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Abstract
Span(Graph) was introduced by Katis, Sabadini and Walters as a categorical algebra of auto-
mata with interfaces, with main operation being communicating-parallel composition. Additional
operations provide also a calculus of connectors or wires among components. A system so de-
scribed has two aspects: an informal network geometry arising from the algebraic expression,
and a space of states and transition given by its evaluation in Span(Graph). So, Span(Graph)
yields purely compositional, hierarchical descriptions of networks with a fixed topology. The
dual algebra Cospan(Graph) allows to describe also the sequential behaviour of systems. Both
algebras, of spans and of cospans, are symmetrical monoidal categories with commutative sepa-
rable algebra structures on the objects. Hence, the combined algebra CospanSpan(Graph)
can be interpreted as a general algebra for reconfigurable/hierarchical networks, generalizing the
usual Kleene’s algebra for classical automata. We present some examples of systems described
in this setting.
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1 Introduction

In the last decades, starting with the pioneering approach of C.A. Petri, many formalisms
have been proposed in the effort of describing "concurrent" systems, a notion, at least in the
opinion of Sabadini and Walters, always very obscure. Some of these formalisms (for example
Milner’s CCS and in general Process Algebras) insisted correctly on the compositional point
of view, typical of classical Regular Expressions, by extending the latter with new operators.
Unfortunately, the natural correspondence with classical automata, i.e. state/transition
systems, was totally lost. This was, in the opinion of Sabadini and Walters, a mistake,
since finite automata provide in a natural way the control structure of discrete dynamical
(state/transition) systems. Slowly (and - alas - not yet certainly), it has been realized that
the semantic object under consideration was not a "concurrent" system, but more clearly a
distributed network of interacting components/agents/automata. Sabadini-Walters proposed
this point of view from the beginning, focusing on the development of an algebra of networks
of automata, that should generalize in a natural way the classical algebra of Kleene for
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sequential automata. What is missing in Kleene’s algebra for automata is the operation of
communicating parallel, fundamental to describe any mechanism. Consider for example
how two gearwheels interact during their movement by simultaneuos change of their state.
We argue that this more fundamental kind of interaction - that it is not input/output
message passing, by its nature sequential, but on the contrary a simultaneous change of state
- underlies any communication among machines or physical devices. But there is a second
issue that should be taken into account in order to provide a compositional description for
networks: a network is by default an open entity, and it is not possible to build an open
system starting with closed ones. Hence, open systems should be taken as basic building
blocks, and this forced us to introduce a new notion, automata with communication ports or
interfaces. But what is the mathematical nature of automata with interfaces? And what is
the correct algebra for composing them?

The algebra Span(Graph) was introduced in [8] as a "parallel" algebra for automata
with interfaces, I.E. the two fundamental operations are parallel composition with or without
communication. The automata are open (that is, have interfaces or ports) as is necessary to
achieve compositionality. Communication is through synchronization on common actions
of the control of different components (not message passing). Communicating automata
evolve simultaneously, not in interleaving. In order to have an algebra with at most binary
operations the interfaces should be grouped into two sets, what we call respectively the left
and right combined ports. There is no implication that left ports are input ports, or that
right ports are output ports.

The algebra Cospan(Graph) was introduced in [9] as a sequential algebra for automata
with interfaces, with essentially the Kleene operations of sequential composition, choice and
iteration.

In both cases the algebra involved is a well-known one introduced by Jean Benabou in
1967 [3] and developed in 1987 by Carboni, Walters [4] as an algebra of relations, which
provides a natural mathematical framework for describing nets of automata, both graphically
with circuit-like diagrams, and as terms in a suitable algebra.

The present paper is essentially a review of previous works of the last twenty years, but
it has also some novelties (we suggest that for a better comprehension of this paper and for
details, the original papers are available).

The paper is organized as follows: in Section 2, we introduce the algebras of Span(C)
and Cospan(C), first in the case of an abstract category C and then specializing to the
case of Graph, providing also a series of examples; in Section 3, we discuss closed and open
networks relating them to monoidal graphs; in conclusion, in Section 4, we describe open
networks with state, showing that it is a reformulation of Span(Graph).

