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Abstract
The rational fixed point of a set functor is well-known to capture the behaviour of finite coalgebras.
In this paper we consider functors on algebraic categories. For them the rational fixed point may
no longer be a subcoalgebra of the final coalgebra. Inspired by Ésik and Maletti’s notion of
proper semiring, we introduce the notion of a proper functor. We show that for proper functors
the rational fixed point is determined as the colimit of all coalgebras with a free finitely generated
algebra as carrier and it is a subcoalgebra of the final coalgebra. Moreover, we prove that a functor
is proper if and only if that colimit is a subcoalgebra of the final coalgebra. These results serve as
technical tools for soundness and completeness proofs for coalgebraic regular expression calculi,
e.g. for weighted automata.
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1 Introduction

Coalgebras allow to model many types of systems within a uniform and conceptually clear
mathematical framework [25]. One of the key features of this framework is final semantics;
the final coalgebra provides a fully abstract domain of system behaviour (i.e. it identifies
precisely the behaviourally equivalent states). For example, the standard coalgebraic mod-
elling of deterministic automata (without restricting to finite state sets) yields the set of
formal languages as final coalgebra. Restricting to finite automata, one obtains precisely
the regular languages [24]. It is well-known that this correspondence can be generalized
to locally finitely presentable (lfp) categories [4], where finitely presentable objects play the
role of finite sets. For a finitary functor F (modelling a coalgebraic system type) one then
obtains the rational fixed point %F , which provides final semantics to all coalgebras with a
finitely presentable carrier [17]. Moreover, the rational fixed point is fully abstract whenever
the classes of finitely presentable and finitely generated objects agree in the base category
and F preserves monomorphisms [7, Proposition 3.12]. While the latter assumption on F
is very mild (and is not even needed in the case of a lifted set functor), the former one
on the base category is more restrictive. However, it is still true for many categories used
in the construction of coalgebraic system models (e.g. sets, posets, graphs, vector spaces,
commutative monoids, nominal sets and convex sets).

In this paper we will consider rational fixed points in algebraic categories (a.k.a. finitary
varieties), i.e. categories of algebras specified by a finitary signature of operation symbols and
a set of equations (equivalently, these are precisely the Eilenberg-Moore categories for finitary
monads on sets). Being the target of generalized determinization [28], these categories
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18:2 Proper Functors

provide a paradigmatic setting for coalgebraic modelling beyond sets. For example, non-
deterministic automata, weighted or probabilistic ones [16], or context-free grammars [33]
are coalgebraically modelled over the categories of join-semilattices, modules for a semiring,
convex sets, and idempotent semirings, respectively. In algebraic categories one would like
that the rational fixed point, in addition to being fully abstract, is determined already by
those coalgebras carried by free finitely generated algebras, i.e. precisely those coalgebras
arising by generalized determinization. In particular, this feature is used in completeness
proofs for generalized regular expressions calculi [29, 28, 7]; there one proves that the quotient
of syntactic expressions modulo axioms of the calculus is (isomorphic to) the rational fixed
point by establishing its universal property as a final object for that quotient. A key feature
of the settings in loc. cit. is that it suffices to verify the finality only w.r.t. coalgebras with
a free finitely generated carrier.

The purpose of the present paper is to provide sufficient conditions on the algebraic
base category and coalgebraic type functor that ensure such finality proofs are sound. More
precisely, inspired by Ésik and Maletti’s notion of a proper semiring (which is in fact a notion
concerning weighted automata), we introduce proper functors (Definition 23), and we prove
that for a proper functor on an algebraic category the rational fixed point is determined by
the coalgebras with a free finitely presentable carrier. More precisely, let T : Set→ Set be a
finitary monad on sets and F : SetT → SetT be a finitary endofunctor preserving surjective
T -algebra morphisms (note that the last assumption always holds if F is lifted from some
endofunctor on Set). If F is proper, then the rational fixed point is the colimit ϕF of the
inclusion functor of the full subcategory Coalgfree F formed by all F -coalgebras of the form
TX → FTX, where X is a finite set (Theorem 27). Moreover, we show that a functor F
is proper if and only if ϕF is a subcoalgebra of the final coalgebra νF (Theorem 26). As
a consequence we also obtain that for a proper functor F finality of a given locally finitely
presentable coalgebra can be established by only verifying that property for all coalgebras
from Coalgfree F (Corollary 29).

We also provide more easily established sufficient conditions on SetT and F that ensure
properness: F is proper if finitely generated algebras of SetT are closed under kernel pairs
and F maps kernel pairs to weak pullbacks in Set. For a lifting F this holds whenever the
lifted functor on sets preserves weak pullbacks; in fact, in this case the above conditions were
shown to entail Corollary 29 in previous work [7, Corollary 3.36]. However, the type functor
(on the category of commutative monoids) of weighted automata with weights drawn from
the semiring of natural numbers provides an example of a proper functor for which the above
condition on SetT fails.

Another recent related work concerns the so-called locally finite fixed point ϑF [19]; this
provides a fully abstract behavioural domain whenever F is a finitary endofunctor on an lfp
category preserving monomorphisms. In loc. cit. it was shown that ϑF captures a number of
instances that cannot be captured by the rational fixed point, e.g. context free languages [33],
constructively algebraic formal power-series [22, 34], Courcelle’s algebraic trees [8, 2] and
the behaviour of stack machines [15]. However, as far as we know, ϑF is not amenable to
the simplified finality check mentioned above unless F is proper.

Putting everything together, in an algebraic category we obtain the following picture of
fixed points of F (where � denotes quotient coalgebras and � a subcoalgebra):

ϕF � %F � ϑF � νF. (1)

We exhibit an example, where all four fixed points are different. However, if F is proper and
preserves monomorphisms, then ϕF , %F and ϑF are isomorphic and fully abstract, i.e. they
collapse to a subcoalgebra of the final one: ϕF ∼= %F ∼= ϑF � νF .
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The rest of the paper is structured as follows: in Section 2 we collect some technical
preliminaries and recall the rational and locally finite fixed points more in detail. Section 3
introduces proper functors and presents all our results while in Section 4 we present the
proof of our main result Theorem 26. Finally, Section 5 concludes the paper.

Due to space restrictions some proofs and details are omitted; these can be found in the
full version of this paper [18].

