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—— Abstract

We present an infinite number of construction schemes for quantum structures, including unitary
error bases, Hadamard matrices, quantum Latin squares and controlled families, many of which
have not previously been described. Our results rely on the type structure of biunitary connec-
tions, 2-categorical structures which play a central role in the theory of planar algebras. They
have an attractive graphical calculus which allows simple correctness proofs for the constructions
we present. We apply these techniques to construct a unitary error basis that cannot be built
using any previously known method.
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1 Introduction

Biunitary connections (or simply biunitaries) were introduced by Ocneanu [39] in 1989, and
have since been developed by Jones, Morrison and others [23, 24, 34] as a central tool in
the classification of subfactors. They belong to the theory of planar algebras, an area of
mathematics related to 2-category theory which studies the linear representation theory of
algebraic structures in the plane. We can describe a biunitary informally as a planar algebra
element U with two inputs and two outputs, drawn below and above the vertex respectively,
which is vertically unitary (Figure 1(a)), and which is horizontally unitary up to a scalar
factor A (Figure 1(b)).

For us, diagrams of this sort represent simple linear algebra data: regions are labelled by
indexing sets, and wires and vertices are labelled by indexed families of finite-dimensional
Hilbert spaces and linear maps, respectively.! Blank regions correspond to the trivial index-
ing set. In concrete terms, a biunitary therefore comprises a family of linear maps satisfying
some algebraic properties.

The type of a biunitary is the shading pattern which surrounds the vertex. We show
in Section 2 that a variety of structures in quantum information theory correspond exactly

* An extended version of this paper can be found at [44], https://arxiv.org/abs/1609.07775.

! Formally this is a common generalization of the tensor [23, Example 2.6] and spin model [23, Example
2.8] planar algebras, corresponding to a fragment of the monoidal 2-category 2Hilb [4]. However, our
exposition will be elementary, and we will not assume knowledge of these ideas.
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(a) Vertical unitarity (b) Horizontal unitarity

Figure 1 The biunitarity equations.

ol ~

(a) Hadamard matrix (b) Unitary error basis (c) Quantum Latin (d) Controlled family of
(Had) (UEB) square (QLS) Hadamards (Had™)

Figure 2 Biunitary types for a variety of quantum structures.

to biunitaries of particular types. Some important examples are given in Figure 2. In
the rightmost image, we see that the notation is 3-dimensional, with the blue sheet lying
beneath the yellow sheet. Rotations by a quarter-turn, and reflections about the horizontal
or vertical axes, preserve the given interpretations in terms of quantum structures.

3 were character-

Some of these characterizations are already known: Hadamard matrices
ized by Jones as biunitaries with alternating shaded and unshaded regions [23], and unitary
error bases* were characterized by the second author as biunitaries with one shaded and
three unshaded regions [53,54]. Here we show that quantum Latin squares® can be character-
ized as biunitaries with two adjacent shaded regions and two adjacent unshaded regions. We
also show that controlled families can be described by adding an additional shaded region
in a certain way; in Figure 2(d), we illustrate one application of this idea to give a biunitary
characterization of a controlled family of Hadamard matrices.

Our main results are based on the simple fact that the diagonal composite of two bi-
unitaries is again biunitary. We show in Section 3 that, given the description of quantum
combinatorial structures in terms of biunitaries as summarized above, one can immediately
write down a large number of schemes for the construction of certain quantum structures
from others. We give some examples in Figure 3; note that the biunitaries are connected
diagonally in each case, as required.

Note that some of the inputs or outputs of the biunitary may in general be composite wires. For
example, in Figure 2(c) the first input is composite, and Figure 2(d) the first input and second output
are composite.

A Hadamard matriz is a square complex matrix with entries of modulus 1, which is proportional to a
unitary matrix. Fundamental structures in quantum information, they are central in the theories of
mutually unbiased bases, quantum key distribution, and many other phenomena [18]. See Definition 6.
A unitary error basis is a basis of unitary operators on a finite-dimensional Hilbert space, orthogonal
with respect to the trace inner product. They provide the basic data for quantum teleportation, dense
coding and error correction procedures [31,49,55]. See Definition 8.

A quantum Latin square [36] is a square grid of vectors in a finite-dimensional Hilbert space, such that
every row and every column is an orthonormal basis. They generalize Latin squares. See Definition 10.
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(a) Had + Had ~ QLS (b) UEB + UEB ~ QLS (c) Had* + QLS ~ UEB (d) Had* + Had* ~ Had

Figure 3 Some biunitary composites of arity 2.

