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—— Abstract

Functional Kan simplicial sets are simplicial sets in which the horn-fillers required by the Kan
extension condition are given explicitly by functions. We show the non-constructivity of the
following basic result: if B and A are functional Kan simplicial sets, then AZ is a Kan simplicial
set. This strengthens a similar result for the case of non-functional Kan simplicial sets shown
by Bezem, Coquand and Parmann [TLCA 2015, v. 38 of LIPIcs]. Our result shows that — from
a constructive point of view — functional Kan simplicial sets are, as it stands, unsatisfactory as
a model of even simply typed lambda calculus. Our proof is based on a rather involved Kripke
countermodel which has been encoded and verified in the Coq proof assistant.
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1 Introduction

In this paper, we show that the following theorem cannot be constructively proven in
Intuitionistic Zermelo-Fraenkel (IZF) set theory.

» Theorem 1 (classical). If B and A are functional Kan simplicial sets, then AP is a Kan
simplicial set.

We showed a similar result in [2], but for non-functional Kan simplicial sets. We will introduce
(functional Kan) simplicial sets properly in the next section; for now, we will explain what
is needed to characterize the crucial difference between functional and non-functional Kan
simplicial sets.

A simplicial set consist of a family of sets A[i],7 € N with certain functions going between
them, such that these functions satisfy the so-called simplicial identities. A Kan simplicial
set is a simplicial set which is, in some sense, “full”: it satisfies that, for every compatible
n-tuple of elements in A[n — 1], there exists a compatible element in A[n], using the meaning
of “compatible” given in Definition 4.

Functional and non-functional Kan simplicial sets differ only in that the expression
“for every...there exists...” is given a constructive interpretation. Although classical
mathematics easily passes — by applying the axiom of choice — from elements existing to
functions giving those elements, constructive mathematics does not take this so lightly.
Constructively, all functional Kan simplicial sets are Kan simplicial sets, but the converse
does not hold unless we adopt the axiom of choice, which — depending on the context — makes
the logic classical [5].
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Theorem 1 is true classically, even without requiring that B is Kan (cf. [11, Appendix A,
Theorem 3] or [10, Theorem 6.9] for a more modern approach), and plays an important role
when using Kan simplicial sets as a model of type theory. The way we prove that Theorem 1
cannot be constructively proven is to show that the following constructive consequence of it
cannot be constructively proven.

» Theorem 2 (classical). If B and A are functional Kan simplicial sets, then any edge in
AB can be reversed.

In [2] we gave a Kripke counterexample to the constructive provability of Theorem 1 for
non-functional Kan simplicial sets, showing that the appeal to classical logic in the proofs
is essential. We did this by showing that certain graph-like, first-order structures can be
constructively extended to Kan simplicial sets; and by using the corresponding version of
Theorem 2 on the resulting simplicial set, we got that the graphs have a particular feature
we can call function-space edge reversal. We then showed that the same class of structures
does not have function-space edge reversal constructively.

Unfortunately, the countermodel only yields a non-functional Kan simplicial set, and we
showed that if we assume explicit filler functions, then the simplicial sets induced by graphs
always have function-space edge reversal. This shows that a simple tweak of the model is not
sufficient; we need structures other than simple graphs. More precisely, we conjectured that
a countermodel must be a hypergraph containing at least three dimensions of a simplicial
set — not only points and edges, but also triangles — and this might significantly increase the
complexity.

The present paper provides such a Kripke countermodel. In addition to the extra
complexity of the new dimension, it also contains explicit filler functions respecting equality
(the equality relation must be a congruence). Since this Kripke model equates elements (as
the one in [2]), ensuring congruence turns out to be quite involved. To validate correctness,
we have encoded and verified the model in the Coq [4] proof assistant.

The simplicial set AP in Theorem 1 is not claimed to be functional Kan. This makes
Theorem 1 weaker than if we had required A® to be functional Kan, strengthening the
non-provability result in this paper. It also means that the present paper properly generalizes
[2].

In [3] it was shown that the homotopy equivalence of the fibers of a functional Kan
fibration over a connected base cannot be proved constructively. The techniques used in the
present paper are strongly inspired by [3].

The first section of [2] provides a introduction as to why Kan simplicial sets are interesting
from a type-theoretical perspective. In short, Kan simplicial sets can be used to build a
model of Martin-Lof Type Theory(MLTT) [8] with the homotopy theoretic interpretation of
equality, and in this construction, Theorem 1 is important for the interpretation of function
types. The results in [3] show that this construction, with equality interpreted as homotopy
equivalences, is fundamentally non-constructive. This result closes one of the possible paths
to finding a computational interpretation of the Univalence Axiom.

In [2] we showed that an even more fundamental part of the Kan simplicial set model of
Type Theory — the interpretation of function types — is fundamentally non-constructive for
non-functional Kan simplicial sets. The present paper shows the same for functional Kan
simplicial sets. As a result the Kan simplicial set model is shown to presently be, from a
constructive perspective, unsatisfactory as a model of even simply typed lambda calculus.

An alternative to interpreting type theory in Kan simplicial sets is to use cubical sets
with a uniform Kan condition, as in [1]. The results of the present paper suggests that using
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cubical sets with the uniform Kan condition is more promising than using Kan simplicial
sets.

In addition to its type-theoretical implications, we think the result in this paper is valuable
in its own right: we prove that a basic result in homotopy theory is not constructively provable.

The rest of the paper is organized as follows. In Section 2, we introduce simplicial sets
and provide several examples of simplicial sets which will be used later. In Section 3, we
define hypergraphs which we can constructively interpret as simplicial sets. In Section 4,
we use that interpretation, in combination with Theorem 1, to formulate a theorem about
graphs. In Section 5, we provide a Kripke model rejecting the constructive provability of this
theorem. In Section 6, we explain how we used the proof assistant Coq to verify the Kripke
model, before concluding in Section 7.

2 Simplicial Sets

We start by recalling the formal definition of simplicial sets and Kan simplicial sets from [2].
We also introduce functional Kan simplicial sets, before we provide a more intuitive explana-
tion intended for those new to simplicial sets.

» Definition 3 (Simplicial set). A simplicial set A is a collection of sets Ali] for ¢ € N such
that, for every 0 < n and j < n, we have a function (face map) dj : A[n] — A[n — 1], and for
every 0 < n and j <n, we have a function (degeneracy map) s7 : Aln] — Aln + 1], satisfying
the following simplicial identities for all suitable superscripts, which we happily omit:

did; = d;_yd; ifi<j (1)
dis; = sj_id; ifi<j (2)
d;sj =id fori=j,7+1 (3)
dis; = sjdi—1 ifi>j5+1 (4)
$iSj = S;Si—1 ifi>j (5)

An element of A[i] is called an i-simplex. A degenerate element is any element a € Afi + 1]
in the image of a degeneracy map.

Note that a simplicial identity, such as, d?d;.”'l = d;ﬂld?""l, actually means
Vo € Aln+1]. di(d} " (z)) = dj_, (df T (x)).

Simplicial sets form a category. For two simplicial sets A and B, Homg(A, B) is the
set of all natural transformations from A to B. A natural transformation is a collection
of maps g[n] : A[n] — Bln| commuting with the face and degeneracy maps of A and B:
gln)s; = sigln — 1] for all 0 < i < n and g[n + 1]d; = d;g[n] for all 0 < i < n+ 1. We
freely omit the dimension [n] when it can be inferred from the other arguments. For more
information on simplicial sets, see [10, 7, 6].

» Definition 4 (Functional Kan simplicial set). A simplicial set ¥ satisfies the Kan condition
if for any collection of simplices yo, - - ., Yk—1, Yk+1, - - - » Yn i1 Y [n —1] such that d;y; = d;—1y;
for any ¢ < j with ¢ # k and j # k, there is an n-simplex y in Y such that d;y = y; for all
1 # k. The Kan condition is also called the Kan extension property, and a simplicial set is
called a Kan simplicial set if it satisfies the Kan condition.

If we have functions fill} ™' : Y[n —1] x ...Y[n— 1] — Y|[n] giving the required n-simplex,
then we say that Y is a functional Kan simplicial set.
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Figure 1 A single triangle.

