
A Type Theory for Probabilistic and Bayesian
Reasoning∗

Robin Adams1 and Bart Jacobs2

1 Institutt for Informatikk, Universitetet i Bergen,
Postboks 7803, 5020 Bergen, Norway
robin.adams@uib.no

2 Institute for Computing and Information Sciences, Radboud Universiteit,
Postbus 9010, 6500 GL Nijmegen, The Netherlands
bart@cs.ru.nl

Abstract
This paper introduces a novel type theory and logic for probabilistic reasoning. Its logic is
quantitative, with fuzzy predicates. It includes normalisation and conditioning of states. This
conditioning uses a key aspect that distinguishes our probabilistic type theory from quantum
type theory, namely the bijective correspondence between predicates and side-effect free actions
(called instrument, or assert, maps). The paper shows how suitable computation rules can be
derived from this predicate-action correspondence, and uses these rules for calculating conditional
probabilities in two well-known examples of Bayesian reasoning in (graphical) models. Our type
theory may thus form the basis for a mechanisation of Bayesian inference.

1998 ACM Subject Classification F.4.1 Mathematical Logic and Formal Languages: Mathem-
atical Logic – Lambda calculus and related systems, G.3 Probability and Statistics: Probabilistic
algorithms, F.3.1 Logics and Meanings of Programs: Specifying and Verifying and Reasoning
about Programs

Keywords and phrases Probabilistic programming, probabilistic algorithm, type theory, effect
module, Bayesian reasoning

Digital Object Identifier 10.4230/LIPIcs.TYPES.2015.1

1 Introduction

A probabilistic program is understood (semantically) as a stochastic process. A key feature
of probabilistic programs as studied in the 1980s and 1990s is the presence of probabilistic
choice, for instance in the form of a weighted sum x +r y, where the number r ∈ [0, 1]
determines the ratio of the contributions of x and y to the result. This can be expressed
explicitly as a convex sum r · x+ (1− r) · y. Some of the relevant sources are [13, 15, 16, 18],
and also [22] for the combination of probability and non-determinism. In the language of
category theory, a probabilistic program is a map in the Kleisli category of the distribution
monad D (in the discrete case) or of the Giry monad G (in the continuous case), see [10] for
details.

In recent years, with the establishement of Bayesian machine learning as an important area
of computer science, the emphasis of probabilistic programming shifted towards conditional
inference. The key feature is no longer probabilistic choice, but normalisation of distributions
(states), see e.g. [3, 7, 21, 14, 19]. Interestingly, this can be done in basically the same

∗ This work was supported by ERC Advanced Grant QCLS: Quantum Computation, Logic and Security.

© Robin Adams and Bart Jacobs;
licensed under Creative Commons License CC-BY

21st International Conference on Types for Proofs and Programs (TYPES 2015).
Editor: Tarmo Uustalu; Article No. 1; pp. 1:1–1:34

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TYPES.2015.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 A Type Theory for Probabilistic and Bayesian Reasoning

underlying models, where a program still produces a distribution – discrete or continuous –
over its output.

This paper contributes to this latest line of work by formulating a novel type theory for
probabilistic and Bayesian reasoning. We list the key features of our type theory.

It includes a logic, which is quantitative in nature. This means that its predicates are best
understood as ‘fuzzy’ predicates, taking values in the unit interval [0, 1] of probabilities,
instead of in the two-element set {0, 1} of Booleans.
As a result, the predicates of this logic do not form Boolean algebras, but effect modules
(see e.g. [9]). The double negation rule p⊥⊥ = p does hold, but the sum > is a partial
operation. Moreover, there is a scalar multiplication s · p, for a scalar s and a predicate p,
which produces a scaled version of the predicate p.
The type theory includes normalisation (and also probabilistic choice). Abstractly,
normalisation means that each non-zero ‘substate’ in the type theory can be turned
into a proper state (like in [11]). This involves, for instance, turning a subdistribution∑
i rixi, where the probabilities ri ∈ [0, 1] satisfy 0 < r ≤ 1 for r def=

∑
i ri, into a proper

distribution
∑
i
ri

r xi – where, by construction,
∑
i
ri

r = 1.
The type theory also includes conditioning, via the combination of assert maps and
normalisation (from the previous two points). Hence, we can calculate conditional
probabilities inside the type theory, via appropriate (derived) computation rules. In
contrast, in the language of [3], probabilistic (graphical) models can be formulated,
but actual computations are done in the underlying mathematical models. Since these
computations are done inside our calculus, our type theory can form the basis for
mechanisation.

This work concentrates on an integrated type theory and logic for probability, and not so
much on the underlying semantics (like in [3, 21]) nor on the programming language aspects
(like in [7, 19, 14]), since we do not have a ‘while’ construct, for instance.

The type theory that we present is based on a new categorical foundation for quantum
logic, called effectus theory, see [9, 11, 4, 6]. This theory involves a basic duality between
states and effects (predicates), which is implicitly also present in our type theory. A subclass
of ‘commutative’ effectuses can be defined, forming models for probabilistic computation and
logic. Our type theory corresponds to these commutative effectuses, and will thus be called
COMET, as an abbreviation for COMmutative Effectus Theory. This system COMET
can be seen as an internal language for commutative effectuses.

Effectus theory thus forms the categorical basis for COMET. At the same time it forms
the basis for an embbeded language EfProb in the programming language Python1. EfProb
forms a uniform ‘calculator’ for discrete, continuous and quantum probability. EfProb is an
unsafe language, which is in a sense orthogonal to the COMET type theory.

The idea that predicates come with an associated action is familiar in mathematics. For
instance, in a Hilbert space H, a closed subspace P ⊆ H (a predicate) can equivalently be
described as a linear idempotent operator p : H→ H (an action) that has P as image. We
sketch how these predicate-action correspondences also exist in the models that underlie our
type theory.

First, in the category Sets of sets and functions, a predicate p on a set X can be identified
with a subset of X, but also with a ‘characteristic’ map p : X → 1 + 1, where 1 + 1 = 2 is
the two-element set. We prefer the latter view. Such a predicate corresponds bijectively to a
‘side-effect free’ instrument instrp : X → X +X, namely to:

1 See the website efprob.cs.ru.nl for details.

efprob.cs.ru.nl

R. Adams and B. Jacobs 1:3

instrp(x) =

 inl (x) if p(x) = 1
inr (x) if p(x) = 0

Here we write X +X for the sum (coproduct), with left and right coprojections (also called
injections) inl (_) , inr (_) : X → X+X. Notice that this instrument merely makes a left-right
distinction, as described by the predicate, but does not change the state x. It is called
side-effect free because it satisfies ∇ ◦ instrp = id, where ∇ = [id, id] : X + X → X is the
codiagonal. It is easy to see that each map f : X → X +X with ∇◦ f = id corresponds to a
predicate p : X → 1 + 1, namely to p = (! + !) ◦ f , where ! : X → 1 is the unique map to the
final (singleton, unit) set 1.

Our next example describes the same predicate-action correspondence in a probabilistic
setting. It assumes familiarity with the discrete distribution monad D – see [9] for details,
and also Section 4.1 – and with its Kleisli category K`(D). A predicate map p : X → 1 + 1 in
K`(D) is (essentially) a fuzzy predicate p : X → [0, 1], since D(1 + 1) = D(2) ∼= [0, 1]. There
is also an associated instrument map instrp : X → X +X in K`(D), given by the function
instrp : X → D(X + X) that sends an element x ∈ X to the distribution (formal convex
combination):

instrp(x) = p(x) · inl (x) + (1− p(x)) · inr (x) .

This instrument makes a left-right distinction, with the weight of the distinction given by the
fuzzy predicate p. Again we have ∇◦ instrp = id, in the Kleisli category, since the instrument
map does not change the state. It is easy to see that we get a bijective correspondence.

These instrument maps instrp : X → X + X can in fact be simplified further into
what we call assert maps. The (partial) map assertp : X → X + 1 can be defined as
assertp = (id + !) ◦ instrp. We say that such a map is side-effect free if there is an inequality
assertp ≤ inl (_), for a suitable order on the homset of partial maps X → X + 1. Given
assert maps for p, and for its orthosupplement (negation) p⊥, we can define the associated
instrument via a partial pairing operation as instrp = «assertp, assertp⊥», see below for details.
We shall define conditioning via normalisation after assert. More specifically, for a state
ω : X and a predicate p on X we define the conditional state ω|p = cond (ω, p) as:

cond (ω, p) = nrm (assertp(ω)) ,

where nrm (−) describes normalisation (of substates to states). This description occurs in
semantical form in [11]. Here we formalise it at a type-theoretic level and derive suitable
computation rules from it that allow us to do (exact) conditional inference.

The paper is organised as follows. Section 2 provides an overview of the type theory,
with some key results, without giving all the details and proofs. Section 3 takes two familiar
examples of Bayesian reasoning and formalises them in our type theory COMET. Next,
Section 4 sketches how our type theory can be interpreted in set-theoretic and probabilistic
models. Subsequently, Section 5 explores the type theory in greater depth, and provides
justification for the computation rules in the examples. Appendix A contains a formal
presentation of the type theory COMET.

TYPES 2015

1:4 A Type Theory for Probabilistic and Bayesian Reasoning

1.1 Previous Work
The system COMET is related to the quantum type theory QPEL described in [1]. The
two type theories have a common subsystem. The type theory in [1] extends this subsystem
with rules for qubits. The theory COMET extends the subsystem with new computation
rules for the instrument maps, which provides a bijective correspondence between predicates
and side-effect free assert maps (see below for details); as well as normalisation, and the
scalar constants 1/n.

A key feature of quantum theory is that observations have a side-effect: measuring a
system disturbs it at the quantum level. In order to perform such measurements, each
quantum predicate comes with an associated ‘measurement’ instrument operation which acts
on the underlying space. Probabilistic theories also have such instruments . . . but they are
side-effect free!

The key aspect of a probabilistic model, in contrast to a quantum model, is that there is
a bijective correspondence between:

predicates X → 1 + 1
side-effect free instruments X → X + X – or equivalently, side-effect free assert maps
X → X + 1.

2 Syntax and Rules of Deduction

We present here the terms and types of COMET. We shall describe the system at a high
level here, giving the intuition behind each construction. The complete list of the rules of
deduction of COMET is given in Appendix A, and the properties that we use are all proved
in Section 5.

2.1 Syntax
Assume we are given a set of type constants C, representing the base data types needed for
each example. (These may typically include for instance nat and real.) Then the types and
terms of COMET are the following.

Type A,B ::= C | 0 | 1 | A+B | A⊗B
Term r, s, t ::= x | ∗ | s ⊗ t | let x ⊗ y = s in t | ¡ t | inl (t) | inr (t) |

(case r of inl (x) 7→ s | inr (y) 7→ t) | «s, t» | left (t) | instrλxs(t) | 1/n
nrm (t) | s> t

We explain the intended meaning of these terms in the remaining parts of Section 2.
The variables x and y are bound within s in let x ⊗ y = s in t. The variable x is bound

within s and y within t in case r of inl (x) 7→ s | inr (y) 7→ t, and x is bound within t in
instrλxt(s). We identify terms up to α-conversion (change of bound variable). We write
t[x := s] for the result of substituting s for x within t, renaming bound variables to avoid
variable capture. We shall write _ for a vacuous bound variable; for example, we write
case r of inl (_) 7→ s | inr (y) 7→ t for case r of inl (x) 7→ s | inr (y) 7→ t when x does not occur
free in s.

The typing rules for these terms are given in Figure 1. (Note that some of these rules
make use of defined expressions, which will be introduced in the sections below. Note also
that, in the rules (1/n) and (nrm), the n that occurs is a constant natural number, not a
term that may contain free variables.)

The computation rules that these terms obey are given in Figure 2.

