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Abstract
At Crypto 2011, some of us had proposed a family of cryptographic protocols for key estab-

lishment capable of protecting quantum and classical legitimate parties unconditionally against
a quantum eavesdropper in the query complexity model. Unfortunately, our security proofs were
unsatisfactory from a cryptographically meaningful perspective because they were sound only in
a worst-case scenario. Here, we extend our results and prove that for any ε > 0, there is a clas-
sical protocol that allows the legitimate parties to establish a common key after O(N) expected
queries to a random oracle, yet any quantum eavesdropper will have a vanishing probability of
learning their key after O(N1.5−ε) queries to the same oracle. The vanishing probability applies
to a typical run of the protocol. If we allow the legitimate parties to use a quantum computer as
well, their advantage over the quantum eavesdropper becomes arbitrarily close to the quadratic
advantage that classical legitimate parties enjoyed over classical eavesdroppers in the seminal
1974 work of Ralph Merkle. Along the way, we develop new tools to give lower bounds on the
number of quantum queries required to distinguish two probability distributions. This method
in itself could have multiple applications in cryptography. We use it here to study average-case
quantum query complexity, for which we develop a new composition theorem of independent
interest.
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1 Introduction

Not taking classified work within secret services into consideration [28], Ralph Merkle is
the first person to have asked – and solved – the question of secure communications over
insecure channels [24]. In his seminal (rejected!) 1974 project for a Computer Security course
at the University of California, Berkeley, he discovered that it is possible for two people
who want to communicate securely to establish a secret key by communicating over an
authenticated channel that provides no protection against eavesdropping. Merkle’s solution
to this conundrum offers quadratic security in the sense that if the legitimate parties –
codenamed Alice and Bob – are willing to expend an effort in the order of N , for some
security parameter N , they can establish a key that no eavesdropper – codenamed Eve –
can discover with better than vanishing probability without expending an effort in the order
of N2.

This quadratic security may seem unattractive compared to the potential exponential
security entailed by the subsequently discovered key establishment protocols of Diffie and
Hellman [16] and Rivest, Shamir and Adleman [26], to name a few. However, the security of
those currently ubiquitous cryptographic solutions will be compromised with the advent of
full-scale quantum computers, as discovered by Peter Shor more than two decades ago [27].
And even if a quantum computer is never built, no one has been able to prove their security
against classical attacks, nor that of quantum-resistant candidates based, for instance, on
short vectors in lattices. Furthermore, Merkle had already understood in 1974 that quadratic
security could be practical if the underlying one-way function (see below) can be computed
very quickly: if it takes one nanosecond to compute the function and legitimate users are
willing to spend one second each, a classical adversary who could only invert the function by
exhaustive search would require fifteen expected years to break Merkle’s original scheme.

The main interest of Merkle’s solution is that it offers provable security, at least in the
query model of computational complexity, a model closely related to the random oracle model.
In this model, we assume the existence of a black-box function f : D → R from some domain
D to some range R, so that the only way to learn something about this function is to query
the value of f(x) on inputs x ∈ D that can be chosen arbitrarily. The query complexity of
some problem given f is defined as the expected number of calls to f required to solve the
problem, using the best possible algorithm. In our case of interest, we shall consider random
black-box functions, meaning that for each x ∈ D, the value of f(x) is chosen uniformly
at random within R, independently of the value of f(x′) for any other x′ ∈ D. Provided
the size r of R is sufficiently large compared to the size d of D, such a random function is
automatically one-to-one, except with vanishing probability. The main characteristic of these
black-box random functions that is relevant to the proof of security of Merkle’s scheme is
that, given a randomly chosen point y in the image of f , the only (classical) approach to
finding an x so that f(x) = y is exhaustive search: we have to try x’s one after another until
a solution is found. Indeed, whenever we try some x′ and find that f(x′) 6= y, the only thing

http://dx.doi.org/10.4230/LIPIcs.TQC.2017.3


A.Belovs, G. Brassard, P. Høyer, M.Kaplan, S. Laplante, and L. Salvail 3:3

we have learned is that this particular x′ is not a solution. Provided the function is indeed
one-to-one, we expect to have to query the function d/2 times on average in order to find
the unique solution.

One may argue that black-box random functions do not exist in real life, but we can
replace them in practice with one-way functions – provided they exist! – which is what
Merkle meant by “one-way encryption” in his 1974 class assignment [24]. Thus, we can base
the security of Merkle’s scheme on the generic assumption that one-way functions exist,
which is unlikely to be broken by a quantum computer, rather than the assumption that
specific computational problems such as factorization or finding short vectors in lattices
are difficult, at least the first one of which is known not to hold on a quantum computer.
Can we do better than provable quadratic security in the query model? This question
remained open for 35 years, and was finally settled in the negative by Boaz Barak and
Mohammad Mahmoody-Ghidary [4], building on earlier work of Russell Impagliazzo and
Steven Rudich [19]: any protocol by which the legitimate parties can obtain a shared key
after O(N) expected queries to a black-box random function can be broken with O(N2)
expected queries to the same black box.

It was apparently noticed for the first time by one of us in 2005, and published a few years
later [15], that Merkle’s original 1974 scheme [24], as well as his better known subsequently
published puzzles [25], are broken by Grover’s algorithm [17] on a quantum computer. This
attack assumes that the eavesdropper can query the function in quantum superposition,
which is perhaps not reasonable if the function is provided as a physical classical black
box, but is completely reasonable if it is given by the publicly-available code of a one-way
function (as originally envisioned by Merkle). If the legitimate parties are also endowed with
a quantum computer, the same paper [15] gave an obvious fix, by which the legitimate parties
can establish a key after O(N) quantum queries to the black-box function, but no quantum
eavesdropper can discover it with better than vanishing probability without querying the
function O(N3/2) times. That paper made the explicit conjecture that this was best possible
when quantum codemakers are facing quantum codebreakers in the game of provable security
in the random black-box model. The issue of protecting classical codemakers against quantum
codebreakers was not addressed in Ref. [15].

