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Abstract
A quantum board game is a multi-round protocol between a single quantum player against the
quantum board. Molina and Watrous discovered quantum hedging. They gave an example for
perfect quantum hedging: a board game with winning probability < 1, such that the player can
win with certainty at least 1-out-of-2 quantum board games played in parallel. Here we show that
perfect quantum hedging occurs in a cryptographic protocol – quantum coin flipping. For this
reason, when cryptographic protocols are composed in parallel, hedging may introduce serious
challenges into their analysis.

We also show that hedging cannot occur when playing two-outcome board games in sequence.
This is done by showing a formula for the value of sequential two-outcome board games, which
depends only on the optimal value of a single board game; this formula applies in a more general
setting of possible target functions, in which hedging is only a special case.
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1 Introduction

Quantum board games

A quantum board game is a special type of an interactive quantum protocol. The protocol
involves two parties: the player and the board. The board implements the rules of the
game: in each round i of the protocol, the board applies some quantum operation Oi and
sends a quantum message to the player; then the player applies any quantum operation it
wants, and sends a quantum message back to the board. At the final round of the board
game, the board applies a two outcome measurement, which determines whether the player
won or lost. We assume that the player knows the rules of the board game (the length of
the messages, the operations Oi and the two outcome measurement). The player has the
freedom to decide on his strategy – the protocol does not specify what the player should do
in each round; the only constraint posed on the player is that it must send a message of an
appropriate length, as expected by the board.1

∗ This work was supported by ERC Grant 030-8301.
1 Previous works which studied this setting did not introduce a specific term for it [22]. Other, related
notions are interactive proof system, that differ from quantum board games since the verifier and prover
receive an input, and from quantum games since usually we think of the players, Alice and Bob, as
having symmetric roles, whereas here, the player knows that the board only implements the rules of
the game, and uses its specified strategy.
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Perfect hedging

Molina and Watrous showed that hedging is possible in quantum board games [22]. Perfect
hedging is best explained by an example: there exists a quantum board game for which no
strategy can win with certainty, but it is possible for a player to guarantee winning 1-out-of-2
independent quantum board games, which are played in parallel. A formal definition of
hedging is given in Definition (3), but for now, one can think of that example. In a follow
up work, Arunachalam, Molina and Russo [6] analyzed a family of quantum board games,
and showed a necessary and sufficient condition so that the player can win with certainty
in at least 1-out-of-n board games. As discussed later, quantum hedging is known to be a
purely quantum phenomenon.

One example where Hedging becomes relevant is when reducing the error (soundness)
probability of quantum interactive proof protocols such as QIP(2): since the optimal strategy
for winning t-out-of-n parallel repetitions is not necessarily an independent strategy, only
Markov bound (and not the Chernoff bound) can be used to show soundness [14]. These
aspects resembles the behavior that occurs in the setting of Raz’s (classical) parallel repeti-
tion theorem [25]; the differences are that in the classical setting there are two players who
want to win all board games, whereas in our setting, there is a single player, who wants to
win at least t-out-of-n board games.

Coin flipping

Quantum coin flipping is a two player cryptographic protocol which simulates a balanced
coin flip. When Alice and Bob are honest, they both agree on the outcome, which is uniform
on {0, 1}. Coin flipping comes in two flavors: Strong and weak. Perhaps the most intuitive
one is weak coin flipping, in which each side has an opposite desirable outcome: 0 implies that
Alice wins, and 1 implies that Bob wins. An important parameter is the optimal winning
probability for a cheating player against an honest player. In weak coin flipping we denote
them by PA and PB . We define P ∗ = max {PA, PB} – the maximum cheating probability
of both players. In a strong coin flipping, a cheating player might try to bias the result to
any outcome. We define P 0

A to be the maximal winning probability of a cheating Alice who
tries to bias the result to 0, and P 1

A, P
0
B , P

1
B are defined similarly. In strong coin flipping

P ∗ = max
{
P 0
A, P

1
A, P

0
B , P

1
B

}
that is P ∗ bounds the possible bias to any of the outcomes, by

either a cheating Alice or a cheating Bob. In the classical settings, it is known that without
computational assumptions, in any coin flipping protocol (either weak or strong) at least
one of the players can guarantee winning with probability 1 (P ∗ = 1) [12]. Under mild
computational assumption, coin flipping can be achieved classically [7]. All of the results
in the rest of this paper hold information theoretically, that is, without any computational
assumptions. Unconditionally secure (i.e. without computational assumptions) quantum
strong coin flipping protocols with large but still non-trivial P ∗ < 0.9143 were first discovered
by [3]. Kitaev then proved that in strong coin flipping, every protocol must satisfy P ∗0 ·P ∗1 ≥
1
2 , hence P