R. Adams and B. Jacobs 1:5

x : A ∈ Γ(var) Γ ` x : A (unit) Γ ` ∗ : 1
Γ ` s : A ∆ ` t : B(⊗) Γ,∆ ` s ⊗ t : A⊗B

Γ ` s : A⊗B ∆, x : A, y : B ` t : C(let) Γ,∆ ` let x ⊗ y = s in t : C

Γ ` t : 0(magic) Γ ` ¡ t : A
Γ ` t : A(inl)

Γ ` inl (t) : A+B
Γ ` t : B(inr)

Γ ` inr (t) : A+B

Γ ` r : A+B ∆, x : A ` s : C ∆, y : B ` t : C(case)
Γ,∆ ` case r of inl (x) 7→ s | inr (y) 7→ t : C

Γ ` s : A+ 1 Γ ` t : B + 1 Γ ` s ↓= t ↑: 2(inlr) Γ ` «s, t» : A+B

Γ ` t : A+B Γ ` inl? (t) = > : 2
(left)

Γ ` left (t) : A
x : A ` t : n Γ ` s : A(instr)

Γ ` instrλxt(s) : n ·A

(1/n)
Γ ` 1/n : 2

` t : A+ 1 ` 1/n ≤ t ↓: 2
(nrm)

Γ ` nrm (t) : A

Γ ` s : A+ 1 Γ ` t : A+ 1
Γ ` b : (A+A) + 1 Γ ` do x← b;B1(x) = s : A+ 1

Γ ` do x← b;B2(x) = t : A+ 1
(>) Γ ` s> t : A+ 1

Figure 1 Typing rules for COMET.

Figures 1 and 2 should be understood simultaneously. So the term «s, t» is well-typed if
and only if we can type s : A+ 1 and t : B + 1 (using the rules in Figure 1), and derive the
equation s ↓= t ↑ using the rules in Figure 2.

The full set of rules of deduction for the system is given in Appendix A.

2.2 Affine Type Theory

Note the form of several of the typing rules in Figure 1, including (⊗) and (let). These rules
do not allow a variable to be duplicated. In particular, we cannot derive the judgement
x : A ` x ⊗ x : A⊗A. The contraction rule does not hold in our type theory – it is not the
case in general that, if Γ, x : A, y : B ` J , then Γ, z : A ` J [x := z, y := z]. Our theory is
thus an affine type theory, which is similar to a linear type theory (see for example [2]).

The reason is that these judgements do not behave well with respect to substitution. For
example, take the computation x : 2 ` x ⊗ x : 2⊗ 2. If we apply this computation to the
scalar 1/2, we presumably wish the result to be > ⊗ > with probability 1/2, and ⊥ ⊗ ⊥ with
probability 1/2. But this is not the semantics for the term ` 1/2 ⊗ 1/2 : 2⊗ 2. This term
assigns probability 1/4 to all four possibilities > ⊗ >, > ⊗ ⊥, ⊥ ⊗ >, ⊥ ⊗ ⊥.

We discuss this further in Section 4.3

TYPES 2015

1:6 A Type Theory for Probabilistic and Bayesian Reasoning

let x ⊗ y = r ⊗ s in t = t[x := r, y := s] (β⊗)
case inl (r) of inl (x) 7→ s | inr (y) 7→ t = s[x := r] (β+1)
case inr (r) of inl (x) 7→ s | inr (y) 7→ t = t[y := r] (β+2)
B1(«s, t») = s (βinlr1)
B2(«s, t») = t (βinlr2)
inl (left (t)) = t (βleft)
left (inl (t)) = t (ηleft)
index (instrλxp(t)) = p[x := t] (instr-test)
∇(instrλxp(t)) = t (∇-instr)
If ∇(t) = x then instrλxindex(t)(s) = t[x := s] (ηinstr)
If t : 1 then ∗ = t (η1)
If t : A⊗B then let x ⊗ y = t in x ⊗ y = t (η⊗)
If t : A+B then case t of inl (x) 7→ inl (x) | inr (y) 7→ inr (y) = t (η+)
If t : A+B then «B1(t),B2(t)» = t (ηinlr)
If t is well-typed then do _← t; return nrm (t) = t (βnrm)
If t = do _← t; return ρ and 1/n ≤ t, then ρ = nrm (t) (ηnrm)
n · 1/n = > (n · 1/n)
If n · t = > then t = 1/n (divide)
If do x← b;B1(x) = s and do x← b;B2(x) = t

then s> t = do x← b; return ∇(x) (>-def)

Figure 2 Computation rules for COMET.

2.3 States, Predicates and Scalars
A closed term ` t : A will be called a state of type A, and intuitively it represents a probability
distribution over the elements of A.

A predicate on type A is a term p such that x : A ` p : 2. These shall be the formulas of
the logic of COMET (see Section 2.7).

The closed terms t such that ` t : 2 are called scalars, and represent the probabilities or
truth values of our system. In our intended semantics for discrete and continuous probabilities,
these denote elements of the real interval [0, 1].

Given a state ` t : A and a predicate x : A ` p : 2, we can find the probability that p
is true when measured on t; this probability is simply the scalar p[x := t]. This validity is
written as t |= p in effectus theory [5].

A term x : A ` c : B may be understood as a channel from A to B. One can do state
transformation and predicate transformation along a channel. In the current setting this
is done simply via substitution. A state ` s : A is transformed into a state ` c[x := s] : B.
In the other direction, a predicate y : B ` p : 2 is transformed into a predicate on A as
x : A ` p[y := c] : 2. This predicate is the weakest precondition of p with respect to c.
State and predicate transformation, together with conditioning, are used in [12] to describe
learning in a Bayesian context. These same ideas are used in Section 3 below.

R. Adams and B. Jacobs 1:7

Γ ` s : A+ 1 Γ ` t : A+ 1
Γ ` b : (A+A) + 1 Γ ` do x← b;B1(x) = s : A+ 1

Γ ` do x← b; return ∇(x) = t : A+ 1
(order) Γ ` s ≤ t : A+ 1

Figure 3 Rule for Ordering in COMET.

2.4 Empty Type
The typing rule for the term ¡ t says that from an inhabitant t : 0 we can produce an
inhabitant ¡ t in any type A. Intuitively, this says ‘If the empty type is inhabited, then every
type is inhabited’, which is vacuously true.

2.5 Coproducts and Copowers
Since we have the coproduct A+B of two types, we can construct the disjoint union of n
types A1 + · · ·+An in the obvious way. We write inn1 (), . . . , innn () for its constructors; thus,
if a : Ai then inni (a) : A1 + · · ·+An. And given t : A1 + · · ·+An, we can eliminate it as:

case t of inn1 (x1) 7→ t1 | · · · | innn (xn) 7→ tn .

We abbreviate this expression as caseni=1 t of inni (xi) 7→ ti.
The term left (t) is understood as follows. If we have a term t : A+B and we have derived

the judgement inl? (t) = >, then we know that we know that t always has the form inl (a) for
some term a : A. We denote this unique term a by left (t).

We have a similar right () consturction, but there is no need to give primitive rules for
this one, as it can be defined in terms of left (): right (t) def= left (swap (t)), where swap (t) def=
case t of inl (x) 7→ inr (x) | inr (y) 7→ inl (y).

For the special case where all the types are equal, we write n ·A for the type A+ · · ·+A,
where there are n copies of A. In category theory, this is known as the nth copower of A.
(We include the special cases 0 ·A def= 0 and 1 ·A def= A.)

The codiagonal ∇(t) : A for t : n · A is defined by ∇(t) def= caseni=1 t of inni (x) 7→ x. In
particular, whene n = 2 and t : A+A, then ∇(t) def= case t of inl (x) 7→ x | inr (x) 7→ x.

We write n for n · 1. We denote the canonical elements by 1, 2, . . . , n, via definitions
i
def= inni (∗) : n for 1 ≤ i ≤ n. For t : n ·A, we define index (t) def= caseni=1t of inni (_) 7→ i : n.

2.6 Partial Functions
A term of type A is intended to represent a total computation, that always terminates and
returns a value of type A. We can think of a term of type A+ 1 as a partial computation
that may return a value a of type A (by outputting inl (a)) or diverge (by outputting inr (∗)).
The judgement s ≤ t should be understood as: the probability that s returns inl (a) is at
most the probability that t returns inl (a), for all a. The rule for this ordering relation is
given in Figure 3.

We define:
If Γ ` t : A then Γ ` return t def= inl (t) : A+ 1. This program converges with probability 1.
Γ ` fail def= inr (∗) : A+ 1. This program diverges with probability 1.

TYPES 2015

1:8 A Type Theory for Probabilistic and Bayesian Reasoning

If Γ ` s : A+ 1 and ∆, x : A ` t : B + 1 then
Γ,∆ ` do x← s; t def= case s of inl (x) 7→ t | inr (_) 7→ fail.

The term do x← s; t should be read as the following computation: Run s. If s returns a
value, pass this as input x to the computation t; otherwise, diverge.

These constructions satisfy these computation rules:

(do-return) do x← return s; t = t[x := s]
(do-fail) do x← fail; t = fail
(return-do) do x← r; return x = r

(fail-do) do _← r; fail = fail
(do-do) do x← r; (do y ← s; t) = do y ← (do x← r; s); t

This construction also allows us to define scalar multiplication. If we are given a scalar
` s : 2 and a substate ` t : A + 1, then the result of multiplying or scaling t by s is
` do _← s; t : A+ 1.

2.6.1 Partial Projections
Given t : A+B, the partial projections BAB1 (t) : A+ 1 and BAB2 (t) : B + 1 are defined by

BAB1 (t) def= case t of inl (x) 7→ return x | inr (_) 7→ fail
BAB2 (t) def= case t of inl (_) 7→ fail | inr (x) 7→ return x

We shall often omit the superscripts A and B.
Given t : n ·A, the partial projection Bni (t) : A+ 1 is defined to be

Bni (t) def= casenj=1t of innj (x) 7→
{

return x if i = j

fail otherwise

We shall often omit the superscript n.

2.6.2 Partial Sum
Let Γ ` s, t : A+ 1. If these terms have disjoint domains (i.e. given any input x and output
a, the sum of the probabilities that s and t return a given x is never greater than 1), then
we may form the computation Γ ` s> t, the partial sum of s and t. The probability that
this program converges with output a is the sum of the probability that s returns a, and the
probability that t returns a. The definition is given by the rule (>-def). We write n · t for
the sum t> · · ·> t with n summands. We include the special cases 0 · t def= fail and 1 · t def= t.

With this operation, the partial functions in A+ 1 form a partial commutative monoid
(PCM) (see Lemma 13).

2.7 Logic
The type 2 = 1 + 1 shall play a special role in this type theory. It is the type of propositions
or predicates, and its objects shall be used as the formulas of our logic.

We define > def= inl (∗) : 2 and ⊥ def= inr (∗) : 2. We also define the orthosupplement of a
predicate p, which roughly corresponds to negation:

p⊥
def= case p of inl (_) 7→ ⊥ | inr (_) 7→ >

R. Adams and B. Jacobs 1:9

We immediately have that p⊥⊥ = p, >⊥ = ⊥ and ⊥⊥ = >.
The ordering on 2 shall play the role of the derivability relation in our logic: p ≤ q will

indicate that q is derivable from p, or that p implies q. The rules for this logic are not the
familiar rules of classical or intuitionistic logic. Rather, the predicates over any context form
an effect algebra (Proposition 16).

2.7.1 n-tests
An n-test in a context Γ is an n-tuple of predicates (p1, . . . , pn) on A such that Γ `
p1 > · · ·> pn = > : 2.

Intuitively, this can be thought of as a set of n fuzzy predicates whose probabilities always
sum to 1. We can think of this as a test that can be performed on the types of Γ with n
possible outcomes; and, indeed, there is a one-to-one correspondence between the n-tests of
Γ and the terms of type n (Lemma 21).

