Let's Fix OpenGL

Adrian Sampson

Cornell University, Ithaca, NY, USA
asampson@cs.cornell.edu

—— Abstract

From windowing systems to virtual reality, real-time graphics code is ubiquitous. Programming
models for constructing graphics software, however, have largely escaped the attention of pro-
gramming languages researchers. This essay introduces the programming model of OpenGL, a
ubiquitous API for real-time graphics applications, for a language-oriented audience. It high-
lights six broad problems with the programming model and connects them to traditions in PL

research. The issues range from classic pitfalls, where established thinking can apply, to new
open problems, where novel research is needed.

1998 ACM Subject Classification D.3.m Miscellaneous
Keywords and phrases language design, real-time graphics, OpenGL, GPUs, heterogeneity

Digital Object Identifier 10.4230/LIPIcs.SNAPL.2017.14

1 Throwing Some Shader

Nearly every consumer computing device on the market, from smartwatch to workstation,
comes with a graphics processing unit (GPU). Any software that renders graphics in real time
must exploit a GPU for reasonable performance, which entails programming to one of the
mainstream APIs that graphics cards support. GPU vendors have settled on two common
GPU interfaces, OpenGL [42] and Direct3D [31], so graphics software almost exclusively
builds on one of these two APIs.

OpenGL and Direct3D may have been created as hardware abstractions, but they do
double duty as programming models. The two APIs use a common structure consisting of
two components: a full-fledged programming language for writing programs that run on the
GPU, and a set of C functions for communicating between the CPU and an attached GPU.
Both components contend with a vast array of classic problems in programming languages:
abstraction and reuse; the need to avoid obscure run-time errors; expressiveness without
sacrificing performance; and so on. The APIs, however, have largely avoided adopting the
answers that programming languages research has developed to these problems — even basic,
conventional wisdom in our community has escaped the design of graphics APIs.

This essay introduces OpenGL and its pitfalls for the PL-minded reader and advocates
for more research that applies language ideas to this underserved domain. It enumerates
six language problems that OpenGL programmers face and proposes possible directions for
solving them. Some problems invite straightforward applications of established traditions in
PL research, and others are open problems without clear solutions. Despite its difficulties,
GPU-accelerated graphics programming is enormously popular — it underlies a $90 billion
global video game industry, for example [32] — so research that addresses its shortcomings
has potential for real-world impact.

Graphics programming also represents the tip of the spear for heterogeneous programming,
the general problem of orchestrating separate, specialized hardware units in a single program.
As the capabilities of traditional CPUs stagnate, software will need to exploit increasingly

© Adrian Sampson;
37 licensed under Creative Commons License CC-BY

2nd Summit on Advances in Programming Languages (SNAPL 2017).
Editors: Benjamin S. Lerner, Rastislav Bodik, and Shriram Krishnamurthi; Article No. 14; pp. 14:1-14:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SNAPL.2017.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2

Let’s Fix OpenGL

// Vertexz shader: // Fragment shader:

in vec4 position; in vec4 fragPos;

in float dist; void main() {

out vec4 fragPos; gl_FragColor = abs(fragPos);
void main() { }

fragPos = position;
gl_Position = position + dist;

}
Listing 1 A GLSL shader pair.

exotic hardware to continue making advances [38]. Ensembles of oddball hardware beyond
the GPU, from FPGAs to fixed-function units, will only increase the need for heterogeneous
programming models with the same set of challenges as OpenGL.

2 Graphics Programming with OpenGL

This section dissects a tiny OpenGL program.! While this essay does not illustrate Direct3D
directly, the programming model there is similar and exhibits similar pitfalls.

2.1 Shader Programs

The soul of a real-time graphics application is its shader programs. A shader is a short
program that runs on the GPU as part of the rendering pipeline to define the shape and
appearance of objects in the scene. There are several kinds of shaders, but the two most
common are the vertex shader and the fragment shader, which respectively compute the
position of each vertex in 3D space and the color of each pixel on an object’s surface. In
OpenGL, shaders are written in the special-purpose GLSL programming language, which
is a variant of C. Direct3D has its own shader language, HLSL, which is a similar but
incompatible C variant.

