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Abstract
We present two wait-free algorithms for simulating an `-bit single-writer register from k-bit
single-writer registers, for any k ≥ 1. Our first algorithm has Θ(`/k) step complexity for both
Read and Write and uses Θ(4`−k) registers. An interesting feature of the algorithm is that
Read operations do not write to shared variables. Our second algorithm has Θ(`/k+ (logn)/k)
step complexity for both Read and Write, where n is the number of readers, but uses only
Θ(n`/k+n(logn)/k) registers. Combining both algorithms gives an implementation with Θ(`/k)
step complexity using Θ(n`/k) space for any 1 ≤ k < `.

We also prove that any implementation with O(`/k) step complexity for Read requires Ω(`/k)
step complexity for Write. Since reading `-bits requires at least d`/ke reads of k-bit registers,
our lower bound shows that our implementation is step optimal.

1998 ACM Subject Classification E.1 Distributed Data Structures, F.1.2 Parallelism and Con-
currency

Keywords and phrases atomic register, regular register, wait-free implementation, single writer,
optimal

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2016.32

1 Introduction

A register is a fundamental object that supports Read and Write operations. Implementing
large `-bit registers from small k-bit registers in a wait-free manner is a classic problem in
distributed computing. We consider this problem for atomic single-writer registers shared by
n readers. This problem arises naturally in practice when `-bits need to be written atomically
on a system that provides only k-bit single-writer registers.

We define the space complexity of an implementation of `-bit registers from shared k-bit
registers to be the number of k-bit registers that it uses, and we define the step complexity to
be the number of read and write operations on these k-bit registers. Note that d`/ke read
steps are required for an `-bit Read operation. Also, any implementation requires d`/ke
space, since 2` different values need to be represented.

In 1983, Peterson [9] presented an implementation with Θ(`/k) step complexity for both
Read and Write. Peterson’s implementation has space complexity Θ(n`/k) and works for
all k ≥ 1.

Later, Larsson et al. [8] improved the step complexity of Write to Θ(n+ `/k), but they
used Swap and FetchAndOr as primitives.
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32:2 Step Optimal Implementations of Large Single-Writer Registers

Algorithm Read Write Space Restriction
Peterson (1983) Θ(`/k) Θ(n`/k) Θ(n`/k) None
Chaudhuri, Kosa, Welch (2000) Θ(4`) 1 Θ(4`) None
Aghazadeh, Golab, Woelfel (2014) Θ(`/k) Θ(`/k) Θ(n`/k) k ∈ Ω(log n)
This Paper Θ(`/k) Θ(`/k) O(n`/k) None

Figure 1 Step complexities for implementations of an atomic `-bit single-writer register from
atomic k-bit single writer registers.

In 1991, Vidyasankar [10] showed that an atomic `-bit register can be implemented from
two regular `-bit registers and one atomic binary register. His Write algorithm performs 2
regular writes and 2 atomic writes, and his Read operation performs 2 regular reads and 1
atomic read in the worst case.

Later, Chaudhuri and Welch [4] presented an implementation of regular `-bit registers
from regular binary registers with step complexity Θ(`) for both Read and Write, using
Θ(2`) space.

In 2000, Chaudhuri, Kosa and Welch [3] presented an atomic `-bit register implementation
from atomic binary registers in which each Write operation performs a single step. However,
the step complexity of their Read operation and their space complexity are both Θ(4`).

Recently, Aghazadeh, Golab and Woelfel [1] implemented an `-bit multi-writer register
from k-bit multi-writer registers with step complexity Θ(`/k) for both Read and Write.
Their implementation uses Θ(n2`/k) registers and requires that k ∈ Ω(logn).

The table in Figure 1 summarises the existing implementations. Peterson’s, Chaudhuri
and Welch’s, and Aghazadeh, Golab and Woelfel’s implementations are described in more
detail in Section 3. Also in Section 3, we show how to modify Aghazadeh, Golab and Woelfel’s
implementations to obtain an implementation of an `-bit single-writer register from k-bit
single-writer registers with Θ(`/k) step complexity and Θ(n`/k) space complexity, provided
that k ∈ Ω(logn).

In this paper, we present an implementation of an atomic `-bit single-writer register from
atomic k-bit single-writer registers with Θ(`/k) step complexity that works for all k ≥ 1.
Our implementation uses O(n`/k) registers, which is the same as Peterson’s implementation
and the single-writer variant of Aghazadeh et al.’s implementation.

We show that our implementation is optimal by proving that any implementation with
O(`/k) step complexity for Read requires Ω(`/k) step complexity for Write.

Our register implementation is the composition of a tree based implementation and a
buffer based implementation. Our tree based implementation has Θ(`/k) step complexity and
uses Θ(4`−k) registers. An interesting feature is that readers never write to shared registers.
This means that helping techniques, such as announcing operations and handshaking, are
not used. This implementation can be modified to implement a modulo m counter from k-bit
single-writer registers that supports a single incrementer and any number of readers. Our
counter uses Θ(m/2k) registers and has Θ((logm)/k) step complexity for ReadCounter
and Increment.

Our buffer based implementation uses this counter as well as known techniques, such
as announcement arrays, round-robin helping, and handshake objects, to obtain an imple-
mentation with step complexities Θ(`/k + (logn)/k), while using only Θ(n`/k + n(logn)/k)
registers.

When ` ≤ d(log2 n)/2e, our tree based implementation has optimal step complexity and
uses O(n/4k) registers. When ` > d(log2 n)/2e, our buffer based register implementation has
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optimal step complexity and uses Θ(n`/k) registers. Combining these two algorithms gives a
step optimal implementation using O(n`/k) registers for any 1 ≤ k < `.

2 Preliminaries

A single-writer register R is a shared register where only one process can perform Write
operations and any number of processes can perform Read operations. We say that a process
owns R if it can write to R.

