
The End of History? Using a Proof Assistant to
Replace Language Design with Library Design∗

Adam Chlipala1, Benjamin Delaware2, Samuel Duchovni3,
Jason Gross4, Clément Pit-Claudel5, Sorawit Suriyakarn6,
Peng Wang7, and Katherine Ye8

1 MIT CSAIL, Cambridge, MA, USA
adamc@mit.edu

2 Purdue University, West Lafayette, IN, USA
bendy@purdue.edu

3 MIT CSAIL, Cambridge, MA, USA
dukhovni@mit.edu

4 MIT CSAIL, Cambridge, MA, USA
jgross@mit.edu

5 MIT CSAIL, Cambridge, MA, USA
cpitcla@mit.edu

6 MIT CSAIL, Cambridge, MA, USA
sorawit@mit.edu

7 MIT CSAIL, Cambridge, MA, USA
wangp@mit.edu

8 Carnegie Mellon University, Pittsburgh, PA, USA
kqy@cs.cmu.edu

Abstract
Functionality of software systems has exploded in part because of advances in programming-
language support for packaging reusable functionality as libraries. Developers benefit from the
uniformity that comes of exposing many interfaces in the same language, as opposed to stringing
together hodgepodges of command-line tools. Domain-specific languages may be viewed as an
evolution of the power of reusable interfaces, when those interfaces become so flexible as to deserve
to be called programming languages. However, common approaches to domain-specific languages
give up many of the hard-won advantages of library-building in a rich common language, and
even the traditional approach poses significant challenges in learning new APIs. We suggest that
instead of continuing to develop new domain-specific languages, our community should embrace
library-based ecosystems within very expressive languages that mix programming and theorem
proving. Our prototype framework Fiat, a library for the Coq proof assistant, turns languages into
easily comprehensible libraries via the key idea of modularizing functionality and performance
away from each other, the former via macros that desugar into higher-order logic and the latter
via optimization scripts that derive efficient code from logical programs.

1998 ACM Subject Classification F.3.1 [Specifying and Verifying and Reasoning about Pro-
grams] Mechanical Verification, F.4.1 [Mathematical Logic] Mechanical Theorem Proving, Logic
and Constraint Programming, I.2.2 [Automatic Programming] Program Synthesis

∗ This work has been supported in part by NSF grants CCF-1253229, CCF-1512611, and CCF-1521584; and
by DARPA under agreement numbers FA8750-12-2-0293 and FA8750-16-C-0007. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government.

© Adam Chlipala, Benjamin Delaware, Samuel Duchovni, Jason Gross, Clément Pit-Claudel,
Sorawit Suriyakarn, Peng Wang, and Katherine Ye;
licensed under Creative Commons License CC-BY

2nd Summit on Advances in Programming Languages (SNAPL 2017).
Editors: Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi; Article No. 3; pp. 3:1–3:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


3:2 Using a Proof Assistant to Replace Language Design with Library Design

Keywords and phrases Domain-specific languages, synthesis, verification, proof assistants, soft-
ware development

Digital Object Identifier 10.4230/LIPIcs.SNAPL.2017.3

1 The Case for Replacing Languages with Libraries in a Proof
Assistant

As a programmer today, it is hard to imagine getting anything done without constant reuse
of libraries with rather broad APIs. Complex production software systems weave together
many different libraries hosted in a single language where integration is eased by a shared
vocabulary of concepts like objects, functions, types, and modules. We can imagine piecing
together similar end products from Frankenstein’s monsters of distinct languages for different
styles of programming, tied together with command-line tools and heroic build processes.
Most of us are glad not to live in a world where that is the best option, however, considering
several key advantages of the language-integrated approach.

Learnability. To learn an arbitrary programming language, one might turn to its reference
manual, which is prone to imprecision and likely to become out-of-date; or one might
try to read the language’s implementation, which unavoidably mixes in implementation
details irrelevant to the user. In contrast, a library in a statically typed language inherits
“for free” a straightforward characterization of the valid programs: precisely those that
type check against the API, which is written out in a common formalism.
Interoperability. With all libraries defining first-class ingredients that live in a common
formalism, it becomes easier to code, for example, polymorphic operations that generalize
over any such ingredients.
Correctness. The developers of the chosen language implementation need to worry about
getting it right, but then authors of individual libraries may rely on the language’s
encapsulation features to limit how much damage bugs in their libraries can inflict on
other libraries and their private state.

All in all, we programmers can pat ourselves on the backs for collectively coming up with
such a satisfyingly effective approach to building big things out of smaller, very general things.
However, we claim there remain many opportunities to improve the story. Domain-specific
languages (DSLs) are a paradigm growing in popularity, as programmers find that the API
formalisms of general-purpose languages are not flexible enough to fit important packages of
reusable functionality. Instead, a new notation is invented that allows much more concise
and readable descriptions of desired functionality in a particular domain. DSLs have found
widespread success in a range of domains, including HTML+CSS for layout, spreadsheet
formulas for tabular data, and Puppet for system configurations. For programmer-facing
tasks, DSLs such as SQL and BNF have been adopted widely, to the point that they are the
standard solutions for interacting with databases and building parsers, respectively. Despite
these isolated success stories, DSLs have not reached the ubiquity of library-based solutions in
the average programmer’s toolbox. Simply implementing a new DSL can require considerable
effort, if one chooses to build a freestanding compiler or interpreter. Alternatively, we might
have an embedded DSL that actually is a library within a general-purpose language, but which
delineates its own new subset of that language with a rather distinctive look, perhaps calling
library combinators to construct explicit abstract syntax trees. We claim both strategies
introduce substantial friction to widespread adoption of DSLs.