2 Preliminaries

In this section we recall a few preliminaries needed for the subsequent development. We
assume that readers are familiar with basic concept of category theory.

We denote the coproduct of two objectX and Y of a category A byX+Y with injections
inl : X → X + Y and inr : Y → X + Y .

I Remark 1. Recall that a strong epimorphism in a category A is an epimorphism e : A� B

of A that has the unique diagonal property w.r.t. any monomorphism. More precisely,
whenever we have a commutative square m ·f = g ·e, where m : C � D is a monomorphism,
then there exists a unique diagonalization d : B → C with d · e = f and m · d = g.

2.1 Algebras and Coalgebras
We assume that readers are familiar with algebras and coalgebras for an endofunctor. Given
an endofunctor F on some category A we write (νF, t) for the final F -coalgebra (if it exists).
Recall, that the final F -coalgebra exists under mild assumptions on A and F , e.g. whenever
A is locally presentable and F an accessible functor (see [4]). For any coalgebra c : C → FC

we will write †c : C → νF for the unique coalgebra morphism.
If A is a concrete category, i.e. equipped with a faithful functor | · | : A → Set, one

defines behavioural equivalence as the following relation ∼: given two F -coalgebras (X, c)
and (Y, d) then x ∼ y holds for x ∈ |X| and y ∈ |Y | if there is another F -coalgebra (Z, e)
and F -coalgebra morphisms f : X → Z and g : Y → Z with |f |(x) = |g|(y).

The base categories A of interest in this paper are the algebraic categories, i.e. cate-
gories of Eilenberg-Moore algebras (or T -algebras, for short) for a finitary monad T on Set.
Equivalently, those categories are precisely the finitary varieties, i.e. category of Σ-algebras
for a finitary signature Σ satisfying the a set of equations (e.g. the categories of monoids,
groups, vector spaces, join-semilattices).

Given a monad T with unit η : Id → T and multiplication µ : TT → T , we will
sometimes make use of its Kleisli extension, i.e. the operation (−)? that takes any morphism
f : X → TY to f? = µY · Tf : TX → TY . Note that f? is the unique T -algebra morphism
from (TX, µX) to (TY, µY ) such that f? · ηX = f .

I Example 2. The leading example in this paper are weighted automata considered as
coalgebras. Let (S,+, ·, 0, 1) be a semiring, i.e. (S,+, 0) is a commutative monoid, (S, ·, 1) a
monoid and the usual distributive laws hold: r · 0 = 0 = 0 · r, r · (s + t) = r · s + r · t and
(r+s) · t = r · t+s · t. We just write S to denote a semiring. As base category A we consider
the category S-Mod of S-semimodules; recall that a (left) S-semimodule is a commutative
monoid (M,+, 0) together with an action S×M →M , written as juxtaposition sm for r ∈ S
and m ∈M , such that for every r, s ∈ S and every m,n ∈M the following laws hold:

(r + s)m = rm+ sm 0m = 0 1m = m

r(m+ n) = rm+ rn r0 = 0 r(sm) = (r · s)m

CALCO 2017



18:4 Proper Functors

An S-semimodule morphism is a monoid homomorphism h : M1 → M2 such that h(rm) =
rh(m) for each r ∈ S and m ∈M1.

Now consider the functor FX = S × XA on S-Mod, where A is an input alphabet.
Then it is easy to see that an S-weighted automaton with n states is precisely a coalgebra
on the free S-semimodule on n generators, i.e. Sn → S × (Sn)A. The final S-coalgebra is
carried by the set SA∗ of all formal power series (or weighted languages) over A with the
obvious (coordinatewise) S-semimodule structure and with the F -coalgebra structure given
by 〈o, t〉 : SA∗ → S×(SA∗)A with o(L) = L(ε) and t(L)(a) = λw.L(aw); it is straightforward
to verify that o and t are S-semimodule morphisms and form a final coalgebra.

An important special case of S-weighted automata are ordinary nondeterministic au-
tomata. One takes S = {0, 1} the Boolean semiring for which the category of S-semimodules
is (isomorphic to) the category of join-semilattices. Then FX = {0, 1} ×XA is the coalge-
braic type functor of deterministic automata with input alphabet A, and there is a bijective
correspondence between an F -coalgebra on a free join-semilattice and non-deterministic
automata. In fact in one direction one restricts PfX → {0, 1} × (PfX)A to the set X of
generators, and in the other direction one performs the well-known subset construction. The
final coalgebra is carried by the set of all formal languages on A in this case.

Another special case is where S is a field. In this case, S-semimodules are precisely the
vector spaces over the field S. Moreover, since every field is freely generated by its basis,
it follows that the S-weighted automata are precisely those F -coalgebras whose carrier is a
finite dimensional vector space over S.

We will now recall a few properties of algebraic categories SetT , where T is a finitary set
monad, needed for our proofs.

I Remark 3.
1. Recall that every strong epimorphisms e in SetT is regular, i.e. e is the coequalizer of

some pair of T -algebra morphisms. It follows that the classes of strong and regular
epimorphisms coincide, and these are precisely the surjective T -algebra morphisms.

2. We will later use that every free T -algebra TX is (regular) projective, i.e. given any
surjective T -algebra morphism q : A� B then for every T -algebra morphism h : TX →
B there exists a T -algebra morphism g : TX → A such that q · g = h.

3. Furthermore, note that every finitely presentable T -algebra A is a regular quotient of a
free T -algebra TX with a finite set X of generators. Indeed, A is presented by finitely
many generators and relations. So by taking X as a finite set of generators of A, the
unique extension of the embedding X ↪→ A yields a surjective T -algebra morphism
TX � A.

2.2 The Rational Fixed Point
As we mentioned in the introduction the canonical domain of behaviour of ‘finite’ coalge-
bras is the rational fixed point of an endofunctor on F . Its theory can be developed for
every finitary endofunctor on a locally finitely presentable category. We will now recall the
necessary background material.

A filtered colimit is the colimit of a diagram D → C where D is a filtered category
(i.e. every finite subdiagram has a cocone in D), and a directed colimit is a colimit whose
diagram scheme D is a directed poset. A functor is called finitary if it preserves filtered
(equivalently directed) colimits. An object C is called finitely presentable (fp) if the hom-
functor C (C,−) preserves filtered (equivalently directed) colimits, and finitely generated (fg)
if C (C,−) preserves directed colimits of monos (i.e. colimits of directed diagrams D : D → C
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where all connecting morphisms Df are monic in C ). Clearly any fp object is fg, but the
converse fails in general. In addition, fg objects are closed under strong epis (quotients),
which fails for fp objects in general.

