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—— Abstract

This paper introduces a novel type theory and logic for probabilistic reasoning. Its logic is
quantitative, with fuzzy predicates. It includes normalisation and conditioning of states. This
conditioning uses a key aspect that distinguishes our probabilistic type theory from quantum
type theory, namely the bijective correspondence between predicates and side-effect free actions
(called instrument, or assert, maps). The paper shows how suitable computation rules can be
derived from this predicate-action correspondence, and uses these rules for calculating conditional
probabilities in two well-known examples of Bayesian reasoning in (graphical) models. Our type
theory may thus form the basis for a mechanisation of Bayesian inference.
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1 Introduction

A probabilistic program is understood (semantically) as a stochastic process. A key feature
of probabilistic programs as studied in the 1980s and 1990s is the presence of probabilistic
choice, for instance in the form of a weighted sum x +, y, where the number r € [0, 1]
determines the ratio of the contributions of z and y to the result. This can be expressed
explicitly as a convex sum 7 - x + (1 — r) - y. Some of the relevant sources are [13, 15, 16, 18],
and also [22] for the combination of probability and non-determinism. In the language of
category theory, a probabilistic program is a map in the Kleisli category of the distribution
monad D (in the discrete case) or of the Giry monad G (in the continuous case), see [10] for
details.

In recent years, with the establishement of Bayesian machine learning as an important area
of computer science, the emphasis of probabilistic programming shifted towards conditional
inference. The key feature is no longer probabilistic choice, but normalisation of distributions
(states), see e.g. [3, 7, 21, 14, 19]. Interestingly, this can be done in basically the same
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underlying models, where a program still produces a distribution — discrete or continuous —
over its output.

This paper contributes to this latest line of work by formulating a novel type theory for
probabilistic and Bayesian reasoning. We list the key features of our type theory.

It includes a logic, which is quantitative in nature. This means that its predicates are best

understood as ‘fuzzy’ predicates, taking values in the unit interval [0, 1] of probabilities,

instead of in the two-element set {0,1} of Booleans.

As a result, the predicates of this logic do not form Boolean algebras, but effect modules

(see e.g. [9]). The double negation rule p-+ = p does hold, but the sum @ is a partial

operation. Moreover, there is a scalar multiplication s - p, for a scalar s and a predicate p,

which produces a scaled version of the predicate p.

The type theory includes normalisation (and also probabilistic choice). Abstractly,

normalisation means that each non-zero ‘substate’ in the type theory can be turned

into a proper state (like in [11]). This involves, for instance, turning a subdistribution
>, Ti%;, where the probabilities r; € [0, 1] satisfy 0 < r <1 for r def >, T4, into a proper

distribution ), “*x; — where, by construction, », = = 1.

The type theory also includes conditioning, via the combination of assert maps and

normalisation (from the previous two points). Hence, we can calculate conditional

probabilities inside the type theory, via appropriate (derived) computation rules. In
contrast, in the language of [3], probabilistic (graphical) models can be formulated,
but actual computations are done in the underlying mathematical models. Since these
computations are done inside our calculus, our type theory can form the basis for
mechanisation.
This work concentrates on an integrated type theory and logic for probability, and not so
much on the underlying semantics (like in [3, 21]) nor on the programming language aspects
(like in [7, 19, 14]), since we do not have a ‘while’ construct, for instance.

The type theory that we present is based on a new categorical foundation for quantum
logic, called effectus theory, see [9, 11, 4, 6]. This theory involves a basic duality between
states and effects (predicates), which is implicitly also present in our type theory. A subclass
of ‘commutative’ effectuses can be defined, forming models for probabilistic computation and
logic. Our type theory corresponds to these commutative effectuses, and will thus be called
COMET, as an abbreviation for COMmutative Effectus Theory. This system COMET
can be seen as an internal language for commutative effectuses.

Effectus theory thus forms the categorical basis for COMET. At the same time it forms
the basis for an embbeded language EfProb in the programming language Python'. EfProb
forms a uniform ‘calculator’ for discrete, continuous and quantum probability. EfProb is an
unsafe language, which is in a sense orthogonal to the COMET type theory.

The idea that predicates come with an associated action is familiar in mathematics. For
instance, in a Hilbert space 3, a closed subspace P C H (a predicate) can equivalently be
described as a linear idempotent operator p: H — H (an action) that has P as image. We
sketch how these predicate-action correspondences also exist in the models that underlie our
type theory.

First, in the category Sets of sets and functions, a predicate p on a set X can be identified
with a subset of X, but also with a ‘characteristic’ map p: X — 1+ 1, where 1 +1 =2 s
the two-element set. We prefer the latter view. Such a predicate corresponds bijectively to a
‘side-effect free’ instrument instr,: X — X + X, namely to:

1 See the website efprob.cs.ru.nl for details.
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inl () if p(z)

instry,(z) =
(@) inr(z) if p(z)

1
0

Here we write X + X for the sum (coproduct), with left and right coprojections (also called
injections) inl (_),inr(_) : X — X +X. Notice that this instrument merely makes a left-right
distinction, as described by the predicate, but does not change the state x. It is called
side-effect free because it satisfies V o instr, = id, where V = [id,id]: X + X — X is the
codiagonal. It is easy to see that each map f: X — X + X with Vo f = id corresponds to a
predicate p: X — 1+ 1, namely to p = (! +!) o f, where |: X — 1 is the unique map to the
final (singleton, unit) set 1.

Our next example describes the same predicate-action correspondence in a probabilistic
setting. It assumes familiarity with the discrete distribution monad D — see [9] for details,
and also Section 4.1 — and with its Kleisli category K¢(D). A predicate map p: X — 1+ 1 in
KU(D) is (essentially) a fuzzy predicate p: X — [0, 1], since D(1 + 1) = D(2) = [0, 1]. There
is also an associated instrument map instr,: X — X + X in K¢(D), given by the function
instr,: X — D(X + X) that sends an element z € X to the distribution (formal convex
combination):

instry(z) = p(z) - inl(z) + (1 — p(z)) - inr (x) ..

This instrument makes a left-right distinction, with the weight of the distinction given by the
fuzzy predicate p. Again we have V oinstr, = id, in the Kleisli category, since the instrument
map does not change the state. It is easy to see that we get a bijective correspondence.

These instrument maps instr,: X — X + X can in fact be simplified further into
what we call assert maps. The (partial) map assert,: X — X + 1 can be defined as
assert, = (id +!) o instr,,. We say that such a map is side-effect free if there is an inequality
assert, < inl(_), for a suitable order on the homset of partial maps X — X + 1. Given
assert maps for p, and for its orthosupplement (negation) p*, we can define the associated
instrument via a partial pairing operation as instr, = «assert,,, assert, 1 », see below for details.
We shall define conditioning via normalisation after assert. More specifically, for a state
w: X and a predicate p on X we define the conditional state w|, = cond (w, p) as:

cond (w,p) = nrm (assert,(w)) ,

where nrm (—) describes normalisation (of substates to states). This description occurs in
semantical form in [11]. Here we formalise it at a type-theoretic level and derive suitable
computation rules from it that allow us to do (exact) conditional inference.

The paper is organised as follows. Section 2 provides an overview of the type theory,
with some key results, without giving all the details and proofs. Section 3 takes two familiar
examples of Bayesian reasoning and formalises them in our type theory COMET. Next,
Section 4 sketches how our type theory can be interpreted in set-theoretic and probabilistic
models. Subsequently, Section 5 explores the type theory in greater depth, and provides
justification for the computation rules in the examples. Appendix A contains a formal
presentation of the type theory COMET.
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1.1 Previous Work

The system COMET is related to the quantum type theory QPEL described in [1]. The
two type theories have a common subsystem. The type theory in [1] extends this subsystem
with rules for qubits. The theory COMET extends the subsystem with new computation
rules for the instrument maps, which provides a bijective correspondence between predicates
and side-effect free assert maps (see below for details); as well as normalisation, and the
scalar constants 1/n.

A key feature of quantum theory is that observations have a side-effect: measuring a
system disturbs it at the quantum level. In order to perform such measurements, each
quantum predicate comes with an associated ‘measurement’ instrument operation which acts
on the underlying space. Probabilistic theories also have such instruments ...but they are
side-effect free!

The key aspect of a probabilistic model, in contrast to a quantum model, is that there is
a bijective correspondence between:

predicates X — 141

side-effect free instruments X — X 4+ X — or equivalently, side-effect free assert maps

X—=X+1

2 Syntax and Rules of Deduction

We present here the terms and types of COMET. We shall describe the system at a high
level here, giving the intuition behind each construction. The complete list of the rules of
deduction of COMET is given in Appendix A, and the properties that we use are all proved
in Section 5.

2.1 Syntax

Assume we are given a set of type constants C, representing the base data types needed for
each example. (These may typically include for instance nat and real.) Then the types and
terms of COMET are the following.

Type A, B:=C|0|1|A+B|A®B

Term r,s,t =z |*|s@t|letz@y=sint| t|inl(t)]|inr(t)]

(case r of inl (x) — s |inr(y) — t) | «s,t» | left (t) | instrags(¢) | 1/n
nrm(t) | s@t

We explain the intended meaning of these terms in the remaining parts of Section 2.

