Set-Consensus Collections are Decidable

Carole Delporte-Gallet!, Hugues Fauconnier?, Eli Gafni®, and
Petr Kuznetsov**

1 IRIF, Université Paris-Diderot, Paris, France
cd@liafa.jussieu.fr

2 IRIF, Université Paris-Diderot, Paris, France
hf@liafa. jussieu.fr

3 UCLA, Los Angeles, CA, USA
eli@ucla.edu

4 Télécom ParisTech, Paris, France
petr.kuznetsov@telecom-paristech.fr

—— Abstract

A natural way to measure the power of a distributed-computing model is to characterize the set
of tasks that can be solved in it. In general, however, the question of whether a given task can
be solved in a given model is undecidable, even if we only consider the wait-free shared-memory
model. In this paper, we address this question for restricted classes of models and tasks. We
show that the question of whether a collection C of (¢, j)-set consensus objects, for various ¢ (the
number of processes that can invoke the object) and j (the number of distinct outputs the object
returns), can be used by n processes to solve wait-free k-set consensus is decidable. Moreover,
we provide a simple O(n?) decision algorithm, based on a dynamic programming solution to the
Knapsack optimization problem. We then present an adaptive wait-free set-consensus algorithm
that, for each set of participating processes, achieves the best level of agreement that is possible
to achieve using C. Overall, this gives us a complete characterization of a read-write model
defined by a collection of set-consensus objects through its set-consensus power.

1998 ACM Subject Classification E.1.2 Distributed Data Structures, C.2.4 Distributed Systems
Keywords and phrases Decidability, distributed tasks, set consensus, Knapsack problem

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2016.7

1 Introduction

A plethora of models of computation were proposed for distributed environments. The models
vary in timing assumptions they make, types of failures they assume, and communication
primitives they employ. It is hard to say a priori whether one model provides more power to
the programmer than the other. A natural way to measure this power is to characterize the
set of distributed tasks that can be solved in a model. In general, however, the question of
whether a given task can be solved in the popular wait-free read-write model, i.e., tolerating
asynchrony and failures of arbitrary subsets of processes, is undecidable [13]. Of course,
in models in which processes can additionally access arbitrary objects, the question is not
decidable either. However, many natural models have been shown to be characterized by
their power to solve set consensus [10].

* The author was supported by the Agence Nationale de la Recherche, under grant agreement N ANR-14-
CE35-0010-01, project DISCMAT.

© Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, and Petr Kuznetsov;
37 licensed under Creative Commons License CC-BY

20th International Conference on Principles of Distributed Systems (OPODIS 2016).

Editors: Panagiota Fatourou, Ernesto Jiménez, and Fernando Pedone; Article No. 7; pp. 7:1-7:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2016.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2

Set-Consensus Collections are Decidable

In this paper, we consider models in which n completely asynchronous processes com-
municate through reads and writes in the shared memory and, in addition, can access
set-consensus objects. An (¢, j)-set-consensus object solves j-set consensus among ¢ processes,
i.e., the object can be accessed by up to £ processes with propose operations that take natural
numbers as inputs and return natural numbers as outputs, so that the set of outputs is
a subset of inputs of size at most j. Set consensus is a generalization of consensus and,
like consensus [18], exhibits a universailty property: £ processes can use (¥, j)-set consensus
and read-write registers to implement j state machines, ensuring that at least one of them
makes progress [12]. In this paper, we explore what level of agreement, and thus “degree
of universality”, can be achieved using any number of objects from a given set-consensus
collection.

The special case when only one type of set consensus can be used in the implementation
was resolved in [4, 8, 23]. Assuming that k& > j[n/{], we trivially solve j[n/¢]-set consensus,
by splitting n processes into [n/¢] groups of size £ (or less). A slightly more complex converse
bound [4, 8, 23], accounting for the “delta” between n and £[n/¢], resolves the special case
when only one type of set consensus object can be used.

Characterizing a general model in which processes communicate via objects in an arbitrary
collection C' of possibly different set-consensus objects is more difficult. For example, let C
be {(2,1),(5,2)}, i.e., every 2 processes in our system can solve consensus and every 5 can
solve 2-set consensus. What is the best level of agreement we can achieve using registers and
an arbitrary number of objects in C' in a system of 9 processes? One can easily see that 4-set
consensus can be solved: the first two pairs of processes solve consensus and the remaining 5
invoke 2-set consensus, which would give at most 4 different outputs. One can also let the
groups of the first 5 and the remaining 4 each solve 2-set consensus. (In general, any two
set-consensus objects (£1, j1) and (¢a, j2) can be used to solve (¢1 + 2, j1 + j2)-set consensus.)
But could we do (9, 3)-set consensus with C?

We propose a simple way to characterize the power of a set-consensus collection. By
convention, let (¢p, jo) be (1,1), and note that (1,1)-set consensus is trivially solvable. We
show that a collection C = {(£o, jo), (¢1,71), -+, (bm, jm)} solves (n, k)-set consensus if and
only if there exist xo,z1,...,2, € N, such that >, f;z; > n and), jiz; < k. Thus,
determining the power of C' is equivalent to solving a variation of the Knapsack optimization
problem [21], where each j; serves as the “weight” of an element in C| i.e., how much
disagreement it may incur, and each ¢; serves as its “value”, i.e., how many processes it is
able to synchronize. We describe a simple O(n?) algorithm for computing the power of C for
solving set consensus among n processes using the dynamic programming approach.

