
The EfProb Library for Probabilistic Calculations∗

Kenta Cho1 and Bart Jacobs2

1 Institute for Computing and Information Sciences, Radboud University,
Nijmegen, The Netherlands
K.Cho@cs.ru.nl

2 Institute for Computing and Information Sciences, Radboud University,
Nijmegen, The Netherlands
bart@cs.ru.nl

Abstract
EfProb is an abbreviation of Effectus Probability. It is the name of a library for probability
calculations in Python. EfProb offers a uniform language for discrete, continuous and quantum
probability. For each of these three cases, the basic ingredients of the language are states, pre-
dicates, and channels. Probabilities are typically calculated as validities of predicates in states.
States can be updated (conditioned) with predicates. Channels can be used for state trans-
formation and for predicate transformation. This short paper gives an overview of the use of
EfProb.

1998 ACM Subject Classification G.3 Probability and Statistics

Keywords and phrases probability, embedded language, effectus theory

Digital Object Identifier 10.4230/LIPIcs.CALCO.2017.25

Category Tool Paper

1 Introduction

The EfProb library provides an embbeded language in Python, for probability. The ‘Ef’ in
EfProb stands for ‘Effectus’, and ‘Prob’ stand for ‘Probability’. An effectus is an abstract
(categorical) model that captures the essentials of discrete, continuous and quantum prob-
ability and logic [5, 1]. The EfProb library is based on this categorical model, providing a
uniform approach to discrete, continuous, and quantum probability. However, in order to be
able to use and understand the basic of the EfProb library it is not required to understand
the underlying categorical semantics. The EfProb library makes it easy to model various
problems in probability theory and to calculate and plot probability mass/density functions.

The aim of this short paper is to give a brief overview of EfProb, mainly by providing
examples. The Python files that define EfProb are available online1 together with an extensive
manual that provides much more information. The core of EfProb has reached a reasonable
level of stability, but development is still going on, driven both by practical and theoretical
considerations.

We envision that the EfProb library could be useful in teaching the basics of probability
theory from a unified perspective. At the same time the library could be useful in scientific
research as well, in order to quickly model new examples and compute outcomes.

∗ The research leading to these results has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement nr. 320571.

1 At efprob.cs.ru.nl

© Kenta Cho and Bart Jacobs;
licensed under Creative Commons License CC-BY

7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017).
Editors: Filippo Bonchi and Barbara König; Article No. 25; pp. 25:1–25:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2017.25
efprob.cs.ru.nl
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 The EfProb Library for Probabilistic Calculations

The library is not meant for large scale computation, for instance like those in data
analytics. In our development of the library we prefer semantical clarity to execution speed.
Indeed, the underlying channel-based semantics of EfProb is mathematically clear, in the sense
that the library computes probabilities using the standard mathematical formulas, including,
for instance, integration. This ‘exact’ computation is in contrast to approximate approaches
via Monte Carlo sampling, which is used by languages such as BLOG [8], Church [3], and
Anglican [11].

In practice, however, outcomes of EfProb are approximations too, since the library is
based on numerical computation with floating-point numbers. Scaling is an issue in EfProb,
exponential in the number of dimensions. In the continuous case, dimensions greater than 3
are already too slow to handle. It is important to keep in mind that the main functionality
of the library is computing numerical outcomes, and not, for instance, logical reasoning.

The EfProb library is split into two parts, one for classical and one for quantum probability.
The classical part integrates both discrete and continuous probability.

2 A uniform language

This section briefly describes the common language and notation that is used in EfProb for
states, predicates, channels, etc. The description will be high-level, abstracting away from
the different implementations for discrete, continuous and quantum probability.

States

A state captures probabilities for elements of a certain domain. Classically, they are often
called (probability) distributions. States in EfProb are closed under products, marginalisation,
and convex sum. The product of two states s, t is written as s @ t. It involves the cartesian
product of the underlying domains. Given a ‘joint’ state on a product domain, one can
marginalise the state, for which a post-script notation is used. For instance, if s is a state on
the product of three domains D1, D2, D2, then one can marginalise s in several ways:

s % [1,0,0] is the first marginal (projection)
s % [0,1,0] is the second marginal
s % [0,1,1] is the second and third marginal, etc.

In general, for a state on the product of n domains, a ‘mask’ of length n is used with 0’s
and 1’s, where a 1 at position i tells that the i-th domain should be kept in the marginal.

Convex sums of states exist, like in r1 ∗ s1 + r2 ∗ s2 + r3 ∗ s3 for states si and
numbers ri from [0, 1] that add up to 1. Such convex sums exist in n-ary form.

Specific states are predefined, specifically for discrete/continuous/quantum probability,
like uniform states, point states, Poisson, binomial, Gaussian, etc.

