
Deterministic Population Protocols for Exact
Majority and Plurality∗

Leszek Gąsieniec1, David Hamilton2, Russell Martin3,
Paul G. Spirakis4, and Grzegorz Stachowiak5

1 Department of Computer Science, University of Liverpool, Liverpool, UK
L.A.Gasieniec@liverpool.ac.uk

2 Department of Computer Science, University of Liverpool, Liverpool, UK
D.D.Hamilton@liverpool.ac.uk

3 Department of Computer Science, University of Liverpool, Liverpool, UK
Russell.Martin@liverpool.ac.uk

4 Department of Computer Science, University of Liverpool, Liverpool, UK
P.Spirakis@liverpool.ac.uk

5 Instytut Informatyki, Uniwersytet Wrocławski, Wrocław, Poland
gst@cs.uni.wroc.pl

Abstract
In this paper we study space-efficient deterministic population protocols for several variants
of the majority problem including plurality consensus. We focus on space efficient majority
protocols in populations with an arbitrary number of colours C represented by k-bit labels,
where k = dlogCe. In particular, we present asymptotically space-optimal (with respect to the
adopted k-bit representation of colours) protocols for (1) the absolute majority problem, i.e., a
protocol which decides whether a single colour dominates all other colours considered together,
and (2) the relative majority problem, also known in the literature as plurality consensus, in
which colours declare their volume superiority versus other individual colours.

The new population protocols proposed in this paper rely on a dynamic formulation of the
majority problem in which the colours originally present in the population can be changed by an
external force during the communication process. The considered dynamic formulation is based
on the concepts studied in [4] and [24] about stabilizing inputs and composition of population
protocols. Also, the protocols presented in this paper use a composition of some known protocols
for static and dynamic majority.
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1 Introduction

The model of population protocols adopted in this paper was proposed first in the seminal
paper by Angluin et al. [5] and popularised later in [7]. Their model provides a suitable the-
oretical framework for studying pairwise interactions within a large collection of anonymous
(indistinguishable) entities, also referred to as agents, equipped with little computational
power. The entities are modelled as finite state machines. When two entities engage in
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interaction they mutually access their local states and, on the conclusion of the encounter,
their states get updated according to the global (shared) transition function. In the asyn-
chronous model, also adopted in this paper, the order of interactions in consecutive rounds
is unpredictable but fair, i.e., none of the pairs of entities can be starved from interaction.
In this model, the main emphasis is on feasibility of the solution, subject to the limit on
the number of states available to the entities. In the probabilistic model, in each round the
random scheduler picks a pair of entities uniformly at random. In the presence of the random
scheduler, on the top of space restrictions, one is also interested in the time complexity of
a specific distributed task. A population protocol terminates if all participating entities
eventually agree on some value represented by dedicated states, independently of the order of
interactions. This value can reflect the colour or the size of selected majority [6, 7, 9, 23], the
identity of the leader [2, 1, 19], but also completion of more complex tasks such as network
formation [25], counting [26], and others.

In this paper, the adopted computation model encompasses a population A of n fault-free
entities, each equipped with a O(k)-bit memory, where 2k is the bound on the number C of
colours present in the population. This is in contrast to the majority settings considered
earlier in [6, 7, 23, 9] where only two original colours were permitted. Here each entity is
coloured with exactly one of C available colours and a k-bit label representing this colour is
kept in the entity’s memory.

As indicated before, the entities communicate in pairs in an asynchronous manner. The
main task in the majority problem is to identify the most frequent colour in the population.
Due to presence of more than two colours in the population, we distinguish between the
absolute majority, i.e., where one colour dominates all others taken together, and the relative
majority, also known in the literature as plurality consensus, where the population is expected
to agree on (one of) the most frequent colour(s). We also distinguish between the static
majority in which the original colours of entities cannot be altered in time – the assumption
used in the past work on majority protocols [6, 7, 23, 9], and the dynamic majority in which
the original colours of entities can be changed in due course by an external force, and by
doing so may alter the outcome of the majority protocol. This is the main reason why in our
model the entities must store their original colour, which could be altered at any time but
only by the external force, in addition to O(k) memory bits required during interactions and
to report the majority on the conclusion of the computation process.

The model with the external force adopted in this paper was considered earlier in [24]
under the name computing with stabilizing inputs. Note that the dynamic protocol described
in Section 3 is a special variant of self-stabilization, as state alterations done by the external
force are permitted only between certain (colour indicating) states. We would also like
to emphasise that protocols for absolute majority presented in Section 4 and the relative
majority in Section 5 refer to earlier work on composition of population protocols from [4].