We explain each of these constructions briefly. Figure 3(a) gives a way to combine two
Hadamard matrices to produce a quantum Latin square, generalizing a known construction.®
(Note that the wires terminating near the upper-right of Figure 3(a) are interpreted as a
single composite wire for the purpose of identifying it as having the basic quantum Latin
square type of Figure 2(c), a method that we use repeatedly, and motivate formally with
bracketings in Theorem 16.) Figure 3(b) gives a procedure for combining two unitary error
bases to yield a quantum Latin square, a construction we believe to be new. Figure 3(c)
combines a controlled family of Hadamard matrices and a quantum Latin square to give a
unitary error basis, recovering the quantum shift-and-multiply construction [36, Definition
18]. In Figure 3(d), two families of Hadamard matrices are combined to produce a single
Hadamard matrix, recovering a construction of Hosoya and Suzuki [21, Section 1] which
generalizes a construction of Ditd [17, Section 4]. These constructions can of course be
iterated; for example, combining the constructions of Figures 3(a) and 3(c) gives a way to
combine a controlled family of Hadamard matrices and two further Hadamard matrices to
produce a single unitary error basis, again a new construction.

In all these cases, correctness of the construction follows immediately from the type-
theoretic structure (that is, the shading pattern) of the diagram, relying only on diagonality
of the composition; no further details need to be checked. Our approach therefore offers
advantages even for those constructions that are already known, since the traditional proofs
of correctness are nontrivial. To emphasize this point we compare our graphical techniques to
traditional methods, in which constructions are defined using tensor notation. For example,
the construction of Figure 3(c) would traditionally be written as follows [36, Definition 18],
where Ugp c,q is the (¢, d)th matrix entry of the (a,b)th element of the unitary error basis,
Qb.d,c is the coefficent of |¢) in the (b, d)th position of the quantum Latin square, and H&d
is the (a, d)th coefficient of the bth Hadamard matrix:

Uabe.d = Hp 4 Qp . (1)

It is not trivial to write down correct expressions of this form, and to show that this indeed
defines a unitary error basis requires a calculation of several lines [36, Theorem 20] that
invokes the distinct algebraic properties of the tensors Qp 4. and H, 3 4- In contrast, in our
new approach, it would be easy to discover this construction by considering all ways the
basic components can be diagonally composed; correctness is immediate, and all algebraic
properties are subsumed by the single concept of biunitarity. Nonetheless, expression (1)
can be immediately read-off from the form of the biunitary composite.

5 When both Hadamard matrices are the same, this agrees with a known construction of a quantum
Latin square from a single Hadamard matrix [36, Definition 10].
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(a) Had + Had + Had ~ UEB (b) Had™* + QLS + QLS + UEB ~ UEB

Figure 4 Some biunitary composites of arities 3 and 4.

Higher-arity constructions can also be described, such as those given in Figure 4. Both
of these we believe to be new. In Figure 4(a), arising as a consequence of the constructions
of Figures 3(a) and 3(c), three Hadamard matrices combine to produce a unitary error
basis, an elegant construction which we believe to be new.” In Figure 4(b), which does not
arise as a consequence of lower-arity constructions, we combine a double-controlled family
of Hadamard matrices (H), two quantum Latin squares (Q1,Q2) and a unitary error basis
(U) to produce a new unitary error basis. While the first example is simple and elegant, the
second example is indicative of the more complex constructions our technique can produce.
Further complex examples are given in Figures 10.

For unitary error bases, we illustrate all constructions of arities 2 and 3 that arise from
our methods, and we give examples of constructions of arities 4 and 8. Furthermore, in
an extended version of this paper [44], we show that our methods give rise to an infinite
family of logically independent constructions, none of which factor through any simpler
construction between Hadamard matrices, unitary error bases, quantum Latin squares and
controlled families thereof.

Finally, in the extended version we use the 4-fold composite of Figure 4(b) to produce a
unitary error basis on an 8-dimensional Hilbert space, which we show cannot be produced by
the two known UEB construction methods—algebraic, and quantum shift-and-multiply—
even up to equivalence. This is a proof of principle that the biunitary methods we propose
can give rise to genuinely new quantum structures.

Significance. Hadamard matrices and unitary error bases provide the mathematical found-
ation for an extremely rich variety of quantum computational phenomena, amongst them
the study of mutually unbiased bases, quantum key distribution, quantum teleportation,
dense coding and quantum error correction [18,29,31,49,55]. Nevertheless their general
structure is notoriously difficult to understand; in dimension n, Hadamard matrices have
only been classified up to n =5 [50,52], and the general structure of unitary error bases is
virtually unknown for n > 2. Quantum Latin squares have been introduced much more re-
cently [7,35,36], generalizing classical Latin squares which have a wide range of applications
in classical and quantum information [10, 33,48].

