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Abstract
Recent developments of game semantics have given rise to new models of concurrent languages.
On the one hand, an approach based on string diagrams has given models of CCS and the
π-calculus, and on the other hand, Tsukada and Ong have designed a games model for a non-
deterministic λ-calculus. There is an obvious, shallow relationship between the two approaches, as
they both define innocent strategies as sheaves for a Grothendieck topology embedding “views”
into “plays”. However, the notions of views and plays differ greatly between the approaches:
Tsukada and Ong use notions from standard game semantics, while the authors of this paper
use string diagrams. We here aim to bridge this gap by showing that even though the notions of
plays, views, and innocent strategies differ, it is mostly a matter of presentation.
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1 Introduction

1.1 Two approaches to concurrent game semantics
Game semantics [11], a branch of denotational semantics in which types are interpreted as
some sort of games and programs as strategies in these games, has led to fully abstract
models for a variety of functional languages. Recent advances in concurrent game semantics
have produced new games models for a non-deterministic, simply-typed λ-calculus on the
one hand [19], and for CCS and the π-calculus on the other hand [9, 10, 6]. These models
are based on categories of innocent and concurrent strategies that are defined in both cases
as categories of sheaves over a site of plays.

The first model, by Tsukada and Ong, has proven to successfully extend the most funda-
mental results of game semantics (interpreting terms as innocent strategies and composing
strategies to form a CCC of arenas and innocent strategies) to a non-deterministic λ-calculus.
The other approach, while arguably more complex and not as well developed, aims to give a
general framework to build games models for different calculi, in order to study translations
between them.

There is a clear, yet informal relationship between the two approaches in that they both
define innocent strategies as sheaves for a Grothendieck topology induced by embedding
views into plays. However, despite this similarity, the notions of views and plays differ signi-
ficantly. Indeed, Tsukada and Ong [19] define them as justified sequences of moves satisfying
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10:2 Justified Sequences in String Diagrams

qr ql tl fr fl tr
fr tr
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Figure 1 The big picture.

additional conditions, as in standard Hyland-Ong/Nickau (HON) game-semantics [11, 16],
while in [9, 10, 6], plays are defined as ad hoc string diagrams describing the game, as ori-
ginally suggested by Melliès in a different setting (circa 2008, published as [15]). Since the
notions of plays differ significantly, it is legitimate to wonder to what degree the approaches
are related.

1.2 The level of views and plays
In this paper, we go beyond this informal similarity and show a tight correspondence between
the two approaches at the level of plays. Specifically, for each pair of arenas [11] A and B,
we design categories E(A ⊢ B) and EV(A ⊢ B) respectively of plays and views for HON
games, in the same spirit as those of the models for CCS and the π-calculus.

There are also standard categories PA,B and VA,B of plays and views as defined in
standard game semantics (and which we call HON-plays and HON-views to disambiguate),
with a notion of morphism inspired by Melliès [14]. We then embed these categories into
E(A ⊢ B) and EV(A ⊢ B) respectively (whose objects we simply call plays and views).

We define this embedding using a third model, whose plays are proof trees in an ad hoc
sequent calculus, and whose views are branches of those trees. The categories of trees and
branches are equivalent to those of plays and views respectively, so they can be thought of
as another possible representation of these objects. Trees may also be seen as a maximal
parallelisation of HON-plays, while branches are simply equivalent to HON-views.

Let us show how this embedding works on an example, illustrated in Figure 1. HON-plays
are based on the notion of arena:

I Definition 1. An arena is a simple forest, i.e., a directed, simple graph in which all vertices
are uniquely reachable from a unique root (vertex without a parent).

Vertices are called moves, and roots deemed initial. A move m′ is said to be justified by
m when it is one of its children.

LetMA be the set of moves of A, the ownership of any move m ∈MA is O (for Opponent)
if the length of the unique path from a root to m is even, and P (for Proponent) otherwise.
So, e.g., all roots have ownership O. We denote this map MA → {P,O} by λA.

I Example 2. The boolean arena B has a single root q, which is an Opponent move, and
two Proponent moves t and f, both justified by q.
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A HON-play on a pair of arenas (A,B) is a sequence of moves in MA +MB that verifies
some additional properties. The full definitions are recalled in Section 2. In our example,
we study a play on (Bl,Br), where l and r are only present to show in which copy of B
moves are played. We show how s may be mapped to a play P in our setting and P may
conversely be mapped back to a HON-play isomorphic to s.

We here give a simplified description of our plays that should give the reader enough
intuition to understand the mapping. The precise definitions can be found in Section 3.1.
Our plays are based on the notion of position. Positions are sets of players that are labelled
by sequents of arenas, either positive sequents (Γ ⊢) or negative ones (Γ ⊢ A). In the first
case, players are depicted , and in the second case. Positions may evolve over time
according to the moves the different players play. Each type of player can only do the
following: positive players (Γ,A,∆ ⊢) may turn into negative players (Γ,A,∆ ⊢ A ⋅m) for
any root m of A, and negative players (Γ ⊢ A) may spawn a positive player (Γ,A ⋅m ⊢)
for any root m of A (and they continue to exist after the move). These two moves may be

depicted as
m

and
m

, with the initial position of the move at the bottom, and
its final position at the top. When a move is played by a player, the rest of the position is

left untouched. For example,
m

is a move on a position with two players, with the
left player playing and the right player left untouched. A play is then just a vertical pasting
of moves, up to permutation of independent moves. A morphism of plays f ∶P → Q is an
injective mapping of moves of P to those of Q that respect the play structure: f(x) must
have the same type as x, and if the player who plays x is equal to the one who plays y, then
the players who play f(x) and f(y) must be equal too (and similarly if x creates a player
who is equal to the one who plays y, etc).

