
Polynomial Self-Stabilizing Maximum Matching
Algorithm with Approximation Ratio 2/3
Johanne Cohen1, Khaled Maâmra2, George Manoussakis3, and
Laurence Pilard4

1 LRI-CNRS, Université Paris-Sud, Université Paris Saclay, Paris, France
johanne.cohen@lri.fr

2 LI-PaRAD, Université Versailles-St. Quentin, Université Paris Saclay, Paris,
France
khaled.maamra@uvsq.fr

3 LRI-CNRS, Université Paris-Sud, Université Paris Saclay, Paris, France
george.manoussakis@lri.fr

4 LI-PaRAD, Université Versailles-St. Quentin, Université Paris Saclay, Paris,
France
laurence.pilard@uvsq.fr

Abstract
We present the first polynomial self-stabilizing algorithm for finding a 2

3 -approximation of a
maximum matching in a general graph. The previous best known algorithm has been presented
by Manne et al. [16] and has a sub-exponential time complexity under the distributed adversarial
daemon [3]. Our new algorithm is an adaptation of the Manne et al. algorithm and works under
the same daemon, but with a time complexity in O(n3) moves. Moreover, our algorithm only
needs one more boolean variable than the previous one, thus as in the Manne et al. algorithm, it
only requires a constant amount of memory space (three identifiers and two booleans per node).

1998 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases Self-Stabilization, Distributed Algorithm, Fault Tolerance, Matching

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2016.11

1 Introduction

Matching problems have received a lot of attention in different areas. Dynamic load balancing
and job scheduling in parallel and distributed networks can be solved by algorithms using
a matching set of communication links [2, 7]. Moreover, the matching problem has been
recently studied in the algorithmic game theory. Indeed, the seminal problem relative to
matching introduced by Knuth is the stable marriage problem [13]. This problem can be
modeled as a game used in social networks [10] and in wireless networks [18].

In graph theory, a matching M in a graph G is a subset of the edges of G without common
nodes. A matching is maximal if no proper superset of M is also a matching whereas a
maximum matching is a maximal matching with the highest cardinality among all possible
maximal matchings. Some (almost) linear time approximation algorithm for the maximum
weighted matching problem have been well studied [6, 17], nevertheless these algorithms are
not distributed. They are based on a simple greedy strategy using augmenting path. An
augmenting path is a path, starting and ending in an unmatched node, and where every other
edge is either unmatched or matched; i.e. for each consecutive pair of edges, exactly one of
them must belong to the matching. Let us consider the example in Figure 2d, page 11. In

© Johanne Cohen, Khaled Maâmra, George Manoussakis, and Laurence Pilard;
licensed under Creative Commons License CC-BY

20th International Conference on Principles of Distributed Systems (OPODIS 2016).
Editors: Panagiota Fatourou, Ernesto Jiménez, and Fernando Pedone; Article No. 11; pp. 11:1–11:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2016.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Poly. Self-Stabilizing Max. Matching Algorithm with Approximation Ratio 2/3

this figure, u and v are matched nodes and x, y are unmatched nodes. The path (x, u, v, y) is
an augmenting path of length 3 (written 3-augmenting path). It is well known [11] that given
a graph G = (V,E) and a matching M ⊆ E, if there is no augmenting path of length 2k − 1
or less, then M is a k

k+1−approximation of the maximum matching. See [6] for the weighted
version of this theorem. The greedy strategy in [6, 17] consists in finding all augmenting
paths of length ` or less and by switching matched and unmatched edges of these paths in
order to improve the maximum matching approximation.

In this paper, we present a self-stabilizing algorithm for finding a maximum matching
with approximation ratio 2/3 that uses the greedy strategy presented above. Our algorithm
stabilizes after O(n3) moves under the adversarial distributed daemon.

In unweighted or weighted general graphs, self-stabilizing algorithms for computing
maximal matching have been designed in various models (anonymous network [1] or not
[19], see [8] for a survey). For an unweighted graph, Hsu and Huang [12] gave the first
self-stabilizing algorithm and proved a bound of O(n3) on the number of moves under a
sequential adversarial daemon. Hedetniemi et al. [9] completed the complexity analysis
proving a O(m) move complexity. Manne et al. [15] gave a self-stabilizing algorithm that
converges in O(m) moves under a distributed adversarial daemon. Note that it is well known
that a maximal matching is only an 1

2 -approximation of a maximum matching.
Manne et al. [16] and Asada and Inoue [1] presented some self-stabilizing algorithms for

finding a 2
3 -approximation of a maximum matching. Manne et al. gave an exponential upper

bound on the stabilization time (O(2n) moves under a distributed adversarial daemon) of
their algorithm. However, they didn’t show that this upper bound is tight. We proved [3]
that this lower bound is sub-exponential by exhibiting an execution of Ω(2

√
n) moves before

stabilization. Asada and Inoue [1] gave a polynomial algorithm but under the adversarial
sequential daemon.

In a weighted graph, Manne and Mjelde [14] presented the first self-stabilizing algorithm
for computing a weighted matching of a graph with an 1

2 -approximation of the optimal
solution. They established that their algorithm stabilizes after at most an exponential number
of moves under any adversarial daemon (i.e., sequential or distributed). Turau and Hauck
[19] gave a modified version of the previous algorithm that stabilizes after O(nm) moves
under any adversarial daemon.

The following figure compares features of the aforementioned algorithms and our result.
The previous best known algorithm working under the same daemon has a sub-exponential
complexity while our algorithm has a cubic complexity.

Problem
1
2 -approximation 2

3 -approximation
(maximal matching)

Graph
Anonymous

Identified without cycle with Identified
multiple of 3 length

Daemon Adversarial Adversarial Adversarial Adversarial
Sequential Distributed Sequential Distributed

Reference [12, 9] [15] [1] [16] This paper

Complexity O(m) O(m) O(m) Ω(2
√

n) O(n3)
moves moves moves moves moves

In the rest of the document, we present the model (Section 2), the algorithm (Section 3) and
then the correction proof (Section 4) followed by the convergence proof (Section 5).

J. Cohen, K. Maâmra, G. Manoussakis, and L. Pilard 11:3

2 Model

The system consists of a set of processes where two adjacent processes can communicate with
each other. The communication relation is represented by an undirected graph G = (V,E)
where |V | = n and |E| = m. Each process corresponds to a node in V and two processes u
and v are adjacent if and only if (u, v) ∈ E. The set of neighbors of a process u is denoted
by N(u) and is the set of all processes adjacent to u, and ∆ is the maximum degree of G.
We assume all nodes in the system have a unique identifier.

For the communication, we consider the shared memory model. In this model, each
process maintains a set of local variables that makes up the local state of the process. A
process can read its local variables and the local variables of its neighbors, but it can write
only in its own local variables. A configuration C is the local states of all processes in the
system. Each process executes the same algorithm that consists of a set of rules. Each rule
is of the form of <name> :: if <guard> then <command>. The name is the name of the
rule. The guard is a predicate over the variables of both the process and its neighbors. The
command is a sequence of actions assigning new values to the local variables of the process.

