A Type Theory for Probabilistic and Bayesian Reasoning*

Robin Adams ${ }^{1}$ and Bart Jacobs ${ }^{2}$
1 Institutt for Informatikk, Universitetet i Bergen, Postboks 7803, 5020 Bergen, Norway robin.adams@uib.no
2 Institute for Computing and Information Sciences, Radboud Universiteit, Postbus 9010, 6500 GL Nijmegen, The Netherlands
bart@cs.ru.nl

Abstract

This paper introduces a novel type theory and logic for probabilistic reasoning. Its logic is quantitative, with fuzzy predicates. It includes normalisation and conditioning of states. This conditioning uses a key aspect that distinguishes our probabilistic type theory from quantum type theory, namely the bijective correspondence between predicates and side-effect free actions (called instrument, or assert, maps). The paper shows how suitable computation rules can be derived from this predicate-action correspondence, and uses these rules for calculating conditional probabilities in two well-known examples of Bayesian reasoning in (graphical) models. Our type theory may thus form the basis for a mechanisation of Bayesian inference.

1998 ACM Subject Classification F.4.1 Mathematical Logic and Formal Languages: Mathematical Logic - Lambda calculus and related systems, G. 3 Probability and Statistics: Probabilistic algorithms, F.3.1 Logics and Meanings of Programs: Specifying and Verifying and Reasoning about Programs

Keywords and phrases Probabilistic programming, probabilistic algorithm, type theory, effect module, Bayesian reasoning

Digital Object Identifier 10.4230/LIPIcs.TYPES.2015.1

1 Introduction

A probabilistic program is understood (semantically) as a stochastic process. A key feature of probabilistic programs as studied in the 1980s and 1990s is the presence of probabilistic choice, for instance in the form of a weighted sum $x+{ }_{r} y$, where the number $r \in[0,1]$ determines the ratio of the contributions of x and y to the result. This can be expressed explicitly as a convex sum $r \cdot x+(1-r) \cdot y$. Some of the relevant sources are [13, 15, 16, 18], and also [22] for the combination of probability and non-determinism. In the language of category theory, a probabilistic program is a map in the Kleisli category of the distribution $\operatorname{monad} \mathcal{D}$ (in the discrete case) or of the Giry monad \mathcal{G} (in the continuous case), see [10] for details.

In recent years, with the establishement of Bayesian machine learning as an important area of computer science, the emphasis of probabilistic programming shifted towards conditional inference. The key feature is no longer probabilistic choice, but normalisation of distributions (states), see e.g. [3, 7, 21, 14, 19]. Interestingly, this can be done in basically the same

[^0]
© Robin Adams and Bart Jacobs;
licensed under Creative Commons License CC-BY
21st International Conference on Types for Proofs and Programs (TYPES 2015).
Editor: Tarmo Uustalu; Article No. 1; pp. 1:1-1:34
Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
underlying models, where a program still produces a distribution - discrete or continuous over its output.

This paper contributes to this latest line of work by formulating a novel type theory for probabilistic and Bayesian reasoning. We list the key features of our type theory.

- It includes a logic, which is quantitative in nature. This means that its predicates are best understood as 'fuzzy' predicates, taking values in the unit interval $[0,1]$ of probabilities, instead of in the two-element set $\{0,1\}$ of Booleans.
- As a result, the predicates of this logic do not form Boolean algebras, but effect modules (see e.g. [9]). The double negation rule $p^{\perp \perp}=p$ does hold, but the sum \otimes is a partial operation. Moreover, there is a scalar multiplication $s \cdot p$, for a scalar s and a predicate p, which produces a scaled version of the predicate p.
- The type theory includes normalisation (and also probabilistic choice). Abstractly, normalisation means that each non-zero 'substate' in the type theory can be turned into a proper state (like in [11]). This involves, for instance, turning a subdistribution $\sum_{i} r_{i} x_{i}$, where the probabilities $r_{i} \in[0,1]$ satisfy $0<r \leq 1$ for $r \stackrel{\text { def }}{=} \sum_{i} r_{i}$, into a proper distribution $\sum_{i} \frac{r_{i}}{r} x_{i}$ - where, by construction, $\sum_{i} \frac{r_{i}}{r}=1$.
- The type theory also includes conditioning, via the combination of assert maps and normalisation (from the previous two points). Hence, we can calculate conditional probabilities inside the type theory, via appropriate (derived) computation rules. In contrast, in the language of [3], probabilistic (graphical) models can be formulated, but actual computations are done in the underlying mathematical models. Since these computations are done inside our calculus, our type theory can form the basis for mechanisation.
This work concentrates on an integrated type theory and logic for probability, and not so much on the underlying semantics (like in $[3,21]$) nor on the programming language aspects (like in $[7,19,14]$), since we do not have a 'while' construct, for instance.

The type theory that we present is based on a new categorical foundation for quantum logic, called effectus theory, see $[9,11,4,6]$. This theory involves a basic duality between states and effects (predicates), which is implicitly also present in our type theory. A subclass of 'commutative' effectuses can be defined, forming models for probabilistic computation and logic. Our type theory corresponds to these commutative effectuses, and will thus be called COMET, as an abbreviation for COMmutative Effectus Theory. This system COMET can be seen as an internal language for commutative effectuses.

Effectus theory thus forms the categorical basis for COMET. At the same time it forms the basis for an embbeded language EfProb in the programming language Python ${ }^{1}$. EfProb forms a uniform 'calculator' for discrete, continuous and quantum probability. EfProb is an unsafe language, which is in a sense orthogonal to the COMET type theory.

The idea that predicates come with an associated action is familiar in mathematics. For instance, in a Hilbert space \mathcal{H}, a closed subspace $P \subseteq \mathcal{H}$ (a predicate) can equivalently be described as a linear idempotent operator $p: \mathcal{H} \rightarrow \mathcal{H}$ (an action) that has P as image. We sketch how these predicate-action correspondences also exist in the models that underlie our type theory.

First, in the category Sets of sets and functions, a predicate p on a set X can be identified with a subset of X, but also with a 'characteristic' map $p: X \rightarrow 1+1$, where $1+1=2$ is the two-element set. We prefer the latter view. Such a predicate corresponds bijectively to a 'side-effect free' instrument instr ${ }_{p}: X \rightarrow X+X$, namely to:

[^1]\[

\operatorname{instr}_{p}(x)= $$
\begin{cases}\operatorname{inl}(x) & \text { if } p(x)=1 \\ \operatorname{inr}(x) & \text { if } p(x)=0\end{cases}
$$
\]

Here we write $X+X$ for the sum (coproduct), with left and right coprojections (also called injections) inl (_), inr (_) : X $\rightarrow X+X$. Notice that this instrument merely makes a left-right distinction, as described by the predicate, but does not change the state x. It is called side-effect free because it satisfies $\nabla \circ \operatorname{instr}_{p}=\mathrm{id}$, where $\nabla=[\mathrm{id}, \mathrm{id}]: X+X \rightarrow X$ is the codiagonal. It is easy to see that each map $f: X \rightarrow X+X$ with $\nabla \circ f=$ id corresponds to a predicate $p: X \rightarrow 1+1$, namely to $p=(!+!) \circ f$, where $!: X \rightarrow 1$ is the unique map to the final (singleton, unit) set 1.

Our next example describes the same predicate-action correspondence in a probabilistic setting. It assumes familiarity with the discrete distribution monad \mathcal{D} - see [9] for details, and also Section 4.1 - and with its Kleisli category $\mathcal{K} \ell(\mathcal{D})$. A predicate map $p: X \rightarrow 1+1$ in $\mathcal{K} \ell(\mathcal{D})$ is (essentially) a fuzzy predicate $p: X \rightarrow[0,1]$, since $\mathcal{D}(1+1)=\mathcal{D}(2) \cong[0,1]$. There is also an associated instrument map instr ${ }_{p}: X \rightarrow X+X$ in $\mathcal{K} \ell(\mathcal{D})$, given by the function instr $_{p}: X \rightarrow \mathcal{D}(X+X)$ that sends an element $x \in X$ to the distribution (formal convex combination):

$$
\operatorname{instr}_{p}(x)=p(x) \cdot \operatorname{inl}(x)+(1-p(x)) \cdot \operatorname{inr}(x)
$$

This instrument makes a left-right distinction, with the weight of the distinction given by the fuzzy predicate p. Again we have $\nabla \circ \operatorname{instr}_{p}=\mathrm{id}$, in the Kleisli category, since the instrument map does not change the state. It is easy to see that we get a bijective correspondence.

These instrument maps instr in $_{p} X \rightarrow X+X$ can in fact be simplified further into what we call assert maps. The (partial) map assert ${ }_{p}: X \rightarrow X+1$ can be defined as assert $_{p}=(\mathrm{id}+!) \circ \operatorname{instr}_{p}$. We say that such a map is side-effect free if there is an inequality $\operatorname{assert}_{p} \leq \operatorname{inl}\left(_\right)$, for a suitable order on the homset of partial maps $X \rightarrow X+1$. Given assert maps for p, and for its orthosupplement (negation) p^{\perp}, we can define the associated instrument via a partial pairing operation as instr $_{p}=$ «assert ${ }_{p}$, assert ${ }_{p}{ }^{\perp}$, see below for details. We shall define conditioning via normalisation after assert. More specifically, for a state $\omega: X$ and a predicate p on X we define the conditional state $\left.\omega\right|_{p}=\operatorname{cond}(\omega, p)$ as:

$$
\operatorname{cond}(\omega, p)=\operatorname{nrm}\left(\operatorname{assert}_{p}(\omega)\right)
$$

where nrm (-) describes normalisation (of substates to states). This description occurs in semantical form in [11]. Here we formalise it at a type-theoretic level and derive suitable computation rules from it that allow us to do (exact) conditional inference.

The paper is organised as follows. Section 2 provides an overview of the type theory, with some key results, without giving all the details and proofs. Section 3 takes two familiar examples of Bayesian reasoning and formalises them in our type theory COMET. Next, Section 4 sketches how our type theory can be interpreted in set-theoretic and probabilistic models. Subsequently, Section 5 explores the type theory in greater depth, and provides justification for the computation rules in the examples. Appendix A contains a formal presentation of the type theory COMET.

1.1 Previous Work

The system COMET is related to the quantum type theory QPEL described in [1]. The two type theories have a common subsystem. The type theory in [1] extends this subsystem with rules for qubits. The theory COMET extends the subsystem with new computation rules for the instrument maps, which provides a bijective correspondence between predicates and side-effect free assert maps (see below for details); as well as normalisation, and the scalar constants $1 / n$.

A key feature of quantum theory is that observations have a side-effect: measuring a system disturbs it at the quantum level. In order to perform such measurements, each quantum predicate comes with an associated 'measurement' instrument operation which acts on the underlying space. Probabilistic theories also have such instruments . . . but they are side-effect free!

The key aspect of a probabilistic model, in contrast to a quantum model, is that there is a bijective correspondence between:

- predicates $X \rightarrow 1+1$
- side-effect free instruments $X \rightarrow X+X$ - or equivalently, side-effect free assert maps $X \rightarrow X+1$.

2 Syntax and Rules of Deduction

We present here the terms and types of COMET. We shall describe the system at a high level here, giving the intuition behind each construction. The complete list of the rules of deduction of COMET is given in Appendix A, and the properties that we use are all proved in Section 5.

2.1 Syntax

Assume we are given a set of type constants \mathbf{C}, representing the base data types needed for each example. (These may typically include for instance nat and real.) Then the types and terms of COMET are the following.

$$
\begin{aligned}
\text { Type } A, B::= & \mathbf{C}|0| 1|A+B| A \otimes B \\
\text { Term } r, s, t::= & x|*| s \otimes t \mid \text { let } x \otimes y=s \text { in } t|i t| \operatorname{inl}(t)|\operatorname{inr}(t)| \\
& (\operatorname{case} r \text { of } \operatorname{inl}(x) \mapsto s \mid \operatorname{inr}(y) \mapsto t)|« s, t »| \operatorname{left}(t)\left|\operatorname{instr}_{\lambda x s}(t)\right| 1 / n \\
& \operatorname{nrm}(t) \mid s \otimes t
\end{aligned}
$$

We explain the intended meaning of these terms in the remaining parts of Section 2.
The variables x and y are bound within s in let $x \otimes y=s$ in t. The variable x is bound within s and y within t in case r of $\operatorname{inl}(x) \mapsto s \mid \operatorname{inr}(y) \mapsto t$, and x is bound within t in $\operatorname{instr}_{\lambda x t}(s)$. We identify terms up to α-conversion (change of bound variable). We write $t[x:=s]$ for the result of substituting s for x within t, renaming bound variables to avoid variable capture. We shall write _ for a vacuous bound variable; for example, we write case r of $\operatorname{inl}\left(_\right) \mapsto s \mid \operatorname{inr}(y) \mapsto t$ for case r of $\operatorname{inl}(x) \mapsto s \mid \operatorname{inr}(y) \mapsto t$ when x does not occur free in s.

The typing rules for these terms are given in Figure 1. (Note that some of these rules make use of defined expressions, which will be introduced in the sections below. Note also that, in the rules $(1 / n)$ and (nrm), the n that occurs is a constant natural number, not a term that may contain free variables.)

The computation rules that these terms obey are given in Figure 2.

$$
\begin{aligned}
& \left.(\operatorname{var}) \frac{x: A \in \Gamma}{\Gamma \vdash x: A} \quad \text { (unit) } \frac{\Gamma \vdash+: 1}{\Gamma \vdash+} \quad \text { (} \otimes\right) \frac{\Gamma \vdash s: A \quad \Delta \vdash t: B}{\Gamma, \Delta \vdash s \otimes t: A \otimes B} \\
& \text { (let) } \frac{\Gamma \vdash s: A \otimes B \quad \Delta, x: A, y: B \vdash t: C}{\Gamma, \Delta \vdash \text { let } x \otimes y=s \text { in } t: C} \\
& \text { (magic) } \frac{\Gamma \vdash t: 0}{\Gamma \vdash \mathrm{i} t: A} \quad \text { (inl) } \frac{\Gamma \vdash t: A}{\Gamma \vdash \operatorname{inl}(t): A+B} \quad \text { (inr) } \frac{\Gamma \vdash t: B}{\Gamma \vdash \operatorname{inr}(t): A+B} \\
& \text { (case) } \frac{\Gamma \vdash r: A+B \quad \Delta, x: A \vdash s: C \quad \Delta, y: B \vdash t: C}{\Gamma, \Delta \vdash \text { case } r \text { of inl }(x) \mapsto s \mid \operatorname{inr}(y) \mapsto t: C} \\
& \text { (inlr) } \frac{\Gamma \vdash s: A+1 \quad \Gamma \vdash t: B+1 \quad \Gamma \vdash s \downarrow=t \uparrow: \mathbf{2}}{\Gamma \vdash « s, t »: A+B} \\
& \text { (left) } \frac{\Gamma \vdash t: A+B \quad \Gamma \vdash \operatorname{inl} ?(t)=\top: \mathbf{2}}{\Gamma \vdash \operatorname{left}(t): A} \quad(\operatorname{instr}) \frac{x: A \vdash t: \mathbf{n} \quad \Gamma \vdash s: A}{\Gamma \vdash \operatorname{instr}_{\lambda x t}(s): n \cdot A} \\
& (1 / n) \frac{}{\Gamma \vdash 1 / n: \mathbf{2}} \quad(\mathrm{nrm}) \frac{\vdash t: A+1 \quad \vdash 1 / n \leq t \downarrow: \mathbf{2}}{\Gamma \vdash \mathrm{nrm}(t): A} \\
& \Gamma \vdash s: A+1 \\
& \Gamma \vdash t: A+1 \\
& \Gamma \vdash b:(A+A)+1 \quad \Gamma \vdash \text { do } x \leftarrow b ; \triangleright_{1}(x)=s: A+1 \\
& \text { (®) } \\
& \Gamma \vdash \text { do } x \leftarrow b ; \triangleright_{2}(x)=t: A+1 \\
& \text { (D) } \\
& \Gamma \vdash \text { do } x \leftarrow b ; \triangleright_{2}(x)=t: A+1
\end{aligned}
$$

Figure 1 Typing rules for COMET.

Figures 1 and 2 should be understood simultaneously. So the term «s,t» is well-typed if and only if we can type $s: A+1$ and $t: B+1$ (using the rules in Figure 1), and derive the equation $s \downarrow=t \uparrow$ using the rules in Figure 2.

The full set of rules of deduction for the system is given in Appendix A.

2.2 Affine Type Theory

Note the form of several of the typing rules in Figure 1, including (\otimes) and (let). These rules do not allow a variable to be duplicated. In particular, we cannot derive the judgement $x: A \vdash x \otimes x: A \otimes A$. The contraction rule does not hold in our type theory - it is not the case in general that, if $\Gamma, x: A, y: B \vdash \mathcal{J}$, then $\Gamma, z: A \vdash \mathcal{J}[x:=z, y:=z]$. Our theory is thus an affine type theory, which is similar to a linear type theory (see for example [2])

The reason is that these judgements do not behave well with respect to substitution. For example, take the computation $x: \mathbf{2} \vdash x \otimes x: \mathbf{2} \otimes \mathbf{2}$. If we apply this computation to the scalar $1 / 2$, we presumably wish the result to be $T \otimes \top$ with probability $1 / 2$, and $\perp \otimes \perp$ with probability $1 / 2$. But this is not the semantics for the term $\vdash 1 / 2 \otimes 1 / 2: \mathbf{2} \otimes \mathbf{2}$. This term assigns probability $1 / 4$ to all four possibilities $\top \otimes \top, \top \otimes \perp, \perp \otimes \top, \perp \otimes \perp$.