A single-incrementer modulo m counter is a shared modulo m counter where only one
process can perform Increment operations and any number of processes can perform
ReadCounter operations. We say that a process owns the counter if it can increment the
counter. The counter can take on values from 0 to m− 1.

We will work in the standard asynchronous shared memory model with n readers p0, p1,
. . . , pn−1 and one writer, which communicate through k-bit registers. Processes may fail by
crashing under our model.

In our model, an execution is an alternating sequence of configurations and steps C0, e1,
C1, e2, C2, . . . , where C0 is an initial configuration. Each step is either a read or write of
a k-bit register. Configuration Ci consists of the state of every register and every process
after the step ei is applied to configuration Ci−1. For any two configurations C and C ′, we
use C → C ′ to denote that C precedes C ′ in the execution.

If C → C ′, the execution interval [C,C ′] is the set of all configurations and steps between
C and C ′, inclusive. Similarly, the execution interval of an operation is the set of all
configurations and steps from the first step of that operation to the configuration immediately
after the last step of that operation. The execution interval for an incomplete operation is
the set of all configurations and steps starting from the first step of that operation. Two
execution intervals intersect if they have a common configuration or step.

We say an object is atomic (or equivalently, its implementation is linearizable [5]) if, for
every possible execution and for each operation on that object in the execution, we can pick
a configuration in its execution interval to be its linearization point, such that the operation
appears to occur instantaneously at this point. In other words, all operations on the object
must behave as if they were performed sequentially, ordered by their linearization points.

We say a register is regular if the value returned by each Read is either the value written
by the last Write operation completed before the first step of the Read or the value written
by a Write operation concurrent with the Read operation. Note that every atomic register
is also regular.

To emphasize the important distinction between atomic and regular registers, consider
the scenario where a Write operation is concurrent with two Read operations by the same
process. Suppose the Write operation changed the register from value a to value b. If the
register is regular, then each read operation is allowed to return either a or b. However, if the
register is atomic, then the second read operation must return b if the first Read operation
returns b.

All implementations that we discuss will be wait-free. This means that each operation
by any process pi is guaranteed to complete within a finite number of steps by pi. The step
complexity of an operation O is the maximum number of steps, over all possible executions,
that the process which invoked O performs in the execution interval of O. The space
complexity of an implementation is defined to be the number of shared registers that it uses.
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3 Related Work

In this section, we will briefly review a few existing implementations. Our implementation
will build upon these implementations.

Both Peterson’s and Aghazadeh et al.’s implementations represent an `-bit value using an
array of d`/ke registers, each containing k-bits. This construction is called a buffer.

In Peterson’s implementation, there are two global buffers, G[0] and G[1]. Each reader
also has its own message buffer. Write operations alternate between writing their values
to G[0] and G[1]. The writer flips a binary register V to indicate the currently active
buffer. After flipping V , the writer then checks for help requests from each reader and writes
the current value into the message buffers of the readers that requested help. Finally, the
writer acknowledges those help requests. At a high-level, a Read operation performs the
following steps: request help from the writer, read G[V ], and check for an acknowledgement.
If no acknowledgement was received, then the value that it read from G[V ] has not been
overwritten, so it returns what it read. Otherwise it uses the value that the writer put in its
message buffer. Essentially, the idea is that if the reader is fast, it can return what it read
from G, and if the reader is slow, it will be helped by the writer. Peterson’s implementation
has step complexities Θ(`/k) and Θ(n`/k) for Read and Write respectively, and space
complexity O(n`/k).

Aghazadeh et al.’s implementation is more complex and requires a novel garbage collection
scheme, which they introduced. They implemented a large multi-writer register from small
multi-writer registers. Their implementation achieves Θ(`/k) step complexity for Write by
having each writer help readers in a round-robin fashion. Thus, only one reader is helped
during each Write. Since helping is less frequent in their algorithm, they use an array G of
n(8n+ 1) buffers, instead of 2 buffers, to ensure that a reader is helped before the value it
wants to read is overwritten. This means that they require Θ(logn) size registers to store
pointers to elements in G, which leads to the requirement that k ∈ Ω(logn).

Their implementation can be converted into an implementation of an `-bit single-writer
register from k-bit single-writer registers. When there is only one writer, each multi-writer
register in their implementation is shared by only two processes. Israeli and Shaham [6]
presented an implementation of a multi-writer register shared by p processes from single-
writer registers of the same size with Θ(p) step complexity for Read and Write. We
can use this implementation to simulate the multi-writer registers in Aghazadeh et al.’s
implementation from single-writer registers in constant time and constant space. This results
in an implementation of an `-bit single writer register from k-bit single writer registers which
works for k ∈ Ω(logn) and has Θ(`/k) step complexity. In this case, G only needs to contain
Θ(n) buffers, so the space complexity is reduced to Θ(n`/k).

Now we turn our attention to Chaudhuri and Welch’s regular register implementation.
They use a complete binary tree where each leaf represents a different register value and
each internal node stores a switch, a shared binary regular register that selects between its
two children. Their regular register read operation traverses down the tree, following the
switches, until it reaches a leaf and returns the value of that leaf. Their regular register
write operation starts at the leaf with the value it wishes to write and traverses up the tree,
changing each switch on its path to point towards that leaf.

Using Chaudhuri and Welch’s implementation for the regular `-bit registers in Vidyas-
ankar’s algorithm gives an implementation of an atomic `-bit register from Θ(2`) regular
binary registers and one atomic binary register with Θ(`) step complexity. We call this
the CWV implementation. The CWV implementation can be used in place of our tree
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Figure 2 Atomic 4-valued register.

based implementation in our final optimal implementation. However, our implementation
of a counter, which is based on our tree based implementation, is faster than the CWV
implementation by a factor of 2. This counter will be used in our buffer based implementation.