At the Crypto 2011 conference [13], several of us disproved the conjecture of Ref. [15]
with the introduction of a new quantum protocol that no quantum eavesdropper could break
without querying the black-box functions Ω(N5/3) times.1 We also offered the first protocol
provably capable of protecting classical codemakers against quantum codebreakers, although
O(N13/12) queries in superposition sufficed for the quantum eavesdropper to obtain the
not-so-secret key. Unfortunately, our security proofs were worked out in the traditional
computational complexity worst-case scenario. In other words, it was only proved that any
quantum eavesdropper limited to o(N5/3) or o(N13/12) queries, depending on whether the
legitimate parties are quantum or classical, would be likely to fail on at least one possible
instance of the protocol. This did not preclude that most instances of the protocol could
result in insecure keys against an eavesdropper who would work no harder than the legitimate
parties. Said otherwise, our Crypto 2011 result was of limited cryptographic significance.

In subsequent work [14], we claimed to have provided a proper average-case analysis of our
protocols, rendering them cryptographically meaningful, so that any quantum eavesdropper
has a vanishing probability of learning the key after only o(N5/3) or o(N7/6) queries 2, where

1 The word “functions” is plural because the 2011 protocol required two black-box random functions.
2 For classical legitimate parties, the o(N13/12) of Ref. [13] had been improved to o(N7/6) in Ref. [14].
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3:4 Provably Secure Key Establishment Against Quantum Adversaries

the probabilities are taken not only over the execution of the eavesdropping algorithm but
also over the instance of the protocol run by the legitimate parties. We also extended our
results to two sequences of protocols based on the k-SUM problem (Definition 1 in Section 3),
where k ≥ 2 is an integer parameter, in which the legitimate parties query the black-box
random functions O(kN) times. It was claimed that any quantum eavesdropper had a
vanishing probability of learning the key after o(N

1
2 + k

k+1 ) or o(N1+ k
k+1 ) queries, against the

classical or the quantum protocol parametrized by k, respectively. Again, this was claimed
to hold not only in the cryptographically-challenged worst-case scenario, but also when the
probabilities are taken over the protocols being run by the legitimate parties.

Unfortunately, all our average-case analyses in Ref. [14] were incorrect! The case k = 2
can be fixed rather easily, hence the insufficiency of o(N5/3) queries for a quantum-against-
quantum protocol and of o(N7/6) queries for a classical-against-quantum protocol in a
cryptographically significant setting can be derived from the incorrect arguments provided
in Ref. [14]. However, we also claimed in Ref. [14] that the case k > 2 could be proved in
ways “similar to” when k = 2. This was a mistake due to a fundamental difference in the
k-SUM problem whether k = 2 or k > 2. Whereas the 2-SUM problem is easily seen to be
random self-reducible, so that its hardness in worst case implies its hardness on average,
this does not seem to be the case for the k-SUM problem when k > 2. In particular, the
worst-case lower bound proved by Aleksandrs Belovs and Robert Špalek [8] on the difficulty
of solving the k-SUM problem on a quantum computer does not extend in any obvious way
to a lower bound on average. And without such an average lower bound, our results claimed
in Ref. [14] go up in smoke for k > 2. Furthermore, for a technical reason explained later,
even such an average lower bound would not suffice.

In this paper, we overcome all these problems and give a correct and cryptographically
meaningful 3 security proof for all our protocols from Ref. [14]. Consequently, we prove that
for any ε > 0 there is a classical protocol that allows the legitimate parties to establish a
common key after O(N) expected queries to black-box random functions, yet any quantum
eavesdropper will have a vanishing probability of learning their key after O(N1.5−ε) queries
to the same oracle. The vanishing probability is over the randomness in the actual run of
the protocol followed by that of the eavesdropper’s algorithm. If we allow the legitimate
parties to use quantum computers as well, their advantage over the quantum eavesdropper
becomes arbitrarily close to the quadratic advantage that classical legitimate parties enjoyed
over classical eavesdroppers in the seminal 1974 work of Ralph Merkle [24].

Our results require new tools in quantum query complexity, which are of independent
interest. In particular, we introduce techniques to lower-bound the quantum query complexity
of distinguishing between two probability distributions, which we use to extend the adversary
lower bound method in order to handle average-case complexity, but they could have other
uses in cryptography. This approach is necessary for the distributions of inputs considered
here because the associated decision problems become trivial on average, which prevents
us from applying the average-case method developed in Ref. [7]. Furthermore, we prove a
composition theorem for this new lower bound method, extending that of Ref. [13], which
was valid only to prove cryptographically irrelevant worst-case lower bounds 4. Using these

3 To be honest, it is not entirely cryptographically meaningful to restrict the analysis to the number of
calls to the black-box functions, taking no account of the computing time that may be required outside
those calls. However, if we also restrict the legitimate expected time to be in O(N), then our quantum
protocol with k = 3 remains valid and provably resists any o(N7/4)-time quantum eavesdropping attack,
which was claimed in Ref [14], but with a fundamentally incorrect proof.

4 Some parts of the proofs are omitted in the present version. They can be found in the extended version
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two tools, we prove that any quantum eavesdropper who does not make a prohibitive number
of calls to the black-box functions will fail to break a typical instance of the protocol, except
with vanishing probability.

This work fits in the general framework of “Cryptography in a quantum world” [12],
which addresses the question: “Is the fact that we live in a quantum world a blessing or
a curse for codemakers?”. It is a blessing if we allow quantum communication, thanks to
Quantum Key Establishment (aka Quantum Key Distribution – QKD) [10], at least if the
protocols can be implemented faithfully according to theory [29, 22]. On the other hand, it
is a curse if we continue to use the current cryptographic infrastructure, which pretends to
secure the Internet at the risk of falling prey to upcoming quantum computers. However, it is
mostly a draw in the realm of provable query complexity in the black-box model considered
in this paper since codemakers enjoy a quadratic (or arbitrarily close to being quadratic)
advantage over codebreakers in both an all-classical or an all-quantum world, at least in terms
of query complexity (but see footnote 4 again). Furthermore, the known proof that quadratic
security is best possible in an all-classical world [4] does not extend to the all-quantum world,
and hence the (unlikely) possibility remains that a more secure protocol could exist in our
quantum world.

