
m-Consensus Objects Are Pretty Powerful∗

Ammar Qadri

University of Toronto, Toronto, Canada
ammar.qadri@mail.utoronto.ca

Abstract
A recent paper by Afek, Ellen, and Gafni introduced a family of deterministic objects Om,k, for
m, k ≥ 2, with consensus numbers m such that, for each k ≥ 2, Om,k is computationally less
powerful than Om,k+1 in systems with at least mk+m+k processes. This paper gives a wait-free
implementation of Om,k from (m+ 1)-consensus objects and registers in systems with any finite
number of processes. In order to do so, it introduces a new family of objects which helps us to
understand the power of m-consensus among more than m processes.

1998 ACM Subject Classification E.1 Distributed Data Structures, F.1.2 Parallelism and con-
currency

Keywords and phrases Deterministic Consensus Hierarchy, Wait-free Implementation, Tourna-
ment

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2016.27

1 Introduction

The consensus problem is a fundamental problem in distributed computing that has long
been used to categorize the computational powers of shared objects. Herlihy [5] defined the
consensus number of an object, which is the largest number of processes for which wait-free
consensus can be achieved using only instances of the object and registers. Thus an object O
with consensus number n cannot be implemented in a wait-free manner by an object O′ with
consensus number n′ < n in a system with more than n′ processes. The consensus hierarchy
classifies objects by their consensus numbers.

Herlihy also proved that any object can be implemented by n-consensus objects and
registers (and, hence, by any objects with consensus number n) in systems with n or fewer
processes. However, the relative computational powers of objects with the same consensus
number n in systems of more than n processes is not entirely understood.

Afek, Gafni, Tromp, and Vitányi [3] showed that test-and-set objects, which have consensus
number 2, can be implemented from 2-consensus objects and registers in a system with
any finite number of processes. Afek, Weisberger, and Weisman [4] and Afek, Gafni, and
Morrison [2] proved that this is also true for other well-known objects of consensus number
2, such as fetch-and-increment objects, swap objects, and stacks. It was conjectured [4]
that this is true for any object with consensus number 2. This is known as the Common2
Conjecture. More generally, the Consensus Hierarchy Conjecture asserts that for n ≥ 2, every
shared object of consensus number n′ ≤ n has a wait-free implementation from n-consensus
objects and registers in every system with a finite number of processes.

Rachman [6] disproved the Consensus Hierarchy Conjecture for nondeterministic objects.
He showed that for any m′ and m, with m′ ≥ m ≥ 1, there exists a nondeterministic object

∗ This work has been generously supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC).

© Ammar Qadri;
licensed under Creative Commons License CC-BY

20th International Conference on Principles of Distributed Systems (OPODIS 2016).
Editors: Panagiota Fatourou, Ernesto Jiménez, and Fernando Pedone; Article No. 27; pp. 27:1–27:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2016.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 m-Consensus Objects Are Pretty Powerful

X with consensus number m, such that X cannot be implemented using only m′-consensus
objects and registers in systems with at least 2m′ + 1 processes. This means that the
consensus hierarchy, at least on its own, is not very useful in characterizing the computational
powers of nondeterministic objects.

Afek, Ellen, and Gafni [1] proved that the Consensus Hierarchy Conjecture does not even
hold for the class of deterministic objects. They introduced the Om,k object, for m, k ≥ 2,
and showed that each Om,k object has consensus number m, but cannot be implemented
(in a non-blocking manner) from m-consensus objects and registers in any system with at
least km+ k − 1 processes. More surprisingly, they showed that an Om,k+1 object cannot
be implemented (in a non-blocking manner) from Om,k objects and registers in any system
with at least mk +m+ k processes, meaning that Om,2, Om,3, . . . is an infinite sequence of
objects with increasing computational power, all with consensus number m.

This paper determines the relationship between Om,k objects and (m + 1)-consensus
objects. Section 4 presents a wait-free implementation of every Om,k object from (m+ 1)-
consensus objects and registers among any finite number of processes. Thus, Om,k objects lie
strictly between m-consensus objects and (m+1)-consensus objects in terms of computational
power. This provides additional understanding of the consensus hierarchy for deterministic
objects and is a step towards a characterization of their computational power.

For our implementation, we introduce a new family of deterministic objects, Qr, for r ≥ 0,
which serves as a crucial synchronization mechanism. The Qr object is a generalization of
the test-and-set object: it has an operation which allows the first process that performs
it to win and all subsequent processes to fail. In addition, there is another operation that
returns the identity of the winner to the first r processes who perform it after the object has
been won. Section 3 formally defines the Qr object, proves that it has consensus number
r + 2, and proves that it has a wait-free implementation from (r + 2)-consensus objects and
registers in any system with a finite number of processes. It is hoped that the Qr object will
be a useful tool for determining the power of (r + 2)-consensus objects in systems of more
than r + 2 processes.