The variables « and y are bound within s in let # ® y = s in t. The variable z is bound
within s and y within ¢ in case r of inl(z) — s | inr(y) — ¢, and x is bound within ¢ in
instryg:(s). We identify terms up to a-conversion (change of bound variable). We write
t[x := s] for the result of substituting s for  within ¢, renaming bound variables to avoid
variable capture. We shall write _ for a vacuous bound variable; for example, we write
case r of inl(_ )+ s |inr(y) — t for case r of inl (x) — s | inr (y) — ¢t when x does not occur
free in s.

The typing rules for these terms are given in Figure 1. (Note that some of these rules
make use of defined expressions, which will be introduced in the sections below. Note also
that, in the rules (1/n) and (urm), the n that occurs is a constant natural number, not a
term that may contain free variables.)

The computation rules that these terms obey are given in Figure 2.
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z:Ael . I'Fs: A AFt:B
(var) 'tz A (unit) TkEx:1 (®) INAtset: AR B
(let) I'+s:A® B Ajz:Ay:BFt:C
AFletzoy=sint:C

'k ijt: A 'kinl(t): A+ B I'kinr(t): A+ B

'tr:A+ B Ax:AFs: C Ay:BFt:C
I'y A+ case r of inl(x) — s |inr(y) —t:C

(case)

I'Fs:A+1 I'Ft:B+1 I'kFsli=t1:2

(inlr) 'F«s,t» : A+ B

I'Ft: A+ B CHinl?(t)=T:2 rz:AkFt:n I'ks: A

inst
(left) I Fleft(t): A (instr) I Finstrag(s):n-A
Ft:A+1 F1/n<tl:2
1/n) ———
(1/n) '1/n:2 (nrm) F'knm(t): A
F'-s:A+1 Fet:A+1

FEb:(A+A)+1 F'kdoz <+ b>i(z)=s:A+1
F'Fdox <+ b>a(x)=t: A+1
'-s@t:A+1

(@)

Figure 1 Typing rules for COMET.

Figures 1 and 2 should be understood simultaneously. So the term «s,t» is well-typed if
and only if we can type s: A+ 1 and ¢ : B+ 1 (using the rules in Figure 1), and derive the
equation s |=t 1 using the rules in Figure 2.

The full set of rules of deduction for the system is given in Appendix A.

2.2 Affine Type Theory

Note the form of several of the typing rules in Figure 1, including (®) and (let). These rules
do not allow a variable to be duplicated. In particular, we cannot derive the judgement
r:AFz®x: A® A. The contraction rule does not hold in our type theory — it is not the
case in general that, if I,z : Ajy: BF J,thenT',z: A+ J[z := z,y := z]. Our theory is
thus an affine type theory, which is similar to a linear type theory (see for example [2]).

The reason is that these judgements do not behave well with respect to substitution. For
example, take the computation x : 2+ z ® z : 2 ® 2. If we apply this computation to the
scalar 1/2, we presumably wish the result to be T @ T with probability 1/2, and L ® L with
probability 1/2. But this is not the semantics for the term F 1/2 ® 1/2: 2 ® 2. This term
assigns probability 1/4 to all four possibilities Te T, Te L, L® T, L ® L.

We discuss this further in Section 4.3
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letzey=resint=txz:=ry:=s (B®)
case inl (r) of inl (z) — s |inr(y) — t = s[x :=7] (B+1)
case inr (1) of inl(z) — s |inr(y) =t = t[y :== 7] (B+2)
>1(«s,t») =s (Binlry)
Do(«s,ty) =t (Binlry)
inl (left (t)) =t (Bleft)
left (inl (¢)) =t (nleft)
index (instragp(t)) = pla :=t] (instr-test)
V(instragp(t)) =t (V-instr)
If V(t) =  then instr)index(t) () = t[z := 3] (ninstr)
Ift:1thenx=t¢ (n1)
Ift: A Bthenletzoy=tinzoy=t (n®)
If t : A+ B then case t of inl (z) — inl (z) | inr (y) — inr(y) =t (n+)
If t : A+ B then «>1(t),>2(t)» =t (minlr)
If ¢ is well-typed then do __ < t;return nrm (t) = ¢ (Bnrm)
If t =do __ < t;return p and 1/n < ¢, then p = nrm (¢) (mmrm)
n-l/n=T (n-1/n)
Ifn-t=T thent=1/n (divide)
If do z < b;>1(z) = s and do « + b;>o(x) =1t

then s @ t = do x < b; return V(z) (@-def)

Figure 2 Computation rules for COMET.

2.3 States, Predicates and Scalars

A closed term F t : A will be called a state of type A, and intuitively it represents a probability
distribution over the elements of A.

A predicate on type A is a term p such that = : AF p: 2. These shall be the formulas of
the logic of COMET (see Section 2.7).

The closed terms t such that - ¢ : 2 are called scalars, and represent the probabilities or
truth values of our system. In our intended semantics for discrete and continuous probabilities,
these denote elements of the real interval [0, 1].

Given a state -t : A and a predicate x : A+ p: 2, we can find the probability that p
is true when measured on ¢; this probability is simply the scalar p[x := t]. This validity is
written as t |= p in effectus theory [5].

A term x : A ¢: B may be understood as a channel from A to B. One can do state
transformation and predicate transformation along a channel. In the current setting this
is done simply via substitution. A state - s: A is transformed into a state - c[z := 5] : B.
In the other direction, a predicate y : B F p : 2 is transformed into a predicate on A as
x: At ply := ] : 2. This predicate is the weakest precondition of p with respect to c.
State and predicate transformation, together with conditioning, are used in [12] to describe
learning in a Bayesian context. These same ideas are used in Section 3 below.
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Pks:A+1 Fr-t:A+1
FFb:(A+A)+1 F'Fdoz+b>i(x)=s:A+1
I'Fdox <« byreturn V(z) =t: A+1
'kEs<t:A+1

(order)

Figure 3 Rule for Ordering in COMET.

2.4 Empty Type

The typing rule for the term jt says that from an inhabitant ¢ : 0 we can produce an
inhabitant j¢ in any type A. Intuitively, this says ‘If the empty type is inhabited, then every
type is inhabited’, which is vacuously true.

2.5 Coproducts and Copowers

Since we have the coproduct A + B of two types, we can construct the disjoint union of n
types Ay + -+ + A, in the obvious way. We write in} (), ..., iny () for its constructors; thus,
ifa:A; thenin} (a): Ay +---+ A,. And given t : A; +--- 4+ A,, we can eliminate it as:

case t of in] (1) — 1 |-+ |iny (zp) — T -

We abbreviate this expression as casel’ ; t of in}' (z;) — ;.

The term left (¢) is understood as follows. If we have a term ¢ : A+ B and we have derived
the judgement inl? (¢) = T, then we know that we know that ¢ always has the form inl (a) for
some term a : A. We denote this unique term a by left (¢).

We have a similar right () consturction, but there is no need to give primitive rules for
this one, as it can be defined in terms of left (): right (¢) L eft (swap (t)), where swap () et
case t of inl (z) — inr(z) | inr(y) — inl (y).

For the special case where all the types are equal, we write n - A for the type A+ ---+ A,

where there are n copies of A. In category theory, this is known as the nth copower of A.

(We include the special cases 0- A oand1-4% A)

The codiagonal V(t) : A for ¢t : n- A is defined by V() f casel’ ; t of in (z) — x. In
particular, whene n =2 and ¢ : A+ A, then V() L case ¢ of inl () = |inr(z) — .

We write n for n - 1. We denote the canonical elements by 1, 2, ..., n, via definitions

i in}’ (%) :n for 1 <i<n.Fort:n-A, we define index (t) %ef casel’ ¢t of in}' (_)—i:n.

2.6 Partial Functions

A term of type A is intended to represent a total computation, that always terminates and
returns a value of type A. We can think of a term of type A + 1 as a partial computation

that may return a value a of type A (by outputting inl (a)) or diverge (by outputting inr (x)).

The judgement s < ¢ should be understood as: the probability that s returns inl (a) is at
most the probability that ¢ returns inl (a), for all a. The rule for this ordering relation is
given in Figure 3.

We define:

IfTF¢: A then T F return ¢ % inl (t) : A+ 1. This program converges with probability 1.

T F fail inr (+) : A+ 1. This program diverges with probability 1.

1:7
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If'ts:A+1and A,z : A-t: B+ 1 then
T,AFdox « s;t & case s of inl () — t | inr(_) — fail.

The term do z + s;t should be read as the following computation: Run s. If s returns a
value, pass this as input x to the computation ¢; otherwise, diverge.
These constructions satisfy these computation rules:

(do-return) do z < return s;t = t[x := 9]

(do-fail) do x < fail; ¢t = fail

(return-do) do z « rireturn x =r

(fail-do) do _ + r;fail = fail

(do-do) do z < r;(do y < s;t) =do y < (do & < r;s);t

This construction also allows us to define scalar multiplication. If we are given a scalar
F s : 2 and a substate - ¢t : A4 1, then the result of multiplying or scaling ¢ by s is
Fdo <« s;t: A+ 1.