A cocomplete category C is called locally finitely presentable (lfp) if there is a set of
finitely presentable objects in C such that every object of C is a filtered colimit of objects
from that set. We refer to [4] for further details.

Examples of lfp categories are the categories of sets, posets and graphs, with finitely
presentable objects precisely the finite sets, posets, and graphs, respectively. The category
of vector spaces over the field k is lfp with finite-dimensional spaces being the fp-objects.
Every algebraic category is lfp. The finitely generated objects are precisely the finitely
generated algebras (in the sense of general algebra), and finitely presentable objects are
precisely those algebras specified by finitely many generators and finitely many relations.

I Assumptions 4. For the rest of this section we assume that F denotes a finitary endo-
functor on the lfp category A .

The rational fixed point is a fully abstract model of behaviour for all F -coalgebras whose
carrier is an fp-object. We now recall its construction [1].

I Notation 5. Denote by CoalgF the full subcategory of all F -coalgebras on fp carriers,
and let (%F, r) be the colimit of the inclusion functor of Coalgfp F into CoalgF : (%F, r) =
colim(Coalgfp F ↪→ CoalgF ) with the colimit injections a] : A → %F for every coalgebra
a : A→ FA in Coalgfp F .

We call (%F, r) the rational fixed point of F ; indeed, it is a fixed point:

I Proposition 6 ([1]). The coalgebra structure r : %F → F (%F ) is an isomorphism.

The rational fixed point can be characterized by a universal property both as a coal-
gebra and as an algebra for F : as a coalgebra %F is the final locally finitely presentable
coalgebra [17], and as an algebra it is the initial iterative algebra [1]. We will not recall
the latter notion as it is not needed for the technical development in this paper. Locally
finitely presentable (lfp, for short) coalgebras for F can be characterized as precisely those
F -coalgebra obtained as a filtered colimit of a diagram of coalgebras from Coalgfp F :

I Proposition 7 ([17], Corollary III.13). An F -coalgebra is lfp if and only if it is a colimit of
some filtered diagram D → Coalgfp F ↪→ CoalgF .

For A = Set an F -coalgebra (X, c) is lfp iff it is locally finite, i.e. every element of X is
contained in a finite subcoalgebra. Analogously, for A the category of vector spaces over
the field k an F -coalgebra (X, c) is lfp iff it is locally finite dimensional, i.e. every element
of X is contained in a finite dimensional subcoalgebra.

Of course, there is a unique coalgebra morphism %F → νF . Moreover, in many cases
%F is fully abstract for lfp coalgebras, i.e. besides being the final lfp coalgebra the above
coalgebra morphism is monic; more precisely, if the classes of fp- and fg-objects coincide and
F preserves monos, then %F is fully abstract (see [7, Proposition 3.12]). The assumption
that the two object classes coincide is often true:

I Example 8.
1. In the category of sets, posets, and graphs, fg-objects are fp and those are precisely the

finite sets, posets, and graphs, respectively.
2. A locally finite variety is a variety of algebras, where every free algebra on a finite set of

generators is finite. It follows that fp- and fg-objects coincide and are precisely the finite

CALCO 2017



18:6 Proper Functors

algebras. Concrete examples are the categories of Boolean algebras, distributive lattices
and join-semilattices.

3. In the category of S-semimodules for a semiring S the fp- and fg-objects need not coincide
in general. However, if the semiring S is Noetherian in the sense of Ésik and Maletti [11],
i.e. every subsemimodule of a finitely generated S-semimodule is itself finitely generated,
then fg- and fp-semimodules coincide. Examples of Noetherian semirings are: every
finite semiring, every field, every principal ideal domain such as the ring of integers and
therefore every finitely generated commutative ring by Hilbert’s Basis Theorem. The
tropical semiring (N ∪ {∞},min,+,∞, 0) is not Noetherian [10]. The usual semiring of
natural numbers is also not Noetherian: the N-semimodule N ×N is finitely generated
but its subsemimodule generated by the infinite set {(n, n+ 1) | n ≥ 1} is not. However,
N-semimodules are precisely the commutative monoids, and for them fg- and fp-objects
coincide (this is known as Redei’s theorem [23]; see Freyd [13] for a very short proof).

4. Recently, it was established by Sokolova and Woracek [30] that in the category of convex
sets, i.e. the Eilenberg-Moore category for the (sub)distribution monad on sets, the
classes of fp- and fg-objects coincide.

I Example 9. We list a number of examples of rational fixed points for cases where they
do form subcoalgebras of the final coalgebra.
1. For the functor FX = {0, 1}×XA on Set the finite coalgebras are deterministic automata,

and the rational fixed point is carried by the set of regular languages on the alphabet A.
2. For any signature Σ = (Σn)n<ω of operation symbols with prescribed arity we have

the associated polynomial endofunctor on sets given by FΣX =
∐
n<ω Σn × Xn. Its

final coalgebra is carried by the set of all (finite and infinite) Σ-trees, i.e. rooted and
ordered trees where each node with n-children is labelled by an n-ary operation symbol.
The rational fixed point is the subcoalgebra given by rational (or regular [8]) Σ-trees,
i.e. those Σ-trees that have only finitely many different subtrees (up to isomorphism)
– this characterization is due to Ginali [14]. For example, for the signature Σ with a
binary operation symbol ∗ and a constant c the following infinite Σ-tree (here written as
an infinite term) is rational:

c ∗ (c ∗ (c ∗ · · · )));

in fact, its only subtrees are the whole tree and the single node tree labelled by c).
3. For the functor FX = R × X on Set the final coalgebra is carried by the set Rω of

real streams, and the rational fixed point is carried by its subset of eventually periodic
streams (or lassos). Considered as a functor on the category of vector spaces over R,
the final coalgebra νF remains the same, but the rational fixed point %F consists of all
rational streams [26].

4. For the functor FX = S×XA on the category S-Mod of S-semimodules for the semiring
S we already mentioned that νF = SA

∗ consists of all formal power-series. Whenever
the classes of fg- and fp-semimodules coincide, e.g. for every Noetherian semiring S or
the semiring of natural numbers, then %F is formed by the recognizable formal power-
series; from the Kleene-Schützenberger theorem [27] (see also [6]) it follows that these
are, equivalently, the rational formal power-series.

