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—— Abstract

We consider the Conflict Resolution Problem in the context of a multiple-access system in which
several stations can transmit their messages simultaneously to the channel. We assume that there
are n stations and that at most k, k < n, stations are active at the same time, i.e, are willing
to transmit a message over the channel. If in a certain instant at most d, d < k, active stations
transmit to the channel then their messages are successfully transmitted, whereas if more than
d active stations transmit simultaneously then their messages are lost. In this latter case we say
that a conflict occurs. The present paper investigates non-adaptive conflict resolution algorithms
working under the assumption that active stations receive a feedback from the channel that
informs them on whether their messages have been successfully transmitted. If a station becomes
aware that its message has been correctly sent over the channel then it becomes immediately
inactive, that is, stops transmitting. The measure to optimize is the number of time slots needed
to solve conflicts among all active stations. The fundamental question is how much this measure
decreases with the number d of messages that can be simultaneously transmitted with success.
In this paper we prove that it is possible to achieve a speedup linear in d by providing a conflict
resolution algorithm that uses a 1/d ratio of the number of time slots used by the optimal conflict
resolution algorithm for the particular case d = 1 [20]. Moreover, we derive a lower bound on the
number of time slots needed to solve conflicts non-adaptively which is within a log(k/d) factor
from the upper bound. To the aim of proving these results, we introduce a new combinatorial
structure that consists in a generalization of Komlds and Greenberg codes [20]. Constructions of
these new codes are obtained via a new kind of selectors [11], whereas the non-existential result
is implied by a non-existential result for a new generalization of the locally thin families of [1, 10].
We believe that the combinatorial structures introduced in this paper and the related results may
be of independent interest.
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1 Introduction

Conflict resolution is a fundamental problem in multiple-access communication and has been
widely investigated in the literature both for its practical implications and for the many
theoretical challenges it poses [6]. Commonly, this problem is studied under the assumption
of the so called collision model in which simultaneous transmission attempts by two or more
stations result in the destruction of all messages. However, as already observed in [16] and
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more recently in [5], this restrictive multiaccess model does not capture the features of many
important multiuser communication systems in which several messages can be successfully
transmitted at the same time. Examples of communication systems allowing multiple-packet
reception include Code Division Multiple Access (CDMA) systems in which several stations
share the same frequency band, and Multiple-Input Multiple-Output (MIMO) systems, that
enhance the capacity of a radio link by using multiple antennas at the transmitter and the
receiver. These systems are largely used in the phone standards, satellite communication
systems, and in wireless communication networks. Multiple-packet reception is also achieved
through coding techniques specifically designed for copying with collisions. Recently, the
authors of [4] introduced a coding technique, for the finite-field additive radio network
model, that enables broadcast in a network with a bounded number of transmitters. These
codes have the property that, when codewords from at most a certain number of different
transmitting nodes are summed up, then the receiving nodes are able to recover the original
transmissions.

Given the growing relevance of systems allowing multiple-packet reception in modern
communication technologies, it is crucial to consider multiple-access models that better
capture the phenomenon occurring when several packets can be sent simultaneously over
the channel. The following quotation from [5] well emphasizes the importance of these
communication models: “Traditionally, practical design and theoretical analysis of random
multiple access protocols have assumed the classical collision channel model — namely, a tran-
smitted packet is considered successfully received as long as it does not overlap or ‘collide’ with
another. Although this model is analytically amenable and reflected the state of technology
when networking was an emerging field, the classical collision model does not represent the
capabilities of today’s transceivers. In particular, present transceiver technologies enable
users to correctly receive multiple simultaneously transmitted data packets. With proper
design, this capability — commonly referred to as multiple packet reception (MPR) [17, 16] —
can significantly enhance network performance.”.

Communication models allowing multiple simultaneous successful transmissions have
received great attention in the literature in recent times [5, 12, 14, 18, 22, 24, 25]. The
following fundamental question arises when studying conflict resolution in the above described
models: How fast does the number of time slots needed to solve conflicts decrease with the
number d of messages that can be simultaneously transmitted with success? In this paper we
show that it is possible to achieve a speedup linear in d when dealing with multiple-access
systems with feedback, i.e., systems in which whenever an active station transmits to the
channel, it receives a feedback that informs the station on whether its transmission has been
successful.

1.1 The Model and Related Work

We consider a multiple-access system in which n stations have access to the channel and
at most k < n stations are willing to transmit a message at the same time. We call these
stations active stations. If at most d < k active stations transmit to the channel then these
stations succeed to transmit their messages, whereas if more than d stations transmit then
all messages are lost. In this latter case, we say that a conflict occurs. We assume that
time is divided into time slots and that transmissions occur during these time slots. We also
assume that all stations have a global clock and that active stations start transmitting at
the same time slot. A scheduling algorithm for such a multiaccess system is a protocol that
schedules the transmissions of the n stations over a certain number ¢ of time slots (steps)
identified by integers 1,2,...,t. Whenever an active station transmits to the channel, it
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receives a feedback from the channel that informs the station on whether its transmission
has been successful. As soon as an active station becomes aware that its message has been
successfully transmitted, it becomes inactive and does not transmit in the following time
slots, even though it is scheduled to transmit by the protocol. For the particular case d = 1,
our model corresponds to the multiple-access model with feedback considered by Komlés
and Greenberg in [20].