By unifying these quantum structures as special cases of the single notion of biunitary,
and providing simple type-theoretical tools to understand the intricate interplay between
them, we unify several already-known and seemingly-unrelated constructions [7,17,21,36,55],

7 When all three Hadamard matrices are the same, this agrees with a known construction of a unitary
error basis from a single Hadamard matrix [36, Definition 33] which we believe to be folklore.
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uncover an infinite number of new constructions, and produce novel, concrete examples.
These new tools may lead to further progress in questions of classification and applications
of Hadamard matrices, unitary error bases and quantum Latin squares, and perhaps move
us closer to full classification results for these important structures.

On the other hand, biunitaries are central tools in the study and classification of sub-
factors [23,24,34,39,43], a highly significant activity in the theory of von Neumann algebras.
We hope that our work leads to the development of further connections between subfactor
theory and quantum computation.

1.1 Related work

Quantum constructions. As well as producing a number of new constructions, our methods
encompass and unify several constructions from the literature.

The Hadamard method [36, Definition 33], believed to be folklore, which produces a

unitary error basis from a single Hadamard matrix. In Figure 4(a) we give a new gener-

alization, in which three Hadamard matrices produce a unitary error basis.

The method given in [7, Definition 2.3] and [36, Definition 10], which produces a quantum

Latin square from a single Hadamard matrix. In Figure 9(a) we give a new generalization,

in which two Hadamard matrices produce a quantum Latin square.

Werner’s shift-and-multiply construction [55] which produces a unitary error basis from

a family of Hadamard matrices and a Latin square. This is a special case of the quantum

shift-and-multiply construction discussed below.

The quantum shift-and-multiply construction due to Musto and the second author [36,

Definition 18] which produces a unitary error basis from a family of Hadamard matrices

and a quantum Latin square. We give a biunitary description in Figure 9(f).

Ditd’s construction [17, Section 4], which produces a Hadamard matrix from a Hadamard

matrix and a family of Hadamard matrices, and is widely used [17,32,38,52]. We give a

biunitary description in Figure 9(d).

Hosoya’s and Suzuki’s construction [21, Section 1], which produces a Hadamard matrix

from two families of Hadamard matrices. We give a biunitary description in Figure 9(c).
However, there are many known constructions which are beyond our methods. For unitary
error bases, we do not know a biunitary characterization of Knill’s algebraic construction [30],
and for Hadamard matrices we cannot account for many of the varied construction meth-
ods [20,32, 35,42, 50,51, 56] which make use of non-compositional structure that is out of
reach of the biunitary approach.

Biunitary connections and planar algebras. Biunitary connections were introduced by
Ocneanu in 1989 in terms of paragroups [39] in an attempt to better understand the com-
binatorial structures arising in subfactor theory, a branch of the theory of von Neumann
algebras. In 1999, Jones introduced the theory of planar algebras [23] and with it the
modern graphical formulation of biunitarity used in this paper.

The relation between Hadamard matrices and von Neumann algebras predates the notion
of biunitarity and can be traced back to Popa’s commuting squares [43] (later shown to be
equivalent to biunitarity [26]) and the statistical-mechanical spin models of Jones [23, 25];
there is a significant literature on the interplay between Hadamard matrices, planar algebras
and subfactors [20,37,38]. Quantum Latin squares appear under the name magic bases in
a Hopf algebraic approach to subfactor theory by Banica and others [5-7]; however, their
biunitary characterization does not seem to have been written down. Unitary error bases
were characterized in terms of biunitaries by the second author [53,54].
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Categorical quantum mechanics. This work builds on the programme of categorical
quantum mechanics, initiated by Abramsky and Coecke [1] and developed by them and
others [2,3,11-15,28,46], which uses monoidal categories with duals to provide a high-level
syntax for quantum information flow. It was shown by the second author that these ideas
can be extended to a higher categorical setting [53,54], developing the work of Baez on a
categorified notion of Hilbert space [4], a perspective we use here. The key advantage of
this approach is that the notion of Frobenius algebra, used in the monoidal category setting
to describe classical information, is no longer needed. While our results could in principle
be translated back into the language of Frobenius algebras, they would lose their simplicity
and power. In this sense, the current work serves as an advertisement for the essential role
that higher category theory can play in quantum information theory.

1.2 Notations and conventions

We denote the n-element set {1,...,n} by [n]. The letters a,b,d, e, f, g, h,i,j,k,r, s are used
to denote indices, the letters n, m, p, ¢ are used to denote dimensions. We use the following
shorthand notations to refer to sets of quantum structures:

UEB,, is the set of n-dimensional unitary error bases;

QLS,, is the set of n-dimensional quantum Latin squares;

Had,, is the set of n-dimensional Hadamard matrices;

For X € {UEB,,, QLS,,, Had,, }, XP1~P* ig the set of lists of quantum structures of type

X controlled by indices in [p1], [p2], - ., [Pk]-

For example, UEB!Y’ s the set of lists of n?m-dimensional unitary error bases, controlled
by indices valued in [n] and [p].

