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Abstract
The principle of least authority states that each component of the system should be given author-
ity to access only the information and resources that it needs for its operation. This principle is
fundamental to the secure design of software systems, as it helps to limit an application’s attack
surface and to isolate vulnerabilities and faults. Unfortunately, current programming languages
do not provide adequate help in controlling the authority of application modules, an issue that
is particularly acute in the case of untrusted third-party extensions.

In this paper, we present a language design that facilitates controlling the authority granted
to each application module. The key technical novelty of our approach is that modules are first-
class, statically typed capabilities. First-class modules are essentially objects, and so we formalize
our module system by translation into an object calculus and prove that the core calculus is type-
safe and authority-safe. Unlike prior formalizations, our work defines authority non-transitively,
allowing engineers to reason about software designs that use wrappers to provide an attenuated
version of a more powerful capability.

Our approach allows developers to determine a module’s authority by examining the capab-
ilities passed as module arguments when the module is created, or delegated to the module later
during execution. The type system facilitates this by identifying which objects provide capabil-
ities to sensitive resources, and by enabling security architects to examine the capabilities passed
into and out of a module based only on the module’s interface, without needing to examine the
module’s implementation code. An implementation of the module system and illustrative ex-
amples in the Wyvern programming language suggest that our approach can be a practical way
to control module authority.
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20:2 A Capability-Based Module System for Authority Control

1 Introduction

The principle of least authority [34] is a fundamental technique for designing secure soft-
ware systems. It states that each component of a system must be able to access only the
information and resources that it needs for operation and nothing more. For example, if an
application module needs to append an entry to an application log, the module should not
also be able to access the whole file system. This is important for any software system that
divides its code into a trusted code base [33] and untrusted peripheral code, as in it, trusted
code could run directly alongside untrusted code. Common examples of such software sys-
tems are extensible applications, which allow enriching their functionality with third-party
extensions (also called plug-ins, add-ins, and add-ons), and large software systems, in which
some developers may lack the expertise to write secure- or privacy-compliant code and thus
should have a limited ability to access system resources in their code. Enforcing the principle
of least authority helps to limit the attack surface of a software system and to isolate vul-
nerabilities and faults. However, current programming languages do not provide adequate
control over the authority of untrusted modules [3, 38], and non-linguistic approaches also
fall short in controlling authority [4, 18, 35, 42].

Application security becomes even more challenging if an application uses code-loading
facilities or advanced module systems, which allow modules to be dynamically loaded and
manipulated at runtime. In such cases, an application has extra implementation flexibility
and may decide what modules to use at runtime, e.g., responding to user configuration or
the environment in which the application is run. On the other hand, untrusted modules
may get access to crucial application modules that they do not explicitly import via global
variables or method calls. For example, although a third-party extension may import only
the logging module and not the file I/O module, the extension could receive an instance of
the file I/O module via a method call as an argument or as a return value. Dynamic module
loading can be modeled as first-class modules, i.e., modules that are treated like objects and
can be instantiated, stored, passed as an argument, returned from a function, etc. However,
in a conventional programming language featuring first-class modules (e.g., Newspeak [2],
Scala [31], and Grace [15]), it is difficult to track and control modules accesses.

In this paper,1 we present a module system that helps software developers to control
the authority of code by treating modules as first-class, statically typed capabilities [5]—
i.e., communicable but unforgeable references allowing to access a resource—and making
access to security- and privacy-related modules capability-protected, in the style of the E
programming language [25]. Specifically, if module A wants to access module B, A may do
so only if A possesses an appropriate capability. Leveraging capabilities allows us to support
first-class modules (e.g., representing dynamic module loading, linking, and instantiation)
while still providing a strong model for reasoning about application security and module
isolation.

The design of the module system and the accompanying type system of the language
simplify reasoning about module authority. To determine the authority of a module via
capability-based reasoning, a security expert or a system architect must understand what
capabilities the module can access. Since our module system is statically typed (in contrast
to Newspeak [2], which provides a capability-safe but dynamically typed module system),
the architect needs to examine only the module’s interface and the interfaces of its imports
and does not need to examine the code of any module. For example, suppose an application

1 A one-paragraph poster abstract for this work appeared elsewhere [16].
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has a trusted logger module that legitimately imports a module for file I/O, and the logger
module is the only module imported by an extension. To ensure that the extension does not
have access to the file I/O module, except as mediated (i.e., attenuated [25]) by the logger
module, it is sufficient to verify that the extension does not import the file I/O module
directly and that the extension cannot get direct access to a file I/O capability by calling the
logger’s methods. The first condition is a syntactic check, and the second condition requires
inspecting only the logger’s interface, e.g., to ensure that none of the methods in the interface
return a file object (or indeed the file I/O module itself, since modules are first-class). Our
module system enjoys an authority safety property that statically guarantees that the above
two possibilities are all a developer has to consider. This is in contrast to conventional
languages and module systems, in which global variables, unrestricted reflection, arbitrary
downcasts, and other “back doors” make capability-based reasoning infeasible.