The sufficiency of the condition is immediate. Indeed, the condition implies that we can
partition the set of n processes in), x; groups: o groups of size (at most) ¢y, 21 groups
of size (at most) 41, ..., z,, groups of size (at most) ¢,,. Each of the z; groups of size ¢;,
i =0,...,m, can independently solve j;-set consensus using a distinct (¢;, j;)-set-consensus
object in C, which gives us at most), jiz; < k different outputs in total.

The necessity uses a generalized version of the BG simulation [3, 5] that allows to simulate,
in the read-write shared-memory model, a protocol that uses various types of set-consensus
objects. We use this simulation to show that if a collection not satisfying the condition
solves (n, k)-set consensus, then k + 1 processes can solve k-set consensus using read-write
registers, contradicting the classical wait-free set-consensus impossibility result [3, 20, 24].
Interestingly, the necessity of this condition holds even if we can use read-write registers in
addition to the elements in C.

C. Delporte-Gallet, H. Fauconnier, E. Gafni, and P. Kuznetsov

Thus, we derive a complete characterization of models defined by collections of set-
consensus objects. In particular, it allows us to determine the j-set-consensus number of
a set-consensus collection C' as the maximal number of processes that can achieve j-set
consensus using C and read-write registers. Applied to arbitrary objects, this metric is a
natural generalization of Herlihy’s consensus number [18].

Coming back to the collection C' = {(2,1), (5,2)}, our characterization implies that 4 is
the best level of set consensus that can be achieved by 9 processes with C. Observe, however,
that if only 2 processes participate, then they can use C' to solve consensus, i.e., to achieve
“perfect” agreement. Applying our condition, we also see that participating sets of sizes 3 up
to 5 can solve 2-set consensus, participating sets of size 6 up to 7 can solve 3-set consensus,
participating sets of size 8 up to 10 can solve 4-set consensus, etc. That is, for every given
participating set, we can devise an optimal set-consensus algorithm that ensures the best
level of agreement achievable with C.

An immediate question is whether we could adapt to the participation level and ensure
the best possible level of agreement in any case? Such algorithms are very useful in
large-scale systems with bounded contention levels. We show that this is possible by
presenting an optimally adaptive set-consensus algorithm. Intuitively, for the currently
observed participation, our algorithm employs the best algorithm and, in case the participating
set grows, seamlessly relaxes the agreement guarantees by switching to a possibly less precise
algorithm when there is a larger set of participants.

Our results thus imply that there is an efficient algorithm to decide whether one model
defined by a collection of set-consensus object types can be implemented in model defined by
another collection of set-consensus objects. We conjecture that the ability of any “reasonable”
(vet to be defined precisely) shared-memory system to solve set consensus, captured by its
j-set-consensus numbers, for all positive j, characterizes precisely its computing power with
respect to solving tasks or implementing deterministic objects.

This work contributes to the idea that there is nothing special about consensus that
set consensus cannot do. Indeed, set-consensus collections are decidable in the same way
collections of consensus objects are [18]: the power of a collection of consensus objects
{(£1,1), (¢2,1),...,(€m, 1)} to solve consensus is determined by max; ¢;. Furthermore, it was
recently shown that the computational power of a class of deterministic objects cannot be
characterized by its ability to solve consensus [2], which suggests the use of set consensus in a
characterization. We see this paper as the first step towards proving the conjecture that the
computational power of a deterministic object can be captured by its set-consensus number,
determining the best level of agreement the object can reach for each given system size.

Roadmap. The rest of the paper is organized as follows. In Section 2, we recall the basic
model definitions and simulation tools. In Section 3, we present and prove our characterization
of set-consensus collections, and describe an efficient algorithm to compute the characterizing
criterion. In Section 4, we present an adaptive algorithm that achieves the optimal level of
agreement for each set of active participants having access to a given set-consensus collection.
We discuss related work in Section 5 and conclude in Section 6.

2 Preliminaries

In this section, we briefly state our system model, recall the notion of a distributed task, and
sketch the basic simulation tools that we use in the paper.

7:3

OPODIS 2016

7:4

Set-Consensus Collections are Decidable

Processes and tasks. We consider a system II of asynchronous processes that communicate
via shared memory abstractions. We assume that process may only fail by crashing, and
otherwise it must respect the algorithm it is given. A correct process never crashes. Shared
abstractions we consider here include an atomic-snapshot memory [1] and a collection of
objects solving distributed tasks [20].

An atomic-snapshot memory stores a vector of |II| values, one value per process, and
exports atomic operations update and snapshot: operation update(p,v) performed by process
p writes v in position p in the vector, and operation snapshot() returns the vector. Atomic-
snapshot memory can be implemented, in a wait-free and linearizable manner, in the standard
read-write shared-memory model [1].

A process invokes a task with an input value and the task returns an output value, so that
the inputs and the outputs across the processes invoked the task respect the task specification
and every correct process that participates decides (gets an output). More precisely, a task
is defined through a set Z of input vectors (one input value for each process), a set O of
output vectors (one output value for each process), and a total relation A : Z + 2 that
associates each input vector with a set of possible output vectors. An input L denotes a
non-participating process and an output value | denotes an undecided process.

For vectors S and S in Z (resp., O), we write S > S’ if S’ is obtained from S by replacing
some entries with L. We assume that if Z (resp., O) contains a vector S, then Z (resp., O)
also contains any vector S’ such that S > S’. We stipulate that if (I,0) € A, then (1) for
all 4, if I[i] = L, then O[i] = L, (2) for each O’, such that O > O’, (I,0’) € A and, (3) for
each I’ such that I’ > I, there exists some O’ such that O’ > O for all 4, if I'[i] # L, then
O'[i] # L, and (I',0) in A.

An algorithm solves a task T = (Z,0,A) in a wait-free manner if it ensures that in every
execution in which processes start with an input vector I € Z, every correct process decides,
and the set of decided values, taken together with the processes taking these decisions, form a
vector O € O (where positions of non-decided processes are assigned 1) such that (I,0) € A.