As a first step (step 1 in Figure 1), we map our example play s to its P -view tree [3], a
tree whose branches are the HON-views of s. There are two types of “arrows” in this tree:
the ones depicted as real arrows, which correspond exactly to the ones in s, and the ones
that create the tree structure, which correspond to the view of each move. This tree has
some nice properties: in particular, it may only branch at odd depth. We then map this
tree (step 2) to a proof tree in a sequent calculus based on arenas. A node x labelled by a
sequent S in this tree may be a child of y labelled by S′ exactly when, in our game, a player
labelled by S′ may make a move that produces of player labelled by S. Just like P -view
trees, these proof trees may branch with an arbitrary arity, but only at odd depth. Even
though both notions are trees and look alike (the structure is clearly similar), there are some
subtle differences: the P -view tree is labelled by moves, while the proof tree is labelled by
sequents of arenas; the P -view tree contains pointers, while the proof tree does not. A little
bit of work has to be done to prove that this mapping is a full embedding. We give a proof
for the composite of steps 1 and 2 in Section 4.

Steps 3 and 4 are conceptually simple, but for lack of space, we do not explain them
in the rest of the paper. Step 3 maps the proof tree, which may branch with an arbitrary
degree, to a similar tree that only branches in a binary way. Let us call the result of step 3
a sequential proof tree (in the sense that we have sequentialised some of the tree structure).
To do this, we change the rules on which our proof trees are built. Here, the rules that
have a positive sequent as conclusion are the same as in the previous proof trees, but the
rules that have a negative sequent as conclusion have necessarily two premises: a positive
one like in the previous proof trees, and a copy of the conclusion. Sequentialising a proof
tree is now completely obvious: if a node has n premises, we just apply the sequential rule
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10:4 Justified Sequences in String Diagrams

n times. There is a choice to be made on the order in which we sequentialise the rules,
but all these choices lead to isomorphic plays in the end. For example, we have decided
to linearise the tree by applying tl first, and then fl in our example. Step 4 is completely
direct: all the rules of the proof tree now exactly correspond to moves in our game, so
we just mimic the structure of the proof tree. Nodes in the tree become players with the
same label, and deduction rules become moves in our game. Here again, since the tree is a
branching structure, we may choose to apply the moves in different orders, but all choices
lead to isomorphic plays. In our example, we have chosen to play tl, fr, fl, and tr in that
order, but we could have played fr at any point after tl (and all the resulting plays are
isomorphic).

To show that this mapping reduces to an equivalence when restricted to views on both
sides, we must explain what a view is in our setting. If we see the equal signs of a play
as mathematical equality (which is indeed the case in the actual definition of plays), then
we may collapse the whole structure along these equal signs to obtain a tree structure. Let
us call such a structure a play tree. A play is a view when its play tree is non-branching.
Now, our embedding reduces to an equivalence when restricted to views because HON-views
are mapped to non-branching P -view trees, which are ultimately mapped to non-branching
plays, i.e., views, and views conversely all come from non-branching proof trees, which all
come from non-branching P -view trees, which in turn all come from HON-views.

Let us finally mention the case of morphisms. Morphisms of HON-plays are injective
functions that respect views. Through step 1, they are exactly transported to (injective)
morphisms of trees. Through step 2, they are exactly transported to inclusions of proof trees.
Now, the easiest way to understand the equivalence, in terms of morphisms, is to see the
resulting play as a tree by collapsing all equal signs, as explained above. Then inclusions of
proof trees are exactly transported to inclusions of play trees, which are exactly morphisms
of plays.

We thus obtain, for each pair of arenas A and B, a commuting square

VA,B PA,B

EV(A ⊢ B) E(A ⊢ B)

iHON

FV

i

F (1)

of embeddings of categories, where iHON denotes the embedding of HON-views into HON-
plays, i denotes the embedding of views into plays, and FV and F denote the constructed
embeddings respectively from HON-views into views and from HON-plays into plays. Our
first result is that all these embeddings are full and that FV is an equivalence of categories
(Theorem 29).

1.3 The level of strategies
However, we are not only interested in comparing views and plays, but also innocent
strategies, which are at the core of game semantics. The square (1) gives a correspond-
ence at the level of plays, but it also yields a tight correspondence between strategies in
both approaches. More precisely, it induces an equivalence between innocent strategies in
both contexts and shows that this equivalence is compatible with innocentisation.

To be more precise, there are two notions of innocent strategy in standard game se-
mantics: the first one is a prefix-closed set of views, the second one is a prefix-closed set
of plays verifying an extra condition called innocence. In both approaches, the first no-
tion generalises to presheaves on views, which we call behaviours and TO-behaviours (for
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Tsukada-Ong). The second notion generalises to sheaves on plays, which we simply call
innocent strategies and innocent TO-strategies. In particular, mere presheaves on plays are
possibly non-innocent strategies.

