
Toward Semantic Foundations for Program
Editors∗

Cyrus Omar1, Ian Voysey2, Michael Hilton3, Joshua Sunshine4,
Claire Le Goues5, Jonathan Aldrich6, and Matthew A. Hammer7

1 Carnegie Mellon University, Pittsburgh, PA, USA
iev@cs.cmu.edu

2 Carnegie Mellon University, Pittsburgh, PA, USA
iev@cs.cmu.edu

3 Oregon State University, Corvallis, OR, USA
hiltonm@eecs.oregonstate.edu

4 Carnegie Mellon University, Pittsburgh, PA, USA
sunshine@cs.cmu.edu

5 Carnegie Mellon University, Pittsburgh, PA, USA
clegoues@cs.cmu.edu

6 Carnegie Mellon University, Pittsburgh, PA, USA
aldrich@cs.cmu.edu

7 University of Colorado Boulder, Boulder, CO, USA
matthew.hammer@colorado.edu

Abstract
Programming language definitions assign formal meaning to complete programs. Programmers,
however, spend a substantial amount of time interacting with incomplete programs – programs
with holes, type inconsistencies and binding inconsistencies – using tools like program editors and
live programming environments (which interleave editing and evaluation). Semanticists have done
comparatively little to formally characterize (1) the static and dynamic semantics of incomplete
programs; (2) the actions available to programmers as they edit and inspect incomplete programs;
and (3) the behavior of editor services that suggest likely edit actions to the programmer.

This paper serves as a vision statement for a research program that seeks to develop these
“missing” semantic foundations. Our hope is that these contributions, which will take the form
of a series of simple formal calculi equipped with a tractable metatheory, will guide the design
of a variety of current and future interactive programming tools, much as various lambda calculi
have guided modern language designs. Our own research will apply these principles in the design
of Hazel, an experimental live lab notebook programming environment designed for data science
tasks. We plan to co-design the Hazel language with the editor so that we can explore concepts
such as edit-time semantic conflict resolution mechanisms and mechanisms that allow library
providers to install library-specific editor services.

1998 ACM Subject Classification D.3.1 Formal Definitions and Theory, D.2.6 Programming
Environments

Keywords and phrases program editors; type systems; live programming; program prediction

Digital Object Identifier 10.4230/LIPIcs.SNAPL.2017.11

∗ This work is supported in part through a gift from Mozilla; by NSF under grant numbers CCF-1619282,
1553741 and 1439957; by AFRL and DARPA under agreement #FA8750-16-2-0042; and by the NSA
under lablet contract #H98230-14-C-0140. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of Mozilla,
NSF, AFRL, DARPA or NSA.

© Cyrus Omar, Ian Voysey, Michael Hilton, Joshua Sunshine, Claire Le Goues, Jonathan Aldrich,
and Matthew A. Hammer;
licensed under Creative Commons License CC-BY

2nd Summit on Advances in Programming Languages (SNAPL 2017).
Editors: Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi; Article No. 11; pp. 11:1–11:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SNAPL.2017.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Toward Semantic Foundations for Program Editors

1 Introduction

Language-aware program editors (like Eclipse or Emacs, with the appropriate extensions
installed [13]) offer programmers a number of useful editor services. Simple examples include
(1) syntax highlighting, (2) type inspection, (3) navigation to variable binding sites, and
(4) refactoring services. More sophisticated editors provide context-aware code and action
suggestions to the programmer (using various code completion, program synthesis and
program repair techniques). Many editors also offer live programming [26, 5] services, e.g. by
displaying the run-time value of an expression directly within the editor as the program runs.

When these editor services encounter complete programs – programs that are well-formed
and semantically meaningful (i.e. assigned meaning) according to the definition of the language
in use – they can rely on a variety of well-understood reasoning principles and program
manipulation techniques. For example, a syntax highlighter for well-formed programs can be
generated automatically from a context-free grammar [47] and the remaining editor services
enumerated above can follow the language’s type and binding structure as specified by a
standard static semantics. Live programming services can additionally follow the language’s
dynamic semantics.

The problem, of course, is that many of the edit states encountered by a program editor
do not correspond to complete programs. For example, the programmer may be in the
midst of a transient edit, or the programmer may have introduced a type error somewhere
in the program. Standard language definitions are silent about incomplete programs, so in
these situations, simple program editors disable various editor services until the program is
again in a complete state. In other words, useful editor services become unavailable when
the programmer needs them most! More advanced editors attempt to continue to provide
editor services during these incomplete states by using various ad hoc and poorly understood
heuristics that rely on idiosyncratic internal representations of incomplete programs.

This paper advocates for a research program that seeks to understand both incomplete
programs, and the editor services that interact with them, as semantically rich mathematical
objects. This research program will broaden the scope of the “programming language
theory” (PLT) tradition, which has made significant advances by treating complete programs,
programming languages and logics as semantically rich mathematical objects.