2.6.1 Partial Projections
Given t : A+ B, the partial projections >418(t) : A+ 1 and >4'B(¢) : B + 1 are defined by

>1B(t) L case ¢ of inl (z) — return z | inr (_) + fail

>5B(t) Lf case ¢ of inl (_) — fail | inr (x) — return

We shall often omit the superscripts A and B.
Given ¢ : n - A, the partial projection >7(t) : A+ 1 is defined to be

>;'(t) = casel_;t of in7 (x) —

3

def {return x ifi=j

fail otherwise

We shall often omit the superscript n.

2.6.2 Partial Sum

Let T+ s,t: A+ 1. If these terms have disjoint domains (é.e. given any input z and output
a, the sum of the probabilities that s and ¢ return a given z is never greater than 1), then
we may form the computation I' - s @ ¢, the partial sum of s and t. The probability that
this program converges with output a is the sum of the probability that s returns a, and the
probability that ¢ returns a. The definition is given by the rule (©@-def). We write n - ¢ for
the sum t @ - -- @ t with n summands. We include the special cases 0 - ¢ 2 fail and 1-¢ <4,

With this operation, the partial functions in A + 1 form a partial commutative monoid
(PCM) (see Lemma 13).

2.7 Logic

The type 2 = 1 + 1 shall play a special role in this type theory. It is the type of propositions
or predicates, and its objects shall be used as the formulas of our logic.

We define T %' inl (x):2and L L inr (*) : 2. We also define the orthosupplement of a
predicate p, which roughly corresponds to negation:

pt 4 ase pofinl(_)— L|inr(_)—T
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We immediately have that p+ =p, T* = 1L and 1L+ =T.

The ordering on 2 shall play the role of the derivability relation in our logic: p < ¢ will
indicate that ¢ is derivable from p, or that p implies q. The rules for this logic are not the
familiar rules of classical or intuitionistic logic. Rather, the predicates over any context form
an effect algebra (Proposition 16).

2.7.1 n-tests

An n-test in a context I' is an n-tuple of predicates (p1,...,p,) on A such that T F
P Qpy=1T:2

Intuitively, this can be thought of as a set of n fuzzy predicates whose probabilities always
sum to 1. We can think of this as a test that can be performed on the types of I' with n
possible outcomes; and, indeed, there is a one-to-one correspondence between the n-tests of
I" and the terms of type n (Lemma 21).

2.7.2 Instrument Maps

Let x: AFt:nand T'F s: A. The term instry,(s) : n- A is interpreted as follows: we

read the computation z : A - ¢t : n as a test on the type A, with n possible outcomes.

The computation instry,+(s) runs ¢ on (the output of) s, and returns in} (s), where ¢ is the
outcome of the test.

Given an n-test (p1,...,p,) on A, we can write a program that tests which of py, ..., p,
is true of its input, and performs one of n different calculations as a result. We write this
program as I' - measure p; — t1 | -+ | pp — t,,. It will be defined in Definition 24.

If;U:AI—p:ZandI‘,x:Al—s,t:B,WedeﬁneI‘,ac:AI—(ifpthenselset)d:ef
measure p — s | pt + t : B. In the case where s and t do not depend on z, we have the
following fact (Lemma 26.2): if p then s else t = case p of inl(_ )+~ s|inr(_) — t.

2.7.3 Assert Maps

Ifx: AF p:2is a predicate, we define
I' - assertygp(t) Lf case instragp,(t) of inl (z) — return x |inr(_) — fail : A+1

The computation asserty,,(t) is a partial computation with output type A. It tests whether
p is true of ¢; if so, it leaves ¢ unchanged; if not, it diverges. That is, if p[z := ¢] returns T,
the computation converges and returns ¢; if not, it diverges.

These constructions satisfy the following computation rules (see Section 5.6 below for the
proofs).

(assert]) (assertygp(t))d= plz :=1]
(assert-scalar) For a scalar F s: 2: asserty (x) = instry s(%) = s: 2.
(instr+) Forz: A+ Bk t:n:

(assert+) Forx: A+ BFp:2:

asserty,p(t) = case t of inl (x) — do z < asserty, p[z:=ini(a)] (*); return inl (2) |

inr (y) = do 2 <= assertyp p[o:—inr(v)] (¥); return inr ()

1:9
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(instr m) For z :m ¢ :n: instry,(s) = casef’ ;s of i+ case}/_,t[x := 1] of j > in] (i)
(assert m) For x :m b p: 2: asserty,,(t) = casel™ ¢ of i — if p[x := ] then return i else fail

In particular, we have assertyginiz(z)(t) = >1(t) and assertygine?(a) (1) = D>2().

2.7.4 Sequential Conjunction

Given two predicates = : A+ p(z),q(z) : 2, we can define their sequential conjunction
r:AFp&q © o 2 assertyy,(y) (2);q(2) : 2 .

The probability of this predicate being true at x is the product of the probabilities of p(z)
and ¢(z). This operation has many of the familiar properties of conjunction — including
commutativity — but not all: in particular, we do not have p & p* = L in all cases. (For
example, 1/2 & (1/2)+ = 1/4.)

2.7.5 Coproducts

We can define predicates which, given a term ¢ : A+ B, test which of A and B the term came
from. We write these as inl? (¢) and inr? (¢). (Compare these with the operators F'stAnd and
SndAnd defined in [9].) They are defined by

inl? (¢) Lf case t of inl ()= Tlinr(_)— 1
inr? (t) 4 case t of inl ()= Ll]inr()—T

2.7.6 Kernels

The predicate inr? () is particularly important for partial maps.
Let 't : A+ 1. The kernel of the map denoted by ¢ is

1% inr? (t) L case ¢ of inl ()~ Llinr(_)—T

Intuitively, if we think of ¢ as a partial computation, then ¢1 is the proposition ‘¢ does not
terminate’, or the function that gives the probability that ¢ will diverge on a given input.

Its orthosupplement, (¢1)+ = inl? (), which we shall also write as ¢/, is also called the
domain predicate of t, and represents the proposition that ¢ terminates. We note that it is
equal todo <« t;T.

2.8 Partial Pairing

The term «s,t» is understood intuitively as follows. We are given two partial computations
s and t, and we have derived the judgement s]= t1, which tells us that exactly one of s and
t converges on any given input. We may then form the computation «s,t» which, given an
input z, returns either s(z) or ¢(x), whichever of the two converges.

2.9 Scalar Constants

The term 1/n represents the probability distribution on 2 = {T, L} which returns T with
probability 1/n and L with probability (n — 1)/n. It can be thought of as a coin toss, with
a weighted coin that returns heads with probability 1/n. In other languages it is sometimes
written as the two-element distribution flip(1/n).
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From this, we have a representation of the rational numbers between 0 and 1. Let m/n
denote the term 1/n @ --- @ 1/n, where there are m summands. The usual arithmetic of
rational numbers can be carried out in our system (see Section 5.9).

2.10 Normalisation

Let H¢: A+ 1. Then t represents a substate of A. As long as the probability ¢] is non-zero,
we can normalise this program over the probability of non-termination. The result is the state
denoted by nrm (¢). Intuitively, the probability that nrm (¢) will output a is the probability
that ¢ will output inl (a), conditioned on the event that ¢ terminates.
In order to type nrm (t), we must first prove that ¢ has a non-zero probability of terminating
by deriving an inequality of the form 1/n < ¢ for some positive integer n > 2.
IfFt:Aand x: AF p: 2, we write cond (¢, Axzp) for

cond (t, A\xp) & rm (assertagzp(t))

The term ¢ denotes a computation whose output is given by a probability distribution over A.

Then cond (¢, Azp) gives the result of normalising that conditional probability distribution
with respect to p.

2.10.1 Note

In COMET, we only allow normalisation of closed terms, because we have not been able to
find a satisfactory way to express that an open term is non-zero for all inputs. For closed
terms, this is done by finding a constant 1/n which the term exceeds. For open terms, it is
possible that there is no n such that 1/n is always less than ¢, if the probabilities of ¢ are all
positive with infimum 0.

2.11 Marginalisation
The tensor product of type A ® B comes with two projections. Given I' -t : A ® B, define
def . def .
FFm() =letze =tinz:A FkEm(t) =let _e®y=tiny:B

If ¢ is a state (i.e. I' is the empty context), then 7 (¢) denotes the result of marginalising t,
as a probability distribution over A ® B, to a probability distribution over A.

2.12 Local Definition

In our examples, we shall make free use of local definition. This is not a part of the syntax
of COMET itself, but part of our metalanguage. We write let z = s in t for ¢[x := s]. We
shall also locally define functions: we write let f(z) = s in t for the result of replacing every
subterm of the form f(r) with s[x :=r] in ¢.

3 Examples

This section describes two examples of (Bayesian) reasoning in our type theory COMET.

Since this kind of reasoning is not very intuitive, a formal calculus is very useful. The first
example is a typical exercise in Bayesian probability theory. The second example involves a
simple graphical model.