Our work has four central contributions. The first contribution is the design of a module
system that supports first-class modules (cf. Newspeak, Scala, and Grace) and is capability-
safe [22, 25]. Our approach forbids global state, instead requiring each module to take
the resources it needs as parameters, which ensures that modules do not carry ambient
authority [40] (similar to Newspeak, but in contrast to Scala and Grace). For practical
purposes, our module system supports module-local state and does not restrict the imports
of non-state-bearing modules (in contrast to Newspeak).

The second contribution is a type system that distinguishes modules and objects that
act as capabilities to access sensitive resources, from modules and objects that are purely
functional computation or store immutable data. This design makes it easy for an architect
to focus on the parts of an interface that are relevant to the authority of a module. Overall,
the type system allows developers to determine the authority of a module at compile time
by examining only the interfaces of the module and the modules it imports, without having
to look at the implementation of the involved modules.

The third contribution of our work is the formalization of authority control in the de-
signed module system, in which we introduce a novel, non-transitive definition of authority
that explicitly accounts for attenuated authority (e.g., as in the logger example above).
We also introduce a definition of authority safety and formally prove the designed system
authority-safe. Our result contrasts prior, transitive definitions of authority safety that
cannot account for authority attenuation [7, 20].

The final contribution is the implementation of the designed module system in Wyvern, a
statically typed, capability-safe, object-oriented programming language [29], demonstrating
the feasibility and practicality of the proposed approach.

We start the paper by describing the Wyvern module system from the perspective of
a software developer in Section 2 and present the formalization of the designed module
system in Section 3. We continue by introducing the definition of authority safety, state
authority-related properties of Wyvern’s module system, and prove Wyvern authority-safe
in Section 4. Then, we report on the implementation of the Wyvern module system and on
the limitations of our approach in Sections 5 and 6 respectively. Finally, we compare our
approach to other language-based approaches in Section 7 and conclude in Section 8.

2 Wyvern Module System

In Wyvern, modules have several features distinguishing its module system from others:
Modules are first-class, i.e., they are treated as objects and can be instantiated, stored,
passed as arguments into methods, and returned from methods.

ECOOP 2017
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Wyvern Libraries Word Processor

Collections

System
Resources

Extensions

listFactory

logger
wordCloud
prettyChartnetwork

...

...

queueFactory

fileIO
Platforms

python
...

java

...

wordProcessor

Figure 1 A module import diagram of a word processor application used in code examples. The
boxes represent modules, and the arrows represent module imports. If an arrow goes from module
A to module B, A imports B. The arrows with black arrowheads correspond to importing resource
modules; the arrow with an unfilled arrowhead corresponds to importing a pure module. The dark
background delineates the trusted code base.

Modules are treated as capabilities in the style of [1], i.e., we unify the notion of having
a reference to a module with the notion of having a capability to access that module. If
a module can access another module, we say that the former module has a capability to
use the latter module. (The same is true for objects.)
Modules are divided into two categories: resource modules, i.e., security- or privacy-
related modules (system resources, modules containing application data, or state-bearing
modules), and pure modules, i.e., non-state-bearing utility modules.

To illustrate our approach, let us consider a sample application that allows third-party
extensions. Figure 1 shows a module import diagram of a word processor application, similar
to OpenOffice or MS Word, that extends its feature set by allowing third-party extensions.
The vertical dotted line represents a virtual border between standard language-provided
libraries and the word processor code. The boxes represent modules, which are clustered
according to their conceptual type. The arrows represent module imports. If an arrow
goes from module A to module B, module A imports module B. The arrows with black
arrowheads correspond to importing resource modules, while the arrow with an unfilled
arrowhead corresponds to importing a pure module. Being able to import a resource module,
which corresponds to arrows with black arrowheads on the diagram, is equivalent to having
unconditional control and thus authority over the imported module.

Wyvern provides a number of standard libraries: Collections refer to a set of pure mod-
ules that provide implementations of basic functionality, e.g., list and queue factories. Sys-
tem Resources refers to a set of language-provided modules that implement system-level
functionality, e.g., file and network access. Platforms refer to the modules that implement
the Wyvern back end. Platforms and system resources may be used to subvert the word
processor, and thus access to them requires the possession of special capabilities.