2  Biunitarity

In Section 2.1 we introduce our formalism, and give the definition of biunitarity. In Section
2.2 we recall the biunitary characterizations of Hadamard matrices and unitary error bases,
and give new biunitary characterizations of quantum Latin squares and controlled families.

2.1 Mathematical foundations

The graphical calculus for describing composition of multilinear maps was proposed by
Penrose [41], and is today widely used in a range of areas [2,11,27,40,47]. In this scheme,
wires represent Hilbert spaces and vertices represent linear maps between them, with wiring
diagrams representing composite linear maps. For example, given linear maps A : W ®
HJ - LOM®Rand B:V - H® J, we can describe a composite linear map
VoW — L® M ® R graphically as shown in Figure 7(a).

In this article we use a generalized calculus that involves regions, as well as wires and
vertices. This is an instance of the graphical calculus for monoidal 2-categories [8,9, 22, 45]
applied to the 2-category® of finite-dimensional 2-Hilbert spaces [4]. The 2-category of
2-Hilbert spaces can be described as follows [19,53]:

objects are natural numbers n,m, .. .;

1-morphisms n — m are mxn-matrices of finite-dimensional Hilbert spaces (Figure 5(a));

2-morphisms are matrices of linear maps (Figure 5(b)).
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¢ ¢ n
I_‘]’11 Hln H11‘11—>H{1 H17L;>H{n
(a) A 1-morphism H : n — m. (b) A 2-morphism ¢ : H = H'.

Figure 5 The 1- and 2-morphisms in the 2-category of 2-Hilbert spaces.

Ky

J1 Hyy Hia H13> H.1 Hio Hi K
: = o | K- 11 12 13 )
¢ <J2> <H21 Hjy  Hog K2 <H21 Hao H23> ?
3 3
(a) A 2-morphism ¢. 3
1 @
<J1 — (His ®K1)@(H12®K2)@(H13®K3)> 5
Jo 22, (Hoy ® K1) @ (Ha2 ® K3) ® (Haz ® K3)
(b) The 2-morphism ¢ as a matrix of linear maps.
J1>
(ﬁ@j P Hi,j ®Kj for 7 € [2] and ] S [3} <J2

(c) The 2-morphism ¢ as a family of linear maps indexed  (d) Graphical representation of the
by its adjacent regions. 2-morphism ¢.

Figure 6 Translating between equivalent expressions for 2-morphisms.

Composition of 1-morphisms is given by ‘matrix multiplication’ of matrices of Hilbert spaces,
with addition and multiplication of complex numbers replaced by direct sum and tensor
product, respectively. Composition of 2-morphisms is given by componentwise composition
of linear maps.

In the graphical calculus, regions, wires and vertices represent objects, 1-morphisms and
2-morphisms, respectively. The 2-category has a monoidal structure, acting on objects as
multiplication, and on 1- and 2-morphisms as the Kronecker product of matrices of Hilbert
spaces and linear maps, respectively; this is represented graphically by ‘layering’ one diagram
above another.

Elementary description. While these structures are now well-understood in higher repres-
entation theory, they are not yet prevalent in the computer science community. To help
the reader understand these new concepts, we also give a direct account of the formalism in
elementary terms, that can be used without reference to the higher categorical technology.
In Figure 6 we indicate how to translate between the categorical language presented above
and the more elementary language used here.

In this direct perspective, shaded regions are labelled by finite sets, indexed by a para-
meter; we write i:n to indicate that the parameter i varies over the set [n].? Wires and
vertices now represent families of Hilbert spaces and linear maps respectively, indexed by
the parameters of all adjoining regions. A composite surface diagram represents a family of

8 Here and throughout, we use the term ‘2-category’ to refer to the fully weak structure, which is
sometimes called ‘bicategory’.
9 For simplicity we will often omit these labels.

CALCO 2017
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L M R

v w

(a) An ordinary tensor diagram. (b) A shaded tensor diagram.

Figure 7 The graphical calculus.

composite linear maps, indexed by the parameters of all open regions, with closed regions
being summed over.

We give an example in Figure 7(b). The coloured diagram on the left represents an
entire family of composite linear maps. The maps which comprise this family are given by
the right-hand diagrams for different values of k and 4, which index the open regions. The
closed region labelled j : p is summed over.

Given this interpretation of diagrams D as families of linear maps D;, we define two
diagrams D, D’ to be equal when all the corresponding linear maps D;, D} are equal, and
the scalar product AD as the family of linear maps AD;.