In following the PLT tradition, we intend to start by developing a series of minimal calculi
that build upon well-understood typed lambda calculi to capture the essential character of
incomplete programs and various editor services of interest. Editor designers will be able to
apply the insights gained from studying these calculi (together with insights gained from the
study of human factors and other topics) to design more sophisticated program editors. Some
of these editors will evolve directly from editors already in use today. In parallel with these
efforts, we plan to design a “clean-slate” programming environment, Hazel, based directly on
these first principles. This will allow researchers to explore the frontier of what is possible
when one considers languages and editors within a common theoretical framework. Such a
clean-slate design will also likely prove useful in certain educational settings, and even some
day evolve into a practical tool.

Figure 1 shows a mockup of the Hazel user interface, which is loosely modeled after the
widely adopted IPython / Jupyter lab notebook interface [36]. This figure will serve as
our running example throughout the remainder of the paper. Each section below briefly
summarizes a fundamental problem that we must confront as we seek to develop a semantic
foundation for advanced program editors. For each problem, we discuss existing approaches,
including those advanced by our own recent research, and suggest a number of promising
future research directions that we hope that the community will pursue.

C. Omar et al. 11:3

fun summary_stats(m : matrix<float>)
 mean = mean(m, ColumnWise)
 std = std(m,)▢
 median = ▢{ }

Numerics Plotting Statistics

let my_data : matrix<float> =

summary_stats(my_data)

{ } mean = [1.0 2.0 3.0 4.0 5.0]
 std = std(my_data,)▢
 median = ▢

1.1 2.3 3.0 4.1 5.2
1.2 1.8 3.1 4.1 5.2
0.9 2.2 2.7 3.5 4.9
0.8 1.5 3.3 4.3 4.7

Type at cursor: dimension

Action search...

ColumnWise

RowWise

Factor to variable…

▢()▢

Full action palette...

(most probable)

Figure 1 A mockup of Hazel.

2 Problem 1: Syntactically Malformed Edit States

Textual program editors frequently encounter edit states that are not well-formed with
respect to the textual syntax of complete programs. For example, consider a programmer
constructing a call to a function std:

std(m,

There is a syntax error, so editor services that require a syntactically complete program must
be disabled. This is unsatisfying.

Sophisticated editors like Eclipse, and editor generators like Spoofax [20], use error
recovery heuristics that silently insert tokens so that the editor-internal representation is
well-formed [1, 7, 14, 19]. These heuristics are typically provided manually by the grammar
designer, though certain heuristics can be generated semi-automatically by tools that are
given a description of the scoping conventions of the language or of secondary notational
conventions (e.g. whitespace) [19, 12]. Error recovery heuristics require guessing at the
programmer’s intent, so they are fundamentally ad hoc and can confuse the programmer [19].

A more systematic alternative approach, and the approach that we plan to explore with
Hazel, is to build a structure editor – a program editor where every edit state maps onto a
syntax tree, with holes representing leaves of the tree that have not yet been constructed.
This representation choice sidesteps the problem of syntactically malformed edit states.
Notice that in Figure 1, the program fragment in cell (a) contains holes, appearing as squares.
This design also permits non-textual projections of expressions, e.g. the 2D projection of a
matrix value in cell (b). We will return to the topic of non-textual projections below.

Structure editors have a long history. For example, the Cornell Program Synthesizer was
developed in the early 1980s [45]. Although text-based syntax continues to predominate,
there remains significant interest in structure editors today, particularly in practice. For
example, Scratch is a structure editor that has achieved success as a tool for teaching
children how to program [40]. mbeddr is an editor for a C-like language [51], built using the
commercially supported MPS structure editor workbench [50]. TouchDevelop is an editor for
an object-oriented language [46]. Lamdu [24] and Unison [8] are open source structure editors
for functional languages similar to Haskell. Most work on structure editors has focused on the
user interfaces that they present. This is important work – presenting a fluid user interface
involving higher-level edit actions is a non-trivial problem, and some aspects of this problem
remain open even after many years of research. There is reason to be optimistic, however,

SNAPL 2017

11:4 Toward Semantic Foundations for Program Editors

HTyp : τ̇ ::= τ̇ → τ̇ | num | LM
HExp : ė ::= x | λx.ė | ė(ė) | n | ė+ ė | (ė : τ̇) | LM | LėM

Figure 2 Syntax of H-types and H-expressions in the Hazelnut calculus [34].

with recent studies suggesting that programmers experienced with a modern keyboard-driven
structure editor (e.g. mbeddr) can be highly productive [3, 52].