The word processor system consists of core modules, which are considered trusted, and
extension modules (marked so on the diagram), which are provided by third parties and
considered untrusted. The diagram presents only a subset of modules of the word processor’s
core that are used in our examples: the wordProcessor module is the main module of the word
processor, and the logger module provides a logging service and can be used by multiple
word processor’s modules.

We use the word processor example to introduce Wyvern’s two types of modules—
resource modules and pure modules—and to show how one can determine a module’s au-
thority. For brevity, all module definitions and their types in code examples are put together;
however, in reality, each module definition and type resides in a separate file.
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2.1 Threat Model
Our approach focuses on ensuring the principle of least authority and assumes a software
system that is divided into a trusted code base [33] and untrusted peripheral code. All
the code in the trusted code base is vetted by security or privacy experts. The untrusted
code may be modules within the same code base or third-party extensions. Our module
system aims at giving the untrusted modules the least possible authority over security- and
privacy-related modules of the trusted code base, thus minimizing the possible damage if
the untrusted code is malicious or vulnerable. The authority given to untrusted modules is
scrutinized, but their code is not examined, except for their interfaces.

The following two common scenarios fit our threat model:
Malicious third-party code. In an extensible software system, an attacker writes a malicious

extension and tricks the user into loading it into the system. We wish to limit the damage
that such an extension can do.

Fallible in-house code. In a large software system, a trusted core is written by security
experts, who have the knowledge to securely access sensitive resources, e.g., the network
and file system, while the rest of the system is written by non-security experts, who may
introduce vulnerabilities that could be exploited by an attacker. We wish to limit the
damage that may result from exploits to the non-core parts of the system.

In both scenarios, modules written by less trusted parties can access security- and
privacy-related modules, e.g., system resources, only via safe interfaces written by experts.
We leverage module system capabilities to ensure that attackers cannot do anything to
security- or privacy-critical resources beyond what is permitted by the safe interfaces. Vul-
nerabilities inside the trusted code base are explicitly outside of our security model. We
discuss the limitations of this model more in Section 6.

The word processor example is presented as the first scenario, but it can be adapted
to the second scenario as well. In Figure 1, the trusted code base is marked by the dark
background.

2.2 Resource Modules
Resource modules are defined as modules that:
1. encapsulate system resources (e.g., java and fileIO),
2. use other resource modules (e.g., wordProcessor and logger), or
3. contain mutable state (e.g., wordProcessor).
A module is a resource if it has one or more of these characteristics. For example, the
wordProcessor module is a resource module because it imports the system resource fileIO

and has state (details upcoming). It is important for state-bearing modules to be resources,
as they may contain private application data and also may facilitate communication between
modules that import them, potentially allowing illegal sharing of capabilities.

Figure 2 presents a code example with several resource modules and types. By con-
vention, module names start with lowercase letters, while type names are capitalized. The
code snippet starts with the definition of the main module of the word processor applic-
ation, wordProcessor, which is a resource module. The module imports a module instance
of a resource type FileIO (defined on lines 5–7) via the argument passing mechanism. In
Wyvern, each resource module is an ML-style functor [19], i.e., it is a function that accepts
one or more arguments, each of which is a module instance of a required type, and produces
a module instance as a result. In the case of wordProcessor, the module functor accepts a
module instance of type FileIO and returns an instance of the wordProcessor module.

ECOOP 2017
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1 module def wordProcessor(io : FileIO) : WordProcessor
2 import logger
3 var log : Logger = logger(io)
4 ...
5 resource type FileIO
6 def read(file : File) : String
7 ...
8 resource type Logger
9 def appendToLog(entry : String) : Unit

10 module def logger(io : FileIO) : Logger
11 def appendToLog(entry : String) : Boolean
12 io.open("~/log.txt").append(entry)

Figure 2 A Wyvern code example demonstrating resource modules, their imports, and instanti-
ations.

FileIO is a resource type that gives access to the file system, and since wordProcessor

imports an instance of this type, wordProcessor is a resource module too. To access a resource
module of the FileIO type, wordProcessor needs to have an appropriate capability. The
capability must be passed into the wordProcessor module on its instantiation by either another
module or top-level code.