The task of k-set consensus. In the task of k-set consensus, input values are in a set
of values V (|[V| > k + 1), output values are also in V', and for each input vector I and
output vector O, (I,0) € A if the set of non-L values in O is a subset of values in I of
size at most k. The special case of 1-set consensus is called consensus [11]. More generally,
(¢, k)-set-consensus objects (k < () allow arbitrary subset of ¢ processes to solve k-set
consensus.

Note that k-set consensus is an example of a colorless task (also known as a convergence
task [5]): processes are free to use each others’ input and output values, so the task can be
defined in terms of input and output sets instead of vectors. Formally, let val(U) denote the
set of non-_L values in a vector U. In a colorless task, for all input vectors I and I’ and all
output vectors O and O’, such that (I,0) € A, val(I) C val(I’") and val(O’") C val(O), we
have (I’,0") € A. To solve a colorless task, it is sufficient to find an algorithm that allows
just one process to decide. Indeed, if such an algorithm exists, we can simply convert it
into an algorithm that allows every correct process to decide: every process simply applies
the decision function to the observed state of any process that has decided and adopts the
decision.

In contrast, (¢, k)-set consensus is not colorless in a system of n > ¢ processes, as it does
not always allow a process to adopt the decision of another process: e.g., if a process does
not belong to a set S of ¢ processes, it cannot provide outputs for j-set consensus for S.

C. Delporte-Gallet, H. Fauconnier, E. Gafni, and P. Kuznetsov

Simulation tools. An execution of a given algorithm A by the processes pi,...p, can
be simulated by a set of simulator processes si,...,s, (or, simply, simulators) that run a
distributed algorithm “mimicking” the steps of A in a consistent way. Informally, for every
execution Ey of the simulation algorithm, there exists an execution E of A by p1,...,pn
such that the sequence of states simulated for every process p; in E; is observed by p; in F.

A basic building block of our simulations is an agreement protocol [3, 5] that can be seen
as a safe part of consensus. It exports one operation propose() taking v € V' as a parameter
and returning w € V, where V is a (possibly infinite) value set. When a process p; invokes
propose(v) we say that p; proposes v, and when the invocation returns v’ we say that p;
decides on v'. Agreement ensures four properties:

(i) every decided value has been previously proposed,

(ii) no two processes decide on different values, and

(iii) if every participating process takes enough steps then eventually every correct particip-

ating process decides.

Here a process is called participating if it took at least one step in the computation. In
fact, the agreement protocol in [3, 5] ensures that if every participating process takes at
least three shared memory steps then eventually every correct participating process decides.
If a participating process fails in the middle of an agreement protocol, then no process is
guaranteed to return.

A generalized version of the agreement protocol, £-agreement [4, 8], relaxes safety prop-
erties of agreement but improves liveness. Formally, in addition to (i) above, ¢-agreement
ensures:

(ii") at most ¢ different values can be decided, and

(iii’) every correct participating process is guaranteed to decide, unless £ or more participating
processes do not take enough steps.

Clearly, the agreement protocol we defined above is 1-agreement. An f-agreement protocol

with a proof (only sketched in [4, 8]) can be found in Reiners’ thesis [23]. For completeness,

given that the thesis is not easy to find, we present the proof in Appendix A.

3 A characterization of set-consensus collections

In this section, we introduce the notion of agreement level for a given set-consensus collection
C and a given system size. Then we show that the metrics captures the power of C for
solving set consensus. Then we show how to efficiently compute the agreement level of a
given collection.

3.1 Agreement levels of C

Consider a model in which processes can communicate via an atomic-snapshot memory and
set-consensus objects from a collection C. For brevity, we represent C' as a set {({o, jo),
(¢1,71)5 - -+, (i, jm)} such that for each i = 0, ..., m, the task of (¢;, j;)-set consensus can
be solved (¢; > j;).

By convention, we assume that (g, jo) = (1,1) is always contained in a collection C:
(1,1)-set consensus is trivially solvable. Note that (¢, j)-set consensus also solves (¢, j')-set
consensus for all ¢/ < ¢ and 7' > j. Thus, without loss of generality, we can assume that the
sequence (£1,71), .-, (m, jm) is monotonically increasing: ¢y < ¢1 and foralli=1,...,m—1,
l; < liy1 and j; < ji+1. (since we required that (¢g,jo) = (1,1), there can be two elements
of the type (—, 1)). In particular, for all n, C contains at most n elements (¢, j) such that
< n.

7:5

OPODIS 2016

7:6

Set-Consensus Collections are Decidable

» Definition 1 (Agreement level). Let C' = {(4o, jo), (¢1,1),-- -, (m,Jm)} be a collection of
set-consensus objects. The agreement level for n processes of C, denoted ALS, is defined as:
min). jiz;
under the constraints:), ;x; > n, To,...,Tm € {0,...,n}
One can also interpret ALS as the lowest k for which there exists a multiset S = {(t1, 1),
-owy (tp, sp)} of elements in C such that >, s; =k and >, t; > n.!

3.2 Agreement levels and set consensus

We now can define a simple criterion to determine whether the model defined by C can
solve (n, k)-set consensus. The criterion is sufficient, i.e., every model equipped with C' that
satisfies the criterion solves (n, k)-set consensus, and necessary, i.e., every model equipped
with C' that solves (n, k)-set consensus satisfies the criterion.

» Theorem 2. (n,k)-set consensus can be solved using read-write registers and any number
of objects taken in a set-consensus collection C if and only if ALS <k.