Duality. We define the linear maps n: C - C* ® C" and € : C" @ C"* — C as follows:

" [
N o o ©)
n: 1'_>Zi |Z>®|Z> €: |Z>®|]>'—>(5”

Assuming for simplicity that all Hilbert spaces are chosen to be of the form C” for some
n € N, we introduce the following notation for families of linear maps of the form (2):

g ) g 2

The notation is justified, since the following equations can be demonstrated:

Dagger structure. Given a family of linear maps, we define its adjoint (or dagger) to be
the family consisting of the adjoints of the linear maps. Graphically, we can think of the
adjoint as a reflection about a horizontal axis. This is justified, since the following holds:

() -IA (=) -IA ®
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In total, every vertex appears in four variants:

5161 1
501611

The equations on the right-hand sides can be shown to follow from the definitions (2).
A dagger structure gives rise to a general notion of unitarity.

» Definition 1. A vertex U is unitary when it satisfies the following equations:

% - - (5)

Standard boundaries. We only make use of a restricted portion of this calculus: wires
which bound only one shaded region correspond to the 1-dimensional Hilbert space C for
any value of the controlling parameter. (Hilbert spaces that do not bound regions may be of
any finite dimension.) In particular, since they are 1-dimensional, the Hilbert spaces arising
from these boundaries are not depicted in the corresponding family of tensor diagrams:

H;=C H;=C

Biunitaries. Having defined our graphical calculus, we introduce our main algebraic entity.

» Definition 2. A biunitary is a vertex
(10)

which satisfies the equations of Figure 1 for some scalar A € C.

Note that biunitarity depends on a chosen partition of the input and output wires into
two parts, which is extra data. Also, the scalar A is uniquely determined by the type of U,
and necessarily real and positive.

We will usually use the following equivalent formulation of biunitarity.

» Definition 3. The clockwise and anticlockwise quarter rotation of a vertex U of type (10)
is given by the following composites, respectively:

(11)

20:9

CALCO 2017



20:10

A 2-Categorical Approach to Composing Quantum Structures

n n n n n n
n n
(a) Hadamard matrix. (b) Unitary error basis. (c) Quantum Latin square.

n (5] " (5)

(d) Half-plane controlled family. (e) Full-plane controlled family.

Figure 8 Quantum structures and their corresponding biunitary types.

» Proposition 4. Given a vertex U of type (10), the following are equivalent:

1. U is biunitary;

2. U is unitary, and its clockwise quarter rotation is proportional to a unitary;

3. U is unitary, and its anticlockwise quarter rotation is proportional to a unitary.
Furthermore, in cases 2 and 3, the proportionality factor is unique up to a phase and given
by a square root of \.

» Corollary 5. Given a biunitary, arbitrary quarter rotations, or reflections about horizontal
or vertical azes, are again proportional to biunitaries.

In particular, as soon as we have characterized specific quantum structures in terms of
biunitaries of certain types, we know that rotated and reflected versions of this type also
correspond to this quantum structure, possibly after multiplication by a scalar.

2.2 Characterizing quantum structures

In this section we recall the biunitary characterizations of Hadamard matrices and unitary
error bases, and give new characterizations of quantum Latin squares and controlled families.
These results are summarized in Figure 8. In the following diagrams, all wires are either
standard boundaries (9) or Hilbert spaces that do not bound any region.

Dimensional constraints. For a linear map f : H — J to be unitary imposes certain
algebraic constraints on the dimensions of H and J; namely, dim(H) = dim(J). For a vertex
of type (10) to be biunitary similarly induces certain constraints on the allowed labels for
the surrounding regions and wires. In all cases, these constraints are easily identified and
solved for. For example, consider the following vertex U and its clockwise quarter rotation:

(12)

m m n

Here, n, m and p denote the dimensions of the corresponding region or wire, respectively. For
the first of these to be unitary requires that n = m, while for the second to be unitary requires
p = nm. By Theorem 4, for U to be biunitary, we therefore require (n,m,p) = (n,n,n?),
and the set of allowed types is parameterized by a single natural number. For the rest of
this section, we will label biunitaries by their allowed dimensions.
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Hadamard matrices. Hadamard matrices were identified by Jones to be characterized in
terms of biunitarity [23]. Complex Hadamard matrices play an important role in mathem-
atical physics and quantum information theory [18]; in particular, they encode the data of
a basis which is unbiased with respect to the computational basis.

» Definition 6. A Hadamard matriz is a matrix H € Mat,, (C) with the following properties,
for i,j € [n]:

HijHij =13 H; yHjpk =i S HeiHy ;= 0i4n (13)
The last two equations are equivalent, but we include them both for completeness.

The biunitary characterization of Hadamard matrices is due to Jones in the setting of
the spin model planar algebra, which our mathematical setup generalizes. It was shown
in [53, Theorem 4.5] that this characterization is equivalent to that of Coecke and Duncan
in terms of interacting Frobenius algebras [12].

» Proposition 7 (Jones [23, Section 2.11]). Hadamard matrices of dimension n correspond
to biunitaries of the type shown in Figure 8(a).

Unitary error bases. Originally introduced by Knill [31], unitary error bases are ubiquit-
ous in modern quantum information theory. They lie at the heart of quantum error correc-
tion [49] and procedures such as superdense coding and quantum teleportation [55].