The wordProcessor module instantiates the logger module (defined on lines 8–12) by, first,
importing the definition of the logger module using the import keyword and then calling
the imported logger functor definition with appropriate arguments to get an instance of
the logger module. (Technically, logger(io) is syntactic sugar for logger.apply(io), where
apply() is a default method called on a resource module to instantiate it.) The argument that
logger requires is a module instance of the FileIO type, and by passing in io, wordProcessor

gives logger the capability to use the module instance of the FileIO type it received on
instantiation. The created instance of logger is immediately assigned to a local variable
log, which may be used later in the wordProcessor’s code. Note that wordProcessor imports a
module instance of the FileIO type, but it instantiates, i.e., creates a local instance of, the
logger module. Generally, any resource module can instantiate other resource modules from
its initialization block and even provide them with access to resource modules to which it
itself has access. Since logger is a resource module, instantiating it creates a capability for
it, which, in this case, belongs to the wordProcessor module.

Alternatively, if wordProcessor did not want to provide logger access to the file system,
wordProcessor could create and pass in a dummy module of type FileIO as follows:

module def wordProcessor(io : FileIO) : WordProcessor
import logger
var dio : FileIO = dummyIO
var log : Logger = logger(dio)
...

This would disallow the logger module from having any access to the file system.
To run the program, the top-level code is as follows:

platform java
import fileIO
import wordProcessor
let io = fileIO(java) in

let wp = wordProcessor(io) in ...

First, the back end to be used is specified using the platform keyword. This keyword can
appear only on the top level and is used to create a resource module instance representing
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the back-end implementation. Then, the definitions of the fileIO and wordProcessor module
functors are imported, and the two modules are instantiated receiving the arguments they
require. The two newly created module instances are assigned to two variables in two nested
let constructs and can be used in the rest of the code contained in the inner let’s body.

The top-level code exercises high-level control over accesses to resource modules, per-
forming two important functions. First, it instantiates resource modules, implicitly creating
capabilities that allow using the instantiated modules. Second, it grants module access per-
missions (conceptually, in the Newspeak style [2]; syntactically, in the ML-functor style [19]):
the instantiated modules (and implicit capabilities to use them) are passed as arguments to
authorized modules.

For brevity, the top level code can be shortened as follows:
require fileIO : FileIO
import wordProcessor
let wp = wordProcessor(fileIO) in ...

Here we use syntactic sugar (the keyword require) for specifying the platform (the default
platform is chosen), and importing the functor definition of and instantiating the fileIO

module. This syntactic sugar can be used for resource modules that import only the resource
module representing the back-end implementation, and is usually used for short programs,
e.g., “Hello, World!”

Notably, two modules may share a module instance and potentially use it for commu-
nication. For example, if both extensions prettyChart and wordCloud would like to append to
the word processor’s log, they may share one instance of the logger module:

require fileIO
import wordCloud
import prettyChart
let log = logger(fileIO) in

let wCloud = wordCloud(log) in
let pChart = prettyChart(log) in ...

This makes the language more flexible and simplifies certain implementation tasks.

2.3 Pure Modules
The definition of a pure module is the opposite from the definition of a resource module.
Pure modules are those modules that:
1. do not encompass system resources,
2. do not import any resource module instances,
3. do not contain or transitively reference any mutable state,
4. have no side effects.

For a module to be pure, all of these conditions must be satisfied. The third condition
has a caveat: The prohibition is on whether a module and its functions capture state, not
whether they affect it. Functions defined in a pure module may have side effects on state,
but only if the state in question is passed in as an argument or created within the function
itself.

Thus pure modules are harmless from the security perspective, and for more convenience,
in Wyvern, any module can import any pure module.

Figure 3 shows an example of a pure module and how it can be imported. The listFactory

module is the implementation of a list factory and belongs to the standard Wyvern library.
It does not contain mutable state, but only creates new lists, and therefore is a pure module.

ECOOP 2017
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1 module listFactory : ListFactory
2 def create() : List
3 ...
4 module def wordCloud(log : Logger) : WordCloud
5 import wyvern : listFactory as list
6 var words : List = list.create()
7 ...

Figure 3 A Wyvern code example demonstrating a pure module and its import.

1 module def wordCloud(log : Logger, list : ListFactory) : WordCloud
2 var words : List = list.create()
3 ...
4 // top level
5 require fileIO
6 import wordCloud
7 import listFactory as list
8 let log = logger(fileIO) in
9 let wCloud = wordCloud(log, list) in ...

Figure 4 A Wyvern code example demonstrating how a pure module can be passed to a module
as an argument.

In Wyvern, pure modules are not functors, and a module that imports a pure module receives
an instance of the pure module.

The wordCloud module is a third-party extension module that creates a word cloud—an
image composed of words used in a text passage, in which the size of each word indicates its
frequency—and pastes it into a word processor document. The wordCloud module uses a list
to store the words it operates on and therefore imports the listFactory module using the
import keyword. Since, for pure modules, the import statement produces a module instance,
it can be immediately assigned to a local variable using the as keyword. The import of
listFactory by wordCloud is invisible to the module or top-level code that instantiates the
wordCloud module.