∗ ≥
√

2
2 ([16], see also [5]). Therefore, the hope to find protocols with arbitrarily

small cheating probability moved to weak coin flipping. Protocols were found with decreasing
P ∗([26, 4] showed strong coin flipping with P ∗ = 3

4 , [19] showed weak coin flipping with
P ∗ = 0.692), until it was finally proved that there are families of weak coin flipping protocols
for which P ∗ converges to 1

2 [20] (see also [2]). Following this, [9] showed how such protocol
can be adopted, in order to create (arbitrarily close to) optimal strong coin flipping (so that
P ∗ can be made arbitrarily close to

√
2

2 ). Although this would not be relevant for our work,
analysis of coin flipping protocols was adapted, and later implemented, for experimental
setups [23, 24]. There is also a strong connection between coin-flipping and bit-commitment
protocols [26, 10], and to a lesser extent to oblivious transfer [8].
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Is it possible to hedge in quantum coin flips? In Section 2 we give an example for perfect
quantum hedging in the context of coin flipping. The result can be best explained in the
context of weak coin flipping (although, a similar statement can be proved for strong coin
flipping): there exists a weak coin flipping protocol where P ∗ = cos2(π8 ) introduced by
Aharonov [1] yet a cheating Bob can guarantee winning in at least 1-out-of-2 board games
played in parallel.

Avoiding hedging through sequential repetition

Consider a cryptographic quantum protocol, which involves several uses of quantum two-
outcome board games. For example, the protocol may use several occurrences of quantum
coin flips played in parallel. As we have seen, the possibility of hedging makes it hard
to analyze the resulting protocol, by simply analyzing each of the board games in it. In
Section 3 we show that quantum hedging cannot happen when the two-outcome board
games are played in sequence, even if the players are computationally unbounded.

We give a more generalized formulation for sequential board games. Suppose the player’s
utility for the outcome vector a = (a1, . . . , an) is given by some target function t(a), and
the players goal is to maximize E[t(a)] over all possible strategies. In Theorem 10 we show
that this maximal value is fully determined by the properties of each board game, and does
not require an analysis of the entire system, which is the case when playing in parallel.

The authors are not aware of previous precise mathematical formulation proofs of that
sort. It was recently brought to our attention the following intuitive discussion in [13, p. 8],
and [17, p. 9] made for related models. The intuition for our proof is fairly simple and
arguably not very surprising: if it is possible to hedge n games, then by simulating the
board in the first game, and conditioning on some good event, allows the player to hedge
n− 1 games. But since hedging cannot occur in one game, we get a contradiction.

In Appendix B we give examples, in the classical setting, for board games and target
functions, such that the sequential value of the board games is larger than the parallel value
of the board games, and vice-versa.

Arunachalam, Molina and Russo [6] showed a different approach to avoid hedging: they
showed that hedging is impossible in a quantum single round board game played in parallel,
where the player has the possibility to force a restart of the board game.

2 Quantum coin flip hedging

In this section we will give an example for a coin flipping protocol, for which a cheater
cannot guarantee a win in one flip, but one of the players can force a win in 1-out-of-2 flips:

I Theorem 1. There exists a weak coin flipping protocol with P ∗ < 1 s.t. by playing 2 coin
flips in parallel, Bob can guarantee winning in at least one of the flips.

We will first describe the weak coin flipping protocol and its properties, and then analyze
the hedging strategy of Bob. We conclude by explaining why Alice cannot hedge.

2.1 The coin flipping protocol

In this work, Aharonov’s coin flipping protocol [1] will play an important role.

TQC 2017
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A quantum coin flipping protocol

Alice Bob

Prepares 1√
2

(|00〉+ |11〉)

second qubit

Samples b ∈R {0, 1}.

sends b

If b = 1, then apply H. If b = 1, then apply H.
Measure in the standard basis Measure in the standard basis
Alice wins if the outcome is 0 Alice wins if the outcome is 0
Bob wins if the outcome is 1 Bob wins if the outcome is 1

I Theorem 2. The protocol above is a weak coin-flipping protocol with P ∗ = PA = PB =
cos2 π

8 .

The proof is given in Appendix A. This protocol is not only a weak coin flipping with
P ∗ = cos2 π

8 , but also a strong coin flipping protocol with the same value of P ∗. The
proof is essentially the same. We state the result this way because it provides a natural
interpretation for statements such as “Bob wins in 1 out of 2 flips”. Of course, similar
statements can be made for strong coin flipping, but are omitted for the sake of readability.

2.2 Coin hedging is possible

Assume a cheating Bob plays two coin flips in parallel with an honest Alice (it does not
matter if he plays against the same person twice, or against two different players, since they
behave the same – because they are honest). We want to know the maximum probability for
a cheating Bob to win at least one coin flip. Surprisingly, this is equal to 1 in the protocol we
previously described. This is impossible if Bob were to play the two coin flips sequentially
(see Theorem 5).