http://dx.doi.org/10.4230/LIPIcs.SNAPL.2017.3


A. Chlipala et al. 3:3

Learnability. A DSL with a freestanding implementation is just as unlearnable as a new
general-purpose programming language, thrown at the programmer out of the blue. An
embedded DSL may be easier to learn, by reading the static type signature that defines
it, though we claim that often this type signature is complicated by limitations of the
host language, and it almost never expresses semantics (in fact, in many cases, the host
language is a dynamically typed Lisp-like language).
Interoperability. Freestanding DSL implementations bring on all the pain that we
congratulated ourselves on avoiding above. For instance, freestanding parser generators
force the use of Makefiles or similar to coordinate with the main program, while the
database query language SQL has notoriously bad coupling to general-purpose languages,
for instance relying on APIs that present queries as uninterpreted strings and invite
code-injection vulnerabilities. Embedded DSLs tend to appear to the programmer as their
own fiefdoms with their own types of syntax trees, which rarely nest naturally within
each other without giving up the performance from clever compilation schemes.
Correctness. The kind of metaprogramming behind a language implementation is chal-
lenging even for the best programmers, and it is only marginally easier for compact DSLs
than for sprawling marquee general-purpose languages. It may make sense to invest in
producing a correct Java compiler with traditional methods, but the necessary debugging
costs may prove so impractical as to discourage the creation of new DSLs with relatively
limited scopes.

How could we reach back toward the advantages of libraries as natural APIs within a single
host language? Our core suggestion in this paper is to modularize functionality away from
performance. So much of programming’s complexity comes from performance concerns. Let us
adopt an extreme position on the meaning of the word, taking it even to encompass concerns
of computability, where typically it is not sufficient to write an unambiguous description
of desired program behavior; we must express everything algorithmically. Imagine, instead,
that the programmer is liberated from concerns of performance, being able to write truly
declarative programs that state what is desired without how to achieve it. Every part of a
program is expressed with its most natural notation, drawing on the libraries that take over
for DSLs, exporting notations, among other conveniences. However, each notation desugars
to a common language expressive enough to cover any conceivable input-output behavior,
even uncomputable ones.

At this point, the programmer has codified a precise specification and is ready to make it
runnable. It is time to introduce performance in a modular way. We follow the tradition of
program derivation by stepwise refinement [8], but in a style where we expect the derivation
process to be automatic. Every program mixes together derivation procedures drawn from
different libraries, with each procedure custom-designed to handle the notations of that library.
The end result is a proof-producing optimization script that strings together legal moves
to transform specifications into efficient executable code. By construction, no optimization
script can lead to an incorrect realization of an original program/specification.

This style promotes learnability with self-documenting macro definitions that are
readable by the programmers who apply the macros, with each definition desugaring a
parsing rule into a common higher-order logic, written for clarity and without any concern
for performance; interoperability by the very use of that logic as the common desugaring
target1; and correctness by codifying legal moves to transform specifications toward efficient
code in optimization scripts.

1 A caveat on the interoperability front, considering a popular alternative reading of that word, is that we
are not primarily concerned with integrating with legacy systems. We are happy to design a clean-slate
platform where libraries interface nicely, assuming that they commit to a new style of design.

SNAPL 2017



3:4 Using a Proof Assistant to Replace Language Design with Library Design

Assuming one buys into this pitch, what would be the ideal platform for unifying all the
ingredients? One proposal would be to leverage an existing language with metaprogram-
ming features. Indeed, Racket’s implementation of languages as libraries [38] and Scala’s
Lightweight Modular Staging (LMS) framework [32] enable programs to be written at a
high level and then compiled to efficient implementations in order to achieve “abstraction
without regret” through a combination of macros and syntax transformations. While both
these approaches come close to achieving our goal, they both require that initial programs be
executable, thereby imposing some algorithmic requirements on them, and they require the
user to trust that the metaprograms implementing transformations are semantics-preserving.

In order to enable programmers to focus on how and not what, we propose using a very
expressive logic and a macro system that desugars into it as the host language. We also
need a way to code heuristics for transforming programs in that logic. In other words, we
have a two-level language, with an object language of specifications and a metalanguage for
manipulating specifications. The metalanguage should work in a correct-by-construction way,
where we can be sure that no transformation breaks program semantics. The combination of
these features enables a reimagination of embedded DSLs to have clean, declarative semantics
unpolluted by concerns of executability, but which still result in efficient implementations.

Many readers will not be surprised at this point that we have described the core features
of modern proof assistants! Such popular ones as Coq and Isabelle/HOL fit the bill; we
chose Coq. All of the widely used proof assistants have their rough edges today, but we
do imagine a future where more polished proof assistants serve as the IDEs of everyday
programming in this style (and we hope that our experiments can help identify the best ways
to go about that polishing). Our prototype framework Fiat [7] already makes it possible
to code interesting programs inside of Coq, with extensibility plus strong separation of
functionality from performance, generating assembly code with a proof of conformance to
original functionality specifications. In the rest of this paper we review the core of Fiat, give
some old and new examples of notation domains therein, and indulge in more philosophizing
and speculation than we usually would in a conference paper.

2 A Flexible Core Language for Declarative Programs

The heart of the Fiat concept is a unified, flexible language for writing out the functionality
of programs. We write these declarative programs using macros defined by domain libraries,
but each macro has a simple syntax-mapping rule, so macros cannot be used directly to
encode complex logic. Instead, we need a core language under the hood that we believe
can be used to encode any reasonable program specification. Rather than reinventing the
wheel, we start from Gallina, the logic of our favorite proof assistant Coq, which is already
well-known from successful mechanized proofs from algebra [10] to compiler correctness [26].

However, the original program is not the end of the story, and there are reasons to add
more superstructure on top of Gallina. We transform initial declarative programs gradually
into efficient executable programs, and it is helpful to maintain the same core language for
original programs, intermediate programs, and final executable programs. For that purpose,
we chose the nondeterminism monad, also used in concurrent work by Lammich [21] on
stepwise refinement in a different proof assistant.