Listing 1 shows a vertex and fragment shader in GLSL. Each shader consists of a main
function and some global definitions. The global definitions use in and out qualifiers to mark
variables that represent the shader’s inputs and outputs. In this vertex shader, for example,
a position vector and a dist scalar both come from the CPU. This shader assigns the magic
gl_Position variable to this parameter — this is the vertex shader’s output. The position
value is only available at the first stage — in the vertex shader — so more work is required to
pass it along to the fragment stage. This shader pair declares a second variable, fragPos, in
both programs to hold the position value from the vertex stage and make it available in the
fragment stage. Finally, the fragment shader uses fragPos as an input to compute its output:
the gl_FragColor magic variable.

2.2 Shaders are Strings

GLSL code only runs on the GPU. Host code on the CPU uses a traditional general-purpose
language — usually C or C++. To draw an object in a 3D scene, the host code needs to
compile the GLSL source code to the GPU’s internal instruction set, send its parameters,
and invoke it. Each GPU vendor uses a different internal representation for shaders, so GLSL

! Details are omitted here for focus. Full source code is online: http://adriansampson.net/doc/tinygl/.

http://adriansampson.net/doc/tinygl/

A. Sampson

// Embed shader source code in string literals.
static const char *vertex_shader = "in vec4 position; ...";
static const char *fragment_shader = "in vec4 fragPos; ...";

// Compile the vertex shader.
GLuint vshader = glCreateShader (GL_VERTEX_SHADER);
glShaderSource (vshader, 1, &vertex_shader, 0);

// Compile the fragment shader.
GLuint fshader = glCreateShader (GL_FRAGMENT_SHADER) ;
glShaderSource (fshader, 1, &fragment_shader, 0);

// Link the pair together.

GLuint program = glCreateProgram();
glAttachShader (program, vshader);
glAttachShader (program, fshader);
glLinkProgram(program) ;

Listing 2 Compiling a shader pair.

source is the lingua franca that provides compatibility: every GPU driver includes its own
GLSL compiler.

Listing 2 shows the C boilerplate for compiling and linking a vertex/fragment shader pair.

Here, the GLSL source code is embedded in the executable using a string literal; it is also
common to use fopen to load the source from a text file when the program starts up. Later,
to draw an object in a frame, the host code uses the program reference to tell the GPU which
linked shader pair to use when drawing an object.

2.3 CPU-GPU Coordination

To supply the shaders’ inputs, the host code looks up location handles for each in variable in
the GLSL code. There are two main options: the shader code can mark each variable with a
fixed index, or the host code can look the variables up by name. Listing 3 shows the latter,
which manifests as a series of glGet*Location calls.

Our example shaders use two kinds of input variables: position is a vertezr attribute,
meaning that it takes a different value for every invocation of the vertex shader’s main
function; and dist is a uniform, so it remains constant across the object’s vertices. For
attributes, the program needs to allocate a buffer representing the GPU’s memory region for
the variable.

Finally, to draw each frame, the program selects the compiled shader pair with a call
to glUseProgram(program). Then, to provide a value for the position attribute, it executes
glBufferSubData to copy data from the host memory — i.e., a plain C array — to the GPU-side
buffer. For the uniform, the render loop uses a glUniform* call to set the variable.

3 Problems & Potential Solutions

Even this abridged example should raise some language-design alarms in the mind of a
PL researcher. The problems start, but do not end, with the ordinary infelicities of any
aging C API design: hidden state, minimal static safety checks, and so on. This section
enumerates six obstacles in graphics programming. The first problems are classic pitfalls
with established answers in the PL literature on language extensibility, static safety, and

14:3

SNAPL 2017

14:4

Let’s Fix OpenGL

// Setup code:

// Look up shader variable locations.
GLuint loc_position = glGetAttribLocation(program, "position");
GLuint loc_dist = glGetUniformLocation(program, "dist");

// Allocate a buffer for the attribute.

GLuint buffer;

glGenBuffers(1l, &buffer);

glBindBuffer (GL_ARRAY_BUFFER, buffer);
glVertexAttribPointer(loc_position, size, GL_FLOAT, GL_FALSE, 0, 0);

/o
// In the render loop:

glUseProgram(program) ;

// Copy the wvertexr positions into the buffer.
glBufferSubData(GL_ARRAY_BUFFER, O, sizeof(vertices), vertices);

// Set the uniform variable.
glUniformif (loc_dist, 4.0);

Listing 3 Communicating with the shaders.

metaprogramming. Here, real-time graphics represents a new application domain for existing
lines of research. The final three issues expose new open problems that pertain specifically
to graphics: rate-oriented language formalisms, type systems for linear algebra, and defining
“correctness” for visual systems.