In our model, entities interact using a classical population protocol, i.e., via global
grammars mapping pairs of states to pairs of states. In particular, no exchange of local
memories happens during pairwise interactions. The entities use their local memory in
order to organise the sub-protocols executed and in order to draw local conclusions. Thus,
if we count the states needed for entities’ interactions, we require only Θ(k) states in our
algorithms for absolute and relative majority, and only a constant number of states for
protocols computing static and dynamic majority of two colours. In addition, we need only
O(k) bits of local memory per entity in our absolute and relative majority protocols in order
to handle up to 2k colours, which is optimal in terms of space requirements.
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1.1 Related Work

The population protocol model was initially introduced to simulate behaviour of animal
populations [5, 6]. In [5] we can find a formal definition of computations in populations
where pairwise interactions of finite-state agents advance the computation. The authors
showed a fundamental result that any predicate which is semi-liner can be stably computed
by such protocols. In the introduction of their paper, they present a protocol for majority
which is exactly the same as the protocol in Section 2 of this paper. In [24] the authors
present several models of population protocols including protocols in which each entity of the
population is allowed to have some memory, and they discuss several classes of computable
predicates in those models. In the first pages, they present a protocol for majority as in [5],
which is almost the first protocol presented here. We have included this first protocol in this
paper because we add a detailed explanation about reporting ties. Self-stabilizing population
protocols were defined in [8] and properties of such protocols were demonstrated. Stabilizing
population protocols in the presence of faults were considered in [16].

In due course, population protocols proved to be a useful abstraction in diverse environ-
ments including, e.g., wireless sensor networks [4, 27, 20], chemical reaction networks [14],
and gene regulatory networks [13]. A large portion of work devoted to population protocols
refers to the majority problem. In particular, in [7] the authors study populations with
entities governed by 3 states and propose a probabilistic population protocol for approximate
majority, i.e., where the initial difference between the volumes of the two colours does not
fall below ω(

√
n logn). The algorithm stabilises in O(n logn) rounds with high probability.

It also tolerates groups of o(
√
n) entities expressing Byzantine behaviour. Further analysis of

this protocol and its 4-state amendment leading to the first efficient exact majority protocol
can be found in [23]. Another aspect referring to the parallelism of majority population
protocols in the presence of a random scheduler has been studied by Alistarh et al. in [3].
They proposed a poly-logarithmic time majority protocol for entities equipped with memories
of size O(1/ε+ logn log 1/ε), for any ε > 0. They also study the respective lower bounds. In
a very recent work [1] Alistarh et al. consider a wide spectrum of time and space trade-offs
for population protocols and they propose a fast Split-Join majority algorithm stabilising
in O(log3 n) parallel rounds with high probability. An interesting extension of population
protocols to the random walk model can be found in [9]. Please note that neither of the
majority algorithms discussed above is able to report the tie.

The relative majority variant considered in this paper is well known in the literature
under the name of plurality consensus. In contrast to the deterministic sequential model
adopted in this paper, so far plurality consensus was considered solely in the gossiping model.
In this model, in a sequence of synchronous rounds each entity contacts a random neighbour
simultaneously. Moreover, the protocols converge under the assumption that the number
of entities supporting the winning colour must exceed those supporting any other colour
by a sufficiently large bias. In this model one explores parallelism of connections aiming
at protocols stabilising rapidly with high probability. Doerr et al. [17] explored the power
of two choices in complete graphs, proposing a stabilisation protocol in the binary case
requiring constant memory and message size. Their protocol converges in O(logn) rounds
assuming a bias of size Ω(

√
n logn). A more rigorous analysis of this protocol can be found

in [15], also in networks modeled by regular graphs, for which the authors provide tight
bounds on convergence time as a function of the second-largest eigenvalue of the graph.
In [10] Bechetti et al. consider a plurality consensus protocol based on a sequence of local
majority agreements with three randomly chosen neighbours during each round requiring
bias Ω(

√
Cn · logn). The protocol converges in Θ(min{C, n1/3} · logn) rounds using Θ(logC)
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memory and message size, where C refers to the number of original opinions. In later work
[11] the authors solve general plurality consensus in complete graphs via undecided-state
dynamics using an extra state to accommodate intermediate disagreements. They propose the
notion of monochromatic distance which reflects on the difference between the initial colour
configuration from the closest monochromatic solution. Their plurality protocol converges
with a logarithmic overhead on the top of the monochromatic distance. A more recent study
on plurality consensus in noisy communication channels can be found in [21].

