant for bounded expansion.
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Let A be a set of vertices of G. The s-kernel of A is the setKs(A) := {a ∈ A |NG
s (a) ⊆ A}.

We deduce from a (s, 2s)-neighborhood cover of G a partition of the vertices of G as
follows:

Pλ := KG
s (Uλ) \

⋃
µ<λ

KG
s (Uµ).

It follows from the definitions that the Pλ form a partition of the vertices of G. Moreover,
modulo an extra linear preprocessing time, given an element a we have access in constant
time to the unique λ such that a ∈ Pλ. This is a consequence of the following simple lemma.

I Lemma 8. For all graph G, for all set A of vertices of G, and for all integer s, KG
s (A) is

computable in time O(s · ‖A‖).

Proof. We prove the lemma by induction on s.
If s = 1, let L be a list initialized empty. Then for each element a of A, we go through
every neighbor of a. If we find one that is not in A, we add a to L and we go to the
following element of A. At the end, we have KG

1 (A) = A \ L.
If s = i+ 1, from KG

i+1(A) = KG
1 (KG

i (A)) we get KG
s (A) is in time O(s · ||A||). J

In the following sections, we will often say: compute T = {(U1, P1), . . . , (Uω, Pω)} that is
the (s, 2s)-neighborhood cover paired with the s-kernel partition.

The previous observations can be synthesized in the following corollary.

I Corollary 9. Let C be a class of graphs with local bounded expansion. Then for all graph
G in C and for all integer s, we can compute in pseudo-linear time a (s, 2s)-neighborhood
cover with pseudo-constant degree and the associated s-kernel partition.

If a (s, 2s)-neighborhood cover can be computed efficiently on any nowhere dense class
of graphs, a key property of the covers that works only for the local bounded expansion
case is that all Uλ are in a class of graphs with bounded expansion. This is because each
Uλ is included in the 2s-neighborhood of some point and the later has bounded expansion
by definition. We can therefore enumerate any FO query on each Uλ using Theorem 3 in
time O(||Uλ||), for a total time O(

∑
λ≤ω
||Uλ||), that is pseudo-linear. We will use this property

implicitly in the rest of the paper. Note that this does not solve the general case as some
solutions may have parts in different Uλ.

5 Model-Checking

Since every class of graphs with local bounded expansion is nowhere dense, we already
know that the model checking problem of first-order queries over graphs with local bounded
expansion can be done in pseudo-linear time [9]. Before that, another proof specific to local
bounded expansion was given in [5]. In order to illustrate the tools presented in the previous
sections, we give a new proof of this result. As in [5], it is based on the ideas of Grohe and
Frick for graphs with local bounded tree-width [7].

I Theorem 10. Let C be a class of graphs with local bounded expansion. Given a graph G
in C and a FO sentence q, we can decide in pseudo-linear time whether G |= q.

The rest of this section is devoted to the proof of Theorem 10. Fix G in C and a FO
sentence q. In view of Gaifman Normal Form, we can assume wlog, that q is of the form:

q := ∃x1 . . . xk

( ∧
1≤i≤j≤k

dist(xi, xj) > 2r ∧
∧

1≤i≤k
ψ(xi)

)
,

where ψ is r-local for some r.

ICDT 2017
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Our strategy is as follows: we will first compute the set of nodes satisfying ψ and then
test whether k of them are far apart from each other. The next lemma takes care of the first
step.

I Lemma 11. Let C be a class of graphs with local bounded expansion. For all graph G in
C, for all integer r, and for all unary and r-local FO query ψ, we can compute ψ(G) in
pseudo-linear time.

Proof. Recall that Cs denotes the class of all subgraphs of s-neighborhoods of graphs from
C. Fix r, ψ a unary and r-local query and G ∈ C.