4 Tree Based Implementation

We begin by showing how Chaudhuri and Welch’s regular register implementation can be
extended to an atomic register implementation. Then we show how both these implementa-
tions can be generalized to work for k > 1. In this section, it is more natural to talk about
m-valued registers, where m = 2`, rather than `-bit registers.

4.1 Implementing an m-valued atomic register

Consider Chaudhuri and Welch’s regular register implementation where each binary switch
is atomic rather than regular. Notice that the Write operation in this implementation is
atomic in the case where only one switch is changed on the path from the leaf to the root.
This observation is the key behind our atomic register implementation. To construct an
atomic register, we use a larger tree such that, for every pair of values, there are two leaves
with these values that have a common parent. This allows us to change from the current
value to any new value by changing only one switch.

(
m
2
)
height 1 nodes are needed to

guarantee this property, but we use m2 height 1 nodes to simplify the implementation.
More formally, we construct a complete, perfectly balanced binary tree with m2 height 1

nodes, w0, w1, ..., wm2−1. Each internal node stores a shared binary register called a switch
which selects between its two children. All the binary registers can be regular except for
those in the height 1 nodes, which must be atomic. Figure 2 illustrates an atomic 4-valued
register.

The node wi has a left child with value α = bi/mc and a right child with value β =
(i mod m). So each pair of values (α, β) has a common parent wα∗m+β .

Algorithm 1 presents the pseudo-code for Chaudhuri and Welch’s implementation, which
we will use as a subroutine. A RegularWrite(i) operation changes the switches in the
tree to point towards the leaf with index i. The fields of each node are immutable except
for switch. The variable root and the contents of the array leaves are also immutable, and
node is a local variable. Immutable variables and fields can be stored in the local memory of
each process, instead of being stored in shared memory.

Our atomic Read algorithm starts at the root and returns the value of the leaf that it
arrives at by following switches, just like RegularRead.

Our atomic Write(val) operation first computes the height 1 node, parent, whose left
child has the current value and whose right child has the value being written. Then it
performs RegularWrite with the index of its left child. Next, it changes parent’s switch
to point to its right child. This step is exactly the same as performing a RegularWrite
with the index of its right child, because all other switches on the path to the root remain
the same. The Write operation is linearized immediately after this step.
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Algorithm 1 Chaudhuri and Welch’s implementation of a regular m-valued register.
0: procedure RegularRead()
1: node← root

2: while node is not a leaf do
3: s← read(node.switch)
4: if s = 0
5: then node← node.left
6: else node← node.right

7: return node.value

0: procedure RegularWrite(index)
1: node← leaves[index]
2: while node is not the root do
3: if node is a left child
4: then write(node.parent.switch, 0)
5: else write(node.parent.switch, 1)
6: node← node.parent

Algorithm 2 Implementation of an atomic m-valued register.
0: procedure Read()
1: return RegularRead()

0: procedure Write(val)
1: parent← parent(oldval, val)
2: RegularWrite(parent.left.index)
3: write(parent.switch, 1)
4: oldval← val

Pseudo-code for our atomic register implementation is presented in Algorithm 2. In the
pseudo-code, oldval is a persistent local variable that is initialized to the initial value of
the register. The function parent(oldval, val) is performed locally and returns the height 1
node whose left child has value oldval and whose right child has value val. Both Read and
Write operations take Θ(logm) steps. This immediately implies that they are wait-free.

Fix an execution of Read and Write operations. The variables are initialized so that it
appears as if a complete Write of 0 has occurred before any Read operation. Let R be a
Read operation in this execution which returns α. If there is a Write of α linearized in
the execution interval of R, then linearize R immediately after the linearization point of the
first such Write operation. In this case, R returns the value of the last Write operation
linearized before it.

Now suppose there is no Write of α linearized in the execution interval of R. In this
case, we can linearize R immediately after its first step. We need to show that the last
Write operation W linearized before the first step of R is a Write of α.

Since W is linearized immediately after its last step, W completes before R begins. If
the writer does not start another Write until after R completes, then R is concurrent with
no RegularWrite operations and, hence, returns the value written by W . So, suppose
the writer starts another Write before R completes. Let W ′ be the first Write operation
following W .

Suppose, for contradiction, that W returns β 6= α. Since W ′ is linearized at line 3, line 3
of W ′ occurs after the first step of R by definition of W . Notice that a Write operation can
be viewed as two RegularWrite operations. This is because the atomic write performed
on line 3 is equivalent to RegularWrite(parent.right.index), since the writer performed
RegularWrite(parent.left.index) immediately beforehand.

Therefore the last complete RegularWrite operation before the start of R is either
the second RegularWrite of W or the first RegularWrite of W ′. From the code, we
can see that both operations write the value β.

R consists of a single RegularRead, so by the correctness of Algorithm 1, there exists
a RegularWrite of value α concurrent with R. The first such RegularWrite operation
must be the second RegularWrite of some Write operation W ′′. This is because
the first RegularWrite of each Write operation writes the same value as the second
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Figure 3 Atomic 8-valued counter.

RegularWrite of the previous Write operation. Since the second RegularWrite of
W ′′ is atomic and W ′′ is linearized at the following configuration, W ′′ is linearized in the
execution interval of R which contradicts our assumption. Therefore W must have written α.

I Theorem 1. Algorithm 2 implements an atomic m-valued register.

4.2 Implementing a Modulo m Counter
It is easy to modify our atomic m-valued register implementation to implement an atomic
modulo m counter. Since the value can only be incremented, we only need one height 1
node for each (α, (α+ 1) mod m) pair. Hence the space complexity can be reduced to Θ(m).
ReadCounter performs the same steps as the atomic register Read, and Increment is
the same as Write. Figure 3 illustrates an atomic 8-valued counter.