We saw that for one coin flipping, PA = PB = cos2 π
8 ≈ 0.853. By cheating each coin

flip independently, the best Bob can get is

Pr (Bob wins at-least one game) = 1− (1− PB)2 = 1−
(

1− cos2 π

8

)2
≈ 0.978.

We will now show Bob’s perfect hedging strategy (which is not independent), in which he
wins exactly one out of the two coin flips w.p. 1, which completes the proof of Theorem 2.
Alice’s initial state is

1
2

∑
i1,i2∈{0,1}

|i1, i2〉|i1, i2〉 = 1
2

3∑
i=0
|αi〉|αi〉, (1)
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where2

|α0〉 = |Φ−〉 = 1√
2

(|00〉 − |11〉) = 1√
2

(|+−〉 − | −+〉)

|α1〉 = |Ψ+〉 = 1√
2

(|01〉+ |10〉)

|α2〉 = 1√
2
(
|Φ+〉 − |Ψ−〉

)
= 1√

2
(|0−〉+ |1+〉)

|α3〉 = 1√
2
(
|Φ+〉+ |Ψ−〉

)
= 1√

2
(| − 0〉+ |+ 1〉) . (2)

Eq. (1) can be justified by a direct calculation, or by using the Choi–Jamiołkowski
isomorphism [11, 15], see also [27], and noting that the associated matrix for the l.h.s. and the
r.h.s. are equal (both are proportional to the identity matrix). Bob is given the right register
of the state above. Bob applies the unitary transformation U =

∑
i |γi〉〈αi|, where |γ0〉 =

|11〉, |γ1〉 = |00〉, |γ2〉 = |01〉, |γ3〉 = |10〉, so that the overall state becomes 1
2
∑3
i=0 |αi〉|γi〉,

and sends the right register back to Alice. Alice measures the right register in the standard
basis (of course, Bob could have done this just before sending the right register, if he is
restricted to sending classical information). The results of those measurements determines
the basis in which she measures the left register. This strategy guarantees that Bob wins
in exactly one coin flip: for example, if Alice measures the qubits |γ0〉 = |11〉 then the left
register collapses to |α0〉 =| Φ−〉 = 1√

2 (| +−〉+ | −+〉), and since in this case Alice measures
both of the left register qubits in the Hadamard basis, Bob will win in exactly one out of
the two coin flips. The right-most expressions in Eq. (2) are presented in this form so that
it is easy to see the similar behavior in the 3 other cases.

One may wonder how strong the effect of hedging is. In particular, can Bob guarantee
fn out of n winnings, as long as f ≤ P ∗? The answer is no: by playing three coin flipping
of this protocol, he cannot guarantee winning 2 = 2

3 · 3 with probability 1, even though
2
3 ≤ P

∗: we numerically calculated that Bob can only win with probability ≈ 0.986 at least
2 out of 3 coin flips. This is still higher than the optimal independent cheating that achieves
a success probability of ≈ 0.94.

Fortunately for Bob, Alice can not guarantee winning in 1-out-of-2 played in parallel
using this weak coin flipping protocol. In fact, she cannot do any hedging. This is true,
essentially for the same reasons error reduction for QMA works in a simple manner (vis-à-vis
QIP(2)). The following argument uses the definitions from Section 3.1. Recall that from
Bob’s perspective, he is provided with a quantum state given from Alice, and he measures
it to determine whether he wins or loses. Therefore m(ai) = min|ψi〉〈ψi|M i

ai
|ψi〉 (where

M i
ai

is Bob’s measurement operator which determines whether he gets the outcome ai in
the ith game), which is equal to the smallest eigenvalue of M i

ai
; and mpar(a1, . . . , an) =

min|ψ〉〈ψ|M i
a1
⊗ · · · ⊗M i

an
|ψ〉 which is equal to the smallest eigenvalue of M i

a1
⊗ · · · ⊗M i

an
.

But since M i
ai

is a measurement operator, its eigenvalues are non-negative, and we conclude
that mpar(a1, . . . , an) = m(a1) · . . . ·m(an).

2 One may wonder whether the states |αi〉 are the Bell states (|Φ±〉 = 1√
2 (|00〉 ± |11〉) , |Ψ±〉 =

1√
2 (|01〉 ± |10〉)), written in a non-standard local basis. This is not the case: for every Bell state |Ω〉,

SWAP |Ω〉 = ±|Ω〉. This is also true if a local basis change is applied to both qubits: for |Ω′〉 = U⊗U |Ω〉,
SWAP |Ω′〉 = ±|Ω′〉. Since |α2〉 = SWAP |α3〉 6= ±|α2〉, these vectors are not the Bell states written
in a non-standard local basis.