Researchers have also explored various “hybrid” approaches, which incorporate holes
into an otherwise textual program editor. These hybrid approaches are appealing in part
because tools for interacting with text, like regular expressions and various differencing
techniques used by version control systems, are already well-developed. For example, recent
work on syntactic placeholders envisions a textual program editor where edit actions cause
textual placeholders (a.k.a. holes) of various sorts to appear, rather than leaving the
program transiently malformed [2]. This “approximates” the experience of a structure editor
in common usage, while allowing the programmer to perform arbitrary text edits when
necessary. Some programming systems, e.g. recent iterations of the Glasgow Haskell Compiler
(GHC) [42] and the Agda proof assistant [32], support a workflow where the programmer
places holes manually at locations in the program that remain under construction. Another
hybrid approach would be to perform error recovery by attempting to insert holes into the
internal representation used by the program editor, without including them in the surface
syntax exposed to programmers. If “pure” structure editing proves too rigid as we design
Hazel, we will explore hybrid approaches.

3 Problem 2: Statically Meaningless Edit States

No matter how an editor confronts syntactically malformed edit states, it must also confront
edit states that are syntactically well-formed but statically meaningless. For example, the
following value member definition (assuming an ML-like language) has a type inconsistency:

val x : float = std(m, ColumnWise)

because std has type matrix(float) * dimension -> vec(float), but the type annota-
tion on x is float, rather than vec(float). This leaves the entire surrounding program
formally meaningless according to a standard static semantics.

In the presence of syntactic holes, the problem of reasoning statically about incomplete
programs becomes even more interesting. Consider the incomplete expression std(m, �)
from cell (a) in Figure 1. Although it is intuitively apparent that the type of this expression,
after hole instantiation, could only be vec(float) (the return type of std), and that the
hole must be instantiated with values of type dimension, the static semantics of complete
expressions is again silent about these matters.

Various heuristic approaches are implemented in Eclipse and other sophisticated tools, but
the formal character of these heuristics are obscure, buried deep within their implementations.
What is needed is a clear static semantics for incomplete programs, i.e. programs that
contain holes (in both expressions and types), type inconsistencies, binding inconsistencies
(i.e. unbound variables), and other static problems. Such a static semantics is necessary for
Hazel to be able to provide type inspection services. For example, in the right column of
Figure 1, Hazel is informing the programmer that the expression at the cursor, highlighted
in blue in cell (a), must be of type dimension). Similarly, Hazel must be able to assign
the incomplete function summary_stats an incomplete function type for it to be able to

C. Omar et al. 11:5

understand subsequent applications of summary_stats. Here, the function body has been
filled out enough to be able to assign the function the following incomplete function type:

matrix(float) -> { mean : vec(float), std : vec(float), median : � }

We have investigated a subset of this problem in recent work [34] by defining a static
semantics for a simply typed lambda calculus (with a single base type, num, for simplicity)
extended with holes and type inconsistencies (but no binding inconsistencies). Figure 2
defines the syntactic objects of this calculus – H-types, τ̇ , are types with holes LM, and
H-expressions, ė, are expressions with holes LM, and marked type inconsistencies, LėM. We
call marked type inconsistencies non-empty holes, because they mark portions of the syntax
tree that remain incomplete and behave semantically much like empty holes. Types and
expressions that contain no holes are complete types and complete expressions, respectively.

We will not reproduce further details here. Instead, let us simply note some interesting
connections with other work.

First, type holes behave much like unknown types, ?, from Siek and Taha’s pioneering
work on gradual typing [41]. This discovery is quite encouraging, given that gradual typing
is also motivated by a desire to make sense of one class of “incomplete program” – programs
that have not been fully annotated with types.

Empty expression holes have also been studied formally, e.g. as the metavariables of
contextual modal type theory (CMTT) [31]. In particular, expression holes can have types
and are surrounded by contexts, just as metavariables in CMTT are associated with types
and contexts. This begins to clarify the logical meaning of a typing derivation in Hazelnut –
it conveys well-typedness relative to an (implicit) modal context that extracts each expression
hole’s type and context. The modal context must be emptied – i.e. the expression holes
must be instantiated with expressions of the proper type in the proper context – before the
expression can be considered complete. This relates to the notion of modal necessity in
contextual modal logic.

For interactive proof assistants that support a tactic model based directly on hole filling,
the connection to CMTT and similar systems is quite salient. For example, Beluga [37] is
based on dependent CMTT and aspects of Idris’ editor support [4] are based on a similar
system – McBride’s OLEG [25]. As we will discuss in Sec. 5, our notion of a program editor
supports actions beyond hole filling.

There are a number of future research directions that are worth exploring.

Binding inconsistencies. In the simple calculus developed so far, all variables must be
bound before they are used, including those in holes. We plan extend Hazelnut to support
reasoning when a variable is mentioned without having been bound (as is a common workflow).
Dagenais and Hendren also studied how to reason statically about programs with binding
errors using a constraint system, focusing on Java programs whose imports are not completely
known [11]. They neither considered programs with holes or other type inconsistencies, nor
did they formally specify their technique. However, they provide a useful starting point.