Wyvern’s module system includes additional features that are not essential to the cap-
ability model, but are useful for software engineering purposes. For example, pure modules
can be assigned a resource module type, allowing them to be treated as resource modules,
e.g., for testing purposes. Furthermore, we could make the wordCloud module generic in the
particular implementation of lists that it uses by adding a pure module parameter of type
ListFactory, as shown in Figure 4. We do not discuss these features further as they do not
impact capability-based reasoning.

2.4 Authority Analysis

As stated in our threat model, we are concerned with the authority granted to third-party
extensions, as well as minimizing access to system resources by all application modules. In
this section, we demonstrate how an architect can verify that the authority of the modules
in the word processor application matches the authority shown in Figure 5. (In Section 4,
we will generalize authority to arbitrary objects and provide a formal definition.)

Since access to resources is mediated by modules, we can represent the authority of
a given module as the set of resource modules it can access. In Figure 5, if an arrow
goes from module A to module B, A imports B and has authority over B. If an arrow
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logger wordCloudfileIOjava

x x

x

Figure 5 Authority distribution between fileIO, logger, and wordCloud. If an arrow goes from
module A to module B, A has authority over B. Crosses on arrows mean that such authority is not
granted. In Wyvern, authority is non-transitive.

is crossed, it means that such authority is not granted. Thus, wordCloud has authority to
access logger, which in turn has authority to access fileIO, which ultimately has access to
the java foreign function interface module. We want to verify that the transitive extension of
these authority relationships does not hold, e.g., the wordCloud module does not have direct
authority to do the file I/O operations supported by the fileIO module. In effect, we are
verifying that wordCloud gets only an attenuated capability to do file I/O: it can perform
the logging operations supported by the logger module, but nothing more. This facilitates
a defense in depth strategy: if an attacker controls the wordCloud module and somehow
subverts the logger module to get a fileIO capability, since fileIO itself attenuates the java

foreign function interface capability, the attacker can do file I/O but cannot make arbitrary
system calls supported by the Java standard library.

To verify that authority is property attenuated (thereby mitigating the attack mentioned
above by ensuring that wordCloud cannot get a fileIO capability), we need to check that the
fileIO module is properly encapsulated by the logger module, and that the logger module
provides operations that are restricted appropriately to the intended semantics of logging
and cannot be used to do arbitrary file I/O.

We can check encapsulation by inspecting the interface of wordCloud as well as the inter-
faces of the modules it imports: Logger and ListFactory. Since ListFactory is not a resource
module, we do not have to look any further at its interface. (Note that, in contrast to
dynamically typed, capability-safe languages such as E or Newspeak, Wyvern’s type system
aids our inspection here.) We inspect the interface of logger (lines 8–9 in Figure 2) and im-
mediately observe that none of the types in logger’s interface are resource types. Thus, we
verify that logger cannot leak a reference to the fileIO module that it uses internally—again,
using only the type of the logger module, not its implementation.

Of course, encapsulation by itself is not enough: if logger provided the same operations
as fileIO, it would essentially provide the same authority despite the actual fileIO being
encapsulated. To this end, we check that logger attenuates the authority of fileIO and
that logger can only do logging, instead of arbitrary file operations, by looking at the
implementation of logger. Notably, this inspection is localized: we can use interfaces to
reason about where capabilities can reach and then check the code that uses those capabilities
to ensure it enforces the proper invariants. We do not have to inspect any code if we can
show that the capability we are reasoning about does not reach that code. In this case, if
we do inspect logger it is easy to see that it invokes open() and append() on a specific file,
which is characteristic of the intended logging functionality.

This process would be more complicated in a language that is not capability-safe or even
in a language that is capability-safe but does not have Wyvern’s static typing support. In a
language that is not statically typed, we could not so quickly exclude the possibility that a
capability of interest is hidden in ListFactory, nor could we be sure that we know all of the
operations available on an object unless we enforce that dynamically by imposing a wrapper.
In a language that is not capability-safe, there is much more to worry about: wordCloud could

ECOOP 2017
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p ::= md platform x i e

md ::= h i d

h ::= module x : τ
| module def x(y : τ) : τ

i ::= import x [as y]
d ::= def m(x : τ) : τ = e

| var f : τ = x

e ::= x

| news(x⇒ d)
| e.m(e)
| e.f

| e.f = e

| let x = e in e
| bind x = e in e

s ::= resource | pure

Figure 6 Wyvern’s abstract grammar.

get access to fileIO by reading a global variable, a reference to a file object could be smuggled
in an apparently innocent variable of type Object and then downcast to type File, or reflection
could be used to extract a fileIO reference from within the logger object. However, these
are not possible in Wyvern: Wyvern does not support arbitrary downcasts but only pattern
matching in a hierarchy where the possible child types are known. In addition, Wyvern’s
capability-safe reflection mechanism respects type restrictions [41], so that reflection cannot
be used to do anything other than invoke the public methods of logger. Thus, Wyvern’s
capability-safe module system along with its static types greatly simplify reasoning about
the authority of modules.