In this paper we focus on non-adaptive scheduling algorithms, that is, algorithms that
schedule all transmissions in advance so that all stations transmit according to a predetermined
protocol known to them from the very beginning. Please notice that the knowledge of the
feedback cannot affect the schedule of transmissions but can only signal a station to become
inactive after it has successfully transmitted. A non-adaptive scheduling algorithm is
represented by a t x n Boolean matrix where each column is associated with a distinct station

and a station j is scheduled to transmit at step ¢ if and only if entry (¢, j) of the matrix is 1.

In fact station j really transmits at step ¢ if and only it is an active station and is scheduled
to transmit at that step.

A conflict resolution algorithm is a scheduling protocol that schedules transmissions in
such a way that all active stations transmit with success, i.e., for each active station there
is a time slot in which it is scheduled to transmit on the channel and at most d — 1 other
active stations are allowed to transmit in that time slot. The conflict resolution protocols
considered in this paper are non-adaptive. The parameter we are interested in minimizing is
the number of rows of the matrix which corresponds to the number of time slots over which
the conflict resolution algorithm schedules the transmissions.

For the particular case d = 1, Komlés and Greenberg [20] gave a non-adaptive protocol
that uses O (k‘ log %) time slots to solve all conflicts among up to k active stations. Later
on, the authors of [11, 21] proved the same upper bound by providing a simple construction
based on selectors [11]. The above upper bound has been shown to be the best possible in [9],
and later on, independently by the authors of [8, 10]. The lower bound in [8, 9, 10] improved

log k
that however are not the topic of this paper.

on the Q (L log n) lower bound in [19], which additionally holds for adaptive algorithms

In [12] it has been studied the no-feedback version of the multiple-access problem considered
in the present paper, i.e., the scenario in which at most d out of up to k active stations can
transmit their messages simultaneously with success and the stations receive no feedback
from the channel. That paper provides both upper and lower bounds on the minimum
number of time slots needed to solve conflicts in the no-feedback model. The lower bound
has been later improved by a combinatorial result given in [13]. Interestingly, the upper
bound of [12] and the lower bound of [13] exceed, respectively, our upper and lower bounds
for multiple-access systems with feedback by a % factor.

1.2 Our results

In this paper we investigate the conflict resolution problem under the multiaccess model
described in the previous section. To this aim, we introduce a new generalization of Komlés
and Greenberg codes [20]. We prove that these new codes are equivalent to scheduling
algorithms that allow up to k active stations to transmit with success in our setting, thus
showing that upper and lower bounds on the minimum length of these codes translate into

upper and lower bounds on the minimum number of time slots needed to solve conflicts.

We present upper and lower bounds of the minimum length of these codes that differ
asymptotically by a log(k/d) factor. These bounds are a consequence of the corresponding
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bounds for other two new combinatorial structures also introduced in this paper. In particular,
the proposed construction of generalized Komldés and Greenberg codes is based on a new
version of (k, m,n)-selectors [11] having an additional parameter d. We give an existential
result for this version of selectors based on the Lovasz Local Lemma and present a Moser-
Tardos type randomized algorithm to generate selectors meeting the proved upper bound.
The lower bound follows from a non-existential result for a new combinatorial structure that
can be regarded as an extension of the selective families of [3, 7] and the < k-locally thin
codes of [10]. We call these new structures (< k, d, n)-locally thin codes.
Our main results are summarized by the following theorems.

» Theorem 1. Let k, d, and n be integers such that 1 < d < k < n. There exists a
conflict resolution algorithm for a multiple-access channel with feedback that schedules the
transmissions of n stations in such a way that all active stations transmit with success,
provided that the number of active stations is at most k and that the channel allows up to d
stations to transmit their messages simultaneously with success. The number of time slots t
used by this algorithm is

k n
t-O(dlogk>.

» Theorem 2. Let k, d, and n be positive integers such that 3(d+1) < k < n. Let A be
any conflict resolution algorithm for a multiple-access channel with feedback that schedules
the transmissions of n stations in such a way that all active stations transmit with success,
provided that the number of active stations is at most k and that the channel allows up to d
stations to transmit their messages simultaneously with success. The number of time slots t

needed by A is

k n
=6 <dlog(k/d) log 3+ 1)) '

We remark that the asymptotic upper bound of Theorem 1 holds also in the case when
there is no a priori knowledge of the number k of active stations. In this case, conflicts are
resolved by running the conflict resolution algorithm of Theorem 1 iteratively (in stages),
each time doubling the number of stations that are assumed to be active. In other words, at
stage ¢ the conflict resolution algorithm of Theorem 1 is run for a number k; of supposedly
active stations equal to 2¢. At stage [log k], the algorithm of Theorem 1 is run for a number
of active stations larger than or equal to £ and we are guaranteed that all active stations
transmit with success within that stage.