The idea behind this generalisation is the following: a prefix-closed set of views (in, say,
VA,B) is a presheaf of booleans B∶Vop

A,B → 2 (where 2 is the ordinal 0 → 1 viewed as a
category). Similarly, a prefix-closed set of plays is a presheaf S∶Pop

A,B → 2. This presheaf is
a sheaf for the Grothendieck topology induced by the embedding of VA,B into PA,B when
S(p) is accepted if and only if S(v) is accepted for all views v → p (which exactly states
innocence, the condition stating that a player can change its behaviour only according to
what they have “seen”, i.e., their view, of the play).

However, that is not sufficient to model concurrent strategies, because there may be
several different ways to accept a play (or, in other words, a machine may be in several
different states after a given trace). The classical example is that of Milner’s coffee machines,
which are the labelled transition systems depicted below.

⋅

⋅

⋅ ⋅

a

b c

⋅

⋅ ⋅

⋅ ⋅

a a

b c

Both machines accept exactly the same traces: ε, a, ab, and ac. However, one has a single
way of accepting the trace a, after which it still accepts b and c, while the other makes a
choice when accepting a whether to accept b or c. The first machine has one way of accepting
a, while the second has two. Thus, modelling concurrent strategies correctly requires to know
all the different states the strategy can end in after reading a trace: it is not a presheaf of
booleans, but a presheaf of sets.

The functors F and FV give rise to ∆F ∶ ̂E(A ⊢ B)→ P̂A,B and ∆FV ∶ ̂EV(A ⊢ B)→ V̂A,B ,
where ∆f is precomposition by fop. Since FV is an equivalence of categories, so is ∆FV , so
behaviours and TO-behaviours are equivalent.

A strategy is innocent when it is in the essential image of ∏i (or ∏iHON ), where ∏f

denotes right Kan extension along fop. This may also be seen as a sheaf condition stating
that an innocent strategy accepts a play if and only if it accepts all the views that can
be embedded into that play. Using Guitart’s theory of exact squares [8], the square (1)
provides a categorical explanation of why both induced categories of innocent strategies are
equivalent. Indeed, it is exact (Corollary 33), which means that the square

V̂A,B P̂A,B

̂EV(A ⊢ B) ̂E(A ⊢ B)

∏iHON

∆
FV

∏i

∆F
(2)

commutes up to isomorphism. In other words, ∆F turns into an equivalence when re-
stricted to innocent strategies and the innocentisation functors ∏i and ∏iHON (which map
any behaviour to the innocent strategy that “behaves similarly”) are compatible with this
equivalence.
I Remark. Had we wanted to make F an equivalence of categories rather than a mere
full embedding, we could easily have imposed an additional condition on our plays akin
to alternation in a classical HON-game setting. The point is that we want to compare
the purely diagrammatic notion of play with the classical one. And since we obtain an
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10:6 Justified Sequences in String Diagrams

equivalence between both notions of innocent strategies anyway, we feel the result is in fact
more convincing.

Note however that this work does not take composition of strategies into account, which is
admittedly the Achilles’ heel of the string diagrammatic approach as it stands now. Indeed,
while Tsukada and Ong prove that their innocent strategies compose, we still don’t know
how to compose strategies into cut-free strategies in our setting. (The equivalence between
both notions of innocent strategies actually gives a way to compose innocent strategies in
our setting by composing in the other model, but it is not exactly an illuminating result,
and in particular does not lift to non-innocent strategies.)

1.4 Related work
This paper compares Tsukada and Ong’s model [19] to a model inspired by playgrounds [9,
10, 6] and which builds on ideas from presheaf models [12], causal models [17], and game
semantics [1]. The notion of play, which is based on string diagrams, is close in spirit
to Melliès’s work [15]. The notion of trees that we use to bridge the gap between both
models is reminiscent of the notion of legally justified trees (also known as P -view trees) by
Boudes [3]. Let us also mention different approaches to concurrent game semantics [7, 13],
based on variations of traditional games semantics, or [18], based on event structures.

Another paper by Tsukada and Ong [20] is quite close to this work. Their main result is
a link between the notion of HON-play and another well-known notion of terms. The papers
differ in that Tsukada and Ong link the notion of HON-play to notions that do not belong
to game semantics (namely resource terms), thus finding new links between game semantics
and other models, while we want to connect different models of game semantics.

The reader will notice that the interpretation of terms as strategies is not treated in the
current paper. This point is treated in an unpublished paper [5], in which we use singular
and geometric realisation functors to give an interpretation of terms of the non-deterministic
λ-calculus studied by Tsukada and Ong into innocent strategies, show that it is the same
as Tsukada and Ong’s, and recover the definability result (that any innocent strategy is
isomorphic to the interpretation of a normal form).

1.5 Overview
We start by recalling standard notions of game semantics as well as Tsukada and Ong’s work
in Section 2. Then, in Section 3, we set out to define two new models of HON games, one
based on string diagrams, the other on proof trees, and show that the two have equivalent
categories of plays, views, and strategies. In Section 4, we use the equivalences proved in the
previous section to give the core result of this paper, which is the relationship between the
categories of plays and views in our model based on string diagrams and Tsukada and Ong’s.
Finally, in Section 5, we build on the relationships shown in Section 4 to show the second
result of this paper, which is that both models have equivalent categories of strategies, and
that this equivalence is compatible with the embedding of behaviours into strategies.