Expressiveness. The simple calculus discussed above is only as expressive as the typed
lambda calculus with numbers. We must scale up the semantics to handle other modern
language features. Our plan is to focus initially on functional language constructs (so that
Hazel can be used to teach courses that are today taught using Standard ML, OCaml or
Haskell). This will include recursive and polymorphic functions, recursive types, and labeled
product (record) and sum types. We also propose to investigate ML-style structural pattern

SNAPL 2017

11:6 Toward Semantic Foundations for Program Editors

matching. All of these will require defining new sorts of holes and static inconsistencies,
including: (1) non-empty holes at the type level, to handle kind inconsistencies; (2) holes in
label position; and (3) holes and type inconsistencies in patterns.

Automation. Although we plan to explore some of these language extensions “manually,”
extending our existing mechanized metatheory, we ultimately plan to automatically generate
a statics for incomplete terms from a standard statics for complete terms, annotated perhaps
with additional information. There is some precedent for this in recent work on the Gradual-
izer, which is capable of producing a gradual type system from a standard type system with
lightweight annotations that communicate the intended polarities of certain constructs [10].
However, although it provides a good starting point, gradual type systems only consider the
problem of holes in types. Our plan is to build upon existing proof automation techniques,
e.g. Agda’s reflection [48] (in part because our present mechanization effort is in Agda).

4 Problem 3: Dynamically Meaningless Edit States

Modern programming tools are increasingly moving beyond simple “batch” programming
models by incorporating live programming features that interleave editing and evaluation
[44, 43, 26]. These tools provide programmers with rapid feedback about the dynamic
behavior of the program they are editing, or selected portions thereof [27]. Examples
include lab notebooks, e.g. the popular IPython/Jupyter [36], which allow the programmer
to interactively edit and evaluate program fragments organized into a sequence of cells (an
extension of the read-eval-print loop (REPL)); spreadsheets; live graphics programming
environments, e.g. SuperGlue [26], Sketch-n-Sketch [9] and the tools demonstrated by Bret
Victor in his lectures [49]; the TouchDevelop live UI framework [5]; and live visual and
auditory dataflow languages [6]. In the words of Burckhardt et al. [5], live programming
environments “capture the imagination of today’s programmers and promise to narrow the
temporal and perceptive gap between program development and code execution”.

Our proposed design for Hazel combines aspects of several of these designs to form a
live lab notebook interface. It will use the edit state of each cell to continuously update
the output value displayed for that cell and subsequent cells that depend on it. Uniquely,
rather than providing meaningful feedback about the dynamic behavior only once a cell
becomes complete, Hazel will provide meaningful feedback also about the dynamic behavior
of incomplete cells (and thereby further tighten Burckhardt’s “perceptive gap”).

For example, in cell (c) of Figure 1, the programmer applies the incomplete function
summary_stats to the matrix my_data, and the editor is still able to display a result. The
value of the column-wise mean is fully determined, because evaluation does not encounter any
holes, whereas the standard deviation and median computations cannot be fully evaluated.
Notice, however, that the standard deviation computation does communicate the substitution
of the applied argument, my_data, for the variable m.1

To realize this functionality, we need a dynamic semantics for incomplete programs
that builds upon our proposed static semantics. There is some precedent for this: research
in gradual typing considers the dynamic semantics of programs with holes in types, and
our proposed static semantics for incomplete programs borrows technical machinery from

1 To avoid exposing the internals of imported library functions, evaluation does not step into functions,
like std, that have been imported from external libraries indicated by the row at the top of Figure 1
(unless specifically requested, not shown).

C. Omar et al. 11:7

theoretical work on gradual typing [41]. However, we need a dynamic semantics for incomplete
programs that also have expression holes (and in the future, other sorts of holes).

Research on CMTT has not yet considered the problem of evaluating expressions under
a non-empty metavariable context. Normally, this would violate the classical notion of
Progress – evaluation can neither proceed, nor has it produced a value. We conjecture that
this is resolved by (1) positively characterizing indeterminate evaluation states, those where
a hole blocks progress at all locations within the expression, and (2) defining a notion of
Indeterminate Progress that allows for evaluation to stop at an indeterminate evaluation
state. By gradualizing CMTT and defining these notions, we believe we can achieve the
basic functionality described above.

There are several more applications that we aim to explore after developing these initial
foundations. For example, it would be useful for the programmer to be able to select a hole
that appears in an indeterminate state and be taken to its original location. There, they
should be able to inspect the value of a subexpression under the cursor in the environment of
the selected hole (rather than just its type). Again, CMTT’s closures provide a theoretical
starting point for this debugger service.

It would also be useful to be able to continue evaluation where it left off after making
an edit to the program that corresponds to hole instantiation. This would require proving
a commutativity property regarding hole instantiation. Fortunately, initial research on
commutativity properties for holes has been conducted for CMTT, which will serve as a
starting point for this work [31]. There are likely to be interesting new theoretical questions
(and, likely, some limitations) that arise if one adds non-termination and memory effects.