We discuss this further in Section 4.3

```
let \(x \otimes y=r \otimes s\) in \(t=t[x:=r, y:=s]\)
case inl \((r)\) of inl \((x) \mapsto s \mid \operatorname{inr}(y) \mapsto t=s[x:=r]\)
\(\left(\beta+{ }_{1}\right)\)
case \(\operatorname{inr}(r)\) of \(\operatorname{inl}(x) \mapsto s \mid \operatorname{inr}(y) \mapsto t=t[y:=r]\)
\(\left(\beta+{ }_{2}\right)\)
\(\triangleright_{1}(« s, t »)=s\)
( \(\beta \mathrm{inlr}_{1}\) )
\(\triangleright_{2}(« s, t »)=t\)
\(\left(\beta\right.\) inlr \(\left._{2}\right)\)
inl \((\operatorname{left}(t))=t\)
    ( \(\beta\) left)
\(\operatorname{left}(\operatorname{inl}(t))=t\)
( \(\eta\) left)
index \(\left(\operatorname{instr}_{\lambda x p}(t)\right)=p[x:=t]\)
(instr-test)
\(\nabla\left(\operatorname{instr}_{\lambda x p}(t)\right)=t\)
    ( \(\nabla\)-instr)
If \(\nabla(t)=x\) then \(\operatorname{instr}_{\lambda x \operatorname{index}(t)}(s)=t[x:=s]\)
( \(\eta\) instr)
If \(t: 1\) then \(*=t\)
( \(\eta 1\) )
If \(t: A \otimes B\) then let \(x \otimes y=t\) in \(x \otimes y=t\)
\((\eta \otimes)\)
If \(t: A+B\) then case \(t\) of \(\operatorname{inl}(x) \mapsto \operatorname{inl}(x) \mid \operatorname{inr}(y) \mapsto \operatorname{inr}(y)=t\)
\((\eta+)\)
If \(t: A+B\) then \(« \triangleright_{1}(t), \triangleright_{2}(t) »=t\)
( \(\eta\) inlr)
If \(t\) is well-typed then do \(\quad \leftarrow t\); return \(n r m(t)=t\)
( \(\beta \mathrm{nrm}\) )
If \(t=\) do \(\_\leftarrow t\); return \(\rho\) and \(1 / n \leq t\), then \(\rho=\operatorname{nrm}(t)\)
( \(\eta \mathrm{nrm}\) )
\(n \cdot 1 / n=\top\)
\((n \cdot 1 / n)\)
If \(n \cdot t=\top\) then \(t=1 / n\)
(divide)
If do \(x \leftarrow b ; \triangleright_{1}(x)=s\) and do \(x \leftarrow b ; \triangleright_{2}(x)=t\)
then \(s \boxtimes t=\) do \(x \leftarrow b\); return \(\nabla(x)\)

Figure 2 Computation rules for COMET.

\subsection*{2.3 States, Predicates and Scalars}

A closed term \(\vdash t: A\) will be called a state of type \(A\), and intuitively it represents a probability distribution over the elements of \(A\).

A predicate on type \(A\) is a term \(p\) such that \(x: A \vdash p: \mathbf{2}\). These shall be the formulas of the logic of COMET (see Section 2.7).

The closed terms \(t\) such that \(\vdash t: \mathbf{2}\) are called scalars, and represent the probabilities or truth values of our system. In our intended semantics for discrete and continuous probabilities, these denote elements of the real interval \([0,1]\).

Given a state \(\vdash t: A\) and a predicate \(x: A \vdash p: \mathbf{2}\), we can find the probability that \(p\) is true when measured on \(t\); this probability is simply the scalar \(p[x:=t]\). This validity is written as \(t \models p\) in effectus theory [5].

A term \(x: A \vdash c: B\) may be understood as a channel from \(A\) to \(B\). One can do state transformation and predicate transformation along a channel. In the current setting this is done simply via substitution. A state \(\vdash s: A\) is transformed into a state \(\vdash c[x:=s]: B\). In the other direction, a predicate \(y: B \vdash p: \mathbf{2}\) is transformed into a predicate on \(A\) as \(x: A \vdash p[y:=c]: \mathbf{2}\). This predicate is the weakest precondition of \(p\) with respect to \(c\). State and predicate transformation, together with conditioning, are used in [12] to describe learning in a Bayesian context. These same ideas are used in Section 3 below.
\begin{tabular}{cc}
\(\Gamma \vdash s: A+1\) & \(\Gamma \vdash t: A+1\) \\
\(\Gamma \vdash b:(A+A)+1 \quad \Gamma \vdash \operatorname{do} x \leftarrow b ; \triangleright_{1}(x)=s: A+1\) \\
\(\Gamma \vdash\) do \(x \leftarrow b ;\) return \(\nabla(x)=t: A+1\)
\end{tabular}

Figure 3 Rule for Ordering in COMET.

\subsection*{2.4 Empty Type}

The typing rule for the term \(; t\) says that from an inhabitant \(t: 0\) we can produce an inhabitant \(\mathfrak{i} t\) in any type \(A\). Intuitively, this says 'If the empty type is inhabited, then every type is inhabited', which is vacuously true.

\subsection*{2.5 Coproducts and Copowers}

Since we have the coproduct \(A+B\) of two types, we can construct the disjoint union of \(n\) types \(A_{1}+\cdots+A_{n}\) in the obvious way. We write \(\mathrm{in}_{1}^{n}(), \ldots, \mathrm{in}_{n}^{n}()\) for its constructors; thus, if \(a: A_{i}\) then \(\operatorname{in}_{i}^{n}(a): A_{1}+\cdots+A_{n}\). And given \(t: A_{1}+\cdots+A_{n}\), we can eliminate it as:
case \(t\) of \(\mathrm{in}_{1}^{n}\left(x_{1}\right) \mapsto t_{1}|\cdots| \mathrm{in}_{n}^{n}\left(x_{n}\right) \mapsto t_{n}\).
We abbreviate this expression as case \({ }_{i=1}^{n} t\) of \(\mathrm{in}_{i}^{n}\left(x_{i}\right) \mapsto t_{i}\).
The term left \((t)\) is understood as follows. If we have a term \(t: A+B\) and we have derived the judgement inl? \((t)=\top\), then we know that we know that \(t\) always has the form inl \((a)\) for some term \(a: A\). We denote this unique term \(a\) by left \((t)\).

We have a similar right () consturction, but there is no need to give primitive rules for this one, as it can be defined in terms of left () : right \((t) \stackrel{\text { def }}{=}\) left \((\operatorname{swap}(t))\), where swap \((t) \stackrel{\text { def }}{=}\) case \(t\) of \(\operatorname{inl}(x) \mapsto \operatorname{inr}(x) \mid \operatorname{inr}(y) \mapsto \operatorname{inl}(y)\).

For the special case where all the types are equal, we write \(n \cdot A\) for the type \(A+\cdots+A\), where there are \(n\) copies of \(A\). In category theory, this is known as the \(n\)th copower of \(A\). (We include the special cases \(0 \cdot A \stackrel{\text { def }}{=} 0\) and \(1 \cdot A \stackrel{\text { def }}{=} A\).)

The codiagonal \(\nabla(t): A\) for \(t: n \cdot A\) is defined by \(\nabla(t) \stackrel{\text { def }}{=} \operatorname{case}_{i=1}^{n} t\) of \(\mathrm{in}_{i}^{n}(x) \mapsto x\). In particular, whene \(n=2\) and \(t: A+A\), then \(\nabla(t) \stackrel{\text { def }}{=}\) case \(t\) of \(\operatorname{inl}(x) \mapsto x \mid \operatorname{inr}(x) \mapsto x\).

We write \(\mathbf{n}\) for \(n \cdot 1\). We denote the canonical elements by \(1,2, \ldots, n\), via definitions \(i \stackrel{\text { def }}{=} \mathrm{in}_{i}^{n}(*): \mathbf{n}\) for \(1 \leq i \leq n\). For \(t: n \cdot A\), we define index \((t) \stackrel{\text { def }}{=} \operatorname{case}_{i=1}^{n} t\) of \(\mathrm{in}_{i}^{n}\left(\_\right) \mapsto i: \mathbf{n}\).

\subsection*{2.6 Partial Functions}

A term of type \(A\) is intended to represent a total computation, that always terminates and returns a value of type \(A\). We can think of a term of type \(A+1\) as a partial computation that may return a value \(a\) of type \(A\) (by outputting inl \((a)\) ) or diverge (by outputting inr \((*)\) ). The judgement \(s \leq t\) should be understood as: the probability that \(s\) returns inl \((a)\) is at most the probability that \(t\) returns inl \((a)\), for all \(a\). The rule for this ordering relation is given in Figure 3.

We define:
- If \(\Gamma \vdash t: A\) then \(\Gamma \vdash\) return \(t \stackrel{\text { def }}{=} \operatorname{inl}(t): A+1\). This program converges with probability 1 . - \(\quad \Gamma \vdash\) fail \(\stackrel{\text { def }}{=} \operatorname{inr}(*): A+1\). This program diverges with probability 1.
- If \(\Gamma \vdash s: A+1\) and \(\Delta, x: A \vdash t: B+1\) then \(\Gamma, \Delta \vdash\) do \(x \leftarrow s ; t \stackrel{\text { def }}{=}\) case \(s\) of \(\operatorname{inl}(x) \mapsto t \mid \operatorname{inr}\left(\_\right) \mapsto\) fail.

The term do \(x \leftarrow s ; t\) should be read as the following computation: Run \(s\). If \(s\) returns a value, pass this as input \(x\) to the computation \(t\); otherwise, diverge.

These constructions satisfy these computation rules:
```

(do-return) \quad do $x \leftarrow$ return $s ; t=t[x:=s]$
(do-fail)
(return-do) \quad do $x \leftarrow r$; return $x=r$
(fail-do)
do $\quad _\leftarrow r$; fail $=$ fail
(do-do) \quad do $x \leftarrow r ;$ (do $y \leftarrow s ; t)=$ do $y \leftarrow($ do $x \leftarrow r ; s) ; t$

```

This construction also allows us to define scalar multiplication. If we are given a scalar \(\vdash s: \mathbf{2}\) and a substate \(\vdash t: A+1\), then the result of multiplying or scaling \(t\) by \(s\) is \(\vdash\) do \(\qquad\) \(\leftarrow s ; t: A+1\).

\subsection*{2.6.1 Partial Projections}

Given \(t: A+B\), the partial projections \(\triangleright_{1}^{A B}(t): A+1\) and \(\triangleright_{2}^{A B}(t): B+1\) are defined by
\[
\begin{aligned}
& \triangleright_{1}^{A B}(t) \stackrel{\text { def }}{=} \text { case } t \text { of } \operatorname{inl}(x) \mapsto \text { return } x \mid \operatorname{inr}\left(\_\right) \mapsto \text { fail } \\
& \triangleright_{2}^{A B}(t) \stackrel{\text { def }}{=} \text { case } t \text { of inl }\left(\_\right) \mapsto \text { fail } \mid \operatorname{inr}(x) \mapsto \text { return } x
\end{aligned}
\]

We shall often omit the superscripts \(A\) and \(B\).
Given \(t: n \cdot A\), the partial projection \(\triangleright_{i}^{n}(t): A+1\) is defined to be
\[
\triangleright_{i}^{n}(t) \stackrel{\text { def }}{=} \text { case }_{j=1}^{n} t \text { of } \text { in }_{j}^{n}(x) \mapsto \begin{cases}\text { return } x & \text { if } i=j \\ \text { fail } & \text { otherwise }\end{cases}
\]

We shall often omit the superscript \(n\).

\subsection*{2.6.2 Partial Sum}

Let \(\Gamma \vdash s, t: A+1\). If these terms have disjoint domains (i.e. given any input \(x\) and output \(a\), the sum of the probabilities that \(s\) and \(t\) return \(a\) given \(x\) is never greater than 1 ), then we may form the computation \(\Gamma \vdash s \otimes t\), the partial sum of \(s\) and \(t\). The probability that this program converges with output \(a\) is the sum of the probability that \(s\) returns \(a\), and the probability that \(t\) returns \(a\). The definition is given by the rule ( \(\mathbb{Q}\)-def). We write \(n \cdot t\) for the sum \(t \boxtimes \cdots \otimes t\) with \(n\) summands. We include the special cases \(0 \cdot t \stackrel{\text { def }}{=}\) fail and \(1 \cdot t \stackrel{\text { def }}{=} t\).

With this operation, the partial functions in \(A+1\) form a partial commutative monoid (PCM) (see Lemma 13).

\subsection*{2.7 Logic}

The type \(\mathbf{2}=1+1\) shall play a special role in this type theory. It is the type of propositions or predicates, and its objects shall be used as the formulas of our logic.

We define \(\top \stackrel{\text { def }}{=} \operatorname{inl}(*): \mathbf{2}\) and \(\perp \stackrel{\text { def }}{=} \operatorname{inr}(*): \mathbf{2}\). We also define the orthosupplement of a predicate \(p\), which roughly corresponds to negation:
\[
p^{\perp} \stackrel{\text { def }}{=} \text { case } p \text { of inl }\left(\_\right) \mapsto \perp \mid \operatorname{inr}\left(\_\right) \mapsto \top
\]

We immediately have that \(p^{\perp \perp}=p, \top^{\perp}=\perp\) and \(\perp^{\perp}=\top\).
The ordering on \(\mathbf{2}\) shall play the role of the derivability relation in our logic: \(p \leq q\) will indicate that \(q\) is derivable from \(p\), or that \(p\) implies \(q\). The rules for this logic are not the familiar rules of classical or intuitionistic logic. Rather, the predicates over any context form an effect algebra (Proposition 16).

\subsection*{2.7.1 \(n\)-tests}

An \(n\)-test in a context \(\Gamma\) is an \(n\)-tuple of predicates \(\left(p_{1}, \ldots, p_{n}\right)\) on \(A\) such that \(\Gamma \vdash\) \(p_{1} \otimes \cdots \otimes p_{n}=\top: \mathbf{2}\).

Intuitively, this can be thought of as a set of \(n\) fuzzy predicates whose probabilities always sum to 1 . We can think of this as a test that can be performed on the types of \(\Gamma\) with \(n\) possible outcomes; and, indeed, there is a one-to-one correspondence between the \(n\)-tests of \(\Gamma\) and the terms of type \(\mathbf{n}\) (Lemma 21).

\subsection*{2.7.2 Instrument Maps}

Let \(x: A \vdash t: \mathbf{n}\) and \(\Gamma \vdash s: A\). The term \(\operatorname{instr}_{\lambda_{x t}}(s): n \cdot A\) is interpreted as follows: we read the computation \(x: A \vdash t: \mathbf{n}\) as a test on the type \(A\), with \(n\) possible outcomes. The computation \(\operatorname{instr}_{\lambda x t}(s)\) runs \(t\) on (the output of) \(s\), and returns \(\operatorname{in}_{i}^{n}(s)\), where \(i\) is the outcome of the test.

Given an \(n\)-test \(\left(p_{1}, \ldots, p_{n}\right)\) on \(A\), we can write a program that tests which of \(p_{1}, \ldots, p_{n}\) is true of its input, and performs one of \(n\) different calculations as a result. We write this program as \(\Gamma \vdash\) measure \(p_{1} \mapsto t_{1}|\cdots| p_{n} \mapsto t_{n}\). It will be defined in Definition 24.

If \(x: A \vdash p: 2\) and \(\Gamma, x: A \vdash s, t: B\), we define \(\Gamma, x: A \vdash(\) if \(p\) then \(s\) else \(t\) ) \(\stackrel{\text { def }}{=}\) measure \(p \mapsto s \mid p^{\perp} \mapsto t: B\). In the case where \(s\) and \(t\) do not depend on \(x\), we have the following fact (Lemma 26.2): if \(p\) then \(s\) else \(t=\) case \(p\) of \(\operatorname{inl}\left(\_\right) \mapsto s \mid \operatorname{inr}\left(\_\right) \mapsto t\).

\subsection*{2.7.3 Assert Maps}

If \(x: A \vdash p: \mathbf{2}\) is a predicate, we define
\(\Gamma \vdash \operatorname{assert}_{\lambda x p}(t) \stackrel{\text { def }}{=} \operatorname{case}_{\operatorname{instr}}^{\lambda x p}(t)\) of \(\operatorname{inl}(x) \mapsto \operatorname{return} x \mid \operatorname{inr}\left(\_\right) \mapsto\) fail \(: A+1\)
The computation \(\operatorname{assert}_{\lambda x p}(t)\) is a partial computation with output type \(A\). It tests whether \(p\) is true of \(t\); if so, it leaves \(t\) unchanged; if not, it diverges. That is, if \(p[x:=t]\) returns T , the computation converges and returns \(t\); if not, it diverges.

These constructions satisfy the following computation rules (see Section 5.6 below for the proofs).
(assert \(\downarrow\) ) \(\left(\operatorname{assert}_{\lambda x p}(t)\right) \downarrow=p[x:=t]\)
(assert-scalar) For a scalar \(\vdash s: \mathbf{2}: \operatorname{assert}_{\lambda \_s}(*)=\operatorname{instr}_{\lambda \_s}(*)=s: \mathbf{2}\).
(instr+) For \(x: A+B \vdash t: \mathbf{n}\) :
\[
\begin{aligned}
& \operatorname{instr}_{\lambda x t}(s)=\text { case } s \text { of } \operatorname{inl}(y) \mapsto \operatorname{case}_{i=1}^{n} \operatorname{instr}_{\lambda a . t[x:=i \operatorname{inl}(a)]}(y) \text { of } \operatorname{in}_{i}^{n}(z) \mapsto \operatorname{in}_{i}^{n}(\operatorname{inl}(z)) \\
& \operatorname{inr}(y) \mapsto \operatorname{case}_{i=1}^{n} \operatorname{instr}_{\lambda b . t[x:=i n l(b)]}(y) \text { of } \operatorname{in}_{i}^{n}(z) \mapsto \operatorname{in}_{i}^{n}(\operatorname{inr}(z))
\end{aligned}
\]
(assert+) For \(x: A+B \vdash p: \mathbf{2}\) :
\[
\begin{aligned}
\operatorname{assert}_{\lambda x p}(t)=\text { case } t \text { of } \operatorname{inl}(x) & \mapsto \text { do } z \leftarrow \operatorname{assert}_{\lambda a . p[x:=\operatorname{inl}(a)]}(x) ; \text { return inl }(z) \mid \\
& \operatorname{inr}(y) \mapsto \text { do } z \leftarrow \operatorname{assert}_{\lambda b . p[x:=\operatorname{inr}(b)]}(y) ; \text { return inr }(z)
\end{aligned}
\]
(instr \(\boldsymbol{m}\) ) For \(x: \mathbf{m} \vdash t: \mathbf{n}: \operatorname{instr}_{\lambda x t}(s)=\operatorname{case}_{i=1}^{m} s\) of \(i \mapsto \operatorname{case}_{j=1}^{n} t[x:=i]\) of \(j \mapsto \operatorname{in}_{j}^{n}(i)\) (assert \(\boldsymbol{m}\) ) For \(x: \mathbf{m} \vdash p: \mathbf{2}\) : \(\operatorname{assert}_{\lambda x p}(t)=\operatorname{case}_{i=1}^{m} t\) of \(i \mapsto\) if \(p[x:=i]\) then return \(i\) else fail

In particular, we have \(\operatorname{assert}_{\lambda x \text { inl?(x) }}(t)=\triangleright_{1}(t)\) and \(\operatorname{assert}_{\lambda x \text { inr? }(x)}(t)=\triangleright_{2}(t)\).

\subsection*{2.7.4 Sequential Conjunction}

Given two predicates \(x: A \vdash p(x), q(x): \mathbf{2}\), we can define their sequential conjunction
\[
x: A \vdash p \& q \stackrel{\text { def }}{=} \text { do } z \leftarrow \operatorname{assert}_{\lambda y p(y)}(x) ; q(z): \mathbf{2}
\]

The probability of this predicate being true at \(x\) is the product of the probabilities of \(p(x)\) and \(q(x)\). This operation has many of the familiar properties of conjunction - including commutativity - but not all: in particular, we do not have \(p \& p^{\perp}=\perp\) in all cases. (For example, \(1 / 2 \&(1 / 2)^{\perp}=1 / 4\).)

\subsection*{2.7.5 Coproducts}

We can define predicates which, given a term \(t: A+B\), test which of \(A\) and \(B\) the term came from. We write these as inl? \((t)\) and inr? ( \(t\) ). (Compare these with the operators FstAnd and SndAnd defined in [9].) They are defined by
\[
\begin{aligned}
& \operatorname{inl} ?(t) \stackrel{\text { def }}{=} \text { case } t \text { of } \operatorname{inl}\left(\_^{\prime}\right) \mapsto \top \mid \operatorname{inr}\left(\_\right) \mapsto \perp \\
& \operatorname{inr} ?(t) \stackrel{\text { def }}{=} \text { case } t \text { of } \operatorname{inl}\left(\_\right) \mapsto \perp \mid \operatorname{inr}\left(\_\right) \mapsto \top
\end{aligned}
\]

\subsection*{2.7.6 Kernels}

The predicate inr? () is particularly important for partial maps.
Let \(\Gamma \vdash t: A+1\). The kernel of the map denoted by \(t\) is
\[
t \uparrow \stackrel{\text { def }}{=} \operatorname{inr} ?(t) \stackrel{\text { def }}{=} \text { case } t \text { of inl }\left(\_\right) \mapsto \perp \mid \operatorname{inr}\left(\_\right) \mapsto \top
\]

Intuitively, if we think of \(t\) as a partial computation, then \(t \uparrow\) is the proposition ' \(t\) does not terminate', or the function that gives the probability that \(t\) will diverge on a given input.

Its orthosupplement, \((t \uparrow)^{\perp}=\mathrm{inl} ?(t)\), which we shall also write as \(t \downarrow\), is also called the domain predicate of \(t\), and represents the proposition that \(t\) terminates. We note that it is equal to do \(\qquad\) \(\leftarrow t ; \top\).

\subsection*{2.8 Partial Pairing}

The term «s, \(t\) » is understood intuitively as follows. We are given two partial computations \(s\) and \(t\), and we have derived the judgement \(s \downarrow=t \uparrow\), which tells us that exactly one of \(s\) and \(t\) converges on any given input. We may then form the computation \(« s, t »\) which, given an input \(x\), returns either \(s(x)\) or \(t(x)\), whichever of the two converges.

\subsection*{2.9 Scalar Constants}

The term \(1 / n\) represents the probability distribution on \(\mathbf{2}=\{\top, \perp\}\) which returns \(\top\) with probability \(1 / n\) and \(\perp\) with probability \((n-1) / n\). It can be thought of as a coin toss, with a weighted coin that returns heads with probability \(1 / n\). In other languages it is sometimes written as the two-element distribution flip \((1 / n)\).

From this, we have a representation of the rational numbers between 0 and 1 . Let \(m / n\) denote the term \(1 / n \otimes \cdots \otimes 1 / n\), where there are \(m\) summands. The usual arithmetic of rational numbers can be carried out in our system (see Section 5.9).

\subsection*{2.10 Normalisation}

Let \(\vdash t: A+1\). Then \(t\) represents a substate of \(A\). As long as the probability \(t \downarrow\) is non-zero, we can normalise this program over the probability of non-termination. The result is the state denoted by nrm \((t)\). Intuitively, the probability that \(\operatorname{nrm}(t)\) will output \(a\) is the probability that \(t\) will output inl \((a)\), conditioned on the event that \(t\) terminates.

In order to type nrm \((t)\), we must first prove that \(t\) has a non-zero probability of terminating by deriving an inequality of the form \(1 / n \leq t \downarrow\) for some positive integer \(n \geq 2\).

If \(\vdash t: A\) and \(x: A \vdash p: \mathbf{2}\), we write cond \((t, \lambda x p)\) for
\[
\operatorname{cond}(t, \lambda x p) \stackrel{\text { def }}{=} \mathrm{nrm}\left(\operatorname{assert}_{\lambda x p}(t)\right) .
\]

The term \(t\) denotes a computation whose output is given by a probability distribution over \(A\). Then cond \((t, \lambda x p)\) gives the result of normalising that conditional probability distribution with respect to \(p\).

\subsection*{2.10.1 Note}

In COMET, we only allow normalisation of closed terms, because we have not been able to find a satisfactory way to express that an open term is non-zero for all inputs. For closed terms, this is done by finding a constant \(1 / n\) which the term exceeds. For open terms, it is possible that there is no \(n\) such that \(1 / n\) is always less than \(t\), if the probabilities of \(t\) are all positive with infimum 0 .

\subsection*{2.11 Marginalisation}

The tensor product of type \(A \otimes B\) comes with two projections. Given \(\Gamma \vdash t: A \otimes B\), define
\[
\Gamma \vdash \pi_{1}(t) \stackrel{\text { def }}{=} \text { let } x \otimes_{-}=t \text { in } x: A \quad \Gamma \vdash \pi_{2}(t) \stackrel{\text { def }}{=} \text { let } \neq y=t \text { in } y: B
\]

If \(t\) is a state (i.e. \(\Gamma\) is the empty context), then \(\pi_{1}(t)\) denotes the result of marginalising \(t\), as a probability distribution over \(A \otimes B\), to a probability distribution over \(A\).

\subsection*{2.12 Local Definition}

In our examples, we shall make free use of local definition. This is not a part of the syntax of COMET itself, but part of our metalanguage. We write let \(x=s\) in \(t\) for \(t[x:=s]\). We shall also locally define functions: we write let \(f(x)=s\) in \(t\) for the result of replacing every subterm of the form \(f(r)\) with \(s[x:=r]\) in \(t\).

\section*{3 Examples}

This section describes two examples of (Bayesian) reasoning in our type theory COMET. Since this kind of reasoning is not very intuitive, a formal calculus is very useful. The first example is a typical exercise in Bayesian probability theory. The second example involves a simple graphical model.
- Example 1. (See also \([23,3]\) ) Consider the following situation.
\(1 \%\) of a population have a disease. \(80 \%\) of subjects with the disease test positive, and \(9.6 \%\) without the disease also test positive. If a subject is positive, what are the odds he/she has the disease?

This situation can be described as a very simple graphical model, with associated (conditional) probabilities.


In our type theory COMET, we use the following description.
```