2.7.2 Instrument Maps
Let x : A ` t : n and Γ ` s : A. The term instrλxt(s) : n · A is interpreted as follows: we
read the computation x : A ` t : n as a test on the type A, with n possible outcomes.
The computation instrλxt(s) runs t on (the output of) s, and returns inni (s), where i is the
outcome of the test.

Given an n-test (p1, . . . , pn) on A, we can write a program that tests which of p1, . . . , pn
is true of its input, and performs one of n different calculations as a result. We write this
program as Γ ` measure p1 7→ t1 | · · · | pn 7→ tn. It will be defined in Definition 24.

If x : A ` p : 2 and Γ, x : A ` s, t : B, we define Γ, x : A ` (if p then s else t) def=
measure p 7→ s | p⊥ 7→ t : B. In the case where s and t do not depend on x, we have the
following fact (Lemma 26.2): if p then s else t = case p of inl (_) 7→ s | inr (_) 7→ t.

2.7.3 Assert Maps
If x : A ` p : 2 is a predicate, we define

Γ ` assertλxp(t)
def= case instrλxp(t) of inl (x) 7→ return x | inr (_) 7→ fail : A+ 1

The computation assertλxp(t) is a partial computation with output type A. It tests whether
p is true of t; if so, it leaves t unchanged; if not, it diverges. That is, if p[x := t] returns >,
the computation converges and returns t; if not, it diverges.

These constructions satisfy the following computation rules (see Section 5.6 below for the
proofs).

(assert↓) (assertλxp(t))↓= p[x := t]
(assert-scalar) For a scalar ` s : 2: assertλ_s(∗) = instrλ_s(∗) = s : 2.
(instr+) For x : A+B ` t : n:

instrλxt(s) = case s of inl (y) 7→ caseni=1instrλa.t[x:=inl(a)](y) of inni (z) 7→ inni (inl (z))
inr (y) 7→ caseni=1instrλb.t[x:=inl(b)](y) of inni (z) 7→ inni (inr (z))

(assert+) For x : A+B ` p : 2:

assertλxp(t) = case t of inl (x) 7→ do z ← assertλa.p[x:=inl(a)](x); return inl (z) |
inr (y) 7→ do z ← assertλb.p[x:=inr(b)](y); return inr (z)

TYPES 2015

1:10 A Type Theory for Probabilistic and Bayesian Reasoning

(instr m) For x : m ` t : n: instrλxt(s) = casemi=1s of i 7→ casenj=1t[x := i] of j 7→ innj (i)
(assert m) For x : m ` p : 2: assertλxp(t) = casemi=1t of i 7→ if p[x := i] then return i else fail

In particular, we have assertλxinl?(x)(t) = B1(t) and assertλxinr?(x)(t) = B2(t).

2.7.4 Sequential Conjunction
Given two predicates x : A ` p(x), q(x) : 2, we can define their sequential conjunction

x : A ` p & q
def= do z ← assertλyp(y)(x); q(z) : 2 .

The probability of this predicate being true at x is the product of the probabilities of p(x)
and q(x). This operation has many of the familiar properties of conjunction – including
commutativity – but not all: in particular, we do not have p & p⊥ = ⊥ in all cases. (For
example, 1/2 & (1/2)⊥ = 1/4.)

2.7.5 Coproducts
We can define predicates which, given a term t : A+B, test which of A and B the term came
from. We write these as inl? (t) and inr? (t). (Compare these with the operators FstAnd and
SndAnd defined in [9].) They are defined by

inl? (t) def= case t of inl (_) 7→ > | inr (_) 7→ ⊥
inr? (t) def= case t of inl (_) 7→ ⊥ | inr (_) 7→ >

2.7.6 Kernels
The predicate inr? () is particularly important for partial maps.

Let Γ ` t : A+ 1. The kernel of the map denoted by t is

t↑def= inr? (t) def= case t of inl (_) 7→ ⊥ | inr (_) 7→ >

Intuitively, if we think of t as a partial computation, then t↑ is the proposition ‘t does not
terminate’, or the function that gives the probability that t will diverge on a given input.

Its orthosupplement, (t↑)⊥ = inl? (t), which we shall also write as t↓, is also called the
domain predicate of t, and represents the proposition that t terminates. We note that it is
equal to do _← t;>.

2.8 Partial Pairing
The term «s, t» is understood intuitively as follows. We are given two partial computations
s and t, and we have derived the judgement s↓= t↑, which tells us that exactly one of s and
t converges on any given input. We may then form the computation «s, t» which, given an
input x, returns either s(x) or t(x), whichever of the two converges.

2.9 Scalar Constants
The term 1/n represents the probability distribution on 2 = {>,⊥} which returns > with
probability 1/n and ⊥ with probability (n− 1)/n. It can be thought of as a coin toss, with
a weighted coin that returns heads with probability 1/n. In other languages it is sometimes
written as the two-element distribution flip(1/n).

R. Adams and B. Jacobs 1:11

From this, we have a representation of the rational numbers between 0 and 1. Let m/n
denote the term 1/n > · · · > 1/n, where there are m summands. The usual arithmetic of
rational numbers can be carried out in our system (see Section 5.9).

2.10 Normalisation
Let ` t : A+ 1. Then t represents a substate of A. As long as the probability t↓ is non-zero,
we can normalise this program over the probability of non-termination. The result is the state
denoted by nrm (t). Intuitively, the probability that nrm (t) will output a is the probability
that t will output inl (a), conditioned on the event that t terminates.

In order to type nrm (t), we must first prove that t has a non-zero probability of terminating
by deriving an inequality of the form 1/n ≤ t↓ for some positive integer n ≥ 2.

If ` t : A and x : A ` p : 2, we write cond (t, λxp) for

cond (t, λxp) def= nrm (assertλxp(t)) .

The term t denotes a computation whose output is given by a probability distribution over A.
Then cond (t, λxp) gives the result of normalising that conditional probability distribution
with respect to p.

2.10.1 Note
In COMET, we only allow normalisation of closed terms, because we have not been able to
find a satisfactory way to express that an open term is non-zero for all inputs. For closed
terms, this is done by finding a constant 1/n which the term exceeds. For open terms, it is
possible that there is no n such that 1/n is always less than t, if the probabilities of t are all
positive with infimum 0.

2.11 Marginalisation
The tensor product of type A⊗B comes with two projections. Given Γ ` t : A⊗B, define

Γ ` π1(t) def= let x ⊗ _ = t in x : A Γ ` π2(t) def= let _ ⊗ y = t in y : B

If t is a state (i.e. Γ is the empty context), then π1(t) denotes the result of marginalising t,
as a probability distribution over A⊗B, to a probability distribution over A.

2.12 Local Definition
In our examples, we shall make free use of local definition. This is not a part of the syntax
of COMET itself, but part of our metalanguage. We write let x = s in t for t[x := s]. We
shall also locally define functions: we write let f(x) = s in t for the result of replacing every
subterm of the form f(r) with s[x := r] in t.

3 Examples

This section describes two examples of (Bayesian) reasoning in our type theory COMET.
Since this kind of reasoning is not very intuitive, a formal calculus is very useful. The first
example is a typical exercise in Bayesian probability theory. The second example involves a
simple graphical model.

TYPES 2015

1:12 A Type Theory for Probabilistic and Bayesian Reasoning

I Example 1. (See also [23, 3]) Consider the following situation.

1% of a population have a disease. 80% of subjects with the disease test positive, and
9.6% without the disease also test positive. If a subject is positive, what are the odds
he/she has the disease?

This situation can be described as a very simple graphical model, with associated (conditional)
probabilities.�� ��HasDisease

���� ��PositiveResult

Pr (HD)

0.01

HD Pr (PR)

t 0.8

f 0.096

In our type theory COMET, we use the following description.

let subject = 0.01 in
let positive_result(x) = (if x then 0.8 else 0.096) in

cond (subject, positive_result)

We thus obtain a state subject : 2, conditioned on the predicate positive_result on 2. We
calculate the outcome in semi-formal style. The conditional state cond (subject, positive_result)
is defined via normalisation of assert, see Section 2.10. We first calculate what this assert
term is:

assertλxpositive_result(x)(x) = if x then if positive_result(>) then return > else fail
else if positive_result(⊥) then return ⊥ else fail

by (assert m)
= if x then if 0.8 then return > else fail

else if 0.096 then return ⊥ else fail

Conditioning requires that the domain of the substate assertλxpositive_result(x)(subject) is non-
zero. We compute this domain as:

assertλxpositive_result(x)(subject)↓ = positive_result(subject) (Rule (assert↓))
= if 0.01 then 0.8 else 0.096
= (0.01 & 0.8) > (0.99 & 0.096) (Lemma 26.2)
= 0.10304 (Lemma 28)

Hence we can choose (e.g.) n = 10, to get 1
n ≤ 0.10304 = assertλxpositive_result(x)(subject)↓.

R. Adams and B. Jacobs 1:13

We now proceed to calculate the result, answering the question in the beginning of this
example.

assertλxpositive_result(x)(subject) = if 0.01 then if 0.8 then return > else fail
else if 0.096 then return ⊥ else fail

= measure 0.01 & 0.8 7→ return >
0.01 & 0.8⊥ 7→ fail
0.01⊥ & 0.096 7→ return ⊥
0.01⊥ & 0.096⊥ 7→ fail

(Lemma 25.3)

= measure 0.008 7→ return >
0.09504 7→ return ⊥
0.89696 7→ fail

(Lemma 25.5)

cond (subject, positive_result) def= nrm
(
assertλxpositive_result(x)(subject)

)
= measure 0.0776 7→ >

0.9224 7→ ⊥
(Corollary 30)

= 0.0776. (Lemma 26.3)

Hence the probability of having the disease after a positive test result is approximately 7.8%.

I Example 2 (Bayesian Network). The following is a standard example of a problem in
Bayesian networks, created by [20, Chap. 14].

I’m at work, neighbor John calls to say my alarm is ringing. Sometimes it’s set off by
minor earthquakes. Is there a burglar?

We are given that the situation is as described by the following Bayesian network.

�� ��Burglary

$$

�� ��Earthquake

yy�� ��Alarm

zz %%�� ��JohnCalls
�� ��MaryCalls

Pr (B)
1

1000

A Pr (J)

t 9
10

f 1
20

B E Pr (A)

t t 95
100

t f 94
100

f t 29
100

f f 1
1000

Pr (E)
1

500

A Pr (M)

t 7
10

f 1
100

The probability of each event given its preconditions is as given in the tables – for example,
the probability that the alarm rings given that there is a burglar but no earthquake is 0.94.