The rest of the paper is organized as follows. Section 2 lists all the techniques and related
notations that are used throughout the paper. Section 3 recalls the classical and quantum
protocols from Refs [13, 14]. In Section 4, we introduce a new method to prove lower bounds
on the difficulty of distinguishing between two probability distributions, which we use to
study average-case quantum query complexity. This method extends the extensively studied
adversary method. We then apply this method to the k-SUM problem in Section 5, which is
at the heart of our hardness result. Finally, in Section 6, we prove a composition theorem for
the new adversary method introduced in Section 4. This allows us to conclude that typical
runs of the protocols from Refs [13, 14] are indeed secure against quantum adversaries.

2 Preliminaries and Notation

At the heart of this work is a lower bound on the quantum query complexity of a generalisation
of the k-SUM problem. Many techniques have been given to prove such lower bounds in the
worst-case scenario, including the adversary method [2, 18, 21]. This method is based on the
spectral norm of a matrix, Γ, indexed in the rows and columns by inputs to the problem.
Roughly, each entry of the matrix Γ[x, y] ∈ R can be thought of as representing the hardness
of distinguishing inputs x and y. It is known that for Boolean functions, the (negative)
adversary bound is multiplicative under function composition [18]. For non-Boolean functions,
a general composition theorem fails to hold, as counterexamples can be found. Nevertheless,
it was shown in Ref. [13] that the adversary method is multiplicative under composition
with (non-Boolean) unstructured search problems.

In this paper, we extend the quantum adversary method to average-case complexity,
which is crucial for cryptographic applications, and we show that a similar composition
property holds for this measure. As for the adversary bound, this method is based on the
spectral norm of matrices, and involves probability distributions. Below, we summarize the
notation related to functions, algebra and probabilities, used throughout the paper.

We consider decision or search problems denoted F,G or H. These problems are on
abelian groups, which are denoted G, or Gm when we want the order m of the group to

of this work [6].
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3:6 Provably Secure Key Establishment Against Quantum Adversaries

appear explicitly. The group operation is denoted “+” and its inverse “−”. For a decision
problem F, the inputs in the language F are called positive and the inputs not in the language
are negative. We compose our problems with an unstructured search problem to make them
harder. To do so, we need to add to the alphabet an element that does not belong to G. We
denote this element “?”.

Fix two problems F : An → B and G : C → A for some n ∈ N. Then, the com-
posed problem F ◦ Gn : Cn → B is defined by F ◦ Gn(x1, . . . xn) = F(G(x1), . . . ,G(xn)) for
(x1, . . . xn) ∈ Cn.

For any positive integer n we use [n] to denote the set of n elements {0, 1, 2, . . . , n− 1}.
We only make use of basic concepts of quantum computing: states, unitary operations and
measurements. These notions are used in Section 4, but even there, the calculations boil
down to basic linear algebra. The entries of an n×m matrix Γ are denoted Γ[x, y], where
x ∈ [n] and y ∈ [m]. For X ⊆ [n] and Y ⊆ [m], ΓX,Y is the restriction of Γ to the rows and
columns in X and Y, respectively.

The direct sum of spaces, operators, matrices or vectors is denoted “
⊕

”. The inner
product of two states (or vectors in an Hilbert space) ψ and φ is

〈
ψ, φ

〉
. For a matrix A, we

use ‖A‖ for its spectral norm, that is, its largest singular value, and ‖A‖F for the Frobenius
norm, that is, the square root of the sum of the squares of the moduli of its elements. For two
matrices A and B, we denote A ◦B their entrywise (or Hadamard) product. We make use of
the two following matrices: the n× n identity matrix In and the n× n all-one matrix Jn.

We use P and Q for probability distributions over inputs to the problems. The support
of a distribution is the set of elements with non-zero probability. We sometimes identify
distributions with vectors. More precisely, if px is the probability of x in P , we can consider
the vector P given by the entries P[x] = px. We use “X ∼ P ” to denote that the random
variable X is sampled from P. In this case, it is the variable whose probability is given by
Pr[X = x] = px. In the specific case of sampling an element x uniformly at random from a
set D, we use x ∈R D. We also use the indicator function 1x 6=y whose value is 1 if x 6= y and
0 otherwise.

We sometimes consider sequences of probabilities, such as the accepting probability νn
of an algorithm (for a decision problem) as a function of the input size n. For simplicity,
we often omit the subscript n, in which case “ ν ” should be understood as a function of n.
We call such a sequence ν vanishing if ν = o(1). If ν decreases faster than the inverse of any
polynomial, we say that the event is negligible.

3 Provably Secure Key Establishment Protocols

With the exception of Merkle’s more famous “puzzles” [25], all key establishment protocols
based on black-box random functions (which Merkle called “one-way encryption”) begin in a
way that is essentially identical to Merkle’s original 1974 idea [24], with possible inessential
differences 5. Given a black-box random function f : D → R from some domain D to some
range R, Alice chooses random elements xi ∈R D and she obtains yi = f(xi), which she
sends to Bob over an authenticated channel on which Eve can freely eavesdrop. This defines
the sets X of xi’s and Y of yi’s, of which X is private information kept by Alice whereas Y
becomes known to all parties, including Eve. Upon receiving this information, Bob’s first
task is to find one or several preimage(s) under f of any of the points sent by Alice.