Proof. Suppose that ALS < k. Thus, there exists a multiset S = {(t1,51),..., (tp,sp)} of
elements in C such that ZZ s; <k and ZZ t; > n. We show how n processes can solve k-set
consensus using S. Every p;, i = 1,...,n, is assigned to the element (¢;,s;) € S such that
D=, jo1te <i< 32,y jte, invokes the assigned object of (Z;,s;)-set consensus with its
input and returns the corresponding output. Since), s; < k, the total number of outputs
does not exceed k.

Now suppose that C' can be used to solve (k,n)-set consensus and let A be the corres-
ponding algorithm. By contradiction, suppose that no multiset .S satisfying the conditions
above exists for C. Thus, for any multiset {(t1,s1),..., (tp,sp)} of elements in C such that
> ;8 <k, we have) . t; <n.

We show that we can then use a simulation of A to solve (k + 1, k)-set consensus using
only read-write memory, contradicting the classical impossibility result [3, 20, 24]. The
simulation we describe below is an extension of the BG simulation [3, 5], inspired by the

algorithms described in [4, 8.

Simulation. Let ¢q,...,qx11 be a set of k 4+ 1 simulator processes communicating via an
atomic-snapshot memory. In its position in the snapshot memory, every simulator g; maintains
its estimate of the current simulated state of every simulated process in {p1,...,pn}.

Note that the state of each p; (in algorithm A) unambiguously determines the next step
that py is going to take in the simulation, which can be an update operation, a snapshot
operation, or an access to a (t, s)-set-consensus object. Since each update operation by py is
implicitly simulated by registering the last simulated state of py in the shared memory, the
simulators only need to explicitly simulate snapshot operations and accesses to set-consensus
objects.

We associate each state of p,; (assuming distinct local states) with a distinct agreement
protocol (cf. Section 2), depending on the next step py is going to take in that state:

For a snapshot operation, we use one instance of the agreement (1-agreement) algorithm.

For an access to a (t, s)-set-consensus object, we use one instance of s-agreement and one

instance of 1-agreement.

! Note that assuming that (1,1) € C implies ALS < n.

C. Delporte-Gallet, H. Fauconnier, E. Gafni, and P. Kuznetsov

The initial state of each simulated process is associated with a 1-agreement protocol.

The simulation proceeds in asynchronous rounds. In each round, a simulator g; picks up
the next simulated process py in a round-robin fashion. To simulate a step of py, ¢; takes
a snapshot of the memory and computes p,’s latest simulated state by choosing the latest
simulated state of p, found in the snapshot.

If py is in the initial state, ¢; invokes the agreement protocol (1-agreement) to compute
the input of py in the simulated run, using its input value (for k-set consensus) as a proposed
value. Otherwise, ¢; invokes the corresponding agreement protocol:

To simulate a snapshot operation, ¢; invokes the corresponding 1-agreement protocol,
proposing the just read simulated system state (the vector of the latest simulated states
of processes p1,...,pn) as the outcome of the simulated snapshot.

Recall that a simulator that has started but not finished the 1-agreement protocol for a
given snapshot operation may block the simulated process forever. However, since the
faulty simulator may be involved in at most one agreement protocol at a time, it can
block at most one simulated process.

To simulate an access of a (¢, s)-set-consensus object, the simulator invokes the corres-
ponding s-agreement protocol proposing p,’s input value for this object (according to the
simulated state) as the decided value.

Recall that an s-agreement protocol may block forever if s or more processes fail in the
middle of its execution. Thus, when it is used to simulate an access to (¢, s)-set consensus,
failures of s or more simulators may block ¢ simulated processes.

Also, recall that s-agreement may return different values to different simulators (as long
as there are at most s of them). To ensure that the outcome of each of the ¢ simulated
processes accessing the (¢, s)-set-consensus object is determined consistently by different
simulators, the outcome of the simulated step is then agreed upon using 1-agreement.

If an agreement protocol for process py blocks, simulator g; proceeds to the next non-
blocked simulated process in the round-robin order. If the corresponding agreement protocol
terminates, the simulator updates the atomic-snapshot memory with its estimation of the
simulated states of p1,...,pn, where the new state of p; is based on the outcome of the
agreement.

Correctness. The use of 1l-agreement protocols for both kinds of simulated operations
implies that every step is simulated consistently, i.e., the simulators agree on the next
simulated state of each process in {p1,...,pn}.

The proposal to each of these agreement protocols is either the recently taken snapshot of
the simulated system state (in case a snapshot operation is simulated) or the value that the
simulated process must propose based on its state (in case an access to a (t, s)-set-consensus
object is simulated). The initial state of each simulated process is an (agreed upon) input
value of a participating simulator.

Each simulated snapshot is computed based on the most recent simulated states of
P1,---,Pn contained in the snapshot taken by the simulator “winning” the corresponding
1-agreement. The use of s-agreement in simulating accesses to a (¢, s)-set-consensus object
ensures that the simulated accesses return at most s proposed values. Thus, starting from
the initial states of the simulated processes, we inductively derive that all states that appear
in the simulated run are compliant with a run F of A: in E, each process p; goes through
the sequence of states that are agreed upon for p; in the simulation.

77

OPODIS 2016

7:8

Set-Consensus Collections are Decidable

Progress. It remains to show that at least one process in {p1,...,p,} makes progress in
the simulated run, assuming that at least one of the k& + 1 simulators is correct. Consider
any simulated run. We show that in this run, at least one of the simulated processes takes
sufficiently many simulated steps (for producing an output for k-set consensus).

A simulated process may stop making progress only if an agreement protocol used for
simulating its step blocks, which may happen only if a certain number of simulators stopped
taking steps in the middle of the protocol.