4.3 Extension to k-bit registers
To extend Chaudhuri and Welch’s implementation and our atomic counter implementation
to use k-bit registers, for k > 1, we replace the binary tree in each implementation with a
2k-ary tree, and keep the same set of leaves. This simple modification reduces the height of
the tree to Θ(log2k (m)), so that all operations have step complexity Θ((logm)/k). We use
one k-bit register for each internal node so the space complexity is equal to the number of
internal nodes. Since there are Θ(m/2k) height 1 nodes, there are Θ(m/2k) internal nodes
and the space complexity is also Θ(m/2k).

For our atomic register implementation, we partition the values into sets of size 2k−1, and
have one height 1 node for each pair of these sets. This construction ensures every pair of
values are siblings in the tree. Thus, we only need (m/2k−1)2 height 1 nodes. Therefore, the
step complexity becomes Θ((logm)/k) and the space complexity becomes Θ(m2/4k). An
m-valued register is the same as an `-bit register when m = 2`, so the step complexity is
Θ(`/k) and the space complexity is Θ(4`−k). If ` ≤ d(log2 n)/2e, we have m ≤ 2

√
n, which

means the implementation has space complexity O(n/4k).

5 Buffer Based Implementation

We begin by describing the handshake object, a primitive that we use in our implementation.
In Section 5.2, we describe our buffer based implementation and analyse its step and space
complexities. Then, in Section 5.3, we introduce notation that is used in its correctness proof.
Some important handshaking properties are proven in Section 5.4. The proof of correctness
appears in Section 5.5.

5.1 Handshaking
A handshake objectH is used to coordinate between pairs of processes and can be implemented
using a pair of 1-bit single-writer registers H.r and H.w. We will use a handshake object Hi
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in the buffer based implementation to coordinate between the reader pi and the writer. The
idea of handshaking first appeared in papers by Peterson [9] and Lamport [7]. The version
we will use is from Attiya and Welch [2].

We say that reader pi requests help when it sets Hi.r equal to the value it read from
Hi.w. The writer acknowledges a help request from pi when it sets the value of Hi.w to be
the opposite of what it read from Hi.r. The reader pi checks for an acknowledgement by
checking if these two handshake bits are different and the writer checks for a help request
from pi by checking if these two handshake bits are the same.

Intuitively, the handshake object guarantees that a check for an acknowledgement by pi
returns true if and only if the writer has acknowledged a help request from pi since pi’s last
help request. Similarly, a check for a help request from pi by the writer returns true if and
only if there has been a help request by pi since the writer’s last acknowledgement to pi.

5.2 Description
As in Peterson’s implementation, our buffer-based implementation uses an array of buffers G
and a pointer V to the currently active buffer in G. However, G contains 4n buffers, instead
of 2, and V is implemented using a single-incrementer modulo 4n counter, as described in
Section 4.2. Like Aghazadeh, Golab and Woelfel’s implementation, our implementation uses
round-robin helping, except that it uses handshaking and completion bits to coordinate the
helping.

In round-robing helping, each Write operation only helps a single reader. If the
current Write operation helps process pi, then the next Write operation will help process
p(i+1) mod n. This ensures that each reader pi is helped once every n Write operations.

A reader begins by reading the counter V and announcing that value. This value is
the index of the element in G that it tries to read. A Write operation that sees the
announcement helps the reader by sending it the requested element of G, as well as the value
that it just wrote. Reader pi announces the value it read from V using an array Ai of size
d(logn)/ke. It is the only process that writes to this array and only the writer reads from this
array. The writer uses buffers Mi and Ni to send the value that was requested and the value
it just wrote, respectively, to pi. Only the writer can write to these two buffers, and only
the reader pi can read from these two buffers. The arrays Ai, Mi and Ni are accompanied
by a completion bit which is set and cleared only by the process that writes to the array.
The completion bit is set after a complete write to the array and while the completion bit is
set, the array will not be written to. The completion bit of Ai is reset at the beginning of a
Readi operation, and the completion bits of Mi and Ni are reset when the writer notices a
new help request from pi.

A Write(v) operation first computes the reader pi that it should help and checks for a
help request from that reader. If there is no help request from pi, the writer writes v into
buffer G[(V + 1) mod 4n] and increments V to point to this buffer. If there is a help request,
the writer clears the completion bits of Ni and Mi, and acknowledges the help request. Next
it writes v into buffers G[(V + 1) mod 4n] and Ni, increments V , and sets the completion
bit of Ni. In either case, if the completion bit of Mi is not set and the completion bit of Ai is
set, the writer copies the contents of buffer G[Ai] into Mi and sets the completion bit of Mi.

A Read operation by reader pi first clears the completion bit of its announcement array
Ai and requests help. Then it announces the current value of V and sets the completion
bit of Ai. If the writer has sent an acknowledgement and the completion bit of Ni is set,
the reader returns the value in Ni. Otherwise, the reader reads buffer G[Ai] and performs
another check; if the writer still has not sent an acknowledgement or if the completion bit of
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Algorithm 3 Buffer based implementation of an `-bit register from k-bit registers.