2 Review of the Span and Cospan algebras of automata

2.1 The algebra of spans

I Definition 1. Given a category C with finite limits, we define a new category Span(C)
describing its objects and arrows. Objects of Span(C) are the same objects of C; arrows of
Span(C) from A to B are spans, that is pairs of arrows (f : X → A, g : X → B) of C with
common domain, often written:
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Composition of spans (f : X → A, g : X → B) and (h : Y → B, k : Y → C) is by pullback
(restricted product):

A span (f : X → A, g : X → B) will also be written X : A → B, and the composition
of span will be indicated with the notation X;Y : A −→ C. The identity span of object
A is (1A, 1A). The category Span(C) is actually symmetric monoidal with the tensor of
two spans (f : X → A, g : X → B) and (h : Y → C, k : Y → D) being (f × h : X × Y →
A× C, g × k : X × Y → B ×D).

In [7] an informal geometric description (in the style of monoidal category string diagrams)
was introduced for the operations in Span(C). For example, spans (X → A×B,X → C×D),
(Y → C ×D,Y → E) and (Z → F,X → G) are represented by pictures of components with
ports:

Then the composite of the first two spans is pictured as:

while the tensor of the first and third is pictured as:

In addition there are constants of the algebra which are pictured as operation on wires
which enable the depiction of fanning out of wires and feedback, and hence of general circuit
diagrams. We give some examples of constants in Span(C) which are described also in [7].
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The identity span 1X : X −→ X has head X and two legs 1X , 1X . It is denoted by a
plain wire.

The span with head X and legs 1X : X −→ X, ∆X : X −→ X × X is called the
diagonal of X and is denoted also ∆ : X −→ X × X. The span with head X and
legs ∆X : X −→ X × X,1X : X −→ X is called the reverse diagonal, and is denoted
∇ : X ×X −→ X

The span with head X × Y and legs 1X×Y : X × Y −→ X × Y , pX : X × Y −→ X is
denoted pX , is called a projection and is pictured by the termination of the wire Y . There
is also a similarly defined reverse projection denoted p∗X .

Consider the terminal object, denoted I: in case of C = Graph, the terminal graph has
one vertex and one edge, by necessity a loop. The span with head X and legs ! : X −→ I,
∆X : X −→ X ×X is called ηX . The span with head X and legs ∆X : X −→ X ×X,
! : X −→ I is called εX The two spans are pictured in the following figure:

Technically, η and ε are the unit and counit of the self-dual compact-closed structure on
Span(C). They permit a feedback operation on distributed systems.

The correspondence between constants and operations, and the geometric representations
given above, result in the fact that expressions in the algebra have corresponding circuit or
system diagrams. This is clarified in the following example.

I Example 2. Given spans S : X −→ X ×X and C : X −→ I, the expression

ηX ; (S ⊗ 1X); (C ⊗ 1X ⊗ 1X); (S ⊗ 1X); (C ⊗ 1X ⊗ 1X); (S ⊗ 1X); (C ⊗ 1X ⊗ 1X); εX

has system diagram (which graphically forms a feedback):
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In the following, when we will consider Span(Graph) as an algebra of automata where
parallel composition with or without communication are the main operations, we will use
the expression abstract parallel feedback referring to the following definition (given by using
the constants of Span(C)):

I Definition 3. Given a span X : A × B −→ C × B, we call abstract parallel feedback
with respect to B, denoted by AbPfbB(X), the span denoted by the following algebraic
expression:

(1A ⊗ ηB); (X ⊗ 1B); (1C ⊗ εB)

2.2 The algebra of cospans

I Definition 4. There is a dual construction Cospan(C) for categories C with finite colimits.
In fact, Cospan(C) = Span(Cop), but it is better seen describing explicitly its objects and
arrows. Objects of Cospan(C) are the same as objects of C; arrows of Cospan(C) from
A to B are cospans, that is, pairs of arrows (f : A → X, g : B → X) of C with common
codomain, also written as:

CALCO 2017
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Composition (which is also called restricted sum) of (f : A→ X, g : B → X) and (h : B →
Y, k : C → Y ) is by pushout (glued sum):

The identity cospan of object A is (1A, 1A).