We first compute T = {(U1, P1), . . . , (Uω, Pω)}, a (2r, 4r)-neighborhood cover paired with
the 2r-kernel partition. This can be done in pseudo linear time by Corollary 9. We can then
view the Pλ as new unary predicates.
∀λ ≤ ω, we set ψλ(x) := ψ(x) ∧ Pλ(x). Because ψ is r-local, ψ(G) is the disjoint union

of all ψλ(Uλ). By definition, Uλ ∈ C4r which has bounded expansion. Consequently, it
is possible to compute ψλ(Uλ) in time O(||Uλ||) by Theorem 2. Therefore, we are able to

compute the set ψ(G) in time O
(

ω∑
λ=1
||Uλ||

)
= O(||T ||) that is pseudo-linear in the size

of G. J

Now we want to find k elements far apart in ψ(G). We use a trick found in [7].

I Lemma 12. Let C be a class of graphs with local bounded expansion. For all graph G in C,
for all integer r and k, and for all set A of vertices of G, we can decide in pseudo-linear
time whether A contains a subset of k elements that are pairwise at distance more than 2r.

Proof. We proceed as follows:
We first compute T = {(U1, P1), . . . , (Uω, Pω)}, a (2r, 4r)-neighborhood cover paired with

the 2r-kernel partition as in Corollary 9.
Let L be a list, initialized as empty.
While A is not empty and |L| < k, we select (and remove) an element a in A.
If for all b in L we have: (b ∈ Pλ ⇒ a 6∈ Uλ) then we add a in L. Notice that every b

belongs to some Pλ, and hence N2r(b) ⊆ Uλ. If furthermore a 6∈ Uλ then a and b must be at
distance more than 2r.

At the end, we have tree different cases:
1st case, |L| = 0. Then A = ∅.
2nd case, |L| = k. Then we are done because all elements of L are far apart from each
other by construction.
3rd case, |L| = m, with 0 < m < k. Let L = {b1, · · · , bm}. Notice that A ⊆
NG

4r(b1, . . . , bm). We can see that H := NG
4r(b1, . . . , bm) is in C4rm. Therefore, from

Theorem 1 it is possible to check in linear time if:

H |= ∃ x1, . . . , xk
∧

1≤i≤k
A(xi) ∧

∧
1≤i<j≤k

dist(xi, xj) > 2r. J

Theorem 10 now easily follows from Lemma 11 and Lemma 12.

6 Enumeration

In this section we provide a constant delay enumeration procedure for FO queries over graphs
with local bounded expansion. We actually prove a stronger result as stated in Theorem 4.
Let G be a graph, q a FO query and a any tuple from G, not necessarily in q(G). We denote
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by FOLWq(a) the smallest tuple b ∈ q(G) such that b is bigger than a in the lexicographical
order i.e. b ≥ a. If there is no such b, we say that FOLWq(a) = Null.

In the rest of this section we show that for any class C with local bounded expansion,
given G ∈ C and q, after a pseudo-linear time preprocessing, we can compute FOLWq(a) in
constant time. Recall that this means that given ε there is a preprocessing algorithm working
in time O(||G||1+ε) computing a structure that can then be used to compute FOLWq(a) from
a in constant time. All constants depend on q and ε. This proves Theorem 4. We proceed
by induction on the arity of the query.
I Remark 1. Assume q is q1 ∨ q2. Then FOLWq(a) is the smallest tuple among FOLWq1(a)
and FOLWq2(a). Hence if q is a disjunction of queries, it is enough to prove Theorem 4 on
each of the disjunct to get the result for q.

Thanks to Gaifman Normal Form, we can assume that the query is a boolean combination
of r-local formulas and sentences. By Theorem 10 the sentences can be precomputed during
the preprocessing phase. We are then left with a r-local query (any boolean combination of
r-local queries is a r-local query). Moreover, in view of Remark 1 and Gaifman Theorem for
local queries, we can assume without loss of generality that our query q has the form:

q(x) = α1(x1) ∧ . . . ∧ αp(xp) ∧ τr(x1; . . . ;xp)

where the αi and τr satisfy the conditions described in Section 2.
We start with some examples in order to illustrate the difficulty of the task. Assume that

the query returns the pairs of blue-red nodes that are sufficiently far apart:

q(x, y) := dist(x, y) > 2r ∧B(x) ∧R(y).