TQC 2017
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3 How to circumvent hedging

Our solution to circumvent hedging is to play the board games in sequence, instead of in
parallel. We will prove in Section 3.1 that in the simple scenario, in which the goal is to win
at least 1-out-of-n sequential board games, hedging is not possible (i.e. the best cheating
strategy is to use the optimal cheating strategy in each board game independently). We will
generalize this in Section 3.2, where we will prove that the same result holds for every target
function. Throughout this section, we will consider only two-outcome board games (such
as coin flipping), but a generalization to any number of outcomes seems not too difficult to
achieve as well.

3.1 Playing sequentially circumvents 1-out-of-n hedging
Molina and Watrous [22] defined hedging as the following phenomenon.3 Suppose G1, G2
are two board games with multiple outcomes A1, A2. For a1 ∈ A1 let m (a1) be the minimal
probability that can be achieved for the outcome a1 in G1, and similarly for m (a2). If
the board game G is not clear from the context, we may use mG2(a2). Now suppose that
two board games are played in parallel, and the goal is to minimize the probability for
getting the outcome a1 in the first board game and a2 in the second board game, which
is defined as mpar (a1, a2). Since the two strategies can be played independently, clearly,
mpar (a1, a2) ≤ m (a1)m (a2). Parallel Hedging for two board games is the case where
this inequality is strict, that is mpar (a1, a2) < m (a1)m (a2). Molina and Watrous gave an
example for perfect parallel hedging in whichmpar (a1, a2) = 0 whereasm (a1) = m (a2) > 0.
This definition can be naturally generalized to more than two board games.

I Definition 3 (Parallel Hedging). Let G1, . . . , Gn be n quantum board games with possible
outcomes A1, . . . , An. For ai ∈ Ai, letm (ai) be the minimal probability that can be achieved
for the outcome ai in Gi. Similarly, let mpar (a1, . . . , an) be the minimal probability that
can be achieved for outcomes (a1, . . . , an) when playing these n board games in parallel. We
say that hedging is possible in 1-out-of-n board games if there exist a1, . . . , an s.t.

mpar (a1, a2, . . . , an) <
n∏
i=1

m (ai) . (3)

If mpar (a1, a2, . . . , an) = 0 and
∏n
i=1 m (ai) > 0, then it is called prefect hedging.

It is known that inequality (3) is actually an equality in the classical case for single round
board games [22, 18]. We do not know whether the equality holds for multi-round classical
board games. What happens when the board games are played in sequence?

I Definition 4. Given board games {Gi}ni=1, the protocol for playing the board games {Gi}
in order is called sequential, assuming the player knows the result of Gi before the start of
Gi+1 (this can be achieved by adding a last round for each board game in which the board
returns the outcome).

Our next result shows that there is no sequential hedging for board games (with any number
of outcomes), and the cheater cannot do better than to cheat each board game independently;

3 Molina and Watrous restricted their definition to quantum board games with a single round of com-
munication (the board sends an initial quantum state to the player, the player sends back another
quantum state back to the board, and then the board applies a measurement to determine whether the
player wins).
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that is if {Gi}ni=1 are board games, then mseq (a1, . . . , an) = m (a1) · . . . · m (an), where
mseq (a1, . . . , an) is defined similarly to mpar (a1, . . . , an) for sequential board games. For
simplicity and clarity, we will consider only the case where all the board games are identical
and ai = aj = a for all i, j, but the same proof will work for the general scenario as well
(one will just have to add indices indicating the board game for everything).

I Theorem 5. Let G be a board game, played sequentially n times, then mseq (a, . . . , a) =
m (a) · . . . ·m (a) = m (a)n for every outcome a.

Proof. If the outcome of a single board game is a, then we say that the player lost that
board game. We denote by “failure” the event in which the player gets the outcome a in all
n games (i.e. loses all n rounds).

We define `∗ to be the probability to get the outcome a in the optimal strategy for one
board game. Let `n be probability to get the outcome a over all the n-board games, in the
best independent strategy. It is easy to see that

`n = min
S∈independent strategies

Pr (failure | S) = (`∗)n (4)

Define similarly `′n to be the minimum losing probability over all (not necessarily independ-
ent) strategies, i.e. `′n ≡ minS∈sequential strategies Pr (failure | S) . Clearly ∀n ∈ N, `′n ≤ `n
and `′1 = `1. Our goal is to show that ∀n ∈ N, `′n = `n. Assume towards a contradiction
that this is not the case. Then there exists a minimal n > 1 for which `′n < `n.