A rule is activable in a configuration C if its guard in C is true. A process is eligible
for the rule R in a configuration C if its rule R is activable in C and we say the process
is activable in C. An execution is an alternate sequence of configurations and actions
E = C0, A0, . . . , Ci, Ai, . . ., such that ∀i ∈ N∗, Ci+1 is obtained by executing the command
of at least one rule that is activable in Ci (a process that executes such a rule makes a
move). More precisely, Ai is the non empty set of activable rules in Ci that has been
executed to reach Ci+1 and such that each process has at most one of its rules in Ai. We
use the notation Ci 7→ Ci+1 to denote this transition in E . Finally, let E ′ = C ′0, A

′
0, · · · , C ′k

be a finite execution. We say E ′ is a sub-execution of E if and only if ∃t ≥ 0 such that
∀j ∈ [0, · · · , k]:(C ′j = Cj+t ∧A′j = Aj+t).

An atomic operation is such that no change can take place during its run, we usually
assume that an atomic operation is instantaneous. In the shared memory model, a process u
can read the local state of all its neighbors and update its whole local state in one atomic
step. Then, we assume here that a rule is an atomic operation. An execution is maximal if it
is infinite, or it is finite and no process is activable in the last configuration. All algorithm
executions considered here are assumed to be maximal.

A daemon is a predicate on the executions. We consider only the most powerful one: the
adversarial distributed daemon that allows all executions described in the previous paragraph.
Observe that we do not make any fairness assumption on the executions.

An algorithm is self-stabilizing for a given specification, if there exists a sub-set L of the
set of all configurations such that: every execution starting from a configuration of L verifies
the specification (correctness) and starting from any configuration, every execution eventually
reaches a configuration of L (convergence). L is called the set of legitimate configurations. A
configuration is stable if no process is activable in the configuration. The algorithm presented
here, is silent, meaning that once the algorithm has stabilized, no process is activable. In
other words, all executions of a silent algorithm are finite and end in a stable configuration.
Note the difference with a non silent self-stabilizing algorithm that has at least one infinite
execution with a suffix only containing legitimate configurations, but not stable ones.

3 Algorithm

The algorithm presented in this paper is called MaxMatch, and is based on the algorithm
presented by Manne et al. [16]. As in the Manne et al. algorithm, MaxMatch assumes there

OPODIS 2016

11:4 Poly. Self-Stabilizing Max. Matching Algorithm with Approximation Ratio 2/3

exists an underlying maximal matching algorithm, which has reached a stable configuration.
Based on this stable maximal matching, MaxMatch builds a 2

3 -approximation of the
maximum matching by detecting and then deleting all 3-augmenting paths. Once a 3-
augmenting path is detected, nodes rearrange the matching accordingly, i.e., transform this
path with one matched edge into a path with two matched edges. This transformation leads
to the deletion of the augmenting path and increases by one the cardinality of the matching.
The algorithm stabilizes when there is no augmenting path of length three left. By the result
of Hopcroft et al. [11], we obtain a 2

3 -approximation of the maximum matching.
This underlying stabilized maximal matching can be built, for instance, with the self-

stabilizing maximal matching algorithm from [15] that stabilizes in O(m) moves under the
adversarial distributed daemon (so the same daemon than the one used in this paper).
Observe that this algorithm is silent, meaning that the maximal matching remains constant
once the algorithm has stabilized. Then, using a classical composition of these two algorithms
[5], we obtain a total time complexity in O(n2 × n3) = O(n5) moves under the adversarial
distributed daemon.

In the rest of the paper,M is the underlying maximal matching, andM+ is the set of
edges built by our algorithm MaxMatch (see Definition 3.1). For a set of nodes A, we define
single(A) and matched(A) as the set of unmatched and matched nodes in A, accordingly
to the underlying maximal matching M. Moreover, M is encoded with the variable mu.
If (u, v) ∈ M then u and v are matched nodes and we have: mu = v ∧mv = u. If u is not
incident to any edge in M, then u is a single node and mu = null. Since we assume the
underlying maximal matching is stable, a node membership in matched(V) or single(V) will
not change, and each node u can use the value of mu to determine which set it belongs to.

Variables description: In order to facilitate the rematching, each node u ∈ V maintains
three pointers and two boolean variables. The pointer pu refers to a neighbor of u that u
is trying to (re)match with. If pu = null then the matching of u has not changed from the
maximal matching. Thus, the matchingM+ built by our algorithm is defined as follows:

I Definition 3.1. The set of edges built by algorithm MaxMatch isM+ = {(u, v) ∈M :
pu = pv = null} ∪ {(a, b) ∈ E \M : pa = b ∧ pb = a}

For a matched node u, pointers αu and βu refer to two nodes in single(N(u)) that are
candidates for a possible rematching with u. Also, su is a boolean variable that indicates if
the node u has performed a successful rematching with its single node candidate. Finally,
endu is a boolean variable that indicates if both u and mu have performed a successful
rematching or not. For a single node x, only one pointer px and one boolean variable endx are
needed. px has the same purpose as the p-variable of a matched node. The end-variable of a
single node allows the matched nodes to know whether it is available or not. A single node
is available if it is possible for this node to eventually rematch with one of its neighboring
married node, i.e., endx =False.

In our algorithm, Unique(A) returns the number of unique elements in the multi-set A,
and Lowest(A) returns the node in A with the lowest identifier. If A = ∅, then Lowest(A)
returns null. Moreover, rules have priorities. In the algorithm, we present rules from the
highest priority (at the top) to the lowest one (at the bottom).

Algorithm description: Every pair of matched nodes u, v (v=mu) tries to find single
neighbors they can rematch with. Moreover u and v need to have a sufficient number of
available single neighbors to detect a 3-augmenting path: each node should have at least

J. Cohen, K. Maâmra, G. Manoussakis, and L. Pilard 11:5

————– Rules for each node u in single(V)

ResetEnd ::
if pu = null ∧ endu = True

then endu := False

UpdateP ::
if (pu = null ∧ {w ∈ matched(N(u)) | pw = u} 6= ∅) ∨ (pu /∈ (matched(N(u)) ∪ {null})) ∨

(pu 6= null ∧ ppu 6= u)
then pu := Lowest{w ∈ N(u) | pw = u}

endu := False

UpdateEnd ::
if (pu ∈ matched(N(u)) ∧ (ppu = u) ∧ (endu 6= endpu)
then endu := endpu

————– Predicates and functions

BestRematch(u) ≡
a = Lowest{x ∈ single(N(u)) ∧ (px = u ∨ endx = False)}
b = Lowest{x ∈ single(N(u)) \ {a} ∧ (px = u ∨ endx = False)}
return (a, b)