There is also growing interest in exact-space complexity in probabilistic plurality consensus.
In particular, in [12] Berenbrink et al. proposed a plurality consensus protocol converging in
O(logC · log logn) synchronous rounds using only logC + (log logC) bits of local memory.
They also show a slightly slower solution converging in O(logn · log logn) rounds using only
logC + 4 bits of local memory. This disproves a conjecture by Becchetti et al. [11] implying
that any protocol with local memory logC +O(1) has the worst-case running time Ω(k). In
[22] Ghaffari and Parter propose an alternative algorithm converging in O(logC logn) rounds
while having message and local memory sizes based on logC +O(1) bits. In addition to the
above, some work on the application of the random walk in plurality consenus protocols can
be found in [11, 9].

1.2 Our results and organisation of the paper
In this paper we study space-optimal population protocols for several variants of the majority
problem. The paper presents space-efficient algorithms for majority with many colours,
and these algorithms are obtained by using a combination of known protocols for simple
majority. In Section 2 we discus an amendment allowing majority protocols to report a tie
(equality) if neither of the two original colours dominates the other. In Section 3 we discuss
a solution to the dynamic version of the majority problem in which the original colours
assigned to the entities can be changed by an external force. Such a solution is a special case
of self-stabilizing population protocols which were considered in [8]. We discuss it here to
prepare the ground for our space-optimal protocols for many colours.

We consider space-efficient majority protocols in populations with an arbitrary number
C of colours represented by k-bit labels, where k = dlogCe. In Section 4 we present an
asymptotically space-optimal O(k)-bit protocol for the absolute majority, i.e., a protocol
which answers the question whether one colour dominates all others taken together. In
Section 5 we propose a multistage O(k)-bit protocol for relative majority, where all most
frequent colours eventually become aware of their dominance, and all nodes learn about the
most frequent colour with the largest label. In Section 6 we conclude with final comments
and leave the reader with a list of open problems.

2 Population protocol for static majority with equality

This section reformulates the algorithm for majority presented in [5].
Initially each entity a ∈ A obtains its original colour ca, being one of the three available

denoted by integers −1, 0, and 1. Thus, the main goal in our reformulation of majority
protocols is to determine whether there are more 1’s than (−1)’s (green domination), more
(−1)’s than 1’s (red domination), or whether there is a tie between the two. In other words,
our majority protocols aim at determining the sign of the expression:∑

a∈A

ca.
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state s weight w(s)
[−1] −1
[0], 〈−1〉, 〈0〉, 〈1〉 0
[1] 1

Figure 1 The states and their weights.

sa\sb [−1] [0] [1] 〈−1〉 〈0〉 〈1〉
[−1] ([−1], [−1]) ([−1], 〈−1〉) ([0], [0]) ([−1], 〈−1〉) ([−1], 〈−1〉) ([−1], 〈−1〉)
[0] (〈−1〉, [−1]) ([0], [0]) (〈1〉, [1]) ([0], 〈0〉) ([0], 〈0〉) ([0], 〈0〉)
[1] ([0], [0]) ([1], 〈1〉) ([1], [1]) ([1], 〈1〉) ([1], 〈1〉) ([1], 〈1〉)
〈−1〉 (〈−1〉, [−1]) (〈0〉, [0]) (〈1〉, [1]) (〈−1〉, 〈−1〉) (〈−1〉, 〈0〉) (〈−1〉, 〈1〉)
〈0〉 (〈−1〉, [−1]) (〈0〉, [0]) (〈1〉, [1]) (〈0〉, 〈−1〉) (〈0〉, 〈0〉) (〈0〉, 〈1〉)
〈1〉 (〈−1〉, [−1]) (〈0〉, [0]) (〈1〉, [1]) (〈1〉, 〈−1〉) (〈1〉, 〈0〉) (〈1〉, 〈1〉)

Figure 2 The transition table for static majority protocol with ties.

If this sign is positive, there are more 1’s, if negative, there are more (−1)’s, and if the sum
is 0, we report equivalence between the two competing colours. During the communication
process each entity a ∈ A has an attributed state sa. In due course we will also use the
notion of knowledge of entities, which includes information about the state and the original
colour of the entity.

Throughout the computation process the entities can be in one of the three strong states
[−1], [0], and [1] or the three weak states 〈−1〉, 〈0〉, 〈1〉. In the begining, each entity a ∈ A
with attributed colour ca = x is in state [x]. With each state s we associate a weight w(s)
such that w([x]) = x and w(〈x〉) = 0. This association is illustrated by the table in Fig. 1.

In due course, when two entities a, b ∈ A interact the shared transition function determines
their resulting states. And, in particular, if an entity in a strong state [x] meets another in
a weak state 〈y〉, the weak state becomes 〈x〉 and the strong state remains unchanged. If
during a meeting a strong state [x], for x 6= 0, meets [0] then only state [0] is changed to 〈x〉.
Finally, if [1] interacts with [−1] both states are changed to [0]. Other type of encounters
does not change the states of entities. The respective shared transition function is illustrated
by the table in Fig. 2.