Relatedly, IPython/Jupyter [36] support a feature whereby numeric variable(s) in cells
can be marked as being “interactive”, which causes the user interface to display a slider. As
the slider value changes, the value of the cell is recomputed. It would be useful to be able to
use the mechanisms just proposed to incrementalize parts of this recomputation.

5 Problem 4: A Calculus of Edit Actions

The previous sections considered the structure and meaning of intermediate edit states.
However, to understand the act of editing itself, we need a calculus of edit actions that
governs transitions between these edit states.

In a structure editor, the ideal would be for every possible edit state to be both statically
and dynamically meaningful according to the semantics proposed in the previous two sections.
This corresponds formally to proving a metatheorem about the action semantics: when the
initial edit state is semantically meaningful, the edit state that results from performing an
action is as well. In a textual or hybrid setting, these structured edit actions would need
to be supplemented by lower-level text edit actions that may not maintain this invariant.
In addition to this crucial metatheorem, which we call sensibility, there are a number of
other metatheorems of interest that establish the expressive power of the action semantics,
e.g. that every well-typed term can be constructed by some sequence of edit actions.

In our recent work on Hazelnut, we have developed an action calculus for the minimal
calculus of H-types and H-expressions described in Section 3 [34]. We have mechanically
proven the sensibility invariant, as well as expressivity metatheorems, using the Agda proof
assistant. What remains is to investigate action composition principles. For example, it would
be worthwhile to investigate the notion of an action macro, whereby functional programs
could themselves be lifted to the level of actions to compute non-trivial compound actions.
Such compound actions would give a uniform description of transformations ranging from

SNAPL 2017

11:8 Toward Semantic Foundations for Program Editors

the simple – like “move the cursor to the next hole to the right” – to quite complex whole
program refactorings, while remaining subject to the core semantics. Using proof automation,
it should be possible to prove that an action macro implements derived action logic that
is admissible with respect to the core semantics. This would eliminate the possibility of
“edit-time” errors. This is closely related to work on tactic languages in proof assistants,
e.g. the Mtac typed macro language for Coq [53], differing again in that the action language
involves notions other than hole filling.

6 Problem 5: Meaningful Suggestion Generation and Ranking

The simplest edit actions will be bound to keyboard shortcuts. However, Hazel will also
provide suggestions to help the programmer edit incomplete programs by providing a
suggestion palette, marked (d) in Figure 1. This palette will suggest semantically relevant
code snippets when the cursor is on an empty hole. It will also suggest other relevant edit
actions, including high-level edit actions implemented by imported action macros (e.g. the
refactoring action in Figure 1). When the cursor is on a non-empty hole, indicating a static
error, it will suggest bug fixes. We plan to also consider bugs that do not correspond to
static errors, including those identified explicitly by the programmer, and those related
to assertion failures or exceptions encountered when using the live programming features
of Hazel. In these situations, we plan to build on existing automated fault localization
techniques [18, 38, 39].

Note that features like these are not themselves novel. Many editors provide contextually
relevant suggestions. Indeed, suggestion generation is closely related to several major research
areas: code completion [30, 17], program synthesis [15], and program repair [22, 28, 23, 21].

The problems that such existing systems encounter is exactly the problem we have
been discussing throughout this proposal: when attempting to integrate these features into
an editor, it is difficult to reason about malformed or meaningless edit states. Many of
these systems therefore fall back onto tokenized representations of programs [17]. Because
Hazel will maintain the invariant that every edit state is a syntactically and semantically
meaningful formal structure, we can develop a more principled solution to the problem of
generating meaningful suggestions. In particular, we will be able to prove that every action
suggestion generated for a particular edit state is meaningful for that edit state.

In addition to investigating the problem of populating the suggestion palette with
semantically valid actions, we will consider the problem of evaluating the statistical likelihood
of the suggestions. This requires developing a statistical model over actions. We will prove
that this statistical model is a proper probability distribution (e.g. that it “integrates” to
1), and that it assigns zero probability to semantically invalid actions. We will also develop
techniques for estimating the parameters of these distributions from a corpus of code or a
corpus of edit actions. Collectively, we refer to these contributions as a statistical action
suggestion semantics.

Ultimately, we envision this work as being the foundation for an intelligent programmer’s
assistant that is able to integrate semantic information gathered from the incomplete program
with statistics gathered from other programs and interactions that the system has observed
to do much of the “tedious” labor of programming, without hiding the generated code from
the programmer (as is the case with fully automated program synthesis techniques).