let subject = 0.01 in
let positive_result (x)= (if }x\mathrm{ then 0.8 else 0.096) in
cond (subject, positive_result)

```

We thus obtain a state subject : 2, conditioned on the predicate positive_result on 2. We calculate the outcome in semi-formal style. The conditional state cond (subject, positive_result) is defined via normalisation of assert, see Section 2.10. We first calculate what this assert term is:
```

$\operatorname{assert}_{\lambda x \text { positive_result }(x)}(x)=$ if x then if positive_result (T) then return T else fail
else if positive_result (\perp) then return \perp else fail
by (assert m)
$=$ if x then if 0.8 then return \top else fail
else if 0.096 then return \perp else fail

```

Conditioning requires that the domain of the substate assert \({ }_{\lambda x \text { positive_result }(x)}\) (subject) is nonzero. We compute this domain as:
\[
\begin{aligned}
\text { assert }_{\lambda x \text { positive_result }(x)}(\text { subject }) \downarrow & =\text { positive_result(subject) } & & \text { (Rule (assert } \downarrow)) \\
& =\text { if } 0.01 \text { then } 0.8 \text { else } 0.096 & & \\
& =(0.01 \& 0.8) \otimes(0.99 \& 0.096) & & (\text { Lemma 26.2) } \\
& =0.10304 & & \text { (Lemma 28) }
\end{aligned}
\]

Hence we can choose (e.g.) \(n=10\), to get \(\frac{1}{n} \leq 0.10304=\) assert \(_{\lambda x \text { positive_result }(x)}(\) subject \() \downarrow\).

We now proceed to calculate the result, answering the question in the beginning of this example.
```

$\operatorname{assert}_{\lambda x \text { positive_result }(x)}($ subject $)=$ if 0.01 then if 0.8 then return \top else fail
else if 0.096 then return \perp else fail
$=$ measure $0.01 \& 0.8 \quad \mapsto$ return \top (Lemma 25.3)
$0.01 \& 0.8^{\perp} \quad \mapsto$ fail
$0.01^{\perp} \& 0.096 \mapsto$ return \perp
$0.01^{\perp} \& 0.096^{\perp} \mapsto$ fail
$=$ measure $0.008 \mapsto$ return \top
$0.09504 \mapsto$ return \perp
$0.89696 \mapsto$ fail
cond (subject, positive_result) $\stackrel{\text { def }}{=} \mathrm{nrm}$ (assert $_{\lambda x \text { positive_result }(x)}($ subject $\left.)\right)$
$=$ measure $0.0776 \mapsto \top$
$0.9224 \mapsto \perp$
$=0.0776$.
(Lemma 26.3)

```

Hence the probability of having the disease after a positive test result is approximately \(7.8 \%\).
- Example 2 (Bayesian Network). The following is a standard example of a problem in Bayesian networks, created by [20, Chap. 14].

I'm at work, neighbor John calls to say my alarm is ringing. Sometimes it's set off by minor earthquakes. Is there a burglar?

We are given that the situation is as described by the following Bayesian network.

\begin{tabular}{|cc|c|}
\hline\(B\) & \(E\) & \(\operatorname{Pr}(A)\) \\
\hline \hline\(t\) & \(t\) & \(\frac{95}{100}\) \\
\hline\(t\) & \(f\) & \(\frac{94}{100}\) \\
\hline\(f\) & \(t\) & \(\frac{29}{100}\) \\
\hline\(f\) & \(f\) & \(\frac{1}{1000}\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline\(A\) & \(\operatorname{Pr}(M)\) \\
\hline \hline\(t\) & \(\frac{7}{10}\) \\
\hline\(f\) & \(\frac{1}{100}\) \\
\hline
\end{tabular}

The probability of each event given its preconditions is as given in the tables - for example, the probability that the alarm rings given that there is a burglar but no earthquake is 0.94 .

We model the above question in COMET as follows.
let \(b=0.01\) in let \(e=0.002\) in
let \(a(x, y)=(\) if \(x\) then (if \(y\) then 0.95 else 0.94 )
else (if \(y\) then 0.29 else 0.001 )) in
let \(j(z)=(\) if \(z\) then 0.9 else 0.05\()\) in
let \(m(z)=(\) if \(z\) then 0.7 else 0.01 ) in
\(\pi_{1}(\operatorname{cond}(b \otimes e, j \circ a))\)

We first elaborate the predicate \(j \circ a\), given in context as \(x: \mathbf{2}, y: \mathbf{2} \vdash j(a(x, y)): \mathbf{2}\). It is:
```