We define our type family P of computations using the pun that the familiar notation
for the powerset operator may also be thought of as standing for “program.” The standard
monad operators are defined as follows and can be proved to obey the monad laws, in terms



A. Chlipala et al. 3:5

of the standard semantics of the set-theory operators we employ.

return : ∀α. α→ P(α)
return = λx. {x}

bind : ∀α, β. P(α)→ (α→ P(β))→ P(β)
bind = λc1, c2.

⋃
x∈c1

c2(x)

We introduce the usual shorthand x← c1; c2 for bind c1 (λx. c2). Now we can write a variety
of useful (though potentially non-executable) programs that periodically pick elements from
mathematical sets. For instance, here is a roundabout and redundant way to express the
computation of any odd natural number.

a ← {n ∈ N | ∃ k ∈ N. n = 2 × k};
b ← {m ∈ N | ∃ k ∈ N. m = 1 + 2 × k};
return (a + b)

Similarly, here is how one might compute the sum of the integer zeroes of a polynomial:
zs ← {xs ∈ list N | NoDuplicates xs ∧ ∀ x, P(x) = 0 ⇔ x ∈ xs};
return (foldl (+) 0 zs)

More ominously, here is a program (referring to the set B of Booleans) that we should
probably not try too hard to refine into an executable version.

b ← {b ∈ B | b = true ⇔ P = NP};
if b then return 42
else return 23

This example also illustrates the relational character of the nondeterminism monad: defining
computations using logical predicates makes it trivial to integrate potentially uncomputable
logical functionality with standard functional programming. For instance, we use the normal
if construct of Gallina, rather than defining our own. Such natural integration may even
lull the programmer into a false sense of security, as in the above example, where choosing
a branch of a conditional requires resolving a major open question in theoretical computer
science! (It is at least fairly straightforward to formalize the proposition “P = NP” in a
general-purpose proof assistant like Coq.)

We choose the superset relation ⊇ as our notion of refinement between computations. We
also sometimes read c1 ⊇ c2 as “c2 implements c1.” In general, c2 should be more algorithmic
or more performant than c1, and we chain together many such steps on the path to a final
efficient program. For instance, by this definition, our example with odd numbers refines
into return 7, because {n | n is odd} ⊇ {7}.

It is also crucial that we have effective tools for rewriting in computations, since rewriting
is a convenient way to structure refinement steps. Theorems like this one justify the use of
standard rewriting rules:

∀α, β, c1 : P(α), c′
1 : P(α), c2 : (α→ P(β)). c1 ⊇ c′

1 ⇒ bind c1 c2 ⊇ bind c′
1 c2 .

Applying this theorem with the fact {n ∈ N | ∃k ∈ N. n = 2 × k} ⊇ {4} lets us refine the
odd-number example above into this form:

a ← return 4;
b ← {m ∈ N | ∃ k ∈ N. m = 1 + 2 × k};
return (a + b)

From here, the monad laws allow us to remove the bind for a, substituting the value 4 for
bound occurrences of a. Instead of simplifying, we could also apply an analogous theorem
that justifies rewriting under binders, in the second term argument of bind.

SNAPL 2017



3:6 Using a Proof Assistant to Replace Language Design with Library Design

a.m(r, i) b.m(t, i)

(r′, o) (t′, o)

≈

∈ ∈

∃ r′

≈

Figure 1 Refinement preserves similarity of internal values.

The nondeterminism monad provides a concise language for capturing a program’s
algorithmic content. To provide a complete declarative programming language, however, we
need to add in the second element of the classic equation “programs = algorithms + data
structures.” To finish the story, Fiat also supports data refinement [14], allowing programs
to operate over an abstract data model, introducing efficient data structures as part of
the refinement process via an abstraction relation [15]. Consider the following declarative
program, which filters out any number that is at least 100 in a set s:

return s ∩ {n | n < 100}

One reasonable implementation of this program replaces sets with splay trees and uses their
split operation to perform the filter:

return fst(split(s, 100))

These two programs clearly return similar results, in the sense that the splay tree produced
by the latter has the same elements as the set produced by the former, assuming the initial
data had this relationship. We can get more formal with the following abstraction relation:
s ≈ t , ∀n. n ∈ s ↔ n ∈ elements(t). Parameterizing the refinement relation over such
relations captures this notion of similarity between a declarative program, succinctly stated
with datatypes that are more abstract, and an implementation, which uses optimized data
structures.

Under this approach, the behavior of an implementation depends on the abstraction
relation used during refinement. As an example, every data type in the specification
could be related to the unit type, to produce a valid but uninteresting refinement. In
order to understand a refined program, a programmer cannot simply examine its initial
specification – it is also necessary to consider the specific abstraction relation that produced
that implementation. This requirement contradicts our proposed learnability criterion. It
is also inherently antimodular, as any client of a refined program needs to be refined via
the same abstraction relation. In order to enable modular reasoning while still permitting
data-structure optimizations, Fiat exploits the familiar notion of data encapsulation provided
by abstract data types (ADTs).

An ADT packages an internal representation type and a set of operations that build
and manipulate values of that type. Fiat restricts data refinements to the representation
types of ADTs. Clients are unable to observe the choice of data structure for an ADT’s
representation type thanks to representation independence, freeing an implementation to
optimize its representation as it sees fit. In Fiat, an ADT specification uses an abstract
model for its representation type and has operations that live in the nondeterminism monad,
while an implementation is a valid refinement under an abstraction relation that is limited to
optimizing the representation type. Intuitively, every implementation of an operation takes
similar internal values to similar internal values, and its observable outputs are elements of
the original specification, as illustrated by Figure 1. Thus, in contrast to other refinement



A. Chlipala et al. 3:7

frameworks that allow arbitrary data refinements [6, 22], in Fiat a client can understand the
behavior of a refined ADT just by looking at its specification.