A similar notion to functional Kan simplicial sets has been introduced by Thomas
Nikolaus [12] as algebraic Kan complexes (AlgKan). The difference between AlgKan and
functional Kan simplicial sets lies in the notion of morphisms (maps) in the corresponding
category. For functional Kan simplicial sets, the morphisms are the same as between simplicial
sets — they are natural transformations commuting with face and degeneracy maps — while
for AlgKan, the morphisms must also send fillings to fillings. While the category of simplicial
sets have a well-behaved exponential object, there is, to the author’s knowledge, no good
notion of exponentiation for AlgKan. Exponentiation is used to interpret the function type.

We will now provide some intuition of Kan simplicial sets by inspecting how they work in
the lower dimensions. Readers who are already familiar with simplicial sets can skip ahead
to Notation 5.

A simplicial set is an algebraic model of a topological space. It can also be seen as
generalizations of reflexive directed multigraphs with countably infinite many dimensions.
The first four dimensions of a simplicial set A can be viewed as points, edges, triangles and
tetrahedrons. There are two functions going from edges to points — d : A[1] — A[0] and
d} : A[1] = A[0] — and we say that d} gives the startpoint and d} gives the endpoint of an
edge. Likewise, there are three functions from triangles to edges, d3,d?,d3 : A[2] — A[1]
(giving the three edges a triangle consists of); and there are four similarly-named functions
from tetrahedrons to triangles (giving the four triangles of the tetrahedron.)

It is important to note that elements are not necessarily equal when their components
are; there can be several different edges going from one point to another, there can be several
triangles having the exact same edges components, and so on.

Figure 1 shows a triangle ¢ consisting of three edges, eg, e; and es, with df(t) = ¢;. Since
the triangle is built up by three edges, we expect certain relations between the endpoints
of those edges; for example, that the endpoint of e; matches the startpoint of ey. This is
precisely what is enforced by simplicial identity 1.

In addition to the face maps d7, there are the degeneracy maps s7 : A[n] — A[n + 1].
These give degenerate elements: elements which are, so to say, constructed solely from a
lower-dimensional object. For points, s gives a reflexive edge on that point, and this edge is
called the degenerate self-loop of the point. For edges, sj gives a triangle where two of the
sides are the original edge and the third side is the degenerate self-loop of the startpoint of
the edge, as shown in Figure 2. The function s} gives a triangle with the degenerate edge
built on the endpoint. These properties are enforced by the simplicial identities 2-4, while
simplicial identity 5 enforces the natural constraint that certain different ways of degenerating
lead to the same degenerate element. The latter is most easily exemplified by first taking
the degenerate edge on a point, and then either s} or s} of this edge, both provide the same
degenerate triangle (with all three faces degenerate.)

Kan simplicial sets are special insofar as they are guaranteed to contain certain elements.
One intuition is that they are simplicial sets satisfying the following condition: Whenever we
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Figure 2 An edge e and the degenerate triangle s§(e).
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Figure 3 An example of two compatible edges getting filled.

have n + 1 elements in A[n| such that we lack exactly one element in A[n] to have all the
faces of an element in A[n + 1], then we have this extra element in A[n], and we have the
element in A[n + 1] containing them all. For example, if we have two edges as in the left of
Figure 3 where we lack only one edge to have all the edges of a triangle, then that edge exists
(the edge g in the figure), and there is a triangle such that its faces are exactly e, f and g.
For triangles, the Kan condition ensures that if we have three triangles such that we only lack
a fourth to form a tetrahedron, then we have both that triangle and the tetrahedron. The
relatively unwieldy condition on the sequence of elements yo, ..., Yk—1,Yk+1, - - -, Yn given in
Definition 4 express precisely that we lack exactly one element in A[n] to have all the faces
of an element in A[n + 1].

» Notation 5. We introduce some notation for describing elements in the lower dimensions
of a simplicial set A. We write e : a — b if e € A[l], d}(e) = a, and d}(e) = b (note the
direction). We write

for a triangle t € A[2] with d?(t) = e;. We say that a triangle t contains an edge e if d°t = e
for some 0 <1i < 2. The simplicial identities enforce that all triangles t € A[2] satisfy that,

€2 €o
ift: Q‘, , then djes = dieg, dies = diey and dyeg = dley. This justifies writing
€1

for a triangle t with d't = e; and ez :a — b, eg : b — ¢, and ey : a — c.

Before moving on to some examples of simplicial sets, we show a property of Kan simplicial
sets which will be important later: they have edge reversal.

TYPES 2015
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» Definition 6 (Edge reversal). A simplicial set Y is said to have edge reversal when, for
every edge e € Y[1], there exists an edge f € Y/[1] with d}(f) = d}(e) and d}(f) = di(e). We
say that a simplicial set has functional edge reversal when we have a function giving, for
every edge e € Y[1], the edge f € Y[1] as above.

» Lemma 7. Functional Kan simplicial sets have functional edge reversal, and Kan simplicial
sets have edge reversal.

Proof of functional edge reversal. For all e € Y[1] where Y is a functional Kan fill-graph,
let

f = dg(fll(s5(di (), e))-

If e: a — b, then s3(di(e)) : a — a, and

b
fillg(s9(d1(e)), e) : ae/;\: a
T ey
so d3(fill§(s3(dl(e)),e)) : b — a. <

Proof of non-functional version. As above, but instead of using the fill function we can
only claim that the edge exists. |

2.1 Examples of Simplicial Sets

In this section we give some examples of simplicial sets which will be useful later. This
section contains standard definitions, and is taken from [2].

2.1.1 Standard Simplicial k-Simplex A*

AF is the simplicial set with A*[j] consisting of all non-decreasing sequences of numbers
0,...,k of length j + 1. Equivalently, A*[j] is the set of order-preserving functions [j] — [k],
where [i] denotes 0, ..., with the natural ordering. Examples are A'[0] = {0,1}, Al[1] =
{00,01, 11}, A2[1] = {00,01,02, 11,12, 22} and

A?[2] = {000,001,002,011,012,022,111, 112,122, 222}.

The degeneracy map s{v : Al[j] — A'[j + 1] duplicates the k-th element in its input. So,
§3,(T0 - Tk - Tjy1) = Lo ... TRk .. Tj41. The face map dy, : A'[j] — A'[j — 1] deletes the

k-th element. So, dj (¢ ...%;) =g ... Tp—1Tkt1 - - - Tj.

2.1.2 The k-Horns A;?

A% is the j’th horn of the standard k-simplex A¥, and defined by A¥[n] = {f € A*[n] |
[k] — {4} € Im(f)}. Alternatively, it is A¥[n] except every element must avoid some element
not equal to j. For example, A2[1] = {00,01,02,11, 17,22} = A?[1] — {12} (excluding 12,
since 12 does not avoid any element not equal to 0). We also have:

A2[2] = {000,001,002,011, 0¥Z, 022, 111, 147, 127,222}

The functional Kan extension condition from Definition 4 for a simplicial set Y can also
be formulated as: we have a dependent function fill(k, j, F') such that fill(k, j, F) : A¥ =Y
extends F: A¥ =Y, for any k, j, F.
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2.1.3 Cartesian Products

For two simplicial sets A and B, A x B is the simplicial set given by (4 x B)[i] = Ali] x BJ[i],
and the structural maps d and s use d* and d® component-wise (and likewise for s4 and
sP). So if a € Ali] and b € BJ[i] then (a,b) € (A x B)[i], and d;((a,b)) = (d{*(a),d?(b)).
In particular, the degenerate simplices of A x B are pairs (sf(a), sP(b)) € (A x B)[i +1].
(Caveat: this is stronger than both components being degenerate.)