G[0 . . . 4n− 1]: array of buffers
V : modulo 4n counter
For each i = 0, . . . , n− 1:

Ni: buffer
Mi: buffer
FNi

, FMi
: completion bits

Hi.w: writer’s handshaking bit

Ai: array of d(log 4n)/ke register
FAi : completion bit
Hi.r: reader’s handshaking bit

0: procedure Readi()
1: write(FAi

, 0)
2: t← read(Hi.w)
3: write(Hi.r, t)
4: version← ReadCounter(V )
5: writearray(Ai, version)
6: write(FAi

, 1)
7: h← Hi.r 6= read(Hi.w)
8: if h ∧ read(FNi

) then
9: val← readarray(Ni)

10: else
11: val← readarray(G[version])
12: h← Hi.r 6= read(Hi.w)
13: if h ∧ read(FMi

) then
14: val← readarray(Mi)
15: return val

0: procedure Write(value)
1: version←

(ReadCounter(V ) + 1) mod 4n
2: i← version mod n
3: if read(Hi.r) = Hi.w then
4: write(FNi , 0)
5: write(FMi

, 0)
6: t← read(Hi.r)
7: write(Hi.w, 1− t)
8: writearray(G[version], value)
9: Increment(V )

10: if ¬FNi
then

11: writearray(Ni, value)
12: write(FNi , 1)
13: if ¬FMi

∧ read(FAi
) then

14: rversion← readarray(Ai)
15: writearray(Mi, G[rversion])
16: write(FMi

, 1)

Mi is not set, the reader returns the value it read from G[Ai]. Otherwise, the writer has sent
an acknowledgement and Mi contains the value that was requested, G[Ai], so the reader
reads and returns the value in Mi.

Pseudo-code for our implementation is presented in Algorithm 3. For two arrays of
registers, v1 and v2, we use writearray(v1, v2) to denote copying the value of v2 into v1
one register at a time. readarray(v1) denotes reading from v1 one register at a time and
returning the concatenation of the values that were read. These operations are not atomic
operations. We will use the convention that 0 represents FALSE and 1 represents TRUE.

The step complexities of Read and Write are Θ(`/k + (logn)/k) because reading and
incrementing V takes Θ((logn)/k) steps, copying a buffer takes Θ(`/k) steps, and copying
an announcement array takes Θ((logn)/k) steps. Since both operations have bounded step
complexity, the implementation is wait-free.

A total of 6n buffers, a size n announcement array, 5n bits, and a modulo 4n counter are
used, so the overall space complexity is Θ(n`/k + n(logn)/k).

5.3 Notation
Here we define the notation that we will use throughout the proof.

If O is an operation, C(O, c) refers to the configuration immediately after O completes
line c of the code for that operation. If line c of O is a function call, then C(O, c) is the
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configuration immediately after the linearization point of the function call. If line c of O
is a writearray operation then C(O, c) indicates the configuration immediately after the
completion of the entire operation.

Readi is a Read operation performed by process pi. Writei is a Write operation that
helps reader pi. This means i = (version mod n) on line 2 of a Writei operation.

5.4 Properties of Handshaking Bits

The following two properties about the handshaking bits, Hi.r and Hi.w, follow immediately
from properties proved by Attiya and Welch [2].
P1. Let C be a configuration such that Hi.r 6= Hi.w and let R be the last Readi operation

such that C(R, 3)→ C. Then there exists a Writei operation W such that C(R, 2)→
C(W, 7)→ C.

P2. Let C be a configuration such that Hi.r = Hi.w and let R be the last Readi operation
such that C(R, 3) → C. Then there does not exist a Writei operation W such that
C(R, 3)→ C(W, 6)→ C(W, 7)→ C.

In addition, the handshaking bits satisfy the following two properties.
P3. If Hi.r 6= Hi.w at C and Hi.r = Hi.w at a later configuration C ′, then there exists a

Readi operation R such that C → C(R, 3)→ C ′.
P4 If Hi.r = Hi.w at C and Hi.r 6= Hi.w at a later configuration C ′, then there exists a

Writei operation W such that C → C(W, 7)→ C ′.

Both properties have analogous proofs so we will only present the proof of P3.

Proof. Suppose, for contradiction, that P3 is violated in some execution. Let C be the
first configuration at which Hi.r 6= Hi.w and there exists a later configuration C ′ at which
Hi.r = Hi.w, but there is no Readi operation R such that C → C(R, 3) → C ′. Consider
the earliest such configuration C ′. Hi.r is not written to between C and C ′ because Hi.r

is only written to by line 3 of a Readi operation. Suppose, without loss of generality, that
Hi.r = 0 and Hi.w = 1 at C. Then Hi.r = Hi.w = 0 at C ′ and there exists a Writei
operation W that changes Hi.w from 1 to 0 between C and C ′ by performing line 7. This
means Hi.r = 1 at C(W, 6), so C(W, 6)→ C. There must have been a Readi operation R
that changed Hi.r from 1 to 0 by performing line 3 between C(W, 6) and C. Thus, Hi.w = 0
at C(R, 2). Since C → C(W, 7) and Hi.w = 1 between C(W, 6) and C(W, 7), it follows
that C(R, 2) → C(W, 6). At C(R, 2), Hi.r = 1 and Hi.w = 0. At C(W, 6), Hi.r = 1 and
Hi.w = 1. Since C(R, 2)→ C(W, 6)→ C(R, 3), there does not exist a Readi operation R′
such that C(R, 2) → C(R′, 3) → C(W, 6). This contradicts the definition of C. Therefore
P3 holds. J

5.5 Proof of Correctness

Consider an arbitrary execution of Read and Write operations. Each Write operation
W is linearized at C(W, 9), which is immediately after it increments V .

Let R be a Readi operation by process pi. If the check on line 8 of R returns FALSE,
then R is linearized at C(R, 4). We will prove that the value R returns is equal to the value
of G[V ] at line 4 of R. If the check on line 8 of R returns TRUE, then R is linearized at
C(W, 12), where W is the last Writei operation such that C(R, 2)→ C(W, 7)→ C(R, 7).
In this case, we will prove that R returns the value written by W .
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All local variables, in particular version, are initialized to 0. All global variables are also
initialized to 0. This initial configuration can be viewed as the result of a complete Write(0)
operation. Thus every Read operation is preceded by a complete Write operation.

Intuitively, the following lemma says that, if the test on line 8 of a Readi operation R
returns TRUE, then a Writei operation has acknowledged the help request from R. This
lemma also shows that the linearization point of R exists and is within its execution interval.