AskFirst(u) ≡
if αu 6= null ∧ αmu 6= null ∧ 2 ≤ Unique({αu, βu, αmu , βmu})

then if (αu < αmu) ∨ (αu = αmu ∧ βu = null) ∨ (αu = αmu ∧ βmu 6= null ∧ u < mu)
then return αu

else return null

AskSecond(u) ≡
if AskFirst(mu) 6= null

then return Lowest({αu, βu} \ {αmu})
else return null

—————— Rules for each node u in matched(V)
Update ::

if (αu > βu) ∨ (αu, βu /∈ (single(N(u)) ∪ {null})) ∨ (αu = βu ∧ αu 6= null)
∨pu /∈ (single(N(u)) ∪ {null}) ∨
((αu, βu) 6= BestRematch(u)∧ (pu = null ∨ (ppu 6= u ∧ endpu = True)))

then (αu, βu) := BestRematch(u)
(pu, su, endu) := (null, False, False)

MatchFirst ::
if (AskFirst(u) 6= null) ∧

[pu 6= AskFirst(u) ∨
su 6= (pu = AskFirst(u) ∧ ppu = u ∧ pmu ∈ {AskSecond(mu), null}) ∨
endu 6= (pu = AskFirst(u) ∧ ppu = u ∧ su ∧ pmu = AskSecond(mu) ∧ endmu)]

then endu := (pu = AskFirst(u) ∧ ppu = u ∧ su ∧ pmu = AskSecond(mu) ∧ endmu)
su := (pu = AskFirst(u) ∧ ppu = u ∧ (pmu ∈ {AskSecond(mu), null})
pu := AskFirst(u)

MatchSecond ::
if (AskSecond(u) 6= null) ∧ (smu = True) ∧

[pu 6= AskSecond(u) ∨ endu 6= (pu = AskSecond(u) ∧ ppu = u ∧ pmu = AskFirst(mu))
∨su 6= endu]

then endu := (pu = AskSecond(u) ∧ ppu = u ∧ pmu = AskFirst(mu))
su := endu

pu := AskSecond(u)

ResetMatch ::
if [(AskFirst(u) = AskSecond(u) = null) ∧ ((pu, su, endu) 6= (null, False, False))] ∨

[AskSecond(u) 6= null ∧ pu 6= null ∧ smu = False]
then (pu, su, endu) := (null, False, False)

OPODIS 2016

11:6 Poly. Self-Stabilizing Max. Matching Algorithm with Approximation Ratio 2/3

one candidate and the sum of the number of candidates for u and v should be at least 2.
The BestRematch predicate is used to compute candidates in variables α and β, and the
condition (αu 6= null ∧ αv 6= null ∧ 2 ≤ Unique({αu, βu, αv, βv})), from predicate AskFirst,
is used to ensure the number of candidates is sufficiently high.

Observe that we only have three distinct possible values for the quadruplet (AskFirst(u),
AskSecond(u), AskF irst(v), AskSecond(v)) for any couple (u, v) ∈M and whatever the α
and β values are. These are: (null, null, null, null) or (x, null, null, y) or
(null, x, y, null), with x 6= y. The first case means that there is no 3-augmenting path that
contains the couple (u, v). The two other cases mean that (x, u, v, y) is a 3-augmenting path.
If x < y, we are in the second case, otherwise we are in the third case. Node u is said to be
First if AskFirst(u) 6= null. In the same way, u is Second if AskSecond(u) 6= null.

In the following, we consider the second case, since the third case is symmetric of the
second case with v is First. So we assume u is First.

A 3-augmenting path is exploited in three phases. The first phase determines the first
edge of the 3-augmenting path. This phase is complete when su = True and ppu = u (u is
First). In the second phase, the third edge of the augmenting path is marked. This phase is
complete when node v, that is Second, sets its end value to True. Finally, in the third phase,
the end value of v is propagated in the whole augmenting path. When this propagation is
done, the phase is over, the augmenting path is said to be fully exploited and all neighbors of
single nodes of this path know that these two single nodes are not available anymore.

The scenario for an augmenting path exploitation when everything goes well is given in
the following. Node u starts trying to rematch with x performing a MatchFirst move and
pu := x. If x accepts the proposition, performing an UpdateP move and px := u, then u
will inform v of this first phase success, once again by performing a MatchFirst move and
su :=True. Observe that at this point, x cannot change its p-value since ppx = x. Finally,
node v tries to rematch with y, performing a MatchSecond move and pv := y. If y accepts
the proposition, performing an UpdateP move and py := v, then v will inform u of this final
success, by performing a MatchSecond move and endv :=True. This complete the second
phase. From then, all nodes in this 3-augmenting path will set there end-variable to True:
u by performing a last MatchFirst move, and x and y by performing an UpdateEnd move.
From this point, non of nodes x, u, v, or y will ever be eligible for any move again. Moreover,
once single nodes have their end-variables set to True, they are not available anymore for
any other matched nodes.

Rules description: The Update rule allows a matched node to update its α and β variables.
Then, predicates AskFirst and AskSecond are used to define the role the node will have in
the 3-augmenting path exploitation. If the node is First (resp. Second), then it will execute
MatchFirst (resp. MatchSecond) several times for this 3-augmenting path exploitation.

The MatchFirst rule is used by the node when it is First. Let u be this node. The
first time this rule is performed, u seduces its candidate setting (endu, su, pu) to (False,
False, AskF irst(u)). Then this rule is performed a second time after the u’s candidate
has accepted the u’s proposition, i.e., when AskFirst(u) has set its p-variable to u. So
the second MatchFirst execution sets (endu, su, pu) to (False, True,AskF irst(u)). Now,
variable su is equal to True, allowing node mu that is Second to seduce its own candidate.
Finally, the rule MatchFirst is performed a third time when mu completed is own rematch,
i.e., when endu = True. When there is no bad information due to some bad initializations,
endmu = True means that pmu = AskSecond(mu) ∧ ppmu

= mu. So this third MatchFirst
execution sets (endu, su, pu) to (True, True,AskF irst(u)), meaning that the 3-augmenting
path has been fully exploited.

J. Cohen, K. Maâmra, G. Manoussakis, and L. Pilard 11:7

In the MatchFirst rule, observe that we make the su affectation before the pu affectation,
because the su value must be computed accordingly to the value of pu before activating
u. Indeed, when u executes MatchFirst for the first time, it allows to set pu from ⊥ to
AskFirst(u) while su remains False. Then when u executes MatchFirst for the second time,
su is set from False to True while pu remains equal to AskFirst(u). For the same argument,
we make the endu affectation before the su affectation. Thus, the «normal» values sequence
for (pu, su, endu) is: ((⊥, False, False), (AskFirst(u), False, False), (AskFirst(u), T rue,
False), (AskFirst(u), T rue, True)).

The MatchSecond rule is used by the node when it is Second. This rule is performed
only twice in one 3-augmenting path exploitation. For the first execution, u has to wait for
mu to set its smu to True. Then u can perform MatchSecond and update its p-variable to
AskSecond(u). When the u’s candidate has accepted to this proposition, u can perform
MatchSecond for the second time, setting su and endu to True. As in the MatchFirst rule,
we set end and s affectation before the p affectation.