2.1.4 Function Spaces

YX is the simplicial set given by Y X [i] = Homg(A?*x X,Y), where Homg denotes morphisms
(natural transformations) of simplicial sets, and structural maps as follows. The face map
dili] : YX[i] — YX[i — 1] need to map elements of Homg(A! x X,Y) to Homs(A*™1 x X,Y)
and the degeneracy maps vice versa. For their definition it is convenient to view a k-simplex
in A’ as a non-decreasing function a : [k] — [i]. Let dj be the strictly increasing function
on natural numbers such that dj(n) = n if n < k and dj(n) = n + 1 otherwise (dj, ‘jumps’
over k). Given F' € Homg(A" x X,Y), define (dyF)[j](ao - .. aj,z) = F[j](d}ao ... d}ja;, x).
For the degeneracy maps, let s; be the weakly increasing function on natural numbers such
that sf(n) = n if n < k and s}(n) = n — 1 otherwise (s} ‘duplicates’ k). Then we define
(s F)[i)(a,x) = Fli](s;a, ).

3 Hypergraphs as Simplicial Sets

We now define graph classes corresponding to (functional Kan) simplicial sets. The meaning
of “corresponding” is made precise in Lemma 11; these are graphs which can be constructively
interpreted as (functional Kan) simplicial sets.

» Definition 8 (Reflexive hypergraph). A reflexive hypergraph consists of Co, Cy, Cy, d§, di,
d%, d3, d3, s, so, s1 where Cj is a set of points, C7 a set of edges and Cy a set of triangles. For

d} : C1 — Cy, d} is the source and d} the target function, and s(c) is a degenerate self-loop.

Each d? : Cy — (1 is an edge function, giving an edge of a triangle; and each s; : C1 — Cs
is a function mapping an edge to a degenerate triangle. These are all subject to different
restrictions, which are given below.
We will use the notation introduced in Notation 5 for reflexive hypergraphs as well. We
€2 €o

require that all triangles ¢t € Cy satisfy that, if ¢ : Q, , then d2es = d3eg, d2es = d3e;
€1

and d2eq = d3ey, justifying writing

for a triangle ¢ with d?t = e;, ea:a — b, eg: b — ¢, and 1 : a — c.
We require d} (s(c)) = ¢ for all ¢ € Cp, and we require that the functions sp and s; satisfy

s(a) @ o e b _s(b)
the following: for all e : a — b, sg(e) :  a ——b and si(e): a —b and that for
s(v) v s(v)
7N
all v, so(s(v)) =s1(s(v)): v ——>w

s(v)

8:7
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The definition above is not much more than a specialization of Definition 3 to the
first three dimensions, so it is not particularly surprising that we can extend any reflexive
hypergraph to a simplicial set. The method is a natural extension of the one used in [2] and
[3], but extended in such a way that triangles are not necessarily equal when they have equal
faces.

» Definition 9 (S(C)). Given a reflexive hypergraph C, we can construct a simplicial set
S(C) in the following way:

S(C)[0] = Cy, S(O)[1] = C4, S(C)[2] = C3 and S(C)[n], for n > 3, consisting of all tuples
of the form (ug,...,uUn;...,€55,...;...,tiji,...) such that

€ u; — u; in C for all 0 <7 < j <n, and

Wi
€ij I €4

A
tiji uiT»ul inCyforall0<i<j<l<n.
3

The maps d}} in S(C) are defined for n > 3 by removing from the input tuple

(uo,...,un;...,eij,...;...,tijl,...)

the point uy, all edges e;; and ey, and all triangles containing either of those edges. For n = 3,
if we do this on an element ¢ in S(C)[3], the result is a tuple (ug, u1,us;€o1, €02, €12; to12)
containing only one triangle to12, and we let d3(g) = to12.

The maps s} in S(C) for n > 3 are defined by duplicating the point uy in the tuple
(Ugy -y Unie e vy €iyennsy tigly ... ), adding an edge eg(p41) = s(ux) , and duplicating edges
and incrementing indices of edges as appropriate. In addition, we add ¢j41); = so(ex;) for
every ex; and tip(x41) = s1(eix) for every ejx, and duplicating triangles and incrementing

€92 b €p
indices as needed. For n = 3, we are given a triangle t : a ——C, and we perform the
1

above construction on the tuple (a, b, ¢; ez, €1, €9;t).
This completes the construction of the simplicial set S(C'), and it is fairly easy to see
that it satisfies the simplicial identities.

Similarly, we can specialize Definition 4 to the first three dimensions, giving us a first-order
structure we can extend to a functional Kan simplicial set.

» Definition 10 (Kan fill-hypergraph). A Kan fill-hypergraph is a reflexive hypergraph where
we have functions fill; ; : C7 x C7 — Cy for 0 < ¢ < 2 and filly ; : Cy x Cy x Cy = Oy for
0 <4 < 3, satisfying the following requirements.
For all e1,e5 € (4, fill; ; : C7 x C1 = Cs must satisfy:
ey b

N

If ey :a— cand ey : a — b, then fill; g(e1,e2) : a ——c-
1

62/ b \60

Ifeg: b — cand ey : a — b, then fill; 1(ep,e2) : a ——c..

b
AN\

Ifeg: b — cand e : a — ¢, then fill; 2(eg,€1) : a ——c-
1
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For all t1,ts,t3 € CQ, ﬁllgﬁi : Oy x Oy x Cy — Cy must Satisfy:

61/0\65 es b ey es b e 60/0\65
If tq: a?d,tg: a?d,and t3: aT»c,then filly o(t1, t2, t3): de.
eo € _es es b ey es b e e7 C e
7N 7N\ /N N
If ¢1: de,tQI a?d,andtgz aT»c,thenﬁll;l(tl,tg,tg): (ZT&»d
€0 ¢ €5 e C e €2 b € €9 b €4
7N NS 7N\ /N
Iftli de,tQ: a?d,andtgs LLT»C,thenﬁ11272(t1,t2,t3)1CLT?)»d.
e € _es e C e (D) b €4 €2 b ()
7\ AN RN 7N\
Ifti: b——>d,te: a——d,andts: a — d, then filly 5(¢1,2,t3): a ——c.
€4 es es €1

Note that the above requirements can be translated from the visual description above
into first-order logic, and this is the intended reading of the above definition. For example,
the requirement for fill; o is:

Veq,eq € Cl,d%(el) = d%(eg) — d%(ﬁlll,o(el,eg)) =e1 A d%(ﬁlll,o(el,eg)) = e9.

» Lemma 11. If C is a Kan fill-hypergraph, we can extend S(C) to a functional Kan
simplicial set.

Proof. We have to define the functions fill,, j in S(C). We write ﬁlliyk for the functions in
S(C) and fillS, for the functions in C.

If n =0, we simply let ﬁllg,i :Co — Cy be s. If n =1 we put ﬁllii = ﬁllfi, and it is easy
to see that ﬁllfi satisfies the requirements given in Definition 4.

If n =2, we use ﬁllg «; but we cannot use it directly, as it provides an element of S(C')[2],
not an element in S(C)[3] as needed. Instead, we use it to construct an element of S(C)[3].
We show the procedure for k = 1; the other cases proceed analogously. We are given
to,t2,t3 € S(C)[2] = Cs, such that d;t; = dj_1t; for any i < j <3 with ¢ # 1 and j # 1, and
we proceed to construct an r € S(C)[3] such that d?r = t; for i = 0,2, 3. Expanding this and
naming the resulting edges gives the equations

dotQ = dlto = €4
dotg = dgto = €9
dgtg = dgtg = €9

€o y ¢ \65 62/ b \64

Naming the three remaining edges e1, e3 and e5 we get that tg: b ——>d ,t2: a — d,
3

€4
€9 b €o €1 & €5
. . . c . 7N
and t3 : a—— ¢, giving il (t1, 2, t3) : aT»d.
1 ’ 3

Observe that the tuple
= ((L, b7 c, d , €2,€1,€3,€0,€4,€5 ; t37 t27 ﬁllgl(t(h t27 tS); tO)

satisfies the form given in Definition 9 for elements in S(C)[3], so r € S(C)[3], while also
satisfying d;r = t; for i = 0,2, 3, giving us the value for ﬁllgl(to, to,t3).

TYPES 2015
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For higher values of n, we observe that any sequence of tuples applicable to ﬁlli &, contains
all the components of a satisfying element; it is just a matter of extracting the right triangles,
edges and points from the arguments. |

4  Function Spaces between Hypergraphs

In this section, we identify a class of functions between reflexive hypergraphs which we can
extend to edges in the function space between the corresponding simplicial sets. This enables
us to formulate a constructive consequence of Theorem 1 which we will give a countermodel
to in the next section.