2 Tsukada and Ong’s model

Let us start with a brief recapitulation on Tsukada and Ong’s categories of views and plays,
as well as their notion of strategy.

As usual in game semantics, games are based on arenas (Definition 1).
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I Notation 3. We denote by
√
A the set of roots of A. If A is an arena and m is in

√
A,

then A ⋅m is the arena strictly below m. If A is an arena, we denote by m.A the tree t whose
root is m and such that t ⋅m = A. Note that any arena is a coproduct of trees, so it can be
written A = ∑m∈√Am.(A ⋅m).

Let us fix arenas A and B. Let A _ B denote the simple graph obtained by adding to
A +B an edge b → a for all b ∈

√
B and a ∈

√
A (if B is non-empty, otherwise A _ B = ∅).

The notion of ownership straightforwardly extends to A _ B since all paths from any root
to some vertex v have the same length. Concretely, ownership is left unchanged in B but
reversed in A.

I Definition 4. A justified sequence on (A,B) consists of a natural number n ∈ N, equipped
with maps f ∶n → MA +MB and ϕ∶n → {0} ⊎ n (here and later in the paper, we use n to
denote the set {1, . . . , n}) such that, for all i ∈ n,

ϕ(i) < i,
if ϕ(i) = 0 then f(i) ∈

√
B, and

if ϕ(i) ≠ 0, then f(ϕ(i)) is a parent of f(i) in A _ B.

We will draw a justified sequence (n, f,ϕ) as the sequence of its f(i)’s, with arrows to denote
ϕ, as is standard in game semantics.

For any i ∈ n, the view ⌈(n, f,ϕ)⌉i of i in (n, f,ϕ) is the subset of n defined inductively
by:

⌈(n, f,ϕ)⌉i = {i} if i is an Opponent move with ϕ(i) = 0,
⌈(n, f,ϕ)⌉i = ⌈(n, f,ϕ)⌉j ∪ {i} if i is an Opponent move with ϕ(i) = j > 0,
⌈(n, f,ϕ)⌉i = ⌈(n, f,ϕ)⌉i−1 ∪ {i} if i is a Proponent move.

A justified sequence s = (n, f,ϕ) on (A,B) is P -visible when, for all Proponent moves i,
ϕ(i) ∈ ⌈s⌉i. We further say that s is alternating when, for all i ∈ n−1, λA_B(i) ≠ λA_B(i+1).

I Definition 5. A HON-play on the pair of arenas (A,B) is a P -visible, alternating, justified
sequence on (A,B) of even length.

A morphism of HON-plays g∶ (n, f,ϕ) → (n′, f ′, ϕ′) is an injective map g∶n → n′ such that:
f ′(g(i)) = f(i) for all i ∈ n, ϕ′(g(i)) = g(ϕ(i)) for all i ∈ n (with the convention that
g(0) = 0), and g(2i) = g(2i − 1) + 1 for all i ∈ n/2. The last condition states that g should
preserve blocks of an Opponent move and the next Proponent move (so-called OP -blocks).

I Proposition 6. HON-plays and morphisms between them form a category PA,B, with
composition given by composition of underlying maps.

I Example 7. The sequence at the top-left of Figure 1 is a play on (B,B), where we have
written ml when m is played in the left-hand copy of B, and mr when it is played in the
right-hand one.

I Definition 8. If s = (n, f,ϕ) is a justified sequence, i and j are in n, and ϕ(j) = 0, we say
that i is hereditarily justified by j if i = j or ϕ(i) is hereditarily justified by j.

A thread of s is a maximal sub-sequence of s in which all moves have the same hereditary
justifier. The pointers of a thread are inherited from s.

I Definition 9. A HON-view on (A,B) is a non-empty HON-play s = (n, f,ϕ) such that
⌈s⌉n = s. Let VA,B denote the full subcategory of PA,B spanning HON-views.
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10:8 Justified Sequences in String Diagrams

I Proposition 10. A HON-play s = (n, f,ϕ) is a HON-view if and only if for all odd i ∈ n,
ϕ(i) = i − 1.

The embedding iHON ∶VA,B ↪ PA,B induces an adjunction P̂A,B � V̂A,B .
∆iHON

∏iHON

I Definition 11. We call V̂A,B the category of TO-behaviours. We denote by Sh(PA,B) 1

the category of innocent TO-strategies on (A,B), which is the essential image of ∏iHON .

By full faithfulness of iHON , ∏iHON restricts to an equivalence Sh(PA,B) ≃ V̂A,B .

3 Two concurrent models of HON games

In this section, we build two models of HON games, one based on string diagrams, the other
on proof trees, and show that they have equivalent categories of plays, views, and strategies.

3.1 String diagrams

The first model we build is in the same spirit as our previous models of CCS and the π-
calculus. There are several salient differences between the notions of views and plays in our
model and those from standard game semantics: first, they are interpreted causally, when
the standard ones are interpreted temporally (i.e., our notion of play only retains causal
dependency between moves, and there is no fixed order between moves that are independent
from one another); secondly, they are intrinsically multi-party and put a strong focus on
the notion of position, while standard HON games are two-player games, and the theory is
devoid of the notion of position (though it exists in other settings [2]).