1:11
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1:12 A Type Theory for Probabilistic and Bayesian Reasoning

» Example 1. (See also [23, 3]) Consider the following situation.

1% of a population have a disease. 80% of subjects with the disease test positive, and
9.6% without the disease also test positive. If a subject is positive, what are the odds
he/she has the disease?

This situation can be described as a very simple graphical model, with associated (conditional)

probabilities.
t
f

1 0.8
PositiveResult

In our type theory COMET, we use the following description.

3
o || 4
i E

0.096

let subject = 0.01 in
let positive_result(x) = (if « then 0.8 else 0.096) in

cond (subject, positive_result)

We thus obtain a state subject : 2, conditioned on the predicate positive_result on 2. We
calculate the outcome in semi-formal style. The conditional state cond (subject, positive_result)
is defined via normalisation of assert, see Section 2.10. We first calculate what this assert
term is:

assertgpositive_result(z) (£) = if = then if positive_result(T) then return T else fail
else if positive_result(L) then return L else fail
by (assert m)
= if  then if 0.8 then return T else fail
else if 0.096 then return L else fail

Conditioning requires that the domain of the substate asserty,positive_result(x) (Subject) is non-
zero. We compute this domain as:

assert \gpositive_result(z) (SUbject) | = positive_result(subject) (Rule (assertl))
if 0.01 then 0.8 else 0.096

= (0.01 & 0.8) @ (0.99 & 0.096) (Lemma 26.2)
= 0.10304 (Lemma 28)

Hence we can choose (e.g.) n = 10, to get % < 0.10304 = assert,positive_result(z) (Subject) |.
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We now proceed to calculate the result, answering the question in the beginning of this
example.

assertgpositive_result(z) (Subject) = if 0.01 then if 0.8 then return T else fail
else if 0.096 then return L else fail
= measure 0.01 & 0.8 — return T (Lemma 25.3)
0.01 & 0.8+  ~ fail
0.01+ & 0.096 + return L
0.01+ & 0.096+ +— fail

= measure 0.008 + return T (Lemma 25.5)
0.09504 — return L
0.89696 — fail
cond (subject, positive_result) 2 rm (assert,\mpositive_,esuh(z)(subject))
= measure 0.0776 — T (Corollary 30)
0.9224 — L
= 0.0776. (Lemma 26.3)

Hence the probability of having the disease after a positive test result is approximately 7.8%.

» Example 2 (Bayesian Network). The following is a standard example of a problem in
Bayesian networks, created by [20, Chap. 14].

I'm at work, neighbor John calls to say my alarm is ringing. Sometimes it’s set off by
minor earthquakes. Is there a burglar?

We are given that the situation is as described by the following Bayesian network.

p el [PD)
N e ‘wll‘ tot| = 6
Pr(J) t f| =
/ \ t] 2 [t % t =
| el

1000 1

500

=

Pr (M)

(=]

The probability of each event given its preconditions is as given in the tables — for example,
the probability that the alarm rings given that there is a burglar but no earthquake is 0.94.
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We model the above question in COMET as follows.

let b= 0.01 in let e = 0.002 in

let a(x,y) = (if « then (if y then 0.95 else 0.94)
else (if y then 0.29 else 0.001)) in

let j(z) = (if z then 0.9 else 0.05) in

let m(z) = (if z then 0.7 else 0.01) in

m1(cond (b@e,joa))

We first elaborate the predicate j o a, given in context as z: 2,y: 2+ j(a(z,y)): 2. It is:

jla(z,y)) = if a(z,y) then 0.90 else 0.05
= if « then (if y then (if 0.95 then 0.90 else 0.05)
else (if 0.94 then 0.90 else 0.05)
else (if y then (if 0.29 then 0.90 else 0.05)
else (if 0.001 then 0.90 else 0.05)
— if 2 then (if y then (0.95 & 0.90) @ (0.95% & 0.05)
else (0.94 & 0.90) @ (0.94+ & 0.05))
else (if y then (0.29 & 0.90) ©@ (0.29+ & 0.05)
else (0.001 & 0.90) @ (0.001% & 0.05))
= if z then (if y then 0.8575 else 0.849) else (if y then 0.2965 else 0.05085)

Let us write assertjo, for assertyyet z@y—t in j(a(z,y))- 1Then the associated assert map is:

assert;oq (b, €) = measure 0.001 & 0.002 & 0.8575 + return T ® T
0.001 & 0.998 & 0.849 — return T ® L
0.999 & 0.002 & 0.2965 +— return L ® T
0.999 & 0.998 & 0.05085 +— return L @ L
0.052138976+ — fail
= measure 0.000001715 + return T ® T
0.000847302 > return T ® L
0.000592407 +— return L @ T
0.050697552 +— return L ® L
0.0521389761 +— fail

Hence by Corollary 30 we obtain the marginalised conditional:
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mi(cond (b®e,joa)) = mi(nrm (assertjoq (b, €)) )
= 7r1(measure 0.000001715/0.052138976 > T ® T
0.000847302/0.052138976 +—> T ® L
0.000592407/0.052138976 > L ® T
0.050697552/0.052138076 — L ® L)
= measure 0.000032893 — 71 (T @ T)
0.016250837 — 71 (T ® L)
0.011362078 +— m(L o T)
0.972354194 — m (L ® L)
= measure 0.000032893 — T
0.016250837 +— T
0.011362076 +— L
0.972354194 +— L
= measure 0.01628373 — T
0.98371627 — L
0.01628373

We conclude that there is an approximately 1.6% chance of a burglary when John calls.

4 Semantics

The terms of COMET are intended to represent probabilistic programs. We show how to
give semantics to our system using discrete probability distributions.

4.1 Discrete Probabilistic Computation

We give an interpretation that assigns, to each term, a discrete probability distribution over
its output type.

» Definition 3. Let A be a set.
The support of a function ¢ : A — [0,1] is supp ¢ = {a € A : ¢(a) # 0}.
A (discrete) probability distribution over A is a function ¢ : A — [0, 1] with finite support

such that ) 4 #(a) = 1.
Let DA be the set of all probability distributions on A.

We shall interpret every type A as a set [A]. Assume we are given a set [C] for each
type constant C. Define a set [A] for each type A thus:

I=0 [={« [A+BI=[Alw[B] [AeB]=[A] x[B]

where AW B = {k1(a) : a € A} U {ka(b) : b € B}. We extend this to contexts by defining
[[!L‘l : Al,...,(En : An]] = [[Al]] X e X IIATL]]

Now, to every term I' F ¢ : B, where I' = a1 : Ay,...,z, : A,, we assign a function
[t] : [T] = [A1] x - -- x [A,] — D[B]. The value [t] (g1,--.,9,)(b) € [0,1] will be written

1:15
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. lifa=g;
Plai(g) = a) = {0 e
P(x(g) =) =1
P((s ® t)(g.d) = (a,b)) = P(s(g) = a) P(t(d) = b)
P((let z © y =5 in t)(7,d) =) = ¥, 3, P(s(7) = (a, b)) P(t(da,b) = ¢)
P((it)(g) =a) =0
P(inl (t) (9) = r1(a)) = P((7) = a)
P(inl (t) (§) = 2(b)) =0
P(inr (t) (9) = k1(a)) =0
Pinr (t) (§) = r2(b)) = P(t(9) = b)
((case r of inl (z) — s | inr(y) — t)(g, _3 =)
=3, P(r(d) = r1(a)) P(s(d,a) = )+
32 P(r(5) = r2(0)) P((d.b) = )
P(«s,t»(g) = r1(a)) = P(s(g) = r1(a)
P(«s, t»(g) = k2(b)) = P(t(g) = r1(b))
P(left (t) (§) = a) = P(t(§) = k1(a))
Pinstraz(s)(9) = ri(a)) = P(s(9) = a)P(t(a) = ri(x))
P(1/n(g) = r1(x)) = 1/n
P(1/n(g) = r2(+)) = (n—1)/n
P(nrm (t) (§) = a) = P(t(§) = r1(a))/(1 = P(t(g) = K2(*)))
P((s ©t)(9) = r1(a)) = P(s(9) = r1(a)) + P(t(F) = r1(a))
P((s @1)(g) = ra(%)) = P(s(§) = r2(x)) + P((§) = r2(x)) — 1

Figure 4 Semantics for COMET in K¢(D).

as P(t(g1,...,9n) =b), and should be thought of as the probability that b will be the output
if g1, ..., gn are the inputs. The clauses are given in Figure 4.

The sums involved here are all well-defined because the function P(¢(§) = —) has finite
support for all ¢, g.

» Example 4 (Assert Maps). This definition gives the following semantics to the assert maps.
Recall that we define

I F assertyg(t) et D1 (instrag,(t)) : A+ 1,
where '-t: Aand 2 : AF p: 2. We therefore have

Plasserta,, (1)(§) = r1(a)) = P((5) = a)P(p(a) = k1 (+))
Plasserta,, (1)() = k2(+)) = 3 P(t(§) = a)P(p(a)
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» Theorem 5 (Soundness).