3.1 Shader Languages are Subsets of Supersets of C

GLSL and its Direct3D equivalent, HLSL, are for the most part plain, everyday imperative
programming languages. They have variable declarations, if conditions, for loops, function
calls, and global mutable state — just like any ordinary imperative language. Shader languages,
however, are unique, one-off reinventions that resemble C without being clean extensions.
The distinction makes life more difficult for programmers, who need to carefully keep track
of the subtle differences between GLSL and “real” C. In C, for example, the name of the
type declared by struct t {...} is struct t; in GLSL as in C++, the name is just t. In
C++, variable declarations can appear inside an if condition; in GLSL as in C, they cannot.
These myriad incompatibilities make it difficult to move code between the CPU and GPU.

The need for ad hoc language extension also complicates compiler implementations: current
compilers either need to reinvent a complete C-like parser and compiler from scratch [24]
or hack an existing frontend such as GCC or Clang. Both approaches are error prone:
recent work by Donaldson et al. [11, 12] has revealed crashing bugs in a staggering array
of vendor-supplied GLSL compilers. Apple’s new Metal shading language [1] is based on
the C++14 standard, but even it relies on a custom Clang fork with informal restrictions on
certain features, such as subclassing and recursive calls.

Potential solutions. Shader languages’ needs are not distinct enough from ordinary imper-
ative programming languages to warrant ground-up domain-specific designs. They should

A. Sampson

should instead be implemented as extensions to general-purpose programming languages.
There is a rich literature on language extensibility [34, 23, 37] that could let implementations
add shader-specific functionality, such as vector operations, to ordinary languages. The po-
tential productivity benefit is large, especially for host languages other than C: programmers
could opt for more diverse languages without needing to context-switch to C-like syntax and
semantics to write shader code.

Some existing work implements embedded DSLs for generating GLSL code [41, 6, 3, 13,
29, 28, 5, 30, 2, 26|, which is a useful first step. But this embedded approach yields code that
looks much different from the host language. It also typically requires that host programs
generate GPU code on the fly, at run time. A language-extension approach could match
the syntax and semantics of the host language without incurring the cost of dynamic code
generation.

3.2 Loose CPU-to-GPU and Stage-to-Stage Coupling

In OpenGL, interactions between the CPU and GPU are stringly typed: the glGet*Location
calls in Listing 3 look up variables in the shader programs by their names. Communication
between shaders is similarly brittle: the two separate programs in Listing 1 need to agree on
a name for fragPos, which must not conflict with the CPU-to-GPU name position. Even
though both C and GLSL are statically typed languages, neither compiler can statically check
their naming agreement. Shader source code is only compiled after the host code begins
executing, and the program might arbitrarily pair vertex and fragment shaders together.

The lack of static semantics comes with all the same productivity pitfalls as programming
in a dynamic language like JavaScript. Typos in variable names are not reported until run
time; type errors are similarly deferred; refactoring tools in IDEs are hobbled; and static
compilers must conservatively eschew optimizations. Regardless of opinions on static typing,
programmers tend to agree that at least an unsound, optional lint-like static checker can be
helpful — but OpenGL programmers do not enjoy even that basic luxury.

Potential solutions. Language research should endeavor to clean up the abstractions
between shader code and CPU code. At a bare minimum, CPU-GPU and inter-stage
communication must be made type safe. In the near term, researchers should explore
backwards-compatible approaches to giving static semantics to complete C++/GLSL hybrid
programs. A program analysis could ingest the OpenGL API calls in the host code and
the variable declarations in the shader code to check that they align and to propagate
type information between the two languages. A sound analysis that rules out any possible
CPU-GPU disagreement may be too difficult to achieve, but even a best-effort checker could
help avoid unnecessary run-time failures.

In the long term, more research should unify CPU-GPU programming in a single language
that spans the CPU and all GPU stages. Communicating a value from the vertex stage to
the fragment stage should introduce no more syntactic or cognitive overhead than defining
and referencing a variable. Instead of relying on the programmer to divide the complete
computation into stages, the compiler should take responsibility for splitting CPU host code
from GPU shader code.