j(a(x,y)) = if }a(x,y)\mathrm{ then 0.90 else 0.05
= if x then (if }y\mathrm{ then (if 0.95 then 0.90 else 0.05)
else (if 0.94 then 0.90 else 0.05)
else (if y then (if 0.29 then 0.90 else 0.05)
else (if 0.001 then 0.90 else 0.05)
= if x then (if }y\mathrm{ then (0.95\& 0.90) ® (0.95 \& \& 0.05)
else (0.94 \& 0.90) \otimes (0.94 \& \& 0.05))
else (if y then (0.29 \& 0.90) \otimes (0.29\perp\& 0.05)
else (0.001 \& 0.90) \otimes (0.001 \& \& 0.05))
= if x then (if y then 0.8575 else 0.849) else (if y then 0.2965 else 0.05085)

```

Let us write assert \({ }_{j o a}\) for \(\operatorname{assert}_{\lambda t l e t} x \otimes y=t\) in \(j(a(x, y))\). Then the associated assert map is:
\[
\begin{array}{rll}
\text { assert }_{j o a}(b, e)=\text { measure } & 0.001 \& 0.002 \& 0.8575 & \mapsto \text { return } \top \otimes \top \\
& 0.001 \& 0.998 \& 0.849 & \mapsto \text { return } \top \otimes \perp \\
& 0.999 \& 0.002 \& 0.2965 & \mapsto \text { return } \perp \otimes \top \\
& 0.999 \& 0.998 \& 0.05085 & \mapsto \text { return } \perp \otimes \perp \\
& 0.052138976^{\perp} & \mapsto \text { fail } \\
=\text { measure } & 0.000001715 & \mapsto \text { return } \top \otimes \top \\
& 0.000847302 & \mapsto \text { return } \top \otimes \perp \\
& 0.000592407 & \mapsto \text { return } \perp \otimes \top \\
& 0.050697552 & \mapsto \text { return } \perp \otimes \perp \\
& 0.052138976^{\perp} \mapsto \text { fail }
\end{array}
\]

Hence by Corollary 30 we obtain the marginalised conditional:
\[
\begin{aligned}
& \pi_{1}(\operatorname{cond}(b \otimes e, j \circ a))=\pi_{1}\left(\operatorname{nrm}\left(\operatorname{assert}_{j \circ a}(b, e)\right)\right) \\
& =\pi_{1} \text { (measure } 0.000001715 / 0.052138976 \mapsto \top \otimes \top \\
& 0.000847302 / 0.052138976 \mapsto \top \otimes \perp \\
& \text { 0.000592407/0.052138976 } \mapsto \perp \otimes \top \\
& \text { 0.050697552/0.052138976 } \mapsto \perp \otimes \perp) \\
& =\text { measure } 0.000032893 \mapsto \pi_{1}(\top \otimes \top) \\
& 0.016250837 \mapsto \pi_{1}(\top \otimes \perp) \\
& 0.011362078 \mapsto \pi_{1}(\perp \otimes \top) \\
& 0.972354194 \mapsto \pi_{1}(\perp \otimes \perp) \\
& =\text { measure } 0.000032893 \mapsto \top \\
& 0.016250837 \mapsto \top \\
& 0.011362076 \mapsto \perp \\
& 0.972354194 \mapsto \perp \\
& =\text { measure } 0.01628373 \mapsto \top \\
& 0.98371627 \mapsto \perp \\
& =0.01628373
\end{aligned}
\]

We conclude that there is an approximately \(1.6 \%\) chance of a burglary when John calls.

\section*{4 Semantics}

The terms of COMET are intended to represent probabilistic programs. We show how to give semantics to our system using discrete probability distributions.

\subsection*{4.1 Discrete Probabilistic Computation}

We give an interpretation that assigns, to each term, a discrete probability distribution over its output type.
- Definition 3. Let \(A\) be a set.
- The support of a function \(\phi: A \rightarrow[0,1]\) is \(\operatorname{supp} \phi=\{a \in A: \phi(a) \neq 0\}\).
- A (discrete) probability distribution over \(A\) is a function \(\phi: A \rightarrow[0,1]\) with finite support such that \(\sum_{a \in A} \phi(a)=1\).
- Let \(\mathcal{D} A\) be the set of all probability distributions on \(A\).

We shall interpret every type \(A\) as a set \(\llbracket A \rrbracket\). Assume we are given a set \(\llbracket \mathbf{C} \rrbracket\) for each type constant C. Define a set \(\llbracket A \rrbracket\) for each type \(A\) thus:
\[
\llbracket 0 \rrbracket=\emptyset \quad \llbracket 1 \rrbracket=\{*\} \quad \llbracket A+B \rrbracket=\llbracket A \rrbracket \uplus \llbracket B \rrbracket \quad \llbracket A \otimes B \rrbracket=\llbracket A \rrbracket \times \llbracket B \rrbracket
\]
where \(A \uplus B=\left\{\kappa_{1}(a): a \in A\right\} \cup\left\{\kappa_{2}(b): b \in B\right\}\). We extend this to contexts by defining \(\llbracket x_{1}: A_{1}, \ldots, x_{n}: A_{n} \rrbracket=\llbracket A_{1} \rrbracket \times \cdots \times \llbracket A_{n} \rrbracket\).

Now, to every term \(\Gamma \vdash t: B\), where \(\Gamma \equiv x_{1}: A_{1}, \ldots, x_{n}: A_{n}\), we assign a function \(\llbracket t \rrbracket: \llbracket \Gamma \rrbracket=\llbracket A_{1} \rrbracket \times \cdots \times \llbracket A_{n} \rrbracket \rightarrow \mathcal{D} \llbracket B \rrbracket\). The value \(\llbracket t \rrbracket\left(g_{1}, \ldots, g_{n}\right)(b) \in[0,1]\) will be written
\[
\left.\begin{array}{rl}
P\left(x_{i}(\vec{g})=a\right) & =\left\{\begin{array}{l}
1 \text { if } a=g_{i} \\
0 \text { if } a \neq g_{i}
\end{array}\right. \\
P(*(\vec{g})=*) & =1
\end{array}\right\} \begin{aligned}
P((s \otimes t)(\vec{g}, \vec{d})=(a, b)) & =P(s(\vec{g})=a) P(t(\vec{d})=b) \\
P((\text { let } x \otimes y=s \text { in } t)(\vec{g}, \vec{d})=c) & =\sum_{a} \sum_{b} P(s(\vec{g})=(a, b)) P(t(\vec{d}, a, b)=c) \\
P((\mathrm{i} t)(\vec{g})=a) & =0 \\
P\left(\mathrm{inl}(t)(\vec{g})=\kappa_{1}(a)\right) & =P(t(\vec{g})=a) \\
P\left(\mathrm{inl}(t)(\vec{g})=\kappa_{2}(b)\right) & =0 \\
P\left(\operatorname{inr}(t)(\vec{g})=\kappa_{1}(a)\right) & =0 \\
P\left(\mathrm{inr}(t)(\vec{g})=\kappa_{2}(b)\right) & =P(t(\vec{g})=b) \\
& =\sum_{a} P\left(r(\vec{g})=\kappa_{1}(a)\right) P(s(\vec{d}, a)=c)+ \\
& \sum_{b} P\left(r(\vec{g})=\kappa_{2}(b)\right) P(t(\vec{d}, b)=c) \\
((\text { case } r \text { of inl }(x) \mapsto s \mid \text { inr }(y) \mapsto & \mapsto(\vec{d})=c) \\
\left.P(« s, t\rangle(\vec{g})=\kappa_{1}(a)\right) & =P\left(s(\vec{g})=\kappa_{1}(a)\right) \\
P\left(« s, t »(\vec{g})=\kappa_{2}(b)\right) & =P\left(t(\vec{g})=\kappa_{1}(b)\right) \\
P(\operatorname{left}(t)(\vec{g})=a) & =P\left(t(\vec{g})=\kappa_{1}(a)\right) \\
P\left(\mathrm{instr}_{\lambda x t}(s)(\vec{g})=\kappa_{i}(a)\right) & =P(s(\vec{g})=a) P\left(t(a)=\kappa_{i}(*)\right) \\
P\left(1 / n(\vec{g})=\kappa_{1}(*)\right) & =1 / n \\
P\left(1 / n(\vec{g})=\kappa_{2}(*)\right) & =(n-1) / n \\
P(\mathrm{nrm}(t)(\vec{g})=a) & =P\left(t(\vec{g})=\kappa_{1}(a)\right) /\left(1-P\left(t(\vec{g})=\kappa_{2}(*)\right)\right) \\
P\left((s \otimes t)(\vec{g})=\kappa_{1}(a)\right) & =P\left(s(\vec{g})=\kappa_{1}(a)\right)+P\left(t(\vec{g})=\kappa_{1}(a)\right) \\
P\left((s \otimes t)(\vec{g})=\kappa_{2}(*)\right) & =P\left(s(\vec{g})=\kappa_{2}(*)\right)+P\left(t(\vec{g})=\kappa_{2}(*)\right)-1
\end{aligned}
\]

Figure 4 Semantics for COMET in \(\mathcal{K} \ell(\mathcal{D})\).
as \(P\left(t\left(g_{1}, \ldots, g_{n}\right)=b\right)\), and should be thought of as the probability that \(b\) will be the output if \(g_{1}, \ldots, g_{n}\) are the inputs. The clauses are given in Figure 4.

The sums involved here are all well-defined because the function \(P(t(\vec{g})=-)\) has finite support for all \(t, \vec{g}\).
- Example 4 (Assert Maps). This definition gives the following semantics to the assert maps. Recall that we define
\[
\Gamma \vdash \operatorname{assert}_{\lambda x p}(t) \stackrel{\text { def }}{=} \triangleright_{1}\left(\operatorname{instr}_{\lambda x p}(t)\right): A+1,
\]
where \(\Gamma \vdash t: A\) and \(x: A \vdash p: \mathbf{2}\). We therefore have
\[
\begin{aligned}
& P\left(\operatorname{assert}_{\lambda x p}(t)(\vec{g})=\kappa_{1}(a)\right)=P(t(\vec{g})=a) P\left(p(a)=\kappa_{1}(*)\right) \\
& P\left(\operatorname{assert}_{\lambda x p}(t)(\vec{g})=\kappa_{2}(*)\right)=\sum_{a \in A} P(t(\vec{g})=a) P\left(p(a)=\kappa_{2}(*)\right)
\end{aligned}
\]
- Theorem 5 (Soundness).
1. If \(\Gamma \vdash t: A\) is derivable, then for all \(\vec{g} \in \llbracket \Gamma \rrbracket\), we have \(P(t(\vec{g})=-)\) is a probability distribution on \(\llbracket A \rrbracket\).
2. If \(\Gamma \vdash s=t\) : A, then \(P(s(\vec{g})=a)=P(t(\vec{g})=a)\).

Proof. The proof is by induction on derivations. First prove \(P(t[x:=s](\vec{g}, \vec{a})=b)=\) \(\sum_{a \in \llbracket A \rrbracket} P(s(\vec{g})=a) P(t(\vec{d}, a)=b)\) whenever \(t[x:=s]\) is well-typed.

As a corollary, we know that COMET is non-degenerate:
- Corollary 6. Not every judgement is derivable; in particular, the judgement \(\vdash \top=\perp: \mathbf{2}\) is not derivable.

\subsection*{4.2 Alternative Semantics}

It is also possible to give semantics to COMET using continuous probabilities. We assign a measurable space \(\llbracket A \rrbracket\) to every type \(A\). Each term then gives a measurable function \(\llbracket A_{1} \rrbracket \times \cdots \times \llbracket A_{n} \rrbracket \rightarrow \mathcal{G} \llbracket B \rrbracket\), where \(\mathcal{G} X\) is the space of all probability distributions over the measurable space \(X\). ( \(\mathcal{G}\) here is the Giry monad \([8,10]\).)

If we remove the constants \(1 / n\) from the system, we can give deterministic semantics to the subsystem, in which we assign a set to every type, and a function \(\llbracket A_{1} \rrbracket \times \cdots \times \llbracket A_{n} \rrbracket \rightarrow \llbracket B \rrbracket\) to every term.

More generally, we can give an interpretation of COMET in any commutative monoidal effectus with normalisation in which there exists a scalar \(s\) such that \(n \cdot s=1\) for all positive integers \(n\) [5]. The three ways of giving semantics to COMET that we have described are three instances of this interpretation.

\subsection*{4.3 Note on Affine Type Theory}

The diagonals or copiers in \(\mathcal{K} \ell(\mathcal{D})\) are not natural. It is easy to see that the only arrow \(\delta_{A}: A \rightarrow A \otimes A\) that satisfies
\[
\pi_{1} \circ \delta_{A}=\pi_{2} \circ \delta_{A}=\operatorname{id} A
\]
is given by \(\delta_{A}(a)=1|(a, a)\rangle\); that is, \(\delta_{A}(a)\) gives probability 1 to \((a, a)\), and probability 0 to all other pairs.

However, this family of arrows \(\delta_{A}\) is not natural in \(A\). Let \(f: A \rightarrow B\) be any morphism in \(\mathcal{K} \ell(\mathcal{D})\).


We have
\[
\begin{aligned}
\left((f \otimes f) \circ \delta_{A}\right)(a)\left(b, b^{\prime}\right) & =f(a)(b) \cdot f(a)\left(b^{\prime}\right) \\
\left(\delta_{B} \circ f\right)(a)\left(b, b^{\prime}\right) & = \begin{cases}f(a)(b) & \text { if } b=b^{\prime} \\
0 & \text { if } b \neq b^{\prime}\end{cases}
\end{aligned}
\]

There is therefore no way to give semantics to a type theory with contraction in \(\mathcal{K} \ell(\mathcal{D})\) in such a way that the following substitution property holds, which was needed for the proof of the Soundness Theorem.
\(P(t[x:=s](\vec{g}, \vec{a})=b)=\sum_{a \in \llbracket A \rrbracket} P(s(\vec{g})=a) P(t(\vec{d}, a)=b)\) whenever \(t[x:=s]\) is well-typed.

In particular, the rule \((\beta \otimes)\) becomes unsound. For our semantics give:
\[
\begin{aligned}
& P\left((\text { let } x \otimes y=1 / 2 \otimes * \text { in } x \otimes x)(\vec{g})=\left(b_{1}, b_{2}\right)\right) \\
& =\sum_{b} P(1 / 2(\vec{g})=b) P\left((x \otimes x)(b)=\left(b_{1}, b_{2}\right)\right) \\
& =\sum_{b} P(1 / 2(\vec{g})=b) P\left(x(b)=b_{1}\right) P\left(x(b)=b_{2}\right) \\
& = \begin{cases}1 / 2 & \text { if } b_{1}=b_{2} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
\]
and so let \(x \otimes y=1 / 2 \otimes *\) in \(x \otimes x\) and \(1 / 2 \otimes 1 / 2\) receive different semantics.

\section*{5 Metatheorems}