» Definition 8 (Knill [31]). A unitary error basis (UEB) on an n-dimensional Hilbert space
H is a collection of unitary matrices {U, € U(H)|a € [n?]}, satisfying the following ortho-
gonality property, for a,b € [n?]:

Te(UIU,) = nday (14)

That is, a UEB is an orthogonal basis of the space End(H) consisting of unitary matrices.
We denote the (¢, j)th matrix element of the matrix Uy, by U, ; = (Ua)i,j = (i| Uq |4)-

» Proposition 9 (Vicary [53, Theorem 4.2]). Unitary error bases on an n-dimensional Hilbert
space correspond to biunitaries of the type shown in Figure 8(b).

Quantum Latin squares. Quantum Latin squares were introduced by Musto and the second
author [36] as generalizations of classical Latin squares, with applications to the construction
of unitary error bases. Related constructions were also introduced independently by Banica
and Nicoard [7].

» Definition 10 (Musto & V. [36, Definition 1]). A quantum Latin square (QLS) on an
n-dimensional Hilbert space H is a square grid of vectors {|Qq) € H|a,b € [n]} such that
each row {|Qqus)|b € [n]} and each column {|Q,) |a € [n]} form an orthonormal basis of
H; for a,b,c € [n]:

<Qa,b

Qa,c) = 6b,c <Qa,c|Qb,c> = 60,71) (15)
We denote the ith entry of the vector |Qq.p) by Qub,i = (i|Qap)-

» Proposition 11. Quantum Latin squares on an n-dimensional Hilbert space correspond to
biunitaries of the type shown in Figure 8(c).

20:11
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Controlled families. In quantum information we often want to describe lists of structures,
parameterized by a given index. A standard name for such a list is a controlled family.

» Definition 12. For a given quantum structure X, an n-controlled family is an ordered list
of n instances of X.

In index notation, we reserve superscript for controlling indices. For example, a con-
trolled family of Hadamard matrices would be written as H ab» Where c iterates through the
controlled family and a and b are the actual indices of the Hadamard matrix H*.

» Proposition 13. An n-controlled family of biunitaries of type

(16)

corresponds to a biunitary of the same type with an additional half-plane or full-plane sheet
of dimension n attached, as shown in Figure 8(d) and (e).

By Corollary 5, we could have put the half-plane controlling sheet in one of 4 different
orientations. Furthermore, it makes no difference if the controlling sheet goes in front or
behind. We therefore have 8 different half-plane controls and 2 different full plane controls.
For example. the type shown in Figure 2(d) indicates a controlled family of Hadamards.

In our pseudo-3d graphical notation, it can be hard to see if a rear sheet is actually
connected to a vertex. In our diagrams, we will use the convention that all sheets drawn
beneath a vertex are connected to it.

Interchangers. The vertex representing the crossing of wires at different depths is called
an interchanger:

(17)
This is given canonically for all index values as the swap map H ® J — J ® H.

» Proposition 14. The interchanger (17) is biunitary.

3 Biunitary composition

The results of this section are corollaries of the following idea.
» Theorem 15. Arbitrary finite diagonal composites of biunitaries are again biunitary.

Since we have established in Section 2 that biunitaries of various types correspond to different
quantum structures, Theorem 15 suggests the possibility of building new quantum structures
from existing ones by diagonal composition. In Section 3.1, we demonstrate that binary
diagonal composites of biunitaries are again biunitary. We then consider the problem of
diagonally composing the biunitaries corresponding to Hadamards, quantum Latin squares,
unitary error bases and controlled families to produce other such structures, investigating
binary composites in Section 3.2, ternary composites in Section 3.3, and higher composites
in Section 3.4. In an extended version of this paper [44], we argue that our methods gives
rise to an infinite number of genuinely distinct constructions.
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(C) Had?} + Had;ﬁl ~ Hadnm

(a) Had,, + Had,, ~» QLS,, (Hosoya-Suzuki)

(d) Had, + Had?, ~ Hadpm  (e) UEB? + UEB,, ~ UEBp (f) Had? + QLS, ~ UEB,,

Figure 9 Binary biunitary constructions.

3.1 Diagonal composition

It is straightforward to see that the diagonal composite of two biunitaries is again biunitary.

» Theorem 16. Let U, V and W be biunitaries with the types illustrated below.
Then the following diagonal composites are biunitary, with respect to the indicated par-
titions of the input and output wires:

— —N— —— —

— —— —— —

Except for the pinwheel composite!? [16], which can be handled separately, this shows
that Theorem 15 holds.

(18)

3.2 Binary composites

We give a number of quantum constructions in Figure 9, each involving the diagonal com-
posite of two biunitaries. Correctness of all these constructions follows as corollaries from
Theorem 16, and the results of Section 2.2 as summarized in Figure 8.