I Lemma 1 (Invariant 1). Initially, the sum S =
∑

a∈A w(sa) equals to
∑

a∈A ca, and its
value remains unchanged during the computation process.

Proof. Follows directly from the definition of the transition function. J

Observation If the sum S is negative, it declares majority of reds (denoted by −1), positive
S indicates majority of greens (denoted by 1), otherwise S refers to the tie.

I Lemma 2 (Invariant 2). The value of the sum R =
∑

a∈A |w(sa)| decreases monotonically
throughout the communication process and it stabilises eventually on the value Rfin = |S|.

Proof. At any stage of the algorithm R represents the number of strong states [−1] and
[1] still present in the population. According to the transition function the number of such
states can only decrease when two states [1] and [−1] annihilate one another during a direct
interaction. Thus, eventually the sum R stabilises on the original difference between the
number of strong states |S|. J

OPODIS 2016



14:6 Deterministic Population Protocols for Exact Majority and Plurality

We conclude this section with a theorem.

I Theorem 3. The population protocol presented in this section computes majority and
returns equality if neither of the colours dominates the other.

Proof. According to the observation and the two lemmas, if a majority exists, the remaining
entities in strong states of the dominating colour will recolour all entities accordingly.
Otherwise, the annihilation of the last pair of states ([1], [−1]) results in obtaining two
entities with states [0] which in due course will change states in all other entities to 〈0〉.
Finally, if neither of the states [1] or [−1] is initially present in the population all entities
remain in the neutral state [0]. J

3 Population protocol for dynamic majority with equality

In this section we consider a variant of population protocols in which the original colours
(attributes) of entities could be altered by an external force for some unspecified, however
limited, period of time. After this initial period, the relevant population protocol is expected
to eventually stabilize. The model of changing inputs from [4] and the concept of composing
several population protocols as described in [24] are the inspirations for our approach here.
In essence, we reformulate the majority algorithm from [4] and show how to modify this
reformulation so that it can be used as a subprotocol for our next section.

We assume that an entity is aware when its original colour changes, and is able to modify
its current state as a result, but such a change is again governed by common state transition
rules for all entities. We also assume that it is not possible for the external force to alter the
original colour of an entity while it is simultaneously interacting with another entity.

We use the protocol we propose here as a subroutine in more structurally complex
population protocols for the absolute majority in Section 4, and for the relative majority in
Section 5.

The population protocol presented below determines whether there are more original
1’s, more (−1)’s, or there is a tie after the last intervention of the external force. For the
purpose of our protocol each entity a ∈ A must store its original colour ca ∈ {−1, 0, 1}, and
this stored colour can be altered only by the external force at any time. Besides the colour,
the entity maintains a state sa governed by the shared transition function. More formally, an
entity’s knowledge refers to the pair (ca, sa). We define five strong states:[−2], [−1], [0], [1], [2],
and three weak states 〈−1〉, 〈0〉, 〈1〉. Before the protocol is initiated, if ca = x we set sa = [x].
On the conclusion all entities are in state

[1], [2] or 〈1〉 if there are more 1’s than (−1)’s,
[−1], [−2] or 〈−1〉 if there are less 1’s than (−1)’s, and
[0] or 〈0〉 when there is a tie.

We define the weight function, w(s), on a state s as w([x]) = x and w(〈x〉) = 0, see the table
in Fig. 3.

During execution of the majority protocol we maintain two invariants:
1.

∑
a∈A ca =

∑
a∈A w(sa), and

2. for each a ∈ A, |w(sa)− ca| ≤ 1.

The two invariants are preserved thanks to carefully crafted state transition rules and
counterparting alterations of an entity’s state caused by changes of the original colour ca

imposed by the external force. When the colour ca is changed to c′a = ca + δ, the state is
changed from sa to s′a = [w(sa) + δ]. Note that this rule preserves both invariants 1 and 2.
This is illustrated by the table to the right in Fig. 3 describing how states are changed when
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s w(s)
[−2] −2
[−1] −1

[0], 〈−1〉, 〈0〉, 〈1〉 0
[1] 1
[2] 2

sa, ca = 1 changes to c′
a = −1 s′

a

[0], 〈−1〉, 〈0〉, 〈1〉 [−2]
[1] [−1]
[2] [0]

sa, ca = −1 changes to c′
a = 1 s′

a

[0], 〈−1〉, 〈0〉, 〈1〉 [2]
[−1] [1]
[−2] [0]

Figure 3 The weight function w(s) and the state transition rules when recolouring occurs by an
external force.