The ResetMatch rule is performed to reset bad initialization and its consequences.
Let us now consider rules for single nodes. The ResetEnd rule is used to reset bad

initializations. In the UpdateP rule, the node updates its p-value according to the propositions
done by neighboring matched nodes. If there is no proposition, the node sets its p-value to ⊥.
Otherwise, p is set to the minimum identifier among all proposals. Afterward, the p-value
can only change when the proposition is canceled. When a single node u has accepted a
proposition, its end value should be equal to the end value of pu. The UpdateEnd rule is
used for this purpose.

Graphical convention: We will follow the above conventions in all the figures: matched
nodes are represented with double circles and single nodes with simple circles. Moreover, all
edges that belong to the maximal matchingM are represented with a double line, whereas
the other edges are represented with a simple line. Black arrows show the content of the
local variable p. If the p-value is null, we draw a ’T’. A prohibited value is first drawn in
grey, then scratched out in black. If there is no knowledge on the p-value, nothing is drawn.
For instance, in Figure 2e, page 11, x is a single node, u and v are matched nodes and
(u, v) ∈M, pu = x, and px 6= u. In Figure 2d page 11, pu = ⊥.

3.1 Execution example
Now, we give a possible execution of Algorithm MaxMatch under the adversarial distributed
daemon. Figure 1a shows the initial state of the execution. Node identifiers are indicated
inside the circles. The underlying maximal matching contains two edges (5, 6) and (2, 3).
Then nodes 2, 3, 5 and 6 are matched nodes and nodes 1, 4, 7 and 8 are single nodes. At the
beginning, there are three 3-augmenting paths: (4, 6, 5, 7), (7, 3, 2, 1) and (7, 3, 2, 8).

The initial configuration (Figure 1a): In the initial configuration, we assume that all
α-values and β-values are defined as follows: (α2, β2) = (8, null), (α3, β3) = (7, null),
(α5, β5) = (4, 7), and (α6, β6) = (4, null). We also assume all s-values are well defined
(s6 =True while all other s-values are False) whereas all end-values are False but end1 that
is True. At this moment, node 2 considers that since end1 =True, node 1 already belongs to
a fully exploited 3-augmenting path: BestRematch(2) = (8, null).

Nodes 6 and 5 have already started to exploit their augmenting path: p6 = 4, p4 = 6 and
p5 = 7. Node 6 is First because β6 = null and since s6 =True, node 5 knows that it can
start its exploitation too, performing a MatchSecond: p5 = 7. At this step, node 5 waits for

OPODIS 2016

11:8 Poly. Self-Stabilizing Max. Matching Algorithm with Approximation Ratio 2/3

4

6 5 7 3 2 8

1 end1 = True

(a) Initial configuration.

4

6 5 7 3 2 8

1 end1 = True

(b) 3 executes MatchFirst,
then 7 executes UpdateP and chooses 3.

4

6 5 7 3 2 8

1

(c) 1 executes ResetEnd,
then 2 executes Update and becomes First.
Finally, 3 executes ResetMatch.

4

6 5 7 3 2 8

1

(d) 2 executes MatchFirst, then 1 executes
UpdateP and accepts the proposition of 2.
Finally, 2 executes MatchFirst (s2:=True).

4

6 5 7 3 2 8

1

(e) 3 and 7 execute in parallel MatchSecond
and UpdateP respectively.

4

6 5 7 3 2 8

1

end5 = True

(f) 5 executes MatchSecond, then the True value
of end5 is propagated in the path (4, 6, 5, 7).
Finally the path (7, 3, 2, 1) is destroyed.

Figure 1 An execution of Algorithm MaxMatch (Only the True value of the end-variables are
given).

an answer of node 7. There are only two kinds of answer: node 7 accepts to take part of
this path exploitation setting p7 = 5 with an UpdateP rule, or it refuses setting end7 =True
while p7 6= 5 with an UpdateEnd rule. But this last choice can only be done if 7 belongs to
another fully exploited augmenting path. So at this point, node 7 cannot refuse.

The other 3-augmenting path is (7, 3, 2, 8). Node 2 considers that node 1 is not available
because end1 =True. Since 2 ≤ Unique({α2, β2, α3, β3}) ≤ 4, nodes 2 and 3 detect a
3-augmenting path and start to exploit it. Since node 3 is First (AskFirst(3) = 7 and
AskFirst(2) = null), node 3 may execute a MatchFirst move. Let us assume it does.

The 3-augmenting path exploitation starts (Figure 1b): Node 3 executes here a Match-
First move and points to node 7. Since both nodes 3 and 5 are pointing to node 7, node
7 can choose the node to match with from these two nodes. Note that at this point, node
7 is the only activable node among all nodes except node 1. Node 7 makes this choice by
executing an UpdateP move: since Lowest{u ∈ N(7) | pu = 7} = 3, node 7 points to node 3.

Difference with Manne et al. algorithm: In our algorithm, even after 7 has chosen 3, node
5 still waits for an acceptation of node 7, and will do so while end7 remains False. However, at
this point, in Manne et al. algorithm, node 5 can destroy the augmenting-path construction.
This is the main difference that allows our algorithm to prevent from exponential executions.

So, at this point there is a binary choice for node 5: destroy or not its augmenting-path
construction. In Manne et al. algorithm, the choice is to destroy, thus the destruction of a
partially exploited augmenting-path can be done while no fully exploited augmenting path
has been built. Moreover, for one fully exploited augmented path, we can exhibit some
executions where we destroy a sub-exponential number of exploited augmented-path [3]. In

J. Cohen, K. Maâmra, G. Manoussakis, and L. Pilard 11:9

our algorithm, we do the other choice which is: do not destroy while there is still hope to
exploit the augmenting path. So, if node 5 breaks a partially exploited augmenting path, then
node 7 belongs to a fully exploited augmenting-path. Thus the destruction of 5 implies one
3-augmenting path has been fully exploited and thus the matching size has been increased
by 1.

This difference is implemented in the algorithm through the BestRematch predicate.
The condition px = null in Manne et al. algorithm has been replaced by the condition
endx =False in our algorithm. Then, in our algorithm, BestRematch(5) remains constant
when 7 chooses node 3, while it does not in Manne et al. algorithm, making 5 eligible for
Update.

Go back to the execution, node 1 wakes up (Figure 1c): Let us focus on node 1. Its
end-value is not well defined since end1 =True while node 1 does not belong to a fully
exploited augmenting path. Thus, node 1 is eligible for ResetEnd rule. After this activation,
end1 =False. This implies that BestRematch(2) = (1, 8) and thus (α2, β2) = (8, null) 6=
BestRematch(2). So, node 2 is eligible for Update rule. Let us assume it makes this move.
Thus, after this activation, node 2 is First. This implies that node 3 is Second, and it is
eligible for ResetMatch because AskSecond(3) 6= null ∧ p3 6= null ∧ s2 =False. So, it does it
and sets p3 = null.