C. Omar et al. 11:9

7 Language-Editor Co-Design

In designing Hazel, we are intentionally blurring the line between the programming language
and the program editor. This opens up a number of interesting research directions in
language-editor co-design. For example, it may be possible to recast “tricky” language
mechanisms, like function overloading, type classes [16], implicit values, and unqualified
imports, as editor mechanisms. Because we will be treating programming as a structured
conversation between the programmer and the programming environment, the editor can
simply ask the programmer to resolve ambiguities when they arise. The programmer’s choice
is then stored unambiguously in the underlying syntax tree.

Another important research direction lies in exploring how types can be used to control
the presentation of expressions in the editor. In the textual setting, we have developed
type-specific languages (TSLs) [33]. It should be possible to define an analagous notion
of type-specific projections (TSPs) in the setting of a structure editor. For example, the
matrix projection shown in Figure 1 need not be built in to Hazel. Instead, the Numerics
library provider will be able to introduce this logic. In particular, TSPs will define not only
derived visual forms, but also derived edit actions (e.g. “add new column” for the example
just given.) It should be possible to switch between multiple projections (including purely
textual projections) while editing code and interacting with values. This line of research is
also related to our work on active code completion, which investigated type-specific code
generation interfaces in a textual program editor (Eclipse) [35].

Another interesting direction is that of semantic, interactive documentation. In particular,
in Hazel, references to program structures that appear in documentation will be treated
in the same way as other references and be subject to renaming and other operations.
Documentation will also be capable of containing expressions of arbitrary types (e.g. of
the Image or Link type). Together with the type-specific projection mechanism mentioned
above, we hope that this will allow Hazel to function not only as a structured programming
environment, but also as a structured document authoring environment! By understanding
hyperlinks as variable references (in, perhaps, a different modality [29]), we may be able to
blur the line between a module and a webpage.

8 Conclusion

To summarize, there are a number of interesting semantic questions that come up in the
design of program editors. We advocate a research program that studies these problems using
mathematical tools previously used to study programming languages and complete programs.
This work will both demystify the design of program editors and open up the doors for a
number of advanced editor services. Ultimately, we envision an intelligent programmer’s
assistant that combines a deep semantic understanding of incomplete programs with a broad
statistical understanding of common idioms to help humans author both programs and
documents (as one and the same sort of artifact.)

Acknowledgments. We thank the SNAPL 2017 reviewers and our paper shepherd Nate
Foster for the thoughtful comments and suggestions.

References
1 Alfred V. Aho and Thomas G. Peterson. A minimum distance error-correcting parser for

context-free languages. SIAM J. Comput., 1(4):305–312, 1972. doi:10.1137/0201022.

SNAPL 2017

http://dx.doi.org/10.1137/0201022

11:10 Toward Semantic Foundations for Program Editors

2 Luís Eduardo de Souza Amorim, Sebastian Erdweg, Guido Wachsmuth, and Eelco Visser.
Principled syntactic code completion using placeholders. In Software Language Engineering
(SLE), 2016. doi:10.1145/2997364.2997374.

3 Dimitar Asenov and Peter Müller. Envision: A fast and flexible visual code editor with fluid
interactions (Overview). In IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), 2014.

4 Edwin Brady. Idris, A General-Purpose Dependently Typed Programming Language: De-
sign and Implementation. Journal of Functional Programming, 23(05):552–593, 2013.

5 Sebastian Burckhardt, Manuel Fahndrich, Peli de Halleux, Sean McDirmid, Michal Moskal,
Nikolai Tillmann, and Jun Kato. It’s alive! continuous feedback in UI programming. In
PLDI, 2013. doi:10.1145/2491956.2462170.

6 Margaret M. Burnett, John W. Atwood Jr., and Zachary T. Welch. Implementing level
4 liveness in declarative visual programming languages. In IEEE Symposium on Visual
Languages, 1998.

7 Philippe Charles. A practical method for constructing efficient LALR (K) parsers with
automatic error recovery. PhD thesis, New York University, 1991.

8 Paul Chiusano. Unison. http://www.unisonweb.org/. Accessed: 2016-04-25.
9 Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. Programmatic and direct

manipulation, together at last. In PLDI, 2016.
10 Matteo Cimini and Jeremy G. Siek. The gradualizer: a methodology and algorithm for

generating gradual type systems. In POPL, 2016.
11 Barthélémy Dagenais and Laurie J. Hendren. Enabling static analysis for partial Java

programs. In OOPSLA, 2008.
12 Maartje de Jonge, Emma Nilsson-Nyman, Lennart C. L. Kats, and Eelco Visser. Natural

and flexible error recovery for generated parsers. In Software Language Engineering (SLE),
2009.

13 Erich Gamma and Kent Beck. Contributing to Eclipse: principles, patterns, and plug-ins.
Addison-Wesley Professional, 2004.

14 Susan L. Graham, Charles B. Haley, and William N. Joy. Practical lr error recovery. ACM
SIGPLAN Notices, 14(8), 1979. doi:10.1145/872732.806967.