Remember that the function space between two simplicial sets A and B has as the i*®
dimension Homg(A® x A, B), so its edges are elements of Homg(A! x A, B).

» Definition 12 (A?|,,). We define A?|,,, to be the family of m sets given by removing from
A" every dimension larger than m. The functions s/ and d’*! for 0 < j < m are kept as is,
while they are discarded for j > m.

» Definition 13. For reflexive hypergraphs X and Y, we say that an F : Af|; x X — Y is
commuting when it commutes with d” and s for 0 < m < 1 < n < 2, where both work on
the product Af|s[n] x X[n] component-wise, similar to Cartesian products of simplicial sets
as described in Section 2.1.3.

» Lemma 14. For reflezive hypergraphs X and Y, any commuting F : Ally x X — Y can
be extended to an edge in S(Y)3(X),

Proof. We need to extend F to an F' € Homg(A! x S(X),S(Y)); that is, a family of
functions F'[n] : (A' x S(X))[n] = S(Y)[n] for n € N commuting with s} and d. For
0<n<2 welet F'[n] = F. For n > 2, any input to F'[n] will have the form

(Oalb,(.fo,...,l‘n;...ei]‘,...;...,tijl,...))

such that a + b = n + 1. We define the function gt, : N — {0,1} as gt,(xz) = 1 if x > a and
gtq(x) = 0 otherwise, and we then let F’[n] map the input to the tuple

(F(0,20), .., F(0,2q-1), F(1,2a) .., F(1,Zaqp-1); - - €455 Lijps - ),

where ¢l and £, are given by ¢/, = F(gta(i)gta(j), e15) and £, = F(gta(i)gta()gta(D), tiz0):

It should be clear that this map does indeed commute with d; and s;. It holds in the
lower dimensions since we assume F' to be commuting. It also holds in the higher dimensions
since we apply F' uniformly to every element in the tuple; if we remove a particular element
and then apply F, we get the same result as if we first apply F to all elements in the tuple
and then remove the particular element. <

Now we are ready to formulate the constructive consequence of Theorem 1 — which is
essentially Theorem 2, reformulated as a property of Kan fill-hypergraphs.

» Theorem 15 (Classical). For any Kan fill-hypergraphs X and Y, for any commuting
F:AYy x X =Y we can find a commuting F~ : Ally x X =Y such that for all p € X|[0],
l € X[1] and t € X[2] we have

F~(0,p) = F(1,p) F~(1,p) = F(0,p)
F=(00,1) = F(11,1) F~(11,1) = F(00, 1)
F~(000,¢) = F(111,1) F~(111,¢) = F(000,t)
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Proof. We first extend F to an edge in S(Y)*X) by Lemma 14 and note that, by Lemma 11,
S(Y) is a functional Kan simplicial set. We then apply the classical Theorem 2, giving that
S(Y)® (X) is a Kan simplicial set, enabling us to reverse the edge by Lemma 7, giving an F'~
in S(Y)SX)[1] satisfying do(F) = dy(F~) and dy(F) = do(F~). We discard every dimension
of F~ above 2. Being an element of Homg(A! x S(X),S(Y)) means that '~ commutes,
and expanding the definition of d; from Section 2.1.4 we calculate:

F7(0,p) = F~(d1(0),p) = di(F7)(0,p) = do(F)(0,p) = F(d;(0),p) = F(1,p),

F~(1,p) = F~(d3(0),p) = do(F7)(0,p) = d1(F)(0,p) = F(di(0),p) = F(0,p)

The other dimensions go the same way, showing that F'~ is as desired. |

Observe that the only non-constructive step in the proof of Theorem 15 was the application
of Theorem 2.

The reasoning in our constructive proofs can be formalized in IZF (Intuitionistic Zermelo-
Fraenkel set theory), so IZF proves that Theorem 1 implies Theorem 2, and that Theorem 2
implies Theorem 15. We also have that if IZF proves Theorem 15, then Theorem 15 holds in
any Kripke model. This result has been further elaborated in Section 6 of [2]. For this, it is
vital that Theorem 15 can be expressed in first-order logic. So finally, by giving a Kripke
model falsifying Theorem 15, we show that IZF cannot prove Theorem 1, and we will provide
exactly such a model in the next section.

5 Kripke Countermodel

In this section we present a Kripke model falsifying the first-order sentence representing
Theorem 15. Recall that a Kripke model is a partially ordered set of classical models — often
called states or days — where the domains and relations are monotone, and a formula holds in
a state if it holds (classically) at that state and all of its successors. For further elaboration,
see [9].

We have two classical models in our Kripke model, and we will call them “day 1” and
“day 2”7, with day 1 before day 2. Each consists of an X-part and a Y-part, both satisfying the
requirements on Kan fill-hypergraphs. In addition, our Kripke model contains a commuting
family of functions F : Al|a[n] x X[n] — Y[n] for 0 <n < 2.

The only change from day 1 to day 2 is the interpretation of equivalence; we equate
more elements in day 2. As we equate elements, we have to ensure that all functions respect
equivalence; that is, that they send equal elements to equal elements. In addition, by equating
elements, more elements may satisfy the antecedents in Definition 10, and we need to ensure

that these formulae remain satisfied for our X and Y-parts to be valid Kan fill-hypergraphs.

We first present X and Y in day 1. We then present the family of functions F :
Ally[n] x X[n] — Yn] for 0 < n < 2, before we present X and Y day 2.

5.1 Day1

The two first dimensions of X and Y are both shown below, with triangles and fill functions
further described below. Different edges in the figure are non-equated, and an edge f in the
figure from a to b represents an edge f in the model with dj(f) = b and di(f) = a.
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s(yo) = F(00,5(x)) = F(00,e) s(y1) = F(11,5(x))

k= F(11,e)

Figure 4 Kripke (counter)model for edge reversal, day 1.

5.1.1 Triangles in X, Day 1

X [2] consists of exactly all eight combinations of s(z) and e as faces. So we have the following
triangles, where the names are given as the concatenation of d? of the triangle for 0 < i < 2.

585 : 7 N sse : 7N

s() e e e
ees : Q‘, eee : Q‘,
e e

1

The functions s; are forced by the simplicial identities to be:

51(e) =see : EQ:(m)

Finally, we define the functions fill'; : X[1]x X[1] — X [2] and fill; : X[2]x X[2] x X [2] —
X|[2]. For the former, we have a choice; the two arguments determine two of the edges in the
resulting triangle, but the third edge can be either s(z) or e. We chose, rather arbitrary, for it
to always be s(z), resulting in only one possible triangle. For ﬁllgfi7 there are no options; its
three arguments determine the three edges of the resulting triangle, describing it completely.

5.1.2 Triangles in Y, Day 1

We construct Y[2] in two stages. First, it consists of all compatible triples of edges from
Y[1]. That is, for all edges eg, e2,€;1 such that eg: b — ¢, e1 : a — ¢, and ey : @ — b, we add
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ez b _eo
exactly one triangle eg_e;_es: a ——c to Y[2]. This result in 18 triangles, and as with
1

X|[2] we name then according to their faces. This means that we have a triangle

Y1yo_y1yo_s(y1) = (1,1, Y03 s(W1), Y1y, vayo) € Y[1],

and we will call it T4.. The second stage of the construction is simply to add an additional
triangle 75 of the form

Ts = (Y1, 91,05 8(y1), Y190, ¥1%0)

to Y'[2]. It is no coincidence that T5 has identical faces to Tye; this enables us to use Tj as a
substitute of Ty, in certain situations. All triangles of Y'[2] at day 1 are listed in Table 1 in
Appendix B.