A second 3-augmenting path exploitation starts (Figure 1d): Let us consider node 2. It
is First and it can execute a MatchFirst rule. After this activation, it sets p2 = 1 and
s2 = end2 =False. Now, node 1 accepts the node 2 proposition by applying UpdateP. After
this activation, node 1 points to node 2 (p1 = 2). Now, node 2 is eligible for executing a
MatchFirst rule. It sets p2 = 1 and s2 = True. This implies that node 3 becomes eligible for
MatchSecond.

A matched node proposition in parallel with a single node abandonment (Figure 1e):
In the configuration shown in Figure 1d, only nodes 3 and 7 are activable, node 3 can propose
to node 7 with a MatchSecond and node 7 can accept the node 5’s proposition with an
UpdateP. Assume 3 and 7 are activated at the same time. Figure 1e shows the configuration
obtained after theses moves: p3 = 7, p7 = 5. Note that after these activations, we have s3 =
False since, before these activations, the p-values of nodes 3 and 7 are not as follow: p3 = 7
and p7 = 3. This kind of transitions, where a matched node proposition is performed in
parallel with a single node abandonment, is the reason why we make the s-affectation, then
the p-affectation in the MatchFirst rule. This trick allows to obtain after a MatchFirst rule:
su = True implies ppu

= u. Finally, observe at this step that node 3 still waits for an answer
of node 7.

The path (4,6,5,7) becomes fully exploited (Figure 1f): Since end5 6= (p5 = AskSecond(5)
∧p7 = 5 ∧ p6 = AskFirst(6)), node 5 is eligible for a MatchSecond rule to set end5 to True
and then to make the other nodes aware that the path is fully exploited. Assume node 5
executes a MatchSecond move. This will cause node 7 (resp. 6) to execute an UpdateEnd
move (resp. a MatchFirst move) and sets end7 =True (resp. end6 =True). Now, it is the
turn to node 4 to execute an UpdateEnd move. As the end-value of nodes 4, 5, 6, and 7 are
equal to True, the 3-augmenting path is fully exploited.

Recall that node 3 was waited for an answer from node 7. Now, end7 = True ∧ p7 6= 3.
Thus node 7 is not available for node 3 anymore and so node 3 executes the Update rule:

OPODIS 2016

11:10 Poly. Self-Stabilizing Max. Matching Algorithm with Approximation Ratio 2/3

(α3, β3) = (null, null). This will cause node 2 to execute a ResetMatch move (p2 = null)
and then node 1 to execute an UpdateP move (p1 = null). The system has reached a stable
configuration (see Fig. 1e). Thus, the size of the matching is increasing by one and there is
no 3-augmenting path left.

Now, we present the proof of our algorithm.

4 Correctness Proof

In all the proofs, if a lemma, a theorem, or a corollary is labeled with a capital letter, then
the associated proof is in [4].

A natural way to prove the correction of MaxMatch algorithm could have been to follow
the approach below. We consider a stable configuration C in MaxMatch and we prove
C is also stable in the Manne et al. algorithm. As we use the exact same variables but
the end-variable and because the matching is only defined on the common variables, the
correctness follows from Manne et al. paper. Moreover, we can easily show that if C is stable
in MaxMatch, then no rule from the Manne et al. algorithm but the Update rule can be
performed in C. Unfortunately, it is not straightforward to prove that the Update rule from
Manne et al. algorithm cannot be executed in C. Indeed, our Update rule is more difficult to
execute than the one of Manne et al. in the sens that some possible Update in Manne et
al. are not possible in our algorithm. By the way, this is why our algorithm has a better
time complexity since the number of partially exploited augmented path destruction in our
algorithm is smaller than in the Manne et al. algorithm. In particular, we have to prove that
in a stable configuration, for any matched node, if pu 6= null, then endpu

= True. To prove
that, we need Lemmas A, B, C, D, E and a part of the proof from Theorem 4.1. Observe
that from these results, the correctness is straightforward without using the Manne et al.
proof.

Let Ask : V → V ∪ {null} be a function where Ask(u) = AskFirst(u) if AskFirst(u) 6=
null, otherwise Ask(u) = AskSecond(u). We will say a node makes a match rule if it
performs a MatchFirst or MatchSecond rule.

For the correctness part, we prove that in a stable configuration, M+ is a 2/3-appro-
ximation of a maximum matching on graph G. To do that we demonstrate there is no
3-augmenting path on (G,M+). In particular we prove that for any edge (u, v) ∈ M, we
have either pu = pv = null, or u and v have two distinct single neighbors they are rematched
with, i.e., ∃x ∈ single(N(u)),∃y ∈ single(N(v)) with x 6= y such that (px = u) ∧ (pu =
x) ∧ (py = v) ∧ (pv = y). In order to prove that, we show every other case for (u, v) is
impossible. Main studied cases are shown in Figure 2. Finally, we prove that if pu = pv = null

then (u, v) does not belong to a 3-augmenting-path on (G,M+).

I Lemma A. In any stable configuration, we have the following properties:
∀u ∈ matched(V) : pu = Ask(u);
∀x ∈ single(V) : if px = u with u 6= null, then u ∈ matched(N(x)) ∧ pu = x ∧ endu =
endx.

I Lemma B. Let (u, v) be an edge inM. Let C be a configuration. If pu 6= null∧ pv = null

holds in C (see Fig. 2a), then C is not stable.

I Lemma C. Let (x, u, v, y) be a 3-augmenting path on (G,M). Let C be a stable configura-
tion. In C, if px = u, pu = x, pv = y and py = u, then endx = endu = endv = endy =True.

J. Cohen, K. Maâmra, G. Manoussakis, and L. Pilard 11:11

uu vv

(a) By Lemma B

x1x1 u1u1 v1v1 x2x2

(b) By Lemma D

xx uu vv yy

xx uu vv yy

(c) By Lemma 4.2

xx uu vv yy

(d) By Lemma E

xx uu vv yy

(e) By Lemma E

Figure 2 3-augmenting paths that are not possible in a stable configuration.

I Lemma D. Let (x1, u1, v1, x2) be a 3-augmenting path on (G,M). Let C be a configuration.
If px1 = u1 ∧ pu1 = x1 ∧ pv1 = x2 ∧ px2 6= v1 holds in C (see Fig. 2b), then C is not stable.

Proof. This is a sketch of the proof. We can prove that there exists a 3-augmenting
path (x2, u2, v2, x3) such that px2 = u2 ∧ pu2 = x2 ∧ pv2 = x3 ∧ px3 6= v2. This aug-
menting path has the exact same properties than the first considered augmenting path
(x1, u1, v1, x2) and in particular u1 is First. Now we can continue the construction in the
same way. Therefore, for C to be stable, there must to exist a chain of 3-augmenting
paths (x1, u1, v1, x2, u2, v2, x3, . . . , xi, ui, vi, xi+1, . . .) where ∀i ≥ 1 : (xi, ui, vi, xi+1) is a 3-
augmenting path with pxi

= ui ∧ pui
= xi ∧ pvi

= xi+1 ∧ pxi+1 = vi+1 and ui is First. Thus,
x1 < x2 < . . . < xi < . . . since the ui will always be First. Since graph G is finite some xk

must be equal to some x` with ` 6= k which contradicts the fact that the identifier’s sequence
is strictly increasing. J

I Lemma E. Let (x, u, v, y) be a 3-augmenting path on (G,M). Let C be a configuration.
If (pu = x ∧ px 6= u ∧ pv = y ∧ py 6= v) or if (py = pu = pv = py = null) holds in C (see
Fig. 2d and Fig. 2e respectively), then C is not stable.