5 In Merkle’s original scheme, there is no asymmetry between Alice and Bob, as they both “guess at
keywords” and share and compare their one-way encryptions until they discover that they have guessed
at the same keyword. In all the protocols considered here, Alice goes first and Bob works from there.
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The various schemes that were considered in Refs [24, 15, 13, 14] differ in how Bob
proceeds to find the preimage(s), how many such preimages he needs to find, and how he
informs Alice of which preimage(s) he has found. In Merkle’s original scheme [24], he needs
to find a single preimage. This is done by querying f on random points in its domain until
some x is found such that f(x) = y ∈ Y. Afterwards, Bob sends y back to Alice, who can
find efficiently the corresponding x because it is among her set X, which she had kept. This
shared x becomes their secret key. The intuition behind the security of this scheme stems
from the freedom in Bob’s task to invert f on any element of Y, compared to how stringent
Eve’s is since she must invert it on the specific element that Bob had inverted by chance.

To be more precise, let N be a safety parameter, let the domain of f contain N2 points
and its range be of size N5, which is large enough to ensure that f is one-to-one except with
vanishing probability. If Alice chooses N random points in the domain of f and Bob tries
random such points as well until he hits upon an x such that f(x) ∈ Y, it is easy to see that
both Alice and Bob need query function f an expected number of N times. However, a
classical Eve requires an expected N2/2 queries, which gives a quadratic advantage to the
legitimate parties.

Unfortunately, inverting one specific point in the image of f with the help of a quantum
computer requires only π

4

√
N2 = π

4N queries to f by way of Grover’s algorithm [17], which
is slightly fewer than the effort required by the legitimate parties. This is why Merkle’s
original scheme is totally broken against a quantum adversary, as first pointed out in Ref. [15].
In order to restore security, two main modifications to Merkle’s original scheme have been
considered, as we now proceed to describe.

3.1 Variations on Merkle’s Idea
If we require Bob to find k distinct preimages among the N points sent by Alice, for
some k > 1, rather than a single one, he will only have to work roughly k times as hard,
provided k � N . The key shared by Alice and Bob could then be the concatenation of
those preimages in the order in which the corresponding images were sent by Alice in the
first step. But how can Bob tell Alice which preimages he was able to find in a way that
will force Eve to make much more queries than her? A first solution was proposed in
Ref. [13] for the case k = 2, but a much simpler one was given subsequently in Ref. [14] for
arbitrary k. The idea is to introduce a second black-box random function t from the same
domain to some sufficiently large group G. If Bob finds preimages xi1 , xi2 , . . . , xik ∈ X, with
1 ≤ i1 < i2 < · · · < ik ≤ N , and sends w = t(xi1) + t(xi2) + · · · t(xik ) to Alice, she needs only
call black-box function t on the N points she had kept in X in order to determine Bob’s k
preimages, provided the order of G was chosen sufficiently large to ensure the uniqueness of
the solution, except with vanishing probability. Taking the order to be N4k+1 is sufficient to
ensure this. Furthermore, she can do this efficiently, in terms of computing time, when k = 2.
Hence, Alice needs to query each of functions f and t exactly N times, whereas Bob needs
to query function f an expected O(kN) times and function t exactly k times.

How difficult is the cryptanalytic task for quantum Eve, who has seen the y’s sent from
Alice to Bob and the single w sent from Bob to Alice? We gave an explicit algorithm based
on quantum walks [23] in Hamming graphs in Ref. [14], which allows her to discover the
secret key after O(N1/2+k/(k+1)) calls to the black-box functions. In the same paper, we
claimed that a matching Ω(N1/2+k/(k+1)) lower bound holds for a typical instance of the
protocol, which is formally stated in Theorem 8 below, but the proof proposed in Ref. [14]
fails for k > 2 in a way that cannot be repaired. The main purpose of the present paper is to
offer a correct proof of this theorem. It follows that for any fixed ε > 0, there is a classical
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3:8 Provably Secure Key Establishment Against Quantum Adversaries

key establishment protocol (taking k = b1/εc) that allows the legitimate parties to establish
a shared key after O(N) expected queries to black-box random functions f and t, yet any
quantum eavesdropper will have a vanishing probability of learning their key after O(N1.5−ε)
queries to the same oracle. If we take account of computational complexity in addition to
query complexity, we must be content with k = 2, in which case the claim is much more
modest, but still the quantum codebreaker must work more than linearly harder than the
classical codemakers. Along the way, we need to develop in Section 4 new tools for the study
of average-case quantum query complexity, which had essentially remained virgin territory
despite its obvious importance, in particular but not only for cryptography.

The second modifications to Merkle’s original scheme that has been considered [15, 13, 14]
is to play a fair game in allowing the codemakers to use quantum computers as well. The first
benefit is that we can enlarge the domain of f to contain N3 points. If Alice proceeds
exactly as before, Bob can use an extension of Grover’s algorithm known as BBHT [11] in
order to find random preimages of the N image points initially sent by Alice at the cost of
O(
√
N3/N ) = O(N) queries per preimage, provided k � N . This increase in the domain

size of f , and correspondingly of t, makes it significantly harder for a quantum eavesdropper
to solve the conundrum and discover the key shared by Alice and Bob. Indeed, we also prove
Theorem 9, stated below, to the effect that no cryptanalytic attack can succeed on a typical
instance of the protocol, except with vanishing probability, short of making Ω(N1+k/(k+1))
queries to the black-box functions. Again, this theorem was claimed in Ref. [14] but its proof
was fundamentally flawed for k > 2. Taking k sufficiently large, this offers a quantum-against-
quantum security that is arbitrarily close to the quadratic security that the original scheme of
Merkle [24] offered in the classical-against-classical scenario. The second benefit to allowing
the codemakers to use quantum computers is that now a quantum Alice can be efficient in
terms of computation time, in addition to query complexity, even when k = 3. According to
Theorem 9, we get an Ω(N7/4) security guarantee for a protocol that could become practical
once sufficiently powerful quantum computers start to seriously threaten the security of the
current Internet cryptographic infrastructure. This is the most secure proven solution ever
discovered to the conundrum of post-quantum cryptography [12] when all parties have equal
quantum computing capabilities, at least in the random oracle model, and its security is
reasonably close to that of Merkle’s provably optimal scheme in an all-classical world but
otherwise in the same model.