Quantum Latin squares. We begin by presenting two quantum Latin square constructions.

The following construction produces a quantum Latin square from two Hadamard matrices,
generalizing 7, Definition 2.3] and [36, Definition 10].

10The pinwheel composite is a way to compose five 2-morphisms in a double category, in a way which
cannot be described in terms of repeated binary composites.
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» Corollary 17 (Had,, + Had,, ~ QLS,)). The construction of Figure 9(a) produces an
n-dimensional quantum Latin square

Qa,b,c = ﬁ Ha,c Jc,b (19)

from the following data, with a,b,c € [n]:
H, . and J.p € Had,,, n-dimensional Hadamards.

The factor ﬁ arises as described in Theorem 4, since the biunitary J is of rotated
Hadamard type. Such a biunitary is a unitary matrix; given an ordinary Hadamard matrix,
we need to rescale it by a factor of % to obtain such a unitary. A similar comment applies
to several of the constructions below. The next construction, which we believe to be new,
produces a quantum Latin square from two unitary error bases.

» Corollary 18 (UEB,, + UEB,, ~ QLS,2). The construction of Figure 9(b) produces an
n?-dimensional quantum Latin square

Qap,cd = ﬁ > kepn] Uasek Vok,d (20)

from the following data, with a,b € [n?] and c,d € [n]:

Ug,c,k and Vi ..qa € UEB,,, n-dimensional UEBEs.
Note that we concatenate indices corresponding to tensor products of Hilbert spaces or
products of indexing sets; for example, for a QLS on a Hilbert space V ® W, the coefficient
of the basis vector |i,j) = |i) ® |j) in the (a,b)th position of the quantum Latin square
will be written as Qq,p,4;. Similarly, if the indexing set of a UEB is the product of two sets
[n] % [m] we denote its (a,b)th element by U, with coefficients Uy ; ;.

Hadamard matrices. The following construction produces a single Hadamard matrix from
two controlled families.

» Corollary 19 (Had]' 4+ Had],, ~ Had,;,). The construction of Figure 9(c) produces an
nm-dimensional Hadamard matriz

Hapea = IS K 4 (21)

from the following data, with a,c € [n] and b,d € [m]:

J(ZI”C € Had]', an m-controlled family of n-dimensional Hadamard matrices;

Ky, € Had,, an n-controlled family of m-dimensional Hadamard matrices.
This construction was introduced in 2003 by Hosoya and Suzuki [21] under the name gen-
eralized tensor product. A better known special case, due to Ditd [17], is a central tool in

the study and classification of Hadamard matrices; we give it explicitly in Figure 9(d).

Unitary error bases. We now turn our attention to unitary error bases. By a manual
combinatorial check, it can be verified that the constructions in Figure 9(e) and (f) are the
only possible binary constructions of UEBs using only Hadamard matrices, UEBs or QLSs
and controlled families thereof.

» Corollary 20 (UEBan + UEB,,, ~ UEB,;,). The construction of Figure 9(e) produces an
nm-dimensional unitary error basis

Uabcdyef = Vab,d,e Wye.r 22

from the following data, with a € [n?], b € [m?], ¢, f € [m] and d, e € [n]:
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Vab’d,e € UEBZTQ, an m2-controlled family of n-dimensional unitary error bases;
Wi,y € UEB,,, an m-dimensional unitary error basis.

In Figure 9(e), we have used biunitarity of the interchanger as established in Proposition 14.
It is also possible to compose biunitaries of different types to obtain unitary error

bases, as shown by the following biunitary characterization of an existing construction,

the quantum shift-and-multiply method [36], which simultaneously generalizes the shift-and-

multiply method [55] and the Hadamard method [36, Definition 33].

» Corollary 21 (Had; + QLS, ~» UEB,). The construction of Figure 9(f) produces an
n-dimensional unitary error basis

Uab,c,d = HZ,d Qv.d,c (23)

from the following data, with a,b,c,d € [n]:
H{ll”d € Had}, an n-controlled family of n-dimensional Hadamard matrices;

n’

Qv.da,c € QLS,,, an n-dimensional quantum Latin square.

3.3 Ternary constructions

Here we list all ternary biunitary constructions of unitary error bases from Hadamard
matrices, unitary error bases, quantum Latin squares and controlled families thereof, which
do not factor through constructions of lower arity. We summarize them in Figure 10(a)—(d).
Up to equivalence, we assert that this list is complete, although we do not prove complete-
ness in a formal way. To our knowledge, all constructions in this section are new. As before,
all these results are corollaries of Theorem 16, and the results of Section 2.2 as summarized
in Figure 8.

The constructions of Figure 10(a) and Figure 10(b) can be seen as slight alterations of
constructions that factor through the constructions of Figure 9.