We presented an overview of the system in Section 2, and gave the intuitive meaning of the terms of COMET. In this section, we proceed to a more formal development of the theory, and investigate what can be proved within the system.

The type theory we have presented enjoys the following standard properties.

\section*{- Lemma 7.}
1. Weakening If \(\Gamma \vdash \mathcal{J}\) and \(\Gamma \subseteq \Delta\) then \(\Delta \vdash \mathcal{J}\).
2. Substitution If \(\Gamma \vdash t: A\) and \(\Delta, x: A \vdash \mathcal{J}\) then \(\Gamma, \Delta \vdash \mathcal{J}[x:=t]\).
3. Equation Validity If \(\Gamma \vdash s=t\) : A then \(\Gamma \vdash s: A\) and \(\Gamma \vdash t: A\).
4. Inequality Validity If \(\Gamma \vdash s \leq t: A+1\) then \(\Gamma \vdash s: A+1\) and \(\Gamma \vdash t: A+1\).
5. Functionality If \(\Gamma \vdash r=s: A\) and \(\Delta, x: A \vdash t: B\) then \(\Gamma, \Delta \vdash t[x:=r]=t[x:=s]: B\).

Proof. The proof in each case is by induction on derivations. Each case is straightforward.
(Note in particular the form that the rule (nrm) takes. Even though we only apply normalisation to states, we allow an arbitrary context in the conclusion so that the Weakening property shall hold.)

The following lemma shows that substituting within our binding operations works as desired.

Lemma 8. 1. If \(\Gamma \vdash r: A \otimes B ; \Delta, x: A, y: B \vdash s: C\); and \(\Theta, z: C \vdash t: D\) then \(\Gamma, \Delta, \Theta \vdash t[z:=\) let \(x \otimes y=r\) in \(s]=\) let \(x \otimes y=r\) in \(t[z:=s]: D\).
2. If \(\Gamma \vdash r: A+B ; \Delta, x: A \vdash s: C ; \Delta, y: B \vdash s^{\prime}: C\); and \(\Theta, z: C \vdash t: D\) then
\[
\begin{aligned}
\Gamma, \Delta, \Theta \vdash & t\left[z:=\text { case } r \text { of } \operatorname{inl}(x) \mapsto s \mid \operatorname{inr}(y) \mapsto s^{\prime}\right] \\
& =\text { case } r \text { of } \operatorname{inl}(x) \mapsto t[z:=s] \mid \operatorname{inr}(y) \mapsto t\left[z:=s^{\prime}\right]: D
\end{aligned}
\]

Proof. For part 1, we us the following 'trick' to simulate local definition (see [1]):
\[
\begin{align*}
& t\left[z:=\text { case } r \text { of } \operatorname{inl}(x) \mapsto s \mid \operatorname{inr}(y) \mapsto s^{\prime}\right] \\
& =\text { let } z \otimes_{-}=\left(\text {case } r \text { of } \operatorname{inl}(x) \mapsto s \mid \operatorname{inr}(y) \mapsto s^{\prime}\right) \otimes * \text { in } t \\
& =\text { let } z \otimes{ }_{-}=\text {case } r \text { of } \operatorname{inl}(x) \mapsto s \otimes * \mid \operatorname{inr}(y) \mapsto s^{\prime} \otimes * \operatorname{in} t \\
& =\text { case } r \text { of } \operatorname{inl}(x) \mapsto \text { let } z \otimes{ }_{-}=s \otimes * \operatorname{in} t \mid \operatorname{inr}(y) \mapsto \text { let } z \otimes \otimes_{-}=s^{\prime} \otimes * \text { in } t \quad \text { (let-case) } \\
& =\text { case } r \text { of } \operatorname{inl}(x) \mapsto t[z:=s] \mid \operatorname{inr}(y) \mapsto t\left[z:=s^{\prime}\right]
\end{align*}
\]

Part 2 is proven similarly using (let- \(\otimes\) ) and (let-let).

\section*{Corollary 9.}
1. If \(\Gamma \vdash s: A \otimes B\) and \(\Delta \vdash t: C\) then \(\Gamma, \Delta \vdash\) let \(\_{ }_{-}^{\otimes}=s\) in \(t=t: C\).
2. If \(\Gamma \vdash s: A+B\) and \(\Delta \vdash t: C\) then \(\Gamma, \Delta \vdash\) case \(s\) of \(\operatorname{inl}\left(\_\right) \mapsto t \mid \operatorname{inr}\left(\_\right) \mapsto t=t: C\).

Proof. These are both the special case where \(z\) does not occur free in \(t\).

\subsection*{5.1 Coproducts}

We generalise the inl? () and inr? () constructions as follows. Define the predicate \(\mathrm{in}_{i}\) ? () on \(n \cdot A\), which tests whether a term comes from the \(i\) th component, as follows.
\[
\mathrm{in}_{i} ?(t) \stackrel{\text { def }}{=} \text { case }_{j=1}^{n} t \text { of } \mathrm{in}_{j}^{n}\left(\_\right) \mapsto \begin{cases}\top & \text { if } i=j \\ \perp & \text { if } i \neq j\end{cases}
\]

\subsection*{5.2 The right() Construction}

Lemma 10. The right () construction satisfies analagous rules to the left () constructor:
1. If \(t: A+B\) and \(\operatorname{inr} ?(t)=\top: \mathbf{2}\) then right \((t): B\).
2. If \(t=t^{\prime}: A+B\) and \(\operatorname{inr} ?(t)=\top\) then \(\operatorname{right}(t)=\operatorname{right}\left(t^{\prime}\right): B\).
3. If \(t: A+B\) and \(\operatorname{inr}\) ? \((t)=\top\) then \(t=\operatorname{inr}(\operatorname{right}(t)): A+B\).
4. If \(t: B\) then \(t=\operatorname{right}(\operatorname{inr}(t))\).

Proof. We prove parts 1 and 3 here. Suppose inr? \((t)=\top\). Then we have
\[
\begin{array}{rlr}
\operatorname{inl} ?(\operatorname{swap}(t)) & \stackrel{\text { def }}{=} \operatorname{inl} ?(\operatorname{case} t \text { of } \operatorname{inl}(x) \mapsto \operatorname{inr}(x) \mid \operatorname{inr}(y) \mapsto \operatorname{inl}(y)) \\
& =\operatorname{case} t \text { of } \operatorname{inl}(x) \mapsto \operatorname{inl} ?(\operatorname{inr}(x)) \mid \operatorname{inr}(y) \mapsto \operatorname{inl} ?(\operatorname{inl}(y)) \\
& =\operatorname{case} t \text { of } \operatorname{inl}(x) \mapsto \perp \mid \operatorname{inr}(y) \mapsto \top \\
& \stackrel{\text { def }}{=} \operatorname{inr} ?(t) \\
& =\top \quad \text { (case-case) } \\
& \left.=(\beta+1),(\beta+)_{2}\right) \\
\text { (by hypothesis) }
\end{array}
\]

Therefore, \(\operatorname{right}(t) \stackrel{\text { def }}{=} \operatorname{left}(\operatorname{swap}(t))\) is well-typed with type \(B\), and
\[
\begin{array}{rlr}
\operatorname{inr}(\operatorname{right}(t))= & \operatorname{swap}(\operatorname{inl}(\operatorname{right}(t))) \\
& \stackrel{\text { def }}{=} \operatorname{swap}(\operatorname{inl}(\operatorname{left}(\operatorname{swap}(t)))) \\
= & \operatorname{swap}(\operatorname{swap}(t)) \\
= & \operatorname{case} t \text { of } \operatorname{inl}(x) \mapsto \operatorname{swap}(\operatorname{inr}(x)) \mid \\
& \operatorname{inr}(y) \mapsto \operatorname{swap}(\operatorname{inl}(y)) \\
= & \operatorname{case} t \text { of } \operatorname{inl}(x) \mapsto \operatorname{inl}(x) \mid \operatorname{inr}(y) \mapsto \operatorname{inr}(y) & (\text { case-eq }),(\beta+1),\left(\beta+e_{2}\right) \\
= & t
\end{array}
\]

\subsection*{5.3 The swap() Operation}

\section*{\(\rightarrow\) Lemma 11.}
1. Let \(\Gamma \vdash t: A+B\). Then
\(\Gamma \vdash \triangleright_{1}(\operatorname{swap}(t))=\triangleright_{2}(t): B+1\)
\(\Gamma \vdash \triangleright_{2}(\operatorname{swap}(t))=\triangleright_{1}(t): A+1\)
2. Let \(\Gamma \vdash t: A+A\). Then \(\Gamma \vdash \nabla(\operatorname{swap}(t))=\nabla(t): A\).

Proof. We prove the first of these here. We have
\[
\begin{aligned}
& \triangleright_{1}(\operatorname{swap}(t)) \stackrel{\text { def }}{=} \operatorname{case}(\operatorname{case} t \text { of } \operatorname{inl}(x) \mapsto \operatorname{inr}(x) \mid \operatorname{inr}(y) \mapsto \operatorname{inl}(y)) \text { of } \\
& \quad \operatorname{inl}(y) \mapsto \operatorname{inl}(y) \mid \operatorname{inr}\left(\_\right) \mapsto \operatorname{inr}(*) \\
&= \operatorname{case} t \text { of } \operatorname{inl}(x) \mapsto\left(\operatorname{case} \operatorname{inr}(x) \text { of } \operatorname{inl}(y) \mapsto \operatorname{inl}(y) \mid \operatorname{inr}\left(\_\right) \mapsto \operatorname{inr}(*)\right) \mid \\
& \operatorname{inr}(y) \mapsto\left(\operatorname{case} \operatorname{inl}(y) \text { of } \operatorname{inl}(y) \mapsto \operatorname{inl}(y) \mid \operatorname{inr}\left(\_\right) \mapsto \operatorname{inr}(*)\right) \\
&=\left.\quad \text { case } t \text { of } \operatorname{inl}(x) \mapsto \operatorname{inr}(*) \mid \operatorname{inr}(y) \mapsto \operatorname{inl}(y) \quad\left(\beta+{ }_{1}\right),(\beta+)_{2}\right) \\
& \stackrel{\text { def }}{=} \triangleright_{2}(t)
\end{aligned}
\]

\subsection*{5.4 Kernels}

\section*{- Lemma 12.}
1. Let \(\Gamma \vdash t: A+1\). Then \(\Gamma \vdash t \downarrow=\perp: \mathbf{2}\) if and only if \(\Gamma \vdash t=\) fail \(: A+1\).
2. Let \(\Gamma \vdash s: A+1\) and \(\Delta, x: A \vdash t: B+1\). Then \(\Gamma, \Delta \vdash(\) do \(x \leftarrow s ; t) \downarrow=\operatorname{do} x \leftarrow s ; t \downarrow: \mathbf{2}\).

Proof.
1. We have
\[
\begin{align*}
\text { fail } \downarrow & \stackrel{\text { def }}{=} \text { case } \operatorname{inr}(*) \text { of } \operatorname{inl}\left(\_\right) \mapsto \top \mid \operatorname{inr}\left(\_\right) \mapsto \perp \\
& =\perp
\end{align*}
\]

For the converse, if \(t \downarrow=\perp\) then
\[
\begin{array}{rlr}
t \uparrow & \stackrel{\text { def }}{=} \text { case } t \text { of } \operatorname{inl}\left(\_\right) \mapsto \perp \mid \operatorname{inr}\left(\_\right) \mapsto \top & \\
& =\text { case } t \text { of } \operatorname{inl}\left(\_\right) \mapsto \top^{\perp} \mid \operatorname{inr}\left(\_\right) \mapsto \perp^{\perp} & \text { (case-eq), }\left(\beta++_{1}\right),\left(\beta+{ }_{2}\right) \\
& =\left(\text { case } t \text { of } \operatorname{inl}\left(\_\right) \mapsto \top \mid \operatorname{inr}\left(\_\right) \mapsto \perp\right)^{\perp} & \text { (Lemma 2) } \\
& \stackrel{\text { def }}{=} t \downarrow & \\
& =\perp^{\perp} & (\text { case-eq }) \\
& =\top & \left(\beta+{ }_{2}\right)
\end{array}
\]
and so
\[
\begin{align*}
t & =\operatorname{inr}(\operatorname{right}(t))  \tag{Lemma10.3}\\
& =\operatorname{inr}(*)
\end{align*}
\]
2. (case \(s\) of \(\operatorname{inl}(x) \mapsto t \mid \operatorname{inr}\left(\_\right) \mapsto\) fail \() \downarrow\)
\[
\begin{array}{lrl}
=\text { case } s \text { of } \operatorname{inl}(x) \mapsto t \downarrow \mid \operatorname{inr}\left(\_\right) \mapsto \text { fail } \downarrow & (\text { Lemma 2) } \\
=\text { case } s \text { of } \operatorname{inl}(x) \mapsto t \downarrow \mid \operatorname{inr}\left(\_\right) \mapsto \perp & \left(\beta+{ }_{1}\right)
\end{array}
\]

\subsection*{5.5 Ordering on Partial Maps and the Partial Sum}

Note that, from the rules \((\mathbb{Q})\) and ( \((\)-def), we have \(\Gamma \vdash s \otimes t: A+1\) if and only if there exists \(\Gamma \vdash b:(A+A)+1\) such that
\[
\Gamma \vdash \text { do } x \leftarrow b ; \triangleright_{1}(x)=s: A+1, \quad \Gamma \vdash \text { do } x \leftarrow b ; \triangleright_{2}(x)=t: A+1
\]
in which case \(\Gamma \vdash s \otimes t=\) do \(x \leftarrow b\); return \(\nabla(x): A+1\). We say that such a term \(b\) is a bound for \(s \otimes t\). By the rule (JM) (see Appendix A.12), this bound is unique if it exists.

The set of partial maps \(A \rightarrow B+1\) between any two types \(A\) and \(B\) form a partial commutative monoid (PCM) with least element fail, as shown by the following results.

\section*{Lemma 13.}
1. If \(\Gamma \vdash t: A+1\) then \(\Gamma \vdash t \otimes\) fail \(=t: A+1\).
2. (Commutativity) If \(\Gamma \vdash s \boxtimes t: A+1\) then \(\Gamma \vdash t \boxtimes s: A+1\) and \(\Gamma \vdash s \oslash t=t \boxminus s: A+1\).
3. (Associativity) \(\Gamma \vdash(r \otimes s) \otimes t: A+1\) if and only if \(\Gamma \vdash r \otimes(s \boxtimes t): A+1\), in which case \(\Gamma \vdash r \otimes(s \boxtimes t)=(r \otimes s) \otimes t: A+1\).

Proof. We prove part 2 here. Let \(b\) be a bound for \(s \boxtimes t\). We shall prove that do \(x \leftarrow\) \(b\); return \(\operatorname{swap}(x)\) is a bound for \(t \boxtimes s\). We have
```