sa\sb [−2] [−1] [0] [1] [2]
[−2] ([−2], [−2]) ([−2], [−1]) ([−2], 〈−1〉) ([−1], 〈−1〉) ([0], [0])
[−1] ([−1], [−2]) ([−1], [−1]) ([−1], 〈−1〉) ([0], [0]) (〈1〉, [1])
[0] (〈−1〉, [−2]) (〈−1〉, [−1]) ([0], [0]) (〈1〉, [1]) (〈1〉, [2])
[1] (〈−1〉, [−1]) ([0], [0]) (〈1〉, [1]) ([1], [1]) ([1], [2])
[2] ([0], [0]) ([1], 〈1〉) ([2], 〈1〉) ([2], [1]) ([2], [2])

weak (〈−1〉, [−2]) (〈−1〉, [−1]) (〈0〉, [0]) (〈1〉, [1]) (〈1〉, [2])

Figure 4 The state transition table for interacting entities for dynamic majority.

ca = 1 is changed to c′a = −1, or vice-versa. In this table we do not consider, for example,
combinations of states sa = [−1], [−2] with colour ca = 1 because of the invariant 2.

In what follows we describe what happens to the states when two entities a, b ∈ A interact.
If a strong state [1] or [2] meets a weak state 〈y〉 or [0], then this second state becomes 〈1〉.
If a strong state [−1] or [−2] meets a weak state 〈y〉 or [0], then the latter state becomes
〈−1〉. If a strong state [0] meets a weak state, the weak state is changed to 〈0〉. If [1] meets
[−1] or [2] meets [−2], they are both changed to [0]. If [2] meets [−1], they are changed
to [1] and [0] respectively. If [−2] meets [1], they are changed to [−1] and [0] respectively.
Other encounters do not result in state alteration. This is illustrated by the table in Fig. 4
which does not take into account encounters between entities where both are in weak states,
because they do not result in state alteration.

I Lemma 4. The invariants 1 and 2 are preserved during execution of the majority protocol.

Proof. First, we consider interactions between pairs of entities.
Invariant 1 is preserved, because for any state transition, if the weight of one entity is

reduced, then the weight of the other is increased by the same (absolute) value. Also, if
colour ca is changed, then the weight w(sa) is changed too by the same value.

Invariant 2 is preserved because during every interaction of entities |w(sa)| can only
decrease and w(sa) does not change its sign. So if ca = 1, then sa is initially in the interval
[0, 2] and it remains in this interval. The reasoning in the remaining cases when ca = 0 or
−1 is analogous.

Now we consider the invariants when the external force changes the colour of an entity.
Suppose that an entity is coloured ca = 1 and its colour is changed to c′a = −1 (the other
case will be similar).

Invariant 1 is preserved by the choice of the transitions shown in the table in the right
of Fig. 3. The left hand side of the equation in invariant 1 decreases by 2 (since the colour
changes from 1 to −1). If the state of the entity was sa ∈ {[0], 〈−1〉, 〈0〉, 〈1〉}, the new state

OPODIS 2016
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is s′a = [w(sa) − 2] = [−2]. Hence the corresponding weight changes from w(sa) = 0 to
w(s′a) = −2, so the right hand side of invariant 1 also decreases by 2 (i.e., preserving the
invariant). Similarly, if sa = [1], then the new state is s′a = [−1], hence the contribution to
the right hand side of invariant 1 from the entity changes from w(sa) = 1 to w(s′a) = −1,
again a decrease by 2. We can check the remaining case, where sa = [2], in an analogous
manner.

Invariant 2 is also maintained by the rules that govern how the entity’s state is updated
when its colour is changed by an external force. E.g., ca = 1 changing to c′a = −1 means
that the new weight w(s′a) ∈ {0,−1,−2} from the rules in Fig. 3. J

I Lemma 5. The value of R =
∑

a |w(sa)| does not increase after the last intervention of the
external force. Moreover the value of R stabilises when eventually there are no two entities
a, b ∈ A such that w(sa) > 0 and w(sb) < 0.

Due to Lemma 5 the majority process stabilises in three possibile configurations with
respect to Cfin

def=
∑

a∈A ca (where ca is referring to the final colour of the entity a, after any
external forces have stopped changing the colours of entities). If on the conclusion Cfin > 0,
there must be some entities in states [1] or [2] which would earlier ensure that all weak states
and the state [0] are switched to 〈1〉. If Cfin < 0, there must be some entities in states [−1]
or [−2] which would earlier ensure that all weak states and the state [0] are switched to 〈−1〉.
However, if on the conclusion Cfin = 0, there are no entities in states [x] with x 6= 0 and the
last entity that reached state [0] will have a chance to alter all weak states to 〈0〉.