3 Integrating DSLs

To demonstrate the flexibility of this approach in action, we present the development of a
simple packet filter in Fiat. At a high level, such a filter has two components: decoding the
“on-the-wire” binary packet into an in-memory representation and then consulting a set of
rules to decide whether to drop or forward the packet. Each of these two algorithmic tasks
can be expressed using a domain-specific language implemented as a Fiat library; we begin
with a brief overview of the two appropriate libraries.

The domain of the first library is the decoding of bitstrings into high-level in-memory
datatypes, compatibly with some specified binary format. For simplicity, we consider
deterministic binary formats, where every datatype has a single valid encoded representation.
In this setting, a format can be captured as a function from the original datatype to its
encoding, as in the following encoder for a record with two fields:

T , {A : string, B : list int}
encode (t : T) , encodeInt(len(t!B)) ++ encodeString(t!A) ++ encodeList(t!B)

This format combines together existing encoders for strings, lists, and integers, using the
last to encode the length of the list in t.B, which the decoder will need to decode this field
correctly. Given such a format, the specification of a decoder is straightforward:

decode (s : BitString) , {t | encode(t) = s}

Here we have used the nondeterminism monad to capture the fundamental correctness
condition succinctly for a binary decoder. The library also supports derivation of such an
implementation via conditional refinement rules, examples of which are given in Figure 2.
Each rule is a theorem in higher-order logic, and, to derive a particular decoder automatically,
the optimization script chains together rule applications in rewriting style (with the crucial
consequence that applying optimization scripts cannot lead to incorrect programs). The first
two rules decode the head of the bitstring before decoding the rest under the assumption
that some projection f of the encoded datatype is equal to the decoded value. Subsequent
derivation steps can make use of this information, e.g. the correctness of DecodeList
depends on a previously decoded length value. The final rule, FinishDecoding, is used
to finish a derivation when enough information has been decoded to determine the original
datatype uniquely. An implementation of a decoder can be derived automatically using these
(generic) rules, plus a rule for decoding integers:

{t | encodeInt(len(t.B)) ++ encodeString(t.A) ++ encodeList(t.B) = s}

⊇ let (n, s) = decodeInt(s) in
{t | len(t.B) = n ∧ encodeString(t.A) ++ encodeList(t.B) = s}

(DecInt)

⊇ let (n, s) = decodeInt(s) in let (a, s) = decodeString(s) in
{t | len(t.B) = n ∧ t.A = a ∧ encodeList(t.B) = s}

(DecString)

⊇ let (n, s) = decodeInt(s) in let (a, s) = decodeString(s) in
let (l, s) = decodeList(s, n) in {t | len(t.B) = n ∧ t.A = a ∧ t.B = l ∧ [] = s}

(DecList)

⊇ let (n, s) = decodeInt(s) in let (a, s) = decodeString(s) in
let (l, s) = decodeList(s, n) in if s = [] then {A , a; B , l} else fail

(FinishDec)

The key takeaways here are: given a binary format, writing an initial, declarative decoder is
immediate and obvious, and while its implementation is more complicated, the correctness of

SNAPL 2017



3:8 Using a Proof Assistant to Replace Language Design with Library Design

{t | P(t) ∧ encodeString(f(t)) ++ s′ = s} ⊇
let (v, s) = decodeString(s) in

{t | P(t) ∧ f(t) = v ∧ s′ = s}

(DecodeString)

∀x. P(x)→ len(f(x)) = n

{t | P(t) ∧ encodeList(f(t)) ++ s′ = s} ⊇
let (v, s) = decodeList(s, n) in

{t | P(t) ∧ f(t) = v ∧ s′ = s}

(DecodeList)

∀x. P(x)↔ x = v

{t | P(t) ∧ [] = s} ⊇ if s = [] then v else fail
(FinishDecoding)

Figure 2 Refinement rules for deriving binary decoders.

empty , ∅
For x in i b , table ← {l | i ∼ l};

foldR (λ a b ⇒ l ← a; l’ ← b; return (l ++ l’))
(return []) (map (λ x ⇒ b) table)

Where P b , {l | P → l ∈ b ∧ ¬ P → l = []}
Return a , return [a]
Count b , results ← b; return length(results)

Figure 3 Notations for querying sets (relation ∼ constrains a list to contain some permutation of
the elements of a set).

one built by an optimization script is guaranteed by (proof-producing) refinement. Note also
that the process is extensible without expanding the trusted code base, in that incorporating
a decoder for a new type is as simple as writing a new decoder and proving the corresponding
refinement rule.

The next library used in our packet filter is a DSL for writing SQL-like programs. The
notations provided by this library, examples of which are shown in Figure 3, desugar into
basic set- and list-comprehension operations. The Where notation showcases the extensibility
provided by our core framework, as a clause uses an arbitrary predicate to filter the set in
contrast to, say, SQL. Consider a declarative function that finds the size of an island in a set:

island , {name : string, size : int, temp : int}
islands : set of island
sizeOf (name) , For i in islands Where i!name = name Return i!size

Just as in SQL, the notation provides for a concise description of both the program and its
functionality, as it desugars into an expression using familiar set operations. Also as with SQL,
the key challenge in executing this program is selecting data structures supporting the needed
searches. A user of this library can write out only the abstract model of the representation
type of an ADT and then rely on the optimization script to solve this implementation
challenge via data refinement. A pleasant consequence of encapsulating the sets inside the
ADT’s representation type is that “whole-program analysis” becomes possible: we can write
optimization scripts that examine exactly the queries (and updates) that we have exposed,
automatically tailoring a data representation to efficient execution of those operations. Our
relational-data library does just that, using plugins to incorporate user-provided (and user-
proved) data-structure strategies, relying on the correctness guarantees provided by the core
of the framework to ensure that they preserve the functionality of the original programs.