Predicates

Predicates in probabilistic logic have the structure of an effect module [5]. On a fixed domain
D, there are truth and falsity predicates truth(D) and falsity(D), which are least and greatest
element. Also, for each predicate p there is an orthosupplement (negation) ~p and a rescaling
r∗p for a number r in the unit interval. There is a partially defined sum p+q, which is defined
(as predicate) whenever this sum is below truth. Finally there is a sequential conjunction
p & q. It is commutative in classical probability, but not in quantum probability.

K. Cho and B. Jacobs 25:3

For two predicates p on domain D and q on E there is also the parallel conjunction p @ q
on the product of the underlying domains. This construction is often used for weakening,
when either p or q is truth, in order to move a predicate to a bigger context.

States and predicates

Given a state s and a predicate p on the same domain, one writes s >= p in EfProb for the
validity of p in s. This yields a number in [0, 1]. Also one can write s/p for the result of
conditioning s with p. The following version of Bayes’ rule holds in general: s/p >= q equals
(s >= p & q) / (s >= p). In classical probability the order of conditioning is irrelevant —
that is, s/p/q is the same as s/q/p — but in quantum probability the order does matter.

Channels

A channel c is a ‘probabilistic map’ from a domain to a codomain, say from D to E. For a state
s on D, one writes c >> s for the state on E obtained by state transformation. In the other
direction, for a predicate q on E one obtains predicate c << q on D by predicate transformation.
There is a basic law that tells that the probabilities (c >> s) >= q and s >= (c << q) are
equal. There are operations ∗ and @ for sequential and parallel composition of channels.
They can be used as a basis for an elementary language for writing programs/protocols.

Channels are often used in Bayesian (backwards) learning (see [7]), in the form of an
updated (revised) posterior state s / (c << q) of a prior state s in the light of evidence q.

The EfProb library supports more structure and more functions, for instance for random
variables and Bayesian networks, expected values and (co)variance, and for disintegration.
In the remainder of this note we sketch some examples, in order to give an impression of the
possibilities. For more information we refer to the EfProb Manual [6].

3 Discrete probability

A discrete state/probability distribution ω on a finite domain D is a probability mass function
ω : D → [0, 1] that satisfies

∑
x∈D ω(x) = 1. EfProb prints such distributions using ‘ket’

notation, as 1
2 |a〉+

1
6 |b〉+

1
3 |c〉, for {a, b, c} ⊆ D. A predicate on D is a function p : D → [0, 1].

Validity ω >= p is defined as
∑

x∈D ω(x) · p(x). If this number is non-zero the conditioned
state ω/p : D → [0, 1] is given by (ω/p)(x) = ω(x)·p(x)

ω>=p . A channel D → E is a function
from D to distributions on E. It is a Kleisli map for the distribution monad that can be
understood as a D-indexed collection of states on E. It is represented in EfProb/Python as a
stochastic matrix. Then: (c� ω)(y) =

∑
x ω(x) · c(x)(y) and (c� q)(x) =

∑
y c(x)(y) · q(y).

We consider a beginner’s example in Bayesian reasoning. The setting is given by some
disease with a priori probability of 1%. There is a test for the disease with the following
‘sensitivity’. If someone has the disease, then the test is 90% positive; but if someone does
not have the disease, there is still a 5% chance that the test is positive. We formalise this
situation in EfProb as a prior state and a channel:

>>> disease_dom = [’D’, ’~D’]

>>> prior = flip(1/100, disease_dom)

>>> prior

0.01|D> + 0.99|~D>

>>> sensitivity = chan_from_states([flip(9/10), flip(1/20)], disease_dom)

CALCO 2017

25:4 The EfProb Library for Probabilistic Calculations

We first use the channel to compute the probability that a test for an arbitrary person is
positive. This is done via state transformation:

>>> sensitivity >> prior

0.0585|True> + 0.942|False>

Next we would like to learn the probability of having the disease after a positive test.
This ‘positive test’ predicate is written as yes_pred. It is transformed into a predicate on the
disease domain via the sensitivity channel, and then used to update the prior state below.
We see that after a positive test the disease probability changes from 1% to 15%.

>>> posterior = prior / (sensitivity << yes_pred)

>>> posterior

0.154|D> + 0.846|~D>

4 Continuous probability

In general, a continuous state/probability distribution consists of a measurable space (X,Σ)
with a probability measure ω : Σ → [0, 1]. In practice such measures are often given by a
probability density function (pdf). This approach is followed in EfProb. Thus, a continuous
state is given by a domain consisting of an n-dimensional cube D of real numbers, possibly
infinite, with a pdf ω : D → R≥0 satisfying

∫
D
ω(x) dx = 1. A predicate onD is a (measurable)

function p : D → [0, 1]. Validity ω >= p is given by
∫

D
ω(x) · p(x) dx. The updated state/pdf

ω/p : D → [0, 1] sends x ∈ D to the fraction ω(x)·p(x)
ω>=p , when the validity ω >= p is non-zero.