Given a blue node a and a node b we can compute FOLWq(a, b) as follows.
During the preprocessing phase, thanks to Corollary 9, we compute in pseudo-linear

time a (2r, 4r)-cover with its associated partition {(U1, P1), . . . , (Uω, Pω)}. Given a the λ
such that a ∈ Pλ can then be obtained in constant time. Assume we could compute in
pseudo-linear time a structure that, given λ and b, returns in constant time the smallest red
node c ≥ b outside of Uλ. With this, from a ∈ Pλ we have that q(a, c) holds and therefore
FOLWq(a, b) ≤ c. It remains to test whether there is also a node c′ ≥ b within Uλ that is far
from a. As we are within Uλ, we can invoke Theorem 3 and compute the smallest such c′ in
constant time after a preprocessing linear in ||Uλ||. As we don’t know a, and therefore λ, in
advance, we perform that preprocessing for all λ, for a total time linear in O(Σλ||Uλ||), which
is pseudo linear. The minimum element among c and c′ is then the desired FOLWq(a, b).
Unfortunately we cannot afford to construct the structure returning c from λ and b because
this is a function with two parameters that can potentially have a quadratic size. We will
see in the proof (this is essentially Claim 13 and Claim 14 bellow) that we can compute in
pseudo-linear time a subset of this function that is sufficient for our needs.

The situation is even worse for higher arities. To see this, assume the query is now

q(x1, x2, x3) := B(x1) ∧ Y (x2) ∧R(x3) ∧
∧

1≤i<j≤3
dist(xi, xj) > 2r.

Given a blue node a, a yellow node a′ that are both far apart, and a node b, we are
looking for FOLWq(aa′, b).

Let’s see what happens when extending the previous reasoning. Given a and a′ we derive
in constant time λ and λ′ such that a ∈ Pλ and a′ ∈ Pλ′ . As above we could get in constant
time the smallest red node c ≥ b outside of Uλ. But if this node is certainly far from a it
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might be close to a′. We can then imagine precomputing the smallest red node c ≥ b outside
of Uλ ∪ Uλ′ , a ternary function. Again, we will see that we can compute in pseudo-linear
time a subset of this function good enough for us. It remains to test whether there is also a
node c′ ≥ b within Uλ ∪ Uλ′ that is far from a and a′. We could use again Theorem 3, but
we would need a preprocessing linear in Σλ,λ′(||Uλ ∪ Uλ′ ||), which is unfortunately quadratic.
To overcome this problem we introduce an intermediate bag Vλ between Pλ and Uλ together
with a more complex algorithm based on the positions of a and a′ in all the bags we have,
that we will describe below.

We now turn to the formal details.

Base case. Assume q is unary. Because q is also r-local, by Lemma 11 we can compute
q(G) during the preprocessing phase. In order to compute FOLWq(a) for all a ∈ G, we go
through all vertices of G starting from the maximal one. For each vertex a, if a ∈ q(G) then
we set FOLWq(a) = a. If a 6∈ q(G) and a is the maximal element, we set FOLWq(a) to Null.
In all remaining cases, we set FOLWa(a) to FOLWq(b), where b is the successor of a in the
linear order on the vertices.

Inductive case. Assume now that q(x̄, y) is an r-local query of arity k + 1. Let q′(x̄) be
the query ∃y q(x̄, y).

We claim that, modulo a pseudo-linear preprocessing, given a tuple ā such that G |= q′(ā)
and a vertex b, we can compute in constant time the smallest b′ ≥ b such G |= q(a, b),
outputing Null if no such b′ exists.

Before proving the claim we show that it implies the constant time computation of
FOLWq. Let amin be the minimal element of G. Let ab be a tuple. Let a′ = FOLWq′(a). By
induction, a′ can be computed in constant-time. If a′ is Null we output Null and we are done.
If a′ > a then we apply the claim with a′ and amin and we are done. If a′ = a then we apply
the claim with a and b. If b′ is not Null, then ab′ is the desired tuple. If b′ = Null then let a′
be the successor of a in the lexicographical order and a′′ = FOLWq′(a′). We apply again the
claim for a′′ and amin and we are done. All this clearly takes constant time.