These two libraries demonstrate how our approach promotes learnability by enabling
concise, declarative specifications of functionality, while also maintaining correctness in the



A. Chlipala et al. 3:9

face of extensibility via a machine-checked refinement trail. To round out our wish list with
interoperability, we can see that they also play nicely with each other by combining them
together to build a packet filter:

packet , {src : word, name : list string, qtype : int}
rule , {name : list string, qtype : int, approve : boolean}
rules , set of rule
decide (s : BitString) , p ← {p : packet | encodePacket(p) = s};

ans ← For r in rules
Where r!name isPrefixOf p!name
Where r!qtype = p!qtype
Return r!approve;

return (head ans)

This example mixes the notations of the two libraries with normal functions (e.g. head), and it
uses a custom isPrefixOf predicate in the Where clause of the query. More importantly, the
optimization script that produces an implementation is also able to mix the implementation
strategies provided by the libraries to handle the implementation tasks in both domains,
automatically synthesizing the decoder for packets and selecting a data structure that
supports prefix queries (tries, in this case).

4 Related work

There is a long history [8, 20, 29, 1] of using program transformations and stepwise refinement
to obtain correct-by-construction, efficient implementations from specifications (albeit not
necessarily in an automated fashion). Recent developments differ in guarantees obtained
about the refined programs, intended application domains, degrees and styles of automation,
and extensibility. Similarly, there is a rich line of academic work [12, 16, 2, 40] on the
design and applicability of domain-specific languages: in fact, most early programming
languages had domain-specific roots before they grew into general-purpose languages (LISP,
the list processor for symbolic manipulations and AI; COBOL, the common business-oriented
language; and FORTRAN, the formula translator for numerical computations). The following
is a limited sampling of tools closely related to Fiat.

Stepwise Refinement Frameworks

The family of tools encompassing KIDS, DTRE, and Specware [34, 3, 37] allows users to
decompose high-level specifications progressively into more and more concrete subproblems,
until a concrete implementation can be supplied for each subproblem. The refinement style is
similar to the one used by Fiat, with the main differences in how refinement steps are justified
(Fiat is embedded in Coq and transparently exports a Coq proof obligation, while Specware
relies on trusted proof-obligation generators to produce Isabelle/HOL goals justifying each
transformation), target languages (Specware uses unverified transformations to extract C
code, while the original Fiat system produces executable Gallina programs), composability
(Fiat programs can be integrated into larger software developments verified in Coq), sound
extensibility (Fiat tactics are proof-producing programs that run no risk of introducing
unsoundness), and application domains (Fiat is mostly used for “simple” domains that lend
themselves well to DSL development and admit clear specifications, allowing for a single
refinement script to cover a large fraction of all programs expressible in the corresponding

SNAPL 2017



3:10 Using a Proof Assistant to Replace Language Design with Library Design

DSL; Specware, on the other hand, has been used to synthesize correct-by-construction
collections of complex algorithms, such as garbage collectors [30] or SAT solvers [35]).

Leon [19] is a deductive synthesis framework for deriving verified recursive functions on
unbounded data types. Leon combines built-in recursion schemas, exhaustive enumeration,
and counterexample-guided synthesis to generate the bodies of functional programs according
to formally expressed postconditions. When the implementation chosen by the system is
correct but not satisfactory, Leon users have the option to step in and perform refinement
steps (verified refactorings) manually. Fiat has also been used to synthesize recursive
programs [11] and uses less general automation: instead of a single synthesizer intended to
cover all possible programs, Fiat specifications are refined using domain-specific optimization
scripts that usually employ mostly deterministic strategies without backtracking. Users
are free to introduce new rewriting steps and refinement strategies to achieve the desired
performance characteristics.

Cohen et al. [6] used a notion of data refinement close to that of Fiat to develop and verify
a rich algebra library in Coq: starting with high-level definitions written using “proof-oriented”
data structures amenable to simple verification, the authors use data refinement to obtain
an implementation with more efficient data structures satisfying the same guarantees. Our
approach is different, in that we start from a potentially noncomputational, nondeterministic
specification, which we refine to an implementation. We furthermore restrict data refinements
to the representation types of ADTs, obviating the need for transporting proofs across an
entire program.

Data-Structure Synthesis and Selection

Automatic data-structure selection was pioneered in SETL [33], a high-level language where
programmers manipulate sets and associative maps through high-level primitives such as
comprehensions and quantifiers, without committing to specific implementations of the
underlying data structures. Instead, the SETL compiler employs a sophisticated static
analysis to make concrete data-structure choices. Fiat’s decoupling of specifications and
performance yields a similar process. Unlike SETL, Fiat imposes no restrictions on the kind
of data structures that can be used, the ways they can be combined, and the type of hints
that programmers can give to the compiler to nudge it towards specific implementations.
Fiat’s sound extensibility makes it possible to substitute newly verified data structures at
any step in the refinement.

More recently, Loncaric et al. [28] have built Cozy, a system for efficiently synthesizing a
broad range of data structures, starting from a restricted DSL of data-retrieval operations
and generating efficient object-oriented code using counterexample-guided inductive synthesis.
Cozy synthesizes a high-level functional implementation of each operation using exhaustive
enumeration augmented with a cost model to prune the search space, and from there deduces
a good data representation, optionally using real-world benchmarks to autotune the selection.
Though there are close similarities between the input language of Cozy and Fiat’s SQL-style
application domain, Fiat uses a mostly deterministic domain-specific compiler and hand-
verified refinements instead of exhaustive enumeration and a general-purpose verifier. Fiat’s
SQL-style domain can in a sense be seen as an extensible proof-producing query planner,
with strong extensibility granted by integration in a proof assistant. This vision provides
an alternative answer to one of Cozy’s original motivations, replacing unpredictable and
hard-to-extend SQL engines.