Suppose that at most & simulators are faulty. Given that a faulty simulator can block
at most one agreement protocol, we can identify the set of distinct agreement protocols
A; ..., A, that are blocked in our run, and for all j =1,...,p, let A; be s;-agreement. We

also identify p subsets of k faulty simulators of sizes sq,...,sp, where s; is the number of
simulators that block A;.
Foreachi=1,...,p, let t; denote the number of simulated processes that are blocked

because of A;. If A; is an instance of 1-agreement (s; = 1) used to simulate a snapshot
operation, to agree on the input of a given process, or to agree on the output of a set-consensus
object at a given process, then we set ¢; = 1 (only the corresponding simulated process can
be blocked). Otherwise, A; is an instance of s;-agreement used to simulate an access to some
(fi,8i)-set consensus, and we set t; = f; (up to f; processes accessing the (f;, s;)-set-consensus
object can be blocked).

Since there are at most k faulty simulators, we get a multiset {(¢1,s1),..., (tp, sp)} of
elements in C' such that), s; < k. But then, by our contradiction hypothesis, we have
> ti <n, ie., the total number of blocked simulated processes is less than n. Thus, at least
one of the n processes pi, ..., p, makes progress in the simulated run and eventually decides.
Assuming that the first simulator to witness a decision in the simulated run writes it in the
shared memory, we derive that every correct simulator eventually reads some decided value
and decides.

Since all these values are coming from a run of an algorithm solving (n, k)-set consensus,
there are at most k distinct decided values. Each of the decided values is an input of
some simulator. Thus, k + 1 simulators solve k-set-consensus using reads and writes — a
contradiction. <

3.3 Computing the power of set-consensus collections

Having characterized the power of a collection C' to solve set-consensus, we are now faced
with the question of how to compute this power.

By Theorem 2, determining the best level of agreement that can be achieved by C' =
{€0,70), - -+, (lm,Jm)} in a system of n processes is equivalent to finding min), j;x;, under
the constraints:), fiz; > n, xo,x1,...,2m € {0,...,n}. This can be viewed as a variation
of the Knapsack optimization problem [21], where we aim at minimizing the total weight of
a set of items from C' put in a knapsack, while maintaing a predefined minimal total value
of the knapsack content.? Here each j; serves as the “weight” of an element in C, i.e., how
much disagreement it may incur, and each ¢; serves as its “value”, i.e., how many processes
it is able to synchronize. We use this observation to derive an algorithm to compute ALS in
O(n?) steps.

Recall that C' is represented as a monotonically increasing sequence (€o, o), - - -, (b Jm)-

2 The classical Knapsack optimization problem consists in maximizing the total value, while maintaining
the total weight within a given bound.

C. Delporte-Gallet, H. Fauconnier, E. Gafni, and P. Kuznetsov

First we complete C' for the fixed system size n: for each i = 1,...,m, such that j; < n , we
insert elements (max(j; +1,4;,—1 +1),7;),(max(j; +1,4;—1 +1)+1,), ..., (min(¢4;,n) — 1, 5;),
(min(4;,n), j;). For example, the completion of C = {(1,1),(3,2),(10,6)} for n = 11 would
be {(1,1), (3,2), (7,6), (8,6), (9,6), (10,6)}. Notice that since (¢o,50), -, (bm,Jim) is
monotonically increasing, such a completion can be performed in O(n) steps, and the
resulting sequence is also monotonically increasing.

As a result of the completion, for every r = 1,...,n, and each element of the kind
(¢,7) € C such that £ > r and j < r we have a new element (r,j). As we will see below, this
allows us to compute ALY in O(r?) steps.

We observe that for all r =1,...,n, AL? = ming, <,(j; + AL?_&). Indeed, for all (¢;, j;)
such that ¢; < r, it must hold that j; + ALf_zi > AL,, otherwise, (¢;,7;) plus the multiset
(t1,51),-..,(tp,sp) of elements in C that reaches AL,_,, would give j; + > s, < ALY
and ¢; + ZU ty, > ¥; +r — ¥¢; = r, contradicting the definition of ALf. Further, since C
is complete, for each multiset (¢1,s1),..., (tp,sp) in C reaching ALE,
multiset (min(t1,7),t1),..., (min(ty,r),s) in C (each set-consensus object in the multiset is
defined for at most 7 processes) that also reaches ALS. Hence, ALS = ming,<,(j; + ALTC,L&)

Thus, we can use the following simple iterative algorithm (a variant of a solution to the
Knapsack optimization problem based on dynamic programming) to compute ALS in O(n?)
steps:

we can construct a

ALS =0;
for r =1,...,n do ALY = ming,<,(j; + ALE?L,).

In each iteration » = 1,...,n of the algorithm above, we perform at most r checks, which
gives us O(n?) total complexity.

We can also consider a related notion of j-set-consensus number of C, denoted SCN]C
and defined as the maximal number of processes that can achieve j-set consensus using C
and read-write registers: S CNJC = max ;N This is a natural generalization of Herlihy’s
consensus power [18]. Note that the problem of computing SC’NjC is the classical Knapsack
optimization problem, and using a variation of the algorithm above we can do it in O(j|C)
steps (see, e.g., [21, Chap. 5]).

4 An adaptive algorithm: reaching optimal agreement

Theorem 2 implies that, for every fixed n, there exists an ALS -set-agreement algorithm S7,¢
(ST for static) using C'. We show that these algorithms can be used in an adaptive manner,
so that for each set of participating processes, the best possible level of agreement can be
achieved.