4 Absolute majority

In the remaining part of the paper we work under the assumption that the population is
coloured with an arbitrary number C of colours, where 2k−1 < C ≤ 2k, for some integer
k ≥ 1 that is known to all entities. Each colour is denoted by a k-bit label l[0..k − 1], and
single labels are attributed to entities with the relevant colours. As in previous sections, we
interpret the individual bits l[i] in this label as −1 or 1, rather than more standard 0 or 1.
Each entity is assumed to own an extra O(k) bits used to support the computation process,
including interaction with other entities in the population.

In this section we present an asymptotically optimal O(k)-bit population protocol com-
puting absolute majority, i.e., answering whether there exists a colour which dominates all
the remaining colours in the population taken together. The absolute majority algorithm
presented here is a combination of the static majority protocol introduced in Section 2, and
later referred to as P1, as well as the dynamic majority protocol from Section 3, from now on
referred to as P2. We recall that protocol P2 assumes full knowledge of entities and it is using
two types of state transitions: (1) imposed by the external force and altering original colours
associated with entities, and (2) caused by the interaction with other entities in the population.

Memory organisation. Each entity uses O(k) bits of memory to accommodate:
1. The k-bit label l[0..k − 1] representing the original colour of the entity,
2. An array s[0..k − 1] representing k independent instances of protocol P1, and
3. An instance of protocol P2 with the external force based on k instances of P1.
For the purpose of our algorithm we define k independent instances of static majority
protocols P1(i), for i = 0, . . . , k− 1, such that colours competing in P1(i) refer to the bits l[i]
drawn from each entity in the population. Assume l∗[0..k− 1] is a k-bit label of the colour of
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the absolute majority in the population. One can observe that when the majority protocols
stabilise, for all i = 0, . . . , k − 1, each bit l∗[i] must be in majority reported by P1(i) via
entry s[i]. Thus, if the absolute majority exists, one can run k static majority protocols P1(i)
to determine the majority colour. However, if there is no absolute majority the protocol
proposed above may still return a false positive “winner”. This can happen, e.g., if no entity
has a colour with the label in which all bits are set to 1s but the majority of bits l[i], for
all i = 0, .., k − 1 for all entities are 1’s. In such case, the non-existing colour with the label
filled with 1s would be wrongly recognised by the entities as the absolute majority. In order
to overcome this clear deficiency of the protocol, an extra (final) test is performed with the
help of protocol P2 to decide whether the returned colour is in the absolute majority.

4.1 Algorithm Absolute-Majority
Initialisation Stage

1. Before execution of the algorithm, each entity a ∈ A sets for itself s[i] = [1] if l[i] = 1 and
[−1] otherwise, for all i = 0, .., k−1. This choice refers to the belief that its original colour
ca is in majority. And, indeed, each entity initially adopts an extra colour 1 (denoting
membership in the majority) for the purpose of protocol P2.

2. Later, during pairwise interactions between entities, the current states in s[i] get updated
by the relevant majority protocols P1(i), for each i = 0, . . . , k − 1 independently. And if
at any time the contents of s[i] and l[i] do not reflect its initial setting, the belief of the
entity changes to −1. However, this belief becomes 1 again as soon as the consistency
between bits in s[0..k− 1] and l[0..k− 1] is restored. This consistency measure determines
actions of the external force in protocol P2.

Stabilisation Stage

1. At first, the majority algorithm stabilises on all protocols P1(i), for i = 0, . . . , k−1, which
allows each entity to establish the final relationship between the corresponding bits in
s[0..k − 1] and l[0..k − 1]. This, in turn, determines the extra colour (1 or −1) of the
entity adopted for the purpose of protocol P2.

2. When eventually protocol P2 also terminates and concludes with colour 1 in majority,
all entities receive confirmation that the final states in s[0..k − 1] refer to the absolute
majority colour l∗[0..k − 1]. Otherwise, the entities learn that none of the colours is in
the absolute majority.

Note that all protocols described above run simultaneously right from the beginning, and,
in particular, protocol P2 works at least for some time on unstable data. Nevertheless, as
the bits generated by protocols P1 eventually stabilise, thanks to protocol P2’s tolerance of
dynamic changes, the absolute majority (if such exists) is confirmed. We conclude with this
theorem.

I Theorem 6. Algorithm Absolute-Majority computes absolute majority on populations with
at most 2k colours with the help of O(k) memory bits in each entity.