A channel D → E is given by a parameterised pdf c : D × E → R≥0, with
∫

E
c(x, y) dy = 1

for each x ∈ D. Then (c� ω)(y) =
∫

D
ω(x) · c(x, y) dx and (c� q)(x) =

∫
E
c(x, y) · q(y) dy.

We sketch an example that combines discrete and continuous probability. The setting
is given by the capture and recapture methodology to estimate the size of a population in
ecology. Imagine we are looking at a pond and we wish to learn the number of fish. We catch
twenty of them, mark them, and throw them back. Subsequently we catch another twenty,
and find out that five of them are marked. What do we learn about the number of fish?

The number of fish in the pond must be at least 20. Let’s assume the maximal number
is 300. We thus take the interval [20, 300] ⊆ R as domain. We start from the uniform
distribution since we don’t assume any prior knowledge about the distribution of fish.

>>> fish_dom = R(20,300)

>>> prior = uniform_state(fish_dom)

>>> prior.expectation()

160.0

The method expectation() computes the mean value of the distribution.
We now assume that 20 of the fish in the pond are marked. We compute for each

x ∈ [20, 300] in the fish domain the probability of finding 5 marked fish when 20 of them are
caught. For this we use the binomial distribution with parameters N = 20 and probability
p = x

20 . This is incorporated in the following channel, from the fish domain to the booleans.

>>> c = chan_fromklmap(lambda x: binomial(20, 20/x), fish_dom, range(21))

>>> (c >> prior).plot()

K. Cho and B. Jacobs 25:5

The latter plot command produces the (discrete) distribution on the left below. It gives
the probability for each k ∈ {0, 1, . . . , 20} of catching k marked fish, in the prior uniform
state.

The plot on the right describes the posterior state that is obtained by updating the prior
with the information that five marked fish have been found. The latter is expressed via a
transformed predicate, as below.

>>> posterior = prior / (chan << point_pred(5, range(21)))

>>> posterior.plot()

>>> posterior.expectation()

116.491929836

The expected number of fish in the pond after recapture is calculated as 116.
We include another illustration, namely a hybrid Bayesian network, in which discrete

and continuous probability are combined. Consider the following network from [2], with two
discrete nodes (namely subsidy and buy) and two continuous ones (crop and price). The
normal price distribution depends continuously on the crop, which is used as input to the its
mean, in a way that depends whether subsidy is given. Whether or not the product will be
bought is described as a biased coin, with bias parameter given by a ‘sigmoid’ function.

price P (buy)

p 1/(1+ep−5)

�� ��buy

�� ��price

OO

subsidy crop P (price)

t c N (20− c, 1)
f c N (10− c, 1)

P (subsidy)

0.7

�� ��subsidy

>>

�� ��crop
P (crop)

N (5, 1)

]]

The conditional probability tables describe how nodes depend on each other. We write
N (µ, σ) for the normal (Gaussian) distribution with mean µ and standard deviation σ.

This network is modeled in EfProb in the following way. First, the subsidy and corp
distributions form a joint prior state:

>>> subsidy = flip(0.7)

>>> dom = R(0,20)

>>> crop = gaussian_state(5,1,dom)

>>> prior = subsidy @ crop

CALCO 2017

25:6 The EfProb Library for Probabilistic Calculations

As indicated, the domain of the crop distribution is the real interval [0, 20]. The above
two conditional probability for price and buy are translated into channels:
>>> price = chan_fromklmap(lambda p,c: gaussian_state(20−c, 1, dom) if p
... else gaussian_state(10−c, 1, dom),
... [bool_dom, dom], dom)

>>> buy = chan_fromklmap(lambda p: flip(1/(1+exp(p−5))), dom, bool_dom)

We see that the translation from the Bayesian network to the EfProb code is rather
straightforward. We can now do ‘forward’ calculations to obtain distributions for price and
buy by state transformation:
>>> p = price >> prior

>>> p.expectation(), p.variance()

11.9997758228 22.9911228888

>>> b = buy >> p

>>> b >= yes_pred

0.150080181436

Computing these numbers takes a few seconds, on an ordinary laptop. These values
are (very close to) the ones reported in [2]. The plots of the computed prior price and buy
distributions (p and b) are given below. We see that the price distribution is a convex sum
of two normal distributions.