We define s} : Y[1] — Y[2] before concluding with the fill functions. In most cases, there
is only one compatible triangle to which s! can map, forcing

5(?/0)/ Yo \y0y1

S(l)(yoyl) = yoyl_yoyl_s(yo) : Yo — U1
YoY1

Y1
Yoy s(y1)
0 1/ \

5%@091) =s(y1)_Yoy1_Yoy1: Yo —— Y1
YolY1

and similar for the other edges. The exception is s{(y130), which we can map to both Ty
and T;. We set

50 (y1%0) = Tie,

and this concludes the definition of s}. The complete listing of s} can be found in Table 2 in
Appendix B.
Finally, we define the functions fill; ; : Y[1] x Y[1] — Y[2] and filly ; : Y[2] XY [2] x Y[2] —

Y[2]. They are, in the same way as s}, in most cases determined by the fact that there

i
is exactly one compatible triangle. There are some exceptions. For fill; ;, we have certain
inputs where we can choose if the third edge in the resulting triangle is s(y;) or k, and in
those cases we choose for it to be s(y1); and when there is a choice between mapping to T
and Tye, we map to Tg. If we want fill; ; to be total, we map every non-compatible pair of
edges t0 YoYo__YoYo_YoYo-

For fill ;, there are inputs where the output can be either Ty, or 75, and in these cases
we map to T5. In addition, we have the choice of how to map the triangles which do not
satisfy the requirements in Definition 10. Equating elements in day 2 will have the effect of
making more triangles satisfy the requirements for fill, ;, so the choices we make now must
be compatible with this. We show this for fill; ;; the other cases are similar. Recall that the
requirement for fillp ; is:

eo ¢ _es es b ey es b eg e1 € es
/ 7N 7N 7N
Ifty: b—p—>d,tor a———d,and s a ——> ¢, then filly 1 (¢1,t2,t3): @ — d .
4 es3 €1 ’ €3
er C_ es
. . . . . . 7N
Given three triangles t1,%o,t3, when there is a triangle with the signature a ——d -
3
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s(yo) = F(00, s(x)) = F(00,e) s(y1) = F(11,s(x)) = F(1l,e) = k

Y1Yo

Figure 5 Kripke (counter)model for edge reversal, day 2.

where e5 = d3(t1), e1 = d3(t3) and e3 = d3(t3) — we map fills 1 (t1, 2, t3) to it (and to Ty if
there is a choice between Tj and Tge.) If there is no such triangle, we map filly 1 (¢1, t2, ¢3) to
YoYo_YoYo_YoYo-

513 F

We define the commuting family F : Alls[n] x X[n] — Y[n] for 0 < n < 2. Both Fj :
A5[0] x X[0] — Y[0] and F} : Al|o[1] x X[1] = Y[1] are completely given in Figure 4, only
Fy : A'5[2] x X[2] — Y[2] is in need of further description. But it is completely locked by
the requirement that it should commute with d; (since, besides Ty and Tjy., we have exactly
one triangle per compatible triple of edges). Note that F; does not map anything to the
edge y1yo, since this goes from F(1,z) to F(0, z); similarly, F5 maps to neither Ty, nor 7§,
relieving us from having to choose which of these to map to.

5.2 Day 2

Moving from day 1 to day 2, we equate a number of elements, but make no changes otherwise.
This means that we only need to ensure that the defined functions still respect equality, and
verify that the filling-conditions in Definition 10 remain satisfied.

First, we present the equating for the first two levels of both X and Y’; following this
we equate triangles. In X[1], we set s(z) = e; and in Y[1], we set s(y1) = y1y1 = k. Other
edges are as they were in day 1. The first two dimensions are shown in Figure 5. In X[2], we
equate every triangle, leaving us with only one degenerate triangle. Having only one point,
one edge and one triangle means that all functions with both domain and co-domain inside
X trivially respect equality.

In Y'[2], we equate exactly those triangles which have identical faces after the equation
of elements in Y[1], except that we keep Ty, distinct from any other triangle. Since the
only edge-equation in Y[1] was y1y1 = k, we only equate triangles containing this edge.
The complete list of equated triangles can be found in Table 3; the list of the remaining,
non-equated triangles can be found in Table 4. Note that we can keep Ty, distinct from
every other triangle, since Ty, is only in the image of s (it is, crucially, not in the image
of filly /5 ;), and then as the value of s§(y190). The edge y1yo is not equated with any other
edge, thus we are not forced through s} to equate Ty, with any other triangle.

This clearly does not enforce any further equations in Y'[1]. We also claim that this keeps
all functions consistent. It should be clear from Figure 5 that both Fp : At|2[0] x X[0] — Y[0]
and Fy : Al5[1] x X[1] — Y[1] remain consistent. Fy : Al|3[2] x X[2] — Y[2] is consistent
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since F' commutes with d; and as F; : All3[1] x X[1] — Y[1] is consistent, so any two
triangles mapped to in Y'[2] (with the same argument from A'[3[2] ) now must have identical
faces, giving that they are also equal.

It is important for fill; ;5 ; that Tge is not in their image, and that all other triangles are
equal exactly when they have equal faces. So if e; = €] and ey = €5, then fill; ;(e1, e2) and
filly ; (€}, e5) have identical faces, giving fill; ;(eq, e2) = filly ; (€}, €5).

For filly ;, observe that the output is a triangle containing one edge from each of its inputs.

So if we have t; = t], t2 = th, and t3 = t4 then filly ;(¢1, t2,t3) will have identical faces to
filly ; (¢, t5, %), so they are also equal. Also observe that all requirements in Definition 10
remain satisfied. Three triangles which now satisfy one of the antecedents are already sent
to a satisfying triangle by the way we defined fill, ;.

Finally, we observe that all the simplicial identities are still satisfied, since we have not
changed s;/d;, and the equivalence relation is monotone.

5.3 Non-existence of F—

We will now see that we cannot consistently define the commuting reverse function F~ :
Ally x X — Y, prescribed by Theorem 15, such that for all p € X[0], [ € X[1] and t € X[2]
we have:

F=(0,p) = F(1,p) F~(1,p) = F(0,p)
F~(00,1) = F(11,1) F~(11,1) = F(00,1)
F~(000,¢) = F(111,¢t) F~(111,t) = F(000,1).

Assume towards a contradiction that there is such an F~. We will expand on the
values of F~(001,eee) and F~(001,sss). Applying commutativity of the face maps in
combination with the above requirements, we see that F'~ would have to satisfy the following
two requirements:

d3(F~ (001, ece)) = F~(d2(001),d3(eece)) = F(00,e) = F(11,e) = k

d2d2(F~ (001, eee)) = F~(d2d2(001), d2d2(eee)) = F~(1,x) = F(0,2) = yo.

This forces F~ (001, eee) = y1y0_y1yo_k, since this is the only triple in Y[2] satisfying the
above requirements.

Since sss = s{(s(z)) and 001 = s0(01), commutativity with s forces F~(001, sss) =
s§(F~(01, s(z))). The only compatible edge for F~ (01, s(z)) is y190- Since s§(y1%0) = Tue
we get F~(001, sss) = Tye.

In day 2, we have that eee = sss; but we also have that Tye # y1y0_ y1y0_ k, showing
that there can be no consistent F'~ satisfying the desired requirements.

6 Formal Verification of the Kripke Model

The Kripke model from Section 5 is quite complex. Verifying that it has the properties
claimed is not a trivial task; it is for this reason that we have formally verified it using the
Coq proof assistant.! Using Coq in this way — essentially, as a model checker — is not very
common, but it worked quite well. The reason is the nature of our model checking problem:;

! See https://github.com/epa095/funKanPowCounterModel-coq for the Coq script.
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we have a model with relatively few states and we want to prove many properties. Encoding
the model in Coq makes it easy to read the statements of the theorems, verifying that they
indeed prove what we need to prove.

The model checking is divided into two separate parts. The first part is the encoding of
the Kripke model and the second part consists of the proofs that the encoding satisfies the
desired properties.

Appendix A contains the complete list of Theorems (sans proofs) and definitions.

6.1 Encoding the Kripke Model

The encoding of the Kripke model from Section 5 is quite direct. First, we define that there
are two days:

Inductive Days := d1 | d2.

We then define each of the sorts in the Kripke model — points, edges and triangles — for both
X and Y, as finite inductive types. Here we show it for Y'; the definitions are similar for X.

Inductive VY := yO | y1.
Inductive EdgeY := yOyO | yOy1 | y1y0 | y1y1| k.