TYPES 2015

1:14 A Type Theory for Probabilistic and Bayesian Reasoning

We model the above question in COMET as follows.

let b = 0.01 in let e = 0.002 in
let a(x, y) = (if x then (if y then 0.95 else 0.94)

else (if y then 0.29 else 0.001)) in
let j(z) = (if z then 0.9 else 0.05) in
let m(z) = (if z then 0.7 else 0.01) in
π1
(
cond (b ⊗ e, j ◦ a)

)
We first elaborate the predicate j ◦ a, given in context as x : 2, y : 2 ` j(a(x, y)) : 2. It is:

j(a(x, y)) = if a(x, y) then 0.90 else 0.05
= if x then (if y then (if 0.95 then 0.90 else 0.05)

else (if 0.94 then 0.90 else 0.05)
else (if y then (if 0.29 then 0.90 else 0.05)

else (if 0.001 then 0.90 else 0.05)
= if x then (if y then (0.95 & 0.90) > (0.95⊥ & 0.05)

else (0.94 & 0.90) > (0.94⊥ & 0.05))
else (if y then (0.29 & 0.90) > (0.29⊥ & 0.05)

else (0.001 & 0.90) > (0.001⊥ & 0.05))
= if x then (if y then 0.8575 else 0.849) else (if y then 0.2965 else 0.05085)

Let us write assertj◦a for assertλtlet x⊗y=t in j(a(x,y)). Then the associated assert map is:

assertj◦a(b, e) = measure 0.001 & 0.002 & 0.8575 7→ return > ⊗ >
0.001 & 0.998 & 0.849 7→ return > ⊗ ⊥
0.999 & 0.002 & 0.2965 7→ return ⊥ ⊗ >
0.999 & 0.998 & 0.05085 7→ return ⊥ ⊗ ⊥
0.052138976⊥ 7→ fail

= measure 0.000001715 7→ return > ⊗ >
0.000847302 7→ return > ⊗ ⊥
0.000592407 7→ return ⊥ ⊗ >
0.050697552 7→ return ⊥ ⊗ ⊥
0.052138976⊥ 7→ fail

Hence by Corollary 30 we obtain the marginalised conditional:

R. Adams and B. Jacobs 1:15

π1
(
cond (b ⊗ e, j ◦ a)

)
= π1

(
nrm (assertj◦a(b, e))

)
= π1

(
measure 0.000001715/0.052138976 7→ > ⊗ >

0.000847302/0.052138976 7→ > ⊗ ⊥
0.000592407/0.052138976 7→ ⊥ ⊗ >
0.050697552/0.052138976 7→ ⊥ ⊗ ⊥

)
= measure 0.000032893 7→ π1(> ⊗ >)

0.016250837 7→ π1(> ⊗ ⊥)
0.011362078 7→ π1(⊥ ⊗ >)
0.972354194 7→ π1(⊥ ⊗ ⊥)

= measure 0.000032893 7→ >
0.016250837 7→ >
0.011362076 7→ ⊥
0.972354194 7→ ⊥

= measure 0.01628373 7→ >
0.98371627 7→ ⊥

= 0.01628373

We conclude that there is an approximately 1.6% chance of a burglary when John calls.

4 Semantics

The terms of COMET are intended to represent probabilistic programs. We show how to
give semantics to our system using discrete probability distributions.

4.1 Discrete Probabilistic Computation
We give an interpretation that assigns, to each term, a discrete probability distribution over
its output type.

I Definition 3. Let A be a set.
The support of a function φ : A→ [0, 1] is suppφ = {a ∈ A : φ(a) 6= 0}.
A (discrete) probability distribution over A is a function φ : A→ [0, 1] with finite support
such that

∑
a∈A φ(a) = 1.

Let DA be the set of all probability distributions on A.

We shall interpret every type A as a set [[A]]. Assume we are given a set [[C]] for each
type constant C. Define a set [[A]] for each type A thus:

[[0]] = ∅ [[1]] = {∗} [[A+B]] = [[A]]] [[B]] [[A ⊗ B]] = [[A]]× [[B]]

where A] B = {κ1(a) : a ∈ A} ∪ {κ2(b) : b ∈ B}. We extend this to contexts by defining
[[x1 : A1, . . . , xn : An]] = [[A1]]× · · · × [[An]].

Now, to every term Γ ` t : B, where Γ ≡ x1 : A1, . . . , xn : An, we assign a function
[[t]] : [[Γ]] = [[A1]]× · · · × [[An]]→ D [[B]]. The value [[t]] (g1, . . . , gn)(b) ∈ [0, 1] will be written

TYPES 2015

1:16 A Type Theory for Probabilistic and Bayesian Reasoning

P (xi(~g) = a) =
{

1 if a = gi

0 if a 6= gi

P (∗(~g) = ∗) = 1
P ((s ⊗ t)(~g, ~d) = (a, b)) = P (s(~g) = a)P (t(~d) = b)

P ((let x ⊗ y = s in t)(~g, ~d) = c) =
∑
a

∑
b P (s(~g) = (a, b))P (t(~d, a, b) = c)

P ((¡ t)(~g) = a) = 0
P (inl (t) (~g) = κ1(a)) = P (t(~g) = a)
P (inl (t) (~g) = κ2(b)) = 0
P (inr (t) (~g) = κ1(a)) = 0
P (inr (t) (~g) = κ2(b)) = P (t(~g) = b)

((case r of inl (x) 7→ s | inr (y) 7→ t)(~g, ~d) = c)
=
∑
a P (r(~g) = κ1(a))P (s(~d, a) = c)+∑
b P (r(~g) = κ2(b))P (t(~d, b) = c)

P («s, t»(~g) = κ1(a)) = P (s(~g) = κ1(a))
P («s, t»(~g) = κ2(b)) = P (t(~g) = κ1(b))
P (left (t) (~g) = a) = P (t(~g) = κ1(a))

P (instrλxt(s)(~g) = κi(a)) = P (s(~g) = a)P (t(a) = κi(∗))
P (1/n(~g) = κ1(∗)) = 1/n
P (1/n(~g) = κ2(∗)) = (n− 1)/n
P (nrm (t) (~g) = a) = P (t(~g) = κ1(a))/(1− P (t(~g) = κ2(∗)))

P ((s> t)(~g) = κ1(a)) = P (s(~g) = κ1(a)) + P (t(~g) = κ1(a))
P ((s> t)(~g) = κ2(∗)) = P (s(~g) = κ2(∗)) + P (t(~g) = κ2(∗))− 1

Figure 4 Semantics for COMET in K`(D).

as P (t(g1, . . . , gn) = b), and should be thought of as the probability that b will be the output
if g1, . . . , gn are the inputs. The clauses are given in Figure 4.

The sums involved here are all well-defined because the function P (t(~g) = −) has finite
support for all t, ~g.

I Example 4 (Assert Maps). This definition gives the following semantics to the assert maps.
Recall that we define

Γ ` assertλxp(t)
def= B1(instrλxp(t)) : A+ 1 ,

where Γ ` t : A and x : A ` p : 2. We therefore have

P (assertλxp(t)(~g) = κ1(a)) = P (t(~g) = a)P (p(a) = κ1(∗))

P (assertλxp(t)(~g) = κ2(∗)) =
∑
a∈A

P (t(~g) = a)P (p(a) = κ2(∗))

R. Adams and B. Jacobs 1:17

I Theorem 5 (Soundness).
1. If Γ ` t : A is derivable, then for all ~g ∈ [[Γ]], we have P (t(~g) = −) is a probability

distribution on [[A]].
2. If Γ ` s = t : A, then P (s(~g) = a) = P (t(~g) = a).

Proof. The proof is by induction on derivations. First prove P (t[x := s](~g,~a) = b) =∑
a∈[[A]] P (s(~g) = a)P (t(~d, a) = b) whenever t[x := s] is well-typed. J

As a corollary, we know that COMET is non-degenerate:

I Corollary 6. Not every judgement is derivable; in particular, the judgement ` > = ⊥ : 2
is not derivable.

4.2 Alternative Semantics
It is also possible to give semantics to COMET using continuous probabilities. We assign
a measurable space [[A]] to every type A. Each term then gives a measurable function
[[A1]]× · · · × [[An]]→ G [[B]], where GX is the space of all probability distributions over the
measurable space X. (G here is the Giry monad [8, 10].)

If we remove the constants 1/n from the system, we can give deterministic semantics to
the subsystem, in which we assign a set to every type, and a function [[A1]]×· · ·× [[An]]→ [[B]]
to every term.

More generally, we can give an interpretation of COMET in any commutative monoidal
effectus with normalisation in which there exists a scalar s such that n · s = 1 for all positive
integers n [5]. The three ways of giving semantics to COMET that we have described are
three instances of this interpretation.

4.3 Note on Affine Type Theory
The diagonals or copiers in K`(D) are not natural. It is easy to see that the only arrow
δA : A→ A⊗A that satisfies

π1 ◦ δA = π2 ◦ δA = idA

is given by δA(a) = 1|(a, a)〉; that is, δA(a) gives probability 1 to (a, a), and probability 0 to
all other pairs.

However, this family of arrows δA is not natural in A. Let f : A→ B be any morphism
in K`(D).

A
δ //

f

��

A⊗A

f⊗f
��

B
δ
// B ⊗B

We have

((f ⊗ f) ◦ δA)(a)(b, b′) = f(a)(b) · f(a)(b′)

(δB ◦ f)(a)(b, b′) =
{
f(a)(b) if b = b′

0 if b 6= b′

There is therefore no way to give semantics to a type theory with contraction in K`(D) in
such a way that the following substitution property holds, which was needed for the proof of
the Soundness Theorem.

TYPES 2015

1:18 A Type Theory for Probabilistic and Bayesian Reasoning

P (t[x := s](~g,~a) = b) =
∑
a∈[[A]] P (s(~g) = a)P (t(~d, a) = b) whenever t[x := s] is

well-typed.

In particular, the rule (β⊗) becomes unsound. For our semantics give:

P ((let x ⊗ y = 1/2 ⊗ ∗ in x ⊗ x)(~g) = (b1, b2))

=
∑
b

P (1/2(~g) = b)P ((x ⊗ x)(b) = (b1, b2))

=
∑
b

P (1/2(~g) = b)P (x(b) = b1)P (x(b) = b2)

=
{

1/2 if b1 = b2

0 otherwise

and so let x ⊗ y = 1/2 ⊗ ∗ in x ⊗ x and 1/2 ⊗ 1/2 receive different semantics.

5 Metatheorems

We presented an overview of the system in Section 2, and gave the intuitive meaning of the
terms of COMET. In this section, we proceed to a more formal development of the theory,
and investigate what can be proved within the system.

The type theory we have presented enjoys the following standard properties.

I Lemma 7.
1. Weakening If Γ ` J and Γ ⊆ ∆ then ∆ ` J .
2. Substitution If Γ ` t : A and ∆, x : A ` J then Γ,∆ ` J [x := t].
3. Equation Validity If Γ ` s = t : A then Γ ` s : A and Γ ` t : A.
4. Inequality Validity If Γ ` s ≤ t : A+ 1 then Γ ` s : A+ 1 and Γ ` t : A+ 1.
5. Functionality If Γ ` r = s : A and ∆, x : A ` t : B then Γ,∆ ` t[x := r] = t[x := s] : B.

Proof. The proof in each case is by induction on derivations. Each case is straightforward.
(Note in particular the form that the rule (nrm) takes. Even though we only apply

normalisation to states, we allow an arbitrary context in the conclusion so that the Weakening
property shall hold.) J

The following lemma shows that substituting within our binding operations works as
desired.

I Lemma 8. 1. If Γ ` r : A ⊗ B; ∆, x : A, y : B ` s : C; and Θ, z : C ` t : D then
Γ,∆,Θ ` t[z := let x ⊗ y = r in s] = let x ⊗ y = r in t[z := s] : D.

2. If Γ ` r : A+B; ∆, x : A ` s : C; ∆, y : B ` s′ : C; and Θ, z : C ` t : D then

Γ,∆,Θ ` t[z := case r of inl (x) 7→ s | inr (y) 7→ s′]
= case r of inl (x) 7→ t[z := s] | inr (y) 7→ t[z := s′] : D

.

Proof. For part 1, we us the following ‘trick’ to simulate local definition (see [1]):

t[z := case r of inl (x) 7→ s | inr (y) 7→ s′]
= let z ⊗ _ = (case r of inl (x) 7→ s | inr (y) 7→ s′) ⊗ ∗ in t (β⊗)
= let z ⊗ _ = case r of inl (x) 7→ s ⊗ ∗ | inr (y) 7→ s′ ⊗ ∗ in t (case-⊗)
= case r of inl (x) 7→ let z ⊗ _ = s ⊗ ∗ in t | inr (y) 7→ let z ⊗ _ = s′ ⊗ ∗ in t (let-case)
= case r of inl (x) 7→ t[z := s] | inr (y) 7→ t[z := s′] (β⊗)

Part 2 is proven similarly using (let-⊗) and (let-let) . J

R. Adams and B. Jacobs 1:19

I Corollary 9.
1. If Γ ` s : A⊗B and ∆ ` t : C then Γ,∆ ` let _ ⊗ _ = s in t = t : C.
2. If Γ ` s : A+B and ∆ ` t : C then Γ,∆ ` case s of inl (_) 7→ t | inr (_) 7→ t = t : C.