Our paper is organized as follows. In Section 2 we introduce the fundamental combinatorial
tools. We first introduce the new generalization of Komlds and Greenberg codes and prove
that these new codes are equivalent to conflict resolution algorithms for our problem. Then,
we introduce our generalized version of selectors and describe how to obtain a conflict
resolution protocol by exploiting these combinatorial structures. We conclude Section 2 by
giving the definition of (< k, d, n)-locally thin codes and show that our generalized version
of Komlés and Greenberg codes is indeed a (< k, d, n)-locally thin code, thus proving that
any non-existential result for (< k, d, n)-locally thin codes implies a non existential result
for the conflict resolution protocols in our model. In Section 3 we provide existential results
for generalized selectors and exploit these existential results to obtain the upper bound of
Theorem 1. In Section 3 we also give a randomized algorithm to generate selectors meeting
the proved upper bound. In Section 4 we give a lower bound on the minimum length of
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(< k,d,n)-locally thin codes that implies the lower bound of Theorem 2. In that section, we
also present a non-existential result for a combinatorial structure satisfying a weaker property
than that of (< k,d, n)-locally thin codes and that can be regarded as a generalization of the
k-locally thin families of [1]. Besides its combinatorial interest, this result implies a lower
bound on the number of times slots needed to solve conflicts when the number of active
stations is known to be ezactly equal to k.

Due to space limit, some of the proofs are omitted in the present version of the paper.

2 Combinatorial Structures

In the following, for a positive integer m, we denote by [m] the set {1,2,...,m}. Given a

matrix M, we denote the set of its columns and the set of its column indices by M itself.

The rows of a t X n matrix are numbered from the top to the bottom with integers from 1 to
t. The n stations are identified by integers from 1 through n and for a given subset S C [n]
and an n-column matrix M, we denote by M[S] the submatrix formed by the columns of M
with indices in S.

2.1 Generalized Komlés and Greenberg Codes

» Definition 3. Let k, d, and n be integers such that 1 < d < k <n. A t xn Boolean matrix
is said to be a KG (k, d, n)-code of length ¢ if for any submatrix M’ of k columns of M there
exists a non-empty set of row indices {i1,...,4¢} C [t], with i1 < iy < ... < iy, such that the
following property holds.

There exists a partition {M7,..., M;} of the set of columns of M’ such that, for
j=1,...,4,1< |M]’\ < d and the ¢j-th row of M’ has all entries at the intersection
with the columns of MJ’ equal to 1 and those at the intersection with the columns in

My, ..., Mj equal to 0.

We will denote by txa(k, d,n) the minimum length of a KG (k, d, n)-code.

The following theorem states that a KG (k, d, n)-code is indeed equivalent to a scheduling
protocol for our multiple-access model with feedback that allows all up to k active stations
to transmit with success.

» Theorem 4. Let k, d, and n be integers such that 1 < d < k < n, and let A be a scheduling
algorithm for a multiple-access channel with feedback that allows up to d stations to transmit
their messages simultaneously with success. A is a conflict resolution algorithm that schedules
the transmissions of n stations in such a way that all of the up to k active stations transmit
with success, if and only if the Boolean matriz corresponding to A is a KG (k, d,n)-code.

Proof. The proof is omitted and will be given in the extended version of the paper. |

In the following two sections we introduce our generalized versions of selectors and locally
thin codes and unveil their relationships with KG (k, d, n)-codes and, consequently, with our
conflict resolution problem.

2.2 Generalized Selectors

The following definition introduces a new combinatorial structure that will be employed as a
building block to construct KG (k, d, n)-codes. This new structure generalizes the notion of
(k,m, n)-selectors introduced in [11] and corresponds to this notion for d = 1.
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» Definition 5. Let k, m, d, and n be integers such that 1 < d <m < k < n. A txn Boolean
matrix is said to be a (k, m, d,n)-selector if any k-column submatrix M’ of M contains a set
R of rows such that each row in R has Hamming weight comprised between 1 and d, and the
Boolean sum of all rows of R has Hamming weight at least m. The number of rows ¢ of the
(k,m, d,n)-selector is the size of the selector. The minimum size of (k,m,d, n)-selectors is
denoted by tse;(k, m,d, n).

A (k,m,d, n)-selector defines a scheduling algorithm for our multiaccess model that, in the
presence of up to k active stations, allows all but at most & — m of these stations to transmit
with success. Indeed, all active stations that are scheduled to transmit in the time slots
corresponding to the rows in R, transmit with success, since for each of those time slots
there are at most d stations scheduled to transmit in that time slot. Notice that an active
station might be scheduled to transmit in more than one of those time slots but it will
become inactive as soon as it transmits with success. Let p < k be the total number of
active stations. Since the Boolean sum of the rows in R has Hamming weight at least m,
then at least m — (k — p) l-entries in that Boolean sum are associated with active stations,
and consequently, at least m — (k — p) active stations transmit with success and at most
p — (m — (k —p)) = k —m active stations do not succeed to transmit their messages.