Let us first give an intuition of how to build models in this setting. The idea is to start
from a sequent calculus that is an operational description of the calculus we study, and to
build a multi-player game from it. Sequents show what positions should be, and derivation
rules show what moves players are allowed to play. Plays are then simply sequences of moves,
up to permutation of independent moves. While this sounds like it involves a cumbersome
quotient of sequences of moves, the formal definition based on presheaves does not involve
any such quotient. We will later design another model based on proof trees for a sequent
calculus, but the the sequent calculus we introduce right now is just a tool internal to our
games and has nothing to do with proof trees. In our case, the sequent calculus that will
guide our construction is:

Λ(Γ⊢A),m

Γ,A ⋅m ⊢
Γ ⊢ A

@(Γ,A,∆⊢),∣Γ∣+1,m

Γ,A,∆ ⊢ A ⋅m
Γ,A,∆ ⊢

cut
Γ ⊢ A∆,A,∆′ ⊢

∆,Γ,∆′ ⊢ ,
(3)

where sequents are lists of arenas, with possibly a distinguished arena, written (A1, . . . ,An ⊢)
or (A1, . . . ,An ⊢ A). Let Γ range over lists of arenas, ∣Γ∣ denote the length of Γ, and for all
i ∈ ∣Γ∣, Γi the ith arena of Γ.

1 As the notation Sh(–) suggests, this is also a category of sheaves for the Grothendieck topology em-
bedding VA,B into PA,B , though this fact is not used in this paper.



C. Eberhart and T. Hirschowitz 10:9

I Remark. The sequent calculus we use here does not make much sense from a logical
point of view. It however makes sense when seen in relationship with the following sequent
calculus:

right
. . . Γ,A ⋅m ⊢ . . . (∀m ∈

√
A)

Γ ⊢ A

left
Γ,A,∆ ⊢ A ⋅m

Γ,A,∆ ⊢

cut
Γ ⊢ A∆,A,∆′ ⊢

∆,Γ,∆′ ⊢ .
(4)

Note that this sequent calculus is a fragment of intuitionistic logic when an arena A =
∑i∈nmi.Ai is interpreted as JAK = ⋀i∈n (¬ JAiK). Proofs in this calculus therefore correspond
to proofs of intuitionistic logic. The objects of interest in calculus (3) are partial proofs
(proofs whose branches may be left unfinished), which correspond to explorations of proofs
in calculus (4).

The notion of position we have given in the introduction is a simplification of the real
notion of position. In our approach, positions are some kind of graphs. We call their vertices
players and their edges channels. The idea is that players correspond to placeholders for
program fragments, and thus for proofs of a certain type, while channels are the way players
use to communicate with other players during a play. In the case of HON games, our game is
based on arenas, and so is our sequent calculus. Positions will thus be some kind of graphs,
whose vertices are labelled by such sequents, and whose edges are labelled by arenas. Players
labelled (Γ ⊢ A) are linked to ∣Γ∣ incoming channels of type Γi and to one outgoing channel
of type A, and similarly for players labelled (Γ ⊢). The discussion at the end of Example 13
gives more intuition on this notion. Positions are formally represented as presheaves over
the following base category:

IDefinition 12. Let L1 be the category with objects all arenas and sequents, and morphisms
si∶Γi → (Γ ⊢), si∶Γi → (Γ ⊢ A), and t∶A→ (Γ ⊢ A).

An object of L̂1 is exactly a set of channels labelled A for each arena A, as well as a set
of players labelled S for each sequent S, and maps mapping players to their incoming and
outgoing channels. A natural transformation X → Y between such presheaves is akin to a
graph morphism, in the sense that it sends each player labelled S inX to some player labelled
S in Y (and similarly for channels), while preserving incoming and outgoing channels.

I Example 13. It is often helpful to represent positions (and more generally plays) graph-
ically. We here give an example of a position given by a presheaf X, which we describe
in mathematical terms on the left below (we only give the different sets that compose the
presheaf, the functions can be inferred from the category of elements). We also draw its
category of elements to the side, and finally how we draw this particular position. Note
that the drawing of the position reflects exactly the structure of the presheaf, since it is just
another representation of the category of elements (except for the order of the elements of
the lists composing the sequents).

X(A) = {a, a′}, X(B) = {b}, X(C) =
{c},
X(A,C ⊢ B) = {y1}, X(A ⊢ A) =
{y2}, X(B,A ⊢) = {x},
X(–) empty otherwise.

c y1
b

a x

a′

y2

s2

s1

s1

t

s1

t

s2

B

A

x

y1

y2

C

A

In this particular position, there are three players x, y1 and y2, and four channels on which
they may communicate. There is no need to depict positive and negative players differently
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anymore: negative players have an outgoing channel, while positive ones don’t. We see
two interesting phenomena on this position: there is an input channel shared between y1
and y2, and some channels have an open end. In terms of semantics, the first phenomenon
corresponds to the fact that several players may use a given proof of some formula A, while
the second one corresponds to the fact that some resources may be given by the environment,
instead of another player.