I Theorem 4.1. In a stable configuration we have, ∀(u, v) ∈M:
pu = pv = null or
∃x ∈ single(N(u)),∃y ∈ single(N(v)) with x 6= y such that (px = u) ∧ (pu = x) ∧ (py =
v) ∧ (pv = y).

Proof. We will prove that all cases but these two are not possible in a stable configuration.
First, Lemma B says the configuration cannot be stable if one of pu or pv is not null.

Second, assume that pu 6= null ∧ pv 6= null. Let pu = x and pv = y. Observe that
x ∈ single(N(u)) (resp. y ∈ single(N(v))), otherwise u (resp. v) is eligible for Update.

Case x 6= y: If px 6= u and py 6= v then Lemma E says the configuration cannot be stable.
If px = u and py 6= v then Lemma D says the configuration cannot be stable. Thus, the only
remaining possibility when pu 6= null and pv 6= null is: px = u and py = v.

Case x = y: Ask(u) (resp. Ask(v) 6= null), otherwise u (resp. v) is eligible for
a ResetMatch. W.l.o.g. let us assume that u is First. x = AskFirst(u) (resp. x =
AskSecond(v)), otherwise u (resp. v) is eligible for MatchFirst (resp. MatchSecond). Thus
AskFirst(u) = AskSecond(v) which is impossible according to these two predicates. J

I Lemma 4.2. Let x be a single node. In a stable configuration, if px = u, u 6= null (see
Fig. 2c) then it exists a 3-augmenting path (x, u, v, y) on (G,M) such that px = u ∧ pu =
x ∧ pv = y ∧ py = v.

OPODIS 2016

11:12 Poly. Self-Stabilizing Max. Matching Algorithm with Approximation Ratio 2/3

Proof. By Lemma A, if px = u with u 6= null then u ∈ matched(N(x)) and pu = x. Since
pu 6= null, by Theorem 4.1 the result holds. J

Thus, in a stable configuration, for all edges (u, v) ∈ M, if pu = pv = null then (u, v)
does not belong to a 3-augmenting-path on (G,M+). In other words, we obtain:

I Corollary 4.3. In a stable configuration, there is no 3-augmenting path on (G,M+) left.

5 Convergence Proof

This section is devoted to a sketch of the convergence proof. In the following, µ will denote
the number of matched nodes and σ the number of single nodes.

The first step consists in proving that the values of s and end represent the different
phases of the path exploitation. Recall that su = True means ppu

= u. Moreover endu =
True means that the path is fully exploited. We can easily prove that after one activation of
a matched node u, su = True implies ppu

= u (Lemma F). However, a bad initialization of
endmu to True can induce u to wrongly write True in endu. But this can appear only once
and thus, the second times u writes True in endu means that a 3-augmenting path involving
u has been fully exploited (Theorem 5.1).

I Lemma F. Let u be a matched node. Consider an execution E starting after u executed
some rule. Let C be any configuration in E. In C, if su =True then ∃x ∈ single(N(u)) :
pu = x ∧ px = u.

I Theorem 5.1. In any execution, a matched node u can write endu :=True at most twice.

We now count the number of destruction of partially exploited augmenting paths. Recall
that in Manne et al. algorithm, for one fully exploited augmenting path, it is possible to
destroy a sub-exponential number of partially exploited ones.

In our algorithm, observe that for a path destruction, the set of single neighbors that
are candidates for a matched edge has to change and this change can only occur when a
single node changes its end-value. Such a change induces a path destruction if a matched
node takes into account this modification by applying an Update rule. So, we first count the
number of time a single node can change its end-value (Lemma G) and then we deduce the
number of time a matched node can execute Update (Corollary H). Finally, we conclude we
destroy at most O(n2)(= O(∆(σ + µ))) partially exploited augmenting path.

The rest of the proof consists in counting the number of moves that can be performed
between two Update, allowing us to conclude the proof (Theorem I).

In the following, we detailed point by point the idea behind each result cited above.

Since single nodes just follow orders from their neighboring matched nodes, we can count
the number of times single nodes can change the value of their end variable. There are σ
possible modifications due to bad initializations. A matched node u can write True twice
in endu, so endu can be True during 3 distinct sub-executions. As a single node x copies
the end-value of the matched node it points to (px = u), then a single node can change its
end-value at most 3 times as well. And we obtain 6µ modifications.

I Lemma G. In any execution, the number of transitions where a single node changes the
value of its end variables (from True to False or from False to True) is at most σ+ 6µ times.

J. Cohen, K. Maâmra, G. Manoussakis, and L. Pilard 11:13

We count the maximal number of Update rule that can be performed in any execution.
To do that, we observe that the first line of the Update guard can be True at most once in
an execution (Lemma L). Then we prove for the second line of the guard to be True, a single
node has to change its end value. Thus, for each single node modification of the end−value,
at most all matched neighbors of this single node can perform an Update rule.

I Corollary H. Matched nodes can execute at most ∆(σ + 6µ) + µ times the Update rule.

Third, we count the maximal number of moves performed by matched nodes between
two Update. The idea is that in an execution without Update, α and β values of all matched
nodes remain constant. Thus, in these small executions, at most one augmenting path is
detected per matched edge and at most one rematch attempt is performed per matched edge.
We obtain that the maximal number of moves of a matched node in these small executions is
12. By the previous remark and Corollary H, we obtain:

I Theorem I. In any execution, matched nodes can execute at most 12µ(∆(σ + 6µ) + µ)
rules.

Finally, we count the maximal number of moves that single nodes can perform, counting
rule by rule. The ResetEnd is done at most once. The number of UpdateEnd is bounded by
the number of times single nodes can change their end-value, so it is at most σ+ 6µ. Finally,
UpdateP is counted as follows: between two consecutive UpdateP executed by a single node
x, a matched node has to make a move. The total number of executed UpdateP is then at
most 12µ(∆(σ + 6µ) + µ) + 1.

I Corollary J. The algorithm MaxMatch converges in O(n3) steps under the adversarial
distributed daemon.

Due to the lack of space, we cannot give the whole convergence proof. We choose to
present the proof of Theorem 5.1 since it is the key point of the convergence proof. Indeed,
with this result, we have a first strong step leading to the proof of the silent property of our
algorithm. The remaining of this section is devoted to prove Theorem 5.1. The rest of the
proof is placed in [4].

5.1 A matched node can write True in its end-variable at most twice
The first two lemmas are technical lemmas.

I Lemma K. Let u be a matched node. Consider an execution E starting after u executed
some rule. Let C be any configuration in E. If endu =True in C then su =True as well.