3.2 The k-SUM Problem
The security of the protocols that we study is based on the k-SUM problem, which consists in
searching for k elements among N in some abelian group G whose sum is a given value w ∈ G.

I Definition 1 (k-SUM problem). Given an abelian group G, a function t : D → G for some
domain D, a target w ∈ G and N distinct elements x1, x2, . . . , xN ∈ D, the problem is to find
k indices 1 ≤ i1 < i2 < · · · < ik ≤ N such that w =

∑k
j∈1 t(xij ), provided a solution exists.

The decision version of k-SUM is to decide whether or not a solution exists.

It is crucial to understand that we are not interested in how much computation time would
be required to find a solution, if one exists. Rather, we want to minimize the number of calls
to function t that will be required. Naturally, a quantum algorithm is allowed to query t on
superpositions of elements of D.

When k = 1, this is simply the unstructured search problem, which consists in finding
i such that t(xi) = w, provided it exists. When k = 2 and G is the group of bit strings of
a given length under bitwise exclusive-or, k-SUM takes the name of 2-XOR. In turn, when



A.Belovs, G. Brassard, P. Høyer, M.Kaplan, S. Laplante, and L. Salvail 3:9

w = 0, 2-XOR becomes the search version of the Element Distinctness (ED) problem, which
consists in finding a collision in a given function if it is not one-to-one.

I Definition 2 (Element Distinctness (ED) problem). Given a function t : D → R, the decision
element distinctness (ED) problem is to decide whether or not this function is one-to-one.

I Definition 3 (Search version of ED). Given a function t : D → R, the search version of
the element distinctness problem (SED) is to find a pair of distinct x, x′ ∈ D such that
t(x) = t(x′), provided such a pair exists.

Quantum lower bounds have been proved on all these problems [1, 8, etc.], but only
in the worst-case scenario, which is most frequently studied in the field of computational
and query complexity. For some of these problems, such as ED, SED, 2-XOR and 2-SUM, a
simple classical randomized reduction suffices for proving their difficulty on average from
their difficulty in the worst case even in the quantum setting, at least if we add the promise
that if there is a solution, then it is unique. However, this does not appear to be the case for
k-SUM when k > 2. Our main mistake in Ref. [14] was to take such a reduction for granted
for arbitrary k after having nearly proved it in the case k = 2. “Nearly” because the proof
for k = 2 was flawed, albeit easy to repair. Not so for k > 2, however. In order to prove the
security of the key establishment protocols described above in a cryptographically meaningful
context, we need to prove the difficulty of k-SUM on average for arbitrary k, which requires
new quantum lower bound techniques. In fact, we need to prove the difficulty on average
of a composed version of k-SUM, defined below in Section 3.3, which does not follow by a
classical reasoning from the average difficulty of plain k-SUM. Therefore, we also have to
develop a new composition theorem that works on average as well.

The first quantum lower bound discovered among these problems was for the decision
element distinctness problem. Aaronson and Shi [1] proved that this problem requires Ω(d2/3)
queries to t in the worst case, where d is the cardinality of domain D. There was a technical
condition in their original proof that required r ≥ d2, where r is the cardinality of range R,
but that condition was subsequently lifted [3, 20]. Later, Belovs and Špalek [8] proved that
solving k-SUM requires Ω(Nk/(k+1)) queries to t in the worst case, provided m ≥ Nk, where
m is the order of group G and N is as in Definition 1.

Even though the technique used by Aaronson and Shi was adequate only to prove worst-
case lower bounds, it is elementary to conclude by a classical reasoning that the hardness
in worst-case of ED implies the same hardness on average for ED, SED and 2-XOR. But, as
we said already, a completely new technique, which we develop in Section 4, is required to
prove a matching hardness result for k-SUM on average, which is stated as Theorem 15 in
Section 5.

However, even this is not sufficient to derive the security of the key establishment protocols
described above in a cryptographically meaningful manner. Indeed, the eavesdropper is
not faced with an instance of k-SUM, as specified in Definition 1. He learns the value of w
when Bob transmits it to Alice, and he has access to black-box function t, but he does not
know the x’s, which are kept secret by Alice. Instead, he learns the image of those x’s by
function f , which we called the y’s, when Alice sent them to Bob in the first step of the
protocol. In fact, he has to solve the more difficult Hidden k-SUM problem, which we now
proceed to describe.

3.3 Hidden and Composed k-SUM Problems
The hidden k-SUM problem, defined below, corresponds precisely to the task facing the
eavesdropper.
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3:10 Provably Secure Key Establishment Against Quantum Adversaries

I Definition 4 (Hidden k-SUM problem). Given two sets D and R, an abelian group G, two
functions f : D → R and t : D → G, N distinct elements y1, y2, . . . , yN ∈ Im(f), and a target
w ∈ G, the problem is to find k indices 1 ≤ i1 < i2 < · · · < ik ≤ N and a preimage xij under
f for each yij , 1 ≤ j ≤ k, meaning that f(xij ) = yij , such that w =

∑k
j=1 t(xij ), provided a

solution exists. The decision version of hidden k-SUM is to decide if a solution exists.

In order to prove lower bounds on the quantum cryptanalytic task of breaking typical
instances of the protocols described in Section 3.1, we proceed in two steps. First we have to
prove the hardness of the hidden k-SUM problem on average. Then, we have to exhibit a
reduction that shows how to solve an average instance of the hidden k-SUM problem using
an adversary who thinks he is breaking a typical instance of the key establishment protocol.
To prove the hardness of the hidden k-SUM problem on average, it helps to consider a more
structured version of it, which is given by the composition of k-SUM with a search problem
called pSEARCH, defined below.

I Definition 5 (pSEARCH problem). Let A be some set and ? a symbol not in A. Consider
the set P of strings (a1, . . . , a`) in (A∪{?})` with the promise that exactly one value is not ?.
The problem pSEARCH` : P → A consists in finding this non-? value by making queries that
take i as input and return ai, 1 ≤ i ≤ `.