2 Model

We consider an asynchronous shared memory system, with n processes, p1, p2, . . . , pn, which
communicate by applying operations to shared objects. A step by any process consists of
an operation it is performing on a shared object as well as the response received from the
operation.

A configuration of the shared memory system consists of the current state of every process,
as well as the current value of every shared object. An initial configuration is a configuration
where all processes and shared objects are in one of their initial states. An execution is
specified by an alternating sequence of configurations and steps by processes, beginning at
an initial configuration, such that if a configuration C is immediately followed by a step s of
process pi, which is immediately followed by a configuration C ′, then pi performing step s in
configuration C yields the configuration C ′.

An implementation of a sequentially specified shared object O from a set of shared base
objects is given by providing an algorithm for each operation of O in which processes only
access the base objects. The implementation is linearizable if, in any execution E , we can
order each completed operation as well a subset of incomplete operations on O such that
the results of each operation in this order are consistent with the sequential specification
of O, and, moreover, an operation that completes before another operation begins comes

A. Qadri 27:3

earlier in the order. Equivalently, the implementation is linearizable if, in any execution
E , we can assign a (distinct) linearization point to each completed operation as well as
a subset of incomplete operations such that the linearization point of every operation is
within the execution interval of that operation and the results of each operation in the order
induced by the linearization points are consistent with the sequential specification of O. The
implementation is wait-free if every process that performs any operation of O completes the
operation in a finite number of its own steps. The implementation is non-blocking if, from
every configuration of any execution, there is some process that completes its operation in a
finite number of steps.

Consensus can be solved by n processes, p1, p2, . . . , pn, if there exists an algorithm such
that, if every process pi is assigned some input xi, each process outputs at most one value,
satisfying the following conditions:

validity: If pi outputs yi, then there exists some j such that yi = xj .
agreement: If pi outputs yi and pj outputs yj , then yi = yj .
termination: Every process that takes sufficiently many steps outputs a value.

The m-consensus object is a shared object with a single operation propose that takes one
argument. The first m propose operations to an m-consensus object return the argument
of the first propose operation. We say that this value is the decision of the m-consensus
object. All other operations return ⊥.

The test-and-set object is a shared object with a single operation t&s, which returns
true for the first operation and false for all subsequent operations.

The fetch-and-increment object is a shared object and has a single operation f&i, which
returns the value a+ i− 1 to the ith operation, where a was the initial value of the object.

Throughout this paper, we assume that the initial value of every fetch-and-increment
object is 1 and the initial value of every register is ⊥.

3 The Qr object

We now formally define the Qr object and explain how it can be used together with registers
to solve consensus among r + 2 processes. Then, in Section 3.1, we prove that it can be
implemented from (r+ 2)-consensus objects and registers in a system with any finite number
of processes.

The Qr object, for r ≥ 0, has two operations, compete and query, with the following
specifications:

The first compete operation returns true and the process that performs it is called the
winner of the object. All subsequent compete operations return false.
The first r query operations after the first compete operation return the id of the
winner. All other query operations return ⊥.

If processes perform only compete operations, then a Qr object behaves like a test-and-
set object. In particular, Q0 is equivalent to a test-and-set object and, thus, has consensus
number 2. The additional power of a Qr object for r > 0 is due to the r query operations
that can be used to determine the winner.

The Qr object can solve consensus among r + 1 processes: Each process announces its
input in a single writer register before calling compete on a shared Qr object. The winner
decides its own input, whereas the r losers call query to find the identity of the winner, and
then read and decide the winner’s announced value.

It is only slightly more difficult to see that the Qr object can solve consensus among
r+ 2 processes. As before, each of the processes, p1, p2, . . . , pr+2, first announces its input in

OPODIS 2016

27:4 m-Consensus Objects Are Pretty Powerful

Algorithm 1 A solution to (r + 2)-consensus.

Shared variables:
q is a Qr object
announce[1 . . . r + 2] is an array of registers

p1: function propose(v) by process pi for i ∈ {1, . . . , r + 2}
p2: announce[i].write(v)
p3: if q.compete() then
p4: return v

p5: end if
p6: announce[i].write(⊥)
p7: winner ← q.query()
p8: if winner 6= ⊥ then
p9: return announce[winner].read()
p10: end if
p11: for j ← 1 to r + 2 do
p12: value ← announce[j].read()
p13: if value 6= ⊥ then
p14: return value

p15: end if
p16: end for
p17: end function

a single writer register. Next, processes perform compete on a Qr object and the winner
decides its own input. The problem is that there are r + 1 processes that are not the winner
of the Qr object and may need to learn the identity of the winner. However, the Qr object
can only return the identity of the winner to at most r processes. To resolve this, each
process that loses its compete operation first overwrites its announced value with ⊥ before
calling query on the Qr object. If its query operation is successful, then, as before, it
reads and decides the announced value of the winner. However, if its query operation was
unsuccessful, then r + 1 processes have already called query on the Qr object by this point.
Prior to calling query, these processes overwrote their announced values. Thus, exactly one
value remains in the announcement array: the value of the winner. The code is provided in
Algorithm 1.