Inductive TriangleY :=
| yOyO_yOy0_y0y0
| yOyil_yOy1l_yOyO

| £i
| de.

The names of the triangles are given by dy_d;_ds of the triangle, so as an example
da(yO0yl_y0yl_y0y0) = y0y0. We then encode the functions dj, di, d3,d3,d3, s, so, s1, which
we name sY, dOY, d1Y, se0Y, selY, dp0Y, dplY, and dp2Y. They are all defined explicitly
for all possible inputs, as shown in the following example.

Function sY (vl :VY) := match vl with
| y0 = yOy0
| y1 = yiyl
end.

We are using an explicitly defined equivalence relation for each sort. In day 1, two
elements are equal exactly when they have the same constructors. In day 2, the edge ylyl
is equated with k; otherwise, edges are equal when they have the same constructor. Two
triangles are equal when their faces are equal, except de, which is only equal to itself:

Function eqTriangleY (day : Days)(tl t2 :TriangleY) :=
match day with
| d1 = sameConstructorTriangleY t1 t2
| 42 =
match t1,t2 with
| de,de = true
| de,_ | _,de = false
| _,_ = andb (eqEdgeY d2 (dpOY t1) (dpOY t2))
(andb (eqEdgeY d2 (dplY t1) (dplY t2))
(eqEdgeY d2 (dp2Y t1) (dp2Y t2)))
end
end.
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Finally, we define the filler functions, fill; ; : EdgeY x EdgeY — TriangleY and filly; :
TriangleY X TriangleY X TriangleY — TriangleY. We implement them according to
Section 5.1.2, making sure that e.g fill; ;(y1y0, ylyl) = fi instead of de, and similarly for
the other inputs. For fill; ;, we make use of a function edgesToTriangle which maps three
edges d0,d1,d2 to a triangle t, such that dp0Y (t) = d0, dplY (¢t) = d1 and dp2Y (t) = d2.
There are two things to notice. First, edgesToTriangle maps to fi and not de when it has a
choice; and since it needs to be total, it also maps every non-compatible triple of edges to
the triangle y0y0_y0y0_y0y0. The implementation of fill; ; consists of just picking out the
right edges from its argument, as exemplified by fill o:

Function £i1120Y (t1 t2 t3 :TriangleY) := (edgesToTriangle (dpOY t1)
(dpOY t2)
(dpOY t3)).

This concludes the definition of Y and its associated functions. The encoding of X is slightly
simpler, since it has exactly one triangle per compatible triple of edges, eliminating the fi vs
de distinction. In addition, we encode Al|3[n], 0 < n < 2 with face and degeneracy maps in
the same explicit way, with Deltal10,Deltall and Deltal2 being points, edges and triangles
respectively. This lets us define the function F : Al|3[n] x X[n] — Y[n] for 0 < n < 2 from
Section 5.1.3 explicitly, ending the definition of the Kripke model.

Function Fv (delt:Deltal0) (v:VX) := ...
Function Fe (delt:Deltall) (e:EdgeX) :=...
Function Ft (delt:Deltal2) (t:TriangleX) :=

6.2 Verifying the Encoded Model

The encoding above is straightforward, but tedious to verify. In this section, we will explain
how we used Coq to show that the encoded model has the properties desired.

A useful feature for doing this is Coq’s type classes. These enables us to define a collection
of properties — parameterized on types and functions — and give several instantiations of
those types and functions, ensuring that each instance satisfies the properties specified in
the type class.

We define two type classes: one for reflexive hypergraphs, and another for Kan fill-
hypergraphs. We show that X, Y and Delta are instances of the first class, and that X and
Y are instances of the second. In what follows, we will describe the properties encoded by
these type classes.

We begin by defining what it means for a function eqFun: Days — A — A — bool to be an
equivalence, before going on to define what it means for a unary, binary and ternary function
to respect equality on its domain and co-domain.

Definition EquivalenceFun {A:Type}(eqFun: Days — A — A — bool):=
ReflexiveFun eqFun A SymetricFun eqFun A TransitiveFun eqFun.

Definition binaryFunctionRespectsEquality {Domain CoDomain:Type}
(eqDomain: Days — Domain — Domain — bool)
(eqCoDomain: Days — CoDomain — CoDomain — bool)
(function: Domain— Domain — CoDomain):= ...

We now define the class giving the basic properties of X, Y and Delta. It expresses that
all of the face and degeneracy maps respect equality, that the equality functions are monotone
equalities, and that the simplicial identities hold between the face and degeneracy maps.
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The whole class can be found in Appendix A. Giving Y, X and Delta as instances leaves the
properties that need to be shown as obligations, which are all pretty straightforward to close.

The next step consists of verifying the filling functions. We construct a type class once
more, this time parameterized on a member of the previously defined type class and all seven
fill functions. The type class specifies that all of the fill functions must respect equality, in
addition to encoding each of the properties the fill functions must respect, as the following
example for fill; o:

£i1110Prop: forall (d:Days)(el e2:Edges),
((eqV d (d1E el) (d1E e2))=true)—
(eqEdges d (d1T (£i1110 el e2)) el)=true A
(eqEdges d (d2T (£i1110 el e2)) e2)=true

Finally, we verify that our encoding of the family of functions F' is correct, and that the
argumentation from Section 5.3 holds. We start by formalizing the notion of a family of
functions F : Alls[n] x X[n] — Y[n] commuting with both the face and degeneracy maps
in X, Delta and Y according to Definition 13, before showing that F', as encoded above,
commutes.

We then encode that an inverse of F is a family F'~ : Ally x X — Y such that, for all
p € X[0], ! € X[1] and ¢t € X[2], we have

F=(0,p) = F(1,p) F~(1,p) = F(0,p)
F~(00,1) = F(11,1) F~(11,1) = F(00,1)
F~(000,¢) = F(111,¢) F~(111,¢) = F(000, t).

We finish by showing that all commuting reverses of F' must satisfy F'~(001,eee) =
yly0_yly0_k and F~ (001, sx_sx_sx) = de, and that these two images remain distinct in
both days.

7 Conclusion

In this paper, we provided a model showing that we cannot constructively prove that the Kan
property is preserved under exponentiation. This means, from a constructive perspective,
that Kan simplicial sets are currently unsatisfactory as models of simply typed lambda
calculus. The result was shown for a strong interpretation of Kan simplicial sets requiring
explicit functions for the horn fillings, closing the gaps from previous work on a similar
problem for Kan simplicial sets without explicit filler functions. The model has been encoded
and verified using the Coq proof assistant.
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A Theorems Proved in Coq

Definition ReflexiveFun {A:Type}(eqFun: Days — A — A — bool):=
forall (d:Days)(el:A), (eqFun d el el) = true.

Definition SymmetricFun {A:Type}(eqFun: Days — A — A — bool):=
forall (d:Days)(eleml elem2:A),
((eqFun d eleml elem2)=true)— (eqFun d eleml elem2)=true.

Definition TransitiveFun {A:Type}(eqFun: Days — A — A — bool):=
forall (d:Days)(eleml elem2 elem3:A),
((eqFun d eleml elem2)=true A (eqFun d elem2 elem3)=true) —
(eqFun d eleml elem3)=true.

Definition EquivalenceFun {A:Type}(eqFun: Days — A — A — bool):=
ReflexiveFun eqFun A SymetricFun eqFun A TransitiveFun eqFun.

Definition unaryFunctionRespectsEquality {Domain CoDomain:Type}
(eqDomain: Days — Domain — Domain — bool)
(eqCoDomain: Days — CoDomain — CoDomain — bool)
(function: Domain— CoDomain):=
forall d:Days, forall (eleml elem2: Domain),
(eqDomain d eleml elem2)=true — (eqCoDomain d (function eleml) (function elem2))=true.