Again there are constants of the algebra which are pictured as operation on wires which
enable the depiction of joining of wires and sequential feedback. Graphically, we can present
these operations as the picture below:

As before, when we will consider Cospan(Graph) as an algebra of automata where sequential
compositions are the main operations, we will use the expression sequential feedback.

2.3 Span(Graph), a parallel algebra of automata
Surprisingly, Span(C), when C is the category of (finite) directed graphs (Span(Graph)),
provides a very natural mathematical framework for describing the composition of automata
with interfaces (or communication ports, as in circuit theory). Consider a span of graphs
(δ0 : X → A, δ1 : X → B). The graph X may be considered as the graph of states and
transitions of an automata with interfaces, and it is called the head of the span. The graph
A is the graph of states and transitions of the combined left ports and B is the graph of
states and transitions of the combined right ports. The graph morphism δ0 associates to a
state and to a transition of the automaton X the corresponding state and transition of the
left ports A; the morphism δ1 does the same for the right ports.

For all the examples of this paper the left and right ports have only one state so that we
tend to ignore that; then δ0 and δ1 are a double labelling of the transitions of the automaton
X by transitions on the left ports and transitions on the right ports. More intuitively each
transition of the component has an effect on all its interfaces, maybe the null effect ε.
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In the case that the left and right ports have one state, the operations of composition and
tensor of spans have a simple description in terms of operations on automata. The tensor of
two automata has states being pairs of states, one of each automata, and has as transitions
pairs of transitions between the corresponding pairs of states. The composition of automata
has similarly states being pairs of states, and transitions being pairs of transitions but only
those pairs of transitions whose labels on the connected ports are the same. In the following,
we will call the span composition parallel composition with communication and the tensor
parallel composition without communication.

We give the definition of parallel feedback also in the concrete case of Span(Graph):

I Definition 5. Given a span of graphs X : A × B −→ C × B, we call parallel feedback
with respect to B, denoted by PfbB(X), the span of graphs obtained in the following way:
the head of PfbB(X) is the graph whose vertices are the vertices of X and whose arcs are
the arcs x of X such that (prB ◦ δ2)(x) = (prB ◦ δ1)(x); the interfaces of PfbB(X) are the
functions prA ◦ δ1 and prC ◦ δ2.

The diagrammatic representation of PfbB(X) involves joining the right interface B to
the left interface B.

I Example 6 (Decimal Counter). In the following example the left and right ports are both
graphs with one state and two transitions ε and s which are displayed on the ports. The
automaton has ten states and ten transition (in a circle through the states). The morphisms
δ0 and δ1 are indicated by doubly-labelling the transitions of the automaton (so, for example,
δ0(0→ 1) = ε and δ1(0→ 1) = s).

We are actually interested in a variation of this example which we shall call DecimalDigit
or more shortly DD which has the same ports but in addition to the ten transitions above
also ten loops one on each state, each labelled (ε/ε).

Using composition in Span(Graph) we can form a new automaton DecimalCounter as
the span composition of (for simplicity only) three DD’s:

or in more detail (though omitting the loops) as:
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We notice that a state of DecimalCounter is a triple of states one of each DD, and a
transition of DecimalCounter is a triple of simultaneous transitions with the property that
the labels on the connected ports agree.

For example, starting in state (0, 1, 8) the following is a sequence of transitions of
DecimalCounter:

(0, 1, 8) (ε/s)−→ (0, 1, 9) (ε/ε)−→ (0, 1, 9) (ε/s)−→ (0, 2, 0)

(remember the ε/ε loops on each state of DD) so a transition s on the right-most port
increments the counter. In fact, starting from state (0, 0, 0), after 123 transitions labelled s
on the right, the state of the network is (1, 2, 3).

Notice that the transition

(9, 9, 9) (s/s)−→ (0, 0, 0)

occurs in one step.