In a hypothetical unified programming model, the primary question is how much to rely
on compiler automation and where to use explicit programmer control. A binding-time
analysis [33], for example, could automatically determine the earliest possible stage for
each computation, but earlier is not always better: running code once on the CPU and
communicating it to the GPU can be more costly than running the same code redundantly

14:5

SNAPL 2017

14:6

Let’s Fix OpenGL

on the GPU. Two recent languages from the graphics community, Spark [16] and Spire [21],
propose to use a type system instead. Type annotations let the programmer control where
and when each expression in a unified program is executed. I am currently exploring a
similarly explicit design where a multi-stage programming language [45] models the GPU’s
pipeline stages.

3.3 Massive Metaprogramming

Performance is a first-order concern in real-time graphics, so programmers need to avoid all
unnecessary overhead in shader programs. To avoid the overhead that comes with generality,
applications typically generate many specialized variants of more general shader programs
called dbershaders [19]. An {ibershader for metal materials, for example, might combine
many parameterized effects to support different settings for color, shininess, damage, rust,
texture, and so on. Ubershaders are convenient for artists and other non-programmers,
who can tweak parameters to design a specific effect without writing any code. But these
monolithic designs pay a performance penalty for their generality: pervasive parameters
incur CPU-GPU communication overheads and add costly branching to the shader code.

To avoid these overheads, some implementations recover efficient shader code by generating
specialized shader programs that “bake in” each set of parameters and strip out unneeded
functionality. Shader specialization occurs at a massive scale: modern video games can
generate hundreds of thousands of shader variants [22, 21]. The only tool OpenGL offers
for shader specialization, however, is the C preprocessor with its familiar #define and
#ifdef directives. Unhygienic token-stream rewriting may not be so bad for small-scale
metaprogramming, but it does not scale to large-scale shader specialization. Graphics
programmers resort to developing ad hoc toolchains to stitch together snippets of GLSL code
into whole shader programs [49].

Potential solutions. The urgent need for programmable specialization of general shader
programs is an opportunity for metaprogramming research. Graphics programmers should
be able to write and reuse libraries of tactics for manipulating shader code for efficiency.
Both run-time and compile-time metaprogramming can be useful: while it is less common in
current practice, dynamic specialization could eliminate some shader overhead that is out of
reach for static techniques.

Metaprogramming techniques from the programming languages community are up to
the task. They can enforce safe program generation [45], allow composition of compile-time
macros from multiple, independent libraries [15], and even incorporate dynamic profiling
data [8]. Shader specialization represents an opportunity to stretch the scalability of this
classic work. Where most work on metaprogramming focuses on implementing language
extensions or generating a single target program, shader specialization requires the system
to synthesize thousands of variants and choose between them at run time. The massive scale
creates new challenges: programmers may need new mechanisms to limit specialization, for
example, to stay within practical limits.

3.4 Informal Semantics for Multiple Execution Rates

Each stage in a GPU’s graphics pipeline runs at a different rate. Interactions between the
rates have subtle implications for the semantics of complete, multi-shader programs. The
fragment shader, for example, runs many times for every execution of the vertex shader: it
interpolates the pixels between adjacent vertices on a surface. The values passed between

A. Sampson 14:7

the vertex and fragment stage are also interpolated. The fragPos variable in Listing 1 is
exactly equal to position in the vertex shader, but it takes on interpolated values in the
fragment shader. Therefore, an expression involving fragPos has subtly different semantics
depending on which stage it appears in. The story gets more complicated with other shader
types: geometry shaders, for example, operate on multiple adjacent vertices simultaneously.

The OpenGL standard defines the meaning of each stage individually. It does not attempt
a general theory for the semantics of arbitrary shader rates and their interaction. If future
generations of GPUs introduce new programmable stages to the graphics pipeline, each new
rate will need a new ad hoc definition. Some work defines the semantics of general-purpose
GPU programming models such as CUDA [18, 20, 27], but these simpler GP-GPU languages
do not have multi-rate execution or fixed-function interpolation logic. Programmers are left
with only informal descriptions of the semantics of interacting systems of shader programs.

Potential solutions. Language research should develop a core calculus for massively parallel,
multi-rate programs. Programs in a hypothetical Agpy-calculus would describe how and
when state from one stage becomes visible to a set of parallel invocations in another stage.
The new multi-rate semantics may resemble an existing multi-stage semantics [45, 14] where
control flows linearly through a series of nested stages. Graphics-specific phenomena such as
inter-stage interpolation should also be made explicit in this calculus. In Agpy, researchers
could not only formalize the semantics of real, mainstream GPUs but also explore the space
of alternative GPU designs to inform future hardware development.