I Lemma L. Let u be a matched node and E be an execution containing a transition C0 7→ C1
where u makes a move. From C1, the predicate in the first line of the guard of the Update
rule will never hold from C1.

Now, we will focus on particular configurations for a matched edge (u, v) corresponding
to the fact they have completely exploited a 3-augmenting path.

I Lemma 5.1. Let (u, v) be a matched edge, E be an execution and C be a configuration of
E. If in C, we have:
1. pu ∈ single(N(u)) ∧ pu = AskFirst(u) ∧ ppu

= u;
2. pv ∈ single(N(v)) ∧ pv = AskSecond(v) ∧ ppv = v;
3. su = endu = sv = endv =True;
then neither u nor v will ever be eligible for any rule from C.

OPODIS 2016

11:14 Poly. Self-Stabilizing Max. Matching Algorithm with Approximation Ratio 2/3

Proof. Observe first that neither u nor v are eligible for any rule in C. Moreover, pu (resp.
pv) is not eligible for an UpdateP move since u (resp. v) does not make any move. Thus ppu

and ppv
will remain constant since u and v do not make any move and so neither u nor v

will ever be eligible for any rule from C. J

The configuration C described in Lemma 5.1 is called a configuration stopuv. From such
a configuration neither u nor v will ever be eligible for any rule.

In Lemmas 5.4 and M, we consider executions where a matched node u writes True in
endu twice, and we focus on the transition C0 7→ C1 where u performs its second writing.
Lemma 5.4 shows that, if u is First in C0, then C1 is a stopumu

configuration. Lemma M
shows that, if u is Second in C0, then either C1 is a stopumu configuration or it exists a
configuration C3 such that C3 > C1 and u does not make any move from C1 to C3 and C3 is
a stopumu

configuration.
Lemma 5.2 and Corollary 5.3 are required in order to prove Lemmas 5.4 and M.

I Lemma 5.2. Let (u, v) be a matched edge. Let E be some execution in which v does not
execute any rule. If it exists a transition C0 7→ C1 in E where u writes True in endu, then u
is not eligible for any rule from C1.

Proof. To write True in endu in transition C0 7→ C1, u must have executed a match rule.
According to this rule, (pu = Ask(u) ∧ ppu

= u) holds C0 with pu ∈ single(N(u)), otherwise
u would have executed an Update instead of a match rule. Now, in C0 7→ C1, pu cannot
execute UpdateP then it cannot change its p-value and v does not execute any move then it
cannot change Ask(u). Thus, (pu = Ask(u) ∧ ppu = u) holds in both C0 and C1.

Assume now by contradiction that u executes a rule after configuration C1. Let C2 7→ C3
be the next transition in which it executes a rule. Recall that between configurations C1
and C2 both u and v do not execute rules. Observe also that pu is not eligible for UpdateP
between these configurations. Thus (pu = Ask(u) ∧ ppu

= u) holds from C0 to C2. Moreover
the following points hold as well between C0 and C2 since in C0 7→ C1 u executed a match
rule and v does not apply rules in E :

αu, αv, βu and βv do not change.
The values of the variables of v do not change.
Ask(u) and Ask(v) do not change.
If u was First in C0 it is First in C2 and the same holds if it was Second.

Using these remarks, we start by proving that u is not eligible for ResetMatch in C2. If it
is First in C2, this holds since AskFirst(u) 6= null and AskSecond(u) = null. If it is Second
then to be eligible for ResetMatch, sv =False must hold in C2 since AskSecond(u) 6= null.
Since u executed endu =True in C0 7→ C1 and since u was Second in C0, then necessarily
sv =True in C0 and thus in C2 (using remark 2 above). So u is not eligible for ResetMatch
in C2.

We show now that u is not eligible for an Update in C2. The α and β variables of
u and v remain constant between C0 and C2. Thus if any of the three first disjunctions
in the Update rule holds in C2 then it also holds in C0 and in C0 7→ C1 u should have
executed an Update since it has higher priority than the match rules. Moreover since in
C2 (pu = Ask(u) ∧ ppu = u) holds, the last two disjunctions of Update are False and we can
state u is not eligible for this rule.

We conclude the proof by showing that u is not eligible for a match rule in C2. If u was
First in C0 then it is First in C2. To write True in endu then (pu = AskFirst(u) ∧ ppu =
u ∧ su ∧ pmu

= AskSecond(mu) ∧ endmu
) must hold in C0. Since in C0 7→ C1 v does not

J. Cohen, K. Maâmra, G. Manoussakis, and L. Pilard 11:15

execute rules, it also holds in C1. The same remark between configurations C1 and C2 implies
that this predicate holds in C2. Thus in C2, all the three conditions of the MatchFirst guard
are False and u not eligible for MatchFirst. A similar remark if u is Second implies that u
will not be eligible for MatchSecond in C2 if it was Second in C0. J

I Corollary 5.3. Let (u, v) be a matched edge. In any execution, if u writes True in endu

twice, then v executes a rule between these two writing.

I Lemma 5.4. Let (u, v) be a matched edge and E be an execution where u writes True in
its variable endu at least twice. Let C0 7→ C1 be the transition where u writes True in endu

for the second time in E. If u is First in C0 then the following holds:
1. in configuration C0,

(a) sv = endv =True;
(b) pu = AskFirst(u) ∧ ppu

= u ∧ su = True ∧ pv = AskSecond(v);
(c) pu ∈ single(N(u));
(d) pv ∈ single(N(v)) ∧ ppv = v;

2. v does not execute any move in C0 7→ C1;
3. in configuration C1,

(a) su = endu =True;
(b) pu ∈ single(N(u)) ∧ pv ∈ single(N(v));
(c) sv = endv =True;
(d) pu = AskFirst(u) ∧ pv = AskSecond(v);
(e) ppu = u ∧ ppv = v.

Proof. We prove Point 1a. Observe that for u to write True in endu, endv must be True in
C0. By Lemma K this implies that sv is True as well. Now Point 1b holds by definition of
the MatchFirst rule. As in C0, u already executed an action, then according to Lemma L,
Point 1c holds and will always hold. By Corollary 5.3, u cannot write True consecutively if v
does not execute moves. Thus at some point before C0, v applied some rule. This implies
that in configuration C0, since sv =True, by Lemma F, ∃x ∈ single(N(v)) : pv = x ∧ px = v.
Thus Point 1d holds.

We now show that v does not execute any move in C0 7→ C1 (Point 2). Recall that v
already executed an action before C0, so by Lemma L, line 1 of the Update guard does not
hold in C0. Moreover, by Point 1d, line 2 does not hold either. Thus, v is not eligible for
Update in C0. We also have that su =True and AskSecond(v) 6= null in C0, thus v is not
eligible for ResetMatch. Observe now that by Points 1a, 1b and 1d, v is not eligible for
MatchSecond in C0. Finally v cannot execute MatchFirst since AskFirst(v) = null. Thus v
does not execute any move in C0 7→ C1 and so Point 2 holds.