I Observation 1. Algorithm 1 solves the consensus task among r + 2 processes.

I Lemma 2. The Qr object has consensus number at least r + 2.

3.1 An implementation from (r + 2)-consensus objects
We now give a wait-free implementation of a Qr object shared among any finite number n of
processes using only (r + 2)-consensus objects and registers. In particular, this shows that
the Qr object has consensus number at most r + 2.

Our implementation uses an array cons[1 . . . n] of (r + 2)-consensus objects, a register
gate, and a fetch-and-increment object count. Note that fetch-and-increment objects have
a wait-free implementation from 2-consensus objects (and, hence, from (r + 2)-consensus
objects, since r ≥ 0) and registers among any finite number of processes [4].

A. Qadri 27:5

!ons[n]

!ons[4]

!ons[3]

!ons[2]

!ons[&]

id & 2 3 4 n

Figure 1 Tournament to determine winner.

Processes that call compete participate in a tournament to decide which operation
returns true. However, we must prevent the situation where, after a compete operation
returns false, another compete operation begins and returns true. No linearization of such
an execution would be consistent with the sequential specifications of compete.

To prevent this issue, a process pi performing compete first checks the value of the
shared register gate. If gate 6= ⊥, the compete operation returns false. Otherwise, pi

writes its own id, i, to gate. This ensures all processes calling compete that write their id
to gate are concurrent. This idea was used in the wait-free implementation of an n-process
test-and-set object from 2-process test-and-set objects and registers [3].

After process pi writes to gate, it continues by entering a tournament. It proposes
i to cons[i] through cons[n] in order. If it receives a response other than i from one of
these consensus objects, it immediately returns false and does not propose i to any further
consensus objects. If the responses it receives from cons[i] through cons[n] are all i, then pi

returns true. The tournament is depicted in Figure 1. Note that cons[1] is only used for
simplifying the code and proof of correctness. It is otherwise unnecessary.

To perform query, a process pi first reads the value i′ in gate. If i′ = ⊥, then no process
performing compete has written its id to gate and taken part in the tournament, so pi

returns ⊥. If i′ 6= ⊥, pi performs f&i on count and, if the value returned is greater than r,
returns ⊥. Note that at most r query operations proceed past this point. If a compete
operation has already returned true, pi could just propose to cons[n] to get the id of the
winner. However, this is not guaranteed. The competing processes may be slow or the
winning process may have crashed before proposing to cons[n]. Thus, pi attempts to assist
participants in the tournament by propagating their ids. It begins by proposing i′, the id
it read from gate, to cons[i′]. Then it proposes the decision of cons[j − 1] to cons[j] for
i′ < j ≤ n in order. Finally, it returns the decision of cons[n], which is the id of the winner.

The code for compete and query is presented in Algorithm 2.
We now prove the correctness of the implementation of a Qr object given in Algorithm 2.

Let E be any execution of the implementation.
We will say that a compete or query operation performs a step σ in the execution if

the process performing the operation executes σ during the operation.

OPODIS 2016

27:6 m-Consensus Objects Are Pretty Powerful

Algorithm 2 An implementation of Qr.

Shared variables:
cons[1 . . . n] is an array of (r + 2)-consensus objects
gate is a register initialized to ⊥
count is a fetch-and-increment object initialized to 1

c1: function compete() by process pi

c2: if gate.read() 6= ⊥ then
c3: return false

c4: end if
c5: gate.write(i)
c6: for j ← i to n do
c7: if cons[j].propose(i) 6= i then
c8: return false

c9: end if
c10: end for
c11: return true

c12: end function

q1: function query()
q2: i′ ← gate.read()
q3: if i′ = ⊥ then
q4: return ⊥
q5: end if
q6: if count.f&i() > r then
q7: return ⊥
q8: end if
q9: start ← i′

q10: for j ← start to n do
q11: i′ ← cons[j].propose(i′)
q12: end for
q13: return i′

q14: end function

We consider three cases.
In the first case, suppose that no operation in execution E ever writes to gate. That is,

suppose no compete operation executes line c5 during execution E . Then no compete
operation returns, since the value of gate remains ⊥ throughout execution E . Thus, line c3 is
not executed, nor are lines c8 or c11. All compete operations are therefore incomplete and
we do not linearize any of them. All query operations that complete return ⊥ on line q4.
We can define the linearization point of each of these query operations to be the time at
which the operation executes line q2. Since all linearized query operations return ⊥ and no
compete operation has been linearized, this linearization is consistent with the sequential
specifications of a Qr object.