In the following we will show how to use (k,m,d, n)-selectors to obtain a KG (k,d,n)-
code. The idea of this construction is similar to the one employed in [11, 21] to obtain a KG
(k,1,n)-code by using (k, m,n)-selectors as building blocks. From now on, unless specified
differently, “log” will denote the logarithm in base 2. For the moment, let us assume for
the sake of the simplicity that k and d be powers of 2. Our construction works as follows.
We concatenate the rows of (2°1 27 d, n)-selectors, for v = logd, ... ,logk — 1, with the
rows of the (k, k/2,d, n)-selector being placed at the top and those of the (2d, d, d, n)-selector
being placed at the bottom. Then we add an all-1 row at the bottom of the matrix. Let
M be the resulting matrix. Notice that the protocol defined by M consists in running
the protocols defined by the (2v+1,2v d, n)-selectors, starting from the protocol associated
with the (k, k/2,d, n)-selector through the one associated with the (2d, d, d, n)-selector. In
the last time slot, corresponding to the bottommost row of M, the protocol schedules
all stations to transmit. We will show that M defines a scheduling algorithm the allows
up to k active stations to transmit with success, which, by Theorem 4, is equivalent to
showing that M is a KG (k,d,n)-code. Let us assume that there are at most k < n active
stations. We observed that a (k,m,d, n)-selector provides a scheduling algorithm that
schedules the transmissions so that at most £ — m active stations do not succeed to transmit
their messages. Therefore, after running the scheduling protocol for v = logk — 1, i.e., the
protocol associated with the (k, k/2,d,n)-selector, the algorithm is left with at most k/2
active stations. Then the algorithm runs the protocol for v = logk — 2, i.e., the protocol
associated with the (k/2,k/4,d,n)-selector. This protocol allows all but at most k/4 of
the remaining active stations to transmit with success. Extending this reasoning to an
arbitrary v € {logd, ...,logk — 1}, we have that after running the protocol associated with
the (2v+1,2Y d, n)-selector, there are at most 2¢ stations that are still active. Therefore,
after running the protocol associated with the (2d,d, d, n)-selector, there are most d active
stations and no conflict can occur in the last time slot. In the last time slot all stations
are scheduled to transmit, and consequently, all remaining active stations transmit with
success in that time slot. For arbitrary values of k and d (not necessarily powers of 2), we
replace in the above construction log & and logd by [logk] and |logd], respectively. The
above construction implies the following upper bound on the minimum length tx(k,d, n)



A. De Bonis

of a KG (k,d,n)-code:

[logk]—1

tKG(k,d,n):O( 3 tsel(2i+1,2i,d,n)). (1)
i=|logd]

2.3 Generalized Locally Thin Codes

In this section we define a novel combinatorial structure that is strictly related to our problem
in that non-existential results for this structure translate into non-existential results for KG
(k,d,n)-codes.

» Definition 6. Let k, d, and n be integers such that 1 < d < k < n. A ¢ xn Boolean matrix
M is said to be a (< k,d,n)-locally thin code of length ¢ if the submatrix formed by any
subset of s, d < s < k, columns of M contains a row with a number of 1’s comprised between
1 and d. We will denote by trr(< k,d,n) the minimum length of a (< k, d, n)-locally thin
code.

Let M be a (< k, d, n)-locally thin code and let F be the family of the sets whose characteristic
vectors are the columns of M. The family F has the property that for any subfamily F/ C F
with d < |F'| < k, there exists an element = € [t] such that 1 < |{F € F' : =z € F}| < d.
For d = 1, these families correspond to the selective families of [3, 7] and to the < k-locally
thin families of [10]. The authors of [8, 9, 10] proved an (klog(n/k)) lower bound on the
minimum size of the ground set of < k-locally thin families which is tight with the upper
bound on the length of KG (k, 1, n)-code [20].

The following theorem establishes a relation between (< k, d, n)-locally thin codes and
KG (k,d,n)-codes.

» Theorem 7. Let k, d, and n be integers such that 1 <d <k <n. Any KG (k,d,n)-code
is a (< k,d,n)-locally thin code.

Proof. Let M bea KG (k,d,n)-code and suppose by contradiction that M is not a (< k,d, n)-
locally thin code. This implies that there exists a subset of s, d < s < k, columns of M such
that the submatrix M, formed by these s columns contains no row with a number of 1’s
comprised between 1 and d. Let M’ be a k-column submatrix of M such that M’ D M,.
Since M is a KG (k, d, n)-code, Definition 3 implies that there exists a non-empty set of row
indices {i1,...,4¢} C [t], with ¢; < i3 < ... <y, such that the following property holds:

There exists a partition {M7,..., M;} of the set of columns of M’ such that, for
j=1,...,4, 1 <|M}| <d and the i;-th row of M’ has all entries at the intersection
with the columns of MJ’ equal to 1 and those at the intersection with the columns in
My, ..., Mj equal to 0.