(`∗)n by (4)= `n > `′n = `′n,L Pr (lost first round) ≥ `′n,L`∗

where `′n,L := Pr (failure | lost first round). The last inequality naturally holds because
Pr (lost first round) ≥ `∗, otherwise there exists a better strategy. Therefore,

(`∗)n−1 = `n−1 > `′n,L

The strategy in which the cheater Alice (the first player) plays with Rob (Alice’s imaginary
friend) the first board game, and conditioned on losing, plays with Bob (the second player)
the next rounds, has a losing probability `′n,L.

Therefore

`n−1 > `′n,L ≥ `′n−1

which contradicts the minimality of n. J

I Corollary 6. Suppose the goal of a player is to win at least 1-out-of-n board games played
sequentially. The optimal strategy is to play independently, by using the optimal cheating
strategy in each of the board games.

3.2 Playing sequentially circumvents any form of hedging
Let us consider a more general setting, in which the player’s goal is to maximize the expect-
ation of some target function; i.e., for a vector t = (ta ∈ R)a∈{0,1}n , let

SVal (t) ≡ max
S∈sequential strategies

∑
a∈{0,1}n

ta · Pr (a | S)

and similarly

PVal (t) ≡ max
S∈parallel strategies

∑
a∈{0,1}n

ta · Pr (a | S) .

TQC 2017
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In general there are no relations between the parallel and sequential values: in Ap-
pendix B we give a classical one round board game in which SVal (t) > PVal (t) and another
in which SVal (t) < PVal (t) .

I Definition 7. Given a two-outcome board game, let qi be the maximal probability of the
player to achieve the outcome i ∈ {0, 1}.

Note that always q0 ≥ 1 − q1 and vice-versa. As we have seen before, the parallel value
of a two-outcome board game heavily depends on the details of the game. In contrast, the
sequential value is fully determined by q0 and q1.

In the following we will analyze the sequential value of the board game. For that we will
define the tree value function TVal, which as the following theorem shows, is equal to the
sequential value of the board game. For simplicity we will assume that for all i, Gi = G,
but this can be easily extended for general {Gi}ni=1.

I Definition 8. For a vector t = (ta)a∈{0,1}n let t←b = t0b and t→b = t1b. The tree value with
parameters q0, q1 is defined as:

TVal (t) ≡ max {q0 TVal (t←) + (1− q0) TVal (t→) , q1 TVal (t→) + (1− q1) TVal (t←)} ,

and for c ∈ R, TVal(c) = c.

I Definition 9. Consider a quantum board game G played n times in sequence. A strategy
is said to be pure black box strategy if the strategy used in the i-th board game is fully
determined by the outcomes of the previous board games. For a set S of strategies for a
single board game G, an S-black-box strategy is a pure black-box strategy in which the
strategy at the i-th board game (conditioning on previous outcomes) is in S.

I Theorem 10. For every two-outcome board game (with parameters q0, q1), every n and
every t ∈ R2n , SVal (t) = TVal (t).

Furthermore, its value can be obtained by an {S0, S1}-black-box strategy, where S0 (S1)
are any strategies that achieve outcomes 0 (1) with probability q0 (q1).

S0 and S1 are greedy strategies that simply try to maximize the chance of achieving the
outcomes 0 and 1 respectively in the board game at hand. This theorem is in fact a gen-
eralization of Theorem 5 for 2-outcome board games: By choosing ta = 1 − δa,a′ we get
that

SVal (t) ≡ max
S∈sequential strategies

∑
a∈{0,1}n

ta · Pr (a | S) = max
S∈sequential strategies

∑
a6=a′

Pr (a | S)

= max
S∈sequential strategies

1− Pr (a′ | S)

= 1− min
S∈sequential strategies

Pr (a′ | S) = 1−mseq (a′) . (5)

By expanding the recursion, a simple inductive argument shows that for our choice of t,

TVal(t) = 1−m(a1) · . . . ·m(an). (6)

By combining Theorem 10 and Eqs. (5) and (6), we reprove Theorem 5.

Proof of Theorem 10. First we show that SVal (t) ≥ TVal (t), by explicitly constructing
an {S0, S1}-black-box strategy with the value TVal (t). The strategy can be best explained
by defining a binary full tree with depth n. We fill the value of each node in the tree, from
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011 0

1 1

100 1 101 1 110 1

root 1−mG1(0) ·mG2(1) ·mG3(1)

0 1−mG2(1) ·mG3(1)

00 1

000 1 001 1 010 1

10 1

111 1

01 1−mG3(1) 11 1

Figure 1 TVal for ta = 1 − δa,011. The labels of the leaves represent all the possible outcomes
a of the values in the n = 3 board games, and the values on the right of each node are the TVal
of that node. Indeed ta = 1 for all a 6= 011. Note that m (0) = 1 − q1 and m (1) = 1 − q0,
and for example TVal (01) = q0 = 1 −mG3 (1), and TVal (0) = q0 + (1− q0) q0 = 1 −mG2 (1) +
mG2 (1)