I Lemma 2. Let R be a Readi operation by process pi. If Hi.r 6= Hi.w at C(R, 7) and
FNi

= 1 at C(R, 8), then there exists a Writei operation W such that C(R, 2)→ C(W, 7)→
C(R, 7). Furthermore, C(W, 12)→ C(R, 8) for any such W .

Proof. Suppose that Hi.r 6= Hi.w at C(R, 7) and FNi
= 1 at C(R, 8). By P1, there exists a

write operation W such that C(R, 2)→ C(W, 7)→ C(R, 7). Let W be any such operation.
Since line 4 of W sets FNi

to 0 and FNi
= 1 when pi performs line 8 of R, FNi

must have
changed from 0 to 1 between C(W, 4) and C(R, 8). Therefore C(W, 12)→ C(R, 8). J

Similarly, the following lemma says that if the test on line 13 of a Readi operation R
returns TRUE, then a Writei operation has acknowledged the help request from R. Its
proof can be obtained from the proof of the previous lemma by replacing C(R, 7) and C(R, 8)
with C(R, 12) and C(R, 13).

I Lemma 3. Let R be a Readi operation by process pi. If Hi.r 6= Hi.w at C(R, 12)
and FNi = 1 at C(R, 13), then there exists a Writei operation W such that C(R, 2) →
C(W, 7)→ C(R, 12).

Informally, the following lemma states that Ni will not change between any configuration
where Hi.r 6= Hi.w and FNi

= 1, and the next execution of line 3 of a Readi operation.
This means that the reader can read safely from Ni on line 9.

I Lemma 4. Let C be a configuration where Hi.r 6= Hi.w and FNi = 1. Let R be the first
Readi operation such that C → C(R, 3). Then Ni is not written to between C and C(R, 3).

Proof. Suppose Ni was written to between C and C(R, 3). Then there must be a Writei
operation W such that some step of line 11 of W is executed between C and C(R, 3). From
the code, FNi

= 0 from C(W, 10) until W performs line 12. Since FNi
= 1 at C, it follows

that C → C(W, 10) and FNi changed from 1 to 0 between C and C(W, 10). So line 4 of some
write operation W ′ was performed in this interval. It follows from the code that Hi.r = Hi.w

at C(W ′, 3).
Suppose C occurred between C(W ′, 3) and C(W ′, 4). By P4, line 7 of some Write

operation must have occurred between C(W ′, 3) and C, which is impossible since there is
only one writer. Therefore C occurred before C(W ′, 3).

In this case, Hi.r and Hi.w changed from being unequal to being equal between C and
C(W ′, 3). By P3, line 3 of some Readi operation was performed between C and C(W ′, 3),
which means it was performed between C and C(R, 3). This contradicts the choice of R.
Therefore Ni cannot be written to between C and C(R, 3). J

The following lemma is an analogous statement for Mi. It guarantees that the reader
can read safely from Mi on line 14. Its proof can be obtained from the proof of Lemma 4 by
changing each occurrence of Ni to Mi and changing line numbers appropriately.

I Lemma 5. Let C be a configuration where Hi.r 6= Hi.w and FMi = 1. Let R be the first
Readi operation such that C → C(R, 3). Then Mi is not written to between C and C(R, 3).
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For the remainder of this section, R will represent an arbitrary Readi operation. We
will show that R returns the input to the last Write operation linearized before R. Let v
denote the value of V that process pi reads on line 4 of R, and let g be the `-bit value in
G[v] at configuration C(R, 4). It follows from the next lemma that R must return g when R
is linearized at C(R, 4).

I Lemma 6. g is the input to the last Write operation linearized before C(R, 4).

Proof. Let W be the last Write operation to be linearized before C(R, 4). Suppose that
g was not the input to W . Since W writes to G[v] before it is linearized, another Write
operation must have written to G[v] between the linearization point of W and C(R, 4). After
W is linearized, V must be incremented 4n− 1 times before version is reassigned value v on
line 1 and G[v] is written to on line 8. Thus, at least 4n − 1 other Write operations are
linearized after W and before C(R, 4). This contradicts the choice of W . J

Lemma 7 is used to show that a complete Writei operation between C(R, 4) and C(R, 7)
will cause the check on line 8 of R to return TRUE. It is also used to prove Lemma 8.

I Lemma 7. If there is at least one complete Writei operation W between C(R, 4) and the
end of R, then Hi.r 6= Hi.w and FNi = 1 from the end of W to the end of R.

Proof. By lines 3–7 and 10–12 of the code for Writei, it follows that Hi.r 6= Hi.w and
FNi

= 1 at the end of W . No Readi operation performs line 3 between C(R, 4) and the end
of R, so, by the contrapositive of P3, Hi.r 6= Hi.w from the end of W until the end of R.
This also implies that line 4 of the code for Writei is not performed from the end of W
until the end of R, so FNi remains equal to 1 until the end of R. J

Suppose there are two complete Writei operations between C(R, 4) and the end of
R. Lemma 8 implies that no write to Mi occurs between the end of the second Writei
operation and the end of R. This will later be used to show that R reads g from Mi if it
executes line 14.

I Lemma 8. If the test on line 8 of R evaluates to FALSE and there are at least two
complete Writei operations between C(R, 4) and the end of R, then FMi = 1 from the end
of the second Writei operation to the end of R.

Proof. Let W and W ′ be the first and second Writei operations between C(R, 4) and the
end of R. Suppose, for contradiction, that W finishes before C(R, 7). Then, by Lemma 7,
Hi.r 6= Hi.w at C(R, 7) and FNi = 1 at C(R, 8), so the test on line 8 of R will evaluate to
TRUE. This contradicts the assumption that line 8 of R evaluates to FALSE. Therefore W
finishes after C(R, 7) so W ′ starts after C(R, 7).