Let MJ/‘N""MJ/% e {M{,...,M}}, with f1 < fa < ... < fp, be the members of the partition
having non-empty intersection with M, i.e., My N My, # @, for each q € {1,...,b}, and
M, N (M}1 u...u Mj’cb) = M,. By our assumption that M, does not contain any row with
Hamming weight comprised between 1 and d, it follows that, for each row index i € [t],
the i-th row of M, has either Hamming weight 0 or Hamming weight larger than d. In
the former case, the i-th row has a 0 in correspondence of at least one column in each of
M J’cl, e M J’cb, whereas in the latter case the row has entries equal to 1 in correspondence of
columns belonging to at least two of M J’cl s, M ]’cb, since these submatrices contain at most
d columns. Let us consider the row of M, with index iz, . By Definition 3, one has that this

22:7

OPODIS 2016



22:8

Generalized Selectors and Locally Thin Families with Applications

row has the entries at the intersection with the columns in M]’c1 equal to 1 and those at the
intersection with the columns in M}2 U...uM }b equal to 0. However, from what we have
just observed, the iy -th row of M, has either a 0 in correspondence of at least one column
in each of M }1 yees M }b, or has entries equal to 1 in correspondence of columns belonging to
at least two of M}l ey M}b. In the former case, the iy, -th row of M, has an entry equal to
0 also at the intersection with some column in M} , whereas in the latter case the is,-th row
has a l-entry in correspondence of some column in at least one of M/ Ly M J’cb. In both
cases, the iz, -the row of M, does not satisfy the property of Definition 3, thus contradicting
the fact that M is a KG (k, d, n)-code. <

3 Existential Results

First we prove an existential result for (k,m,d, n)-selectors for k > 2(m — 1). In order to
prove this result, we need to recall the celebrated Lovéasz Local Lemma for the symmetric
case (see [2]), as stated below.

» Lemma 8. Let Ey, Es, ..., Ey be events in an arbitrary probability space. Suppose that
each event E; is mutually independent of a set of all other events E; except for at most D,

and that Pr[E;] < P for all1 <i<b. IfeP(D+1) <1, then Pr[NI_,E;] > 0.
By exploiting the above result we prove the following theorem.

» Theorem 9. Let k, m, d, and n be positive integers such that 1 < d <m and 2(m — 1) <
k <n. The minimum size ts;(k,m,d,n) of a (k,m,d,n)-selector is

16 (ke + (k= 1) (52 ) + (k—m+ Do (=) +1) #1<d <2

tsel(k7 m, d7 n) S
In k+(k—1) In( 722 )+ (k—m+1) In( =7 ) +1
LT Tin(4/3)

otherwise,

where e denotes the Neper’s constant e = 2,71828 .. ..

Proof. We will prove the existence of a (k,m, d, n)-selector with size smaller than or equal
to the stated upper bound. The proof is based on Lemma 8. Let M be a t x n random
binary matrix M where each entry is 1 with probability p and 0 with probability 1 — p. For
a given k-column submatrix M’ of M, let us denote by Ej; the event that M’ does not
satisfy the property of Definition 5. Notice that, since there are at most k(Z:i) k-column
submatrices containing one or more columns of M’, it holds that Fj; is independent from
all but at most k(}_]) events in {E;; : M C M, [M| = k} \ {Exm}. In order to apply
Lemma 8, we need to derive an upper bound P on the probability of each given event
Eyy € {Eg : M C M, |M| = k}.

In the following we will say that a row is w-good if its Hamming weight is comprised
between 1 and d. The probability Pr{FEy; } is the probability that the submatrix M’ contains
no subset R of w-good rows such that the Boolean sum of the rows in R has Hamming weight
larger than or equal to m. To this aim, we notice that this event holds if and only if there
exists a set A of k —m + 1 column indices such that all w-good rows of M’ have all zeros
at the intersection with the columns with indices in A. For a fixed subset A of kK —m + 1
indices of columns of M’, we denote by E 4 the event that all w-good rows of M’ have zeros
at the intersection with the columns with indices in A. Hence, we have that

Pr{Ey} :Pr{ U EA} < 3 Pr{B,). (2)
AC M AC M
|Al=k-—m+1 |Al=k-—m+1
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For a fixed A, event F4 holds if and only if, for any row index i = 1,...,t, one has either
that the i-th row of M’ is not w-good or that the i-th row of M’ is w-good and has all zeroes
at the intersection with the columns with indices in A. Therefore, one has that

t
Pr{E,} = Pr{ m {{the i-th row of M’ is not w-good}
i=1
U{the i-th row of M’ is w-good and M’(4,j) =0 for all j € A}}}

< (Pr{the i-th row of M’ is not w-good}
i=1
+Pr{the i-th row of M’ is w-good and M’(i,j) =0 for all j € A})
= (At P, (3)
where
Py = Pr{the i-th row of M’ is not w-good} (4)
and
P, = {the i-th row of M’ is w-good and M’(i,5) = 0 for all j € A}, (5)

for any fixed i € [t]. Notice indeed that P; and P, do not depend on i.
By (2) and (3), we have that

P’I“{E]y[/} < <k B :1 n 1) (P1 + Pg)t. (6)

Applying Lemma 8 with P = (k72+1) (P + P)t and D = k;(Zj), one has that M has
positive probability of being a (k, m,n)-strongly selective code if

e(kj;+1)(P1+P2)t (1@(2_1)+1>§1. (7)

Inequality (7) holds for ¢ satisfying the following inequality

1+In <k771:1+1) +1In (k(Zi) + 1)

= “In(Py + Py) ' )

Therefore, there exists a (k, m, d, n)-selector of size t, for any ¢ satisfying the above inequality.