3 Wyvern Syntax and Semantics

Although modules are at the heart of our work, they are not central to Wyvern’s formal
system. Inspired by the Wyvern core work [29], our modules are syntactic sugar on top of
an object-oriented core language and are available for developers’ convenience. We present
the Wyvern formal system in the following order: first, we describe the abstract grammar
for writing modules in Wyvern, then the object-oriented core language syntax and module
translation into it, and finally, Wyvern’s static and dynamic semantics. This precisely defines
our design and lays the groundwork for the definition and proof of authority safety in
Section 4.

3.1 Module Syntax
Wyvern’s abstract grammar is shown in Figure 6. A Wyvern program consists of zero or
more modules followed by the top-level code that includes specifying the back end used
to run the program using the platform keyword, zero or more module imports, and an
expression e. Each module consists of a module header h, a list of imports i, and a list of
declarations d. Module headers can be one of two types depending on whether the module
is a resource module or a pure module. If a module is pure, its header consists of the module

keyword, a name x that uniquely identifies the module, and a module type τ . If a module is
a resource module, its header consists of the module keyword, followed by the def keyword,
which signifies that it is a functor, a name x, which uniquely identifies the module functor,
a list of functor parameters and their types, and a functor return type τ .

The module-import syntax is used for importing instances of pure modules or module
functors for resource modules, and consists of the import keyword followed by the module
or functor name x. In the case of importing an instance of a pure module, for convenience,
the instance can be renamed using the as keyword.
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e ::= x

| news(x⇒ d)
| e.m(e)
| e.f

| e.f = e

| bind x = e in e
| l

| l.m(l) B e

s ::= resource | pure

d ::= def m(x : τ) : τ = e

| var f : τ = x

| var f : τ = l

τ ::= {σ}s

σ ::= def m(x : τ) : τ
| var f : τ

Γ ::= ∅ | Γ, x : τ
µ ::= ∅ | µ, l 7→ {x⇒ d}s

Σ ::= ∅ | Σ, l : τ

E ::= [ ]
| E.m(e)
| l.m(E)
| E.f

| E.f = e

| l.f = E

| bind x = E in e
| l.m(l) B E

Figure 7 Syntax of Wyvern’s object-oriented core.

A module can contain declarations of two kinds: method declarations and variable de-
clarations. Method declarations are specified using the def keyword followed by the method
name m, a list of method parameters and their types, the method’s return type τ , and
the method body e. Variable declarations are specified using the keyword var followed by
the variable name f , the variable type τ , and the value x. We restrict the form of the
initialization expression to simplify translation into the core, but this is relaxed in our im-
plementation.

Wyvern expressions are common for an object-oriented programming language and in-
clude: a variable, the new construct, a method call, a field access, a field assignment, and
the let and bind constructs. The new construct carries a tag s that indicates whether the
object being created is pure or is a resource, which is at the core of our formalization of
authority control. It also contains a self reference x that is similar to a this, but provides
more flexible naming, and is used for tracking the receiver (discussed in more detail later).
Finally, the new construct accepts a list of declarations d. The bind construct is similar to
a let with the difference that expressions in its body can access only the variables defined
in it and nothing outside it (one can think of it as a Scala’s spore [23] or an AmbientTalk’s
isolate [39]). The types of variables defined in a let or bind are inferred.

3.2 Core Language Syntax

For the sake of uniformity and to simplify reasoning about authority safety, Wyvern modules
are translated into objects. The abstract grammar that has modules (Figure 6) is translated
into the object-oriented core of Wyvern that does not have modules (Figure 7). Furthermore,
in Wyvern’s object-oriented core:

Methods may have only one parameter.
Expressions do not include the let construct.
The bind construct may have only one variable.
Expressions and declarations are extended with runtime forms that cannot appear in the
source code of a Wyvern program.

To represent multiparameter methods, the let construct, and multivariable bind in the
object-oriented core, we use a standard encoding (presented in the next section).