3.5 Latent Types for Linear Algebra

Graphics code — both inside shaders and in host code — consists mainly of vector and matrix
operations. Points in space are floating-point vectors (called vec3 or vec4 in GLSL) and
transformations between vector spaces are represented as 4 x4 matrices (the mat4 type). Every
realistic system of shaders needs to juggle a handful of common vector spaces: typically, a
model space, where vectors are relative to a specific object’s position; world space, which
all objects share; camera space, relative to the camera’s perspective; and projection space,
relative to the 2D canvas where the scene will be drawn.

Shader code is correspondingly littered with duplicate variables that represent the same
vector in different spaces. For example, most programs pass model, view, and projection
matrices to their shaders, each of which can transform from one vector space to the next.
Shaders then create camera-space and world-space versions of input vectors and use them
in computations. For example, lighting models for simulating reflections typically start by
computing the angle of light, which involves subtracting the light source position vector from
the model’s position vector:

in mat4 model, view, projection;
in vec4 position; // in object space
in vec4 light_position; // in world space
void main() {
vec4 position_camera = view * model * position;
vec4 position_world = model * position;
/o
vec4 light_direction = light_position - position_world;

}

The subtraction 1ight_position - position_world happens in world space. The result would
be meaningless if the program instead used position_camera: the spaces do not match. There

SNAPL 2017

14:8

Let’s Fix OpenGL

are clearly legal and illegal ways to combine matrices and vectors, but the shader language
offers no help with enforcing these rules: programmers resort to naming conventions and
boilerplate to keep things straight.

Potential solutions. The vector-space problem in graphics code is an opportunity for type
system research. A linear-algebra type system could take inspiration from type systems
for units of measure: the type of a vector value would tag it with a vector space. The
corresponding transformation matrix would be marked with a pair of vector spaces: the
space it translates from and the one it translates to. For example, a vector v might have
type vecd<A> to indicate that it is in space A, and a matrix m of type mat4<A, B> would
translate from vector space A to B. Using these two argument types, the type system can
give the multiplication expression m * v the type vec4. It is an error to multiply v by a
different matrix of type mat4<C, D> where C' # A because the result has no meaningful vector
space. This hypothetical type system could automate the process of tagging vectors and
checking their correspondence. Because a vector space type is defined by a transformation
matrix value, such a linear-algebra type system may benefit from exploiting a dependent
type system [44].

Beyond basic checking, the type system could help synthesize the appropriate transfor-
mations rather than relying on the programmer to write the boilerplate. For example, a
new expression form v in B could automatically find the right matrix to multiply by v to
produce a B-space vector. This implicit approach would avoid the need for a convoluted
naming scheme to distinguish position vs. position_camera vs. position_world. Synthesiz-
ing transformations automatically would also enable new optimizations: a tool could avoid
redundant computation and communication by separating vector-space transformations from
the main program text. For example, an expression (vi * v2) in B can be computed by
first transforming both vectors into space B and then multiplying them; equivalently, the
program might multiply the vectors in some other space and then transform the product.
These diverging possibilities form a search space for synthesis.

3.6 Visual Correctness and Quality Trade-Offs

While learning to program my first few shaders, I implemented the textbook Phong lighting
model [36], a “hello world” of shader programming. In my first implementation, I made a
mistake I cautioned against in the previous section: I used the wrong vector when converting
between vector spaces. This single-token bug got lost amid the conversion boilerplate. The
result, depicted in Figure 1a, looked ugly: the reflections were too intense and failed to light
the entire object. It was not bad enough, however, to raise suspicion — I assumed that the
simplistic lighting algorithm itself was to blame. According to my version control logs, the
bug stayed in place for nine months before I found and fixed it (Figure 1b). The problem
was that the result, while incorrect, was plausible enough that it was not clearly incorrect.

Testing and verification tools only work when programmers are willing to specify cor-
rectness, and specifying correctness is particularly difficult in graphics. The human visual
system’s tolerance to error makes it challenging to define correctness for rendering systems.
Is a bug really a bug if most humans do not notice anything wrong with a scene? How do you
write a unit test for “visual correctness”? Based on conversations with graphics programmers,
testing seems to be very rare: developers instead make incremental changes and spot-check
them manually to deem the output acceptable.