The proof of the following claim is omitted and will be given in the extended version of
the paper.

Claim 1. Let k, m, d, and n be positive integers such that 1 <d <m and 2(m—1) < k < n.
If we choose

& ifde{1,2}
P7le ifa>s3
then it holds

if d € {1,2}

1
(P + Py) >4 10
(FutFa) {k—m—i—l)(ﬁc)—ln(g) if d > 3.
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In order for a (k,m,d, n)-selector of size t to exist it is sufficient that ¢ satisfies inequality
(8). Claim 1 implies that the righthand side of (8) is at most

k n—1
16 (1+1 1 1
J G P B C s ED )
if 1 <d <2, and it is at most

L+l (o Fy) +n (kD) +1)
d(ktl?+1) o ln(%)

)

if d > 3. Therefore, the upper bounds on ts.;(k,m,d,n) in the statement of the theorem
are implied by these two upper bounds on the righthand side of (8), along with inequality

(k; (Zj) + 1) < k( kﬁl) and the following well known upper bound on the binomial coefficient:

()=(5)

S|l—= - <
Y Y

Theorem 9 implies that bound (1) on txa(k,d,n) in Section 2 is

[logk]—1

i+1
o S ) =0 (b

i=|logd]
Therefore, the following theorem holds.

» Theorem 10. Let k, d, and n be positive integers such that d < k < n. The minimum
length txc(k,d,n) of a KG (k,d,n)-code is

k n
txg(k,d,n) =0 (d log k) .
Theorem 1 follows from Theorems 4 and 10. In virtue of Theorem 7, we have that Theorem 10
implies an existential results for (< k, d, n)-locally thin code. For d = 1, this existential result
attains the same asymptotic upper bound as the one in [8].

Below, we provide a randomized algorithm that generates (k, m, d, n)-selectors meeting the
upper bound of Theorem 9. Algorithm 1 is obtained by specializing a technique introduced
by Moser and Tardos [23] to generate the structures whose existence is guaranteed by the
Lovasz Local Lemma. Theorem 1.2 of Moser and Tardos [23] implies that the expected
number of times the resampling step (line 14 in Algorithm 1) is repeated is at most 5. As a
consequence, for fixed k, Algorithm 1 runs in expected polynomial time.

4 Non existential results

The following theorem states a lower bound on the minimum length of (< k, d, n)-locally
thin codes. The proof of this theorem exploits and generalizes an interesting lower bound
proof technique used by the authors of [1].

» Theorem 11. Let k, d, and n be positive integers such that 3(d +1) < k < n. The
minimum length trr(< k,d,n) of a (< k,d,n)-locally thin code is

kezd

tog (el 77 o8 (k(dn+ 1>> |

tLT(S ka da n) >
d+1
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Algorithm 1: Algorithm that generates (k, m, d, n)-selectors.

Input: Integers k,m and n, where 1 < d <m and 2(m — 1) < k < n.
Output: M : a (k,m,d, n)-selector.
16 (nk+ (k= DI (32) + (b —m+ Do (=27) +1)  if1<d<2

1 Let t:= ;
In k+(k—1) In( 122 )+ (k—m+1) In( =27 ) +1 .
= m otherwise,
dkomtl) _1n(4/3)
d .
2 Let p:= ;
% otherwise.
3 Construct a ¢ X n matrix M where each entry M (i, j) is chosen independently at

random with Pr{M(i,j) =1} = p and Pr{M(i,j) =0} =1 — p.;
4 repeat
5 Set flag:= true;
6 for each set C of k columns of M do
7 if C does not satisfy the property of Definition 5 then
8 Set flag:= false;
9 Set missing-column-set := C,;

10 break;

11 end

12 end

13 if flag = false then

14 Choose all the entries in the k columns of missing-column-set independently at

random, with each of those entries being 1 with probability p and 0 with
probability 1 — p.;
15 end

16 until flag = true;
17 Output M;

Proof. Let us write k as k = (d+1)| 725 | + ¢, with 0 < ¢ < d and let u = | 7% |. We denote

d+1 d+1
by « a positive rational number a = § satisfying the following inequalities
1 1
- <a< <. 9
u - 2 (9)

Let us denote by nyr(< k,d,t) the maximum value of n for which there exists a (< k, d, n)-
locally thin code of length t. We will prove that

npr(< k,dt) < k(d+1) - 201, (10)

First we will show that for any o < % it holds

« h(o) (0%
— <277« <~ 11
® < 3 (1)

where h(a) denotes the binary entropy of a. Notice that, since we can choose o = %, the
upper bound (10) on nrr(< k,d,t), along with the lefthand side of (11), implies that

NI
nLT(Skr,d,t)<k:(d+1) <€Ld+1J> s
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from which the lower bound on t77(< k,d,n) in the statement of the theorem follows.
Let us prove inequalities (11). By the definition of binary entropy, one has that

h(g> = Oty (229, b Y b (1 ) (12)
b) T b %y b ) B\p—a) T %L T8 b—a '

b—a b—a
Since (1 + ﬁ) increases with b, one has that 2% < (1 + ﬁ) < e®, where the left

inequality follows from the righthand side of (9) that implies b > 2a. Therefore, by (12), it
holds

cun(2) n(9) < 5us (2)

By replacing ¢ with «, inequalities (13) can be rewritten as alog (%) < h(a) < alog (i),
from which we have that inequalities (11) hold.