(
1−mG3 (1)

)
= 1−mG2 (1) ·mG3 (1).

bottom to top. The leaves of the tree will have values ta. The values of a parent of two
children with values v←, v→ will have the value:

max{q0v
← + (1− q0) v→, q1v

→ + (1− q1) v←}

It can be easily verified that the value of the root is TVal(t).
Consider the following strategy which applies S0 if q0v

← + (1− q0) v→ ≥ q1v
→ +

(1− q1) v← and S1 otherwise, and continues in the same fashion with respect to the left
child if the outcome is 0, and the right child if the outcome is 1. It can be proved by a
simple inductive argument that the expected value of this strategy is the value of the root
which is indeed TVal(t). Clearly, this strategy is an {S0, S1} black-box strategy.

Next we show that SVal (t) ≤ TVal (t). This will be proven by induction on n – the
number of board games played. Clearly, for n = 1, the optimal strategy has the value
TVal(t). Let n be the minimal number, such that there exists some target t, for which
there is a strategy with value greater than TVal(t) and denote the contradicting strategy
by S. We now introduce some notation. Let pj = Pr (j in first game | using strategy S),
pji = Pr (i in the last n-1 games | j in the first game, using strategy S). Let Sn be the set
of all strategies over n sequential board games.

opt = max
S′∈Sn

∑
i∈2n

ti Pr (i | using strategy S′)

For j ∈ {0, 1}, let optj ≡ maxS′∈Sn−1
∑

i∈2n−1 tj,i Pr (i | using strategy S′). Since the optim-
ization is over board games of length n− 1, by the induction hypothesis, opt0 = TVal(t←),
and similarly opt1 = TVal(t→). We know that

opt > q0 · opt0 + (1− q0) · opt1 (7)

and similarly

opt > q1 · opt1 + (1− q1) · opt0 (8)
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otherwise, opt = TVal(t). Assume WLOG that

q0 · opt0 + (1− q0) · opt1 ≥ q1 · opt1 + (1− q1) · opt0

then we get that opt0 (q0 − 1 + q1) ≥ opt1 (q1 − 1 + q0) hence opt0 ≥ opt1 or (q1 − 1 + q0) ≤
0, because q0 ≥ 1 − q1. Since pj ≤ qj we get that q0 + q1 ≤ 1 implies p0 = q0 and p1 = q1.
We know that (for both the above cases)

opt =
∑

i∈2n−1

t←i p
0p0

i + t→i p
1p1

i .

Let us denote

v0 =
∑

i∈2n−1

t←i p
0
i , v

1 =
∑

i∈2n−1

t→i p
1
i

hence opt = p0v0 + p1v1 where pj ≤ qj .

I Claim 11. vj ≤ optj

Proof. The cheater can play himself (his honest self), according to his strategy, until he
gets j in the first board game and then continue to play the rest (n− 1) of the board games
against the real honest player. This is a valid strategy for n− 1 board games with value vj ,
but since optj is an optimal such strategy, we get that vj ≤ optj . J

Using the above claim,

opt = p0v0 + p1v1 ≤ p0opt0 + p1opt1 = p0opt0 +
(
1− p0) opt1. (9)

By subtracting Eq. 9 from Eq. 7 we get that

0 > opt0 (q0 − p0)+ opt1 (1− q0 − 1 + p0) =
(
opt0 − opt1) (q0 − p0)

but either opt0 ≥ opt1, q0 ≥ p0 and we get 0 > 0 and contradiction, or p0 = q0 hence again
we get 0 > 0 and contradiction. Altogether we now know that Eq. (7) is wrong, hence

opt = q0 · opt0 + (1− q0) · opt1 (10)

and by the hypothesis assumption we get that opt = TVal (t). J

4 Open questions

Is there a formal connection between the setting discussed in the parallel repetition
Theorem (as was discussed in the introduction) and the setting that occurs in quantum
hedging?
How general is coin hedging? Does hedging (as in Definition 3) happen in every non-
trivial (ε < 1

2 ) coin flipping protocol? The same questions can be asked for perfect
hedging. We conjecture that the answer for these questions is positive.
In our example for coin hedging, we saw that the hedging player reduces the expected
number of wins: The cheater could guarantee that he will win one flip out of two, thus
getting an expectation 0.5 for winning, while the expectation of winning in independent
cheating is ≈ 0.85. Does the expected ratio of wins in the perfect hedging of this protocol
scenario increase with n? In this protocol (or, perhaps, another coin flipping protocol),
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when flipping n coins in parallel and n → ∞, can Bob guarantee winning ∼ nP ∗ coin
flipping out of n (Of course the expected number of parallel wins cannot be higher than
the expected number of independent wins (which is 1

2 ), as was proved formally in [21])?