We now want to express the dynamics of the game. We start by an informal description
in terms of a sequent calculus before augmenting L1 into a category L that will represent
this dynamics. Our sequent calculus again guides us to desing this dynamics. The cut rule
shows when two players may interact: when the first player’s outgoing channel is equal to
one of the second player’s incoming channels. The interaction between players is governed
by the shapes of the Λ and @ rules. In other words, two players can interact according to
the Λ and @ rules if and only if they are linked by a cut rule. Now we just have to show
the “shape” of this interaction.

As prescribed by Curry-Howard, we see this interaction as a step in a form of proof of a
certain formula. We write A = ∑i∈nmi.Ai for the arena shared by the two players. Let x by
the negative player, labelled (Γ ⊢ A), and y the positive one, labelled (∆,A,∆′ ⊢). x should
provide a proof of JAK, while y should require one to prove a contradiction. When they
interact, y chooses some i ∈ n and asks x for a proof of ¬ JAiK, i.e., y now provides a proof of
JAiK which x may inspect to prove a contradiction. Therefore, y turns into (∆,A,∆′ ⊢ Ai),
while x turns into (Γ,Ai ⊢).

Moreover, x should not only change into a proof of contradiction assuming JAiK, but
since y may inspect the proof of JAK again, the original x player should also remain in the
final position.

In order to model those moves, we augment the base category L1:

I Definition 14. Let L be the category L1 augmented with an object named after all Λ and
@ rules in (3), as well as an object β(Γ⊢A),(∆⊢),i,m for all Γ, A, ∆, i ∈ ∣∆∣ such that ∆i = A,
and m ∈

√
A; and with morphisms t∶S → R for each sequent S that is the conclusion of a rule

R, and s∶S → R for each sequent S that is the premise of a rule R, as well as two morphisms
λ∶ΛS,m → βS,S′,i,m and @∶@S′,i,m → βS,S′,i,m for all S, S′, i, and m. These morphisms are
quotiented by:

t ⋅ si = s ⋅ si for all rules R and i such that si is defined,
λ ⋅ t ⋅ t = @ ⋅ t ⋅ si for all βS,S′,i,m,
λ ⋅ s ⋅ s∣Γ∣+1 = @ ⋅ s ⋅ t for all β(Γ⊢A),S′,i,m.

In simple terms, we add an object for each possible basic shape of move in the game: objects
Λ and @ for the rules they respectively represent, and objects β for each possible interaction
of two rules.

This is however not sufficient to model moves. Indeed, moves have initial and final
positions. To take this fact into account, we model moves not only by a representable, but
by a cospan Y → ym ←X, where X and Y are positions (i.e., presheaves empty except over
L1), with X the initial position of m and Y its final position.

I Definition 15. The seeds corresponding to the representables Λ(Γ⊢A),m, @(∆⊢),i,m, and
β(Γ⊢A),(∆⊢),i,m are the cospans represented graphically below.
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⋰

⋰
Γn

Γ1 A⋅m

A

Λ

⋱

⋱
∆m

∆1A⋅m

A

@

⋰

⋰

⋱

⋱
Γn

Γ1
A⋅m

Λ

∆m

∆1

@

A

β

Each drawing is the representation of the category of elements of the corresponding
representable, with its initial position at the bottom and its final one on top, and where the
squares correspond to the elements of type Λ, @, and β respectively (see the long version of
this article [4] for formal definitions).

Apart from the existence of channels, there is a single difference between the moves we have
shown in the introduction and the moves shown above: the β moves, which correspond to
synchronisation. However, it can be shown that β moves can never be played in plays over
(A ⊢ B), so we may treat them as non-existent. We still show them because they arise
naturally in our game and they are necessary to model plays on more complex positions.

Once we have defined seeds, we reuse the same machinery as for CCS and the π-calculus
to produce notions of plays and views, which we organise into categories. Since the descrip-
tion is long and technical, and of interest only to some readers, we here content with the
following informal sketch. In seeds, all of the position participates in the move: a move
is any cospan obtained by gluing (by pushout in L̂) some seed and some position. In any
categories with pushouts, cospans form the morphisms of a well-known bicategory. A play
is any cospan isomorphic to some finite composite of moves in that bicategory.

I Example 16. Step 4 in Figure 1 produces a composite of six moves, whose gluing does
not enforce any particular ordering between fr and, say fl.

Plays over any position X are the objects of a category E(X), whose morphisms are injective
morphisms between underlying presheaves, preserving the initial position. A view is then
merely a “non-branching” play of positive, even length. Views overX form a full subcategory
EV(X) of E(X).

I Lemma 17. For any sequent S, E(S) (resp. EV(S)) is equivalent to a subcategory of S/L̂
spanning morphisms S → U such that there exists a play (resp. view) Y → U ←X.

In order to define the different notions of strategies and link them to Tsukada and Ong’s
work, we restrict our attention to positions containing a single player (A ⊢ B) and both its
channels, for any pair of arenas (A,B).

I Definition 18. A behaviour is a presheaf over EV(A ⊢ B). A strategy is a presheaf over
E(A ⊢ B). An innocent strategy is a strategy in the essential image of ∏i.

3.2 Proof trees
In the long version of this paper [4], there is a direct proof of the correspondence between the
notions of play and view in both approaches. However, that proof is technical and hardly
illuminating. We here present another, more intuitive proof based on a simpler model that
is equivalent to the one based on string diagrams in the particular case of plays whose initial
position consists of one player (A ⊢ B).