Proof. If an absolute majority colour exists (represented as a k-bit label l[0..k − 1]) then,
when the k independent instances of P stabilize, each P1(i) stabilizes in the bit l(i). In
fact, each bit of the label of the colour of the absolute majority is then reported by P1(i)
via its entry s[i]. However, the population still needs to verify this since, in case of no
absolute majority colour, the above protocol may return a false positive "winner" . This
can happen if for each i there is an absolute majority bit but the whole tuple of these
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bits does not correspond to a colour in the population. In order for this case not to be
wrongly understood as the absolute majority , we need a verifying step. This is exactly what
protocol P2 does. In fact, P (2) always runs a test to decide whether the returned supposed
absolute majority colour is indeed the absolute majority. Protocol P2 works for some time on
unstable data. However, after a time t by which all P1(i) have stabiized, protocol P2 shall
also stabilize either by concluding that the assumed majority colour (indicated by colour 1
in the algorithm) is indeed an absolute majority, or it shall stabilize reporting nonexistence
of the absolute majority colour to all entities. Note that each time P2 has to check only one
supposed majority colour against all others, treated as a single colour −1 in the algorithm.
The above proof works due to the established fact that P2 tolerates dynamic changes in the
input colours. J

5 Relative majority

As in Section 4, in this section we assume that the population is attributed with an arbitrary
number C of colours, where 2k−1 < C ≤ 2k, for some integer k ≥ 1 that is known to all
entities. Each colour is denoted by a k-bit label l[0..k − 1], where l[i] ∈ {−1, 1}. Each entity
is assumed to have extra O(k) bits used to support the computation process, including
communication with other entities in the population. The relative majority problem refers
to the task of finding the most frequent colour in the population. Note that there can be
more than one colour that is the most frequent. In such case the colour with the latest in
the lexicographical order label l∗[0..k − 1] is declared as the winner.

Computing relative majority is a more complex task, comparing to the absolute majority,
as here one needs to collect evidence confirming that the winning colour beats any other
colour in the population. At first we describe a protocol for the relative majority which only
finds the winner l∗[0..k − 1]. This is done by marking all entities possessing this colour with
the winning label. In this setting, the colour in the relative majority always exists. The case
in which the uniqueness of the majority colour is required is commented later in Section 5.2.

In the relative majority protocol, instead of engaging in the total comparison (via majority
computation) in pairs formed of any two colours, which would require O(k2)-bit memories,
we propose a solution similar to finding maximal elements in parallel stages based on duels.
In each stage the winning colours perform pairwise duels via majority protocols to reduce
the number of winners by half. This multi-stage computation is made feasible thanks to
pipelining of dynamic majority protocols P2 which gradually stabilise starting from the lowest
stage and finishing at the highest stage of the dueling process.

Stages are enumerated by descending numbers from the lowest stage k − 1 to the highest
0. In stage i, for all i = k − 1, .., 0, two colours are in the same group if their k-bit labels
l[0..k − 1] share i-bit prefix l[0..i − 1] (in stage 0 all labels form one group). In this stage
agents in one group aim at finding the majority colour label in each group.

Memory organisation. Each entity a ∈ A uses O(k) bits of memory to accommodate:
1. The k-bit label l[0..k − 1] representing the original colour of the entity. This colour is

fixed (never changed) throughout the computation process.
2. The k-bit label c[0..k − 1] represents current colours c[i] of the entity in each consecutive

stage i, with the decreasing index i = k − 1, .., 0. On the conclusion of stage i, if label
l[0..k − 1] is declared as the winner in the group of labels with prefix l[0..i], the value
c[i] equals to ±1, otherwise c[i] = 0. All entities with the winning colour l[0..k − 1] in
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its group in higher stage i− 1 have the value c[i] set to l[i]. Before the stabilisation of
P2(i− 1) the value c[i] reflects the current belief of the entity about this value.

3. An array s[0..k − 1] representing states s[i] in k independent instances of protocol P2(i)
associated with colours c[i]. The computations with respect to P2(i) are performed only
if the two interacting entities have the same label prefix l[0..i− 1]. Otherwise protocol
P2(i) is not executed. We emphasise here that computations in P2(i) can change values
c[i− 1] whose change in turn cause alteration of states s[i− 1]. Also, changes in c[i] can
change c[i− 1].

5.1 Algorithm Relative-Majority

Initialisation Stage

Before execution of the algorithm, each entity sets c[i] = l[i] and s[i] = [1] if c[i] = 1 and
[−1] otherwise, for all i = 0, .., k − 1.

Stabilisation Stage

1. The algorithm stabilises first on protocol P1(k − 1), as at the beginning of the pipeline
there is no external force, and then subsequently on protocols P2(k − 2), P2(k − 3), . . .,
P2(0).