5. On the category of presheaves SetF , where F is the category of all finite sets and maps
between them, consider the functor FX = V +X ×X + δ(X), where V : F ↪→ Set is the
embedding and δ(X)(n) = X(n+1). This is a paradigmatic example of a functor arising
from a binding signature for which initial semantics was studied by Fiore et al. [12].
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The final coalgebra νF is carried by the presheaf of all λ-trees modulo α-equivalence:
νF (n) is the set of (finite and infinite) λ-trees in n free variables (note that such a tree
may have infinitely many bound variables). And %F is carried by the rational λ-trees,
where an α-equivalence class is called rational if it contains at least one λ-tree which has
(up to isomorphism) only finitely many different subtrees (see [3]). Rational λ-trees also
appear as the rational fixed point of a very similar functor on the category of nominal
sets [21]. Similarly, for any functor on nominal sets arising from a binding signature [20].

As we mentioned previously, whether fg- and fp-objects coincide is currently unknown
in some base categories used in the coalgebraic modelling of systems, for example, in idem-
potent semirings (used in the treatment of context-free grammars [33]), in algebras for the
stack monad (used for modelling configurations of stack machines [15]); or it even fails, for
example in the category of finitary monads on sets (used in the categorical study of algebraic
trees [2]) or in Eilenberg-Moore categories for a monad in general (the target categories of
generalized determinization [28]).

As a remedy, in recent joint work with Pattinson and Wissmann [19], we have introduced
the locally finite fixed point which provides a fully abstract model of finitely generated
behaviour. Its construction is very similar to that of the rational fixed point but based on
fg- in lieu of fp-objects. In more detail, one considers the full subcategory Coalgfg F of all
F -coalgebras carried by an fg-object and takes the colimit of its inclusion functor:

(ϑF, `) = colim(Coalgfg F ↪→ CoalgF ).

I Theorem 10 ([19], Theorems 3.10 and 3.12). Suppose that the finitary functor F : A → A

preserves monos. Then (ϑF, `) is a fixed point for F , and it is a subcoalgebra of νF .

Furthermore, like its brother, the rational fixed point, ϑF is characterized by a universal
property both as a coalgebra and as an algebra: it is the final locally finitely generated
coalgebra and the initial fg-iterative algebra [19, Theorems 3.8 and Corollary 3.18].

Under additional assumptions, which all hold in any algebraic category, we have a close
relation between %F and ϑF ; in fact, the following is a consequence of [19, Theorem 3.22]:

I Theorem 11. Suppose that A is an algebraic category and that the finitary functor F :
A → A preserves monos. Then ϑF is the image of %F in the final coalgebra.

More precisely, taking the (strong-epi, mono)-factorization of the unique F -coalgebra mor-
phism %F → νF yields ϑF , i.e. for F preserving monos on an algebraic category we have
the following picture:

%F � ϑF � νF.

If furthermore, fg- and fp-objects coincide, then ϑF ∼= %F , i.e. the left-hand morphism is an
isomorphism.

In the introduction we briefly mentioned a number of interesting instances of ϑF that
are not (known to be) instances of the rational fixed point; see [19] for details.

A concrete example, where %F is not a subcoalgebra of νF (and hence not isomorphic
to ϑF ) was given in [7, Example 3.15]. We present a new, simpler example based on similar
ideas:

CALCO 2017



18:8 Proper Functors

I Example 12.
1. Let A be the category of algebras for the signature Σ with two unary operation symbols

u und v. The natural numbers N with the successor function as both operations uN and
vN form an object of A . We consider the functor FX = N ×X on A . Coalgebras for
F are automata carried by an algebra A in A equipped with two Σ-algebra morphisms:
an output morphism A→ N and a next state morphism A→ A. The final coalgebra is
carried by the set Nω of streams of naturals with the coordinatewise algebra operations
and with the coalgebra structure given by the usual head and tail functions.
Note that the free Σ-algebra on a set X of generators is TX ∼= {u, v}∗ ×X; we denote
its elements by w(x) for w ∈ {u, v}∗ and x ∈ X. The operations are given by prefixing
words by the letters u and v, respectively: sTX : w(x) 7→ sw(x) for s = u or v.
Now one considers the F -coalgebra a : A → FA, where A = T{x} is free Σ-algebra on
one generator x and a is determined by a(x) = (0, u(x)). Clearly, †a(x) is the stream
(0, 1, 2, 3, · · · ) of all natural numbers, and since †a is a Σ-algebra morphism we have

†a(u(x)) = †a(v(x)) = (1, 2, 3, 4, · · · ).

Since A is (free) finitely generated, it is of course, finitely presentable as well. Thus,
(A, a) is a coalgebra in Coalgfp F . However, one can prove that the (unique) F -coalgebra
morphism a] : A→ %F satisfies a](u(x)) 6= a](v(x)), see the full paper for details [18].

2. In this example we also have that ϑF and νF do not coincide. To see this we use that ϑF
is the union of images of all †a : TX → νF where (TX, a) ranges over those F -coalgebras
whose carrier TX is free finitely generated (i.e. TX is a term algebra over some finite
set X) [19, Theorem 4.4].
Note that being a Σ-algebra morphism any coalgebra structure a : TX → FTX is
determined by its action on the generators. And from the form of any TX we know that
for any x ∈ X there exist k, ni ∈ N, wi ∈ {u, v}∗ and xi ∈ X, i = 1, . . . k, such that
x = x0 and

a(xi) = (ni, wi(xi+1)) for i = 0, . . . , k − 1 and
a(xk) = (nk, wk(xj)) for some j ∈ {0, . . . , k}.

Now let mi = |wi|, i = 1, . . . , k, be the lengths of words. Then it follows that

†a(x0) = (n0,m0 +n1,m0 +m1 +n2, · · · ,m0 + · · ·+mk−1 +nk,m0 + · · ·mk +nj , · · · ).

Let m be the maximum of all ni and mi. Then it is clear that the n-th entry of †a(x0)
can be at most (n+ 1) ·m. It follows that for any w ∈ {u, v}∗ the n-th entry of †a(w(x))
is bounded above by (n+ 1) ·m+ |w|. Thus, the entries of every stream in ϑF grow at
most linearly. However, there are streams in νF for which this is not the case, e.g. the
stream (1, 2, 4, 8, · · · ) of powers of 2. Hence ϑF does not coincide with νF .