Proof. These are both the special case where z does not occur free in t. J

5.1 Coproducts
We generalise the inl? () and inr? () constructions as follows. Define the predicate ini? () on
n ·A, which tests whether a term comes from the ith component, as follows.

ini? (t) def= casenj=1t of innj (_) 7→
{
> if i = j

⊥ if i 6= j

5.2 The right() Construction
I Lemma 10. The right () construction satisfies analagous rules to the left () constructor:

1. If t : A+B and inr? (t) = > : 2 then right (t) : B.
2. If t = t′ : A+B and inr? (t) = > then right (t) = right (t′) : B.
3. If t : A+B and inr? (t) = > then t = inr (right (t)) : A+B.
4. If t : B then t = right (inr (t)).

Proof. We prove parts 1 and 3 here. Suppose inr? (t) = >. Then we have

inl? (swap (t)) def= inl? (case t of inl (x) 7→ inr (x) | inr (y) 7→ inl (y))
= case t of inl (x) 7→ inl? (inr (x)) | inr (y) 7→ inl? (inl (y)) (case-case)
= case t of inl (x) 7→ ⊥ | inr (y) 7→ > (β+1), (β+2)
def= inr? (t)
= > (by hypothesis)

Therefore, right (t) def= left (swap (t)) is well-typed with type B, and

inr (right (t)) = swap (inl (right (t))) (β+1)
def= swap (inl (left (swap (t))))
= swap (swap (t)) (βleft)
= case t of inl (x) 7→ swap (inr (x)) |

inr (y) 7→ swap (inl (y)) (case-case)
= case t of inl (x) 7→ inl (x) | inr (y) 7→ inr (y) (case-eq), (β+1), (β+2)
= t (η+)

J

5.3 The swap() Operation
I Lemma 11.
1. Let Γ ` t : A+B. Then

Γ ` B1(swap (t)) = B2(t) : B + 1
Γ ` B2(swap (t)) = B1(t) : A+ 1

TYPES 2015

1:20 A Type Theory for Probabilistic and Bayesian Reasoning

2. Let Γ ` t : A+A. Then Γ ` ∇(swap (t)) = ∇(t) : A.

Proof. We prove the first of these here. We have

B1(swap (t)) def= case (case t of inl (x) 7→ inr (x) | inr (y) 7→ inl (y)) of
inl (y) 7→ inl (y) | inr (_) 7→ inr (∗)

= case t of inl (x) 7→ (case inr (x) of inl (y) 7→ inl (y) | inr (_) 7→ inr (∗)) |
inr (y) 7→ (case inl (y) of inl (y) 7→ inl (y) | inr (_) 7→ inr (∗))

(case-case)
= case t of inl (x) 7→ inr (∗) | inr (y) 7→ inl (y) (β+1), (β+2)
def= B2(t)

J

5.4 Kernels
I Lemma 12.
1. Let Γ ` t : A+ 1. Then Γ ` t↓= ⊥ : 2 if and only if Γ ` t = fail : A+ 1.
2. Let Γ ` s : A+ 1 and ∆, x : A ` t : B + 1. Then Γ,∆ ` (do x← s; t)↓= do x← s; t↓ : 2.

Proof.
1. We have

fail↓ def= case inr (∗) of inl (_) 7→ > | inr (_) 7→ ⊥
= ⊥ (β+1)

For the converse, if t↓= ⊥ then

t↑ def= case t of inl (_) 7→ ⊥ | inr (_) 7→ >
= case t of inl (_) 7→ >⊥ | inr (_) 7→ ⊥⊥ (case-eq), (β+1), (β+2)
= (case t of inl (_) 7→ > | inr (_) 7→ ⊥)⊥ (Lemma 2)
def= t↓⊥

= ⊥⊥ (case-eq)
= > (β+2)

and so

t = inr (right (t)) (Lemma 10.3)
= inr (∗) (η1)

2. (case s of inl (x) 7→ t | inr (_) 7→ fail)↓
= case s of inl (x) 7→ t↓ | inr (_) 7→ fail↓ (Lemma 2)
= case s of inl (x) 7→ t↓ | inr (_) 7→ ⊥ (β+1)

J

5.5 Ordering on Partial Maps and the Partial Sum
Note that, from the rules (>) and (>-def) , we have Γ ` s > t : A + 1 if and only if there
exists Γ ` b : (A+A) + 1 such that

Γ ` do x← b;B1(x) = s : A+ 1, Γ ` do x← b;B2(x) = t : A+ 1 ,

R. Adams and B. Jacobs 1:21

in which case Γ ` s > t = do x ← b; return ∇(x) : A + 1. We say that such a term b is a
bound for s> t. By the rule (JM) (see Appendix A.12), this bound is unique if it exists.

The set of partial maps A → B + 1 between any two types A and B form a partial
commutative monoid (PCM) with least element fail, as shown by the following results.

I Lemma 13.
1. If Γ ` t : A+ 1 then Γ ` t> fail = t : A+ 1.
2. (Commutativity) If Γ ` s> t : A+ 1 then Γ ` t> s : A+ 1 and Γ ` s> t = t> s : A+ 1.
3. (Associativity) Γ ` (r > s) > t : A + 1 if and only if Γ ` r > (s > t) : A + 1, in which

case Γ ` r > (s> t) = (r > s) > t : A+ 1.

Proof. We prove part 2 here. Let b be a bound for s > t. We shall prove that do x ←
b; return swap (x) is a bound for t> s. We have

do y ← do x← b; return swap (x);B1(y)
= do x← b; do y ← return swap (x);B1(y) (do-do)
= do x← b;B1(swap (x)) (do-return)
= do x← b;B2(x) (Lemma 11.1)
= t (by hypothesis)

Similarly, do y ← do x← b; return swap (b);B2(y) = s.
Now, we have

t> s = do y ← (do x← b; return swap (x)); return ∇(y) (>-def)
= do x← b; do y ← return swap (x); return ∇(y) (do-do)
= do x← b; return ∇(swap (x)) (do-return)
= do x← b; return ∇(x) (Lemma 11.2)
= s> t (>-def)

J

I Lemma 14. Let Γ ` r : A + 1 and Γ ` s : A + 1. Then Γ ` r ≤ s : A + 1 if and only if
there exists t such that Γ ` r > t = s : A+ 1.

Proof. Suppose r ≤ s. If b is such that do x← b;B1(x) = r and do x← b; return ∇(x) = s

then take t = do x ← b;B2(x). We have r > t = do x ← b; return ∇(x) by (>-def), and so
r > t = s.

Conversely, if r > t = s, then inverting the derivation of Γ ` r > t : A+ 1 we have that
there exists b such that r = do x← b;B1(x), t = do x← b;B2(x) and s = r > t = do x←
b; return ∇(x). Therefore, r ≤ s by (order) . J

In this case, the bound for r > t will also be called a bound for r ≤ s.

I Lemma 15.
1. If Γ ` s> t : A+ 1 then Γ ` s ≤ s> t : A+ 1 and Γ ` t ≤ s> t : A+ 1.
2. If Γ ` t : A+ 1 then Γ ` t ≤ t : A+ 1.
3. If Γ ` t : A+ 1 then Γ ` fail ≤ t : A+ 1.
4. If Γ ` r ≤ s : A+ 1 and Γ ` s ≤ t : A+ 1 then Γ ` r ≤ t : A+ 1.
5. If Γ ` r ≤ s : A+ 1 and Γ ` s> t : A+ 1 then Γ ` r > t ≤ s> t : A+ 1.

TYPES 2015

1:22 A Type Theory for Probabilistic and Bayesian Reasoning

Proof. Parts 1–4 follow by applying Lemma 14 to the appropriate part of Lemma 13. For
part 5, let r > x = s. Then r > x> t = s> t and so r > t ≤ s> t. J

On the predicates, we have the following structure, which shows that they form an effect
algebra. (In fact, they have more structure: they form an effect module over the scalars, as
we will prove in Proposition 20.)

I Proposition 16.
1. If Γ ` p : 2 then Γ ` p> p⊥ = > : 2.
2. If Γ ` p> q = > : 2 then Γ ` q = p⊥ : 2.
3. (Zero-One Law) If Γ ` p>> : 2 then Γ ` p = ⊥ : 2.
4. Γ ` p> q : 2 if and only if Γ ` p ≤ q⊥ : 2.
5. Suppose Γ ` r : A+B and ∆, x : A ` s> t : C + 1 and ∆, y : B ` s′ > t′ : C + 1. Then

Γ,∆ ` case r of inl (x) 7→ s> t | inr (y) 7→ s′ > t′

= (case r of inl (x) 7→ s | inr (y) 7→ s′) > (case r of inl (x) 7→ t | inr (y) 7→ t′) : C + 1

6. If Γ ` r : A + 1 and ∆, x : A ` s > t : B + 1 then Γ,∆ ` do x ← r; s> t = (do x ←
r; s) > (do x← r; t) : B + 1.

Proof. We prove part 2 here. Let b be a bound for p> q. We have

> = p> q (by hypothesis)
= do x← b; return ∇(x) (>-def)
= do x← b;> (η1)
def= b↓

∴ b = return left (b) (βleft)
∴ p = do x← b;B1(x) (by hypothesis)

= B1(left (b)) (do-return)
q = B2(left (b)) (similarly)

= B1(left (b))⊥ (β+1), (β+2), (case-case)
= p⊥

J

I Corollary 17.
1. (Cancellation) If Γ ` p> q = p> r : 2 then Γ ` q = r : 2.
2. (Positivity) If Γ ` p> q = ⊥ : 2 then Γ ` p = ⊥ : 2 and Γ ` q = ⊥ : 2.
3. If Γ ` p : 2 then Γ ` p ≤ > : 2.
4. If Γ ` p ≤ q : 2 then Γ ` q⊥ ≤ p⊥ : 2.
5. If Γ ` p ≤ q : 2 and Γ ` q ≤ p : 2 then Γ ` p = q : 2.

Proof. We prove part 1 here. We have

p> r > (p> q)⊥ = p> q > (p> q)⊥ (by hypothesis)
= > (Proposition 16.1)

∴ q = r = (p> (p> q)⊥)⊥ (Proposition 16.2)

J

R. Adams and B. Jacobs 1:23

5.6 Assert Maps
Recall that, for x : A ` p : 2 and Γ ` t : A, we define Γ ` assertλxp(t)

def= B1(instrλxp(t)) :
A+ 1.

We now give rules for calculating instrλxp and assertλxp directed by the type.

I Lemma 18 ((assert-scalar)). If ` s : 2 then

` assertλ_s(∗) = instrλ_s(∗) = s : 2

Proof. We have ∇(s) = ∗ by (η1) and s↓= s by (η+) . The result follows by (ηinstr) . J

I Lemma 19. The rules (instr+) and (assert+) are admissible (see Section 2.7.3).