From the code, we see that FAi
= 1 from C(R, 7) to the end of R, so FAi

= 1 during the
execution of W ′. It follows from lines 13–16 of the code for Writei that FMi

= 1 at the end
of W ′. By Lemma 7, Hi.r 6= Hi.w between the end of W and the end of R. Therefore line 5
of the code for Writei is not performed from the end of W ′ until the end of R. Hence FMi

remains equal to 1 from the end of W ′ until the end of R. J

Intuitively, the following lemma captures the idea that, as long as Hi.r = Hi.w or FMi
= 0,

G[v] is equal to g. This lemma shows that R must have read g on line 11 if the check on line
13 returns FALSE.

I Lemma 9. If R read a value other than g from G[v] on line 11, then Hi.r 6= Hi.w at
C(R, 12) and FMi

= 1 at C(R, 13).
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Proof. Suppose that R read a value other than g from G[v] on line 11. Note that, between
C(R, 4) and C(R, 11), line 3 of Readi is not performed, so the value of Hi.r does not change.

By definition of g, a Write operation must have written to G[v] between C(R, 4) and
C(R, 11). Since V has value v at C(R, 4), V must be incremented 4n− 1 times after C(R, 4)
before version is reassigned value v on line 1 of the Write and G[v] is written to on line 8.
This implies there are at least two full Writei operations W ′ and W ′′ that helped process
pi between C(R, 4) and C(R, 11). Suppose W ′′ occurs after W ′. By Lemma 7, Hi.r 6= Hi.w

and FNi = 1 from the end of W ′ until the end of R. Since R performed lines 11–13, the test
on line 8 evaluated to FALSE. Therefore by Lemma 8, FMi

= 1 from the end of W ′′ until
the end of R. Since W ′′ finished before C(R, 11), it follows that Hi.r 6= Hi.w at C(R, 12)
and FMi = 1 at C(R, 13). J

The proof that R reads g on line 14 if the check on line 13 returns TRUE is presented
below.

I Lemma 10. If Hi.r 6= Hi.w at C(R, 12) and FMi
= 1 at C(R, 13), then R read g from Mi

on line 14.

Proof. Suppose Hi.r 6= Hi.w at C(R, 12) and FMi = 1 at C(R, 13). By Lemma 3, there exists
at least one write operation W such that C(R, 2)→ C(W, 7)→ C(R, 12). Let W be the last
such write operation. Since W sets FMi to 0 on line 5 and FMi = 1 at C(R, 13), there exists
a write operation W ′ (possibly equal to W ) such that C(W, 5) → C(W ′, 16) → C(R, 13).
Since there is only one writer, W ′ is either equal to W or starts after W finishes. Hence
C(W, 7)→ C(W ′, 13).

FAi
= 1 at C(W ′, 13) because W ′ executed line 16. From the code, we see that FAi

= 0
at C(R, 1) and only line 6 of a Readi operation sets FAi to 1. Thus C(R, 6)→ C(W ′, 13).

Next, we prove that rversion equals v at C(W ′, 14). Since C(R, 6) → C(W ′, 14) →
C(W ′, 16)→ C(R, 13), a complete execution of line 14 of W ′ occurs after R writes v to Ai
on line 5 and before C(R, 13). From the code, we see that Ai = v from C(R, 5) until the end
of R, so rversion = v at C(W ′, 14). Since rversion is a local variable, rversion = v while
W ′ performs line 15.

Suppose, for contradiction, that G[v] was written to between C(R, 4) and C(W ′, 15). The
writer writes to G[v] before incrementing V to have value v on line 9. Since V has value v at
C(R, 4), it follows that, between C(R, 4) and C(W ′, 15), V must have been incremented at
least 4n− 1 times. Thus there are at least two complete Writei operations between these
two configurations. Since R performed lines 11–13, the test on line 8 evaluated to FALSE.
By Lemma 8, FMi = 1 from the end of the second Writei operation, W ′′, to the end of
R. Since C(R, 4) → C(W ′′, 1) → C(W ′, 15) → C(R, 13), FMi

= 1 at C(W ′, 15). This is
impossible, since W ′ performs line 15 only if FMi

= 0 at C(W ′, 13) and does not change the
value of FMi

until line 16. Therefore G[v] was not written to between C(R, 4) and C(W ′, 15).
Be definition, G[v] = g at C(R, 4), so G[v] = g from C(R, 4) until C(W ′, 15). In particular,

G[v] = g while W ′ executed line 15. Hence Mi = g at C(W ′, 15).
We claim that Hi.r 6= Hi.w from C(W, 7) to the end of R. By the choice of W , we

see that line 7 of a Writei operation does not occur between C(W, 7) and C(R, 7). Since
Hi.r 6= Hi.w at C(R, 7), we know that Hi.r 6= Hi.w from C(W, 7) to C(R, 7) by P4. From
the code for Readi, we see that line 3 of a Readi operation is not executed between C(R, 7)
and the end of R. Therefore by P3, Hi.r 6= Hi.w from C(R, 7) to the end of R. Since
C(W, 7)→ C(W ′, 16)→ C(R, 13), it follows that Hi.r 6= Hi.w at C(W ′, 16).

From the code, we can see that FMi = 1 at C(W ′, 16) and Mi does not change between
C(W ′, 15) and C(W ′, 16). Since C(R, 4) → C(W ′, 16), the first Readi operation after
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C(W ′, 16) occurs after the end of R. So, by Lemma 5, Mi remains equal to g from C(W ′, 16)
to the end of R. In particular, Mi = g at C(R, 14). J

Finally, we show that R returns the input to the last Write operation linearized before
R. First suppose that, Hi.r 6= Hi.w at C(R, 7) and FNi

= 1 at C(R, 8). By Lemma 2, there
is a Writei operation W such that C(R, 2)→ C(W, 7)→ C(R, 7). Let W be the last such
Writei operation. Also by Lemma 2, line 12 of W is executed and C(W, 12)→ C(R, 8). R
is linearized at C(W, 12) and W is linearized at C(W, 9), so W is the last Write operation
linearized before R. Let α be the input to W . Note that Ni equals α at C(W, 12).