Closely related to Cozy is Hawkins et al.’s RelC synthesizer [13], which decouples the
relational view of the data from its in-memory representation (specified as a combination of



A. Chlipala et al. 3:11

basic data structures such as hash tables, vectors, or linked lists) by automatically deriving
low-level implementations of user-specified relational accessors and mutators compatible
with the chosen representation. Fiat has a similar input language but provides stronger
correctness guarantees and allows for proof-producing extensions to the existing compilation
logic (Fiat optimization scripts cannot perform unsound transformations). Fiat is additionally
an open-ended system, allowing users to combine multiple DSLs and use their respective
compilers to synthesize parts of a larger verified program covered by end-to-end guarantees.

Leino and Milicevic [25] proposed dividing the effort of programming a verified component
into three parts: a public interface providing a mathematical model of the object; a data-
structure specification describing the layout and invariants of the underlying implementation;
and an executable implementation of the data structure. Jennisys, a prototype implementation
of this idea, allows users to synthesize the code part of a component automatically by
extrapolating from pre- and postcondition-conforming input and output examples generated
using the Dafny [24] program verifier. Fiat shares some of Jennisys’ synthesis objectives but
applies to different domains, does not commit to specific data layouts and implementation
details, and rejects the traditional regime of dividing a program into data structures and
algorithms (phrasing problems in terms of functionality and performance).

Domain-Specific Synthesis

The binary encoders and decoders presented in Section 3 are similar in spirit to programs
written using bidirectional lens combinators in the Boomerang [4] programming language.
A single Boomerang program represents a pair of transformation functions between source
and target domains. Compiling a Boomerang program produces both a map from source to
target and an inverse function guaranteed to propagate changes from a target back to the
generating source object.

Many domains beyond the ones that we have focused on are amenable to our ap-
proach. SPIRAL [9] is a framework for automatically deriving high-performance digital
signal-processing code. Bellmania [17] is a recent framework for deriving cache-efficient
implementations of divide-and-conquer algorithms. Bellmania uses a unified formalism to
encompass both relatively high-level specifications of dynamic programs and their low-level
implementations, allowing programmers to derive cache-efficient code through expert applica-
tion of trusted solver-aided tactics, a carefully crafted set of built-in program transformations.
Bellmania uses an SMT solver to ensure that each tactic is used soundly and to assist users
by synthesizing code fragments from concrete inputs and traces.

Domain-Specific Languages

More broadly, there is a large body of work on DSL design and implementation. Leijen
and Meijer [23] introduce and highlight the advantages of embedding DSLs in higher-order
typed languages. Kats and Visser have developed the Spoofax [18] language workbench,
a metaprogramming framework encompassing DSL parsers, compilers, and IDE support.
Tobin-Hochstadt et al. [38] used Racket to implement the high-performance Typed Racket
language. Van der Storm et al. [39] use object grammars to define compositional DSLs.

5 Discussion and Future Directions

Many past systems have done principled generation of code from specifications, using either
combinatorial search (e.g., with a SAT solver in Sketch [36]) or deductive derivation (e.g.,

SNAPL 2017



3:12 Using a Proof Assistant to Replace Language Design with Library Design

with Specware [37]). What is the secret sauce that distinguishes Fiat from these past systems?
We claim it is the careful combination of correct-by-construction automation with manual
design of abstractions and decomposition of programs into modules. Fundamentally, Fiat is a
refinement of today’s standard wisdom in software development: there is no silver bullet for
solving all design and implementation problems. Instead, developers need to work hard to
design proper abstractions (e.g., classes, libraries). In the best case, many abstractions are
highly reusable. However, when working in an unfamiliar programming domain, we expect
to develop a few new abstractions, probably in concert with reusing many familiar ones. Fiat
is not a program-synthesis system that generates code automatically from specifications in a
fixed domain. Such systems have inherent limitations and are unlikely to scale in isolation to
the full software-development problem. At the same time, Fiat is not a manual-derivation
system in the style of Specware. Instead, Fiat embodies a new style of modular program
decomposition, where some modules are similar to traditional programs, though they support
higher-order logic in place of algorithmic constructs; while other modules are more unusual,
implementing automated strategies for deriving good code from the other modules. The
programmer still faces a difficult and manual task in decomposing a program in this way,
but the principled use of formal logic and correct-by-construction rewriting dramatically
dampens the traditional pain points that we have emphasized throughout this paper.

We hope that the Fiat approach or one like it can earn a place on the standard list of
abstraction and modularity techniques for practical programming. The central idea is to
allow separate coding of the functionality and performance parts of a program, which we see
as a natural evolution of the implementation/interface distinction of data abstraction [27]:
the interface becomes the declarative program itself, one that is specific enough that we are
happy with any compatible implementation, which we then derive automatically with a short
optimization script that soundly combines nontrivial procedures from libraries. Of course,
remembering all of the folk stories of genies run amok when their users wish incautiously, it
is a tall order to design a specification discipline that minimizes unintended consequences.
At a minimum, the technique needs to be extended with performance requirements as part of
functionality, and no doubt some aspects of security should be added explicitly, too, though
many of them are implied by functional correctness.

Our ongoing work gives library authors broad discretion in crafting high-performance
optimization strategies by connecting to a proof-carrying-code system [5], admitting optimiza-
tion rules that refine functional programs into assembly code, in concert with requirements
to link against handwritten, low-level, verified implementations of imperative data struc-
tures [31]. We are also thinking about and prototyping a number of other domains with
simple declarative starting points and effective correct-by-construction optimization strategies:
textual formats specified by context-free grammars, SMT-style solvers specified by logical
theories, and optimized big-integer cryptographic primitives specified by whiteboard-level
math. There also seems to be no shortage of more far-out ideas that fit into the framework.
We would like to, for instance, replace make and other build systems with use of a Fiat-style
framework. Instead of writing “compile a.c into a.o using gcc,” the build configuration
would read “choose an element of the set of object files meeting a fixed semantic contract
with the following C AST.” That is, a (verified) compiler is just a relatively predictable kind
of optimization script. Combinators could be used to mix together all such directives into
build specifications for whole projects, oriented toward proving top-level project theorems,
protecting against bugs in a variety of internal development tools.