We can also do ‘backward’ reasoning when we observe, for instance, that the product is
not bought. The resulting posterior subsidy and crop distributions become:

We see that the subsidy probability increases to 82%; the crop distribution looks un-
changed, but its mean actually drops from 5 to 4.9. This update prior is produced via
predicate transformation, using a sequential composition channel buy ∗ price in:

K. Cho and B. Jacobs 25:7

>>> posterior = prior / ((buy ∗ price) << no_pred)
>>> (posterior % [1,0]).plot()

>>> (posterior % [0,1]).plot()

The two marginals of the posterior state, for subsidy and crop, are plotted.

5 Quantum probability

A quantum state of dimension n is an n× n complex matrix ω that is positive and has trace
one: tr(ω) = 1. A predicate p is a positive matrix below the identity matrix: 0 ≤ p ≤ id.
The validity ω >= p is defined via the Born rule as tr(ω p). The conditioned state ω/p is√

p ω
√

p

ω>=p . A channel n→ m is a positive unitary linear map from m×m matrices to n× n
matrices. We refer to [9] for more background information.

•
•

|0〉 H • Z X • H 0

|0〉 0

We briefly describe the so-called superdense coding protocol that is represented as a
circuit above, using notation like in Quipper [4] and QWire [10]. In this protocol Alice
transfers two classical bits to Bob via two entangled qubits — in the form of a Bell state
that is produced in the lower-left part of the circuit — where Alice possesses one qubit and
Bob the other. The EfProb code for Alice, Bob, and the whole protocol is described via
sequential ∗ and parallel composition @ of channels:

>>> alice = (discard(2) @ idn(2)) ∗ ccontrol(x_chan) \
... ∗ (idn(2) @ discard(2) @ idn(2)) \
... ∗ (idn(2) @ ccontrol(z_chan)) ∗ (swap @ idn(2))
>>> bob = (meas0 @ meas0) ∗ (hadamard @ idn(2)) ∗ cnot
>>> sdc = bob ∗ (alice @ idn(2)) ∗ (idn(2,2) @ bell00.as_chan())

We can run this protocol with two classical (probabilistic) states as input:

>>> s = random_probabilistic_state(2)

>>> t = random_probabilistic_state(2)

>>> s

[[0.89708576 0.]

[0. 0.10291424]]

>>> (sdc >> s @ t) % [1,0]

[[0.89708576+0.j 0.00000000+0.j]

[0.00000000+0.j 0.10291424+0.j]]

Similarly the second marginal of sdc >> s @ t yields the original second input t.

CALCO 2017

25:8 The EfProb Library for Probabilistic Calculations

References
1 K. Cho, B. Jacobs, A. Westerbaan, and B. Westerbaan. An introduction to effectus theory.

Preprint, 2015. arXiv:1512.05813 [cs.LO].
2 B. Cobb and P. Shenoy. Inference in hybrid Bayesian networks with mixtures of truncated

exponentials. Int. J. Approx. Reasoning, 41(3):257–286, 2006.
3 N. Goodman, V. Mansinghka, D. Roy, K. Bonawitz, and J. Tenenbaum. Church: a language

for generative models. In Uncertainty in Artificial Intelligence, 2008.
4 A. Green., P. LeF. Lumsdaine, N. Ross, P. Selinger, and B. Valiron. Quipper: A scalable

quantum programming language. In Programming Language Design and Implementation,
2013.

5 B. Jacobs. New directions in categorical logic, for classical, probabilistic and quantum logic.
Logical Methods in Comp. Sci., 11(3):1–76, 2015. doi:10.2168/LMCS-11(3:24)2015.

6 B. Jacobs and K. Cho. EfProb user manual. 2017. URL: https://efprob.cs.ru.nl.
7 B. Jacobs and F. Zanasi. A predicate/state transformer semantics for Bayesian learning. In

L. Birkedal, editor, Math. Found. of Programming Semantics, number 325 in Elect. Notes
in Theor. Comp. Sci., pages 185–200. Elsevier, Amsterdam, 2016.

8 B. Milch, B. Marthi, S. Russell, D. Sontag, D. Ong, and A. Kolobov. BLOG: Probabil-
istic models with unknown objects. In L. Getoor and B. Taskar, editors, Introduction to
Statistical Relational Learning. MIT Press, 2007.

9 M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge
Univ. Press, 2000.

10 J. Paykin, R. Rand, and S. Zdancewic. QWIRE: A core language for quantum circuits. In
Princ. of Programming Languages, pages 846–858. ACM Press, 2017.

11 F. Wood, J. W. van de Meent, and V. Mansinghka. A new approach to probabilistic
programming inference. In Artificial Intelligence and Statistics, 2014.

http://dx.doi.org/10.2168/LMCS-11(3:24)2015
https://efprob.cs.ru.nl

	Introduction
	A uniform language
	Discrete probability
	Continuous probability
	Quantum probability