Proof. We shall prove the case n = 2 of (instr+) here. Let x : A+B ` p : 2.
For x : A+B, let us write f(x) : (A+B) + (A+B) for

case x of inl (y) 7→ case instrλap[x:=inl(a)](y) of inl (t) 7→ inl (inl (t)) |
inr (t) 7→ inr (inl (t)) |

inr (y) 7→ case instrλbp[x:=inr(b)](y) of inl (t) 7→ inl (inr (t)) |
inr (t) 7→ inr (inr (t))

We shall prove f(x) = instrλxp(x).
We have

∇(f(x))= case x of inl (y) 7→ case instrλap[x:=inl(a)](y) of inl (t) 7→ ∇(inl (inl (t))) |
inr (t) 7→ ∇(inr (inl (t))) |

inr (y) 7→ case instrλbp[x:=inr(b)](y) of inl (t) 7→ ∇(inl (inr (t))) |
inr (t) 7→ ∇(inr (inr (t)))

(case-case)

= case x of inl (y) 7→ case instrλap[x:=inl(a)](y) of inl (t) 7→ inl (t) |
inr (t) 7→ inl (t) |

inr (y) 7→ case instrλbp[x:=inr(b)](y) of inl (t) 7→ inr (t) |
inr (t) 7→ inr (t)

(β+1) , (β+2)

= case x of inl (y) 7→ inl(case instrλap[x:=inl(a)](y) of inl (t) 7→ t |
inr (t) 7→ t) |

inr (y) 7→ inr(case instrλbp[x:=inr(b)](y) of inl (t) 7→ t |
inr (t) 7→ t)

(Lemma 2)
def= case x of inl (y) 7→ inl

(
∇(instrλap[x:=inl(a)](y))

)
inr (y) 7→ inr

(
∇(instrλbp[x:=inr(b)](y))

)
= case x of inl (y) 7→ inl (y) | inr (y) 7→ inr (y) (∇-instr)
= x (η+)

TYPES 2015

1:24 A Type Theory for Probabilistic and Bayesian Reasoning

inl? (f(x))
= case x of inl (y) 7→ case instrλap[x:=inl(a)](y) of inl (t) 7→ inl? (inl (inl (t)))

inr (t) 7→ inl? (inr (inl (t)))
inr (y) 7→ case instrλbp[x:=inr(b)](y) of inl (t) 7→ inl? (inl (inr (t)))

inr (t) 7→ inl? (inr (inr (t)))
(Lemma 2)

= case x of inl (y) 7→ case instrλap[x:=inl(a)](y) of inl (t) 7→ >
inr (t) 7→ ⊥

inr (y) 7→ case instrλbp[x:=inr(b)](y) of inl (t) 7→ >
inr (t) 7→ ⊥

(β+1), (β+2)
def= case x of inl (y) 7→ inl?

(
instrλap[x:=inl(a)](y)

)
| inr (y) 7→ inl?

(
instrλbp[x:=inr(b)](y)

)
= case x of inl (y) 7→ p[x := inl (y)] | inr (y) 7→ p[x := inr (y)] (instr-test)
= p[x := case x of inl (y) 7→ inl (y) | inr (y) 7→ inr (y)] (Lemma 2)
= p (η+)

Hence f(x) = instrλxp(x) by (ηinstr) . J

The rules (instr m) and (assert m) follow easily.

5.7 Sequential Conjunction

We do not have conjunction or disjunction in our language for predicates over the same type,
as this would involve duplicating variables. However, we do have the following sequential
conjunction. (This was called the ‘and-then’ test operator in Section 9 in [9].)

Let x : A ` p, q : 2. We define the sequential conjunction p & q by

x : A ` p & q
def= do x← assertλxp(x); q : 2 .

I Proposition 20. Let x : A ` p, q : 2.
1. instrλx(p&q)(x) = case instrλxp(x) of inl (x) 7→ instrλxq(x) | inr (y) 7→ inr (y)
2. assertλx(p&q)(x) = do x← assertλxp(x); assertλxq(x)
3. (Commutativity) p & q = q & p.
4. (p> q) & r = (p & r) > (q & r) and p & (q > r) = (p & q) > (p & r).
5. p & ⊥ = ⊥ & q = ⊥
6. p & > = p and > & q = q

7. p & (q & r) = (p & q) & r

8. If x does not occur free in q, then p & q = case p of inl (_) 7→ q | inr (_) 7→ ⊥.

Proof. We shall prove the first three parts here.

R. Adams and B. Jacobs 1:25

1. inl? (case instrλxp(x) of inl (x) 7→ instrλxq(x) | inr (y) 7→ inr (y))
= case instrλxp(x) of inl (x) 7→ inl? (instrλxq(x)) | inr (y) 7→ inl? (inr (y))

(case-case)
= case instrλxp(x) of inl (x) 7→ q | inr (y) 7→ ⊥ (instr-test), (β+2)
def= do x← assertλxp(x); q
def= p & q

∇(case instrλxp(x) of inl (x) 7→ instrλxq(x) | inr (y) 7→ inr (y))
= case instrλxp(x) of inl (x) 7→ ∇(instrλxq(x)) | inr (y) 7→ ∇(inr (y)) (case-case)
= case instrλxp(x) of inl (x) 7→ x | inr (y) 7→ y (∇-instr), (β+2)
def= ∇(instrλxp(x))
= x (∇-instr)

so the result follows by (ηinstr) .
2. This follows immediately from the previous part.
3. This follows from the previous part and the rule (comm) (Appendix A.12).

J

These results show that the scalars form an effect monoid, and the predicates on any
type form an effect module over that effect monoid (see [9]).

5.8 n-tests

Recall that an n-test on a type A is an n-tuple (p1, . . . , pn) such that x : A ` p1 > · · ·> pn =
> : 2.

The following lemma shows that there is a one-to-one correspondance between the n-tests
on A, and the maps A→ n.

I Lemma 21. For every n-test (p1, . . . , pn) on A, there exists a term x : A ` t(x) : n, unique
up to equality, such that x : A ` pi(x) = Bi(t(x)) : 2.

Proof. The proof is by induction on n. The case n = 1 is trivial.
Suppose the result is true for n. Take an n+ 1-test (p1, . . . , pn+1). Then

(p1, p2, . . . , pn > pn+1) is an n-test. By the induction hypothesis, there exists t : n such that
Bi(t) = pi for i < n and Bn(t) = pn > pn+1. Let b : 3 be the bound for pn > pn+1. Reading
t and b as partial functions in n− 1 + 1 and 2 + 1, we have that t↑= b↓= pn > pn+1. Hence
«b, t» : 2 + n− 1 exists. Reading it as a term of type n + 1, we have that

Bn+1
1 («b, t») = B3

1(B2,n−1
1 («b, t»)) (case-case), (β+1), (β+2)

= B3
1(b) (βinlr1)

= pn (b is a bound for pn > pn+1)
Bn+1

2 («b, t») = B3
2(B2,n−1

1 («b, t»)) (case-case), (β+1), (β+2)
= B3

2(b) (βinlr1)
= pn+1 (b is a bound for pn > pn+1)

TYPES 2015

1:26 A Type Theory for Probabilistic and Bayesian Reasoning

and for i < n:

Bn+1
i+2 («b, t») = Bn−1

i (B2,n−1
2 («b, t»))

= Bn+1
i (t) (βinlr2)

= pi (induction hypothesis)

From this it is easy to construct the term of type n + 1 required. J

We write instrλx(p1,...,pn)(s) for instrt(s), where t is the term such that Bi(t) = pi for each
i.

I Lemma 22. instrλx(p1,...,pn)(x) is the unique term such that ini?
(
instrλx(p1,...,pn)(x)

)
= pi

for all i and ∇(instrλx(p1,...,pn)(x)) = x.

I Lemma 23.

instrλxpi(x) = casenj=1instrλx(p1,...,pn)(x) of innj (x) 7→
{

inl (x) if i = j

inr (x) if i 6= j

assertλxpi
(x) = casenj=1instrλx(p1,...,pn)(x) of innj (x) 7→

{
return x if i = j

fail if i 6= j

Proof. Let t be the right-hand side of the first formula. Then

inl? (t) = ini?
(
instrλx(p1,...,pn)(x)

)
(case-case), (β+1), (β+2)

= pi (Lemma 22)
∇(t) = casenj=1instrλx(p1,...,pn)(x) of innj (x) 7→ x (case-case), (β+1), (β+2)

= x (Lemma 2)

The second formula follows easily from the first. J

We can now define the program that divides into n branches depending on the outcome
of an n-test:

I Definition 24. Given x : A ` p1(x) > · · ·> pn(x) = > : 2, define

x : A ` measure p1(x) 7→ t1(x) | · · · | pn(x) 7→ tn(x)
def= case instrλx(p1,...,pn)(x) of inn1 (x) 7→ t1(x) | · · · | innn (x) 7→ tn(x)

I Lemma 25. The measure construction satisfies the following laws.
1. (measure > 7→ t) = t

2. (measure p1 7→ t1 | · · · | pn 7→ tn | ⊥ 7→ tn+1) = (measure p1 7→ t1 | · · · | pn 7→ tn)
3. (measurei pi 7→ measurej qij 7→ tij) = (measurei,j (pi & qij) 7→ tij)
4. For any permutation π of {1, . . . , n}, measurei pi 7→ ti = measurei pπ(i) 7→ tπ(i).
5. If tn = tn+1 then

measureni=1pi 7→ ti = measure p1 7→ t1 | · · · | pn−1 7→ tn−1 | pn > pn+1 7→ tn.

Proof. We shall prove part 3. The proof for the other parts follows the same pattern.
Let us write ini,j () (1 ≤ i ≤ m, 1 ≤ j ≤ ni) for the constructors of (n1 + · · ·+ nm) · A,

and ini,j? () for the corresponding predicates.

R. Adams and B. Jacobs 1:27

We shall first prove

instrλx(pi&qij)i,j
(x)

= casemi=1 instrλx~p(x) of inmi (x) 7→ caseni
j=1 instrλx~qi

(x) of inni
j (x) 7→ ini,j (x) .

(1)

Let R denote the right-hand side of (1). We have

ini,j? (R) = casemi′=1instrλx~p(x) of inmi′ (x) 7→

caseni

j′=1instrλx~qi
(x) of inni

j (x) 7→
{
> if i = i′ and j = j′

⊥ otherwise
(case-case), (β+1), (β+2)

= casemi′=1 instrλx~p(x) of inmi′ (x) 7→
{

inj? (instrλx~qi
(x)) if i = i′

⊥ if i 6= i′

(Lemma 2)

= casemi′=1 instrλx~p(x) of inmi′ (x) 7→
{
qij if i = i′

⊥ if i 6= i′
(instr-test)

= do x←
(

casemi′=1 instrλx~p(x) of inmi′ (x) 7→
{

return x if i = i′

fail if i 6= i′

)
; qij

(case-case), (β+1), (β+2)
= do x← assertλxpi

(x); qij (by Lemma 23)
def= pi & qij

∇(R) = casemi=1 instrλx~p(x) of inmi (x) 7→ ∇(instrλx~qi
(x)) (case-case)

= casemi=1 instrλx~p(x) of inmi (x) 7→ x (∇-instr)
def= ∇(instrλx~p(x)) = x (∇-instr)

Equation (1) follows by (ηinstr).
Now, we have

measureij(pi & qij) 7→ tij
def= caseij instrλx(pi&qij)ij

(x) of ini,j (x) 7→ tij

= caseij R of ini,j (x) 7→ tij by (1)
= casei instrλx~p(x) of inmi (x) 7→ casej instrλx~qi

(x) of inmi
j (x) 7→ tij

(case-case), (β+1), (β+2)
def= measurei pi 7→ measurej qij 7→ tij

J

Let x : A ` p : 2 and Γ, x : A ` s, t : B. We define Γ, x : A ` if p then s else t def=
measure p 7→ s | p⊥ 7→ t : B.

I Lemma 26.
1. If x : A ` p1 > · · ·> pn = > : 2 and x : A ` q1, . . . , qn : 2, then

(measure p1 7→ q1 | · · · | pn 7→ qn) = (p1 & q1) > · · ·> (pn & qn) .

2. Let x : A ` p : 2 and Γ ` q, r : B where x /∈ Γ. Then

Γ, x : A ` if p then q else r = case p of inl (_) 7→ q | inr (_) 7→ r : B .