A. Chlipala et al. 3:13

Acknowledgments. The first author was inspired to start a project in this research area by
conversations with Daniel S. Wilkerson and Simon Goldsmith about their unpublished work.
For their helpful feedback, we thank the anonymous SNAPL reviewers and our shepherd
Jean-Baptiste Tristan.

References

1 David R. Barstow. Domain-specific automatic programming. IEEE Softw., 11(11):1321–
1336, November 1985. doi:10.1109/TSE.1985.231881.

2 Jon Bentley. Programming pearls: Little languages. Commun. ACM, 29(8):711–721, Au-
gust 1986. doi:10.1145/6424.315691.

3 Lee Blaine and Allen Goldberg. DTRE – a semi-automatic transformation system. In
Constructing Programs from Specifications, pages 165–204. Elsevier, 1991.

4 Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre Pilkiewicz, and Alan
Schmitt. Boomerang: resourceful lenses for string data. In Proc. POPL, pages 407–419,
2008. doi:10.1145/1328438.1328487.

5 Adam Chlipala. The Bedrock structured programming system: Combining generative
metaprogramming and Hoare logic in an extensible program verifier. In Proc. ICFP. Asso-
ciation for Computing Machinery (ACM), 2013. doi:10.1145/2500365.2500592.

6 Cyril Cohen, Maxime Dénès, and Anders Mörtberg. Refinements for free! Lecture Notes
in Computer Science, pages 147–162, 2013. doi:10.1007/978-3-319-03545-1_10.

7 Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam Chlipala. Fiat: Deduc-
tive synthesis of abstract data types in a proof assistant. In Proc. POPL, pages 689–700.
Association for Computing Machinery (ACM), 2015. doi:10.1145/2676726.2677006.

8 Edsger W. Dijkstra. A constructive approach to the problem of program correctness. Cir-
culated privately, August 1967. URL: http://www.cs.utexas.edu/users/EWD/ewd02xx/
EWD209.PDF.

9 Sebastian Egner, Jeremy Johnson, David Padua, Jianxin Xiong, and Markus Püschel. Au-
tomatic derivation and implementation of signal processing algorithms. SIGSAM Bull.,
35(2):1–19, June 2001. doi:10.1145/511988.511990.

10 Georges Gonthier. Formal proof – the four-color theorem. Not. ACM, 55(11):1382–1393,
2008.

11 Jason Gross. An extensible framework for synthesizing efficient, verified parsers. Mas-
ter’s thesis, Massachusetts Institute of Technology, September 2015. URL: https://
people.csail.mit.edu/jgross/personal-website/papers/2015-jgross-thesis.pdf,
doi:1721.1/101581.

12 Michael Hammer. The design of usable programming languages. In Proc. ACM, ACM’75,
pages 225–229, New York, NY, USA, 1975. ACM. doi:10.1145/800181.810327.

13 Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly Sagiv. Data
representation synthesis. In Proc. PLDI, PLDI’11, pages 38–49, New York, NY, USA,
2011. ACM. doi:10.1145/1993498.1993504.

14 J. He, C. A. R. Hoare, and J. W. Sanders. Data refinement refined. In Proc. ESOP, volume
213, pages 187–196. Springer Berlin Heidelberg, 1986. doi:10.1007/3-540-16442-1_14.

15 C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, 1(4):271–
281, 1972. doi:10.1007/BF00289507.

16 E. Horowitz, A. Kemper, and B. Narasimhan. A survey of application generators. IEEE
Softw., 2(1):40–54, January 1985. doi:10.1109/MS.1985.230048.

17 Shachar Itzhaky, Rohit Singh, Armando Solar-Lezama, Kuat Yessenov, Yongquan Lu,
Charles Leiserson, and Rezaul Chowdhury. Deriving divide-and-conquer dynamic program-

SNAPL 2017

http://dx.doi.org/10.1109/TSE.1985.231881
http://dx.doi.org/10.1145/6424.315691
http://dx.doi.org/10.1145/1328438.1328487
http://dx.doi.org/10.1145/2500365.2500592
http://dx.doi.org/10.1007/978-3-319-03545-1_10
http://dx.doi.org/10.1145/2676726.2677006
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD209.PDF
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD209.PDF
http://dx.doi.org/10.1145/511988.511990
https://people.csail.mit.edu/jgross/personal-website/papers/2015-jgross-thesis.pdf
https://people.csail.mit.edu/jgross/personal-website/papers/2015-jgross-thesis.pdf
http://dx.doi.org/1721.1/101581
http://dx.doi.org/10.1145/800181.810327
http://dx.doi.org/10.1145/1993498.1993504
http://dx.doi.org/10.1007/3-540-16442-1_14
http://dx.doi.org/10.1007/BF00289507
http://dx.doi.org/10.1109/MS.1985.230048


3:14 Using a Proof Assistant to Replace Language Design with Library Design

ming algorithms using solver-aided transformations. In Proc. OOPSLA. Association for
Computing Machinery (ACM), 2016. doi:10.1145/2983990.2983993.

18 Lennart C.L. Kats and Eelco Visser. The Spoofax language workbench: Rules for declara-
tive specification of languages and IDEs. In Proc. OOPSLA, OOPSLA’10, pages 444–463,
New York, NY, USA, 2010. ACM. doi:10.1145/1869459.1869497.

19 Etienne Kneuss, Ivan Kuraj, Viktor Kuncak, and Philippe Suter. Synthesis modulo recur-
sive functions. In Proc. OOPSLA, pages 407–426, 2013. doi:10.1145/2509136.2509555.

20 Donald E. Knuth. Structured programming with go to statements. ACM Comput. Surv.,
6(4):261–301, December 1974. doi:10.1145/356635.356640.

21 Peter Lammich. Refinement to Imperative/HOL. In Proc. ITP, volume 9236 of Lecture
Notes in Computer Science, pages 253–269. Springer International Publishing, 2015. doi:
10.1007/978-3-319-22102-1_17.