An equivalent formulation of the k-SUM problem would consist in a target w in abelian
group G and a list (t1, t2, . . . , tN ) of elements of G. The problem is to find k indices
1 ≤ i1 < i2 < · · · < ik ≤ N such that w = ti1 + ti2 + · · ·+ tik . We are charged for accessing
each ti given i. This is equivalent to Definition 1 simply by taking ti = t(xi), but it is more
convenient since it allows us to consider the composition of k-SUM with N instances of
pSEARCH. Thus we define the Composed version of k-SUM as follows.

I Definition 6 (Composed k-SUM problem). Given a target w in abelian group G and N
instances of the pSEARCH` problem using G as set A, we want to solve the k-SUM problem
with ti being the only non-? element in the ith instance of pSEARCH`. Said otherwise, this
is the composition of k-SUM and pSEARCH` denoted k-SUM ◦ pSEARCHN` .

The composed k-SUM problem (Definition 6) is similar to its hidden variant (Definition 4),
except that it is more structured, hence easier. Specifically, the xi’s that serve to define
ti = t(xi) in the hidden version, 1 ≤ i ≤ N , can be a priori any element of D, whereas they
are put in N “buckets” of size ` in the composed version. If we choose the size of D to be the
product of N and `, any algorithm capable of solving the hidden version can serve directly
to solve the composed version simply by taking no account of the additional information
provided by the buckets. Moreover, a random instance of the composed version can be
transformed into a random instance of the hidden version, essentially by mixing the buckets.
It follows that any lower bound on the composed problem translates directly into the same
lower bound on the hidden problem, mutatis mutandis.

In Sections 4 to 6, which are more technical, we give a lower bound on the composed
problem in a series of steps. First, we give a new general method to prove lower bounds for
the average-case quantum query complexity (Section 4). This method is closely related to the
technique given in Ref. [9], albeit with essential differences. Second, building on techniques
from Refs [8, 7], we show a lower bound on the average-case quantum query complexity of
k-SUM (Section 5). Third, we show a composition theorem for average-case quantum query
complexity, which allows us to conclude with Theorem 18 (Section 6).

When we apply this theorem with the parameters that correspond to the protocols
described in Section 3.1, we should take n = N , which is the number of images sent by
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Alice in the first step of any of these protocols and therefore also the number of buckets.
Furthermore, we should take the product of `, the size of the buckets, with n, the number of
buckets, to correspond to the size of the domain D used in the protocols.

Putting it all together, Theorem 18 gives us the following lower bound on the difficulty to
solve the hidden k-SUM problem if the domain D of functions f and t contains d elements.

I Theorem 7. Any quantum algorithm that uses at most T queries to find a solution to the
hidden k-SUM problem with success probability at least νN > 0 on average over the uniform
distribution on positive instances requires

T

νN
= Ω

(√
d/N − 1 Nk/(k+1)

)
provided m = ω

(
N
k+ 2

k+1
)
, where m is the order of the underlying abelian group.

3.4 The Security of Key Establishment
We proved (correctly!) in Ref. [14] that any eavesdropper who succeeds in obtaining the key
with non-vanishing success probability ν in any of the protocols described in Section 3.1,
after making no more than T queries, on average over the runs of the protocol, can be used
to solve the hidden k-SUM problem with the same parameters. Therefore, using the fact
that d = N2 for the classical protocols and d = N3 for the quantum protocol, we can apply
Theorem 7 to conclude that the protocols are secure according to the following theorems.

I Theorem 8. Any quantum eavesdropping strategy that makes o
(
N

1
2 + k

k+1
)
queries to the

black-box functions against a typical run of the classical protocol using parameter k will fail
to recover the key, except with vanishing probability.

I Theorem 9. Any quantum eavesdropping strategy that makes o
(
N1+ k

k+1
)
queries to the

black-box functions against a typical run of the quantum protocol using parameter k will fail
to recover the key, except with vanishing probability.

Furthermore, we showed in Ref. [14] that these bounds are tight.

4 Average-Case Quantum Adversary Lower Bound Method

We generalize the adversary lower bound method to handle average-case complexity. A
similar bound from Ref. [9] already gives a lower bound technique on average-case query
complexity, but it cannot be applied directly here, as we explain below.

We use the following complexity measure, closely related to the adversary bound [2, 18].
We give a formulation tailored to the following problem. Given two distributions P and Q,
and an algorithm that attempts to distinguish between them, we consider the number of
queries this algorithm must make in order to succeed. The algorithm is given one input, and
accepts if it thinks the sample it is given comes from P and rejects otherwise. The measure
of success is given by the probabilities sP and sQ, which are the probability of accepting
when the algorithm is given samples from P and Q, respectively.

I Definition 10. Let P and Q be two probability distributions on D, and px and qy denote
probabilities of x and y in P and Q, respectively. Let sP , sQ be real numbers in [0, 1]
(representing the acceptance probability on distributions P and Q, respectively). For a given
matrix Γ, define the adversary bound with respect to Γ,P, sP ,Q, sQ as

Adv(Γ;P, sP ;Q, sQ) = Ω
(

min
j∈[n]

δ∗PΓδQ − τ(sP , sQ)‖Γ‖
‖Γ ◦∆j‖

)
. (1)
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Here, ◦ denotes entrywise (or Hadamard) product, and ‖A‖ denotes the spectral norm of A
(which is equal to its largest singular value). The vectors δP [x] = √px and δQ[y] = √qy are
unit vectors in RD; for j ∈ [n], the |D| × |D| matrix ∆j is defined by ∆j [x, y] = 1xj 6=yj

; and

τ(sP , sQ) =
√
sPsQ +

√
(1− sP)(1− sQ). (2)

I Theorem 11. Assume A is a quantum algorithm that makes T queries to the input string
x = (x1, . . . , xn) ∈ D, and then either accepts or rejects. Let P and Q be two probability
distributions on D. Let sP and sQ be acceptance probability of A when x is sampled from P
and Q, respectively. Then,

T ≥ Adv(Γ;P, sP ;Q, sQ),

for any |D| × |D| matrix Γ.