In the second case, suppose that line c5 is executed by some operation in execution E ,
but no value is ever proposed to any consensus object. That is, neither line c7 nor line q11 is
executed by any operation in E . Then let C be the compete operation during which the
first write to gate takes place and let pw be the process that performs operation C. Define
the linearization point of operation C to be the step at which it writes to gate in line c5.
In this execution, every compete operation that completes returns false on line c3. For
every such completed compete operation, define its linearization point to be the step at
which it reads from gate in line c2. It follows that for every completed compete operation
C ′, operation C is linearized before operation C ′, since the read operation performed by C ′
in line c2 returned a value other than ⊥, meaning that the first write to gate, in line c5 of C,
had already taken place.

We also linearize the query operations as follows: Every query operation that returns
⊥ on line q4 is linearized at the point it executes the read of gate in line q2. Thus, every
such operation Q is linearized before C, since Q reads ⊥ from gate. The query operations
that perform f&i on count are linearized at the point they execute line q6. Each of these
query operations is linearized after C, since it reads a value other than ⊥ from gate in
line q2. Moreover, if one of these query operations Q returns ⊥, it does so after count has

A. Qadri 27:7

already been incremented r times by r other query operations that executed line q6. So
there at least r query operations linearized after C and before every such operation Q. This
linearization is consistent with the sequential specifications of a Qr object.

Finally, we consider any execution E where some value is proposed to a consensus object
on line c7 or q11 during some operation in E . Processes are referred to as competitors while
they execute lines c5–c11 and as queriers while they execute lines q9–q13. Note that only
competitors and queriers access consensus objects, and there are at most r queriers.

I Observation 3. A process can only be a competitor in its first invocation of compete, so
every competitor has a distinct id.

We say that i is accepted by a consensus object if it is the decision of the consensus object.
If i is proposed, but is not accepted, we say it is rejected from the consensus object.

Competitor pi only proposes its id, i, to cons[j] if j = i or if i was accepted by cons[j−1].
Every querier begins by reading some competitor’s id, i′, in gate. It proposes this value i′
to cons[i′] in the first iteration of the for loop in line q10. In every subsequent iteration, it
proposes the value accepted by cons[j− 1] to cons[j]. This gives us the following observation:

I Observation 4. For any j > 1, the only possible values proposed to cons[j] are j and the
value accepted by cons[j − 1]. The only possible value proposed to cons[1] is 1.

From Observation 4, we get the following useful results:

I Lemma 5. If i < j is proposed to cons[j], then i was accepted by cons[`], for all i ≤ ` < j.

Proof. Suppose not. Consider the largest ` < j such that i was not accepted by cons[`]. If
` < j − 1, this means that i was accepted by cons[`+ 1] and, hence, from the semantics of
propose, was proposed to cons[`+ 1]. If ` = j − 1, then i was proposed to cons[`+ 1] by
assumption. In either case, since i < l+ 1, it follows from Observation 4 that the value i was
accepted by cons[`]. This is a contradiction. J

I Lemma 6. No process that proposes to the (r + 2)-consensus object cons[j] receives a
response of ⊥.

Proof. By Observation 4, there are at most two distinct values proposed to cons[j]. Since
every competitor only proposes its own id, by Observation 3, we conclude that there are at
most 2 competitors that propose to cons[j]. No competitor proposes to cons[j] more than
once. Additionally, there are at most r queriers and each querier proposes to cons[j] at most
once. It follows that there are at most r + 2 propose operations performed on cons[j] and,
hence, none of them receive a response of ⊥. J

By examining the code, we can learn the following fact about the values proposed to
consensus objects:

I Observation 7. The value i is only proposed to cons[j] if there exists a competitor with id
i that has already written i to gate on line c5.

We will now show that execution E is linearizable.
Recall that during execution E , some value is proposed to some consensus object. Consider

the smallest j such that some value is proposed to cons[j]. By Observation 4, the only value
proposed to cons[j] is j. It follows that j is accepted by cons[j]. Let w be the greatest value
such that w is accepted by cons[w] in execution E . Let Cw be the first compete operation
of process pw. By Observations 3 and 7, Cw exists and writes w to gate in line c5 (after

OPODIS 2016

27:8 m-Consensus Objects Are Pretty Powerful

reading ⊥ from gate in line c2). Thus, operation Cw is concurrent with the first write to
gate and we linearize it at that point. Every compete operation that returns on line c3 is
linearized at the point it executes line c2 and every compete operation that returns on line
c8 is linearized at the point of its preceding proposal to a consensus object in line c7.