3 Proper Functors and Coalgebras Carried by Free Algebras

The purpose of this section is to study the situation where the rational fixed point for a
functor F on an algebraic category SetT coincides with the locally finite one, and moreover,
both can be constructed just from those coalgebras whose carrier is a free finitely generated
coalgebra. The latter coalgebras are precisely those coalgebras arising as the results of the
generalized determinization [28].
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I Assumptions 13. Throughout the rest of the paper we assume that A is an algebraic
category, i.e. A is (equivalent to) the Eilenberg-Moore category SetT for a finitary monad
T on Set. Furthermore, we assume that F : A → A is a finitary endofunctor preserving
surjective T -algebra morphisms.

I Remark 14.
1. The most common instance is when F is a lifting of an endofunctor F0 : Set → Set,

i.e. we have a commutative square F0 · U = U · F , where U : A → Set is the forgetful
functor. Then F preserves surjective T -algebra morphisms since every set functor F0
preserves surjections (which are split epis in Set). In addition, F is finitary whenever
F0 is so because filtered colimits in SetT are created by U . Furthermore, observe that
the assumption that F preserves monomorphisms in Theorems 10 and 11 as well as in
Corollary 28 is not needed. Indeed, inspection of the proofs in [19] reveals that it suffices
to assume that non-empty monomorphisms are preserved, and this holds for every lifted
F since it does for every F0 on Set.

2. Let F : Set→ Set have a lifting to SetT (also denoted by F for simplicity). Generalized
determinization [28] is the process of turning a given coalgebra c : X → FTX in Set into
the coalgebra c? : TX → FTX for the lifting of F on SetT . For example, for the functor
FX = {0, 1} × XΣ on Set and the finite power-set monad T = Pf , FT -coalgebras are
precisely non-deterministic automata and generalized determinization is the construction
of a deterministic automaton by the well-known subset construction. The unique F -
coalgebra morphism †(c?) assigns to each state x ∈ X the language accepted by x in the
given nondeterministic automaton (whereas the final semantics for FT on Set provides
a kind of process semantics taking the nondeterministic branching into account).
Thus studying the behaviour of F -coalgebras whose carrier is a free finitely generated
T -algebra TX is precisely the study of a coalgebraic language semantics of finite FT -
coalgebras.

I Notation 15. We denote by Coalgfree F the full subcategory of CoalgF given by all coal-
gebras c : TX → FTX whose carrier is a free finitely generated T -algebra, i.e. where X is
a finite set X.

The colimit of the inclusion functor of Coalgfree F into the category of all F -coalgebras is
denoted by (ϕF, ζ) = colim(Coalgfree F ↪→ CoalgF ) with the colimit injections inc : TX →
ϕF for every c : TX → FTX.

I Notation 16. Since Coalgfree F is a full subcategory of Coalgfp F , the universal property
of the colimit ϕF induces a coalgebra morphism denoted by h : ϕF → %F . Furthermore we
write m : ϕF → νF for the unique F -coalgebra morphisms into the final lfp coalgebra and
the final coalgebra, respectively.

I Remark 17. We shall show in Propositon 21 that h is a strong epimorphism. Thus,
whenever F preserves monos, we have the picture (1) from the introduction.

Urbat [31] shows that ϕF is always a fixed point of F . However, ϕF does not have a
universal property similar to the coalgebras %F and ϑF . In fact, Urbat gives the following
example of a coalgebra c : TX → FTX where inc : TX → ϕF is not the only F -coalgebra
morphism:

I Example 18.
1. Let A be the category of algebras for the signature with one unary operation symbol

u (and no equations), and let F = Id be the identity functor on A . Let A be the free
(term) algebra on one generator x, and let B be the free algebra on one generator y
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(i.e. both A and B are isomorphic to N). We equip A and B with the F -coalgebra
structures a = id : A → A and b : B → B given by b(y) = u(y). Define g : A → ϕF by
g(x) = inb(y). Then one can show that g is an F -coalgebra morphism different from the
F -coalgebra morphism ina : A→ ϕF .

2. Using similar ideas as in the previous point one can show that, for the category A and
FX = N × X from Example 12, ϕF and %F do not coincide, see the full paper [18].
Consequently, in this example, none of the arrows in (1) is an isomorphism.

In this section we are going to investigate when the first three fixed points in (1) collaps to
one, i.e. ϕF ∼= %F ∼= ϑF . As a consequence, it follows that finality of a given lfp coalgebra for
F can be established by checking the universal property only for the coalgebras in Coalgfree F

(Corollary 29).

I Lemma 19. The category Coalgfree F is closed under finite coproducts.

Proof. The empty map 0 → FT0 extends uniquely to a T -algebra morphism T0 → FT0,
i.e. an F -coalgebra, and this coalgebra is the initial object of Coalgfree F .

Given coalgebras c : TX → FTX and d : TY → FTY one uses that T (X + Y ) together
with the injections T inl : TX → T (X + Y ) and T inr : TY → T (X + Y ) form a coproduct in
SetT . This implies that forming the coproduct of (TX, c) and (TY, d) in CoalgF we obtain
an F -coalgebra on T (X + Y ), and this is an object of Coalgfree F since X + Y is finite. J

I Remark 20. We will use later that the colimit ϕF is a sifted colimit.
1. Recall that a small category D is called sifted [5] if finite products commute with colimits

over D in Set. More precisely, D is sifted iff given any diagram D : D×J → Set, where
J is a finite discrete category, the canonical map

colim
d∈D

( ∏
j∈J

D(d, j)
)
→
∏
j∈J

(colim
d∈D

D(d, j))

is an isomorphism. A sifted colimit is a colimit of a diagram with a sifted diagram
scheme.

2. It is well-known that the forgetful functor SetT → Set preserves sifted colimits; this
follows from [5, Proposition 2.5].

3. Further recall [5, Example 2.16] that every small category D with finite coproducts is
sifted. Thus, following Lemma 19, D = Coalgfree F is sifted, and ϕF is a sifted colimit.

I Proposition 21. The above morphism h : ϕF � %F is a strong epimorphism in A .