Definition binaryFunctionRespectsEquality {Domain CoDomain:Type}
(eqDomain: Days — Domain — Domain — bool)
(eqCoDomain: Days — CoDomain — CoDomain — bool)
(function: Domain— Domain — CoDomain):=
forall d:Days, forall (eleml elemlp elem2 elem2p: Domain),
(eqDomain d eleml elemlp)=true A (egDomain d elem2 elem2p)=true
— (eqCoDomain d (function eleml elem2) (function elemlp elem2p))=true.
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Definition tertaryFunctionRespectsEquality {Domain CoDomain:Type}
(eqDomain: Days — Domain — Domain — bool)
(eqCoDomain: Days — CoDomain — CoDomain — bool)
(function: Domain— Domain— Domain — CoDomain):=
forall d:Days, forall (eleml elem2 elem3 elemlp elem2p elem3p: Domain),
((eqDomain d eleml elemlp)=true A
(eqDomain d elem2 elem2p)=true A
(eqgDomain d elem3 elem3p)=true)
— (eqCoDomain d (function eleml elem2 elem3) (function elemlp elem2p elem3p))=true.

Definition EqFunctionMonotone {Domain:Type}
(eq: Days — Domain — Domain — bool):=
forall (eleml elem2: Domain),
(eq d1 eleml elem2)=true — (eq d2 eleml elem2)=true.

Class twoDayKripke (Points Edges Triangles :Type)
sP : Points — Edges;
dOE : Edges — Points;
d1E : Edges — Points;
sOE : Edges — Triangles;
slE : Edges — Triangles;
dOT : Triangles — Edges;
diT : Triangles — Edges;
d2T : Triangles — Edges;
eqV : Days — Points — Points — bool;
eqEdges : Days — Edges — Edges — bool,;
eqTriangles : Days — Triangles — Trlangles — bool;
eqVisEq : EquivalenceFun eqV;
eqEdgessisEq : EquivalenceFun eqEdges;
eqTrianglesisEq : EquivalenceFun eqTriangles;
_ : EqFunctionMonotone eqV;
_ : EqFunctionMonotone eqEdges;
_ : EqFunctionMonotone eqTriangles;
sPRespectsEq : unaryFunctionRespectsEquality eqV eqEdges sP;
dOERespectsEq : unaryFunctionRespectsEquality eqEdges eqV dOE;
d1ERespectsEq : unaryFunctionRespectsEquality eqEdges eqV d1E;
sOERespectsEq : unaryFunctionRespectsEquality eqEdges eqTriangles sOE;
s1ERespectsEq : unaryFunctionRespectsEquality eqEdges eqTriangles s1E;
dOTRespectsEq : unaryFunctionRespectsEquality eqTriangles eqEdges dOT;
d1TRespectsEq : unaryFunctionRespectsEquality eqTriangles eqEdges diT;
d2TRespectsEq : unaryFunctionRespectsEquality eqTriangles eqEdges d2T;
(* Simplicial identity 1 *)

: forall t: Triangles, dOE(d1T(t)) = dOE(dOT(t));

: forall t: Triangles, dOE(d2T(t)) = d1E(dOT(t));

: forall t: Triangles, d1E(d2T(t)) = d1E(d1T(t));

(* Simplicial identity 2 *)

: forall e: Edges, dOT(s1E(e)) = sP(dOE(e)) ;

(* Simplicial identity 3 *)

: forall p: Points, dOE(sP(p)) = p;

: forall p: Points, d1E(sP(p)) = p;

_: forall e: Edges, dOT(sOE(e)) = e;
_: forall e: Edges, diT(sOE(e)) = e;
_: forall e: Edges, diT(slE(e)) = e;

: forall e: Edges, d2T(s1E(e)) = e;

(* Simplicial identity 4 *)
_: forall e:Edges, d2T(sOE(e)) = sP(d1E(e));
(* Simplicial identity 5 *)
_: forall p: Points, s1E(sP(p)) = sOE(sP(p))
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Class fillableModel {Points Edges Triangles:Type} {m: twoDayKripke Points Edges Triangles}

£i1110: Edges — Edges — Triangles;
fillll: Edges — Edges — Triangles;
£i1112: Edges — Edges — Triangles;
£i11120: Triangles — Triangles — Triangles — Triangles;
£i1121: Triangles — Triangles — Triangles — Triangles;
£i11122: Triangles — Triangles — Triangles — Triangles;
£i1123: Triangles — Triangles — Triangles — Triangles;

filllORespectEquality: binaryFunctionRespectsEquality eqEdges eqTriangles £il1l10;
fillliRespectEquality: binaryFunctionRespectsEquality eqEdges eqTriangles £illll;
fill12RespectEquality: binaryFunctionRespectsEquality eqEdges eqTriangles £i1112;
fill120RespectsEqualty: tertaryFunctionRespectsEquality eqTriangles eqTriangles £i1120;
fill21RespectsEqualty: tertaryFunctionRespectsEquality eqTriangles eqTriangles £ill21;
fill22RespectsEqualty: tertaryFunctionRespectsEquality eqTriangles eqTriangles £il1122;
fil123RespectsEqualty: tertaryFunctionRespectsEquality eqTriangles eqTriangles £i1123;

£i1110Prop:

fill11Prop:

£i1112Prop:

£i1120Prop:

£i1121Prop:

£i1122Prop:

£i1123Prop:

forall (d:Days)(el e2:Edges), ((eqV d (d1E el) (d1E e2))=true)—
(eqEdges d (d1T (£fill10 el e2)) el)=true A
(eqEdges d (d2T (£i1110 el e2)) e2)=true;

forall (d:Days)(el e2:Edges), ((eqV d (d1E el) (dOE e2))=true)—
(eqEdges d (dOT (£fill11 el e2)) el)=true A
(eqEdges d (d2T (£fillll el e2)) e2)=true;

forall (d:Days)(e0 el:Edges), ((eqV d (dOE e0) (dOE el))=true)—
(eqEdges d (dOT (£il112 €0 el)) e0)=true A
(eqEdges d (d1T (£ill12 e0 el)) el)=true;

forall (d:Days)(t1 t2 t3:Triangles), (eqEdges d (diT t1) (d1T t2))=true A
(eqEdges d (d2T t1) (d1T t3))=true A
(eqEdges d (d2T t2) (d2T t3))=true —
((eqEdges d (dOT t1) (dOT (£i1120 t1 t2 t3)))=true A
(eqEdges d (dOT £2) (41T (£i1120 t1 t2 £3)))=true A
(eqEdges d (dOT t3) (d2T (£i1120 t1 t2 t3)))=true);
forall (d:Days)(tl t2 t3:Triangles),
(eqEdges d (d1T t1) (dOT t2))=true A
(eqEdges d (d2T t1) (dOT t3))=true A
(eqEdges d (d2T t2) (d2T t3))=true —
((eqEdges d (dOT t1) (dOT (£i1121 t1 t2 t3)))=true A
(eqEdges d (d1T £2) (d1T (£i1121 t1 t2 £3)))=true A
(eqEdges d (d1T t3) (d2T (£fill21 t1 t2 t3)))=true);

forall (d:Days)(tl t2 t3:Triangles),
(eqEdges d (dOT t1) (dOT t2))=true A
(eqEdges d (d2T t1) (dOT t3))=true A
(eqEdges d (d2T t2) (d1T t3))=true —
((eqEdges d (d1T t1) (dOT (£i1122 t1 £2 £3)))=true A
(eqEdges d (d1T t2) (d1T (£i1122 t1 t2 t3)))=true A
(eqEdges d (d2T t3) (d2T (£i1122 t1 t2 t3)))=true);

forall (d:Days)(tl t2 t3:Triangles),
(eqEdges d (dOT t1) (dOT t2))=true A
(eqEdges d (d1T t1) (dOT t3))=true A
(eqEdges d (d1T t2) (d1T t3))=true —
((eqEdges d (d2T t1) (dOT (£i1123 t1 t2 t3)))=true A
(eqEdges d (d2T £2) (d1T (£i1123 t1 t2 £3)))=true A
(eqEdges d (d2T t3) (d2T (£fil123 t1 t2 t3)))=true)
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Definition FCommutesS (Fpoint: Deltal0 — VX — VY)
(FEdge: Deltall — EdgeX — EdgeY)
(FTriangle: Deltal2 — TriangleX — TriangleY):=
(forall (deltp:Deltal0) (p:VX), FEdge (s deltp) (sX p) = sY (Fpoint deltp p))
A (forall (d:Days) (delt:Deltall) (e:EdgeX),
eqTriangleY d (FTriangle (sO delt) (seOX e))( seOY (FEdge delt e)) = true)
A (forall (d:Days) (delt:Deltall) (e:EdgeX),
eqTriangleY d (FTriangle (s1 delt) (selX e))( selY (FEdge delt e)) = true).