We now show that Cw is the only compete operation that can return on line c11. This
means that we have linearized every completed compete operation.

I Lemma 8. If i is accepted by cons[n], then i = w.

Proof. Since i is accepted by cons[n], then, by Lemma 5, it is also accepted by cons[`], for
all i ≤ ` < n. Thus i was accepted by cons[i] and, for any j > i, j was not accepted by
cons[j]. So i = w. J

I Corollary 9. The only compete operation that can return true is operation Cw.

Proof. If compete operation C by process pi returns true, then i is accepted at cons[n] so,
by Lemma 8, i = w. By Observation 3, only the first compete operation of any process can
return true, so C = Cw. J

I Lemma 10. Any linearized compete operation C 6= Cw is linearized after Cw.

Proof. Consider any such operation C. Since C 6= Cw is linearized, C has completed and
so it returns on line c3 or line c8 by Corollary 9. If operation C returns on line c3, it is
linearized when it reads some value other than ⊥ from gate in line c2. Since Cw is linearized
at the earliest write to gate in execution E , Cw is linearized before C. On the other hand, if
operation C returns on line c8, then it performs a write to gate in line c5, which is at or
after the linearization point of Cw. Operation C is linearized later, when it performs its last
proposal to a consensus object in line c7. Thus, Cw is linearized before C. J

It follows that pw is the winner in the linearization of execution E . From Corollary 9, we
know that Cw is the only operation that can return true. We must also argue that it does
not return false:

I Lemma 11. Operation Cw does not return false.

Proof. For compete operation Cw to return false, w must be rejected from cons[j], for
some j > w. Consider any such j. By Observation 4, w was accepted by cons[j − 1] and j
was the only other value proposed to cons[j]. Since w was rejected from cons[j], it follows
that j was accepted by cons[j]. But this contradicts the definition of w. J

Finally, we can show that it is possible to linearize the query operations. As in the
second case, every query operation that returns on line q4 is linearized at the point it reads
⊥ from gate in line q2. This is before the first write to gate, which is when Cw is linearized.
Every query operation that calls f&i on count in line q6 is linearized at the point it executes
line q6, which occurs after it reads a value other than ⊥ from gate in line q2 and, thus, after
the linearization point of Cw. Note that all completed query operations either return on q4
or execute line q6. By the semantic of f&i, the query operations that execute line q6 are
linearized in increasing order of the values they receive from count. In particular, if some
such query operation receives a value greater than r, at least r other query operations
have been linearized before it (and after Cw).

I Corollary 12. Every query operation that receives a value of r or less from count can
only return the id of the winner pw.

A. Qadri 27:9

Proof. Any such query operation can only return in line q13 and it returns the value
accepted by cons[n], which, by Lemma 8, is w. J

Thus, the linearization of execution E is consistent with the sequential specifications of a
Qr object. Since E was chosen arbitrarily, every execution of Algorithm 2 is linearizable. Note
that the implementations of compete and query in Algorithm 2 are wait-free. Therefore,
we have shown the following theorem:

I Theorem 13. For r ≥ 0, Qr has consensus number r + 2 and can be implemented in a
wait-free manner from (r + 2)-consensus objects and registers in a system with any finite
number of processes.

4 Implementing Om,k from (m + 1)-consensus objects

In this section, we present the formal definition of the Om,k object from [1], followed by a
description of a natural, but incorrect, approach for implementing the Om,k object from
(m + 1)-consensus objects and registers for any number of processes. We then give our
wait-free implementation and prove that it is correct.

4.1 Sequential Specifications of Om,k

The Om,k object, for m, k ≥ 2, has a single operation suggest, which takes a non-negative
argument, and has the following specifications, where, for j ∈ {1, . . . , k}, aj is the argument
of the (j − 1)m+ 1st suggest operation:

For j ∈ {1, . . . , k}, the (j − 1)m+ 1st through jmth suggest operations return aj .
For j ∈ {1, . . . , k − 1}, the km+ jth suggest operation returns ak−j .
For j > km+ k − 1, the jth suggest operation returns ⊥.

The first km suggest operations performed on an Om,k object are called prefix operations
and the next k − 1 suggest operations are called suffix operations. A more intuitive way to
visualize the behaviour of suggest is with the string Sm,k = Am

1 A
m
2 . . . Am

k Ak−1Ak−2 . . . A1.
For 1 ≤ j ≤ km+ k − 1, if Ag is the jth character in Sm,k, then the jth suggest operation
returns ag, and we say it belongs to group g. For j > km+ k− 1, the jth suggest operation
returns ⊥.