In the rest of this section we prove the claim. Recall that q(x̄, y) is of the form:

q(x, y) = α1(x1, y) ∧ . . . ∧ αp(xp) ∧ τr(x1, y; . . . ;xp).

Let w̄ = x2 ∪ . . . ∪ xp. We have:

q(x, y) = q1(x1, y) ∧ q2(w̄) ∧ τr(x1, y; . . . ;xp).

We will distinguish two cases, depending whether x1 is empty or not. Let k be the arity
of q.

Elements far away

We assume here that x1 is empty. By Lemma 11 we can precompute in pseudo-linear time
the set L of nodes satisfying q1. It remains to compute from a, and b the smallest element of
L that is at distance 2r from a and is greater than b.

We compute a (4r, 8r)-neighborhood cover and the associated 4r-kernel partition according
to Corollary 9. We then compute the 2r-neighborhood Vλ of each Pλ. We now have
T := {(P1, V1, U1), . . . , (Pω, Vω, Uω)} such that NG

2r(Pλ) = Vλ and NG
2r(Vλ) ⊆ Uλ.

We define for all vertex b and all set I ⊆ {1, . . . , ω} such that |I| ≤ k the function.

NEXT(b, I) = min
{
b′ | b′ ≥ b ∧ b′ 6∈

⋃
λ∈I

Vλ ∧ b′ ∈ L
}
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The domain of this function is too big (recall that ω is linear in ||G||) so we cannot
compute it. Fortunately, computing only a small part of it will be good enough for our needs.
For each vertex b we define by induction the following set SC(b) of elements I ⊆ {1, . . . , ω}
with |I| ≤ k:

For all b in G and for all λ with b ∈ Vλ, we add {λ} to SC(b).
For all b in G, for all I, and for all λ, if |I| < k and I ∈ SC(b) and NEXT(b, I) ∈ Vλ,
then we add {I ∪ {λ}} to SC(b).

Our aim is to compute all NEXT(b, I) for all b and I ∈ SC(b). We first show that it will
be enough to compute in constant time NEXT(b, I) for all b and I.

I Claim 13. Given a vertex b, a set I, and NEXT(c, J) for all vertices c > b and sets
J ∈ SC(c), then we can compute NEXT(b, I) in constant time.

Proof. Case 1, b ∈ L and b 6∈
⋃
λ∈I

Vλ, then b is NEXT(b, I).

Case 2, b 6∈ L or b ∈
⋃
λ∈I

Vλ, then let c be the smallest element of L strictly bigger than b.

If there is no such c then NEXT(b, I) = Null, otherwise:
Case 2.1, c 6∈

⋃
λ∈I

Vλ, then c is NEXT(b, I).

Case 2.2, c ∈ Vλ with λ ∈ I. Therefore {λ} ∈ SC(c). Let J be a maximal (for
inclusion) subset of I in SC(c). Since {λ} ∈ SC(c), we know that J is non empty.
We claim that NEXT(c, J) = NEXT(b, I). To see this, assume that NEXT(c, J) ∈ Vµ
with µ ∈ I hence |J | < k, then by definition of SC(c), J ∪ {µ} ∈ SC(c) and J was
not maximal. Moreover, by definition of NEXT(c, J), every point between c and
NEXT(c, J) is either not in L or in one of the V we want to avoid. As all nodes
between b and c are not in L, the claim follows. J

We now show that SC(b) is small for all b and that we can compute all of NEXT(b, I)
for all b and I ∈ SC(b).

I Claim 14. For all integer b, |SC(b)| is a pseudo-constant. Moreover, it is possible to
compute all NEXT(b, I) for all vertex b and set I ∈ SC(b) in pseudo-linear time.

Proof. We first prove that for all b ∈ G, |SC(b)| is a pseudo-constant. Then we use Claim 13
in order to prove that we can compute these pointers by induction.