If P and Q have partial supports, then we may use a matrix Γ whose rows are indexed
by elements in the support of P and columns by elements of the support of Q. In that case
we can extend the matrix Γ by adding all-0 rows and columns. Notice that this does not
alter the value of Adv.

First let us consider why we need two distributions P,Q on the inputs (and why we
cannot use existing techniques such as Theorem 33 from Ref. [9] for decision problems,
where P = Q). The distribution we care about is the uniform distribution over the positive
instances. Under this distribution, the decision problem is of course trivial. Using this
distribution as both P and Q as in Ref. [9] would give a trivial bound.

Instead, Theorem 11 gives a lower bound on the query complexity of an algorithm that
attempts to distinguish between two distributions P and Q. Taking P as the uniform
distribution over positive instances, and Q as the uniform distribution over all instances
implies a lower bound for the search problem of finding k elements that sum to w with the
promise that the instance is positive, by the following argument. Assume an algorithm solves
the search problem with T queries with non-vanishing probability. Then we can transform
this algorithm into a distinguishing algorithm with one-sided error: if the algorithm outputs
a candidate solution a1, . . . , ak, make k additional queries and check that they sum to w.
If they do, accept, else reject. Then the acceptance probability on negative instances is 0.
Since most instances are negative, the acceptance probability on the uniform distribution is
close to 0. We are interested in the acceptance probability on the positive instances, as a
function of the number of queries T .

We now proceed to the proof of Theorem 11. Our proof is closely related the proof of the
worst-case negative-weighted adversary bound from Ref. [18]. We follow a slightly simplified
version of the proof from Ref. [5]. As usual, we introduce a progress function, show that
initially, the progress function is large (Claim 12), at the end, it is small (Claim 13), and
that at each step, the decrease is bounded (Claim 14).

Proof of Theorem 11. Recall that a quantum query algorithm is given by the following
sequence of operations

U0 → Ox → U1 → Ox → U2 → · · · → UT−1 → Ox → UT ,

where Ox denotes the input oracle, and the Uis are arbitrary unitary transformations. The
operator Ox is defined by Ox|a〉|i〉 = |a+ xi〉|i〉 which can be decomposed as

Ox =
n⊕
j=0

Oxj , (3)
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where for b ∈ Gm, Ob : |a〉|i〉 7→ |a+ b〉|i〉. The addition in the first register is the group
operation of Gm.

For an integer t between 0 and T , and x ∈ D, let

ψ(t)
x = UtOxUt−1Ox · · ·U1OxU0|0〉. (4)

be the state of the algorithm on the input x after t queries. We define the quantity called
the progress function as follows

W (t) =
∑
x,y∈D

√
pxqy Γ[x, y]

〈
ψ(t)
x , ψ(t)

y

〉
. (5)

The proof is split into three parts: proving that W (0) is large, and that both W (T ) and
W (t) −W (t+1) are small. The proofs of the claims appear in the extended version of the
paper [6].

I Claim 12. W (0) = δ∗PΓδQ.

I Claim 13. W (T ) ≤
(√

sPsQ +
√

(1− sP)(1− sQ)
)
‖Γ‖.

I Claim 14. |W (t) −W (t+1)| ≤ 2 maxj∈[n]‖Γ ◦∆j‖. J

5 Average-Case Complexity of k-SUM

Recall the k-SUM problem on n elements in an abelian group Gm where m is the order of the
group. Let w be a fixed element of Gm. An input x = (x1, . . . , xn) is called positive if there
exists a k-subset V = {t1, . . . , tk} ⊆ [n] such that xt1 + · · ·+ xtk = w in Gm. Otherwise, the
input is called negative.

Consider the following probability distribution P on positive inputs:
Select a k-subset U of [n] uniformly at random;
assign to U a uniformly random string in G|U |m whose sum is w;
choose the remaining elements uniformly at random.

I Theorem 15. Assume S is a quantum algorithm for the search problem k-SUM that makes
T queries and succeeds with probability ν > 0 over inputs sampled from the distribution P.

Then,

T

ν
= Ω

(
nk/(k+1)

)
,

provided that ν = ω
(
n−1/(k+1)) and m = Ω

(
nk+ 2

k+1

)
is again the order of the underlying

abelian group.

This theorem uses the following claim, whose proof appears in the extended version of
the paper [6].

I Claim 16. Let the distribution P be as above, and Q be the uniform distribution on all
the inputs. There exists a matrix Γ satisfying the following constraints:

δ∗PΓδQ = nk/(k+1), ‖Γ‖ ≤
(

1 +O
(
n−1/(k+1)))nk/(k+1), and ‖Γ ◦∆j‖ = O(1)

in the notation of Theorem 11.
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Proof of Theorem 15. Let S be the algorithm of Theorem 15. We apply Theorem 11 to
the algorithm A defined as follows, using the constraints from Claim 16 to evaluate Adv.
First, A executes S on its input. Let {t1, . . . , tk} be the output of S. The algorithm A then
queries the elements xt1 , . . . , xtk . It accepts if xt1 + · · ·+ xtk = w, and rejects otherwise.

The query complexity of A is T+k = T+O(1). The acceptance probability on distribution
P is sP = ν. Also, since A always rejects a negative input,

sQ ≤ Pr
x∼Q

[
the input x is positive

]
≤ 1
m

(
n

k

)
,

the last inequality following from the union bound. Thus, we have the following estimate on
τ(sP , sQ):

τ(sP , sQ) =
√
sPsQ +

√
(1− sP)(1− sQ) ≤

√
1
m

(
n

k

)
+ 1− ν

2 ,

and using the conditions on m and ν, we obtain:

δ∗PΓδQ − τ(sP , sQ)‖Γ‖
‖Γ ◦∆j‖

=
nk/(k+1) −

(
1− Ω(ν)

)(
1 +O

(
n−1/(k+1)))nk/(k+1)

O(1)

= Ω
(
νnk/(k+1)

)
. JJ

6 Composition Theorem for the Average-Case Adversary Bound

We now prove the last remaining theorem needed to obtain the lower bound on the average
case complexity of k-SUM◦pSEARCHn` (see Section 3.3). Recall that in this version, each input
variable xi ∈ Gm is embedded into a “bucket”, that is, a sequence (xi1, . . . , xi`) ∈ (Gm∪{?})`
in which exactly one element is non-?. To apply our average-case adversary lower bound
method, we need to define the probability distributions and the matrix that appears in
Eq. 1 for the composed problem. Intuitively, this is done by tensoring the matrix of the
two problems that are composed, as well as the vectors that represent the probability
distributions. However, defining the matrix correctly to get a lower bound for the composed
problem requires a careful analysis.