I Remark. If one wants a parallel algebra of automata which also includes initial and final
states of the automata, a slight variation of the above is possible: instead of the category of
graphs take the category (I + J)\Graph whose objects are graph morphisms (I + J)→ X,
that is consist of two graph morphisms I → X and J → X, to be thought of as the initial
states and final states of X. Then the parallel algebra is Span((I + J)\Graph).
I Remark. In [1], [2] a probabilistic version of Span(Graph) and Cospan(Graph) is
described, and in that context communicating parallel composition involves conditional
probability, arising from the fact that incompatible transition cannot occur and hence
probabilities must be normalized. This provides a generalization of Rabin and Segala-Lynch
probabilistic automata and this yields a compositional theory of Markov chains.
I Remark. In [5] timed actions with different duration have been considered. Composition is
obtained by considering a linear (w.r.t. transitions) number of extra "internal" states. The
intended meaning is that a component that interacts with a "faster" one could be still doing
an action (hence being in an internal state) when the other one has completed the transition.
We give a simple example:

I Example 7 (Two actions which synchronize with an arbitrary duration). Consider two automata
G1, G2 and two "non-atomic" actions, one of G1, one of G2. The action of G1 is {a/b : 0 →
1, ε/ε : 1→ 1, d/e : 1→ 2}; the action of G2 is {b/c : 0→ 1, ε/ε : 1→ 1, e/f : 1→ 2}. In the
restricted product G1 · G2 these actions synchronize but with arbitrary duration. A typical
behaviour is (0, 0)− a/c→ (1, 1)− ε/ε→ (1, 1)− ε/ε→ ...− ε/ε→ (1, 1)− d/f → (2, 2).

Note. Simple modifications of the algebra allow the description of networks in which
the tangling of connectors may be represented, yielding a connection with the theory of
knots [11].
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2.4 Cospan(Graph), a sequential algebra of automata

Analogously, when C is the the category of (finite) directed graphs, Cospan(Graph) provides
a sequential calculus for automata that generalizes Kleene’s one. Consider a cospan of graphs
(γ0 : E → X, γ1 : F → X). The graph X may be considered as the graph of states and
transitions of an (unlabelled) automaton. The graph E is the graph of initial states and
transitions and F is the graph of final states and transitions. In all the examples considered
E and F have only states and not transitions. The graph morphisms γ0 and γ1 are often
inclusion morphisms of the initial and final states in X.

I Remark. If one wants a sequential algebra of automata which have labelled transitions, a
slight variation of the above is possible: instead of the category of graphs take the category
Graph/(A × B) whose objects are graph morphisms X → A × B, that is consist of two
graph morphisms X → A and X → B, to be thought of as the left and right labellings of X.
Then the sequential algebra is Cospan(Graph/(A×B)).

2.5 Cospans and spans of graphs

The two algebras we have described may be combined in a natural way. Consider four graph
morphisms (δ0 : X → A, δ1 : X → B, γ0 : E → X, γ1 : F → X). From these we may obtain
an arrow in the parallel algebra Span(Graph)\(E + F ), and also in the sequential algebra
Cospan(Graph/(A×B)), and hence we may apply both sequential and parallel operations
to such automata, obtaining hierarchical nets of automata with evolving geometry. There is
a distributive law of parallel composition over sequential, that will be used in the following
example. For some details of this see [9].

I Example 8 (Distributed Sort Algorithm). In [9], it has been described in full details an
example of reconfigurable network, that is a Distributed Sort Algorithm: an atomic sort
A receives a stream of items to be sorted; if the atomic sort gets full, a new network gets
activeted in which a divert component D, two atomic sorts A and the merge component M
act in parallel. The whole system is the solution of a recursive equation

S = A+D · (A× S) ·M

which is expanded using the distributive laws (between products and the restricted sums) in
the following way

S = A+D · (A× S) ·M

= A+D · (A× (A+D · (A× S) ·M)) ·M

= A+D · (A×A) ·M +D(·(A×D · (A× S) ·M)) ·M

= ......

= A+D · (A×A) ·M +D(·(A×D · (A×A) ·M)) ·M + ...

In this equation the variables are Cospan/Span automata. It gives rise to a network that
can be graphically represented as follows:

CALCO 2017
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Now, we are going to see a concrete example of parallel and sequential feedbacks in
Cospan/Span(Graph).