15 Sumit Gulwani. Dimensions in program synthesis. In Proceedings of the 12th Interna-
tional ACM SIGPLAN Symposium on Principles and Practice of Declarative Program-
ming, PPDP’10, pages 13–24, New York, NY, USA, 2010. ACM. doi:10.1145/1836089.
1836091.

16 Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L. Wadler. Type
classes in Haskell. ACM Trans. Program. Lang. Syst., 18(2):109–138, 1996.

17 Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu. On
the naturalness of software. In International Conference on Software Engineering (ICSE),
pages 837–847, 2012.

18 James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of test information
to assist fault localization. In International Conference on Software Engineering (ICSE),
pages 467–477, Orlando, FL, USA, 2002. doi:10.1145/581339.581397.

19 Lennart C. L. Kats, Maartje de Jonge, Emma Nilsson-Nyman, and Eelco Visser. Providing
rapid feedback in generated modular language environments: adding error recovery to
scannerless generalized-LR parsing. In OOPSLA, 2009. doi:10.1145/1640089.1640122.

20 Lennart C. L. Kats and Eelco Visser. The Spoofax language workbench: rules for declarative
specification of languages and IDEs. In OOPSLA, 2010.

21 Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. Repairing programs with
semantic code search. In International Conference On Automated Software Engineering
(ASE), 2015.

http://dx.doi.org/10.1145/2997364.2997374
http://dx.doi.org/10.1145/2491956.2462170
http://www.unisonweb.org/
http://dx.doi.org/10.1145/872732.806967
http://dx.doi.org/10.1145/1836089.1836091
http://dx.doi.org/10.1145/1836089.1836091
http://dx.doi.org/10.1145/581339.581397
http://dx.doi.org/10.1145/1640089.1640122

C. Omar et al. 11:11

22 Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. GenProg: A
generic method for automatic software repair. IEEE Transactions on Software Engineering
(TSE), 38:54–72, 2012. doi:10.1109/TSE.2011.104.

23 Fan Long and Martin Rinard. Automatic patch generation by learning correct code. In
POPL, 2016. doi:10.1145/2837614.2837617.

24 Eyal Lotem and Yair Chuchem. Project Lamdu. http://www.lamdu.org/. Accessed:
2016-04-08.

25 Conor McBride. Dependently typed functional programs and their proofs. PhD thesis,
University of Edinburgh. College of Science and Engineering. School of Informatics., 2000.

26 Sean McDirmid. Living it up with a live programming language. In OOPSLA, 2007.
27 Sean McDirmid. Usable live programming. In Proceedings of the 2013 ACM International

Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software,
Onward! 2013, 2013.

28 Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix: Scalable multiline pro-
gram patch synthesis via symbolic analysis. In International Conference on Software En-
gineering (ICSE), 2016.

29 Tom Murphy VII, Karl Crary, and Robert Harper. Type-safe distributed programming
with ML5. In International Symposium on Trustworthy Global Computing, pages 108–123.
Springer, 2007.

30 Kıvanç Muşlu, Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. Improving
IDE Recommendations by Considering Global Implications of Existing Recommendations.
In New Ideas and Emerging Results Track at the 34th International Conference on Software
Engineering (ICSE), 2012.

31 Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory.
ACM Trans. Comput. Log., 9(3), 2008.

32 Ulf Norell. Dependently typed programming in agda. In Advanced Functional Programming,
pages 230–266. Springer, 2009.

33 Cyrus Omar, Darya Kurilova, Ligia Nistor, Benjamin Chung, Alex Potanin, and Jonathan
Aldrich. Safely composable type-specific languages. In ECOOP, 2014.

34 Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and Matthew Hammer.
Hazelnut: A bidirectionally typed structure editor calculus. In POPL, 2017. URL:
https://arxiv.org/abs/1607.04180.

35 Cyrus Omar, YoungSeok Yoon, Thomas D. LaToza, and Brad A. Myers. Active code
completion. In International Conference on Software Engineering (ICSE), 2012.

36 Fernando Pérez and Brian E. Granger. IPython: a system for interactive scientific com-
puting. Computing in Science and Engineering, 9(3):21–29, May 2007. URL: http:
//ipython.org.

37 Brigitte Pientka. Beluga: Programming with dependent types, contextual data, and con-
texts. In International Symposium on Functional and Logic Programming (FLOPS), 2010.
doi:10.1007/978-3-642-12251-4_1.

38 Yuhua Qi, Xiaoguang Mao, Yan Lei, and Chengsong Wang. Using automated program
repair for evaluating the effectiveness of fault localization techniques. In International
Symposium on Software Testing and Analysis, 2013.

39 Manos Renieris and Steven Reiss. Fault localization with nearest neighbor queries. In
IEEE/ACM International Conference on Automated Software Engineering (ASE), 2003.