By SCl(b) we denote the subset of SC(b) of elements I with |I| ≤ l. Let d be the
degree of our cover. We have that for all b ∈ G, |SC1(b)| = d. For the same reason,
we have that |SCl+1(b)| = O(d · |SCl(b)|). Therefore, we have that for all b ∈ G,
|SC(b)| = |SCk(b)| ≤ O(dk). Since d is pseudo-constant, |SC(b)| is also pseudo-constant.
We compute the pointers for b from bmax to bmin downwards, respectively the biggest and
the smallest element of G. Given a b in G, assume we have computed NEXT(c, J) for all
c > b and J ∈ SC(c). We then compute NEXT(b, I) for I ∈ SC(b) using Claim 13.
Here, every pointer was computed in constant time. Since there is only a pseudo-linear
number of them, the time required to compute them all is pseudo-linear. J

With these two claims, we are now ready to conclude the case where x̄1 is empty. The
preprocessing phase consists of the following steps:

1st step: compute a (4r, 8r)-neighborhood cover and the associated 4r-kernel partition
according to Corollary 9.
2nd step: compute the 2r-neighborhood Vλ of each Pλ. We now have
T := {(P1, V1, U1), . . . , (Pω, Vω, Uω)} such that NG

2r(Pλ) = Vλ and NG
2r(Vλ) ⊆ Uλ.
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3rd step: compute L := q2(G). This can be done in pseudo-linear time by Lemma 11.
4th step: compute NEXT(b, I) for all b and I ∈ SC(b). This can be done in pseudo-linear
time by Claim 14.
5th step: ∀1 ≤ l ≤ k, ∀λ ≤ ω, perform on Uλ the preprocessing phase for the formula:

ϕλ,l(x1, . . . , xl, y) := Vλ(y) ∧ L(y) ∧
∧
i≤l

dist(xi, y) > 2r.

This can be done in time O(||Uλ||) by Theorem 3 because Uλ ∈ C8r.
This is the end of the preprocessing. The total time needed is pseudo-linear.

Now we are given (a, ak+1) a tuple of elements of G, such that G |= ∃y q(a, y).
Let λ1, . . . , λk be such that ai ∈ Pλi

and I := {λ1, . . . , λk}.
Let b0 = NEXT(ak+1, I).
For all 1 ≤ i ≤ k, let c̄i be the elements of a that falls into Uλi

and mi = |c̄i|. Using
Theorem 3 we compute in constant-time

bi = min{y | y ∈ Vλi
∧ y ≥ ak+1 ∧ ϕλi,mi

(c̄i, y)} .

We return the minimum element among the bi, 0 ≤ i ≤ k.

This is clearly constant time. To see that this is correct, let c be the correct answer.
If c ∈ Vλi for some i ∈ I then ϕλi,mi gives us bi that is the smallest y ∈ Vλi satisfying q2

and is at distance greater than 2r from the elements of a present in Uλ. Those that are not
in Vλi

must be at distance greater than 2r from bi since NG
2r(Vλi

) ⊆ Uλi
. Hence c = bi.

Otherwise, i.e. c 6∈ Vλi
for all i ∈ I. Then the NEXT( · , I) pointers give us b0 that is the

smallest element satisfying q2 that is not in one of the Vλi
. Therefore dist(b0, a) > 2r. Hence

c = b0.
This concludes the first case.

Elements nearby

Assume now that x1 contains at least one variable, say x1. Therefore, for all tuples (a, b)
such that G |= q(a, b), we have that dist(a1, b) < 2kr. This makes the second case much
easier.

The preprocessing phase contains several steps.
1st step: compute a (4rk, 8rk)-neighborhood cover and the associated 4rk-kernel partition
according to Corollary 9.
2nd step: compute the 2rk neighborhood Vλ of each Pλ. We now have
T := {(P1, V1, U1), . . . , (Pω, Vω, Uω)} such that NG

2rk(Pλ) = Vλ and NG
2rk(Vλ) ⊆ Uλ.

3rd step: ∀1 ≤ l < k, ∀λ ≤ ω, perform the preprocessing phase on Uλ of the formula:

ϕλ,l(x̄1, y, x
′
1, . . . , x

′
l) := Vλ(y) ∧ q1(x̄1, y) ∧

∧
i<l

dist(x′i, y) > 2r.

This can be done in time O(||Uλ||) by Theorem 3 because Uλ ∈ C8kr.
This is the end of the preprocessing. The total time needed is pseudo-linear.