Definition FCommutesD (Fpoint: Deltal0 — VX — VY)
(FEdge: Deltall — EdgeX — EdgeY)
(FTriangle: Deltal2 — TriangleX — TriangleY):=
(forall (delt:Deltall) (e:EdgeX), Fpoint (dv0 delt) (dOX e) = dOY (FEdge delt e)) A
(forall (delt:Deltall) (e:EdgeX), Fpoint (dvl delt) (d1X e) = d1Y (FEdge delt e)) A
(forall (delt:Deltal2) (e:TriangleX), FEdge (dp2 delt) (dp2X e) = dp2Y (FTriangle delt e)) A
(forall (delt:Deltal2) (e:TriangleX), FEdge (dpl delt) (dpiX e) = dplY (FTriangle delt e)) A
forall (delt:Deltal2) (e:TriangleX), FEdge (dpO delt) (dpOX e) = dpOY (FTriangle delt e).

Definition FCommutes (Fpoint: Deltal0 — VX — VY)
(FEdge: Deltall — EdgeX — EdgeY)
(FTriangle: Deltal2 — TriangleX — TriangleY):=
(FCommutesS Fpoint FEdge FTriangle) A (FCommutesD Fpoint FEdge FTriangle).

Theorem FOrdCommutesS: FCommutesS Fv Fe Ft.
Theorem FOrdCommutesD: FCommutesD Fv Fe Ft.

Theorem FVRespectsEq:
forall (delt:Deltal0), unaryFunctionRespectsEquality eqVX eqVY (Fv delt).
Theorem FERespectsEq:
forall (delt:Deltall), unaryFunctionRespectsEquality eqEdgeX eqEdgeY (Fe delt).
Theorem FTRespectsEq:
forall (delt:Deltal2), unaryFunctionRespectsEquality eqTriangleX eqTriangleY (Ft delt).

Theorem allFInverseInconsistentEEE: forall (FIpoint: Deltal0 — VX — VY)
(FIEdge: Deltall — EdgeX — EdgeY)
(FITriangle: Deltal2 — TriangleX — TriangleY),
Finverse FIpoint FIEdge FITriangle —
FCommutesS FIpoint FIEdge FITriangle —
FCommutesD FIpoint FIEdge FITriangle —
FITriangle delta00l e_e_e = y1yO_ylyO_k.

Theorem allFInverseInconsistentsss: forall (FIpoint: Deltal0 — VX — VY)
(FIEdge: Deltall — EdgeX — EdgeY)
(FITriangle: Deltal2 — TriangleX — TriangleY),
Finverse FIpoint FIEdge FITriangle —
FCommutesS FIpoint FIEdge FITriangle —
FCommutesD FIpoint FIEdge FITriangle —
FITriangle delta001 sx_sx_sx = de.

Theorem deNotEqualToThatOtherEdge: forall (d:Days), (eqTriangleY d y1yO_ylyO_k de)=false.
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B Trianglesin Y

Table 1 Triangles in Y.

0
y0y0 YV  40y0
0N

y0y0_y0y0__y0y0: y0 —— y0
y0y0

0
yoyo YV yoyl
N\

y0yl_yOyl_y0y0: y0 —— yl
yOyl

y()yl/ yl \yly()

yly0_y0y0_y0yl: y0 —— y0
y0y0

yOyl/ yl \ylyl

ylyl yOyl_ ¢yOyl: y0 — yl
y0yl

1
yoyl Y+ g
7N

k_yOyl_ ¢yOyl: y0 — yl
yOy1

y1y0/190\\y0y0

y0y0_yly0_yly0: yl — y0
yly0

0
ylyo YY gy0yl
0N\

y0yl ylyl yly0: yl — yl
ylyl

0
ylyo YY gy0yl
SN\

yoyl_k_yly0: yl T» yl

1
ylyl Y4 y1y0
N

Tae: 1 0
T

1
ylyl Y41 ylyl
0N

ylyl_ylyl ylyl: yl —— yl
ylyl

1
ylyl Y% ylyl
N\

ylyl k ylyl: yl T» yl

1
ylyl Y%
N\

k_ylyl ylyl: yl —— yl
ylyl

1
ylyl Y%
N\

k_k_ylyl: yl T» yl

1
E_Yh yly0
0N\

yly0_yly0_k: yl —— 90
y1y0

1
kY iyl
7N

ylyl_ylyl k: yl — yl
ylyl

1
kY ylyl
N\
ylyl_k_k: yl T» yl
1
koY K
VN
k_ylyl k:yl — yl
ylyl
1
E_Y K
SN
k k kiyl — yl
_K_KY A Yy
1
ylyl Y4 y1y0
N

Ty: 1 — 90
fi: Y Y10 Y
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Table 2 Degenerate triangles in Y.

yOyO/ y0 \yOyO

s0(y0y0) = y0y0_y0y0_y0y0: y0 — 0
y0y0

yOyO/,yO\\yOyO

51(y0y0) = y0y0_y0y0_y0y0: 30 — 30
y0y0

yOyO/ y0 \y()yl

s0(yOyl) = y0yl_yOyl_y0y0: 30 — yl
yOyl

yOyl/yyl\\ylyl

s1(y0yl) = ylyl 90yl gy0yl: y0 — yl
yOyl

1
ylyl Y4 ylyo
N\

so(yly0) = Tae: yl ——— 40
y1y0

0
yly0 Y9 y0y0
SN\

s1(yly0) = y0y0_yly0_yly0: yl — 30
yly0

1
ylyl Y+ ylyl
SN\

so(ylyl) = ylyl_ylyl ylyl: yl — yl
ylyl

1
ylyl Y+ ylyl
N

s1(ylyl) = ylyl_ylyl ylyl: yl —— yl
ylyl

1
ylyl Y%
VRN
so(k) = k_k_ylyl: yl *)k yl

1
kYT _ylyl
AN
si(k) = ylyl_k_k: yl T» yl
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Table 3 Equated triangles in Y, day 2.

ylyl/ yl \ylyl

ylyl _ylyl_ylyl: yl — yl
ylyl

1
ylyl Y5 ylyl
N
ylyl_k_ylyl: yl T» yl

1
ylyl Y%
SN

k_ylyl ylyl: yl — yl
ylyl

1
ylyl Y%
N
k_k_ylyl: yl T» yl

1
E_YE ylyl
N\

ylyl ylyl k:yl — yl
ylyl
1
kY0 ylyl
N
ylyl _k_k:yl T» yl

1

kY k
N\

k_ylyl _k: yl —— yl

ylyl

1

EY &k
N\

k_k _k:yl T» yl

yOyl/yyl\\ylyl

ylyl yOyl_ ¢yOyl: y0 — yl
yOyl

1
yoyl Y*
0N\

k_yOyl_ yOyl: y0 —— yl
Y0yl

0
ylyo YY g0yl
0N

y0yl ylyl yly0: yl —— yl
ylyl

ylyO/'yO\\yOyl

y0yl_k_yly0: yl T» yl

1
E_YY ylyo
N\

yly0_yly0_k: yl —— y0
y1y0

1
ylyl Y+ yly0
N\

Ts: 1— 90
fi: Y y10 Yy

Table 4 Non-equated triangles in Y, day 2.

0
y0yo YV y0yo
N\

y0y0_y0y0__y0y0: y0 —— y0
y0y0

0
y0y0 YV 40yl
0N

y0yl_yOyl_ ¢y0y0: ¢y0 —— yl
Y0yl

y()yl/ yl \yly()

yly0_y0y0_yO0yl: y0 — y0
y0y0

ylyO/,yo\\yOyO

y0y0_yly0_yly0: yl — y0
yly0

1
ylyl Y- ylyo
0N\

Tae: yl 0
ST
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