4.2 An incorrect approach
A simple algorithm, due to Faith Ellen, for implementing Om,2 from (m + 1)-consensus
objects and registers for any number of processes is as follows:

Each time a process pi performs suggest(v), it first accesses a fetch-and-increment object
to receive a distinct value x.
If x > 2m+ 1, then pi returns ⊥.
If 1 ≤ x ≤ m, then pi proposes v to an (m+1)-consensus object C1. It writes the response
to a shared register R1 before returning it.
If m+ 1 ≤ x ≤ 2m, then pi proposes v to an (m+ 1)-consensus object C2. It writes the
response to a shared register R2 before returning it.
If x = 2m+ 1, pi reads R1 and then R2. It returns the first non-⊥ value it reads. If both
R1 and R2 are ⊥, this means that all processes that received values at most 2m+ 1 from
the fetch-and-increment object are concurrent. In this case, pi proposes v to C1, and
returns the response.

OPODIS 2016

27:10 m-Consensus Objects Are Pretty Powerful

This algorithm correctly implements an Om,2 object from (m + 1)-consensus objects
registers. For each of the consensus objects C1 and C2, the suggest operation that first
proposes a value to the consensus object can be linearized before the rest of the suggest
operations that propose to it.

However, this approach does not scale to k > 2. Consider the natural extension of this
algorithm to Om,3:

Once again, each time a process pi performs suggest(v), it first accesses a fetch-and-
increment object to receive a distinct value x.
If x > 3m+ 2, then pi returns ⊥.
If (j − 1)m+ 1 ≤ x ≤ jm for j ∈ {1, 2, 3}, then pi proposes v to an (m+ 1)-consensus
object Cj . It writes the response to a shared register Rj before returning it.
If x ∈ {3m + 1, 3m + 2}, then pi will propose to the consensus object associated with
some group and return the response.

The problem with the above approach arises from the operations that receive 3m+ 1 and
3m+ 2 from the fetch-and-increment object. Firstly, these operations must propose to the
consensus objects associated with different groups. This can be achieved as in [1] by using
test-and-set objects. The more difficult issue is ensuring linearizability:

Consider an execution in which some process pi receives 3m + 1 from the fetch-and-
increment object, reads R1 = R2 = R3 = ⊥, proposes v to some consensus object Cj ,
and returns the decision. Next, the m operations that received (j − 1)m+ 1, . . . , jm from
the fetch-and-increment object complete their operations, writing to Rj and returning the
decision of Cj . Next, another process p` begins its suggest operation with an argument
that is different from the arguments of all preceding suggest operations and receives 3m+ 2
from the fetch-and-increment object. Note that since an entire group (of m+ 1 suggest
operations) has returned before p` began, p` must be performing a suffix operation when
this execution is linearized. In particular, it cannot return the argument of its own suggest
operation.

If the other prefix operations have not made any progress (i.e. they have not taken any
steps since receiving a value from the fetch-and-increment object), then p` cannot determine
any of their arguments, unless it waits for them, which it cannot do. Even if each suggest
operation announces its argument before it accesses the fetch-and-increment object, p` does
not know which prefix operations belong to the same group as pi’s operation and, so, cannot
determine a value to return.

4.3 A wait-free implementation

The following implementation starts by assigning m prefix operations to each of the k groups,
and then assigns the k − 1 suffix operations to the first k − 1 groups. It ensures that suffix
operations can determine and propose the argument of some prefix operation in their group.
To do this, we require a stronger synchronization mechanism than a fetch-and-increment
object: namely, the Q1 object.

To implement the Om,k object in a system with any finite number of processes, n, from
(m+ 1)-consensus objects and registers, we use an array cons[1 . . . k] of (m+ 1)-consensus
objects and an array position[1 . . . km] of Q1 objects. Note that since the Q1 object can be
implemented by 3-consensus objects and registers for any finite number of processes and
m+ 1 ≥ 3, (m+ 1)-consensus objects and registers can also implement the Q1 object for any
finite number of processes.

A. Qadri 27:11

A process pi performing suggest(v) will perform compete on objects position[1] through
position[km] in order, until it wins one of them or loses all km of them.

If pi is the winner of the Q1 object position[j], it is performing a prefix operation. It
will propose v to the consensus object cons[d j

me] associated with its group and return its
response.

If pi fails to win any Q1 object, it is either a suffix operation or it returns ⊥. It accesses
a fetch-and-increment object count that is initially 1. Note that fetch-and-increment objects
have a wait-free implementation for any finite number of processes from 2-consensus objects
and registers and, consequently, since m+ 1 > 2, also from (m+ 1)-consensus objects and
registers. Let x be the response from count that pi receives. If x > k − 1, pi returns ⊥.
Otherwise, it is performing the suffix operation associated with group k − x. It performs
query on position[(k − x)m] to get the identity i′ of some process that performed a prefix
operation associated with group k−x. If each process announces the argument of its suggest
operation at the beginning of the operation, then pi could read the value announced by pi′ ,
propose this value to cons[k − x], the consensus object associated with its group, and return
the response. This ensures that the arguments of prefix operations are the only non-⊥ values
returned.