To understand the difficulty of finding such an adaptive algorithm, consider C' = {(1, 1),
(13,5), (20,9)}. For selected sizes of participating sets m, the table in Figure 1 gives ALHC;7
and lists the elements of C used in the corresponding ST,

If we have 16 processes, ST,S uses one instance of (13, 5)-set consensus and three instances
of (1,1)-set consensus to achieve ALS; = 9. But if two new processes arrive we need (20,9)-set
consensus to achieve AL% = 9. Interestingly, to achieve ALg2 = 10, we should abandon
(20, 9)-set consensus and use two instances of (13, 5)-set consensus instead. In other words,
we cannot simply add a set-consensus instance of the species we used before to account for
the arrival of new processes. Instead, we have to introduce a new species.

We present a wait-free adaptive algorithm that ensures that if the set of participating

¢ distinct input values can be output. We call such

processes is of size m, then at most AL,,

an algorithm optimally adaptive for C.

7:9

OPODIS 2016

7:10

Set-Consensus Collections are Decidable

m ALS | STS m ALS | ST.S
1 L) 16 8 | (13,5)(1,1)(1,1)(1,1)
2 2 (1,1) (1,1) 17 9 (13,5)(1,1)(1,1)(1,1)(1,1) or
3 3 (1,1) (1,1) (1,1 (9,20)
4 4 (1,1 (1,1 a1 (1 1) 18t020 | 9 | (20,9)
5 to 13 5 (13,5) 21 10 | (20,9)(20,9) or (13,5)(13,5)
14 6 (13,5) (1,1) 22t026 | 10 | (13,5) (13,5)
15 7 (13,5) (1,1) (1,1)

Figure 1 Selecting elements in C' = {(1,1), (13,5), (20,9)} to solve ALS,-set consensus.

The algorithm is presented in Figure 2. The idea is the following: periodically, every
process p writes its current value (initially, its input), together with the number of processes
it has seen participating so far (initially, 0) in the shared memory, and takes a snapshot to
get the current set P of participating processes and their inputs.

Process p then computes its rank in P and adopts the value v from a process announcing
the largest participating set. The chosen input is then proposed to an instance of algorithm
ST\gI’ where p behaves as the process at position rank and proposes value v. More precisely,
S’ﬁgl is treated as an algorithm for processes ¢, . . .
Qrank in the algorithm with input value v.

Note that since the set is derived from an atomic snapshot of the memory, the notion
of the largest participating set is well-defined: the snapshots of the same size are identical.
Therefore, at most | P| processes participate in ST, IC;I and each of these | P| processes can only
participate at a distinct position corresponding to its rank in P. As a result, every correct
process invoking 871% will eventually get an output of the “best” set-consensus algorithm
for P.

When the participating set P observed by p does not change in two consecutive iterations,

,q)p| and, thus, p runs the code of process

p terminates with its current value.

» Theorem 3. Let C be a set-consensus collection, n be an integer. The algorithm in Figure 2
is optimally adaptive for C in a system of n processes.

Proof. We show first that every correct process eventually returns a value, and any returned
value is a proposed one.

Let p and g take snapshots (Lines 2 or 11) in that order, and let P, and P, be, respectively,
the returned participating sets. We observe first that P, C P,. Indeed, each position in
the snapshot object R is initialized to (L, L1). Once, p updates R[p] with its value and
participation level, the position remains non-_L forever. Thus, if ¢ takes its snapshot of R
after p, then
subset of P,.

Therefore, the sets P and parts evaluated by p in Line 11 are non-decreasing with time.
Since ST |parts| is wait-free, the only reason for a correct process p not to return is to find
that parts C P in Line 13 infinitely often, i.e., both P and parts grow indefinitely. But the
two sets are bounded by the set II of all processes — a contradiction.

P,, the set of processes whose positions are non-_L in the resulting vector, is a

Furthermore, every returned value is a value decided in an instance of STpartsl But

every value proposed to algorithm STP was previously read in a non-(L, 1) position of

|parts|
R, which can only contain an input value of some process.
Hence, every correct process eventually returns a value, and any returned value is a

proposed one.

C. Delporte-Gallet, H. Fauconnier, E. Gafni, and P. Kuznetsov

Shared objects:

R: snapshot object, storing pairs (value, level), initialized to (L, L)

Local variables for process p € I1:
r[l,...,n]: array of pairs (value, level)
prop, v: value
parts, P € 21
index: integer

Code for process p € 11 with proposal vy,:

1 R.update(p, (vp,0))

2 r[l,...,n] = R.snapshot()

s P=set of processes ¢ such that r[q] # (L, L)

4+ repeat

5 parts := P

6 rank := the rank of p in parts

7 k := be the greatest integer such that (—, k) is in r
8 v := be any value such that (v, k) is in r

9 prop := S'Tgmml with value v at position rank

10 R.update(p, (prop, |parts|))

1 r[1,...,n] = R.snapshot()

12 P=set of processes ¢ such that r[q] # (L, 1)

13 until parts = P

11 return prop

Figure 2 An optimally adaptive set-consensus algorithm.

Now consider a run of the algorithm in Figure 2 in which m processes participate. We
say that a process p returns at level t in this run if it outputs (in Line 14) the value prop
returned by the preceding invocation of ST, (in Line 9). By the algorithm, if p returns at
level t, then the set parts of processes it witnessed participating is of size t.

Let ¢ be the smallest level (1 < ¢ < n) at which some process returns, and let O, be the
set of values ever written in R at level ¢, i.e., all values v, such that (v, f) appears in R.

We show first that for all ¢/ > ¢, if R contains (v',¢'), then v' € Oy.