Beyond bugs, graphics programmers also intentionally compromise visual quality in
return for efficiency. Real-time graphics animations are not perfect recreations of the real

A. Sampson

(a) Buggy. (b) Correct (probably).

Figure 1 Output from a buggy and corrected implementation of the Phong lighting model. The
difference is obvious now but was hard to detect without a ground-truth comparison.

world; it is more important that they maintain a high frame rate than for every object
to look as realistic as a ray-traced reference image. Applications can even dynamically
switch between multiple levels of detail for the same object depending on its salience in a
given scene [22]. Tt is typically up to the programmer to manually select and implement
quality-compromising optimizations, although some recent graphics work has proposed to
automate the process [22, 48, 43, 35].

Potential solutions. Controlling output quality is the central challenge in approzrimate
computing research [39, 9, 7, 40]. Researchers should treat graphics programming as an
instance of approximate computing: the same set of statistical quality controls could apply.

Software engineering research should seek to understand how graphics programmers
currently reason about correctness. What ad hoc processes have developers invented to
cope with a world where perfect correctness is unachievable and bugs are in the eye of the
beholder? With this baseline understanding, languages research can build tools to improve
existing modify-and-check workflows. Recent work on live coding [17], for example, could
help shorten the cognitive distance from source code modifications to visual feedback. More
radical tools could seek to alleviate the need for manual output inspection — for example, by
incorporating crowdsourced opinions [4].

4 Postscript

Like any outmoded but entrenched programming model, OpenGL remains universal despite
its flaws. Many content designers avoid interacting with graphics APIs directly by building
on monolithic game engines such as Unity [46] or Unreal [47], which sacrifice flexibility in
exchange for abstraction. And real-world programmers can be wary of new language tools
from academia, so adoption will be slow for research on graphics programming — even for
proposals that unambiguously improve on the status quo.

However, 2017 is a particularly fertile moment for new ideas in real-time graphics
programming. The standards body that specifies OpenGL recently published the largest
change yet to its recommendations: Vulkan [25] is a ground-up redesign. Vulkan is a
response to industry demands for a lower-level API than OpenGL [10], which hides too
many performance knobs that software needs to tune. While OpenGL played a dual role
as a hardware abstraction layer and a programming layer and arguably failed at both,
Vulkan promises to abandon the pretense of being programmable: it is designed solely as a
system abstraction. This shift has the potential to create an ecosystem of new, high-level

14:9

SNAPL 2017

14:10

Let’s Fix OpenGL

programming tools that build on top of Vulkan and finally dislodge OpenGL’s monopoly on
graphics programming. The iron is hot, and programming languages research should strike.

Acknowledgments. Conversations with Yong He, Kayvon Fatahalian, and Tim Foley intro-

duced me to real-time graphics programming and its infelicities. Their patient explanations

pointed me in this direction. Todd Mytkowicz and Kathryn McKinley endured my early floun-

dering with language design questions while I visited Microsoft Research. The anonymous

SNAPL reviewers and Pat Hanrahan were exceptionally insightful with their suggestions for

framing.
—— References

1 Apple. Metal shading language specification, version 1.2. https://developer.apple.com/
metal/metal-shading-language-specification.pdf.

2 Chad Austin and Dirk Reiners. Renaissance: A functional shading language. In ACM
SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, 2005.

3 Baggers. Varjo: Lisp to GLSL language translator. https://github.com/cbaggers/
varjo.

4 Daniel W. Barowy, Charlie Curtsinger, Emery D. Berger, and Andrew McGregor. AutoMan:
A platform for integrating human-based and digital computation. In ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), 2012.

5 Tobias Bexelius. GPipe. http://hackage.haskell.org/package/GPipe.

6 Kovas Boguta. Gamma. https://github.com/kovasb/gamna.

7 Brett Boston, Adrian Sampson, Dan Grossman, and Luis Ceze. Probability type inference
for flexible approximate programming. In ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA), 2015.

8 William J. Bowman, Swaha Miller, Vincent St-Amour, and R. Kent Dybvig. Profile-guided
meta-programming. In ACM Conference on Programming Language Design and Implemen-
tation (PLDI), 2015.