This new model is based on proof trees in the following, ad hoc sequent calculus:
right
. . . Γ,A ⋅m(i) ⊢ . . . (∀i ∈ n)

Γ ⊢ A

left
Γ,A,∆ ⊢ A ⋅m

Γ,A,∆ ⊢
(5)
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where the right rule can be applied with any m∶n →
√
A for a positive n and the left

rule can be applied with any m ∈
√
A. Notice how, apart from the absence of a cut rule,

the sequent calculus (4) we have introduced at the beginning differs only slightly from this
one: there, in the right rule, m must always be a bijection. Moreover, while the objects of
interest are “complete” trees in the first case, the objects of interest here are “incomplete”
trees. This once again corresponds to the fact that we are interested in explorations of
proofs, and not proofs themselves. Therefore, some branches of the proof may not be
explored (hence the fact that m need not be surjective) and others may be explored more
than once (hence m need not be injective).

An S-tree is a partial proof tree (i.e., a proof tree whose branches may be left unfinished)
whose conclusion is S. We define T(S) to be the category of S-trees and morphisms of such,
where morphisms of S-trees are inclusions, both in width and depth, of S-trees, and are
defined inductively by:

the empty S-tree has exactly one morphism to all other S-trees,
the set of morphisms from T1 . . . Tn

Γ ⊢ A to T ′1 . . . T ′m
Γ ⊢ A

is the disjoint union,
for all injective g∶n→m, of ∏i∈nT(Γ,A ⋅mi ⊢)(Ti, T ′g(i)),

the set of morphisms from T
Γ,A,∆ ⊢ to T ′

Γ,A,∆ ⊢ is T(Γ,A,∆ ⊢ A ⋅m)(T,T ′).

Notice that morphisms treat the premises of a (Γ ⊢ A) node as if they were unordered.

I Definition 19. An S-branch is a non-branching S-tree (i.e., an S-tree whose right rules
are all unary) of positive, even depth. Let B(S) be the full subcategory of T(S) spanning
S-branches.

I Example 20. The tree at the top-right of Figure 1 is an example of (B,B)-tree. Here
is an example of (A ⊢ B)-tree: A,B ⋅m ⊢ A,B ⋅m ⊢

m,m
A ⊢ B . None of these trees

are branches (they both branch at some point). Note that, while the first tree intuitively
represents a HON-play, the other one does not, as it lacks alternation: it is as if Opponent
had played m twice in a row. This example also shows that morphisms treat premises as if
they were unordered, in the sense that there are two morphisms from that tree to itself (one
that maps both branches to themselves and one that swaps them).

We will later need this technical result:

I Proposition 21. T(A,B ⊢ C) and T(A +B ⊢ C) are isomorphic.

As announced in the introduction:

I Lemma 22. T(A ⊢ B) and E(A ⊢ B) are equivalent, and so are B(A ⊢ B) and EV(A ⊢ B),
and these equivalences are such that the following square commutes.

B(A ⊢ B) T(A ⊢ B)

EV(A ⊢ B) E(A ⊢ B)

4 The level of views and plays

In the previous section, we have introduced the embedding EV(S)→ E(S) of views into plays
based on string diagrams, and shown it equivalent to the embedding B(S)→ T(S) based on
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partial proof trees. We now want to show in which sense the latter is related to Tsukada
and Ong’s embedding iHON ∶VA,B ↪ PA,B . Namely, we build a full embedding F from PA,B
to T(A ⊢ B) and then show that it restricts to an equivalence FV∶VA,B → B(A ⊢ B). This
will then yield a further correspondence between categories of strategies.

Let us first build F (s) by induction on s. If s is empty, F (s) is simply the empty
(A ⊢ B)-tree. Otherwise, s can be written as a sum of threads (Definition 8) s = ∑i∈n ti.
Now, each thread ti is of the form m1

im
2
i si for moves m1

i , m2
i and a play si, and a slight

generalisation of a result at the start of Section 3.5 in [19] gives:

I Proposition 23. For all arenas A and B, if TA,B is the full subcategory of PA,B spanning
threads, χ∶ (mm′)/TA,B → PC,C⋅m′ , (mm′s)↦ s is an isomorphism, where C = A +B ⋅m.

Each si can therefore be mapped to a (Ci ⊢ Ci ⋅m2
i )-tree recursively, where Ci = A+B ⋅m1

i .
By Proposition 21, this gives an (A,B ⋅ m1

i ⊢ Ci ⋅ m2
i )-tree F̃ (si), which can in turn be

composed with the left and right rules to give F (s) as below:

. . .
F̃ (si)

m =m2
i

A,B ⋅m1
i ⊢ . . .

m(i) =m1
iA ⊢ B.

I Lemma 24. F is a full embedding.

Proof. Injectivity on objects and faithfulness are easy to prove. The proof of fullness is
mostly straightforward, except that it requires a reading of the pointers of s inside F (s)
to show that the antecedent though F of a morphism of (A ⊢ B)-trees is indeed a HON-
morphism. We explain in details how to read pointers from F (s) below. J

First, recovering the moves in s from F (s) is easy: they are all the m’s used in any
left or right rule, with the obvious multiplicity. Recovering pointers is a bit trickier and
requires to know what an occurrence of an arena in a tree is, as well as what it means for
a move to create such an occurrence, and what it means for a move to be played on the
occurrence of an arena. Lemmas 142 and 148 from [4] then explain how to recover pointers
from our structure of plays. They can be stated as follows: each move m is justified by the
move that created the arena occurrence m was played on.