do $y \leftarrow$ do $x \leftarrow b$; return $\operatorname{swap}(x) ; \triangleright_{1}(y)$
$=$ do $x \leftarrow b ;$ do $y \leftarrow$ return $\operatorname{swap}(x) ; \triangleright_{1}(y)$
$=$ do $x \leftarrow b ; \triangleright_{1}(\operatorname{swap}(x))$
$=$ do $x \leftarrow b ; \triangleright_{2}(x)$
$=t$
$=t$

```

Similarly, do \(y \leftarrow\) do \(x \leftarrow b\); return \(\operatorname{swap}(b) ; \triangleright_{2}(y)=s\).
Now, we have
\[
\begin{aligned}
t \otimes s & =\text { do } y \leftarrow(\text { do } x \leftarrow b ; \text { return swap }(x)) ; \text { return } \nabla(y) \\
& =\text { do } x \leftarrow b ; \text { do } y \leftarrow \text { return swap }(x) ; \text { return } \nabla(y) \\
& =\text { do } x \leftarrow b ; \text { return } \nabla(\operatorname{swap}(x)) \\
& =\text { do } x \leftarrow b ; \text { return } \nabla(x) \\
& =s \otimes t
\end{aligned}
\]
- Lemma 14. Let \(\Gamma \vdash r: A+1\) and \(\Gamma \vdash s: A+1\). Then \(\Gamma \vdash r \leq s: A+1\) if and only if there exists \(t\) such that \(\Gamma \vdash r \otimes t=s: A+1\).

Proof. Suppose \(r \leq s\). If \(b\) is such that do \(x \leftarrow b ; \triangleright_{1}(x)=r\) and do \(x \leftarrow b\); return \(\nabla(x)=s\) then take \(t=\) do \(x \leftarrow b\); \(\triangleright_{2}(x)\). We have \(r \otimes t=\) do \(x \leftarrow b\); return \(\nabla(x)\) by ( \(\mathbb{Q}\)-def), and so \(r \otimes t=s\).

Conversely, if \(r \otimes t=s\), then inverting the derivation of \(\Gamma \vdash r \otimes t: A+1\) we have that there exists \(b\) such that \(r=\) do \(x \leftarrow b ; \triangleright_{1}(x), t=\) do \(x \leftarrow b ; \triangleright_{2}(x)\) and \(s=r \otimes t=\) do \(x \leftarrow\) \(b\); return \(\nabla(x)\). Therefore, \(r \leq s\) by (order).

In this case, the bound for \(r \otimes t\) will also be called a bound for \(r \leq s\).

\section*{- Lemma 15.}
1. If \(\Gamma \vdash s \otimes t: A+1\) then \(\Gamma \vdash s \leq s \otimes t: A+1\) and \(\Gamma \vdash t \leq s \boxtimes t: A+1\).
2. If \(\Gamma \vdash t: A+1\) then \(\Gamma \vdash t \leq t: A+1\).
3. If \(\Gamma \vdash t: A+1\) then \(\Gamma \vdash\) fail \(\leq t: A+1\).
4. If \(\Gamma \vdash r \leq s: A+1\) and \(\Gamma \vdash s \leq t: A+1\) then \(\Gamma \vdash r \leq t: A+1\).
5. If \(\Gamma \vdash r \leq s: A+1\) and \(\Gamma \vdash s \boxtimes t: A+1\) then \(\Gamma \vdash r \boxtimes t \leq s \boxtimes t: A+1\).

Proof. Parts 1-4 follow by applying Lemma 14 to the appropriate part of Lemma 13. For part 5 , let \(r \boxtimes x=s\). Then \(r \boxtimes x \otimes t=s \boxtimes t\) and so \(r \otimes t \leq s \boxtimes t\).

On the predicates, we have the following structure, which shows that they form an effect algebra. (In fact, they have more structure: they form an effect module over the scalars, as we will prove in Proposition 20.)

\section*{- Proposition 16.}
1. If \(\Gamma \vdash p: \mathbf{2}\) then \(\Gamma \vdash p \otimes p^{\perp}=\top: \mathbf{2}\).
2. If \(\Gamma \vdash p \oslash q=\top: \mathbf{2}\) then \(\Gamma \vdash q=p^{\perp}: \mathbf{2}\).
3. (Zero-One Law) If \(\Gamma \vdash p \otimes \top: \mathbf{2}\) then \(\Gamma \vdash p=\perp: \mathbf{2}\).
4. \(\Gamma \vdash p \otimes q: \mathbf{2}\) if and only if \(\Gamma \vdash p \leq q^{\perp}: \mathbf{2}\).
5. Suppose \(\Gamma \vdash r: A+B\) and \(\Delta, x: A \vdash s \boxtimes t: C+1\) and \(\Delta, y: B \vdash s^{\prime} \otimes t^{\prime}: C+1\). Then
\[
\begin{aligned}
\Gamma, \Delta \vdash & \text { case } r \text { of } \operatorname{inl}(x) \mapsto s \otimes t \mid \operatorname{inr}(y) \mapsto s^{\prime} \otimes t^{\prime} \\
& =\left(\text { case } r \text { of } \operatorname{inl}(x) \mapsto s \mid \operatorname{inr}(y) \mapsto s^{\prime}\right) \otimes\left(\text { case } r \text { of } \operatorname{inl}(x) \mapsto t \mid \operatorname{inr}(y) \mapsto t^{\prime}\right): C+1
\end{aligned}
\]
6. If \(\Gamma \vdash r: A+1\) and \(\Delta, x: A \vdash s \boxtimes t: B+1\) then \(\Gamma, \Delta \vdash\) do \(x \leftarrow r ; s \otimes t=(\) do \(x \leftarrow\) \(r ; s) \otimes(\) do \(x \leftarrow r ; t): B+1\).

Proof. We prove part 2 here. Let \(b\) be a bound for \(p \otimes q\). We have
\[
\begin{array}{rlr}
\top & =p \boxtimes q & \text { (by hypothesis) } \\
& =\text { do } x \leftarrow b ; \text { return } \nabla(x) & (\mathbb{\text { Q }} \text {-def) } \\
& =\text { do } x \leftarrow b ; \top & (\eta 1) \\
& \stackrel{\text { def }}{=} b \downarrow & \\
\therefore b & =\text { return left }(b) & \text { ( } \beta \text { left) } \\
\therefore p & =\text { do } x \leftarrow b ; \triangleright_{1}(x) & \text { (by hypothesis) } \\
& =\triangleright_{1}(\operatorname{left}(b)) & \text { (do-return) } \\
q & =\triangleright_{2}(\operatorname{left}(b)) & \text { (similarly) } \\
& =\triangleright_{1}(\operatorname{left}(b))^{\perp} & (\beta+1),\left(\beta+{ }_{2}\right),(\text { case-case) } \\
& =p^{\perp} &
\end{array}
\]
- Corollary 17.
1. (Cancellation) If \(\Gamma \vdash p \boxtimes q=p \otimes r: \mathbf{2}\) then \(\Gamma \vdash q=r: \mathbf{2}\).
2. (Positivity) If \(\Gamma \vdash p \otimes q=\perp: \mathbf{2}\) then \(\Gamma \vdash p=\perp: \mathbf{2}\) and \(\Gamma \vdash q=\perp: \mathbf{2}\).
3. If \(\Gamma \vdash p: \mathbf{2}\) then \(\Gamma \vdash p \leq \top: \mathbf{2}\).
4. If \(\Gamma \vdash p \leq q: \mathbf{2}\) then \(\Gamma \vdash q^{\perp} \leq p^{\perp}: \mathbf{2}\).
5. If \(\Gamma \vdash p \leq q: \mathbf{2}\) and \(\Gamma \vdash q \leq p: \mathbf{2}\) then \(\Gamma \vdash p=q: \mathbf{2}\).

Proof. We prove part 1 here. We have
\[
\begin{aligned}
p \otimes r \otimes(p \boxtimes q)^{\perp} & =p \boxtimes q \boxtimes(p \boxtimes q)^{\perp} & & \text { (by hypothesis) } \\
& =\top & & \text { (Proposition 16.1) } \\
\therefore q=r & =\left(p \boxtimes(p \boxtimes q)^{\perp}\right)^{\perp} & & \text { (Proposition 16.2) }
\end{aligned}
\]

\subsection*{5.6 Assert Maps}

Recall that, for \(x: A \vdash p: \mathbf{2}\) and \(\Gamma \vdash t: A\), we define \(\Gamma \vdash \operatorname{assert}_{\lambda x p}(t) \stackrel{\text { def }}{=} \triangleright_{1}\left(\operatorname{instr}_{\lambda x p}(t)\right)\) : \(A+1\).

We now give rules for calculating instr \(\lambda_{\lambda x p}\) and assert \({ }_{\lambda x p}\) directed by the type.
- Lemma 18 ((assert-scalar)). If \(\vdash s: 2\) then
\[
\vdash \operatorname{assert}_{\lambda \_s}(*)=\operatorname{instr}_{\lambda \_s}(*)=s: \mathbf{2}
\]

Proof. We have \(\nabla(s)=*\) by \((\eta 1)\) and \(s \downarrow=s\) by \((\eta+)\). The result follows by ( \(\eta\) instr) .
- Lemma 19. The rules (instr+) and (assert+) are admissible (see Section 2.7.3).

Proof. We shall prove the case \(n=2\) of (instr+) here. Let \(x: A+B \vdash p: \mathbf{2}\). For \(x: A+B\), let us write \(f(x):(A+B)+(A+B)\) for
\[
\begin{aligned}
& \text { case } x \text { of } \operatorname{inl}(y) \mapsto{\text { case } \operatorname{instr}_{\lambda a p[x:=\operatorname{inl}(a)]}(y) \text { of } \operatorname{inl}(t) \mapsto \operatorname{inl}(\operatorname{inl}(t)) \mid}_{\operatorname{inr}(t)}^{\mapsto \operatorname{inr}(\operatorname{inl}(t)) \mid} \\
& \qquad \begin{aligned}
& \operatorname{inr}(y) \mapsto{\text { case } \operatorname{instr}_{\lambda b p[x:=i n r(b)]}(y) \text { of } \operatorname{inl}(t)} \mapsto \operatorname{inl}(\operatorname{inr}(t)) \mid \\
& \operatorname{inr}(t) \mapsto \operatorname{inr}(\operatorname{inr}(t))
\end{aligned}
\end{aligned}
\]

We shall prove \(f(x)=\operatorname{instr}_{\lambda x p}(x)\).
We have
\[
\begin{aligned}
& \nabla(f(x))=\text { case } x \text { of } \operatorname{inl}(y) \mapsto{\text { case } \operatorname{instr}_{\lambda a p[x:=\operatorname{inl}(a)]}(y) \text { of } \operatorname{inl}(t)} \mapsto \nabla(\operatorname{inl}(\operatorname{inl}(t))) \mid \\
& \operatorname{inr}(t) \mapsto \nabla(\operatorname{inr}(\operatorname{inl}(t))) \mid \\
& \quad \operatorname{inr}(y) \mapsto{\text { case } \operatorname{instr}_{\lambda b p[x:=\operatorname{inr}(b)]}(y) \text { of } \operatorname{inl}(t)} \mapsto \nabla(\operatorname{inl}(\operatorname{inr}(t))) \mid \\
& \operatorname{inr}(t) \mapsto \nabla(\operatorname{inr}(\operatorname{inr}(t)))
\end{aligned}
\]
\(=\) case \(x\) of \(\operatorname{inl}(y) \mapsto \operatorname{case}^{\operatorname{instr}}{ }_{\lambda a p[x:=\operatorname{inl}(a)]}(y)\) of inl \((t) \mapsto \operatorname{inl}(t) \mid\)
\(\operatorname{inr}(t) \mapsto \operatorname{inl}(t) \mid\)
\(\operatorname{inr}(y) \mapsto\) case \(_{\operatorname{instr}}^{\lambda b p[x:=\operatorname{inr}(b)]}(y)\) of \(\operatorname{inl}(t) \mapsto \operatorname{inr}(t) \mid\)
\[
\operatorname{inr}(t) \mapsto \operatorname{inr}(t)
\]
\(=\operatorname{case} x\) of \(\operatorname{inl}(y) \mapsto \operatorname{inl}(\) case instr \(\operatorname{cap}[x:=\operatorname{inl}(a)](y)\) of \(\operatorname{inl}(t) \mapsto t \mid\)
\(\operatorname{inr}(t) \mapsto t) \mid\)
\(\operatorname{inr}(y) \mapsto \operatorname{inr}\left(\right.\) case \(\operatorname{instr}_{\lambda b p[x:=\operatorname{inr}(b)]}(y)\) of \(\operatorname{inl}(t) \mapsto t \mid\) \(\operatorname{inr}(t) \mapsto t)\)
(Lemma 2)
\[
\begin{align*}
& \stackrel{\text { def }}{=} \text { case } x \text { of } \operatorname{inl}(y) \mapsto \operatorname{inl}\left(\nabla\left(\operatorname{instr}_{\lambda a p[x:=\operatorname{inl}(a)]}(y)\right)\right) \\
& \qquad \operatorname{inr}(y) \mapsto \operatorname{inr}\left(\nabla\left(\operatorname{instr}_{\lambda b p[x:=\operatorname{inr}(b)]}(y)\right)\right) \\
& =\text { case } x \text { of } \operatorname{inl}(y) \mapsto \operatorname{inl}(y) \mid \operatorname{inr}(y) \mapsto \operatorname{inr}(y) \\
& =x
\end{align*}
\]
\[
\begin{aligned}
& \text { inl? }(f(x)) \\
& =\text { case } x \text { of } \operatorname{inl}(y) \mapsto{\text { case } \operatorname{instr}_{\lambda a p[x:=\operatorname{inl}(a)]}(y) \text { of } \operatorname{inl}(t) \mapsto \operatorname{inl} ?(\operatorname{inl}(\operatorname{inl}(t))), ~(i n l} \\
& \operatorname{inr}(t) \mapsto \operatorname{inl} ?(\operatorname{inr}(\operatorname{inl}(t))) \\
& \operatorname{inr}(y) \mapsto{\text { case } \operatorname{instr}_{\lambda b p[x:=\operatorname{inr}(b)]}(y) \text { of } \operatorname{inl}(t) \mapsto \operatorname{inl} ?(\operatorname{inl}(\operatorname{inr}(t))), ~(\operatorname{inr})} \\
& \operatorname{inr}(t) \mapsto \operatorname{inl} ?(\operatorname{inr}(\operatorname{inr}(t))) \\
& \text { (Lemma 2) }
\end{aligned}
\]
\(\operatorname{inr}(t) \mapsto \perp\)
\(\operatorname{inr}(y) \mapsto\) case instr \(_{\lambda b p[x:=\operatorname{inr}(b)]}(y)\) of \(\operatorname{inl}(t) \mapsto \top\)
\(\operatorname{inr}(t) \mapsto \perp\)
\((\beta+1),\left(\beta+{ }_{2}\right)\)
\(\stackrel{\text { def }}{=}\) case \(x\) of \(\operatorname{inl}(y) \mapsto \operatorname{inl}\) ? \(\left(\operatorname{instr}_{\lambda a p[x:=\operatorname{inl}(a)]}(y)\right) \mid \operatorname{inr}(y) \mapsto \operatorname{inl}\) ? \(\left(\operatorname{instr}_{\lambda b p[x:=\operatorname{inr}(b)]}(y)\right)\)
\(=\) case \(x\) of \(\operatorname{inl}(y) \mapsto p[x:=\operatorname{inl}(y)] \mid \operatorname{inr}(y) \mapsto p[x:=\operatorname{inr}(y)] \quad\) (instr-test)
\(=p[x:=\) case \(x\) of \(\operatorname{inl}(y) \mapsto \operatorname{inl}(y) \mid \operatorname{inr}(y) \mapsto \operatorname{inr}(y)] \quad\) (Lemma 2)
\(=p\)
\((\eta+)\)

Hence \(f(x)=\operatorname{instr}_{\lambda x p}(x)\) by ( \(\eta\) instr \()\).

The rules (instr \(m\) ) and (assert \(m\) ) follow easily.

\subsection*{5.7 Sequential Conjunction}

We do not have conjunction or disjunction in our language for predicates over the same type, as this would involve duplicating variables. However, we do have the following sequential conjunction. (This was called the 'and-then' test operator in Section 9 in [9].)

Let \(x: A \vdash p, q: \mathbf{2}\). We define the sequential conjunction \(p \& q\) by
\[
x: A \vdash p \& q \stackrel{\text { def }}{=} \text { do } x \leftarrow \operatorname{assert}_{\lambda x p}(x) ; q: \mathbf{2} .
\]
- Proposition 20. Let \(x: A \vdash p, q: \mathbf{2}\).
1. \(\operatorname{instr}_{\lambda x(p \& q)}(x)=\operatorname{case}^{\operatorname{instr}}{ }_{\lambda x p}(x)\) of \(\operatorname{inl}(x) \mapsto \operatorname{instr}_{\lambda x q}(x) \mid \operatorname{inr}(y) \mapsto \operatorname{inr}(y)\)
2. \(\operatorname{assert}_{\lambda x(p \& q)}(x)=\) do \(x \leftarrow \operatorname{assert}_{\lambda x p}(x) ; \operatorname{assert}_{\lambda x q}(x)\)
3. (Commutativity) \(p \& q=q \& p\).
4. \((p \otimes q) \& r=(p \& r) \otimes(q \& r)\) and \(p \&(q \otimes r)=(p \& q) \otimes(p \& r)\).
5. \(p \& \perp=\perp \& q=\perp\)
6. \(p \& \top=p\) and \(\top \& q=q\)
7. \(p \&(q \& r)=(p \& q) \& r\)
8. If \(x\) does not occur free in \(q\), then \(p \& q=\) case \(p\) of \(\operatorname{inl}\left(\_\right) \mapsto q \mid \operatorname{inr}\left(\_\right) \mapsto \perp\).

Proof. We shall prove the first three parts here.
1. inl? (case instr \({ }_{\lambda x p}(x)\) of \(\left.\operatorname{inl}(x) \mapsto \operatorname{instr}_{\lambda x q}(x) \mid \operatorname{inr}(y) \mapsto \operatorname{inr}(y)\right)\)
\(=\) case \(\operatorname{instr}_{\lambda x p}(x)\) of \(\operatorname{inl}(x) \mapsto \operatorname{inl}\) ? \(\left(\operatorname{instr}_{\lambda x q}(x)\right) \mid \operatorname{inr}(y) \mapsto \operatorname{inl} ?(\operatorname{inr}(y))\)
(case-case)
\(=\) case \(\operatorname{instr}_{\lambda x p}(x)\) of \(\operatorname{inl}(x) \mapsto q \mid \operatorname{inr}(y) \mapsto \perp \quad\) (instr-test), \(\left(\beta+{ }_{2}\right)\)
\(\stackrel{\text { def }}{=}\) do \(x \leftarrow \operatorname{assert}_{\lambda x p}(x) ; q\)
\(\stackrel{\text { def }}{=} p \& q\)
\(\nabla\left(\right.\) case \(\operatorname{instr}_{\lambda x p}(x)\) of \(\left.\operatorname{inl}(x) \mapsto \operatorname{instr}_{\lambda x q}(x) \mid \operatorname{inr}(y) \mapsto \operatorname{inr}(y)\right)\)
\(=\) case \(\operatorname{instr}_{\lambda_{x p}}(x)\) of \(\operatorname{inl}(x) \mapsto \nabla\left(\operatorname{instr}_{\lambda x q}(x)\right) \mid \operatorname{inr}(y) \mapsto \nabla(\operatorname{inr}(y)) \quad\) (case-case)
\(=\) case instr \(\lambda_{\lambda x p}(x)\) of \(\operatorname{inl}(x) \mapsto x \mid \operatorname{inr}(y) \mapsto y\)
\((\nabla\)-instr),\((\beta+2)\)
\(\stackrel{\text { def }}{=} \nabla\left(\operatorname{instr}_{\lambda x p}(x)\right)\)
\(=x\)
( \(\nabla\)-instr)
so the result follows by ( \(\eta\) instr) .
2. This follows immediately from the previous part.
3. This follows from the previous part and the rule (comm) (Appendix A.12).

These results show that the scalars form an effect monoid, and the predicates on any type form an effect module over that effect monoid (see [9]).

\section*{\(5.8 \quad n\)-tests}

Recall that an \(n\)-test on a type \(A\) is an \(n\)-tuple \(\left(p_{1}, \ldots, p_{n}\right)\) such that \(x: A \vdash p_{1} \otimes \cdots \otimes p_{n}=\) T: 2.

The following lemma shows that there is a one-to-one correspondance between the \(n\)-tests on \(A\), and the maps \(A \rightarrow \mathbf{n}\).

Lemma 21. For every \(n\)-test \(\left(p_{1}, \ldots, p_{n}\right)\) on \(A\), there exists a term \(x: A \vdash t(x): \mathbf{n}\), unique up to equality, such that \(x: A \vdash p_{i}(x)=\triangleright_{i}(t(x)): \mathbf{2}\).

Proof. The proof is by induction on \(n\). The case \(n=1\) is trivial.
Suppose the result is true for \(n\). Take an \(n+1\)-test \(\left(p_{1}, \ldots, p_{n+1}\right)\). Then
\(\left(p_{1}, p_{2}, \ldots, p_{n} \otimes p_{n+1}\right)\) is an \(n\)-test. By the induction hypothesis, there exists \(t: \mathbf{n}\) such that \(\triangleright_{i}(t)=p_{i}\) for \(i<n\) and \(\triangleright_{n}(t)=p_{n} \boxtimes p_{n+1}\). Let \(b: \mathbf{3}\) be the bound for \(p_{n} \boxtimes p_{n+1}\). Reading \(t\) and \(b\) as partial functions in \(\mathbf{n}-\mathbf{1}+1\) and \(\mathbf{2}+1\), we have that \(t \uparrow=b \downarrow=p_{n} \otimes p_{n+1}\). Hence \(« b, t\rangle: \mathbf{2}+\mathbf{n}-\mathbf{1}\) exists. Reading it as a term of type \(\mathbf{n}+\mathbf{1}\), we have that
\[
\begin{aligned}
\triangleright_{1}^{n+1}(« b, t ») & =\triangleright_{1}^{3}\left(\triangleright_{1}^{\mathbf{2 , n - 1}}(« b, t »)\right) \\
& =\triangleright_{1}^{3}(b) \\
& =p_{n} \\
\triangleright_{2}^{n+1}(« b, t ») & =\triangleright_{2}^{3}\left(\triangleright_{1}^{\mathbf{2 , n - 1}}(« b, t »)\right) \\
& =\triangleright_{2}^{3}(b) \\
& =p_{n+1}
\end{aligned}
\]
(case-case), \(\left(\beta+{ }_{1}\right),\left(\beta+{ }_{2}\right)\)
( \(\beta \mathrm{inlr}_{1}\) )
( \(b\) is a bound for \(p_{n} \otimes p_{n+1}\) )
(case-case), \((\beta+1),\left(\beta+{ }_{2}\right)\)
\(\left(\beta\right.\) inlr \(\left._{1}\right)\)
( \(b\) is a bound for \(p_{n} \boxtimes p_{n+1}\) )
and for \(i<n\) :
\[
\begin{aligned}
\triangleright_{i+2}^{n+1}(« b, t ») & =\triangleright_{i}^{n-1}\left(\triangleright_{2}^{\mathbf{2 , n}-\mathbf{1}}(« b, t »)\right) \\
& =\triangleright_{i}^{n+1}(t)
\end{aligned}
\]
\[
=p_{i} \quad \text { (induction hypothesis) }
\]

From this it is easy to construct the term of type \(\mathbf{n}+\mathbf{1}\) required.

We write \(\operatorname{instr}_{\lambda x\left(p_{1}, \ldots, p_{n}\right)}(s)\) for \(\operatorname{instr}_{t}(s)\), where \(t\) is the term such that \(\triangleright_{i}(t)=p_{i}\) for each \(i\).
- Lemma 22. \(\operatorname{instr}_{\lambda x\left(p_{1}, \ldots, p_{n}\right)}(x)\) is the unique term such that \(\operatorname{in}_{i}\) ? \(\left(\operatorname{instr}_{\lambda x\left(p_{1}, \ldots, p_{n}\right)}(x)\right)=p_{i}\) for all \(i\) and \(\nabla\left(\operatorname{instr}_{\lambda x\left(p_{1}, \ldots, p_{n}\right)}(x)\right)=x\).
- Lemma 23.
\[
\begin{aligned}