I Remark 22.
1. Recall that a zig-zag in a category A is a diagram of the form

Z0
f0−→ Z1

f1←− Z2
f2−→ Z3

f3←− · · · fn−2−−−→ Zn−1
fn−1←−−− Zn.

For A = SetT , we say that the zig-zag relates z0 ∈ Z0 and zn ∈ Zn if there exist zi ∈ Zi,
i = 1, . . . , n− 1 such that fi(zi) = zi+1 for i even and fi(zi+1) = zi for i odd.

2. Ésik and Maletti [10] introduced the notion of a proper semiring in order to obtain the
decidability of the (language) equivalence of weighted automata. A semiring S is called
proper if, whenever we have two S-weighted automata A and B and two states x in A
and y in B that accept the same weighted language, then there exists a zig-zag

A = M0 →M1 ←M2 →M3 ← · · · →Mn−1 ←Mn = B
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of simulations that relates x and y. They show that every Noetherian semiring is proper
as well as the semiring N of natural numbers, which is not Noetherian. However, the
tropical semiring (N ∪ {∞},min,+,∞, 0) is not proper.

Recall from Example 2 that S-weighted automata with input alphabet Σ are equivalently
coalgebras with carrier Sn, for some n ≥ 1, for the functor FX = S ×XΣ on the category
S-Mod. Thus, since simulations are precisely the F -coalgebra morphisms, one easily gener-
alizes the notion of a proper semiring as follows. Recall that ηX : X → TX denotes the unit
of the monad T .

I Definition 23. We call the functor F : A → A proper whenever for every pair of
coalgebras c : TX → FTX and d : TY → FTY in Coalgfree F and every x ∈ X and y ∈ Y
such that ηX(x) ∼ ηY (y) are behaviourally equivalent there exists a zig-zag in Coalgfree F

relating ηX(x) and ηY (y).

I Example 24. A semiring S is proper iff the functor FX = S×XΣ on S-Mod is proper.

I Example 25. Constant functors are always proper. Indeed, suppose that F is the constant
functor on some algebra A. Then we have νF = A, and for any F -coalgebra B its coalgebra
structure c : B → FB = A is also the unique F -coalgebra morphism from B to νF = A.

Now given any c : TX → FTX = A and d : TY → FTY = A and x ∈ TX, y ∈ TY as
in Definiton 23. Then ηX(x) ∼ ηY (y) is equivalent to c(ηX(x)) = d(ηY (y)). Let a be this
element of A, and extend x : 1 → X, y : 1 → Y and a : 1 → A to T -algebra morphisms
x? : T1→ TX, y? : T1→ TY and a? : T1→ A = FT1 (the latter yielding an F -coalgebra).
Then TX x?

←− T1 y?

−→ TY is the required zig-zag in Coalgfree F relating ηX(x) and ηY (y).

In general, it seems to be non-trivial to establish that a given functor is proper (even
for the identity functor this may fail as we have seen in Example 18.1). However, we will
provide in Proposition 30 sufficient conditions on A and F the entail properness using our
main result:

I Theorem 26. The functor F is proper iff the coalgebra ϕF is a subcoalgebra of νF .

The latter condition states that the unique coalgebra morphismm : ϕF → νF is a monomor-
phism in A .

We present the proof of this theorem Section 4. Here we continue with a discussion of
the consequences of this result.

I Corollary 27. If F is proper, then ϕF is the rational fixed point of F .

Proof. Let u : %F → νF be the unique F -coalgebra morphism. Then we have a commutative
triangle of F -coalgebra morphisms due to finality of νF : m = (ϕF

h
� %F

u→ νF ). Since F is
proper m is a monomorphism in A , hence so is h. Since h is also a strong epimorphism by
Proposition 21, it is an isomorphism. Thus, ϕF ∼= %F is the rational fixed point of F . J

I Corollary 28. If finitely generated and finitely presentable algebras coincide in A and F
preserves monos, then F is proper iff ϕF ∼= %F ∼= ϑF � νF .

Indeed, this follows from Corollary 27 and Theorem 11. Note that this also entails full
abstractness of ϕF ∼= %F .

A key result for establishing soundness and completeness of coalgebraic regular expression
calculi is the following corollary (cf. [7, Corollary 3.36] and its applications in Sections 4 and
5 of loc. cit.).
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I Corollary 29. Suppose that F is proper. Then an F -coalgebra (R, r) is a final lfp coalgebra
if and only if (R, r) is lfp and for every coalgebra (TX, c) in Coalgfree F there exists a unique
F -coalgebra morphism from TX to R.

Proof. The implication “⇒” clearly holds
For “⇐” it suffices to prove that for every a : A → FA in Coalgfp F there exists a

unique F -coalgebra morphism from A to R. In fact, it then follows that R is the final lfp
coalgebra. To see this write an arbitrary lfp coalgebra A as a filtered colimit of a diagram
D : D → Coalgfp F ↪→ CoalgF with colimit injections hd : Dd → A (d an object in D).
Then the unique F -coalgebra morphisms ud : Dd → R form a compatible cocone, and so
one obtains a unique u : A → R such that u · hd = ud holds for every object d of D . It is
now straightforward to prove that u is a unique F -coalgebra morphism from A to R.

Now let a : A → FA be a coalgebra in Coalgfp F . For every (TX, c) in Coalgfree F

denote by c‡ : TX → R the unique F -coalgebra morphism that exists by assumption. These
morphisms c‡ form a compatible cocone of the diagram Coalgfree F ↪→ CoalgF . Thus, we
obtain a unique F -coalgebra morphism m′ : ϕF ∼= %F → R such that the following diagram
commutes for every c : TX → FTX in Coalgfree F :

TX

inc

��
c]

!!

c‡

((
ϕF ∼=

%F
m′
// R

Therefore we have an F -coalgebra morphism

h = (A a]

−→ %F
m′−−→ R).

To prove it is unique, assume that g : A→ R is any F -coalgebra morphism. As in the proof
of Proposition 21, we know that A is the quotient of some TX in Coalgfree F via q : TX � A,
say. Then we have m′ · a] · q = g · q because there is only one F -coalgebra morphism from
TX to R by hypothesis. It follows that h = m′ · a] = g since q is epimorphic. J

The next result provides sufficient conditions for properness of F . It can be seen as
a category-theoretic generalization of Ésik’s and Maletti’s result [10, Theorem 4.2] that
Noetherian semirings are proper.