This property cannot hold for every protocol. The reason is essentially that P ∗ can
be artificially increased in a way which does not help the cheating player to achieve
perfect hedging. Consider some coin flipping protocol with P ∗ = 1

2 (even though this
is impossible, for P ∗ > 1

2 a simple adaptation of the following argument applies), then
a cheating Bob clearly cannot guarantee winning more than 1

2n. If we now alter the
protocol, such that in the last round of the protocol, with probability δ, Alice asks Bob
what his outcome of the protocol was, and declares that as her outcome. This changes
P ∗ to P ∗′ = 1

2 + δ
2 , but with probability δn these protocols coincide, and Bob cannot

guarantee more than 1
2n wins, which is less than P ∗′n as required by the statement

above.
Can one define and show hedging for bit-commitment?
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A Proof of Theorem 2

We will use the same method we use in other sections, which is based on semi-definite
programming (SDP). See, for example, [5]. We will follow the notations used in [2, 20]. We
will prove that the maximal cheating probability for both players is P ∗ = PA = PB = cos2 π

8 .
If Alice is the cheater, a cheating strategy is described entirely by the one qubit state ρ

which she sends to Bob. Her winning probability is given by

Pr (Alice wins) = 1
2 Tr ((|0〉〈0|+ |+〉〈+|) ρ) .

Since

max
ρ�0,Tr ρ=1

1
2 Tr ((|0〉〈0|+ |+〉〈+|) ρ) = max

|ψ〉

〈
ψ
∣∣ 1

2 (|0〉〈0|+ |+〉〈+|)
∣∣ψ〉

〈ψ | ψ〉

= λmax

(
1
2 (|0〉〈0|+ |+〉〈+|)

)
= cos2 π

8 ,

the maximal cheating probability is PA = cos2 π
8 .

Let us look at a cheating Bob (and an honest Alice). The initial density matrix is ρAM0 =
|φ+ 〉〈φ+| on Alice and the message registers A⊗M. Then, Bob applies an operation to
the M qubit. Alice’s reduced density matrix cannot be changed due to Bob’s operation.
Hence our condition is TrM ρAM1 = ρA1 = ρA0 = 1

2I. Bob’s maximal cheating probability is
given by:

maximize Tr
[
(|1〉〈1| ⊗ |0 〉〈 0|+ |− 〉〈−| ⊗ |1 〉〈 1|) · ρAM1

]
(11)

subject to ρAM1 � 0
ρAM0 =

∣∣Φ+ 〉〈Φ+∣∣
TrM ρAM1 = ρA0

The maximization is justified because if the message qubit is 0, Alice measures her qubit
in the computational basis, and Bob wins if her outcome is 1; if the message qubit is 1, Alice
measures her qubit in the Hadamard basis, and Bob wins if her outcome is | −〉.

Solving this SDP gives

ρAM1 =


0.0732 0 0.1768 0

0 0.4268 0 −0.1768
0.1768 0 0.4268 0

0 −0.1768 0 0.0732


with a maximum value of ≈ 0.8536.

It is possible to verify that indeed the value of the SDP is not only close, but is exactly
equal to cos2 π

8 ≈ 0.8536: One can see that PB ≤ cos2 π
8 , via Kitaev’s formalism to find

the Z matrix that bounds ρ (see [20, 2] for details). Alternatively, we can use the SDP
formulation of games as described in [22], which applies to the coin-flipping protocol (with

Bob as the player): the matrix Y = 1
8

(
3 +
√

2 1
1 1 +

√
2

)
is dual-feasible, hence its trace

Tr [Y ] = 1
4
(
2 +
√

2
)

= cos2 π
8 gives the correct bound.
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We now show an explicit strategy with winning probability cos2 π
8 , which shows that

PB ≥ cos2 π
8 , which completes the proof. Bob applies a − 3π

8 rotation

U =
(

cos− 3π
8 − sin− 3π

8
sin− 3π

8 cos− 3π
8

)
=
(

sin π
8 cos π8

− cos π8 sin π
8

)
on theM qubit, which transforms the state 1√

2 (|00〉+ |11〉) to:

|ζ〉 = 1√
2

(
|0〉 ⊗

(
sin π8 |0〉 − cos π8 |1〉

)
+ |1〉 ⊗

(
sin π8 |1〉+ cos π8 |0〉

))
= 1√

2

((
sin π8 |0〉+ cos π8 |1〉

)
⊗ |0〉

)
+

1√
2

(
1√
2

((
sin π8 − cos π8

)
|+〉 −

(
cos π8 + sin π8

)
|−〉
)
⊗ |1〉

)
We simplify

1√
2

(
sin π8 + cos π8

)
= 1√

2

√
1
2

(
2 +
√

2
)

=
√

2 +
√

2
2 = cos π8

and similarly, 1√
2

(
cos π8 − sin π

8
)

=
√

2−
√

2
2 = sin π

8 . Hence,

|ζ〉 = 1√
2

((
sin π8 |0〉+ cos π8 |1〉

)
|0〉 −

(
sin π8 |+〉+ cos π8 |−〉

)
|1〉
)
.