By contradiction, suppose that some process ¢ is the first process to write a value (v', ¢')
(in Line 10), such that ¢ > £ and v & Oy, in R. Thus, the immediately preceding snapshot
taken by ¢ before this write (in Lines 2 or 11) witnessed a participating set of size ¢/. Hence,
the snapshot of ¢ occurs after the last snapshot (of size £ < ¢') taken by any process p that
returned at level ¢. But immediately before taking its last snapshot, every such process p
has written (v,¢) in R (Line 10) for some v € O,. Thus ¢ must see (v, £) in its snapshot
of size ¢/ and, since, by the assumption, the snapshot contains no values written at levels
higher than ¢, ¢ must adopt some value written at level ¢ (Lines 7 and 8). Thus, v’ € Oy — a
contradiction.

7:11

OPODIS 2016

7:12

Set-Consensus Collections are Decidable

Thus, every returned value must appear in Oy, where £ is the smallest level (1 < ¢ < n)
at which some process returns. Now we show that |Oy| < ALSL, recall that m is the number
of participating processes.

Indeed, since all values that appear in O, were previously returned by the algorithm
8720 (Line 9) and, as we observed earlier, the algorithm is used by at most ¢ processes, each
choosing a unique position based on its rank in the corresponding snapshot of size ¢, there
can be at most AL? such values. Since at most m processes participate in the considered
run, we have £ < m, and, thus, AL? < ALTCH.

Hence, in a run with participating set of size m, |Oy| < ALS and, thus, at most ALS
values can be returned by the algorithm. Thus, we indeed have an optimally adaptive
set-consensus algorithm using C. <

On unbounded concurrency. Our definitions of the agreement level and the set-consensus
number of a set-consensus collection are independent of the size of the system: they are
defined with respect to a given participation level. Our adaptive algorithm does account
for the system size, as it uses atomic snapshots. But by employing the atomic-snapshot
algorithms for unbounded-concurrency models described in [16], we can easily extend our
adaptive solution to these models too.

5 Related work

Our algorithm computing the power of a set-consensus collection in O(n?) steps (for a
system of n processes) is inspired by the dynamic programming solution to the Knapsack
optimization problem described, e.g., in [21, Chap. 5].

Herlihy [18] introduced the notion of consensus number of a given object type, i.e., the
maximum number of processes that can solve consensus using instances of the type and
read-write registers. It has been shown that n-process consensus objects have consensus
power n. However, the corresponding consensus hierarchy is in general not robust, i.e., there
exist object types, each of consensus number 1 which, combined together, can be used to
solve 2-process consensus [22]. Besides objects of the same consensus number m may not be
equivalent in a system of more than m processes [2].

Borowsky and Gafni [4], and then Chaudhuri and Reiners [8, 23] independently explored
the power of having multiple instances of (¢, j)-set-consensus objects in a system of n processes
with respect to solving set consensus, which is a special case of the question considered in this
paper. The characterization of [4, 8, 23] is established by a generalized BG simulation [3, 5]
by Borowsky and Gafni, where instead of 1-agreement protocol, a more general j-agreement
protocol is used. Our results employ this agreement protocol to show a more general result.

Gafni and Koutsoupias [13] and Herlihy and Rajsbaum [19] showed that wait-free solvab-
ility of tasks for 3 or more processes using registers is an undecidable question. We show
that in a special case of solving set consensus using a set-consensus collection, the question
is decidable. Moreover, we give an explicit polynomial algorithm for computing the power of
a set-consensus collection.

6 Concluding remarks

We hope that this work will be a step towards proving a more general conjecture that
our set-consensus numbers capture precisely the computing power of any “natural” shared-
memory model. An indication that the conjecture is true is that set-consensus objects

C. Delporte-Gallet, H. Fauconnier, E. Gafni, and P. Kuznetsov

are, in a precise sense, universal (generalizing the consensus universality [18]): using (n, k)-
set-consensus objects, n processes can implement k independent sequential state machines
so that at least one of them is able to make progress, i.e., to execute infinitely many
commands [12]. Popular restrictions of the runs of the wait-free model, such as adversaries [10]
and failure detectors [7, 6], were successfully characterized via their power for solving set
consensus [14, 15, 9]. Also, it can be inferred from the recent result by Afek et al. [2] that, like
consensus, set-consensus objects can express precisely certain deterministic objects [2]. We
therefore believe that the power of a large class of “natural” models (determined by restrictions
mentioned above) can be captured by their ability to solve set consensus. This class must
exclude models in which “in between” objects, like Weak Symmetry-Breaking [20, 17], are
used: such models, as we believe, cannot be expressed as a restriction of the runs of the
wait-free model, and are therefore not “natural”.

—— References

1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit.
Atomic snapshots of shared memory. Journal of the ACM, 40(4):873-890, 1993.

2 Yehuda Afek, Faith Ellen, and Eli Gafni. Deterministic objects: Life beyond consensus. In
PODC, 2016.

3 Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility result for t-resilient
asynchronous computations. In STOC, pages 91-100. ACM Press, May 1993.

4 Elizabeth Borowsky and Eli Gafni. The implication of the Borowsky-Gafni simulation on
the set-consensus hierarchy. Technical report, UCLA, 1993. http://fmdb.cs.ucla.edu/
Treports/930021.pdf.

5 Elizabeth Borowsky, Eli Gafni, Nancy A. Lynch, and Sergio Rajsbaum. The BG distributed
simulation algorithm. Distributed Computing, 14(3):127-146, 2001.

6 Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector
for solving consensus. Journal of the ACM, 43(4):685-722, July 1996.

7 Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225-267, March 1996.

8 Soma Chaudhuri and Paul Reiners. Understanding the set consensus partial order using
the Borowsky-Gafni simulation (extended abstract). In WDAG, pages 362-379, 1996.