Now we prove that npp(< k,d,t) < k(d+ 1) - 2(®)* The proof is by induction on t.

For t = 1, any t X n Boolean matrix M has a single row that either contains at least 5
entries equal to 0 or at least 7 entries equal to 1. Consequently, if we assume by contradiction
that |M|=n > k(d+1) - 2" > k(d + 1) then the single row of M would either contain
at least k(d + 1)/2 occurrences of 0 or at least k(d + 1)/2 occurrences of 1. This implies
that there exist k(d 4+ 1)/2 > k entries that are either all equal to 0 or all equal to 1 thus
contradicting the hypothesis that M is a (< k, d,n)-locally thin code.

Let us consider ¢ > 1 and let us assume by induction hypothesis that nyr(< k,d,t —1) <
E(d+1) -2 Let M be at x n (< k,d,n)-locally thin code of length ¢ and let us
assume by contradiction that n > k(d + 1) - 2"(®)?* We consider the following two cases.

Case 1. There exists an integer i in [t] such that there are at least 2~"(®)n columns of M
with the i-th entry equal to 0. In this case, if we remove the i-th entry from each of these
columns, we have that the resulting columns form a matrix M that is a (< k,d,n)-locally
thin code of length ¢ — 1. Since we are assuming that n > k(d + 1) - 2°(®)? it holds
|M| > 2= MOk (d 4 1)2M = k(d + 1) - 2D By induction hypothesis, M cannot
be a (< k,d,n)-locally thin code of length ¢t — 1, thus contradicting the fact that M is
(< k,d,n)-locally thin code.

Case 2. For each element i € [t], there are less than 27"(®)n columns of M with the i-th
entry equal to 0. This implies that for a fixed ¢ and for u randomly chosen columns
Ci,...,Cy Of M, the probability that cq,...,c, all have the i-th entry equal to 0 is less
than 274 By the lefthand side of (9) this probability is at most 2_@, which by
the righthand side of (11) is less than §. Therefore, the expected number of 0-entries

in the Boolean sum \/}L:1 c; is less than 2. Let X denote the number of O-entries

in the Boolean sum of u randomly chosen 2columns. We have shown that E[X] < &,
Markov’s inequality implies that, for any non-negative random variable Y and for any
b > 0, it holds Pr{Y > b} < %. By our upper bound on E[X] and by Markov’s
inequality, one has Pr{ \/?:1 c; has at least tov O-entries} < % - L = L. It follows that
Pr{\/;_, ¢; has Hamming weight larger than ¢ — ta} > 1. Let m = 2(d+1)[2"(®)*] and
let By, ..., B, be m randomly chosen subsets of u columns of M such that B; N B, = 0,
for j # ¢. Such subsets By, ..., B, can be generated by randomly permuting the columns
of M, and then picking a set of m - u consecutive columns in the resulting matrix. In
order to obtain B, ..., B,,, this set of columns is partitioned into m disjoint subsets each
consisting of u consecutive columns. We have shown that \/ ., ¢ has Hamming weight

larger than ¢ — ta with probability larger than %, and consequently, the expected number
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of subfamilies B;’s among Bj, ..., By, such that VFij F has Hamming weight larger
than or equal to t — ta is at least 7. By linearity of expectation, there is a random
choice of Bi, ..., B,, such that there are at least f > % subfamilies By, ..., B} among
Bi,...,B,, for which one has that \/ceB;
than or equal to ¢t — ta. However, one has that the number of pairwise distinct binary

c, for £=1,..., f, has Hamming weight larger

vector of length ¢ with Hamming weight larger than or equal to t — t« is

> ()2 () s

s=t—ta s=0

where the last inequality follows from the well known inequality Z?:o (f) < 29h(b/9)
holding for b/g < 1/2, [15] . Since it is m = 2(d+1)[2M(@)*], then there are at most ST
pairwise distinct vectors of Hamming weight larger than or equal to t — ta. We have
shown that there exist f > % subfamilies By, ... 78} such that vceB; c,ford{=1,...,f,
has Hamming weight larger than or equal to ¢t —ta. As a consequence, for at least a binary

vector c,, there are d + 1 sets B} ... >B;'d+1 C{By,... ,B}} such that \/ .z ¢ = c,, for
Jq

qg=1,...,d+ 1. In other words, c, occurs at least d + 1 times among the Boolean sums
\/ceB’l c ..., VceB’f c. Therefore, the submatrix formed by the (d+1)u = (d+1) Lﬁj <k
columns of B;l ey B;dﬂ is such that each row is either an all-zero row or has at least

d + 1 entries equal to 1, thus contradicting the assumption the M is a (< k, d, n)-locally

thin code. <
Theorem 2 is an immediate consequence of Theorems 7 and 11.