22 Peter Lammich and Thomas Tuerk. Applying data refinement for monadic programs to
Hopcroft’s algorithm. In Lennart Beringer and Amy Felty, editors, Proc. ITP, volume 7406
of Lecture Notes in Computer Science, pages 166–182. Springer Berlin Heidelberg, 2012.
doi:10.1007/978-3-642-32347-8_12.

23 Daan Leijen and Erik Meijer. Domain specific embedded compilers. In Proc. DSL, pages
109–122, 1999. doi:10.1145/331960.331977.

24 K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In
Proc. LPAR, pages 348–370, 2010. doi:10.1007/978-3-642-17511-4_20.

25 K. Rustan M. Leino and Aleksandar Milicevic. Program extrapolation with Jennisys. In
Proc. OOPSLA, pages 411–430, 2012. doi:10.1145/2384616.2384646.

26 Xavier Leroy. Formal certification of a compiler back-end or: Programming a compiler
with a proof assistant. In Proc. POPL, pages 42–54. Association for Computing Machinery
(ACM), 2006. doi:10.1145/1111037.1111042.

27 Barbara Liskov and Stephen Zilles. Programming with abstract data types. In Proc. VHLL,
pages 50–59, New York, NY, USA, 1974. ACM. doi:10.1145/800233.807045.

28 Calvin Loncaric, Emina Torlak, and Michael D. Ernst. Fast synthesis of fast collections. In
Proc. PLDI, pages 355–368, 2016. doi:10.1145/2908080.2908122.

29 H. Partsch and R. Steinbrüggen. Program transformation systems. ACM Comput. Surv.,
15(3):199–236, September 1983. doi:10.1145/356914.356917.

30 Dusko Pavlovic, Peter Pepper, and Douglas R. Smith. Formal derivation of con-
current garbage collectors. In Proc. MPC, pages 353–376, 2010. doi:10.1007/
978-3-642-13321-3_20.

31 Clément Pit-Claudel. Compilation using correct-by-construction program synthesis.
Master’s thesis, Massachusetts Institute of Technology, August 2016. URL: http://
pit-claudel.fr/clement/MSc/, doi:1721.1/107293.

32 Tiark Rompf, Arvind K. Sujeeth, Nada Amin, Kevin J. Brown, Vojin Jovanovic, Hy-
oukJoong Lee, Manohar Jonnalagedda, Kunle Olukotun, and Martin Odersky. Optimizing
data structures in high-level programs: New directions for extensible compilers based on
staging. In Proc. POPL, POPL’13, pages 497–510, New York, NY, USA, 2013. ACM.
doi:10.1145/2429069.2429128.

33 Edmond Schonberg, Jacob T. Schwartz, and Micha Sharir. Automatic data structure
selection in SETL. In Proc. POPL. Association for Computing Machinery (ACM), 1979.
doi:10.1145/567752.567771.

34 Douglas R. Smith. KIDS: A semiautomatic program development system. IEEE Softw.,
16(9):1024–1043, September 1990. doi:10.1109/32.58788.

35 Douglas R. Smith and Stephen J. Westfold. Synthesis of propositional satisfiability solvers.
Manuscript, 2008.

http://dx.doi.org/10.1145/2983990.2983993
http://dx.doi.org/10.1145/1869459.1869497
http://dx.doi.org/10.1145/2509136.2509555
http://dx.doi.org/10.1145/356635.356640
http://dx.doi.org/10.1007/978-3-319-22102-1_17
http://dx.doi.org/10.1007/978-3-319-22102-1_17
http://dx.doi.org/10.1007/978-3-642-32347-8_12
http://dx.doi.org/10.1145/331960.331977
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1145/2384616.2384646
http://dx.doi.org/10.1145/1111037.1111042
http://dx.doi.org/10.1145/800233.807045
http://dx.doi.org/10.1145/2908080.2908122
http://dx.doi.org/10.1145/356914.356917
http://dx.doi.org/10.1007/978-3-642-13321-3_20
http://dx.doi.org/10.1007/978-3-642-13321-3_20
http://pit-claudel.fr/clement/MSc/
http://pit-claudel.fr/clement/MSc/
http://dx.doi.org/1721.1/107293
http://dx.doi.org/10.1145/2429069.2429128
http://dx.doi.org/10.1145/567752.567771
http://dx.doi.org/10.1109/32.58788


A. Chlipala et al. 3:15

36 Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodík, and Kemal Ebcioğlu. Program-
ming by sketching for bit-streaming programs. In Proc. PLDI, PLDI’05, pages 281–294,
New York, NY, USA, 2005. ACM. doi:10.1145/1065010.1065045.

37 Specware. URL: http://www.kestrel.edu/home/prototypes/specware.html.
38 Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew Flatt, and Matthias

Felleisen. Languages as libraries. In Proc. PLDI, PLDI’11, pages 132–141, New York, NY,
USA, 2011. ACM. doi:10.1145/1993498.1993514.

39 Tijs van der Storm, William R. Cook, and Alex Loh. Object grammars: Compositional
and bidirectional mapping between text and graphs. In Proc. SLE, pages 4–23, 2012.
doi:10.1007/978-3-642-36089-3_2.

40 Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: An annotated
bibliography. SIGPLAN Not., 35(6):26–36, June 2000. doi:10.1145/352029.352035.

SNAPL 2017

http://dx.doi.org/10.1145/1065010.1065045
http://www.kestrel.edu/home/prototypes/specware.html
http://dx.doi.org/10.1145/1993498.1993514
http://dx.doi.org/10.1007/978-3-642-36089-3_2
http://dx.doi.org/10.1145/352029.352035

	The Case for Replacing Languages with Libraries in a Proof Assistant
	A Flexible Core Language for Declarative Programs
	Integrating DSLs
	Related work
	Discussion and Future Directions