TYPES 2015

1:28 A Type Theory for Probabilistic and Bayesian Reasoning

3. Let x : A ` p : 2. Then x : A ` if p then > else ⊥ = p : 2.

Proof. We prove part 2 here. We have

measure p 7→ q | p⊥ 7→ r
def= case instrλxp(x) of inl (_) 7→ q | inr (_) 7→ r

= case inl? (instrλxp(x)) of inl (_) 7→ q | inr (_) 7→ r

(case-case), (β+1), (β+2)
= case p of inl (_) 7→ q | inr (_) 7→ r (instr-test)

J

5.9 Scalars
From the rules given in Figure 2, the usual algebra of the rational interval from 0 to 1 follows.

I Lemma 27. If p/q = m/n as rational numbers, then ` p · (1/q) = m · (1/n) : 2.

Proof. We first prove that ` a·(1/ab) = 1/b : 2 for all a, b. This holds because ab·(1/ab) = >
by (n · 1/n) , hence a · (1/ab) = 1/b by (divide) .

Hence we have p · (1/q) = pn · (1/nq) = qm · (1/nq) = m · (1/n). J

Recall that within COMET, we are writingm/n for the termm·(1/n). Similar reasoning
leads us to

I Lemma 28. Let q and r be rational numbers in [0, 1].
1. If q ≤ r in the usual ordering, then ` q ≤ r : 2.
2. ` q > r : 2 iff q + r ≤ 1, in which case ` q > r = q + r : 2.
3. ` q & r = qr : 2.

5.10 Normalisation
The following lemma gives us a rule that allows us to calculate the normalised form of a
substate in many cases, including the examples in Section 3.

I Lemma 29. Let ` t : A + 1, ` p1 > · · · > pn = > : 2, and ` q : 2. Let ` s1, . . . , sn : A.
Suppose ` 1/m ≤ q : 2. If

` t = measure p1 & q 7→ return s1 | · · · | pn & q 7→ return sn | q⊥ 7→ fail : A+ 1 , then
` nrm (t) = measure p1 7→ s1 | · · · | pn 7→ sn : A

Proof. Let ρ def= measureni=1pi 7→ si. By the rule (ηnrm) , it is sufficient to prove that
t = do _← t; return ρ. We have

do _← t; return ρ = measure p1 & q 7→ return ρ | · · · | pn & q 7→ return ρ | q⊥ 7→ fail
(case-case), (β+1), (β+2)

= measure q 7→ return ρ | q⊥ 7→ fail (Lemma 25)
= measureni=1 q & pi 7→ return si | q⊥ 7→ fail (Lemma 25)
= t (Proposition 20)

J

I Corollary 30. Let α1, . . . , αn, β be rational numbers that sum to 1, with β 6= 1. If

` t = measure α1 7→ return s1 | · · · | αn 7→ return sn | β 7→ fail : A+ 1 , then
` nrm (t) = measure α1/(α1 + · · ·+ αn) 7→ s1 | · · · | αn/(α1 + · · ·+ αn) 7→ sn : A .

R. Adams and B. Jacobs 1:29

6 Conclusion

The system COMET allows for the specification of probabilistic programs and reasoning
about their properties, both within the same syntax.

There are several avenues for further work and research.
The type theory that we describe can be interpreted both in discrete and in continuous
probabilistic models, that is, both in the Kleisli category K`(D) of the distribution
monad D and in the Kleisli category K`(G) of the Giry monad G. On a finite type each
distribution is discrete. The discrete semantics were exploited in the current paper in
the examples in Section 3. In a follow-up version we intend to elaborate also continuous
examples.
The normalisation and conditioning that we use in this paper can in principle also be
used in a quantum context, using the appropriate (non-side-effect free) assert maps that
one has there. This will give a form of Bayesian quantum theory, as also explored in [17].
A further ambitious follow-up project is to develop tool support for COMET, so that
the computations that we carry out here by hand can be automated. This will provide a
formal language for Bayesian inference.

Acknowledgements Thanks to Kenta Cho for discussion and suggestions during the writing
of this paper, and very detailed proofreading. Thanks to Bas Westerbaan for discussions
about effectus theory.

References
1 R. Adams. QPEL: Quantum program and effect language. In B. Coecke, I. Hasuo, and

P. Panangaden, editors, Proc. of 11th Int. Workshop on Quantum Physics and Logic, QPL
2014, volume 172 of Electron. Proc. Theor. Comput. Sci., pages 133–153. Open Publishing
Assoc., 2014. doi:10.4204/eptcs.172.10.

2 N. Benton, G. Bierman, V. de Paiva, and M. Hyland. A term calculus for intuitionistic
linear logic. In M. Bezem and J. F. Groote, editors, Proc. of Int. Conf. on Typed Lambda
Calculi and Applications, TLCA ’93, volume 664 of Lect. Notes in Comput. Sci., pages
75–90. Springer, 1993. doi:10.1007/bfb0037099.

3 Johannes Borgström, Andrew D. Gordon, Michael Greenberg, James Margetson, and Jur-
gen Van Gael. Measure transformer semantics for Bayesian machine learning. In Gilles
Barthe, editor, Programming Languages and Systems - 20th European Symposium on Pro-
gramming, ESOP 2011, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011. Pro-
ceedings, volume 6602 of Lecture Notes in Computer Science, pages 77–96. Springer, 2011.
doi:10.1007/978-3-642-19718-5_5.

4 K. Cho. Total and partial computation in categorical quantum foundations. In C. Heunen,
P. Selinger, and J. Vicary, editors, Proc. of 12th Int. Workshop on Quantum Physics and
Logic, QPL 2015, volume 195 of Electron. Proc. in Theor. Comput. Sci., pages 116–135.
Open Publishing Assoc., 2015. doi:10.4204/eptcs.195.9.

5 K. Cho, B. Jacobs, A. Westerbaan, and B. Westerbaan. An introduction to effectus theory,
2015. arXiv preprint 1512.05813. URL: https://arxiv.org/abs/1512.05813.

6 K. Cho, B. Jacobs, A. Westerbaan, and B. Westerbaan. Quotient comprehension chains.
In C. Heunen, P. Selinger, and J. Vicary, editors, Proc. of 12th Int. Workshop on Quantum
Physics and Logic, QPL 2015, volume 195 of Electron. Proc. in Theor. Comput. Sci., pages
136–147. Open Publishing Assoc., 2015. doi:10.4204/eptcs.195.10.

TYPES 2015

http://dx.doi.org/10.4204/eptcs.172.10
http://dx.doi.org/10.1007/bfb0037099
http://dx.doi.org/10.1007/978-3-642-19718-5_5
http://dx.doi.org/10.4204/eptcs.195.9
https://arxiv.org/abs/1512.05813
http://dx.doi.org/10.4204/eptcs.195.10

1:30 A Type Theory for Probabilistic and Bayesian Reasoning

7 Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani. Prob-
abilistic programming. In James D. Herbsleb and Matthew B. Dwyer, editors, Proceedings
of the on Future of Software Engineering, FOSE 2014, Hyderabad, India, May 31 - June 7,
2014, pages 167–181. ACM, 2014. doi:10.1145/2593882.2593900.

8 B. Jacobs. Measurable spaces and their effect logic. In Proc. of 28th Annual ACM/IEEE
Symp. on Logic in Computer Science, LICS ’13, pages 83–92. IEEE, 2013. doi:10.1109/
lics.2013.13.

9 B. Jacobs. New directions in categorical logic, for classical, probabilistic and quantum logic.
Log. Methods Comput. Sci., 11(3):article 24, 2015. doi:10.2168/lmcs-11(3:24)2015.

10 Bart Jacobs. From probability monads to commutative effectuses. J. Log. Algebr. Meth.
Program., 94:200–237, 2018. doi:10.1016/j.jlamp.2016.11.006.

11 Bart Jacobs, Bas Westerbaan, and Bram Westerbaan. States of convex sets. In Andrew M.
Pitts, editor, Foundations of Software Science and Computation Structures - 18th Inter-
national Conference, FoSSaCS 2015, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceed-
ings, volume 9034 of Lecture Notes in Computer Science, pages 87–101. Springer, 2015.
doi:10.1007/978-3-662-46678-0_6.

12 Bart Jacobs and Fabio Zanasi. A predicate/state transformer semantics for bayesian learn-
ing. Electr. Notes Theor. Comput. Sci., 325:185–200, 2016. doi:10.1016/j.entcs.2016.
09.038.

13 C. Jones and G. D. Plotkin. A probabilistic powerdomain of evaluations. In Proc. of 4th
Ann. IEEE Symp. on Logic in Computer Science, LICS ’89, pages 186–195. IEEE, 1989.
doi:10.1109/lics.1989.39173.

14 Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo.
Weakest precondition reasoning for expected run-times of probabilistic programs. In Peter
Thiemann, editor, Programming Languages and Systems - 25th European Symposium on
Programming, ESOP 2016, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016,
Proceedings, volume 9632 of Lecture Notes in Computer Science, pages 364–389. Springer,
2016. doi:10.1007/978-3-662-49498-1_15.

15 Dexter Kozen. Semantics of probabilistic programs. J. Comput. Syst. Sci., 22(3):328–350,
1981. doi:10.1016/0022-0000(81)90036-2.

16 Dexter Kozen. A probabilistic PDL. J. Comput. Syst. Sci., 30(2):162–178, 1985. doi:
10.1016/0022-0000(85)90012-1.

17 M. S. Leifer and R. W. Spekkens. Towards a formulation of quantum theory as a causally
neutral theory of Bayesian inference. Phys. Rev. A, 88(5):article 052130, 2013. doi:10.
1103/physreva.88.052130.

18 Carroll Morgan, Annabelle McIver, and Karen Seidel. Probabilistic predicate transformers.
ACM Trans. Program. Lang. Syst., 18(3):325–353, 1996. doi:10.1145/229542.229547.

19 Federico Olmedo, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja.
Reasoning about recursive probabilistic programs. In Martin Grohe, Eric Koskinen, and
Natarajan Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 672–681.
ACM, 2016. doi:10.1145/2933575.2935317.

20 S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2003.
21 Sam Staton, Hongseok Yang, Frank D. Wood, Chris Heunen, and Ohad Kammar. Se-

mantics for probabilistic programming: higher-order functions, continuous distributions,
and soft constraints. In Martin Grohe, Eric Koskinen, and Natarajan Shankar, ed-
itors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer

http://dx.doi.org/10.1145/2593882.2593900
http://dx.doi.org/10.1109/lics.2013.13
http://dx.doi.org/10.1109/lics.2013.13
http://dx.doi.org/10.2168/lmcs-11(3:24)2015
http://dx.doi.org/10.1016/j.jlamp.2016.11.006
http://dx.doi.org/10.1007/978-3-662-46678-0_6
http://dx.doi.org/10.1016/j.entcs.2016.09.038
http://dx.doi.org/10.1016/j.entcs.2016.09.038
http://dx.doi.org/10.1109/lics.1989.39173
http://dx.doi.org/10.1007/978-3-662-49498-1_15
http://dx.doi.org/10.1016/0022-0000(81)90036-2
http://dx.doi.org/10.1016/0022-0000(85)90012-1
http://dx.doi.org/10.1016/0022-0000(85)90012-1
http://dx.doi.org/10.1103/physreva.88.052130
http://dx.doi.org/10.1103/physreva.88.052130
http://dx.doi.org/10.1145/229542.229547
http://dx.doi.org/10.1145/2933575.2935317

R. Adams and B. Jacobs 1:31

Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 525–534. ACM, 2016.
doi:10.1145/2933575.2935313.

22 Regina Tix, Klaus Keimel, and Gordon D. Plotkin. Semantic domains for combining
probability and non-determinism. Electr. Notes Theor. Comput. Sci., 222:3–99, 2009.
doi:10.1016/j.entcs.2009.01.002.