There is a slight problem with this approach. Process pi′ could have performed an-
other suggest operation afterwards that overwrote the value it announced before winning
position[(k − x)m]. Instead, we use an array Aj [1 . . . n] of n registers associated with each
position[j]. Before performing a compete operation on position[j], each process p` writes
the argument of its current suggest operation to Aj [`], provided it has not previously written
there. Then process pi can read A(k−x)m[i′] to find the argument of a prefix operation in
group k − x.

The code for the implementation is given in Algorithm 3.

4.4 Correctness
We will show that the implementation of an Om,k object given in Algorithm 3 is linearizable.
Consider any execution E of this implementation.

We will say that a suggest operation performs a step σ in the execution if the process
performing the operation executes σ during the operation.

A suggest operation S fills the Q1 object position[j] if it performs the compete
operation on position[j] that returns true. In this case, operation S will be ordered as one
of the m prefix operations belonging to group d j

me.
If a suggest operation S performs the f&i on line s10, receiving x < k, then S will be

ordered as the suffix operation belonging to group k − x.

I Lemma 14. When a suggest operation completes iteration j of the for loop on line s2,
position[j] is filled.

Proof. Let S be a suggest operation by process pi that completes iteration j. If, during
suggest operation S, pi reads Aj [i] = ⊥, then it performs the compete operation on
position[j] in line s5 before iteration j completes. If, on the other hand, pi reads Aj [i] 6= ⊥
on line s3, then there must have been a suggest operation S′ by process pi that completed
before pi began operation S, in which the compete operation on position[j] in line s5 was
executed. In either case, by the time that S completes iteration j, at least one compete
operation has been performed on position[j]. The first of these compete operations must
have returned true, so position[j] is filled. J

OPODIS 2016

27:12 m-Consensus Objects Are Pretty Powerful

Algorithm 3 An implementation of Om,k.

Shared variables:
cons[1 . . . k] is an array of (m+ 1)-consensus objects
Aj [1 . . . n] is an array of registers initialized to ⊥, for j ∈ {1, . . . , km}
position[1 . . . km] is an array of Q1 objects
count is a fetch-and-increment object initialized to 1

s1: function suggest(v) by process pi

s2: for j ← 1 to km do
s3: if Aj [i].read() = ⊥ then
s4: Aj [i].write(v)
s5: if position[j].compete() then
s6: return cons[d j

me].propose(v)
s7: end if
s8: end if
s9: end for
s10: x ← count.f&i()
s11: if x > k − 1 then
s12: return ⊥
s13: end if
s14: group ← k − x
s15: member ← position[group×m].query()
s16: value ← Agroup×m[member]
s17: return cons[group].propose(value)
s18: end function

From Lemma 14, we get the following important corollaries:

I Corollary 15. All suggest operations that perform line s10 can be ordered after all
suggest operations that fill some position.

Proof. A suggest operation S that performs line s10 must first perform all km iterations
of the for loop on line s2. It follows from Lemma 14 that there is no suggest operation that
fills a position and starts after S completes. J

I Corollary 16. For j < j′, a suggest operation that fills position[j] can be ordered before
a suggest operation that fills position[j′].

Proof. Consider a suggest operation S that fills position[j] and a suggest operation S′
that fills position[j′], with j < j′. To fill position[j′], S′ must have first completed iteration
j of the for loop in line s2. Thus, by Lemma 14, position[j] was already filled before S′
completed. By assumption, position[j] was filled by operation S. Hence, S can be linearized
before S′. J

I Observation 17. If the f&i operation performed on line s10 by suggest operation S

returns x, and the f&i operation performed on line s10 by suggest operation S′ returns
x′ > x, then S can be ordered before S′.

We are now able to order the suggest operations in execution E . In particular, by
Corollary 16, the suggest operations that fill position[`], for (j − 1)m+ 1 ≤ ` ≤ jm, can be

A. Qadri 27:13

ordered as the m prefix operations of group j. Moreover, by Corollary 15 and Observation 17,
the suggest operation that receives x < k from the f&i on line s10 can be ordered as the
suffix operation of group k − x and any suggest operation that receives x > k − 1 from the
f&i on line s10 can be ordered after the first km+ k − 1 operations.

All that remains is to order the prefix operations belonging to each group with respect to
each other and show that the results of the operations in this ordering are consistent with
the specifications of Om,k. We first make the following two observations:

I Observation 18. If any suggest operation that belongs to group g returns a value, it
returns the decision of cons[g].