We claim that Hi.r 6= Hi.w from C(W, 7) to the end of R. By the choice of W , we
see that line 7 of a Writei operation does not occur between C(W, 7) and C(R, 7). Since
Hi.r 6= Hi.w at C(R, 7), we know that Hi.r 6= Hi.w from C(W, 7) to C(R, 7) by P4. From
the code for Readi, we see that line 3 of a Readi operation is not executed between C(R, 7)
and the end of R. Therefore by P3, Hi.r 6= Hi.w from C(R, 7) to the end of R.

In particular, since C(W, 7)→ C(W, 12)→ C(R, 8), Hi.r 6= Hi.w at C(W, 12). When W
executes line 12, it sets FNi to 1. It follows from Lemma 4 that Ni = α from C(W, 12) to
line 3 of the next Readi operation after R, so Ni equals α at C(R, 9). Thus, R returns the
value written by W , as required.

Now suppose Hi.r = Hi.w at C(R, 7) or FNi = 0 at C(R, 8). In this case, R is linearized
at C(R, 4). By Lemma 6, g is the value written by the last Write operation linearized
before C(R, 4). Thus, it suffices to prove that R returns g. Consider two subcases depending
on the result of the test on line 13 of R. If the test returns false, then by the contrapositive
of Lemma 9, the value that R read from G[rversion] on line 11 is equal to g. If the test
returns true, then by Lemma 10, R read g from Mi on line 14. So in either case, R returns g.

I Theorem 11. Algorithm 3 implements an atomic `-bit register.

6 Step Lower Bound of Register Implementation

So far, we have presented implementations of an atomic `-bit n-reader single-writer register
from atomic k-bit n-reader single-writer registers. For the lower bound, we consider the case
where the large register only needs to be regular and there is only one reader. This results in
a stronger lower bound.

I Theorem 12. Any regular `-bit single-reader, single-writer register implementation from
atomic k-bit single-writer registers with O(`/k) step complexity for Read requires Ω(`/k)
step complexity for Write.

Proof. Let t = b`/kc. Since Read operations have step complexity O(t), there are positive
integers α and t0 such that, for all t ≥ t0, each Read operation performs at most αt steps.
Let t ≥ t0. We consider executions starting from an initial configuration I in which the writer
completes its first Write, crashes, and then a single Read occurs. Let u be the number of
steps performed by the writer in the worst case. If u > αt, the lower bound holds, so suppose
that u ≤ αt. The Read algorithm can be represented by a decision tree of height at most
αt, where each node represents the read of a shared k-bit register. Without loss of generality,
we may assume that no shared k-bit register is read more than once on any root to leaf path.

For each of the 2` different values w that can be written by the writer, consider the path
in this decision tree taken by the reader. Let E(w) = {(i, v) | if the shared k-bit register
read at depth i contains value v 6= its value in I}. The set E(w) uniquely specifies the leaf
that the reader reaches and, thus, is an encoding of w. Since 1 ≤ i ≤ u and there are 2k − 1
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choices for each value v (i.e. excluding the value of the k-bit register in configuration I), the
number of different possible encodings is

u∑
j=0

(
αt

j

)
(2k − 1)j ≤

u∑
j=0

(
αt

u

)(
u

j

)
(2k − 1)j =

(
αt

u

) u∑
j=0

(
u

j

)
(2k − 1)j =

(
αt

u

)
(2k)u

≤ (2k)u(αte/u)u = (αe · 2kt/u)u.

Thus 2` ≤ (αe · 2kt/u)u. Taking the logarithm of both sides yields ` ≤ u(log2(αe) + k +
log2(t/u)). Since k ≤ `/t and t < `, it follows that ` ≤ u(log2(αe) + `/t + log2(t/u)) and
1 ≤ (u/t) ·(log2(αe)t/`+1+log2(t/u)t/`) < (u/t) ·(log2(αe)+1+log2(t/u)). Setting β = t/u

gives 1 ≤ (log2(αe) + 1 + log2 β)/β. Thus β − log2 β ≤ log2(αe) + 1 ∈ O(1). This implies
that t/u = β ∈ O(1), because lim

β→∞
β − log2 β =∞. Therefore u ∈ Ω(t) = Ω(`/k). J

7 Conclusion

We presented two new implementations of large `-bit single-writer registers from small k-bit
single-writer registers, which work for all k ≥ 1. We can combine them as follows: use the
first implementation if ` ≤ d(log2 n)/2e; otherwise, use the second implementation. This
results in an implementation of large single-writer registers with optimal step complexity
and Θ(n`/k) space complexity.

We proved that any implementation with O(`/k) step complexity for Read requires
Ω(`/k) step complexity for Write. Since Read of an `-bit register requires at least d`/ke
reads of k-bit registers, our lower bound shows that our implementation is step optimal.

It would be interesting to find a more space efficient implementation with optimal step
complexity or to prove a lower bound on the amount of space required. We have some
algorithms with o(n`/k) space complexity, but slightly worse step complexity, so there may
be a trade-off between space complexity and step complexity.

It would also be interesting to see if `-bit multi-writer registers can be implemented from
k-bit multi-writer registers with Θ(`/k) step complexity for any k ≥ 1. Unfortunately, we
do not know of any way to modify our tree based implementation to obtain a multi-writer
regular (or atomic) register. Without an efficient counter that supports multiple incrementers,
we can not extend our buffer based implementation to obtain a multi-writer register, either.
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