For the special case of a lifting F of a set functor F0 this is a corollary of a result of
Winter [32, Proposition 7].

I Proposition 30. Suppose that finitely generated algebras in A are closed under kernel
pairs and that F maps kernel pairs to weak pullbacks in Set. Then F is proper.

Note that closure of finitely generated algebras under kernel pairs can equivalently be
stated in general algebra terms as follows: every congruence R of a finitely generated algebra
A is finitely generated as a subalgebra R ↪→ A × A (observe that this is not equivalent to
stating that R is a finitely generated congruence).

Furthermore, for a lifting F of a set functor F0, the above condition on F holds whenever
F preserves weak pullbacks. Hence, all the functors on algebraic categories mentioned in
Example 9 satisfy this assumption.
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I Examples 31.
1. The first condition in Proposition 30 is not necessary for properness of F . In fact, it fails

in the category of semimodules for N, viz. the category of commutative monoids: the
submonoid of N×N infinitely generated by {(n, n+1) | n ∈ N} is not a finitely generated
submonoid. However, as we mentioned in Example 24, FX = N×XΣ is proper on the
category of commutative monoids.

2. In Example 8.4 we mentioned that, in the category of convex sets (i.e. Eilenberg-Moore
algebras for the distribution monad), fg- and fp-objects coincide. However, fg-objects
are not closed under kernel pairs. In fact, the interval [0, 1] is the free convex set on
two generators, but {(0, 0), (1, 1)} ∪ (0, 1)× (0, 1) is a congruence on [0, 1] that is not an
fg-object (i.e. a polytope) [30, Example 4.13]. It is an open problem whether coalgebraic
type functors of interest on convex sets are proper, e.g. the functor FX = [0, 1]×XΣ.

4 Proof of Theorem 26

In this section we will present the proof of our main technical result Theorem 26. We start
with two technical lemmas.
I Remark 32. Recall [5, Proposition 11.28.2] that every free T -algebra TX is perfectly
presentable, i.e. the hom-functor SetT (TX,−) preserves sifted colimits. It follows that for
every sifted diagram D : D → SetT and every T -algebra morphism h : TX → colimD there
exists some d ∈ D and h′ : TX → Dd such that h = ind · h′.

I Lemma 33. For every finite set X and map f : X → ϕF there exists an object (TY, d)
in Coalgfree F and a map g : X → Y such that f = (X g−→ Y

ηY−−→ TY
ind−−→ ϕF ).

I Remark 34. Recall that a colimit of a diagram D : D → Set is computed as follows:

colimD =
(∐
d∈D

Dd
)
/∼,

where ∼ is the least equivalence on the coproduct (i.e. the disjoint union) of all Dd with
x ∼ Df(x) for every f : d → d′ in D and every x ∈ Dd. In other words, for every pair
of objects c, d of D and x ∈ Dc, y ∈ Dd we have x ∼ y iff there is a zig-zag in D whose
D-image relates x and y (cf. Remark 22).

I Lemma 35. Let (TX, c) and (TY, d) be coalgebras in Coalgfree F , x ∈ TX, and y ∈ TY .
Then the following are equivalent:
1. inc(x) = ind(y) ∈ ϕF , and
2. there is a zig-zag in Coalgfree F relating x and y.

Proof. By Remark 20, ϕF is a sifted colimit. Hence, the forgetful functor CoalgF → SetT →
Set preserves this colimit. Thus the colimit ϕF is formed as recalled in Remark 34:

ϕF ∼=
(∐

c

TXc

)
/∼,

where c : TXc → FTXc ranges over the objects of Coalgfree F . Therefore, we have the
desired equivalence. J

Proof of Theorem 26. “⇒” Suppose that for m : ϕF → νF we have x, y ∈ ϕF with
m(x) = m(y). We apply Lemma 33 to 1 x−→ ϕF and 1 y−→ ϕF , respectively, to obtain two
objects c : TX → FTX and d : TY → FTY in Coalgfree F with x′ ∈ X and y′ ∈ Y such
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that inc(ηX(x′)) = x and ind(ηY (y′)) = y. By the uniqueness of coalgebra morphisms into
νF we have

†c = m · inc and †d = m · ind. (2)

Thus we compute:

†c(ηX(x′)) = m · inc · ηX(x′) = m(x) = m(y) = m · ind · ηY (y′) = †d(ηY (y′)).

Since F is proper by assumption, we obtain a zig-zag in Coalgfree F relating ηX(x′) and
ηY (y′). Thus, these two elements are merged by the colimit injections, and we have x =
inc(ηX(x′)) = ind(ηY (y′) = y. We conclude that m is monomorphic.

“⇐” Suppose that m : ϕF � νF is a monomorphism. Let c : TX → FTX and
d : TY → FTY be objects of Coalgfree F , and let x ∈ X and y ∈ Y be such that †c(ηX(x)) =
†d(ηY (y)). Using (2) and the fact that m is monomorphic we get inc(ηX(x)) = ind(ηY (y)).
By Lemma 35, we thus obtain a zig-zag in Coalgfree F relating ηX(x) and ηY (y). This proves
that F is proper. J

5 Conclusions and Further Work

Inspired by Ésik and Maletti’s notion of a proper semiring, we have introduced the notion
of a proper functor. We have shown that, for a proper endofunctor F on an algebraic
category preserving regular epis and monos, the rational fixed point %F is fully abstract
and moreover determined by those coalgebras with a free finitely generated carrier (i.e. the
target coalgebras of generalized determinization).

Our main result also shows that properness is necessary for this kind of full abstractness.
For categories in which fg-objects are closed under kernel pairs we saw that when F maps
kernel pairs to weak pullbacks in Set, then it is proper. This provides a number of examples
of proper functors. However, in several categories of interest the condition on kernel pairs
fails, e.g. in N-semimodules (commutative monoids) and convex sets. There can still be
proper functors, e.g. FX = N×XΣ on the former. But establishing properness of a functor
without using Proposition 30 seems non-trivial, and we leave this task as an open problem
for further work.

One immediate consequence of our results is that the soundness and completeness of the
expression calculi for weighted automata [7] extend from Noetherian to proper semirings,
see Ésik and Kuich [9] for a related result.