40 Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn East-
mond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian Silverman, and
Yasmin Kafai. Scratch: Programming for All. Commun. ACM, 52(11):60–67, November
2009. doi:10.1145/1592761.1592779.

SNAPL 2017

http://dx.doi.org/10.1109/TSE.2011.104
http://dx.doi.org/10.1145/2837614.2837617
http://www.lamdu.org/
http://people.cs.umass.edu/brun/pubs/pubs/Muslu12icse-nier.pdf
http://people.cs.umass.edu/brun/pubs/pubs/Muslu12icse-nier.pdf
https://arxiv.org/abs/1607.04180
http://ipython.org
http://ipython.org
http://dx.doi.org/10.1007/978-3-642-12251-4_1
http://dx.doi.org/10.1145/1592761.1592779

11:12 Toward Semantic Foundations for Program Editors

41 Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In Scheme and
Functional Programming Workshop, 2006.

42 Simon Peyton Jones, Sean Leather and Thijs Alkemade. Typed holes in GHC. https:
//wiki.haskell.org/GHC/Typed_holes.

43 Steven L. Tanimoto. VIVA: A visual language for image processing. J. Vis. Lang. Comput.,
1(2):127–139, 1990. URL: http://dx.doi.org/10.1016/S1045-926X(05)80012-6, doi:
10.1016/S1045-926X(05)80012-6.

44 Steven L. Tanimoto. A perspective on the evolution of live programming. In 1st Interna-
tional Workshop on Live Programming, (LIVE), 2013.

45 Tim Teitelbaum and Thomas Reps. The Cornell Program Synthesizer: A Syntax-directed
Programming Environment. Commun. ACM, 24(9):563–573, 1981. doi:10.1145/358746.
358755.

46 Nikolai Tillmann, Michal Moskal, Jonathan de Halleux, and Manuel Fahndrich. TouchDe-
velop: Programming Cloud-connected Mobile Devices via Touchscreen. In SIGPLAN Sym-
posium on New Ideas, New Paradigms, and Reflections on Programming and Software
(Onward!), 2011. doi:10.1145/2048237.2048245.

47 Mark G. J. van den Brand, Arie van Deursen, Jan Heering, H.A. de Jong, Merijn de Jonge,
Tobias Kuipers, Paul Klint, Leon Moonen, Pieter A. Olivier, Jeroen Scheerder, Jurgen J.
Vinju, Eelco Visser, and Joost Visser. The ASF+SDF meta-environment: A component-
based language development environment. In International Conference on Compiler Con-
struction (CC), 2001.

48 Paul Van Der Walt and Wouter Swierstra. Engineering proof by reflection in Agda. In
Symposium on Implementation and Application of Functional Languages, 2012.

49 Bret Victor. Inventing on principle. Invited talk, Canadian University Software Engineering
Conference (CUSEC), 2012.

50 Markus Voelter. Language and IDE Modularization and Composition with MPS. In In-
ternational Summer School on Generative and Transformational Techniques in Software
Engineering, pages 383–430. Springer, 2011.

51 Markus Voelter, Daniel Ratiu, Bernhard Schaetz, and Bernd Kolb. Mbeddr: An Extensible
C-based Programming Language and IDE for Embedded Systems. In SPLASH, 2012. doi:
10.1145/2384716.2384767.

52 Markus Voelter, Janet Siegmund, Thorsten Berger, and Bernd Kolb. Towards User-
Friendly Projectional Editors. In Software Language Engineering (SLE), 2014. doi:
10.1007/978-3-319-11245-9_3.

53 Beta Ziliani, Derek Dreyer, Neelakantan R Krishnaswami, Aleksandar Nanevski, and Viktor
Vafeiadis. Mtac: A monad for typed tactic programming in Coq. Journal of Functional
Programming, 25:e12, 2015.

https://wiki.haskell.org/GHC/Typed_holes
https://wiki.haskell.org/GHC/Typed_holes
http://dx.doi.org/10.1016/S1045-926X(05)80012-6
http://dx.doi.org/10.1016/S1045-926X(05)80012-6
http://dx.doi.org/10.1016/S1045-926X(05)80012-6
http://dx.doi.org/10.1145/358746.358755
http://dx.doi.org/10.1145/358746.358755
http://dx.doi.org/10.1145/2048237.2048245
http://dx.doi.org/10.1145/2384716.2384767
http://dx.doi.org/10.1145/2384716.2384767
http://dx.doi.org/10.1007/978-3-319-11245-9_3
http://dx.doi.org/10.1007/978-3-319-11245-9_3

	Introduction
	Problem 1: Syntactically Malformed Edit States
	Problem 2: Statically Meaningless Edit States
	Problem 3: Dynamically Meaningless Edit States
	Problem 4: A Calculus of Edit Actions
	Problem 5: Meaningful Suggestion Generation and Ranking
	Language-Editor Co-Design
	Conclusion