9 Michael Carbin, Sasa Misailovic, and Martin Rinard. Verifying quantitative reliability of
programs that execute on unreliable hardware. In ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), 2013.

10 Advanced Micro Devices. Mantle programming guide and API reference 1.0. https://wuw.
amd . com/Documents/Mantle-Programming-Guide-and-API-Reference.pdf.

11 Alastair F. Donaldson. Crashes, hangs and crazy images by adding zero. Medium, Novem-
ber 2016. https://medium.com/@afd_icl/689d15ce922b.

12 Alastair F. Donaldson and Andrei Lascu. Metamorphic testing for (graphics) compilers. In
Workshop on Metamorphic Testing (MET), 2016.

13 Conal Elliott. Programming graphics processors functionally. In Haskell Workshop, 2004.

14 Nicolas Feltman, Carlo Angiuli, Umut A. Acar, and Kayvon Fatahalian. Automatically
splitting a two-stage lambda calculus. In Furopean Symposium on Programming (ESOP),
2016.

15 Matthew Flatt. Composable and compilable macros: You want it when? In ACM SIG-
PLAN International Conference on Functional Programming (ICFP), 2002.

16 Tim Foley and Pat Hanrahan. Spark: Modular, composable shaders for graphics hardware.
In SIGGRAPH, 2011.

17 Mark Guzdial. Trip report on Dagstuhl seminar on live coding, September 2013.
Blog@CACM. URL: http://cacm.acm.org/blogs/blog-cacm/168153.

18 Axel Habermaier. The model of computation of CUDA and its formal semantics. Master’s

thesis, Institut fir Informatik, Universitat Augsburg, 2011.

https://developer.apple.com/metal/metal-shading-language-specification.pdf
https://developer.apple.com/metal/metal-shading-language-specification.pdf
https://github.com/cbaggers/varjo
https://github.com/cbaggers/varjo
http://hackage.haskell.org/package/GPipe
https://github.com/kovasb/gamma
https://www.amd.com/Documents/Mantle-Programming-Guide-and-API-Reference.pdf
https://www.amd.com/Documents/Mantle-Programming-Guide-and-API-Reference.pdf
https://medium.com/@afd_icl/689d15ce922b
http://cacm.acm.org/blogs/blog-cacm/168153

A. Sampson

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35
36

37

38

39

40

41

Shawn Hargreaves. Generating shaders from HLSL fragments. In ShaderX8: Advanced
Rendering with DirectX and OpenGL. 2004.

Chris Hathhorn, Michela Becchi, William L. Harrison, and Adam M. Procter. Formal
semantics of heterogeneous CUDA-C: a modular approach with applications. In Conference
on Systems Software Verification (SSV), 2012.

Yong He, Tim Foley, and Kayvon Fatahalian. A system for rapid exploration of shader
optimization choices. In SIGGRAPH, 2016.

Yong He, Tim Foley, Natalya Tatarchuk, and Kayvon Fatahalian. A system for rapid,
automatic shader level-of-detail. In SIGGRAPH Asia, 2015.

Gorel Hedin and Eva Magnusson. JastAdd: An aspect-oriented compiler construction
system. Science of Computer Programming, 47:37-58, 2003.

Khronos Group. glslang. https://github.com/KhronosGroup/glslang.

Khronos Vulkan registry. https://www.khronos.org/registry/vulkan/.

LambdaCube 3D. http://lambdacube3d.com.

Guodong Li, Peng Li, Geof Sawaya, Ganesh Gopalakrishnan, Indradeep Ghosh, and
Sreeranga P. Rajan. GKLEE: Concolic verification and test generation for GPUs. In ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP), 2012.
Michael McCool, Stefanus Du Toit, Tiberiu Popa, Bryan Chan, and Kevin Moule. Shader
algebra. In SIGGRAPH, 2004.

Michael McCool, Zheng Qin, and Tiberiu S. Popa. Shader metaprogramming. In ACM
SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, 2002.

Sean McDirmid. Two lightweight DSLs for rich Ul programming. http://research.

microsoft.com/pubs/191794/1ds109.pdf.

Microsoft. Direct3D. https://msdn.microsoft.com/en-us/library/windows/desktop/
hh309466 . aspx.

Newzoo. Top 100 countries by 2015 game revenues, 2015. https://newzoo.com/insights/
articles/newzoos-top-100-countries-by-2015-game-revenues/.