1. IfT -t : A is derivable, then for all § € [I'], we have P(t(§) = —) is a probability
distribution on [A].

2. IfTFs=t:A, then P(s(§) = a) = P(t(§) = a).

Proof. The proof is by induction on derivations. First prove P(t[x := s](§,d) = b) =
> aea) P(8(9) = a)P(t(d, a) = b) whenever [z := s] is well-typed. <

As a corollary, we know that COMET is non-degenerate:

» Corollary 6. Not every judgement is derivable; in particular, the judgement T = 1 :2
is not derivable.

4.2 Alternative Semantics

It is also possible to give semantics to COMET using continuous probabilities. We assign
a measurable space [A] to every type A. Each term then gives a measurable function
[A1] x -+ x [A,] — G[B], where GX is the space of all probability distributions over the
measurable space X. (G here is the Giry monad [8, 10].)

If we remove the constants 1/n from the system, we can give deterministic semantics to
the subsystem, in which we assign a set to every type, and a function [4;] x--- x [4,,] — [B]
to every term.

More generally, we can give an interpretation of COMET in any commutative monoidal
effectus with normalisation in which there exists a scalar s such that n-s =1 for all positive
integers n [5]. The three ways of giving semantics to COMET that we have described are
three instances of this interpretation.

4.3 Note on Affine Type Theory

The diagonals or copiers in K¢(D) are not natural. It is easy to see that the only arrow
0a:A— AR® A that satisfies

mpo0da =Tp004 =idA

is given by d4(a) = 1|(a,a)); that is, d4(a) gives probability 1 to (a,a), and probability 0 to
all other pairs.

However, this family of arrows d4 is not natural in A. Let f: A — B be any morphism
in K¢(D).

A— A0 A
fl Jf@f
B — B®B
We have
((f® f)oda)(@) (b, V) = f(a)(b) - fa)()

R

There is therefore no way to give semantics to a type theory with contraction in X¢(D) in
such a way that the following substitution property holds, which was needed for the proof of
the Soundness Theorem.
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P(tlz := s|(g,a) = b) = X ,cpa P(s(9) = a)P(t(d,a) = b) whenever t[z := s] is
well-typed.

In particular, the rule (5®) becomes unsound. For our semantics give:
P(lletzoy=1/2®xin z o x)(§) = (b1,b2))
=Y P(1/2(5) = b)P((x @ x)(b) = (b1, b2))
b

= P(1/2(9) = b)P(x(b) = by) P(x(b) = bs)
b

{1/2 if by = by

0 otherwise

andsolet z @ y=1/2® % in z ® z and 1/2 ® 1/2 receive different semantics.

5 Metatheorems

We presented an overview of the system in Section 2, and gave the intuitive meaning of the
terms of COMET. In this section, we proceed to a more formal development of the theory,
and investigate what can be proved within the system.

The type theory we have presented enjoys the following standard properties.

» Lemma 7.

Weakening If ' 7 and I' C A then A+ J.

. Substitution I[fTHt: Aand Az : AT then T, A+ Tz :=t].

. Equation Validity IfTFs=t: Athen'kFs: Aand T Ft: A.

. Imequality Validity I[fTFs<t:A+1thenT'Fs:A+1andTHt: A+ 1.

. Functionality IfTF-r=s: A and A,x: A-t: B then T,AF t[lz :=r] =tlx:=s]: B.

O WON R

Proof. The proof in each case is by induction on derivations. Each case is straightforward.

(Note in particular the form that the rule (urm) takes. Even though we only apply
normalisation to states, we allow an arbitrary context in the conclusion so that the Weakening
property shall hold.) <

The following lemma shows that substituting within our binding operations works as
desired.

»Lemma8. 1. IfT Fr: AQB; Ajx : Ajy : Bt s :C; and ©,z : C+ t: D then
LA OFtz:=letzeoy=rins]=letzoy=rintz:=s]:D.
2. IfTFr:A+B; Az : At s:C; Ayy:BEs' :C;and ©,z: CkHt: D then

I,A,©F tlz:=case r of inl (z) — s |inr(y) — §]

=case r of inl(x) — t[z:=s] | inr(y) — t[z:=]: D

Proof. For part 1, we us the following ‘trick’ to simulate local definition (see [1]):

t[z := case r of inl (z) — s | inr (y) — §']

=let 2® _ = (case r of inl(x) — s |inr(y) — s') @ *int (B®)
=letz® =caserofinl(z) —~s®x|inr(y)—s ®@xint (case-®)
=caserofinl(z)—letze =soxint|inr(y)—=letze =5 oxint (let-case)
= case 7 of inl (z) = t[z :=s] | inr(y) — t[z := §] (B®)

Part 2 is proven similarly using (let-®) and (let-let) . <
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» Corollary 9.
1. fTFs: A9 B and AFt:C thenT,AFlet _o®_ =sint=t:C.
2. IfTks: A+ Band Art:C thenT, Al case sof inl(_)—t|inr(_)—t=t:C.

Proof. These are both the special case where z does not occur free in ¢. <

5.1 Coproducts

We generalise the inl? () and inr? () constructions as follows. Define the predicate in;? () on

n - A, which tests whether a term comes from the ith component, as follows.
T ifi=j

in;? (t) %ef casej_t of in} () — ] ‘7

1 ifi#y

5.2 The right() Construction

» Lemma 10. The right () construction satisfies analagous rules to the left () constructor:

Ift: A+ B and inr? (t) = T : 2 then right (t) : B.
Ift=1t":A+ B and inr? (t) = T then right (t) = right (¢') : B.
Ift: A+ B and inr? (t) = T then t = inr (right (t)) : A+ B.
Ift: B then t = right (inr (¢)).

2l s

Proof. We prove parts 1 and 3 here. Suppose inr? (t) = T. Then we have

inl? (swap (¢)) LCinl? (case t of inl (z) — inr(x) | inr (y) — inl (y))
)

= case ¢t of inl (z) — inl? (inr (z)) | inr (y) — inl? (inl (y)) (case-case)
=case tof inl(z) — L |inr(y)— T (B+1), (B+2)
L inr? (t)

=T (by hypothesis)

Therefore, right (¢) 2 left (swap (t)) is well-typed with type B, and

inr (right (t)) = swap (inl (right ())) (B+1)
def swap (inl (left (swap (t))))
= swap (swap (t)) (Bleft)
= case t of inl (z) — swap (inr (z)) |
inr (y) — swap (inl (y)) (case-case)
= case t of inl(z) = inl (z) |inr(y) = inr(y)  (case-eq), (B+1), (B+2)
=t (n+)

5.3 The swap() Operation

» Lemma 11.
1. LetT't: A+ B. Then

I'F>i(swap (t)) =D>o(t) : B+1
I'F >o(swap (t)) =>1(t) : A+ 1
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2. LetTHt: A+ A. Then T+ V(swap (t)) = V(¢): A.
Proof. We prove the first of these here. We have

> (swap (t)) 4 case (case t of inl (z) — inr(x) | inr (y) — inl(y)) of
inl (y) — inl(y) | inr (_) — inr(x)
= case t of inl (z) — (case inr (z) of inl (y) — inl(y) | inr(_) — inr(x)) |
inr (y) — (case inl (y) of inl (y) — inl (y) | inr (_) — inr(x))
(case-case)
= case t of inl (z) — inr (x) | inr (y) — inl (y) (B+1), (B+2)

10

5.4 Kernels

» Lemma 12.
1. LetT'HFt: A4+ 1. ThenT'Htl=1:2 if and only if T -t =fail : A+ 1.
2. LetT'Fs: A4+ 1land Az : A-t: B+ 1. Then ;A F (do x + s;t)}=do z « s;t| : 2.

Proof.
1. We have

fail | 2 case inr () of inl(_)— T |inr(_)— L
=1 (B+1)
For the converse, if t|= 1 then

t1 4 case t of inl ()= Lfinr(_)=T

=case t of inl ()~ T+ [inr(_ )~ Lt (case-eq), (B+1), (B+2)
= (case t of inl (_) — T |inr(_)~— 1)+ (Lemma 2)
def tit
=1+ (case-eq)
= (B+2)
and so
t = inr (right (¢)) (Lemma 10.3)
—inr (+) (1)

2. (case s of inl(z) — ¢ |inr(_) > fail)]
= case s of inl (x) — ¢t |inr(_) — fail| (Lemma 2)
= case s of inl (z) — t |inr(_)— L (B4+1)

5.5 Ordering on Partial Maps and the Partial Sum

Note that, from the rules (@) and (@-def) , we have T+ s @t : A+ 1 if and only if there
exists T Fb: (A+ A) + 1 such that

I'Fdoz<b>i(z)=s:A+1, F'Fdoz <+ bi>o(z)=t:A+1,
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in which case I' - s @ t = do = < b;return V(z) : A+ 1. We say that such a term b is a

bound for s @ t. By the rule (JM) (see Appendix A.12), this bound is unique if it exists.
The set of partial maps A — B + 1 between any two types A and B form a partial

commutative monoid (PCM) with least element fail, as shown by the following results.