» Corollary 22 (Hadznz’" + UEB""™ + QLS,, ~ UEB,,;,). The construction of Figure 10(a)
produces an nm-dimensional UEB

b, ,
Uabc,de,fg = Ha,(} ‘/bc,ej,cg Qc,f,d (24)

from the following data, with a,c,d, f € [n], b € [m?] and e, g € [m]:
Hg; € HadﬂQ’", an (m?,n)-controlled family of n-dimensional Hadamard matrices;
Vlf,é{g € UEB;", an (n,n)-controlled family of m-dimensional unitary error bases;
Qc.r,a € QLS,,, an n-dimensional quantum Latin square.

» Corollary 23 (Had);"* + QLS;"™ + QLS,,, ~ UEB,,,,). The construction of Figure 10(b)

m
produces an nm-dimensional UEB

UabC,d&fg = Hg:gg Pec:l‘)q,f Qc,g,d (25)

from the following data, with a € [nm] b,e, f € [n] and ¢,d, g € [m]:
HY¢, € Hadyy,", an (n, m)-controlled family of nm-dimensional Hadamard matrices;
Pg_ff € QLS"™, an (m,m)-controlled family of n-dimensional quantum Latin squares;

Qc,g,d € QLS,,, an m-dimensional quantum Latin square.

The following is geometrically the simplest of our ternary constructions. It involves a
closed wire, so the index expression includes a sum.

20:15
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(c) Had"2"* + UEB, + UEB,, ~ UEB,,, .

m2

(e) Had";™ +2xQLS,2 + UEB, ~ UEB,s  (f) 4xHad, + 2xHad}} + 2xQLS, ~ UEB,,

Figure 10 Higher-order unitary error basis constructions.

» Corollary 24 (Ha 5{"2 +UEB,,;, + UEB,,, ~ UEB,,,,2). The construction of Figure 10(c)
produces an nm?-dimensional UEB

Uabed,ef = Zre[m] Hab,e Vierf Werd (26)

from the following data, with a,e € [m?], b € [n*m?], ¢ € [nm], d € [m], and f € [n]:
s
Hg,e € Had],s" , an n?m?-controlled family of m?-dimensional Hadamard matrices;
Voerp € UEBy,, an nm-dimensional unitary error basis;

Wer.a € UEB,,, an m-dimensional unitary error basis.

Our final ternary construction is the first to involve a sum over a closed region, which
again gives rise to a summation.

» Corollary 25 (UEB;;) + QLS) + UEB sz ~ UEB,; mp). For n,m,p € N such that
vnp € N, the construction of Figure 10(d) produces an nm./np-dimensional UEB

b,c
Uabc,def,gh = Zre[n] Vaﬂ'f,g i,r,d rc,eh (27)
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from the following data, with a € [n®*m?|, b,d € [n],c € [p|, e,h € [\/np|, f € [m], and
g € [nm)]:
Vlf,’ff’g € UEBP an (n,p)-controlled family of nm-dimensional unitary error bases;

Qbra € QLS?, an p-controlled family of n-dimensional quantum Latin squares;
Wieen € UEB\/@, an /np-dimensional unitary error basis.

3.4 Higher constructions

Interesting biunitary composites exist at higher arity, and are easy to find by experimenta-
tion. We give two examples which seem elegant, and which we believe are new.

» Corollary 26 (Hadzz’"2 +2xQLS,,2 + UEB,, ~ UEB,;3). The construction in Figure 10(e)
produces an n>-dimensional UEB

Uabc,de,fg = Zre[n"’] H3:7C“ Pc,r,d Qr,b,f ‘/T',e,g (28)

from the following data, with a,b,c,d, f € [n?] and e, g € [n]:
2 2
Hg:ﬁ € Hadzg’n , an (n?,n?)-controlled family of n*-dimensional Hadamard matrices;
Peray,Qrp s € QLS,,2, n?-dimensional quantum Latin squares;
Vie,g € UEB,,, an n-dimensional unitary error bases.

In an extended version of this paper [44], we use this construction to produce a new
unitary error basis that cannot be obtained by the most general previously known methods.
Finally, we give the 8-ary construction of Figure 10(f).

» Corollary 27 (4xHad,,+2xHad; +2xQLS,, ~» UEB,,2). The construction in Figure 10(f)
produces an n?-dimensional UEB

Uabcd,ef,gh = % ZT,SG[H] Af,h Bs,f C’r‘,h Ds,r Hfll’s Kl():,r Qd,s,e Pr,c,g (29)

from the following data, with a,b,c,d,e, f,g,h € [n]:
Afn, Bs f,Crh, Ds» € Hady,, n-dimensional Hadamard matrices;
Hgl’s, Ky, € Had), n-controlled families of n-dimensional Hadamard matrices;

Qd,s,es Prc,g € QLS,,, n-dimensional quantum Latin squares.
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