Now we are given (a, ak+1) a tuple of elements of G, such that G |= ∃y q(a, y). Let a1 be
the elements of a corresponding to x̄1 and a1 the first of them.

Let λ be such that a1 ∈ Pλ.
Let c̄ := (aj ∈ ā | aj ∈ Uλ ∧ aj 6∈ a1) and m = |c̄|
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We return b := min{b′ | b′ ∈ Uλ ∧ b′ ≥ ak+1 ∧ Uλ |= ϕλ,m(ā1, b
′, c̄)}. This can be done

in constant time by Theorem 3.

All this is done in constant time. It is correct because by assumption the answer b must
be in Vλ, satisfy q1(ā1, b) and be at distance greater than 2r from the elements of w̄.

The elements of w̄ that are not in Uλ must satisfy this last condition since b ∈ Vλ and
NG

2rk(Vλ)
⊆ Uλ. It remains to consider the elements of w̄ that are in Uλ, that is c̄. Then ϕλ,m(a1, y, c̄)
gives us exactly what we want.

This concludes the second case and therefore the proof.

Besides constant delay enumeration, Theorem 4 has another interesting immediate
corollary. Modulo a pseudo-linear time preprocessing we can test, given a tuple a in constant
time, whether it belong to q(G) or not:

I Corollary 15. Let C be a class of databases with local bounded expansion. Then for all
graph G in C, after a pseudo-linear time preprocessing, we can, given a tuple a, decide in
constant time whether it belongs to q(G) or not.

7 Counting

In this section we consider the counting problem which is to compute, given G and q, the
size of q(G), denoted by #q(G). We aim at computing #q(G) in time pseudo-linear.
I Remark 2. Assume q is q1 ∨ q2 and that q1 and q2 have no common solution, i.e. the
disjunction is strict. Then #q(G) = #q1(G) + #q2(G). Hence if q is a strict disjunction of
queries, it is enough to prove Theorem 6 on each of the disjunct to get the result for q.

Again we will build on the bounded expansion case:

I Theorem 16 (Kazana, Segoufin [12]). Let C be a class of graphs with bounded expansion
and q(x) be a FO query. Then, for all graph G in C, we can compute #q(G) in linear time.

The rest of the section is dedicated to the proof of Theorem 6.

Thanks to Gaifman Normal Form, we can assume that the query is a boolean combination
of r-local formulas and sentences. By Theorem 10 the sentences can be precomputed during
the preprocessing phase. We are then left with a r-local query (any boolean combination of
r-local queries is a r-local query). Moreover, in view of Remark 2 and Gaifman Theorem for
local queries, we can assume without loss of generality that our query q has the form:

q(x) = α1(x1) ∧ . . . ∧ αp(xp) ∧ τr(x1; . . . ;xp)

where the αi and τr satisfies the conditions described in Section 2.
The proof goes by induction on p, which is the number of connected components of the

distance -type τ .
We first give a small example in order to give a hint of how the induction works.
Consider again the query returning the pairs of blue-red nodes that are far apart:

q(x, y) := dist(x, y) > 2r ∧B(x) ∧R(y).

In this case, there are two connected components. In order to count the number of
solutions, we multiply the number of blue nodes by the number of red nodes and we subtract
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from the result the number of blue-red nodes that are at distance smaller than 2r. Those
three numbers correspond to the number of solutions of three queries with only one connected
component in their distance type each, hence we can proceed by induction. This is essentially
what we do in the general case.

We now give the details. We start with the base case followed by the inductive case.
Let G ∈ C, and q(x) = α1(x1) ∧ . . . ∧ αp(xp) ∧ τr(x1; . . . ;xp)

If p = 1. In this case, if a ∈ q(G), then NG
r (a) ⊆ NG

2rk(a1).
1st step: compute a (2rk, 4rk)-neighborhood cover and the associated 2rk-kernel partition
according to Corollary 9. We now have:
T := {(P1, U1), . . . , (Pω, Uω)} such that NG

2rk(Pλ) ⊆ Uλ.
2nd step: for all λ ≤ ω, let ϕλ(x) := q(x) ∧ x1 ∈ Pλ.
We have that q(G) =

⋃
1≤i≤ω

ϕλ(Uλ). Moreover, the union is disjoint. Therefore:

#q(G) =
ω∑
i=1

#ϕλ(Uλ) .