9 Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, and Petr Kuznetsov. Wait-freedom
with advice. Distributed Computing, 28(1):3-19, 2015.

10 Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Andreas Tielmann.
The disagreement power of an adversary. Distributed Computing, 24(3-4):137-147, 2011.

11 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374-382, April 1985.

12 Eli Gafni and Rachid Guerraoui. Generalized universality. In Proceedings of the 22nd inter-
national conference on Concurrency theory, CONCUR’11, pages 17-27, Berlin, Heidelberg,
2011. Springer-Verlag.

13 Eli Gafni and Elias Koutsoupias. Three-processor tasks are undecidable. STAM J. Comput.,
28(3):970-983, 1999.

14 Eli Gafni and Petr Kuznetsov. Turning adversaries into friends: Simplified, made construct-
ive, and extended. In OPODIS, pages 380-394, 2010.

15 Eli Gafni and Petr Kuznetsov. Relating L-Resilience and Wait-Freedom via Hitting Sets.
In ICDCN, pages 191-202, 2011.

16 Eli Gafni, Michael Merritt, and Gadi Taubenfeld. The concurrency hierarchy, and al-
gorithms for unbounded concurrency. In PODC, pages 161-169, 2001.

7:13

OPODIS 2016

http://fmdb.cs.ucla.edu/Treports/930021.pdf
http://fmdb.cs.ucla.edu/Treports/930021.pdf

7:14

Set-Consensus Collections are Decidable

17 Eli Gafni, Sergio Rajsbaum, and Maurice Herlihy. Subconsensus tasks: Renaming is weaker
than set agreement. In DISC, pages 329-338, 2006.

18 Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 13(1):123-149, January 1991.

19 Maurice Herlihy and Sergio Rajsbaum. The decidability of distributed decision tasks (ex-
tended abstract). In STOC, pages 589-598, 1997.

20 Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability.
Journal of the ACM, 46(2):858-923, 1999.

21 Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer, 2004.

22 Wai-Kau Lo and Vassos Hadzilacos. All of us are smarter than any of us: Nondeterministic
wait-free hierarchies are not robust. SIAM J. Comput., 30(3):689-728, 2000.

23 Paul Reiners. Understanding the set consensus partial order using the Borowsky-Gafni
simulation. Master’s thesis, Towa State University, 1996.

24 Michael Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible: The topology
of public knowledge. SIAM J. on Computing, 29:1449-1483, 2000.

A An /-agreement algorithm

The algorithm (presented in Figure 3) uses two atomic snapshot objects A and B, initialized
with 1’s. A process writes its input in A (line 15) and takes a snapshot of A (line 16). Then
the process writes the outcome of the snapshot in B (line 17) and keeps taking snapshots
of B until it finds that at most ¢ — 1 participating (i.e., having written their values in
A) processes that have not finished the protocol, i.e., have not written their values in B
(Lines 18-21). Finally, the process returns the smallest value (we assume that the value set is
ordered) in the smallest-size non-L snapshot found in B (containing the smallest number
of non-_L values). (Recall that all snapshot outcomes are related by containment, so there
indeed exists such a smallest snapshot.)

» Theorem 4. The algorithm in Figure 3 implements £-agreement.

Proof. The validity property (i) is immediate: only the identifier of a participating process
can be found in a snapshot object. The termination property (iii)" of f-agreement is immediate:

Shared objects:
A, B: snapshot objects, initially |

propose(v)

s A.update(v)

16 U = A.snapshot()

7 B.update(U)

1s repeat

19 W := B.snapshot()

o Xi= (UG£ L) A (V] = 1))

21 until |X‘§£—1

22§ := the smallest-size set of non-_L values contained in { W[j]; j=1,...,n, W[j] # L}
23 return min(S)

[

[

Figure 3 The {-agreement algorithm.

C. Delporte-Gallet, H. Fauconnier, E. Gafni, and P. Kuznetsov

if at most ¢ — 1 processes that have executed line 15 fail to execute line 17, then the exit
condition of the repeat-until clause in line 21 eventually holds and every correct participating
process terminates.

Suppose, by contradiction, that at least £+ 1 different values are returned by the algorithm.
Thus, at least £ + 1 distinct snapshots were written in B by £ 4+ 1 processes. Let L be the
set of processes that have written the ¢ smallest snapshots in B in the run. The set is
well-defined as all snapshots taken in A are related by containment. We are going to establish
a contradiction by showing that every process must return the smallest value in one of the
snapshots written by the processes in L and, thus, at most ¢ distinct inputs will be produced.

Let p; be any process that completed line 17 by writing the result of its snapshot of A in
B. Let U be the set of processes that p; witnessed in A and, thus, wrote to its position in B
in line 17.

If p; € L, i.e., U is one of the ¢ smallest snapshots ever written in B, then p; will return
the value of the smallest process in U or a smaller snapshot written by some process in L. If
p; ¢ L, then U contains all ¢ distinct snapshots written by the processes in L. Since each
process in L is included in the snapshot it has written in B, we derive that L C U. Since p;
returns a value only if all but at most ¢ — 1 processes it witnessed participating have written
their snapshots in B, at least one snapshot written by a process in L is read by p; in B.
Thus, p; outputs the value of the smallest process in the snapshot written by a process in L —
a contradiction.

Thus, at most ¢ distinct values can be output and (ii)’ is satisfied. <

7:15

OPODIS 2016

	Introduction
	Preliminaries
	A characterization of set-consensus collections
	Agreement levels of C
	Agreement levels and set consensus
	Computing the power of set-consensus collections

	An adaptive algorithm: reaching optimal agreement
	Related work
	Concluding remarks
	An l-agreement algorithm