» Lemma 13.

1. IfTHFt: A4+ 1thenTHt@fail=t: A+ 1.

2. (Commutativity) IfTFs@t: A+1thenTHt@s: A+1andTHs@t=t@s: A+1.

3. (Associativity) T+ (r@s)@t: A+ 1ifand only if T r@ (s@t): A+ 1, in which
caseTHr@ (s@t)=(ros)@t: A+1.

Proof. We prove part 2 here. Let b be a bound for s @ t. We shall prove that do x <«
b; return swap (z) is a bound for ¢t @ s. We have

do y < do = <+ b;return swap (z); >1(y)

=do x « b;do y « return swap (x); >1(y) (do-do)
=do z < b;>1(swap (z)) (do-return)
=do z + b;>2(x) (Lemma 11.1)
=1 (by hypothesis)

Similarly, do y < do x < b; return swap (b); >2(y) = s.
Now, we have

t@s=doy <« (dox < b;return swap (z)); return V(y) (@-def)
=do z < b;do y < return swap (x); return V(y) (do-do)
= do x < b;return V(swap (x)) (do-return)
=do x < b;return V(x) (Lemma 11.2)
=s@t (@-def)

<

» Lemma 14. LetT'Fr: A4+ 1andTFs: A+ 1. ThenT'Fr <s:A+1 if and only if
there exists t such thatTFr@t=s: A+ 1.

Proof. Suppose r < s. If b is such that do x < b;>;(x) = r and do x < b;return V(z) = s
then take t = do & < b;>a(z). We have r @ t = do = < b;return V() by (@-def), and so
rQt=s.

Conversely, if r @ t = s, then inverting the derivation of ' -7 @t : A+ 1 we have that
there exists b such that r = do x + b;>1(z), t = do z < b;>a(x) and s =r @t =do = +
b; return V(x). Therefore, r < s by (order) . <

In this case, the bound for r @ ¢t will also be called a bound for r < s.

» Lemma 15.

IfTFs@t: A+1thenTFs<s@Qt:A+1andTHt<s@t:A+1.
IfTHt: A4+ 1thenTHEt<t: A+1.

IfTHt: A4+ 1 thenTHAfaill <t: A+ 1.
IfTFr<s:A4+1landThFs<t:A+1thenTkr<t:A+1.
IfTFr<s:A4+1andThFsQt: A+1thenTFrQ@t<s@t:A+1.

apeNbE
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Proof. Parts 1-4 follow by applying Lemma 14 to the appropriate part of Lemma 13. For
part 5, let r@Qzrz =s. ThenrQer@t=sQtandsor@t<sQt. <

On the predicates, we have the following structure, which shows that they form an effect
algebra. (In fact, they have more structure: they form an effect module over the scalars, as
we will prove in Proposition 20.)

Proposition 16.

IfTFp:2thenTFpQpt-=T:2.

IfTFpQq=T:2 thenT q=p*-:2.

(Zero-One Law) If TFp@ T :2 thenThHp=1:2.
I'Fp@q:2ifand only if THp <qt:2.

Suppose T'Fr:A+Band A,z : Ars@t:C+1and A,y: BFs @t' :C+1. Then

oMY

I'AE case r of inl () —»s@t]|inr(y) — s @t

= (case r of inl(z) — s |inr(y) — s') @ (case r of inl (z) — ¢ |inr(y) —1t):C+1

6. fTFr:A+1land Az : AFs@t:B+1thenTAFdox <+ r;s@t=(dox+
r;8) @ (do z < r;t) : B+ 1.

Proof. We prove part 2 here. Let b be a bound for p @ q. We have

T=p@Qgq (by hypothesis)
=do z < b;return V(z) (©-def)
=doz <+ b;T (n1)
LN

.. b =return left (b) (Bleft)
sop=do <+ b;>q(2) (by hypothesis)
= D> (left (b)) (do-return)
q = >o(left (b)) (similarly)
= > (left (b)) * (B841), (B+2), (case-case)
<
Corollary 17.

(Cancellation) IfTFpQq=p@r:2 thenTFqg=1r:2.
(Positivity) If TFp@gq=1:2thenTkFp=1:2andTFq=1:2.
IfTFp:2thenTFp<T:2.

IfTFp<q:2then T F gt <pt:2.
IfTFp<qg:2andT’'Fq<p:2thenl'Fp=gq:2.

aORrwNE=Y

Proof. We prove part 1 here. We have

POTQ(PLe  =p0q(pwqg)* (by hypothesis)
=T (Proposition 16.1)
g=r=po (gt (Proposition 16.2)



R. Adams and B. Jacobs 1:23

5.6 Assert Maps

Recall that, for  : AFp:2and I' Ft: A, we define I' - assert (%) ef D> (instragp(t)) :
A+ 1

We now give rules for calculating instry,, and asserty, directed by the type.
» Lemma 18 ((assert-scalar)). If-s:2 then
F asserty s(x) =instry (%) =s:2
Proof. We have V(s) = * by (n1) and s|= s by (n+) . The result follows by (ninstr) . =

» Lemma 19. The rules (instr+) and (assert+) are admissible (see Section 2.7.3).

Proof. We shall prove the case n = 2 of (instr+) here. Let x: A+ Bt p: 2.
For x : A+ B, let us write f(z): (A+ B) + (A+ B) for

case x of inl (y) + case instryqp[z:=ini(a)] (¥) Of inl (¢) = inl(inl (t)) |
inr (t) — inr (inl (¢)) |

inr (y) = case instrypp(z:=ine(p)] (¥) Of inl (t) = inl (inr (t)) |

inr () — inr (inr (t))

We shall prove f(z) = instrygp(z).

We have
V(f(x))= case z of inl(y) — case instryup[z:mini(a)] (¥) of inl (t) — V(inl (inl (¢))) |
inr (t) — V(inr (inl (¢))) |
inr (y) — case instrypp[z:—inr(p)] (¥) of inl () — V(inl (inr (2))) |
inr (t) — V(inr (inr (¢)))
(case-case)

= case z of inl(y) — case instrygp[z:=ini(a)] (¥) Of inl (t) = inl(2) |

inr (¢) — inl (¢) |

inr (y) — case instryyp(z:=inr(v)] (¥) Of inl (t) = inr (2) |

(B+1) 5 (B+2)

inr (t) —t) |
inr (y) — inr(case instrpp(z:—inr(s)] (y) Of inl(t) =t |
inr(t) —t)
(Lemma 2)
4f case x of inl (y) — inl (V(instryap(a:=ini(a)] (¥)))
inr (y) — inr (V NSt \pp[z:—inr(b)] (y)))
= case z of inl (y) — inl (y) | inr (y) — inr (y) (V-instr)
= (n+)
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inl? (f(2))
= case z of inl(y) = case instry,p[z:—ini(a)] (%) Of inl (£) = inl? (inl (inl (%)))
inr (t) — inl? (inr (inl (2)))
inr (y) = case inStryypz:—inr(p)] (¥) Of inl (t) = inl? (inl (inr (2)))
inr (t) — inl? (inr (inr (¢)))
(Lemma 2)
= case z of inl(y) — case instry,p[z:—ini(a)] (¥) of inl (t) — T
inr(t) — L
inr (y) — case instrypp[z:—inr(p) () Of inl(t) = T
inr (t) — L
(B+1), (B+2)
4f case o of inl (y) — inl? (instr)\ap[w:zim(a)] (y)) | inr (y) — inl? (lnstr)\bpa —inr(5)] (U ))
= case z of inl(y) — plx :=inl(y)] | inr (y) — p[z :=inr (y)] (instr-test)
= plx :=case z of inl (y) — inl(y) | inr (y) — inr (y)] (Lemma 2)
=p (n+)
Hence f(z) = instrygp(z) by (ninstr) . <

The rules (instr m) and (assert m) follow easily.

5.7 Sequential Conjunction

We do not have conjunction or disjunction in our language for predicates over the same type,
as this would involve duplicating variables. However, we do have the following sequential
conjunction. (This was called the ‘and-then’ test operator in Section 9 in [9].)

Let x: AF p,q: 2. We define the sequential conjunction p & q by

T AFp&qd*efdoxeassertMp( );q:2 .

Proposition 20. Letx: AF p,q: 2.

. INStrag(paq) () = case instryzy,(x) of inl (x) = instrygq(x) | inr (y) — inr (y)

. assertyy(paq) () = do x < asserty,,(x); assertyzq(z)

. (Commutativity) p & ¢ = q & p.

PO &r=p&r)0(g&r)andp& (qur)=(p&q(p&r).
p&kl=1&q=1

.p&T=pand T&qg=gq

- p&(g&r)=p&q &r

. If x does not occur free in q, then p & q = case p of inl (_)+~ ¢q|inr(_)— L.