2. An entity believes that its colour wins on stage i if, either c[i] = −1 and s[i] ∈ {[−1],
[−2], 〈−1〉}, or c[i] = 1 and s[i] ∈ {[0], [1], [2], 〈0〉, 〈1〉}. The states [0], 〈0〉 correspond to a
tie and in this case the lexicographically larger label becomes the winner. If the entity
believes its label l[0..k − 1] is the winner in stage i, it sets c[i− 1] = l[i− 1] and adjusts
s[i− 1] as specified in protocol P2(i− 1) if c[i− 1] gets changed. If, to the contrary, the
entity believes it did not win, it sets c[i− 1] = 0 and also adjusts s[i− 1] should change
occur in c[i− 1]. Note, that in both cases changes in c[i− 1] are propagated to c[i− 2]
and further on.

3. Eventually protocol P2(0) stabilizes. At that time entities that win in stage 0 hold the
winning majority colour.

I Theorem 7. Algorithm Relative-Majority computes relative majority on population with
at most 2k colours with the help of O(k) memory bits in each entity.

Proof. The memory requirement follows directly from the formulation of the protocol. In
order to prove correctness, we proceed by induction on stage numbers i taken in reverse order.
The colours c[k − 1] do not change during the protocol so in some moment tk−1 protocols
P2(k − 1) stabilize and states s[k − 1] stop being changed. These states determine unique
winning k-bit colours in groups corresponding to all possible prefixes l[0..k − 2].

Now let i > k−1 be a stage number. By inductive hypothesis in some time ti+1, protocols
P2(i + 1) stabilize and states s[i + 1] stop being changed. They indicate unique winning
k-bit colours in groups corresponding to each prefix l[0..i]. So, since ti+1 colours c[i] are
±1 for these winners, 0 for others and do not change anymore. Thus, in some later time ti,
protocols P2(i) stabilize and states s[i] cease being changed. From the formulation of the
protocol these final states s[i] determine the winning k-bit colours in groups corresponding
to prefixes l[0..i− 1].

Finally ,at some time t0, protocols P2(0) stabilize and all entities compute states s[0]
corresponding to the unique winning k-bit colour amongst all of them. J
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5.2 Uniqueness in relative majority

As indicated at the beginning of Section 5, one may want to report only unique relative
majority colours, i.e., when there is exactly one, the most frequent colour. And indeed if the
winning colour l∗ is not unique, there must exist some other colours which lost to l∗ in a tie
at some stage. The purpose of the mechanism presented below is to encounter such ties (if
they exist) and to distribute this information to all entities in the population. This can be
done by performing an additional dissemination protocol with the help of an extra bit c′
drawn from the set {0, 1}. This dissemination protocol is run by each entity in conjunction
with the relative majority protocol described above, and its actions are governed by the
current belief of the entity whether it is a winner or not and by encountered or not ties in
duels. The following four rules govern values of the extra bit c′.

Initially, (1) in each entity the extra bit c′ is set to 0 to denote that the entity does not
carry any information about ties between the winners. This value can be changed to 1 if (2)
the colour of the entity is still a potential winner (did not lose any duel yet in the most recent
climb through the stages) and at some stage its duel ends up in a tie; or if (3) the colour of
the entity is already deemed as the loser and it meets another entity with the colour still
being a potential winner and its extra bit c′ = 1. And (4) the extra bit c′ can be changed
back to 0 if and only if the colour of its owner is deemed as loser and it meets another entity
with the colour still being a potential winner and its extra bit c′ = 0.

In due course the values of each extra bits c′ can be altered several times according to
the rules 1, 2 or 3. However, when eventually the relative majority protocol determines
the winning colour l∗ in stage 0, only entities coloured with l∗ are able to change values
of extra bits in other entities. Now, if the extra bit associated with entities coloured by l∗
is 0, i.e., the winning colour has never experienced a tie, all other entities are eventually
informed accordingly by rule 4. And, if the extra bit associated with entities coloured by l∗
is 1, i.e., the winning colour has encountered a tie in the past, all other entities are eventually
informed accordingly by rule 3.

6 Conclusion

In this paper we presented memory-efficient population protocols for several variants of the
majority problem.

In Section 2 we show how to amend majority protocols to report ties. The proposed
protocol relies on a relatively large number of states used by entities. One can show a more
space-efficient solution limited to six states. Also in a wider context, in our solutions the
emphasis was on asymptotic space optimality. One open problem, however, is to determine
more exact bounds on the number of states required to compute the considered types of
majorities for a given number of colours C. Another interesting problem refers to the time
complexity and parallelism of considered majority problems in the presence of a random
scheduler. Finally, one can ask what other computations are possible through a composition
of several “partially self-stabilizing” (sub)protools.
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