I Definition 25. Let T be an (A ⊢ B)-tree. The set of moves occurring in T is the disjoint
union of all the moves of the rules of T , where, in (3), there is a single move m occurring in
the left rule, and the moves that occur in the right rule are all the m(i)’s.

In the left rule, m plays on A and creates A ⋅m. In the right rule, m(i) plays on A

and creates A ⋅m(i). Additionally, if Γ,A ⋅m(1) ⊢ . . . Γ,A ⋅m(n) ⊢
Γ ⊢ A

is the first rule
of T , then m(i) creates all the arenas in Γ,A ⋅m(i) ⊢.

The occurrences of an arena in an S-tree T is an arena that is either the negative arena
in the conclusion of T (if it exists) or an arena created by a rule in T .

I Example 26. There are four occurrences of the empty arena ∅ in the tree of Figure 1,
created by tl, fl, fr, and tr respectively. There are also two occurrences of the boolean
arena: the first one exists (Br) at the beginning, and the second one (Bl) is created by qr
(and shared by all sequents above in the tree). In the tree of Example 20, there are two
occurrences of the A arena, created by both m moves. This is an artefact of playing on the
arena pair (A,B) rather than on A→ B, but this is more natural in our setting (for example,
the notion of interaction sequence, which is used to study composition of strategies, is the
same as that of play, but on particular positions).
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In the tree in Figure 1, the ql move is played on the occurrence of B called Bl, which is
created by qr, so ql is justified by qr. Similarly, fr is played on the occurrence of {t, f} called
{t, f}r, which is also created by qr, so fr is also justified by qr. We thus recover the pointer
structure from the P -view tree, i.e., the pointer structure of the play we started from.

I Lemma 27. F restricts to a functor FV∶VA,B → EV(A ⊢ B).

Proof. Let us take a HON-view s = (n, f,ϕ), and show that F (s) is a branch. The proof
trees of our sequent calculus can only branch with the use of a right rule. In that case,
we get by the method described above to recover pointers that two Opponent moves are
justified by the same Proponent move. But we know by Proposition 10 that all Opponent
moves in s are justified by the preceding move, so there can be no two Opponent moves
justified by the same Proponent move. J

I Lemma 28. FV is an equivalence of categories.

Proof. Since i, iHON , and F are fully faithful, FV is also fully faithful by left cancellation.
Now, to show that FV is essentially surjective on objects, we simply need to build an
antecedent through FV of any view v. The candidate HON-view is given by taking all
moves of v from the root to the top (this is unambiguous since v is non-branching) and
pointers given by the method described above. All that is left is to verify that the candidate
HON-view is indeed a HON-view, which is done by verifying that it is a HON-play and
that all Opponent moves are justified by the preceding move. The first point is easy, since
the way we have chosen the antecedent may be generalised to any play, and the antecedent
verifies all properties of HON-plays, except perhaps for alternation and having even length,
which are both trivial in our case because views do not branch and have even depth. The
second point is obvious by construction. J

I Remark. The proof above gives some insight on the only fundamental difference between
our plays and HON-plays: ours only verify a weak form of alternation, where Opponent may
play several moves in a row, but Proponent may only answer once per Opponent move.
By putting everything together, we get:

I Theorem 29. The square (1) commutes, F is a full embedding, and FV is an equivalence
of categories.

5 The level of strategies

A useful tool to compare strategies and behaviours in both settings is Guitart’s theory of
exact squares [8], which we now recall.

I Definition 30. A square is a natural transformation as on the left of (6).

Any square yields by restriction a square as in the middle below, and so by adjunction a
further square as on the right:

A B

C D

f

u

g

v
φ

Â B̂

Ĉ D̂

∆f

∆u

∆g

∆v

∆φ

Â B̂

Ĉ D̂.

∏f

∆u

∏g

∆v

φ̃ (6)

I Definition 31. A square φ is exact when φ̃ is an isomorphism.
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The result we ultimately want to prove to show the tight relationship between both ap-
proaches is that the square (2) commutes up to isomorphism. This corollary reduces to
exactness of (1) filled with the identity.

I Lemma 32. Any square as on the left of (6) in which φ is an identity, u is an equivalence,
and v is fully faithful is exact.

I Corollary 33. The square (2) commutes up to isomorphism.

6 Conclusion

Even though Tsukada and Ong’s approach differs significantly from ours in terms of present-
ation, both approaches define similar notions of play (even though our notion of play is
slightly looser than the one from traditional game semantics) and views, and the resulting
notions of behaviours and innocent strategies are related in a very strong way. This shows
that the differences between the two approaches are mainly choices of presentation.

However, Tsukada and Ong’s approach goes further than ours: they define a cartesian
closed category of arenas and strategies, which allows them to compose strategies. Two
steps are required to compose strategies, called parallel composition and hiding: the first
executes two strategies in parallel, and the second one hides the middle arena. While parallel
composition is easy to manipulate in our setting because our game is intrinsically multi-party,
hiding could admittedly be more difficult to handle.
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