O~NOOODWN= VY

Proof. We shall prove the first three parts here.
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1. inl? (case instrygp(z) of inl (x) — instryzq(z) | inr (y) — inr (y))
= case instryg,(z) of inl (z) — inl? (instragq(x)) | inr (y) — inl? (inr (v))
(case-case)
= case instrygp(z) of inl(x) — ¢ | inr(y) — L (instr-test), (8+2)

Lo z assertzp(2); ¢

def & q

V(case instryg,(z) of inl (x) — instragzq(x) | inr (y) — inr (y))

= case instryg,(z) of inl (x) — V(instragzq(x)) | inr (y) — V(inr (y)) (case-case)
= case instryg,(z) of inl (z) — z |inr(y) —y (V-instr), (8+2)
& V(instrygp(z))

=z (V-instr)

so the result follows by (ninstr) .
2. This follows immediately from the previous part.

3. This follows from the previous part and the rule (comm) (Appendix A.12).

These results show that the scalars form an effect monoid, and the predicates on any
type form an effect module over that effect monoid (see [9]).

5.8 n-tests

Recall that an n-test on a type A is an n-tuple (p1,...,p,) such that x : A p1 @ - @p, =
T:2.

The following lemma shows that there is a one-to-one correspondance between the n-tests
on A, and the maps A — n.

» Lemma 21. For every n-test (p1,...,pn) on A, there exists a term x : A F t(x) : n, unique
up to equality, such that x: AF p;(x) = >;(t(z)) : 2.

Proof. The proof is by induction on n. The case n = 1 is trivial.

Suppose the result is true for n. Take an n + 1-test (p1,...,pn+1). Then
(p1,P2, - yDn @ Pnt1) is an n-test. By the induction hypothesis, there exists ¢ : n such that
>;(t) = p; for i < n and >, (t) = pp, @ pnt1. Let b: 3 be the bound for p,, @ p,+1. Reading
t and b as partial functions in n — 1 4+ 1 and 2 + 1, we have that t 1= b= p, @ pp+1. Hence
«b,t» : 24+ n — 1 exists. Reading it as a term of type n + 1, we have that

> (4b, ) = 3 (2" («b, tr)) (case-case), (B+1), (B+2)
=3(b) (Binlry)

= pn (b is a bound for p,, @ pr11)

ST (4b, ) = >3 (2" («b, tr)) (case-case), (8+1), (B+2)
=>3(b) (Binlry)

= Pni1 (b is a bound for p, @ pr11)

1:25
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and for 7 < n:

BIE (b 1) = B (B2 (b, 1)

7

=Pt (t) (Binlry)
=p; (induction hypothesis)
From this it is easy to construct the term of type n + 1 required. |

We write instryg(p, ... p.)(8) for instri(s), where ¢ is the term such that >;(t) = p; for each
1.

» Lemma 22. instry,(,, .. p.)(x) is the unique term such that in;? (instrm(ph___mn)(x)) =p;
for all i and V(instrayp, .. p.) (7)) = .

» Lemma 23.

inl(z) ifi=j
inr(z) ifi#j
return x if i =j

fail ifi#j

instryup, (¥) = case]_jinstry,(p, .. p,)(z) of in} (z) — {

assert.p, (¢) = casel_;instry,(p,,....p,) (¥) of in} (z) — {

Proof. Let t be the right-hand side of the first formula. Then

inl? (¢) = in;? (instraz(py,....pn) () (case-case), (B+1), (B+2)
=p; (Lemma 22)
V(t) = case?zlinstr/\m(pl,__”pn)(:1:) of in? (2) —»x (case-case), (8+1), (B+2)
=7 (Lemma 2)

The second formula follows easily from the first. <

We can now define the program that divides into n branches depending on the outcome
of an n-test:

» Definition 24. Given z: AF p1(2) @ - @ pnp(x) = T : 2, define

x: AF measure py(z) = t1(x) | -+ | pu(z) = t,(2)
L case instryp(py.. . poy () OF i} (z) 5 t1(2) | -+~ | in (2) = t, ()

» Lemma 25. The measure construction satisfies the following laws.
1. (measure T —t) =t
2. (measure py =t |+ | pp =ty | L= thi1) = (measure py —t1 |-+ | pn = tn)
3. (measure; p; — measure; g;; — t;;) = (measure; ; (p; & qij) — tij)
4. For any permutation m of {1,...,n}, measure; p; — t; = measure; Pr(;) + tx(;)-
5. Ift, =tny1 then

measurel’_ p; — t; = measure p1 =ty | | D1 = the1 | P @ Pnt1 = ta.

Proof. We shall prove part 3. The proof for the other parts follows the same pattern.
Let us write in, ; () (1 <i<m, 1 <j < n;) for the constructors of (ny + -+ +n,,) - A,
and in; ;7 () for the corresponding predicates.
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We shall first prove

iNStryz(p,&qs;)i,; (T) 1)
= case]; instry,5(z) of inf" () = casel’, instry,g (x) of i} (x) —in, ; (z) .

Let R denote the right-hand side of (1). We have

in; ;7 (R) = casel'_,instry,z(z) of inj (z) —

T ifi=14and j =7
case}/_,instryg (z) of in’ (z) — J=J
1 otherwise

(case-case), (B+1), (B+2)

in;? (instry,q (z)) ifi=4d
= case]/_; instry,z(x) of inj) (z) — { 37 (nstreg ()

L if i £
(Lemma 2)
= case}l’_; instrygz(z) of inj} (z) — {(jjj 1: ; z: (instr-test)
=dox + <casefﬁ_1 instrygz(x) of in! (x) — {retcurn ’ ifz: - Zi/>;qij
fail if i #£4
(case-case), (8+1), (B+2)
= do x < assertygyp, (%); ¢j (by Lemma 23)
i & g
V(R) = case]“, instryz(x) of inj" (x) — V(instry.q: (x)) (case-case)
= casej, instrygz(x) of ini" (x) — « (V-instr)
& V(instryz5(z)) = o (V-instr)
Equation (1) follows by (ninstr).
Now, we have
measure;; (p; & qij) — tij
Lef case;; instryg(p,&q,,); () of in, ; (z) = ti;
= case;; R of in, ; (z) = ti; by (1)

= case; instry;;(x) of inj" (¥) — casejinstry,g; () of in" (x) — ;
(case-case), (8+1), (B+2)
def measure; p; —» measure; q;; — tij

<

Let z: AFp:2and 'z : AF s,t: B. V\/edeﬁnel",av:AI—ifpthenselsetd:ef
measure p — s | pt >t : B.

» Lemma 26.
1. Ife : AFp1 Q- Qpn=T:2andz: At q,...,qn : 2, then

(measure py = g1 | -+ [ pn = ¢n) = (11 & 1) © -+ @ (pn & qn)
2. Letx: AFp:2 and Tk q,r : B where x ¢ T'. Then

F,z: Abif pthen gelse r =casepof inl(_)+—gq|inr(_)—7r:B .
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3. Letx: At p:2. Thenxz: AFif pthen T else L =p: 2.
Proof. We prove part 2 here. We have

measure p — q | pt 7 L case instryg,(x) of inl(_)+—q|inr(_)—r
= case inl? (instrygp(z)) of inl(_)—q|inr(_)—r
(case-case), (8+1), (B+2)
=casepofinl(_)—gqlinr(_)—r (instr-test)

<

5.9 Scalars

From the rules given in Figure 2, the usual algebra of the rational interval from 0 to 1 follows.
» Lemma 27. If p/q = m/n as rational numbers, then - p-(1/q) =m - (1/n) : 2.

Proof. We first prove that - a-(1/ab) = 1/b: 2 for all a, b. This holds because ab-(1/ab) = T
by (n-1/n), hence a - (1/ab) = 1/b by (divide) .
Hence we have p- (1/q) = pn - (1/nq) = gm - (1/ng) =m - (1/n). <
Recall that within COMET, we are writing m/n for the term m-(1/n). Similar reasoning
leads us to

» Lemma 28. Let q and r be rational numbers in [0, 1].

1. If g < r in the usual ordering, then - q <r: 2.

2. Fq@r:2i4ffq+r <1, in which case-q@r=q+r:2.
3. Fq&r=gqr:2.

5.10 Normalisation

The following lemma gives us a rule that allows us to calculate the normalised form of a
substate in many cases, including the examples in Section 3.
» Lemma 29. Letbt: A+1, Fp1 Q- Qp,=T:2, andb q:2. Lett s1,...,8, : A.
Suppose =1/m < q:2. If
-t = measure py & q — return s1 | -+ | p, & ¢+ return s, | ¢= — fail : A+ 1, then
Fnrm(t) = measure p1 — s1 |-+ | pp = s, A

Proof. Let p def measure]’_ ;p; — S;. By the rule (nurm) , it is sufficient to prove that
t =do _ < t;return p. We have

do _ <+ tjreturn p = measure p; & g+ return p | --- | p, & g+ return p | ¢+ — fail
(case-case), (8+1), (B+2)
= measure q — return p | ¢* + fail (Lemma 25)
= measure?_, q & p; ~ return s; | gt — fail (Lemma 25)
=t (Proposition 20)
<
» Corollary 30. Let oy, ..., ay, 8 be rational numbers that sum to 1, with 5 # 1. If
F ¢t = measure a1 > return sq | -+ | @y, > return s, | B fail : A+ 1, then

Fnrm (t) = measure an /(a1 + -+ an) = s1 | |an/(a1+ -+ an) > st A .
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Conclusion

The system COMET allows for the specification of probabilistic programs and reasoning

about their properties, both within the same syntax.