In the future, when additional proper functors are known, it will be interesting to study
regular expression calculi for their coalgebras and use the technical machinery developed in
the present paper for soundness and completeness proofs.

References
1 Jiří Adámek, Stefan Milius, and Jiří Velebil. Iterative algebras at work. Math. Structures

Comput. Sci., 16(6):1085–1131, 2006.
2 Jiří Adámek, Stefan Milius, and Jiří Velebil. On second-order iterative monads. Theo-

ret. Comput. Sci., 412:4969–4988, 2011.
3 Jiří Adámek, Stefan Milius, and Jiří Velebil. Semantics of higher-order recursion schemes.

Log. Methods Comput. Sci., 7(1:15):43 pp., 2011.
4 Jiří Adámek and Jiří Rosický. Locally presentable and accessible categories. Cambridge

University Press, 1994.



S. Milius 18:15

5 Jiří Adámek, Jiří Rosický, and Enrico Vitale. Algebraic Theories. Cambridge University
Press, 2011.

6 Jean Berstel and Christophe Reutenauer. Rational Series and Their Languages. Springer-
Verlag, 1988.

7 Marcello Bonsangue, Stefan Milius, and Alexandra Silva. Sound and complete axiomatiza-
tions of coalgebraic language equivalence. ACM Trans. Comput. Log., 14(1:7), 2013.

8 Bruno Courcelle. Fundamental properties of infinite trees. Theoret. Comput. Sci., 25:95–
169, 1983.

9 Zoltán Ésik and Werner Kuich. Free iterative and iteration k-semialgebras. Algebra Univ.,
67(2):141–162, 2012.

10 Zoltán Ésik and Andreas Maletti. Simulation vs. equivalence. In Proc. 6th Int. Conf.
Foundations of Computer Science, pages 119–122. CSREA Press, 2010.

11 Zoltán Ésik and Andreas Maletti. Simulations of weighted tree automata. In
Proc. CIAA’11, volume 6482 of Lecture Notes Comput. Sci., pages 321–330. Springer, 2011.

12 Marcelo Fiore, Gordon D. Plotkin, and Daniele Turi. Abstract syntax and variable binding.
In Proc. LICS’99, pages 193–202. IEEE Press, 1999.

13 Peter Freyd. Rédei’s finiteness theorem for commutative semigroups.
Proc. Amer. Math. Soc., 19(4), 1968.

14 Susanna Ginali. Regular trees and the free iterative theory. J. Comput. System Sci.,
18:228–242, 1979.

15 Sergey Goncharov, Stefan Milius, and Alexandra Silva. Towards a coalgebraic Chomsky hi-
erarchy (extended abstract). In Proc. TCS’14, volume 8705 of Lecture Notes Comput. Sci.,
pages 265–280. Springer, 2014.

16 Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace semantics via determinization.
J. Comput. System Sci., 2015.

17 Stefan Milius. A sound and complete calculus for finite stream circuits. In Proc. LICS’10,
pages 449–458. IEEE Computer Society, 2010.

18 Stefan Milius. Proper functors and their rational fixed point. Full version; available at
https://arxiv.org/abs/1705.09198, 2017.

19 Stefan Milius, Dirk Pattinson, and Thorsten Wißmann. A new foundation for finitary
corecursion: The locally finite fixpoint and its properties. In Proc. FoSSaCS’16, volume
9634 of Lecture Notes Comput. Sci. (ARCoSS), pages 107–125. Springer, 2016.

20 Stefan Milius, Lutz Schröder, and Thorsten Wißmann. Regular behaviours with names: On
rational fixpoints of endofunctors on nominal sets. Appl. Categ. Structures, 24(5):663–701,
2016.

21 Stefan Milius and Thorsten Wißmann. Finitary corecursion for the infinitary lambda cal-
culus. In Proc. CALCO’15, volume 35 of LIPIcs, pages 336–351, 2015.

22 Ion Petre and Arto Salomaa. Algebraic systems and pushdown automata. In Handbook of
Weighted Automata, pages 257–289. Springer, 2009.

23 Lásló Rédei. The Theory of Finitely Generated Commutative Semigroups. Pergamon,
Oxford-Edinburgh-New York, 1965.

24 Jan Rutten. Automata and coinduction (an exercise in coalgebra). In Proc. CONCUR
1998, volume 1466 of Lecture Notes Comput. Sci., pages 194–218. Springer, 1998.

25 Jan Rutten. Universal coalgebra: a theory of systems. Theoret. Comput. Sci., 249(1):3–80,
2000.

26 Jan Rutten. Rational streams coalgebraically. Log. Methods Comput. Sci., 4(3:9):22 pp.,
2008.

27 Marcel Paul Schützenberger. On the definition of a family of automata. Inform. and
Control, 4(2–3):275–270, 1961.

CALCO 2017

https://arxiv.org/abs/1705.09198


18:16 Proper Functors

28 Alexandra Silva, Filippo Bonchi, Marcello Bonsangue, and Jan Rutten. Generalizing de-
terminization from automata to coalgebras. Log. Methods Comput. Sci, 9(1:9), 2013.

29 Alexandra Silva, Marcello Bonsangue, and Jan Rutten. Non-deterministic Kleene coalge-
bras. Log. Methods Comput. Sci., 6(3:23):39 pp., 2010.

30 Ana Sokolova and Harald Woracek. Congruences of convex algebras. J. Pure Appl. Algebra,
219(8):3110–3148, 2015.

31 Henning Urbat. Finite behaviours and finitary corecursion. In Proc. CALCO’17, volume 72
of LIPIcs, pages 24:1–24:15, 2017.

32 Joost Winter. A completeness result for finite λ-bisimulations. In Proc. FoSSaCS’15,
volume 9034 of Lecture Notes Comput. Sci., pages 117–132, 2015.

33 Joost Winter, Marcello Bonsangue, and Jan Rutten. Coalgebraic characterizations of
context-free languages. Log. Methods Comput. Sci., 9(3), September 2013.

34 Joost Winter, Marcello Bonsangue, and Jan Rutten. Context-free coalgebras. J. Com-
put. System Sci., 81(5):911–939, 2015.


	Introduction
	Preliminaries
	Algebras and Coalgebras
	The Rational Fixed Point

	Proper Functors and Coalgebras Carried by Free Algebras
	Proof of Theorem 26
	Conclusions and Further Work