Since for all λ, Uλ ∈ C4kr, we can compute #ϕλ(Uλ) in time ||Uλ|| using Theorem 16.
Therefore, we can compute #q(G) in total time O(

ω∑
i=1

(‖Uλ‖)) = O(||T ||), that is

pseudo-linear in the size of G.

If p > 1. Let w̄ = (x2, . . . , xp). Consider the following three queries:

q1(x1) := α1(x1) ∧ τr(x1),
q2(w̄) := α2(x2) ∧ . . . ∧ αp(xp) ∧ τr(x2; . . . ;xp),

q3(x̄, w̄) := q1(x1) ∧ q2(w̄) ∧ dist(x1, w̄) ≤ 2r.

We have that

G |= q(ab)⇐⇒ q1(a) ∧ q2(b) ∧ dist(a, b) > 2r,

hence

q(G) = q1(G)× q2(G) \ {a, b ∈ G | q1(a) ∧ q2(b) ∧ dist(a, b) ≤ 2r},

which is

q(G) = q1(G)× q2(G) \ q3(G).

Since

q3(G) ⊆ q1(G)× q2(G),

it follows that

#q(G) = #q1(G) ·#q2(G)−#q3(G).

It is easy to see that both q1 and q2 have less than p connected components in their
distance type. Therefore, by the induction assumption we can compute #q1(G) and #q2(G)
in pseudo linear time. We now have to compute #q3(G).

We say that (x′1; . . . ;x′p′) ∈ Π(x1; . . . ;xp) if and only if:
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(x′1, . . . , x′p′) is a partition of x with p′ < p,
x1 ( x′1,
∀1 < j ≤ p′, there is a i > 1 such that x′j = xi.

Basically, x′1 is the collapse of x1 and at least one of the xi. The other xi remain unaltered.

Given (x′1; . . . ;x′p′), we define:
α′1(x′1) =

∧
i∈I

αi(xi) where I := {i ≤ p | xi ⊂ x′1},

α′j(x′j) = αi(xi) where xi = x′j ∀1 < j ≤ p′.
It follows from those definitions that:

q3(x) =
∨

(x′
1;...;x′

p′ )∈Π(x1;...;xp)

α′1(x1) ∧ . . . ∧ α′p′(x′p′) ∧ τr(x′1; . . . ;x′p′).

Moreover these disjunctions are strict. Therefore, with Remark 2:

#q3(G) =
∑

(x′
1;...;x′

p′ )∈Π(x1;...;xp)

#
(
α′1(x1) ∧ . . . ∧ α′p′(x′p′) ∧ τr(x′1; . . . ;x′p′)

)
.

Since every query present here has less than p connected components in its distance
type, we can by induction count the number of solutions for each of them in pseudo-linear
time. There is only a constant number of queries involved in this sum, therefore #q3(G) is
computable in pseudo-linear time.

As #q1(G) and #q2(G) are already computed, we can compute #q(G) = #q1(G) ·
#q2(G)−#q3(G).

The total time needed was pseudo-linear. This concludes the proof.

8 Conclusion

We have shown how to efficiently process first-order queries over classes of graphs with locally
bounded expansion. We did not explicitly mention the constant factors. These are not very
good. Even in the bounded expansion case the constant factor is a tower of exponentials
which height depends on the size of the query. Moreover, an elementary constant factor is
not reachable (unless FPT = AW[∗]) even for unranked trees [8].

The results state the existence of an enumeration procedure for all ε. A uniform version
of this statement would require that the procedure is computable from ε. It is indeed the
case if the class of local bounded expansion is “effective”, see [16] for the precise definition.

An improvement of our work will be to extend the results for the counting and enumeration
problems to nowhere-dense structures. On those structures, the model checking can be done
in pseudo-linear time [9]. There is therefore hope to find good algorithms for the other
problems. However, this remains future work.
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