There are several avenues for further work and research.

The type theory that we describe can be interpreted both in discrete and in continuous
probabilistic models, that is, both in the Kleisli category K¢(D) of the distribution
monad D and in the Kleisli category K¢(G) of the Giry monad G. On a finite type each
distribution is discrete. The discrete semantics were exploited in the current paper in
the examples in Section 3. In a follow-up version we intend to elaborate also continuous
examples.

The normalisation and conditioning that we use in this paper can in principle also be
used in a quantum context, using the appropriate (non-side-effect free) assert maps that
one has there. This will give a form of Bayesian quantum theory, as also explored in [17].
A further ambitious follow-up project is to develop tool support for COMET, so that
the computations that we carry out here by hand can be automated. This will provide a
formal language for Bayesian inference.

Acknowledgements Thanks to Kenta Cho for discussion and suggestions during the writing
of this paper, and very detailed proofreading. Thanks to Bas Westerbaan for discussions
about effectus theory.
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A  Formal Presentation of COMET

The full syntax of COMET is given by the grammar:

Type A,B:=C|0|1|A+B|A®B

Term r,s,t =z | x| s®t|letze@y=sint| t|inl(¢)|inr(t) |
(case r of inl (z) — s |inr(y) —t) | «s,t» | left (¢) | instrazs(t) | 1/n | b
nrm(t) | s@t

We have a constant 1/n for every natural number n > 2, and a constant b,,, for all
natural numbers 1 < m < n.
The full set of rules of deduction for COMET are given below.

A.1 Structural Rules

Te:Ay: B, ART (var) z:AecT
Ny:B,z: AJAFJ 'Fz:A

(exch)

I'Fs=t¢t: A
I'Ft=s:A4

I'Fr=s:A I'Fs=t:A
I'kFr=t:A

(ref) FFtA

ThHi—t:A4 (trans)

(sym)

A.2 The Unit Type

I'H¢t:1
(n1)

(unit) Tht==x:1

I'kEx*x:1
A.3 Tensor Product

() Thks: A ArFt:B (let) I'+s: A®B Ax:Ay:BFt:C
NAFset: A®B INAFletzoy=sint:C

FkFs=s¢:4 Abt=t:B
INAtset=sot :AQ B
's=s:AQ8B Arx:Ay:Brt=t:C

FAF(letzey=sint)=(letzoy=sint):C

(paireq)

(leteq)

'kr:A AFs: B O,x:Ay:BFt:C
AJOF (letzey=resint)=tz:=ry:=s:C

(B®)

'-t:A® B
FFt=(letzeoy=tinzey): AR B

(n®)
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'Fr:A®B Ax:Ay:BFs:C®D 0,z:Ciw:DkFt: E

(let-let)
IA,OF letzoy=rin (letzew=sint)
=letzow=(letxeoy=rins)int: E
'tr:A®B Ax:Ay:BkFs:C OkFt:D
(let-®) riae LY 5

IA,OFletzoy=rin(set)=(etzeoy=rins)et:D

A.4 Empty Type

: I'Ft:0 'Fs:0 I'Ht: A
(magic) Lk jt: A (n0) 'Fijs=t:A
A.5 Binary Coproducts
'kinl(t): A+ B Pkinr(t): A+ B
. PHt=¢:A ; r-t=t:B
1- .
(inked) = i@ ar B ) T =i (@) AT B
'r:A+B Ax:AFs:C Ay:BFt:C
(case) - .
I'yAF case r of inl(x) — s |inr(y)—t:C
'tr=7r":A+B Ax:AFs=¢:C Ay:Brt=t:C
(case-eq)
1_"Ai_caserofinl(az:)l—>s|inr(y)»—>t
=case 1’ of inl(x) — ¢ |inr(y) —t' : C
(B+1) 'kr: A Ax:AFs:C Ay:BrFt:C
! I'yAFcaseinl(r) of inl(z) — s |inr(y) —t=slz:=7r]:C
(B+2) I'tr:B Ajxz:AFs:C Ay:Brt:C
2 I'AFcaseinr(r) of inl (z) — s |inr(y) »t=tly:=r]: C
'¢t:A+B
(n+)

'kt =casetof inl(x) —inl(z)|inr(y) —inr(y): A+ B

T'kr:A+B Ax:Ars:C+ D Ay:Bks:C+D

0,2:CkHt: FE O,w:DrFt: E
(case-case)

I'A,© F case r of inl (x) — case s of inl(z) — ¢ | inr(w) —t'|
inr (y) — case s’ of inl(z) — ¢t |inr(w) — ¢/
= case (case 7 of inl (z) — s |inr(y) — )

of inl(z) =t |inr(w)—t: E

I'tr:A+B Ax:Aks: C Ay:BEs:C OFt:D

(case-®)
I'A,©F (case r of inl(z) — s|inr(y) —s')et=

case rof inl(z) = s@t|inr(y)— s @t:CRD
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I'kr:A+B Az:Abs:C®D

Aw:BEFs:C®D ©,2:C,y:DFHt: FE
(let-case)

I'A,OF let x ® y =case r of inl(z) — s |inr(w)— s int=
case r of inl(z) —»letz @y =sint]|

inf(w) —letzoy=sint: E

A.6 Partial Pairing

'ks:A+1 I'Ft:B+1 T'kFsi=t1:2

(inlr) 'F«s,t» : A+ B
) F'ks=s:A+1 F't=t:B+1 'ksl=t1:2
(inlr-eq) —
'k «s,ty =«s',t'» : A+ B
. Fks:A+1 F'Ft:B+1 F'kFsl=t1:2
(Binlry)
Phry(ks,tr)=s: A+1
. TFs:A+1 TFt:B+1 Thksl=t}:2
(Binlry)
I'F>o(«s,tn) =t:B+1
(yinlr) I'-t:A+B

I'Et=«>q(t),>2(t)» : A+ B

A.7 The left() Construction

'-t:A+B PHinl?2(t)=T:2

(left)

T Fleft(t): A
(left-cq) 'kt=t:A+B PHinl?(t)=T:2
e Tk left (f) = left (') : A
'-t:A+ B CHinl?(t)=T:2 FHt: A
left left :
(Bleft) I Finl(left(t)=t: A+ B (left) L Fleft(inl(t)=t: A

A.8 Instruments

z:AkFt:n I'kFs: A
[ b instryg(s) :n- A

r:AFt:n I'ks: A

(instr) T'F V(instra(s)) =s: A

(V-instr)

z:AFt=¢t:n I'Fs=s:A4

instr-e
( a) T Finstryg(s) = instryzp(s’) :n- A

z:AFt:n I'Fs: A

instr-test
( ) 'k case I jinstryg(s) of in] () —i=tlx:=s]:n

z:AFr:n-A r:AFV(r)=z:A4A 's: A

[ Finstrag case 7 v of inn(_)si(s) =7[z:=8]:n- A

(ninstr)
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A.9 Scalar Constants

For any natural number n > 2, we have the following rules.

(1/n) Trijn:2z (n-1/n) Tkn-1/n=T:2

I'tn-t=T:2 (bmn) o
Thi=1/n:2 L' b+ 3
(Dl_bmn) (1§m<n)

(divide) (1<m<n)

I'kFdo z « by >1(x) =1/n: 2

(‘>2 - bmn) (1 <m< n)

I'Fdo < byp;return V(z) =m-1/n:2

These ensure that 1/n is the unique scalar whose sum with itself n times is T. The term
bn ensures that the term (m + 1) - 1/n is well-typed.

A.10 Normalisation
Ft:A+1 Fl/m<t]:2

(nrm) Tknm(t): A
FtiA+1 Fl/n<tl:2
(Bnrm)
'Ft=do__ <+ tjreturnnrm(t) : A+ 1
Fi:A+1 Fl/n<tl:2 Fp:A Ft=do_ <+ t;returnp: A+1
(rmrm)

F'Fp=nm(t): A
A.11 Partial Sum

'-s:A+1 TFt:A+1
FEb:(A+A)+1 'kdoz+ bi>q(z)=s:A+1
F'kdoxz <+ bj>o(zx)=t: A+1

(@) 'Fst:A+1
F'ks:A+1 Ft:A+1
FFb:(A+A)+1 F'Fdox <« bi>i(z)=s:A+1
F'kdoz <+ bi>o(z)=t: A+1
(@-def)

I'Fs@t=dox < byreturn V(z) : A+1

A.12 Miscellaneous
F'kFs:(A+A4)+1 F'Ft:(A+A)+1
I'Fdoz <« s;>i(x) =doz+t;>y(x): A+1
I'Fdox s;>a(x) =dox +t;>o(x) : A+ 1
FFs=t:(A+A4)+1
r:AkFp:2 r:AFq:2 'kt A

(JM)

(comm)
I' - do y < asserty;p(t); assertazq(y) = do y < asserty,q(t); assertaz,(y) : A+ 1
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