The technique used to prove the lower bound of Theorem 11 allows also to obtain a lower
bound on the length of codes satisfying a weaker property than that of (< k, d, n)-locally
thin codes. We refer to these codes as (k, d, n)-locally thin codes. A t x n Boolean matrix M
is a (k,d,n)-locally thin code of length ¢ if and only if any submatrix formed by ezactly k
columns of M contains at least a row whose Hamming weight is comprised between 1 and
d. If we interpret the columns of such a code as the characteristic vectors of n sets on the
ground set [t], then these sets have the property that for any & of them there exists an i € [¢]
that is contained in at at least one of these k sets and in no more than d of them. For d = 1,
these families correspond to the k-locally thin code of [1].

» Theorem 12. Let k, d, and n be positive integers such that 4(d +1) < k < n. The
minimum length trr(k,d,n) of a (k,d,n)-locally thin code is

a+ n
trr(k,d,n) > log ( ) .
log (¢ (L) =1)) A+
Proof. The proof is similar to that of Theorem 11 with the difference that here we write
kask = (d—i—l)[diﬂj +q = (d—i—l)(t%j —1) +d+1+gq, with 0 < ¢ < d, and set
u = Ldiﬂj — 1. Moreover, here in order to prove the lower bound for Case 2, we need to

prove the existence of a submatrix of ezactly k columns that does not contain any row
of Hamming weight comprised between 1 and d. To this aim, let us consider the subsets

of u columns Bj, , ... 7B;'d+1 whose existence has been proved in the proof of Theorem 11.
The subsets B, ... 78;}14,1 are such that the Boolean sums \/celg;1 c,..., \/ceBZ_d ) ¢ have
Hamming weight at least ¢ —tc, and the submatrix formed by the columns in B} U...UB], |

contains no row of Hamming weight comprised between 1 and d. The number of columns in

this submatrix is (d+ 1)u = (d+ 1) (Lﬁj - 1) < k. We will show that it is possible to add
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columns to this submatrix so as to obtain a submatrix with exactly k-columns and with no
row of Hamming weight comprised between 1 and d. To this aim, let us consider the columns

of M that do not belong to any of B}l, ceey B;HH. Let us denote by i1, ...,7, the indices of
. . / /
the 0-zero entries in the Boolean sums VceB;1 C,..., \/CGB;dH c. By the way le . ,l’)’jd+1

have been defined in the proof of Theorem 11, one has z < ta. We will prove that there
are at least d + 1 + ¢ columns whose restrictions to the entries with indices i1,...,7, are
identical. This implies that the ¢ x k& submatrix formed by d + 1 4 ¢ of these columns and
the columns in B.;d ceey B.;- 4i1 18 such that each row is either an all-zero row or has at least

d + 1 entries equal to 1, thus contradicting the fact that M is a (< k, d, n)-locally thin code.
The rest of the proof is devoted to prove that there are at least d 4+ 1 + ¢ distinct columns

of M not in 83‘1 ceey B;(Hl whose restrictions to the entries with indices 41, ..., 7, are identical.
We observe that the number of columns of M that do not belong to any of 83'1 e ,B;» I8

n—(d+1) (L#J - 1). By the contradiction assumption, it holds n > k(d + 1) - 2t and
consequently, the above said number of columns is at least k(d+1)-2"(®)* —(d+1) (LdL_HJ - 1)
which, by the righthand side of (11), is larger than k(d + 1) (%)m —(d+1) (Lﬁj - 1).

Since k(d+1) - (%)m —(d+1) (Ldiﬂj - 1) > kd - (%)m > 2d - 2t it follows that there are
more than 2d - 2!* columns of M not in 83'1 cee B;-dﬂ. Among these columns there are at
most 2% < 2! columns whose restrictions to indices i1,...,i, are pairwise distinct. As a
consequence, there are at least 2d +1 > d 4+ 1 + ¢ columns of M not in B;& ..., B, whose

Jd+1
restrictions to indices 41 ...,%, are identical. |

For k even, the authors of [1] proved an Q(klogn) lower bound on the minimum size of
the ground set of k-locally thin families, whereas, for arbitrary values of k, they gave an

log k
bound obtained by setting d equal to 1 in the lower bound of Theorem 12.

Q (L log n) lower bound. This latter lower bound is asymptotically the same as the lower

Notice that Theorem 12 gives a lower bound on the minimum number of time slots needed
to solve all conflicts in our model when the number of active stations is ezactly k.

5 Conclusions

We have presented upper and lower bounds on the minimum number of time slots needed to
solve conflicts among up to k active stations in a multiple-access system with feedback where
at most d stations can transmit simultaneously with success over the channel. Interestingly,
we have proved that it is possible to resolve conflicts in a number of time slots linearly
decreasing with the number d of messages that can be simultaneously transmitted with
success. Indeed, we have provided a conflict resolution algorithm that uses a 1/d ratio of the
number of time slots used by the optimal conflict resolution algorithm for the particular case
d=1120].

The upper and lower bounds given in this paper differ asymptotically by a log(k/d) factor.
An interesting open problem is to close this gap by improving on the lower bound on the
minimum length of KG (< k, d, n)-codes.
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