F. Nielson and R. H. Nielson. Automatic binding time analysis for a typed A-calculus. In
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
1988.

Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot: An extensible
compiler framework for Java. In Compiler Construction (CC), 2003.

Fabio Pellacini. User-configurable automatic shader simplification. In SIGGRAPH, 2005.
Bui Tuong Phong. Ilumination for computer generated pictures. Communications of the
ACM, 18(6):311-317, June 1975.

Tiark Rompf, Arvind K. Sujeeth, Nada Amin, Kevin J. Brown, Vojin Jovanovic, Hy-
oukJoong Lee, Manohar Jonnalagedda, Kunle Olukotun, and Martin Odersky. Optimizing
data structures in high-level programs: New directions for extensible compilers based on
staging. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), 2013.

Adrian Sampson, James Bornholt, and Luis Ceze. Hardware—software co-design: Not just
a cliché. In Summit on Advances in Programming Languages (SNAPL), 2015.

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and
Dan Grossman. EnerJ: Approximate data types for safe and general low-power computation.
In ACM Conference on Programming Language Design and Implementation (PLDI), 2011.
Adrian Sampson, Pavel Panchekha, Todd Mytkowicz, Kathryn S. McKinley, Dan Grossman,
and Luis Ceze. Expressing and verifying probabilistic assertions. In ACM Conference on
Programming Language Design and Implementation (PLDI), 2014.

Carlos Scheidegger. Lux: the DSEL for WebGL graphics. http://cscheid.github.io/
lux/.

14:11

SNAPL 2017

https://github.com/KhronosGroup/glslang
https://www.khronos.org/registry/vulkan/
http://lambdacube3d.com
http://research.microsoft.com/pubs/191794/ldsl09.pdf
http://research.microsoft.com/pubs/191794/ldsl09.pdf
https://msdn.microsoft.com/en-us/library/windows/desktop/hh309466.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh309466.aspx
https://newzoo.com/insights/articles/newzoos-top-100-countries-by-2015-game-revenues/
https://newzoo.com/insights/articles/newzoos-top-100-countries-by-2015-game-revenues/
http://cscheid.github.io/lux/
http://cscheid.github.io/lux/

14:12

Let’s Fix OpenGL

42

43

44

45
46

47
48

49

Mark Segal and Kurt Akeley. The OpenGL 4.5 graphics system: A specification. https:
//www.opengl.org/registry/doc/glspecd5. core.pdf.

Pitchaya Sitthi-Amorn, Nicholas Modly, Westley Weimer, and Jason Lawrence. Genetic
programming for shader simplification. In SIGGRAPH Asia, 2011.

Chris Stucchio. Type-safe vector addition with dependent types, December
2014. https://www.chrisstucchio.com/blog/2014/type_safe_vector_addition_
with_dependent_types.html.

Walid Taha and Tim Sheard. Multi-stage programming with explicit annotations. In ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation (PEPM), 1997.
Unity game engine. https://unity3d.com.

Unreal game engine. https://www.unrealengine.com/.

Rui Wang, Xianjin Yang, Yazhen Yuan, Wei Chen, Kavita Bala, and Hujun Bao. Automatic
shader simplification using surface signal approximation. ACM Transactions on Graphics,
33(6), November 2014.

Steven Wittens. ShaderGraph: Functional GLSL linker. https://github.com/unconed/
shadergraph.

https://www.opengl.org/registry/doc/glspec45.core.pdf
https://www.opengl.org/registry/doc/glspec45.core.pdf
https://www.chrisstucchio.com/blog/2014/type_safe_vector_addition_with_dependent_types.html
https://www.chrisstucchio.com/blog/2014/type_safe_vector_addition_with_dependent_types.html
https://unity3d.com
https://www.unrealengine.com/
https://github.com/unconed/shadergraph
https://github.com/unconed/shadergraph

	Throwing Some Shader
	Graphics Programming with OpenGL
	Shader Programs
	Shaders are Strings
	CPU–GPU Coordination

	Problems & Potential Solutions
	Shader Languages are Subsets of Supersets of C
	Loose CPU-to-GPU and Stage-to-Stage Coupling
	Massive Metaprogramming
	Informal Semantics for Multiple Execution Rates
	Latent Types for Linear Algebra
	Visual Correctness and Quality Trade-Offs

	Postscript