Expressions have two runtime forms: a location and a method-call stack frame. The
location l refers to a location in the store µ (on the heap) that holds an object definition
added at object creation. The method-call stack frame models the call stack and method
calls on it, while preserving information about the receiver of the executing method. The
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trans(md platform z i e) =


let x = trans(md) if md = md md′

in trans(md′ platform z i e)

bind z = 〈constResObj〉 trans(i) if md = ∅
in e

trans(module x : τ i d) = bind trans(i) in newpure(x⇒ d)
trans(module def x(y : τ) : τ i d) = newresource(x⇒ def apply(y : τ) : τ

bind y = y trans(i)
in newresource(_⇒ d))

trans(i) =

{
y = x trans(i′) if i = import x as y i′

∅ if i = ∅

let x = e in e′ ≡ news(_⇒ def f(x : τ) : τ ′ = e′).f(e)
bind x = e in e ≡ bind x = (e1, e2, ..., en) in [x.n/xn]e

def m(x : τ) : τ = e ≡ def m(x : (τ1 × τ2 × ...× τn)) : τ = [x.n/xn]e

Figure 8 Modules-to-objects translation rules, and encodings for let, multivariable bind and
multiparameter methods.

expression l.m(l1)Be means that we are currently executing the method body e of a method
m of the receiver l, and object l1 was passed as an argument.

Since method bodies are evaluated lazily, i.e., only when an object calls the method,
declarations have only one runtime form for object fields. Method bodies can never contain
method-call stack frames. An object field in the source code can contain only a variable,
which at runtime becomes a location in the store. Thus, the runtime form for an object field
represents that a field f is referring to a location l.

A set of types of object fields and methods forms an object type, which is tagged as
either pure or resource. We use standard typing contexts Γ for variables and Σ for the store,
and to simplify Wyvern dynamic semantics, an evaluation context E.

3.3 Translation of Modules into Objects
Figure 8 presents modules-to-objects translation rules and encodings that are used in the
translation but not expanded for brevity. A Wyvern program is translated into a sequence
of let statements, where every variable in a let represents a module (the variable name x
is the name of a module) and the body of the last let in the sequence is a bind expression
containing the top-level code. The variables in this bind are a special constant resource
object, representing the back-end implementation, and the translation of top-level imports.
The body of the bind is the top-level expression.

In essence, modules are translated into objects: pure modules are translated into pure
objects and resource modules and translated into resource objects. The exact translation of
a Wyvern module depends on whether the module is a pure module or a resource module. If
the module is pure, it translates into a bind construct, in which the module’s imports become
the bind’s variables, and the module’s declarations are wrapped into a pure object of type τ
in the bind’s body. If the module is a resource module, it is a functor, and it translates into
a new resource object with a single method apply(). The apply() method takes as arguments
the functor’s arguments and, when called, returns a bind expression. The variables in the
returned bind consist of variables that shadow the functor’s arguments (since a bind’s body
can access only the variables defined in the bind and no other, outside variables) and the
imports of the resource module under translation. The body of the bind contains a resource
object that encompasses the declarations of the translated resource module. The module’s
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1 module listFactory : ListFactory
2 def create() : List
3 ...
4 module def wordProcessor(io : FileIO)
5 : WordProcessor
6 import wyvern : listFactory as list
7 import logger
8 var log : Logger = logger(io)
9 var exts : List = list.create()

10 ...
11 // top level
12 platform java
13 import fileIO
14 import wordProcessor
15 let io = fileIO(java) in
16 let wp = wordProcessor(io) in ...

1 let listFactory = bind in newpure(x⇒
2 def create() : List = ...) in
3 let wordProcessor = newresource(x⇒
4 def apply(io : FileIO) : WordProcessor
5 bind
6 io = io
7 list = listFactory
8 logger = logger
9 in newresource(_⇒

10 var log : Logger = logger .apply(io)
11 var exts : List = list.create()
12 ...)) in
13 // top level
14 bind
15 java = 〈constResObj〉
16 fileIO = fileIO
17 wordProcessor = wordProcessor
18 in
19 let io = fileIO.apply(java) in
20 let wp = wordProcessor .apply(io) in ...

Figure 9 A sample modules-to-objects translation.

declarations are prohibited from referring to the resource object itself (as it does not exist
in the original code), and therefore we generate a fresh name for the self variable (in the
translation, it is marked with an underscore). The apply() method of a functor’s translation
is invoked whenever the functor is invoked.

Importantly, the bind construct plays a significant role in Wyvern’s module access control.
Module imports are translated into variables in a bind construct. Since the body of a bind is
disallowed to access anything outside the variables defined in the bind, a module can receive
a capability to access a resource only via the import mechanism, as an argument to one
of its methods, or as the return value from a method call on an imported module. This
substantially limits the number of possible paths for acquiring module access.