\operatorname{instr}_{\lambda x p_{i}}(x) & =\operatorname{case}_{j=1}^{n} \operatorname{instr}_{\lambda x\left(p_{1}, \ldots, p_{n}\right)}(x) \text { of } \operatorname{in}_{j}^{n}(x) \mapsto \begin{cases}\operatorname{inl}(x) & \text { if } i=j \\
\operatorname{inr}(x) & \text { if } i \neq j\end{cases} \\
\operatorname{assert}_{\lambda x p_{i}}(x) & =\operatorname{case}_{j=1}^{n} \operatorname{instr}_{\lambda x\left(p_{1}, \ldots, p_{n}\right)}(x) \text { of } \operatorname{in}_{j}^{n}(x) \mapsto \begin{cases}\operatorname{return} x & \text { if } i=j \\
\text { fail } & \text { if } i \neq j\end{cases}
\end{aligned}
\]

Proof. Let \(t\) be the right-hand side of the first formula. Then
\[
\begin{array}{rlr}
\operatorname{inl} ?(t) & =\operatorname{in}_{i} ?\left(\operatorname{instr}_{\lambda x\left(p_{1}, \ldots, p_{n}\right)}(x)\right) & \quad \text { (case-case) },\left(\beta+{ }_{1}\right),\left(\beta+{ }_{2}\right) \\
& =p_{i} & (\text { Lemma 22) } \\
\nabla(t) & =\operatorname{case}_{j=1}^{n} \operatorname{instr}_{\lambda x\left(p_{1}, \ldots, p_{n}\right)}(x) \text { of } \operatorname{in}_{j}^{n}(x) \mapsto x & \quad \text { (case-case) },\left(\beta+{ }_{1}\right),\left(\beta+{ }_{2}\right) \\
& =x &
\end{array}
\]

The second formula follows easily from the first.
We can now define the program that divides into \(n\) branches depending on the outcome of an \(n\)-test:
\(\triangleright\) Definition 24. Given \(x: A \vdash p_{1}(x) \oslash \cdots \oslash p_{n}(x)=\top: \mathbf{2}\), define
\[
\begin{aligned}
& x: A \vdash \text { measure } p_{1}(x) \mapsto t_{1}(x)|\cdots| p_{n}(x) \mapsto t_{n}(x) \\
& \quad \stackrel{\text { def }}{=} \text { case } \operatorname{instr}_{\lambda x\left(p_{1}, \ldots, p_{n}\right)}(x) \text { of } \operatorname{in}_{1}^{n}(x) \mapsto t_{1}(x)|\cdots| \operatorname{in}_{n}^{n}(x) \mapsto t_{n}(x)
\end{aligned}
\]

Lemma 25. The measure construction satisfies the following laws.
1. (measure \(T \mapsto t)=t\)
2. (measure \(\left.p_{1} \mapsto t_{1}|\cdots| p_{n} \mapsto t_{n} \mid \perp \mapsto t_{n+1}\right)=\left(\right.\) measure \(\left.p_{1} \mapsto t_{1}|\cdots| p_{n} \mapsto t_{n}\right)\)
3. \(\left(\right.\) measure \(_{i} p_{i} \mapsto\) measure \(\left._{j} q_{i j} \mapsto t_{i j}\right)=\left(\right.\) measure \(\left._{i, j}\left(p_{i} \& q_{i j}\right) \mapsto t_{i j}\right)\)
4. For any permutation \(\pi\) of \(\{1, \ldots, n\}\), measure \({ }_{i} p_{i} \mapsto t_{i}=\) measure \(_{i} p_{\pi(i)} \mapsto t_{\pi(i)}\).
5. If \(t_{n}=t_{n+1}\) then
measure \(_{i=1}^{n} p_{i} \mapsto t_{i}=\) measure \(p_{1} \mapsto t_{1}|\cdots| p_{n-1} \mapsto t_{n-1} \mid p_{n} \otimes p_{n+1} \mapsto t_{n}\).
Proof. We shall prove part 3. The proof for the other parts follows the same pattern.
Let us write \(\operatorname{in}_{i, j}()\left(1 \leq i \leq m, 1 \leq j \leq n_{i}\right)\) for the constructors of \(\left(n_{1}+\cdots+n_{m}\right) \cdot A\), and \(\mathrm{in}_{i, j}\) ? () for the corresponding predicates.

We shall first prove
\[
\begin{align*}
& \operatorname{instr}_{\lambda x\left(p_{i} \& q_{i j}\right)_{i, j}}(x)  \tag{1}\\
& =\operatorname{case}_{i=1}^{m} \operatorname{instr}_{\lambda x \vec{p}}(x) \text { of } \operatorname{in}_{i}^{m}(x) \mapsto \operatorname{case}_{j=1}^{n_{i}} \operatorname{instr}_{\lambda x \overrightarrow{q_{i}}}(x) \text { of } \operatorname{in}_{j}^{n_{i}}(x) \mapsto \operatorname{in}_{i, j}(x) .
\end{align*}
\]

Let \(R\) denote the right-hand side of (1). We have
\[
\begin{aligned}
& \operatorname{in}_{i, j} ?(R)=\text { case }_{i^{\prime}=1}^{m} \operatorname{instr}_{\lambda x \vec{p}}(x) \text { of } \operatorname{in}_{i^{\prime}}^{m}(x) \mapsto \\
& \text { case }_{j^{\prime}=1}^{n_{i}} \operatorname{instr}_{\lambda x \overrightarrow{q_{i}}}(x) \text { of } \text { in }_{j}^{n_{i}}(x) \mapsto \begin{cases}\top & \text { if } i=i^{\prime} \text { and } j=j^{\prime} \\
\perp & \text { otherwise }\end{cases} \\
& \text { (case-case), }(\beta+1),\left(\beta+_{2}\right) \\
& =\operatorname{case}_{i^{\prime}=1}^{m} \operatorname{instr}_{\lambda x \vec{p}}(x) \text { of } \operatorname{in}_{i^{\prime}}^{m}(x) \mapsto \begin{cases}\operatorname{in}_{j} ?\left(\operatorname{instr}_{\lambda x \vec{q}_{i}}(x)\right) & \text { if } i=i^{\prime} \\
\perp & \text { if } i \neq i^{\prime}\end{cases} \\
& =\operatorname{case}_{i^{\prime}=1}^{m} \operatorname{instr}_{\lambda x \vec{p}}(x) \text { of } \operatorname{in}_{i^{\prime}}^{m}(x) \mapsto\left\{\begin{array}{ll}
q_{i j} & \text { if } i=i^{\prime} \\
\perp & \text { if } i \neq i^{\prime}
\end{array} \quad\right. \text { (instr-test) } \\
& =\text { do } x \leftarrow\left(\operatorname{case}_{i^{\prime}=1}^{m} \operatorname{instr}_{\lambda x \vec{p}}(x) \text { of } \operatorname{in}_{i^{\prime}}^{m}(x) \mapsto\left\{\begin{array}{ll}
\text { return } x & \text { if } i=i^{\prime} \\
\text { fail } & \text { if } i \neq i^{\prime}
\end{array}\right) ; q_{i j}\right. \\
& \text { (case-case), }(\beta+1),\left(\beta+{ }_{2}\right) \\
& =\operatorname{do} x \leftarrow \operatorname{assert}_{\lambda x p_{i}}(x) ; q_{i j} \\
& \stackrel{\text { def }}{=} p_{i} \& q_{i j} \\
& \nabla(R)=\operatorname{case}_{i=1}^{m} \operatorname{instr}_{\lambda x \vec{p}}(x) \text { of } \operatorname{in}_{i}^{m}(x) \mapsto \nabla\left(\operatorname{instr}_{\lambda x \overrightarrow{q_{i}}}(x)\right) \quad \text { (case-case) } \\
& =\operatorname{case}_{i=1}^{m} \operatorname{instr}_{\lambda x \vec{p}}(x) \text { of } \operatorname{in}_{i}^{m}(x) \mapsto x \quad \quad(\nabla \text {-instr) } \\
& \stackrel{\text { def }}{=} \nabla\left(\operatorname{instr}_{\lambda x \vec{p}}(x)\right)=x
\end{aligned}
\]

Equation (1) follows by ( \(\eta\) instr).
Now, we have
\[
\begin{aligned}
& \operatorname{measure}_{i j}\left(p_{i} \& q_{i j}\right) \mapsto t_{i j} \\
& \stackrel{\text { def }}{=} \operatorname{case}_{i j} \operatorname{instr}_{\lambda x\left(p_{i} \& q_{i j}\right)_{i j}}(x) \text { of } \mathrm{in}_{i, j}(x) \mapsto t_{i j} \\
& =\operatorname{case}_{i j} R \text { of in }{ }_{i, j}(x) \mapsto t_{i j} \\
& =\operatorname{case}_{i} \operatorname{instr}_{\lambda x \vec{p}}(x) \text { of in } i_{i}^{m}(x) \mapsto \operatorname{case}_{j} \operatorname{instr}_{\lambda x \vec{q}_{i}}(x) \text { of } \operatorname{in}_{j}^{m_{i}}(x) \mapsto t_{i j} \\
& \quad \text { (case-case), }\left(\beta+{ }_{1}\right),\left(\beta+{ }_{2}\right) \\
& \stackrel{\text { def }}{=} \text { measure }_{i} p_{i} \mapsto \text { measure }_{j} q_{i j} \mapsto t_{i j} \quad \text { by }
\end{aligned}
\]

Let \(x: A \vdash p: \mathbf{2}\) and \(\Gamma, x: A \vdash s, t: B\). We define \(\Gamma, x: A \vdash\) if \(p\) then \(s\) else \(t \stackrel{\text { def }}{=}\) measure \(p \mapsto s \mid p^{\perp} \mapsto t: B\).

\section*{Lemma 26.}
1. If \(x: A \vdash p_{1} \oslash \cdots \oslash p_{n}=\top: \mathbf{2}\) and \(x: A \vdash q_{1}, \ldots, q_{n}: \mathbf{2}\), then
\[
\text { (measure } \left.p_{1} \mapsto q_{1}|\cdots| p_{n} \mapsto q_{n}\right)=\left(p_{1} \& q_{1}\right) \otimes \cdots \otimes\left(p_{n} \& q_{n}\right) .
\]
2. Let \(x: A \vdash p: \mathbf{2}\) and \(\Gamma \vdash q, r: B\) where \(x \notin \Gamma\). Then
\(\Gamma, x: A \vdash\) if \(p\) then \(q\) else \(r=\) case \(p\) of \(\operatorname{inl}\left(\__{-}\right) \mapsto q \mid \operatorname{inr}\left(\_\right) \mapsto r: B\).
3. Let \(x: A \vdash p: \mathbf{2}\). Then \(x: A \vdash\) if \(p\) then \(\top\) else \(\perp=p: \mathbf{2}\).

Proof. We prove part 2 here. We have
\[
\begin{aligned}
& \text { measure } p \mapsto q \mid p^{\perp} \mapsto r \stackrel{\text { def }}{=} \text { case } \operatorname{instr} \operatorname{rixp}_{\lambda x}(x) \text { of } \operatorname{inl}\left(\_\right) \mapsto q \mid \operatorname{inr}\left(\_\right) \mapsto r \\
&=\text { case } \operatorname{inl} ?\left(\operatorname{instr}_{\lambda x p}(x)\right) \text { of } \operatorname{inl}\left(\_\right) \mapsto q \mid \operatorname{inr}\left(\_\right) \mapsto r \\
&=\text { case } p \text { of } \operatorname{inl}\left(\_\right) \mapsto q \mid \operatorname{inr}\left(\_\right) \mapsto r \quad(\text { case-case }),(\beta+1),\left(\beta++_{2}\right) \\
&\quad \text { (instr-test) })
\end{aligned}
\]

\subsection*{5.9 Scalars}

From the rules given in Figure 2, the usual algebra of the rational interval from 0 to 1 follows.
- Lemma 27. If \(p / q=m / n\) as rational numbers, then \(\vdash p \cdot(1 / q)=m \cdot(1 / n): \mathbf{2}\).

Proof. We first prove that \(\vdash a \cdot(1 / a b)=1 / b: \mathbf{2}\) for all \(a, b\). This holds because \(a b \cdot(1 / a b)=\top\) by \((n \cdot 1 / n)\), hence \(a \cdot(1 / a b)=1 / b\) by (divide).

Hence we have \(p \cdot(1 / q)=p n \cdot(1 / n q)=q m \cdot(1 / n q)=m \cdot(1 / n)\).
Recall that within COMET, we are writing \(m / n\) for the term \(m \cdot(1 / n)\). Similar reasoning leads us to
- Lemma 28. Let \(q\) and \(r\) be rational numbers in \([0,1]\).
1. If \(q \leq r\) in the usual ordering, then \(\vdash q \leq r: \mathbf{2}\).
2. \(\vdash q \otimes r: 2\) iff \(q+r \leq 1\), in which case \(\vdash q \otimes r=q+r: \mathbf{2}\).
3. \(\vdash q \& r=q r: 2\).

\subsection*{5.10 Normalisation}

The following lemma gives us a rule that allows us to calculate the normalised form of a substate in many cases, including the examples in Section 3.
- Lemma 29. Let \(\vdash t: A+1, \vdash p_{1} \oslash \cdots \oslash p_{n}=\top: \mathbf{2}\), and \(\vdash q: \mathbf{2}\). Let \(\vdash s_{1}, \ldots, s_{n}: A\). Suppose \(\vdash 1 / m \leq q: \mathbf{2}\). If
\(\vdash t=\) measure \(p_{1} \& q \mapsto\) return \(s_{1}|\cdots| p_{n} \& q \mapsto \operatorname{return} s_{n} \mid q^{\perp} \mapsto\) fail \(: A+1\), then \(\vdash \operatorname{nrm}(t)=\) measure \(p_{1} \mapsto s_{1}|\cdots| p_{n} \mapsto s_{n}: A\)
Proof. Let \(\rho \stackrel{\text { def }}{=}\) measure \(_{i=1}^{n} p_{i} \mapsto s_{i}\). By the rule ( \(\eta \mathrm{nrm}\) ) , it is sufficient to prove that \(t=\) do \(\_\leftarrow t\); return \(\rho\). We have
do \(\_\leftarrow t\); return \(\rho=\) measure \(p_{1} \& q \mapsto\) return \(\rho|\cdots| p_{n} \& q \mapsto\) return \(\rho \mid q^{\perp} \mapsto\) fail
(case-case), \((\beta+1),\left(\beta+{ }_{2}\right)\)
\[
\begin{align*}
& =\text { measure } q \mapsto \text { return } \rho \mid q^{\perp} \mapsto \text { fail }  \tag{Lemma25}\\
& =\text { measure }{ }_{i=1}^{n} q \& p_{i} \mapsto \text { return } s_{i} \mid q^{\perp} \mapsto \text { fail }  \tag{Lemma25}\\
& =t \tag{Proposition20}
\end{align*}
\]
- Corollary 30. Let \(\alpha_{1}, \ldots, \alpha_{n}, \beta\) be rational numbers that sum to 1 , with \(\beta \neq 1\). If
\(\vdash t=\) measure \(\alpha_{1} \mapsto\) return \(s_{1}|\cdots| \alpha_{n} \mapsto\) return \(s_{n} \mid \beta \mapsto\) fail : \(A+1\), then
\(\vdash \operatorname{nrm}(t)=\) measure \(\alpha_{1} /\left(\alpha_{1}+\cdots+\alpha_{n}\right) \mapsto s_{1}|\cdots| \alpha_{n} /\left(\alpha_{1}+\cdots+\alpha_{n}\right) \mapsto s_{n}: A\).

\section*{6 Conclusion}

The system COMET allows for the specification of probabilistic programs and reasoning about their properties, both within the same syntax.

There are several avenues for further work and research.
- The type theory that we describe can be interpreted both in discrete and in continuous probabilistic models, that is, both in the Kleisli category \(\mathcal{K} \ell(\mathcal{D})\) of the distribution monad \(\mathcal{D}\) and in the Kleisli category \(\mathcal{K} \ell(\mathcal{G})\) of the Giry monad \(\mathcal{G}\). On a finite type each distribution is discrete. The discrete semantics were exploited in the current paper in the examples in Section 3. In a follow-up version we intend to elaborate also continuous examples.
- The normalisation and conditioning that we use in this paper can in principle also be used in a quantum context, using the appropriate (non-side-effect free) assert maps that one has there. This will give a form of Bayesian quantum theory, as also explored in [17].
- A further ambitious follow-up project is to develop tool support for COMET, so that the computations that we carry out here by hand can be automated. This will provide a formal language for Bayesian inference.

Acknowledgements Thanks to Kenta Cho for discussion and suggestions during the writing of this paper, and very detailed proofreading. Thanks to Bas Westerbaan for discussions about effectus theory.

\section*{References}

1 R. Adams. QPEL: Quantum program and effect language. In B. Coecke, I. Hasuo, and P. Panangaden, editors, Proc. of 11th Int. Workshop on Quantum Physics and Logic, QPL 2014, volume 172 of Electron. Proc. Theor. Comput. Sci., pages 133-153. Open Publishing Assoc., 2014. doi:10.4204/eptcs.172.10.
2 N. Benton, G. Bierman, V. de Paiva, and M. Hyland. A term calculus for intuitionistic linear logic. In M. Bezem and J. F. Groote, editors, Proc. of Int. Conf. on Typed Lambda Calculi and Applications, TLCA '93, volume 664 of Lect. Notes in Comput. Sci., pages 75-90. Springer, 1993. doi:10.1007/bfb0037099

3 Johannes Borgström, Andrew D. Gordon, Michael Greenberg, James Margetson, and Jurgen Van Gael. Measure transformer semantics for Bayesian machine learning. In Gilles Barthe, editor, Programming Languages and Systems - 20th European Symposium on Programming, ESOP 2011, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings, volume 6602 of Lecture Notes in Computer Science, pages 77-96. Springer, 2011. doi:10.1007/978-3-642-19718-5_5.
4 K. Cho. Total and partial computation in categorical quantum foundations. In C. Heunen, P. Selinger, and J. Vicary, editors, Proc. of 12th Int. Workshop on Quantum Physics and Logic, QPL 2015, volume 195 of Electron. Proc. in Theor. Comput. Sci., pages 116-135. Open Publishing Assoc., 2015. doi:10.4204/eptcs.195.9.
5 K. Cho, B. Jacobs, A. Westerbaan, and B. Westerbaan. An introduction to effectus theory, 2015. arXiv preprint 1512.05813. URL: https://arxiv.org/abs/1512. 05813.

6 K. Cho, B. Jacobs, A. Westerbaan, and B. Westerbaan. Quotient comprehension chains In C. Heunen, P. Selinger, and J. Vicary, editors, Proc. of 12th Int. Workshop on Quantum Physics and Logic, QPL 2015, volume 195 of Electron. Proc. in Theor. Comput. Sci., pages 136-147. Open Publishing Assoc., 2015. doi:10.4204/eptcs.195.10.

7 Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani. Probabilistic programming. In James D. Herbsleb and Matthew B. Dwyer, editors, Proceedings of the on Future of Software Engineering, FOSE 2014, Hyderabad, India, May 31- June 7, 2014, pages 167-181. ACM, 2014. doi:10.1145/2593882.2593900.
8 B. Jacobs. Measurable spaces and their effect logic. In Proc. of 28th Annual ACM/IEEE Symp. on Logic in Computer Science, LICS '13, pages 83-92. IEEE, 2013. doi:10.1109/ lics.2013.13.
9 B. Jacobs. New directions in categorical logic, for classical, probabilistic and quantum logic. Log. Methods Comput. Sci., 11(3):article 24, 2015. doi:10.2168/lmcs-11 (3:24) 2015.
10 Bart Jacobs. From probability monads to commutative effectuses. J. Log. Algebr. Meth. Program., 94:200-237, 2018. doi:10.1016/j.jlamp.2016.11.006.
11 Bart Jacobs, Bas Westerbaan, and Bram Westerbaan. States of convex sets. In Andrew M. Pitts, editor, Foundations of Software Science and Computation Structures - 18th International Conference, FoSSaCS 2015, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume 9034 of Lecture Notes in Computer Science, pages 87-101. Springer, 2015. doi:10.1007/978-3-662-46678-0_6.
12 Bart Jacobs and Fabio Zanasi. A predicate/state transformer semantics for bayesian learning. Electr. Notes Theor. Comput. Sci., 325:185-200, 2016. doi:10.1016/j.entcs. 2016. 09.038.

13 C. Jones and G. D. Plotkin. A probabilistic powerdomain of evaluations. In Proc. of 4 th Ann. IEEE Symp. on Logic in Computer Science, LICS '89, pages 186-195. IEEE, 1989 doi:10.1109/lics.1989.39173.
14 Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. Weakest precondition reasoning for expected run-times of probabilistic programs. In Peter Thiemann, editor, Programming Languages and Systems - 25th European Symposium on Programming, ESOP 2016, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, volume 9632 of Lecture Notes in Computer Science, pages 364-389. Springer, 2016. doi:10.1007/978-3-662-49498-1_15.

15 Dexter Kozen. Semantics of probabilistic programs. J. Comput. Syst. Sci., 22(3):328-350, 1981. doi:10.1016/0022-0000(81)90036-2.

16 Dexter Kozen. A probabilistic PDL. J. Comput. Syst. Sci., 30(2):162-178, 1985. doi: 10.1016/0022-0000 (85) 90012-1.

17 M. S. Leifer and R. W. Spekkens. Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference. Phys. Rev. A, 88(5):article 052130, 2013. doi:10. 1103/physreva. 88.052130.
18 Carroll Morgan, Annabelle McIver, and Karen Seidel. Probabilistic predicate transformers. ACM Trans. Program. Lang. Syst., 18(3):325-353, 1996. doi:10.1145/229542.229547.
19 Federico Olmedo, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. Reasoning about recursive probabilistic programs. In Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '16, New York, NY, USA, July 5-8, 2016, pages 672-681. ACM, 2016. doi:10.1145/2933575.2935317.
20 S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2003.
21 Sam Staton, Hongseok Yang, Frank D. Wood, Chris Heunen, and Ohad Kammar. Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints. In Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer

Science, LICS '16, New York, NY, USA, July 5-8, 2016, pages 525-534. ACM, 2016. doi:10.1145/2933575.2935313.
22 Regina Tix, Klaus Keimel, and Gordon D. Plotkin. Semantic domains for combining probability and non-determinism. Electr. Notes Theor. Comput. Sci., 222:3-99, 2009. doi:10.1016/j.entcs.2009.01.002.
23 E. S. Yudkowsky. An intuitive explanation of Bayesian reasoning. Essay, 2003. URL: http://yudkowsky.net/rational/bayes.

\section*{A Formal Presentation of COMET}

The full syntax of COMET is given by the grammar:
```