I Example 9 (Sofia’s Birthday Party). This example [9] is a generalization of the usual Dining
Philosophers Problem: instead of a circle of n philosophers around a table with as many
forks, we consider a circle of n seats around a table separated by forks. There are k ≤ n

children: the protocol of each child is the same of a philosopher, but, in addition, if a child is
not holding a fork and has an empty seat on the right, he can change seats. In the following
picture we give a global representation of the automaton, in which the component S can
either be a child (on a seat) or an empty seat:

3 Networks

3.1 Closed networks
In [12] the notion of closed network is formalized by the concept of monoidal graph given in
the following definition:
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I Definition 10. A monoidal graph M consists of two finite sets M0 (wires) and M1
(components) and two functions domain : M1 →M∗0 and codomain : M1 →M∗0 where M∗0
is the free monoid on M0. We call the monoidal graph M discrete when M1 = ∅.

I Remark. Directed graphs are examples of monoidal graphs in which the domain and
codomain functions land in M0 rather than M∗0 . For these it is usual to speak of elements of
M1 as edges or arcs, and elements ofM0 as vertices. We observe that language of components
and wires is more suitable when the domain and codomain functions are words rather than
single letters.

An example with M1={A1,B1,C1,D1,A2,B2,C2,D2,E} and M0={X1,Y1,Z1,W1,X2,Y2,Z2,W2} is:

A1 : X1 → Y1 B1 : Y1 → Z1

C1 : Z1 →W1 D1 : W1 → X1

A2 : X2 → Y2 B2 : Y2 → Z2

C2 : Z2 →W2 D2 : W2 → X2

E : Z1Z2 → Y1Y2

I Definition 11. If A : X1X2 · · ·Xm → Y1Y2 · · ·Yn is a component of monoidal graph M,
then we call the elements of the set {1, 2, · · · ,m} the left-hand ports of A, and the elements
of {1, 2, · · · , n} the right-hand ports of A. Notice that either the set of left-hand ports or of
right-hand ports may be empty.

I Remark. We insist that, as in Span(Graph), the left ports and right ports do not have an
interpretation as input and output ports respectively. However, in the context of this paper
we shall also use the term input port for a left-hand port, and output port for a right-hand
port. For this reason we also indicate input ports by arrows on wires entering the component,
and output ports by arrows on wires exiting the component.

The notion of ports of a component gives rise to a different geometric representation
of monoidal graph which explains why we regard such a graph as a closed network. The
elements ofM1 are represented as components with ports, the elements of M0 are represented
as connectors or wires, and the domain and codomain functions describe how the ports are
joined to the connectors.

The order on the ports is indicated by a small square in the component nearest to the first
left-hand port (in the example below, see in particular the component E : Z1Z2 → Y1Y2).
The right-hand ports are taken in the same order as the left-hand ports.
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Note. After this section we shall usually omit the indicator of the order of the ports, where
the intended order is clear.

I Remark. It might be objected that the simple monoidal graph with two wires X, Y and
one component A : X → Y should not be considered as a closed network. However, while
the component A has left and right ports, the monoidal graph itself does not have specified
left and right ports. We will see when we define open networks in the next section that this
graph may have external ports specified in many different ways.

We will need later the definition of morphism of monoidal graph.

I Definition 12. A morphism α from monoidal graph M to N consists of two functions
α1 : M1 → N1 and α0 : M0 → N0 such that domainN ◦ α1 = (α0)∗ ◦ domainM and
codomainN ◦ α1 = (α0)∗ ◦ codomainM , where (α0)∗ is the monoid homomorphism between
free monoids induced by the function α0.

I Remark. It is not difficult to verify that monoidal graphs with these morphisms form a
category, denoted MonGraph, which is in fact a presheaf topos.

3.2 Open networks
In order to show that the globally described notion of network may be also described
compositionally, we need a notion of open network, which is introduced in [12]. An open
network is a monoidal graph together with left and right interfaces. The formal definition is
as follows:

IDefinition 13. An open network consists of a monoidal graph M, two sets S = {1, 2, · · · ,m}
and T = {1, 2, · · · , n} and two functions γ0 : S → M0, γ1 : T → M0. We denote the open
network as M : S → T . If both sets S and T are empty, the only content of the network is
the monoidal graph, that is, the network is closed.