23 E. S. Yudkowsky. An intuitive explanation of Bayesian reasoning. Essay, 2003. URL:
http://yudkowsky.net/rational/bayes.

A Formal Presentation of COMET

The full syntax of COMET is given by the grammar:

Type A,B ::= C | 0 | 1 | A+B | A⊗B
Term r, s, t ::= x | ∗ | s ⊗ t | let x ⊗ y = s in t | ¡ t | inl (t) | inr (t) |

(case r of inl (x) 7→ s | inr (y) 7→ t) | «s, t» | left (t) | instrλxs(t) | 1/n | bmn
nrm (t) | s> t

We have a constant 1/n for every natural number n ≥ 2, and a constant bmn for all
natural numbers 1 ≤ m < n.

The full set of rules of deduction for COMET are given below.

A.1 Structural Rules
Γ, x : A, y : B,∆ ` J(exch) Γ, y : B, x : A,∆ ` J

x : A ∈ Γ(var) Γ ` x : A

Γ ` t : A(ref) Γ ` t = t : A
Γ ` s = t : A(sym) Γ ` t = s : A

Γ ` r = s : A Γ ` s = t : A(trans) Γ ` r = t : A

A.2 The Unit Type

(unit) Γ ` ∗ : 1
Γ ` t : 1(η1) Γ ` t = ∗ : 1

A.3 Tensor Product
Γ ` s : A ∆ ` t : B(⊗) Γ,∆ ` s ⊗ t : A⊗B

Γ ` s : A⊗B ∆, x : A, y : B ` t : C(let) Γ,∆ ` let x ⊗ y = s in t : C

Γ ` s = s′ : A ∆ ` t = t′ : B(paireq)
Γ,∆ ` s ⊗ t = s′ ⊗ t′ : A⊗B

Γ ` s = s′ : A⊗B ∆, x : A, y : B ` t = t′ : C(leteq)
Γ,∆ ` (let x ⊗ y = s in t) = (let x ⊗ y = s′ in t′) : C

Γ ` r : A ∆ ` s : B Θ, x : A, y : B ` t : C(β⊗)
Γ,∆,Θ ` (let x ⊗ y = r ⊗ s in t) = t[x := r, y := s] : C

Γ ` t : A⊗B(η⊗)
Γ ` t = (let x ⊗ y = t in x ⊗ y) : A⊗B

TYPES 2015

http://dx.doi.org/10.1145/2933575.2935313
http://dx.doi.org/10.1016/j.entcs.2009.01.002
http://yudkowsky.net/rational/bayes

1:32 A Type Theory for Probabilistic and Bayesian Reasoning

Γ ` r : A⊗B ∆, x : A, y : B ` s : C ⊗D Θ, z : C,w : D ` t : E(let-let)
Γ,∆,Θ ` let x ⊗ y = r in (let z ⊗ w = s in t)

= let z ⊗ w = (let x ⊗ y = r in s) in t : E

Γ ` r : A⊗B ∆, x : A, y : B ` s : C Θ ` t : D(let-⊗)
Γ,∆,Θ ` let x ⊗ y = r in (s ⊗ t) = (let x ⊗ y = r in s) ⊗ t : D

A.4 Empty Type
Γ ` t : 0(magic) Γ ` ¡ t : A

Γ ` s : 0 Γ ` t : A(η0) Γ ` ¡ s = t : A

A.5 Binary Coproducts
Γ ` t : A(inl)

Γ ` inl (t) : A+B
Γ ` t : B(inr)

Γ ` inr (t) : A+B

Γ ` t = t′ : A(inl-eq)
Γ ` inl (t) = inl (t′) : A+B

Γ ` t = t′ : B(inr-eq)
Γ ` inr (t) = inr (t′) : A+B

Γ ` r : A+B ∆, x : A ` s : C ∆, y : B ` t : C(case)
Γ,∆ ` case r of inl (x) 7→ s | inr (y) 7→ t : C

Γ ` r = r′ : A+B ∆, x : A ` s = s′ : C ∆, y : B ` t = t′ : C(case-eq)

Γ,∆ `
case r of inl (x) 7→ s | inr (y) 7→ t

= case r′ of inl (x) 7→ s′ | inr (y) 7→ t′ : C

Γ ` r : A ∆, x : A ` s : C ∆, y : B ` t : C(β+1) Γ,∆ ` case inl (r) of inl (x) 7→ s | inr (y) 7→ t = s[x := r] : C

Γ ` r : B ∆, x : A ` s : C ∆, y : B ` t : C(β+2) Γ,∆ ` case inr (r) of inl (x) 7→ s | inr (y) 7→ t = t[y := r] : C

Γ ` t : A+B(η+)
Γ ` t = case t of inl (x) 7→ inl (x) | inr (y) 7→ inr (y) : A+B

Γ ` r : A+B ∆, x : A ` s : C +D ∆, y : B ` s′ : C +D

Θ, z : C ` t : E Θ, w : D ` t′ : E
(case-case)

Γ,∆,Θ ` case r of inl (x) 7→ case s of inl (z) 7→ t | inr (w) 7→ t′ |
inr (y) 7→ case s′ of inl (z) 7→ t | inr (w) 7→ t′

= case (case r of inl (x) 7→ s | inr (y) 7→ s′)
of inl (z) 7→ t | inr (w) 7→ t′ : E

Γ ` r : A+B ∆, x : A ` s : C ∆, y : B ` s′ : C Θ ` t : D(case-⊗)
Γ,∆,Θ ` (case r of inl (x) 7→ s | inr (y) 7→ s′) ⊗ t =

case r of inl (x) 7→ s ⊗ t | inr (y) 7→ s′ ⊗ t : C ⊗D

R. Adams and B. Jacobs 1:33

Γ ` r : A+B ∆, z : A ` s : C ⊗D
∆, w : B ` s′ : C ⊗D Θ, x : C, y : D ` t : E

(let-case)
Γ,∆,Θ ` let x ⊗ y = case r of inl (z) 7→ s | inr (w) 7→ s′ in t =

case r of inl (z) 7→ let x ⊗ y = s in t |
inr (w) 7→ let x ⊗ y = s′ in t : E

A.6 Partial Pairing

Γ ` s : A+ 1 Γ ` t : B + 1 Γ ` s ↓= t ↑: 2(inlr) Γ ` «s, t» : A+B

Γ ` s = s′ : A+ 1 Γ ` t = t′ : B + 1 Γ ` s ↓= t ↑: 2(inlr-eq)
Γ ` «s, t» = «s′, t′» : A+B

Γ ` s : A+ 1 Γ ` t : B + 1 Γ ` s ↓= t ↑: 2(βinlr1) Γ ` B1(«s, t») = s : A+ 1

Γ ` s : A+ 1 Γ ` t : B + 1 Γ ` s ↓= t ↑: 2(βinlr2) Γ ` B2(«s, t») = t : B + 1

Γ ` t : A+B(ηinlr)
Γ ` t = «B1(t),B2(t)» : A+B

A.7 The left() Construction

Γ ` t : A+B Γ ` inl? (t) = > : 2
(left)

Γ ` left (t) : A

Γ ` t = t′ : A+B Γ ` inl? (t) = > : 2
(left-eq)

Γ ` left (t) = left (t′) : A

Γ ` t : A+B Γ ` inl? (t) = > : 2
(βleft)

Γ ` inl (left (t)) = t : A+B

Γ ` t : A(ηleft)
Γ ` left (inl (t)) = t : A

A.8 Instruments
x : A ` t : n Γ ` s : A(instr)

Γ ` instrλxt(s) : n ·A
x : A ` t : n Γ ` s : A(∇-instr)
Γ ` ∇(instrλxt(s)) = s : A

x : A ` t = t′ : n Γ ` s = s′ : A(instr-eq)
Γ ` instrλxt(s) = instrλxt′(s′) : n ·A

x : A ` t : n Γ ` s : A(instr-test)
Γ ` case n

i=1instrλxt(s) of inni (_) 7→ i = t[x := s] : n

x : A ` r : n ·A x : A ` ∇(r) = x : A Γ ` s : A
(ηinstr)

Γ ` instrλx.case n
i=1r of inn

i
(_)7→i(s) = r[x := s] : n ·A

TYPES 2015

1:34 A Type Theory for Probabilistic and Bayesian Reasoning

A.9 Scalar Constants
For any natural number n ≥ 2, we have the following rules.

(1/n)
Γ ` 1/n : 2

(n · 1/n)
Γ ` n · 1/n = > : 2

Γ ` n · t = > : 2(divide)
Γ ` t = 1/n : 2

(bmn) (1 ≤ m < n)Γ ` bmn : 3

(B1 − bmn) (1 ≤ m < n)
Γ ` do x← bmn;B1(x) = 1/n : 2

(B2 − bmn) (1 ≤ m < n)
Γ ` do x← bmn; return ∇(x) = m · 1/n : 2

These ensure that 1/n is the unique scalar whose sum with itself n times is >. The term
bmn ensures that the term (m+ 1) · 1/n is well-typed.

A.10 Normalisation
` t : A+ 1 ` 1/n ≤ t ↓: 2

(nrm)
Γ ` nrm (t) : A
` t : A+ 1 ` 1/n ≤ t ↓: 2

(βnrm)
Γ ` t = do _← t; return nrm (t) : A+ 1
` t : A+ 1 ` 1/n ≤ t ↓: 2 ` ρ : A ` t = do _← t; return ρ : A+ 1

(ηnrm)
Γ ` ρ = nrm (t) : A

A.11 Partial Sum

Γ ` s : A+ 1 Γ ` t : A+ 1
Γ ` b : (A+A) + 1 Γ ` do x← b;B1(x) = s : A+ 1

Γ ` do x← b;B2(x) = t : A+ 1
(>) Γ ` s> t : A+ 1

Γ ` s : A+ 1 Γ ` t : A+ 1
Γ ` b : (A+A) + 1 Γ ` do x← b;B1(x) = s : A+ 1

Γ ` do x← b;B2(x) = t : A+ 1
(>-def)

Γ ` s> t = do x← b; return ∇(x) : A+ 1

A.12 Miscellaneous
Γ ` s : (A+A) + 1 Γ ` t : (A+A) + 1
Γ ` do x← s;B1(x) = do x← t;B1(x) : A+ 1
Γ ` do x← s;B2(x) = do x← t;B2(x) : A+ 1

(JM)
Γ ` s = t : (A+A) + 1

x : A ` p : 2 x : A ` q : 2 Γ ` t : A(comm)
Γ ` do y ← assertλxp(t); assertλxq(y) = do y ← assertλxq(t); assertλxp(y) : A+ 1

	Introduction
	Previous Work

	Syntax and Rules of Deduction
	Syntax
	Affine Type Theory
	States, Predicates and Scalars
	Empty Type
	Coproducts and Copowers
	Partial Functions
	Partial Projections
	Partial Sum

	Logic
	n-tests
	Instrument Maps
	Assert Maps
	Sequential Conjunction
	Coproducts
	Kernels

	Partial Pairing
	Scalar Constants
	Normalisation
	Note

	Marginalisation
	Local Definition

	Examples
	Semantics
	Discrete Probabilistic Computation
	Alternative Semantics
	Note on Affine Type Theory

	Metatheorems
	Coproducts
	The right() Construction
	The swap() Operation
	Kernels
	Ordering on Partial Maps and the Partial Sum
	Assert Maps
	Sequential Conjunction
	n-tests
	Scalars
	Normalisation

	Conclusion
	Formal Presentation of COMET
	Structural Rules
	The Unit Type
	Tensor Product
	Empty Type
	Binary Coproducts
	Partial Pairing
	The left() Construction
	Instruments
	Scalar Constants
	Normalisation
	Partial Sum
	Miscellaneous