In C1, endu is True by hypothesis and according to Point 1b, u writes True in su in
transition C0 7→ C1. Thus Point 3a holds. Points 3b holds by Points 1c and 1d. Points
3c holds by Points 1a and 2. AskFirst(u) and AskSecond(v) remain constant in C0 7→ C1
since neither u nor v executes an Update in this transition. Moreover pv remains constant
in C0 7→ C1 by Point 2 and pu remains constant also since it writes AskFirst(u) in pu in
this transition while pu = AskFirst(u) in C0. Thus Points 3d holds. Observe that nor pu

neither pv is eligible for an UpdateP in C0, thus Point 3e holds. J

Now, we consider the case where u is Second.

I Lemma M. Let (u, v) be a matched edge and E be an execution where u writes True in its
variable endu at least twice. Let C0 7→ C1 be the transition where u writes True in endu for
the second time in E. If u is Second in C0 then the following holds:

OPODIS 2016

11:16 Poly. Self-Stabilizing Max. Matching Algorithm with Approximation Ratio 2/3

1. in configuration C0:
(a) sv = True ∧ pv = AskFirst(v) and
(b) pv ∈ single(N(v)) ∧ ppv

= v

2. in transition C0 7→ C1, v is not eligible for Update nor ResetMatch;
3. in configuration C1,

(a) su = endu =True and
(b) pv ∈ single(N(v)) ∧ pv = AskFirst(v) ∧ ppv

= v and
(c) pu ∈ single(N(u)) ∧ pu = AskSecond(u) ∧ ppu

= u and
(d) sv =True;

4. u is not eligible for any move in C1;
5. If endu =False in C1 then the following holds:

(a) From C1, v executes a next move and this move is a MatchFirst;
(b) Let us assume this move (the first move of v from C1) is done in transition C2 7→ C3.

In configuration C3, we have:
(i) su = endu =True and
(ii) pv ∈ single(N(v)) ∧ pv = AskFirst(v) ∧ ppv

= v and
(iii) pu ∈ single(N(u)) ∧ pu = AskSecond(u) ∧ ppu

= u and
(iv) sv =True and
(v) u does not execute moves between C1 and C3 and
(vi) endv =True.

I Theorem 5.1. In any execution, a matched node u can write endu :=True at most twice.

Proof. Let (u, v) be a matched edge and E be an execution where u writes True in its
variable endu at least twice. Let C0 7→ C1 be the transition where u writes True in endu

for the second time in E . If u is First (resp. Second) in C0 then from Lemmas 5.1 and 5.4,
(resp. Lemma M), from C1, neither u nor v will ever be eligible for any rule. J

References
1 Y. Asada and M. Inoue. An efficient silent self-stabilizing algorithm for 1-maximal matching

in anonymous networks. In WALCOM: Algorithms and Computation – 9th International
Workshop, pages 187–198. Springer International Publishing, 2015.

2 P. Berenbrink, T. Friedetzky, and R.A. Martin. On the stability of dynamic diffusion load
balancing. Algorithmica, 50(3):329–350, 2008. doi:10.1007/s00453-007-9081-y.

3 J. Cohen, K. Maamra, G. Manoussakis, and L. Pilard. The Manne et al. self-stabilizing
2/3-approximation matching algorithm is sub-exponential. CoRR, abs/1604.08066, 2016.
URL: http://arxiv.org/abs/1604.08066.

4 J. Cohen, K. Maamra, G. Manoussakis, and L. Pilard. Polynomial self-stabilizing algorithm
and proof for a 2/3-approximation of a maximum matching. CoRR, abs/1611.06038, 2016.
URL: http://arxiv.org/abs/1611.06038.

5 S. Dolev. Self-Stabilization. MIT Press, 2000.
6 D.E. Drake and S. Hougardy. A simple approximation algorithm for the weighted matching

problem. Inf. Process. Lett., 85(4):211–213, 2003.
7 B. Ghosh and S. Muthukrishnan. Dynamic load balancing by random matchings. J. Com-

put. Syst. Sci., 53(3):357–370, 1996. doi:10.1006/jcss.1996.0075.
8 N. Guellati and H. Kheddouci. A survey on self-stabilizing algorithms for independence,

domination, coloring, and matching in graphs. J. Parallel Distrib. Comput., 70(4):406–415,
2010.

9 S.T. Hedetniemi, D. Pokrass Jacobs, and P.K. Srimani. Maximal matching stabilizes in
time o(m). Inf. Process. Lett., 80(5):221–223, 2001.

http://dx.doi.org/10.1007/s00453-007-9081-y
http://arxiv.org/abs/1604.08066
http://arxiv.org/abs/1611.06038
http://dx.doi.org/10.1006/jcss.1996.0075

J. Cohen, K. Maâmra, G. Manoussakis, and L. Pilard 11:17

10 M. Hoefer. Local matching dynamics in social networks. Inf. Comput., 222:20–35, 2013.
11 J. E. Hopcroft and R.M. Karp. An n5/2 algorithm for maximum matchings in bipartite

graphs. SIAM Journal on Computing, 2(4):225–231, 1973.
12 S.-C. Hsu and S.-T. Huang. A self-stabilizing algorithm for maximal matching. Inf. Process.

Lett., 43(2):77–81, 1992.
13 D. Knuth. Marriages stables et leurs relations avec d’autres problèmes combinatoires. Les

Presses de l’Université de Montréal, 1976.
14 F. Manne and M. Mjelde. A self-stabilizing weighted matching algorithm. In 9th Int.

Symposium Stabilization, Safety, and Security of Distributed Systems (SSS), Lecture Notes
in Computer Science, pages 383–393. Springer, 2007.

15 F. Manne, M. Mjelde, L. Pilard, and S. Tixeuil. A new self-stabilizing maximal matching
algorithm. Theoretical Computer Science (TCS), 410(14):1336–1345, 2009.

16 F. Manne, M. Mjelde, L. Pilard, and S. Tixeuil. A self-stabilizing 2/3-approximation
algorithm for the maximum matching problem. Theoretical Computer Science (TCS),
412(40):5515–5526, 2011.

17 R. Preis. Linear time 1/2-approximation algorithm for maximum weighted matching in
general graphs. In 16th Annual Symposium on Theoretical Aspects of Computer Science
(STACS), Lecture Notes in Computer Science, pages 259–269. Springer, 1999.

18 M. Touati, R. El-Azouzi, M. Coupechoux, E. Altman, and J.M. Kelif. Controlled matching
game for user association and resource allocation in multi-rate wlans? In 2015 53rd Annual
Allerton Conference on Communication, Control, and Computing (Allerton), pages 372–
380, Sept 2015. doi:10.1109/ALLERTON.2015.7447028.

19 V. Turau and B. Hauck. A new analysis of a self-stabilizing maximum weight matching
algorithm with approximation ratio 2. Theoretical Computer Science (TCS), 412(40):5527–
5540, 2011.

OPODIS 2016

http://dx.doi.org/10.1109/ALLERTON.2015.7447028

	Introduction
	Model
	Algorithm
	Execution example

	Correctness Proof
	Convergence Proof
	A matched node can write True in its end-variable at most twice