We sketch an example in which the sets S = T = {1, 2, 3}. Notice it has the same form
as a single component.

An open network has a simple standard categorical description. It is a cospan of monoidal
graphs between discrete monoidal graphs.
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3.3 The algebra of open networks
The algebraic structure that cospans (open networks) admit can be described in the following
way: they form the arrows of a symmetric monoidal category in which every object has a
commutative separable algebra structure compatible with the tensor [4], [8] - what is called
Well-Supported-Compact-Closed categories. We first give a definition of WSCC category
assuming knowledge of symmetric monoidal categories.

I Definition 14. A commutative separable algebra in a symmetric monoidal category consists
of an object X and four arrows ∇ : X ⊗X → X, ∆ : X → X ⊗X, n : I → X and e : X → I

making (X,∇, n) a commutative monoid, (X,∆, e) a cocommutative comonoid and satisfying
the equations

(1X ⊗∇)(∆⊗ 1X) = ∆∇ = (∇⊗ 1X)(1X ⊗∆) : X ⊗X → X ⊗X
∇∆ = 1X .

There are two important derived operations of a commutative separable algebra X,
namely ε : X ⊗X → I = e∇ and η : I → X ⊗X = ∆n.
I Proposition 1. Given an object X with a commutative separable algebra structure the
arrows η : I → X ⊗X and ε : X ⊗X → I satisfy the equations (where τ is the twist of the
symmetry):
(i) (ε⊗ 1X)(1X ⊗ η) = 1X = (1X ⊗ ε)(η ⊗ 1X)
(ii) ετ = ε and τη = η.

Proof. We prove only (i), as done in [12]. To see that (ε⊗ 1X)(1X ⊗ η) = 1X notice that

(e⊗ 1X)(∇⊗ 1X)(1X ⊗∆)(1X ⊗ n) = (e⊗ 1X)∆∇(1X ⊗ n) = 1X · 1X = 1X ;

The first equality is an application of the first displayed axiom of definition 2.5 in [8]. The
second equality comes from the monoid and comonoid axioms. J

I Remark. Axiom (i) says that X is a self-dual object. The reader can translate these into
equations between string diagrams, which are representations of expressions. An example is
the string diagram for (i):

@
�

�
@

= = @
�

@
�

I Definition 15 (The operations of the algebra of open networks). The open network com-
position of M : S → T with N : T → R is composition of cospans of monoidal graphs; that
is, the components of the composite are the disjoint union of the components of M and
N whereas the wires of the composite are the quotient of the disjoint union of the wires
of M and N obtained by equating the images of elements of T (under γ1) in M with the
corresponding images of the elements of T (under γ0) in N. The open network tensor of M
and N is formed by taking disjoint unions of both wires and components.

Similarly, the constants of the algebra of networks can be given by using the constants of
the algebra of the monoidal graph. We don’t give a precise definitions but we present them
by picturing.
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3.4 The algebra of open networks is free
I Theorem 16. Given a monoidal graph M, the free symmetric strict monoidal category
constructed from M adjoining commutative separable algebra structures to the objects of M is
the full subcategory of Cospan(MonGraph/M) whose objects are discrete monoidal graphs
over (labelled in) M.

Proof. In [10] the special case for graphs rather than monoidal graphs is proved by demon-
strating (in Proposition 3.3 of that paper) a normal form for arrows in the free category
(with structure). The proof of the theorem that we are describing here (even if it is more
general of the one in [10]) requires just a straightforward modification of the normal form in
which a sum of edges is replaced by a sum of components of M. J

We denote this full subcategory as Csp(MonGraph/M). The components of M lie
in Csp(MonGraph/M) as cospans as follows: if A : X1X2 · · ·Xm → Y1Y2 · · ·Yn is a
component of M, then the corresponding cospan is

where the elements A, X1, X2, · · · , Xm, Y1, Y2, · · · , Yn are now labels - that is, if in the
original monoidal graph X1 = X2 then in the cospan the corresponding wires are distinct
but have the same label X1 = X2 in M.

I Remark. The first practical use of this theorem is that from the components of M we can
generate any open (or closed) monoidal graph containing these components by evaluating an
expression in the algebra Csp(MonGraph/M) starting from single components.