Type $A, B::=\mathbf{C}|0| 1|A+B| A \otimes B$
Term $r, s, t::=x|*| s \otimes t \mid$ let $x \otimes y=s$ in $t|; t| \operatorname{inl}(t)|\operatorname{inr}(t)|$
(case r of $\operatorname{inl}(x) \mapsto s \mid \operatorname{inr}(y) \mapsto t)|« s, t »| \operatorname{left}(t)\left|\operatorname{instr}_{\lambda x s}(t)\right| 1 / n \mid b_{m n}$
$\mathrm{nrm}(t) \mid s \otimes t$

```

We have a constant \(1 / n\) for every natural number \(n \geq 2\), and a constant \(b_{m n}\) for all natural numbers \(1 \leq m<n\).

The full set of rules of deduction for COMET are given below.

\section*{A. 1 Structural Rules}
(exch) \(\frac{\Gamma, x: A, y: B, \Delta \vdash \mathcal{J}}{\Gamma, y: B, x: A, \Delta \vdash \mathcal{J}} \quad\) (var) \(\frac{x: A \in \Gamma}{\Gamma \vdash x: A}\)
\[
\text { (ref) } \frac{\Gamma \vdash t: A}{\Gamma \vdash t=t: A} \quad(\text { sym }) \frac{\Gamma \vdash s=t: A}{\Gamma \vdash t=s: A} \quad \text { (trans) } \frac{\Gamma \vdash r=s: A \quad \Gamma \vdash s=t: A}{\Gamma \vdash r=t: A}
\]

\section*{A. 2 The Unit Type}
(unit) \(\overline{\Gamma \vdash *: 1}\)
\((\eta 1) \frac{\Gamma \vdash t: 1}{\Gamma \vdash t=*: 1}\)

\section*{A. 3 Tensor Product}
( \(\otimes) \frac{\Gamma \vdash s: A \quad \Delta \vdash t: B}{\Gamma, \Delta \vdash s \otimes t: A \otimes B} \quad\) (let) \(\frac{\Gamma \vdash s: A \otimes B \quad \Delta, x: A, y: B \vdash t: C}{\Gamma, \Delta \vdash \text { let } x \otimes y=s \text { in } t: C}\)
(paireq) \(\frac{\Gamma \vdash s=s^{\prime}: A \quad \Delta \vdash t=t^{\prime}: B}{\Gamma, \Delta \vdash s \otimes t=s^{\prime} \otimes t^{\prime}: A \otimes B}\)
(leteq) \(\frac{\Gamma \vdash s=s^{\prime}: A \otimes B \quad \Delta, x: A, y: B \vdash t=t^{\prime}: C}{\Gamma, \Delta \vdash(\text { let } x \otimes y=s \text { in } t)=\left(\text { let } x \otimes y=s^{\prime} \text { in } t^{\prime}\right): C}\)
\((\beta \otimes) \frac{\Gamma \vdash r: A \quad \Delta \vdash s: B \quad \Theta, x: A, y: B \vdash t: C}{\Gamma, \Delta, \Theta \vdash(\text { let } x \otimes y=r \otimes s \text { in } t)=t[x:=r, y:=s]: C}\)
\((\eta \otimes) \frac{\Gamma \vdash t: A \otimes B}{\Gamma \vdash t=(\text { let } x \otimes y=t \text { in } x \otimes y): A \otimes B}\)
\[
\begin{gathered}
\text { (let-let) } \begin{array}{c}
\Gamma \vdash r: A \otimes B \quad \Delta, x: A, y: B \vdash s: C \otimes D \quad \Theta, z: C, w: D \vdash t: E \\
\Gamma, \Delta, \Theta \vdash \text { let } x \otimes y=r \text { in (let } z \otimes w=s \text { in } t) \\
=\text { let } z \otimes w=(\text { let } x \otimes y=r \text { in } s) \text { in } t: E \\
(\text { let- } \otimes) \frac{\Gamma \vdash r: A \otimes B \quad \Delta, x: A, y: B \vdash s: C \quad \Theta \vdash t: D}{\Gamma, \Delta, \Theta \vdash \text { let } x \otimes y=r \text { in }(s \otimes t)=(\text { let } x \otimes y=r \text { in } s) \otimes t: D}
\end{array}, ~
\end{gathered}
\]

\section*{A. 4 Empty Type}
(magic) \(\frac{\Gamma \vdash t: 0}{\Gamma \vdash \vdash t: A}\)
( 70\() \frac{\Gamma \vdash s: 0 \quad \Gamma \vdash t: A}{\Gamma \vdash \mathfrak{i} s=t: A}\)

\section*{A. 5 Binary Coproducts}
\[
\begin{aligned}
& \text { (inl) } \frac{\Gamma \vdash t: A}{\Gamma \vdash \operatorname{inl}(t): A+B} \quad \text { (inr) } \frac{\Gamma \vdash t: B}{\Gamma \vdash \operatorname{inr}(t): A+B} \\
& \text { (inl-eq) } \frac{\Gamma \vdash t=t^{\prime}: A}{\Gamma \vdash \operatorname{inl}(t)=\operatorname{inl}\left(t^{\prime}\right): A+B} \quad(\text { inr-eq }) \frac{\Gamma \vdash t=t^{\prime}: B}{\Gamma \vdash \operatorname{inr}(t)=\operatorname{inr}\left(t^{\prime}\right): A+B} \\
& \text { (case) } \frac{\Gamma \vdash r: A+B \quad \Delta, x: A \vdash s: C \quad \Delta, y: B \vdash t: C}{\Gamma, \Delta \vdash \text { case } r \text { of } \operatorname{inl}(x) \mapsto s \mid \operatorname{inr}(y) \mapsto t: C} \\
& \text { (case-eq) } \begin{array}{l}
\Gamma \vdash r=r^{\prime}: A+B \quad \Delta, x: A \vdash s=s^{\prime}: C \quad \Delta, y: B \vdash t=t^{\prime}: C \\
\hline
\end{array} \\
& \Gamma, \Delta \vdash \text { case } r \text { of } \operatorname{inl}(x) \mapsto s \mid \operatorname{inr}(y) \mapsto t \\
& =\text { case } r^{\prime} \text { of } \operatorname{inl}(x) \mapsto s^{\prime} \mid \operatorname{inr}(y) \mapsto t^{\prime}: C \\
& \left(\beta+{ }_{1}\right) \frac{\Gamma \vdash r: A \quad \Delta, x: A \vdash s: C \quad \Delta, y: B \vdash t: C}{\Gamma, \Delta \vdash \text { case inl }(r) \text { of } \operatorname{inl}(x) \mapsto s \mid \operatorname{inr}(y) \mapsto t=s[x:=r]: C} \\
& (\beta+2) \frac{\Gamma \vdash r: B \quad \Delta, x: A \vdash s: C \quad \Delta, y: B \vdash t: C}{\Gamma, \Delta \vdash \text { case inr }(r) \text { of } \operatorname{inl}(x) \mapsto s \mid \operatorname{inr}(y) \mapsto t=t[y:=r]: C} \\
& (\eta+) \frac{\Gamma \vdash t: A+B}{\Gamma \vdash t=\text { case } t \text { of } \operatorname{inl}(x) \mapsto \operatorname{inl}(x) \mid \operatorname{inr}(y) \mapsto \operatorname{inr}(y): A+B} \\
& \Gamma \vdash r: A+B \quad \Delta, x: A \vdash s: C+D \quad \Delta, y: B \vdash s^{\prime}: C+D \\
& \text { (case-case) } \frac{\Theta, z: C \vdash t: E \quad \Theta, w: D \vdash t^{\prime}: E}{\Gamma, \Delta, \Theta \vdash \operatorname{case} r \text { of } \operatorname{inl}(x) \mapsto \text { case } s \text { of } \operatorname{inl}(z) \mapsto t\left|\operatorname{inr}(w) \mapsto t^{\prime}\right|}, \begin{array}{c}
\operatorname{inr}(y) \mapsto \operatorname{case} s^{\prime} \text { of } \operatorname{inl}(z) \mapsto t \mid \operatorname{inr}(w) \mapsto t^{\prime} \\
=\text { case }\left(\operatorname{case} r \text { of inl }(x) \mapsto s \mid \operatorname{inr}(y) \mapsto s^{\prime}\right) \\
\text { of } \operatorname{inl}(z) \mapsto t \mid \operatorname{inr}(w) \mapsto t^{\prime}: E
\end{array} \\
& \begin{array}{c}
(\text { case- } \otimes) \frac{\Gamma \vdash r: A+B \quad \Delta, x: A \vdash s: C \quad \Delta, y: B \vdash s^{\prime}: C \quad \Theta \vdash t: D}{\Gamma, \Delta, \Theta \vdash\left(\text { case } r \text { of } \operatorname{inl}(x) \mapsto s \mid \operatorname{inr}(y) \mapsto s^{\prime}\right) \otimes t=} \\
\text { case } r \text { of } \operatorname{inl}(x) \mapsto s \otimes t \mid \operatorname{inr}(y) \mapsto s^{\prime} \otimes t: C \otimes D
\end{array}
\end{aligned}
\]
\[
\begin{gathered}
\Gamma \vdash r: A+B \quad \Delta, z: A \vdash s: C \otimes D \\
\text { (let-case) } \frac{\Delta, w: B \vdash s^{\prime}: C \otimes D \quad \Theta, x: C, y: D \vdash t: E}{\Gamma, \Delta, \Theta \vdash \text { let } x \otimes y=\operatorname{case} r \text { of } \operatorname{inl}(z) \mapsto s \mid \operatorname{inr}(w) \mapsto s^{\prime} \text { in } t=} \\
\text { case } r \text { of inl }(z) \mapsto \text { let } x \otimes y=s \text { in } t \mid \\
\operatorname{inr}(w) \mapsto \text { let } x \otimes y=s^{\prime} \text { in } t: E
\end{gathered}
\]

\section*{A. 6 Partial Pairing}
(inlr) \(\frac{\Gamma \vdash s: A+1 \quad \Gamma \vdash t: B+1 \quad \Gamma \vdash s \downarrow=t \uparrow: \mathbf{2}}{\Gamma \vdash « s, t\rangle: A+B}\)
(inlr-eq) \(\frac{\Gamma \vdash s=s^{\prime}: A+1 \quad \Gamma \vdash t=t^{\prime}: B+1 \quad \Gamma \vdash s \downarrow=t \uparrow: \mathbf{2}}{\Gamma \vdash « s, t »=« s^{\prime}, t^{\prime} »: A+B}\)
\(\left(\beta \mathrm{inlr}_{1}\right) \frac{\Gamma \vdash s: A+1 \quad \Gamma \vdash t: B+1 \quad \Gamma \vdash s \downarrow=t \uparrow: \mathbf{2}}{\Gamma \vdash \triangleright_{1}(« s, t »)=s: A+1}\)
\(\left(\beta \operatorname{inlr}_{2}\right) \frac{\Gamma \vdash s: A+1 \quad \Gamma \vdash t: B+1 \quad \Gamma \vdash s \downarrow=t \uparrow: \mathbf{2}}{\Gamma \vdash \triangleright_{2}(« s, t »)=t: B+1}\)
\((\eta\) inlr \() \frac{\Gamma \vdash t: A+B}{\Gamma \vdash t=《 \triangleright_{1}(t), \triangleright_{2}(t) »: A+B}\)

\section*{A. 7 The left() Construction}
(left) \(\frac{\Gamma \vdash t: A+B \quad \Gamma \vdash \mathrm{inl} ?(t)=\top: \mathbf{2}}{\Gamma \vdash \operatorname{left}(t): A}\)
(left-eq) \(\frac{\Gamma \vdash t=t^{\prime}: A+B \quad \Gamma \vdash \mathrm{inl} ?(t)=\top: \mathbf{2}}{\Gamma \vdash \operatorname{left}(t)=\operatorname{left}\left(t^{\prime}\right): A}\)
\((\beta\) left \() \frac{\Gamma \vdash t: A+B \quad \Gamma \vdash \operatorname{inl} ?(t)=\top: \mathbf{2}}{\Gamma \vdash \operatorname{inl}(\operatorname{left}(t))=t: A+B} \quad(\eta\) left \() \frac{\Gamma \vdash t: A}{\Gamma \vdash \operatorname{left}(\operatorname{inl}(t))=t: A}\)

\section*{A. 8 Instruments}
\((\) instr \() \frac{x: A \vdash t: \mathbf{n} \quad \Gamma \vdash s: A}{\Gamma \vdash \operatorname{instr}_{\lambda x t}(s): n \cdot A} \quad(\nabla-\) instr \() \frac{x: A \vdash t: \mathbf{n} \quad \Gamma \vdash s: A}{\Gamma \vdash \nabla\left(\operatorname{instr}_{\lambda x t}(s)\right)=s: A}\)
(instr-eq) \(\frac{x: A \vdash t=t^{\prime}: \mathbf{n} \quad \Gamma \vdash s=s^{\prime}: A}{\Gamma \vdash \operatorname{instr}_{\lambda x t}(s)=\operatorname{instr}_{\lambda x t^{\prime}}\left(s^{\prime}\right): n \cdot A}\)
(instr-test) \(\frac{x: A \vdash t: \mathbf{n} \quad \Gamma \vdash s: A}{\Gamma \vdash \operatorname{case}{ }_{i=1}^{n} \operatorname{instr}_{\lambda x t}(s) \text { of } \operatorname{in}_{i}^{n}\left(\_\right) \mapsto i=t[x:=s]: \mathbf{n}}\)
\((\eta\) instr \() \frac{x: A \vdash r: n \cdot A \quad x: A \vdash \nabla(r)=x: A \quad \Gamma \vdash s: A}{\Gamma \vdash \operatorname{instr}_{\lambda x . \text { case }^{n}}^{i=1} r \text { of } \operatorname{in}_{i}^{n}(-) \mapsto i}(s)=r[x:=s]: n \cdot A\)

\section*{A. 9 Scalar Constants}

For any natural number \(n \geq 2\), we have the following rules.
\[
\begin{aligned}
& (1 / n) \frac{(n \cdot 1 / n) \overline{\Gamma \vdash n \cdot 1 / n=\top: \mathbf{2}}}{\Gamma \vdash 1 / n: \mathbf{2}} \\
& \text { (divide) } \frac{\Gamma \vdash n \cdot t=\top: \mathbf{2}}{\Gamma \vdash t=1 / n: \mathbf{2}} \quad\left(b_{m n}\right) \frac{}{\Gamma \vdash b_{m n}: \mathbf{3}}(1 \leq m<n) \\
& \left(\triangleright_{1}-b_{m n}\right) \frac{\overline{\Gamma \vdash \text { do } x \leftarrow b_{m n} ; \triangleright_{1}(x)=1 / n: \mathbf{2}}(1 \leq m<n)}{\left(\triangleright_{2}-b_{m n}\right) \frac{\Gamma \vdash \text { do } x \leftarrow b_{m n} ; \text { return } \nabla(x)=m \cdot 1 / n: \mathbf{2}}{\Gamma}(1 \leq m<n)}
\end{aligned}
\]

These ensure that \(1 / n\) is the unique scalar whose sum with itself \(n\) times is \(T\). The term \(b_{m n}\) ensures that the term \((m+1) \cdot 1 / n\) is well-typed.

\section*{A. 10 Normalisation}
\[
\begin{aligned}
(\mathrm{nrm}) & \frac{\vdash t: A+1 \quad \vdash 1 / n \leq t \downarrow: \mathbf{2}}{\Gamma \vdash \mathrm{nrm}(t): A} \\
(\beta \mathrm{nrm}) & \frac{\vdash t: A+1 \quad \vdash 1 / n \leq t \downarrow: \mathbf{2}}{\Gamma \vdash t=\mathrm{do}-\leftarrow t ; \mathrm{return} \mathrm{nrm}(t): A+1} \\
(\eta \mathrm{nrm}) & \frac{\vdash t: A+1 \quad \vdash 1 / n \leq t \downarrow: \mathbf{2} \quad \vdash \rho: A \quad \vdash t=\text { do } \quad \leftarrow t ; \text { return } \rho: A+1}{\Gamma \vdash \rho=\operatorname{nrm}(t): A}
\end{aligned}
\]

\section*{A. 11 Partial Sum}
\[
\begin{gathered}
\Gamma \vdash s: A+1 \\
\Gamma \vdash b:(A+A)+1 \quad \Gamma \vdash t: A+1 \\
\left(\mathbb{\text { do }} x \leftarrow b ; \triangleright_{1}(x)=s: A+1\right. \\
\Gamma \vdash \text { do } x \leftarrow b ; \triangleright_{2}(x)=t: A+1 \\
\Gamma \vdash s \boxtimes t: A+1 \\
\Gamma \vdash s: A+1 \\
(\mathbb{Q} \text {-def }) \frac{\Gamma \vdash t: A+1}{} \frac{\Gamma \vdash \operatorname{do} x \leftarrow b ; \triangleright_{1}(x)=s: A+1}{} \begin{array}{c}
\Gamma \vdash(A+A)+1 \quad \\
\Gamma \vdash \text { do } x \leftarrow b ; \triangleright_{2}(x)=t: A+1 \\
\Gamma \vdash t=\text { do } x \leftarrow b ; \text { return } \nabla(x): A+1
\end{array}
\end{gathered}
\]

\section*{A. 12 Miscellaneous}
\[
\begin{array}{cc}
\Gamma \vdash s:(A+A)+1 \quad & \Gamma \vdash t:(A+A)+1 \\
\Gamma \vdash \text { do } x \leftarrow s ; \triangleright_{1}(x)=\text { do } x \leftarrow t ; \triangleright_{1}(x): A+1 \\
(\mathrm{JM}) \frac{\Gamma \vdash \operatorname{do} x \leftarrow s ; \triangleright_{2}(x)=\text { do } x \leftarrow t ; \triangleright_{2}(x): A+1}{\Gamma \vdash s=t:(A+A)+1} \\
(\operatorname{comm}) \frac{x: A \vdash p: \mathbf{2} \quad x: A \vdash q: \mathbf{2} \quad \Gamma \vdash t: A}{\Gamma \vdash \text { do } y \leftarrow \operatorname{assert}_{\lambda x p}(t) ; \operatorname{assert}_{\lambda x q}(y)=\text { do } y \leftarrow \operatorname{assert}_{\lambda x q}(t) ; \operatorname{assert}_{\lambda x p}(y): A+1}
\end{array}
\]```


[^0]:    * This work was supported by ERC Advanced Grant QCLS: Quantum Computation, Logic and Security.

[^1]:    ${ }^{1}$ See the website efprob.cs.ru.nl for details.