I Observation 19. If the suffix operation belonging to group g proposes to cons[g], it proposes
the value of the suggest operation that fills position[gm].

In execution E , if no suggest operation belonging to group g proposed to cons[g], then,
by Corollary 16, we can order the prefix operations in order of the indices of the Q1 objects
they fill.

Otherwise, one or more values were proposed to cons[g]. By Observation 19, only the
arguments of the prefix operations belonging to group g are proposed to cons[g]. Let v be the
value first proposed to (and, hence, decided by) cons[g] and let j be the smallest index, with
(g − 1)m+ 1 ≤ j ≤ gm, such that the prefix operation S that fills position[j] has argument
v. No prefix operation in group g that fills position[j′], for j′ < j, finished before S began,
since v is the value first proposed to cons[g]. It follows that we can order every other prefix
operation belonging to group g after S, in order of the indices of the Q1 objects they fill.

By Observations 18 and 19, the results of the suggest operations in this ordering are
consistent with the sequential specifications of the Om,k object. Note that the implementation
of suggest in Algorithm 3 is wait-free. Thus, we have shown the following theorem:

I Theorem 20. There is a wait-free implementation of the Om,k object from (m+1)-consensus
objects and registers for any m ≥ 2 and any k ≥ 2.

5 Conclusions

In this paper, we introduced the Qr object for r ≥ 0, showed that it has consensus number
r + 2, and presented a wait-free implementation of Qr from (r + 2)-consensus objects and
registers in a system with any finite number of processes. Using this object, we showed
that, for any m, k ≥ 2, there is a wait-free implementation of Om,k from (m+ 1)-consensus
objects and registers in a system with any finite number of processes. This means that
there is an infinite sequence Om,2, Om,3, . . . of objects with increasing computational power,
all of which have consensus number m and are computationally less powerful than the
(m+ 1)-consensus object. From Rachman’s result, we know that for every m′ > m ≥ 1, there
exists a nondeterministic object X with consensus number m which cannot be implemented
using m′-consensus objects and registers in some system with a finite number of processes.
If the same property is true when restricted to deterministic objects, our implementation of
Om,k from (m+ 1)-consensus objects and registers shows that Om,k objects cannot be used
to prove this.

The Om,k objects, for k ≥ 2, are the only known deterministic objects of consensus
number m that cannot be implemented in a wait-free manner by m-consensus objects and
registers for some finite number of processes. It may be the case that any deterministic
object with consensus number m has a wait-free implementation from (m + 1)-consensus

OPODIS 2016

27:14 m-Consensus Objects Are Pretty Powerful

objects in a system with any finite number of processes. One approach to proving this is
to show that, for every object O with consensus number m, there exists k ≥ 2 such that
O is computationally less powerful than Om,k. Another interesting question is whether
there exists some deterministic object with consensus number m that can implement any
other deterministic object with consensus number m in a system with any finite number of
processes.

Acknowledgements. I would like to thank my supervisor, Faith Ellen, for her constant
encouragement and invaluable guidance and my anonymous reviewers for their very helpful
feedback. The implementation of (r + 2)-consensus from Qr objects and registers given in
Algorithm 1 is due to Leqi Zhu, who simplified my original implementation.

References
1 Yehuda Afek, Faith Ellen, and Eli Gafni. Deterministic objects: Life beyond consensus. In

Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing (PODC),
pages 97–106, 2016.

2 Yehuda Afek, Eli Gafni, and Adam Morrison. Common2 extended to stacks and unbounded
concurrency. In Proceedings of the Twenty-fifth Annual ACM Symposium on Principles of
Distributed Computing, pages 218–227, 2006.

3 Yehuda Afek, Eli Gafni, John Tromp, and Paul M.B. Vitányi. Wait-free test-and-set (exten-
ded abstract). In Proceedings of the 6th International Workshop on Distributed Algorithms
(WDAG), pages 85–94, 1992.

4 Yehuda Afek, Eytan Weisberger, and Hanan Weisman. A completeness theorem for a class
of synchronization objects. In Proceedings of the Twelfth Annual ACM Symposium on
Principles of Distributed Computing (PODC), pages 159–170, 1993.

5 Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–
149, 1991.

6 Ophir Rachman. Anomalies in the wait-free hierarchy. In Proceedings of the 8th Interna-
tional Workshop on Distributed Algorithms (WDAG), pages 156–163, 1994.

	Introduction
	Model
	The Q-r object
	An implementation from (r+2)-consensus objects

	Implementing Om,k from (m+1)-consensus objects
	Sequential Specifications of Om,k
	An incorrect approach
	A wait-free implementation
	Correctness

	Conclusions