As an example we describe the monoidal graph M of section 3.1 as an expression in
Csp(MonGraph/M) in terms of single components. The following expression evaluates to
M:

(εY1⊗εY2)(1Y1⊗((∇Y1⊗∇Y2)(A1D1C1⊗E⊗A2D2C2)(∆Z1B1⊗∆Z2B2))⊗1Y2)(ηY1⊗ηY2)

as can be seen by examining the string diagram for this expression:
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B1

C1 D1 A1

B2

E

C2 D2 A2

Y1

Y2

Z1

Z2

W1

W2

X1

X2

I Remark. A theorem similar to Theorem 1, for ordinary graphs only, was described by
Gadducci, Heckel and Llabres [6] for application to graph rewriting.

4 Networks with state

The aim of this section is to attach automata to each of the components and wires of a
monoidal graph; that is, to add states and state transitions to each part of the network, as
done in [12].

4.1 Adding state to networks
A cospan of monoidal graphs with these extra labelling automata is what we use to model
open networks with state.

Again this has a standard categorical description. Consider the monoidal category
Span(Graph): composition is pullback, tensor is product. Span(Graph) is a WSCC
category, but now ∆ : X → X ×X is the span with left-leg the identity and right-leg the
diagonal of the product, and ∇ : X ×X → X is the reverse of the span ∆, as defined in
Section 2.1. Let |Span(Graph)| be the (large) monoidal graph whose wires are the objects
of Span(Graph) (that is, graphs) and whose components are spans of graph morphisms
between products of graphs. Then we have the following definition:

I Definition 17. An open network with state is an arrow in the monoidal category

Csp(MonGraph/|Span(Graph)|).

Hence, a closed network with state is a morphism of monoidal graphs from MonGraph to
|Span(Graph)|.

Note that Csp(MonGraph/|Span(Graph)|) is also a WSCC category.

The definition simply means that associated with each wire of an open network there is a
graph, and to each component A : X1X2 · · ·Xm → Y1Y2 · · ·Yn a span of graphs between the
products of the graphs labelling the wires.

I Definition 18. The process of forming the global state space of a network with state is
the functor preserving the WSCC structure

globalstate : Csp(MonGraph/|Span(Graph)|) −→ Span(Graph),

which is induced, using the freeness of the domain category, from the inclusion of the
components of |Span(Graph)| in Span(Graph).

CALCO 2017
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I Theorem 19. The functor globalstate can be obtained by calculating a global limit in
Graph.

A sketch of the proof of the previous Theorem can be found in [12].

I Corollary 20. The systems described by networks with state are the same as Span(Graph)
systems.

Proof. Consider the functor

globalstate : Csp(MonGraph/|Span(Graph)|) −→ Span(Graph).

An arrow in the domain may be thought of as either (i) algebraically, an expression in
Span(Graph) (the compositional view of a system) or (ii) geometrically, a network (cospan of
monoidal graphs) labelled in graphs. The functor globalstate may be obtained by calculating
either (i) by evaluating the expression in Span(Graph) or (ii) by calculating a global
limit. J

I Example 21. We describe DecimalCounter, the decimal counter with three digits given
above, in this context. Consider the monoidal graph M with one component C and one
wire X with C : X → X. Then, arrows in Csp(MonGraph/M) are open monoidal graphs
built out of the open monoidal graph corresponding to this component. The example we
wish to consider is the composite CCC : X → X in Csp(MonGraph/M) which is an open
monoidal graph with the following graphical representation

C C C- - - -X X X

Now, by the freeness of Csp(MonGraph/M), a monoidal graph morphism from M to
|Span(Graph)| induces a structure preserving functor

Csp(MonGraph/M)→ Csp(MonGraph/|Span(Graph)|)

which takes the open monoidal graph CCC : X → X to a network with state. To describe the
decimal counter we choose the following morphism of monoidal graphs M→ |Span(Graph)|:
X goes to the graph with one vertex and edges ε, s and C goes to the span of graphs DD.

The decimal counter now consists of three such automata joined in parallel according to
the pattern of the open monoidal graph CCC : X → X.

Acknowledgements. To Bob.
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