We use the distributions PF and QF to pick inputs to the outer function F, and the
uniform distribution to place each element of the input independently in its bucket. Formally,
we write P = PF ⊗ U⊗n` , where U` is the uniform distribution over [` ] and the distributions
are viewed as real-valued vectors indexed by elements of their supports. The definition of Q
is similar, starting from QF.

I Lemma 17. Let F : An → B, pSEARCH` : P → A where P ⊆ (A ∪ {?})` is the set of all
possible buckets, H = F ◦ pSEARCHn` , and PF, QF, P and Q defined as above. Then for any
real numbers sP , sQ ∈ [0, 1] and matrix ΓF, there exists a matrix ΓH such that

Adv(ΓH;P, sP ;Q, sQ) ≥ Adv(ΓF;PF, sP ;QF, sQ)
√
`− 1 .

I Theorem 18. Any algorithm that finds a solution to the search version of k-SUM ◦
pSEARCHn` within T queries with probability ν > 0 on average over the uniform distribution
on positive instances requires

T

ν
= Ω

(√
`− 1 nk/(k+1)

)
provided m = ω

(
n
k+ 2

k+1
)
.
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The rest of this section is devoted to the proof of Theorem 18. It follows closely the proof
of the composition theorem in Ref. [13], and in particular the adversary matrix for H we
use here has the same structure as the matrices considered in that paper. This allows us to
re-use some of the calculations from that paper (see Claims 20 and 21).

We use the following notation. Let X,Y ∈ An denote inputs to F. Its components are
Xi ∈ A. The value ΓF[X,Y] is a scalar. Notice that for the k-SUM problem, the rows of the
matrix defined in the previous section are only defined for positive inputs. In order to reuse
the norm calculations from the composition theorem in Ref. [13], we need to extend it to
all possible inputs. We do so by extending the matrix for k-SUM with rows of zeros. This
transformation does not change the norm of the matrix. Similarly, the vector sPF can be
extended with zeros to be defined for any input.

Proof of Lemma 17. The adversary matrix for the composed problem H is denoted ΓH.
We consider blocks of ΓH indexed by values X,Y, which we denote ΓX,Y

H . (These `n × `n
blocks are a submatrix corresponding to all the inputs for which the input to F is X, in the
rows, and Y, in the columns.) As in Ref. [13], we define ΓH by blocks as follows:

ΓX,Y
H = ΓF [X,Y] ·

⊗
i∈[n]

ΓXi,Yi
,

where for a, b ∈ A,

Γa,b =
{
‖J` − I`‖ · I` if a = b

J` − I` otherwise.

An optimal adversary matrix for pSEARCH can be obtained by taking J` − I` for all blocks
except the diagonal ones that are all zeroes. But if we were using it, a block ΓX,YH would be
zero whenever there is an i such that Xi = Yi. Using the matrix Γ, with modified diagonal
blocks, overcomes this issue.

From the distributions PF and QF , we define the vector δPF
=
√
PF , that is, δPF [X] =√

PrX∼PF
[X] (similarly for δQF). Again, we can split δPF into blocks δX

PF
.

With these definitions in hand, we can compute the terms that appear in Eq. 1 of
Definition 10. This is done in Claims 19, 20, and 21. When referring to Ref. [13], we use
Si = J` − I` for all i (1 ≤ i ≤ n).

I Claim 19. δ†PΓHδQ = δ†PF
ΓF δQF

· ‖J` − I`‖n.

I Claim 20. [13, claim on last line of page 409] ‖ΓH‖ = ‖ΓF‖ · ‖J` − I`‖n.

I Claim 21. [13, claim near the end of page 410] For a query i that corresponds to index q
in the bucket p, ‖ΓH ◦∆i‖ = ‖ΓF ◦∆p‖ · ‖J` − I`‖n−1 · ‖(J` − I`) ◦∆q‖.

Claims 20 and 21 were proven in the arXiv extended version of Ref. [13]. Although the
claims in the original Crypto version of Ref. [13] consider specifically the Element Distinctness
problem, the paper mentions that an explicit description of the adversary matrix is not
needed (such a description was indeed unknown when this proof was given). For this reason,
these two claims apply to any outer function F, and in particular to k-SUM. Note that the
arXiv extended version of Ref. [13] contains the proofs for arbitrary outer functions. The
proof of Claim 19 appears in the extended version of the paper [6].

Using the fact that ‖J` − I`‖ = ` − 1 and ‖(J` − I`) ◦∆q‖ =
√
`− 1 for any q, we

immediately get Lemma 17 by substituting the values obtained in Claims 19, 20 and 21 into
Definition 10. J

TQC 2017



3:16 Provably Secure Key Establishment Against Quantum Adversaries

Proof of Theorem 18. Using the values computed in Section 5 we get

T = Ω
(
δ†PF

ΓFδPF − τ(sP , sQ)‖ΓF‖
‖ΓF ◦∆i‖

√
`− 1

)

= Ω
(
nk/(k+1)√`− 1

(
ν

2 −

√
1
m

(
n

k

)))

Suppose that ν is non-vanishing. Since m is chosen large enough to make 1
m

(
n
k

)
arbitrarily

small, we get

T

ν
= Ω

(√
l − 1nk/(k+1)

)
. J
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