Bob measures the r.h.s. qubit in the computational basis, and sends the classical result to
Alice. His winning probability is thus cos2 π

8 . This completes the proof that PA = PB =
P ∗ = cos2 π

8 .

B Relations between parallel and sequential board games

Here we show that the value of the sequential board games can be larger than the parallel
board games and vice-versa, depending on the target function, even in the classical setting.
Out standard example for a sequential superiority uses the target function: “must win
exactly 1-out-of-2 board games”. This of course, gives the sequential run an advantage over
the parallel run, of knowing the outcomes of the previous board games. For that we define
a very simple one-round board game: the player chooses a bit b, which is sent to the board.

If b = 0, the player loses (with probability 1).
If b = 1, the player wins with probability 1

2 .

I Lemma 12. In the above board game, SVal(t) ≥ 3
4 >

1
2 = PVal(t).

Proof. The optimal winning probability in a single board game for an honest player is 1
2

by always sending b = 1. Also note, that the player can force a loss with probability 1, by
sending b = 0. Assume that we are now playing two board games. If the board games are
played in sequence, then the optimal strategy will be to try and win the first board game
by sending b1 = 1. With probability 1

2 he will win, then he can lose the second board game
by sending b2 = 0. If the player lost the first board game, he will try to win the second
board game by sending b2 = 1. Altogether, this strategy wins exactly once with probability
1
2 + 1

4 = 3
4 , proving the first inequality.

Let us look at the four deterministic possibilities for the player when the two board
games are played in parallel. If he sends b0 = b1 = 0, he then loses with probability 1. If he



M.Ganz and O. Sattath 4:15

sends b0 6= b1 , i.e. loses one of the board games and tries to win the other, then his winning
probability of exactly one board game is 1

2 . If he sends b0 = b1 = 1, i.e. trying to win
both, then his winning probability of exactly one board game is again 1

2 (because no matter
what the outcome of the first board game is, the second outcome must be different, and
this happens with probability 1

2 ). Since every random strategy is a convex combination of
these deterministic strategies, every classical strategy will also have a winning probability of
at most 1

2 , which is inferior to the winning probability in the sequential setting. Naturally,
giving the player quantum powers, does not help him in this classical simple board game,
to achieve anything better. J

In the other direction, we give an example for a classical board game in which the parallel
setting, achieves better value than the classical one. Define a board game, in which the
board sends a bit a equally distributed, and then the player returns a bit b. If a = 0, then
the player loses if b = 0, and if b = 1 then the player wins with probability p. If a = 1, then
the player wins if b = 0, and if b = 1 then the player loses with probability p. We think
of p to be of a parameter p < 3

4 . Our target function is the same as before – win exactly
1-out-of-2 board games.

I Lemma 13. In the above board game, PVal(t) ≥ 1
2 + 2p (1− p) > 1

2 + 1
2p = SVal(t).

Proof. In the parallel settings, the player gets the a1, a2 and only then sends b1, b2, which
gives him the edge. If a1 6= a2, his strategy is to send b1 = 0, b2 = 0 and he will win
exactly one board game out of the two. If a1 = a2 then he will send b1 = b2 = 1 and
he will win exactly one of the board games with probability p (1− p). Overall we see that
PVal(t) ≥ 1

2 + 2p (1− p). In the sequential setting, it does not matter what happened in
the first board game, as the second board game will determine the result (the outcome of
the second board game must be different than the first). With probability 1

2 the board will
send a good a2, resulting in the player winning with certainty exactly 1 out of the 2 board
games if they send b2 = 0. With probability 1

2 the board will send a bad a2, resulting in the
player winning with probability p exactly 1 out of the 2 board games if they send b2 = 1,
and doing so with probability 0 otherwise. In total we get that SVal(t) = 1

2 + 1
2p. By taking

p < 3
4 , we will get that P ∗seq < P ∗par (because then 1

2 + 2p (1− p) > 1
2 + 1

2p). J

In the quantum setting, we already saw that parallel can achieve better value, in our coin
flipping example in section 2. We conclude that there is no general connection between the
value of the parallel setting and the sequential setting. In parallel, you know the rest of the
questions before giving an answer to question 1, while in sequence you know the outcomes
of all previous games before you have to give an answer. Either one might be beneficial,
depending on the situation.
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