The let construct, a multivariable bind construct, and multiparameter methods are
provided only for developer convenience and are absent from Wyvern’s core syntax; they
are encoded instead. The let construct is encoded as a method call, and the multiplicity of
variables in the bind construct and parameters in methods is achieved by bundling variables
and parameters together in a tuple and then accessing them by their indices in the bind and
methods’ bodies.

Figure 9 shows an example of applying the translation rules from Figure 8. On the left
is a code snippet as a developer would write it, and on the right is the same code written
in Wyvern’s core syntax without modules (the encodings are not expanded for conciseness,
and we use the type abbreviations supported by our implementation rather than the less-
readable structural types in our formalism). The snippet is a partial program; the logger

and fileIO modules are assumed to be defined elsewhere.
The listFactory and wordProcessor modules are translated into variables defined in two

nested lets. The outer let defines the listFactory module, which is translated into a bind

expression. Since listFactory does not import any modules, the bind has no variables, and
the bind’s body is a new pure object encompassing the listFactory’s create() method.

The inner let defines the wordProcessor module, which is translated into a resource object
containing an apply() method. Similarly to the wordProcessor functor, the apply() method
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takes an object of the FileIO type and returns an object of the WordProcessor type. The
body of the apply() method is a bind expression, the variables of which are the apply()’s
argument io as well as the two wordProcessor’s imports, listFactory and logger. The body
of the bind expression has a resource object encompassing wordProcessor’s declarations. To
get an instance of the logger module, the logger’s apply() method is called on it with an
appropriate argument. Since the body of the bind is limited to access only the variables
defined in the bind, wordProcessor has access to only three modules, fileIO, listFactory, and
logger, and no other modules.

The top-level code is translated in the body of the inner let and is represented by a
bind expression. The bind expression has all top-level imports as variable definitions and the
top-level nested let expression in the body.

3.4 Static Semantics

The Wyvern static semantics are presented in Figure 10. The annotation underneath the
turnstile—in the premise of T-New and declaration typing rules—is the same as the tag on
the new construct in the syntax and serves to identify objects and their declarations as pure
or resource. The annotation on top of the turnstile represents the current or future (in case
of object creation) receiver of the enclosing method.

Tracking the receiver is used in lieu of making object fields private. Both mechanisms
enforce non-transitivity of authority, but receiver tracking is simpler and is already imple-
mented for authority safety. In the T-New rule, the receiver for the new object’s declarations
is the new object itself. In T-Field and T-Assign, the receiver is the object whose field is
being accessed, which makes object field accesses private to the object to which they belong.
For all declaration typing rules, the receiver is the object to which the declarations belong.

The T-Decls rule enforces that each declaration of an object is well-typed. DT-
DefPure and DT-DefResource typecheck pure and resource object methods respect-
ively. A pure method should be able to typecheck in a typing environment without any
resource variables, except for the passed argument. The argument may be a resource, but
because all other variables in the context are pure, it cannot be stored (e.g., be assigned
to a variable) inside the method body. If all methods in an object are pure and the object
does not have any fields, the object is pure. DT-DefResource has a standard, much less
restrictive premise than DT-DefPure. If an object has a field, it is automatically declared
a resource, and its typechecking proceeds as expected depending only on whether the field’s
value is a variable (DT-Varx) or a location (DT-Varl). The T-Store rule ensures that
the store is well-formed and allocates new objects according to their types.

To summarize, an object is a resource if at least one of the following conditions is true:
1. The object contains a field (e.g., the object representing the wordProcessor module).
2. An object’s method definition needs a resource variable to typecheck (e.g., the object

representing logger needs an object of type FileIO to typecheck).
These conditions are checked statically. If neither of them are true, then the object is pure
(e.g., the object representing the listFactory module).

The subtyping rules are standard, except for the S-State rule, which is used for the
conversion between resource objects and pure objects:

{σe}pure <: {σe}resource
(S-State)
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Γ | Σ `e e : τ

x : τ ∈ Γ
Γ | Σ `e x : τ

(T-Var)
Γ, x : {σ}s | Σ `x

s d : σ
Γ | Σ `e news(x⇒ d) : {σ}s

(T-New)
Γ | Σ `e′

e : τ1 τ1 <: τ2

Γ | Σ `e′
e : τ2

(T-Sub)

Γ | Σ `e e1 : {σ}s def m(x : τ2) : τ1 ∈ σ Γ | Σ `e e2 : τ2

Γ | Σ `e e1.m(e2) : τ1
(T-Method)

Γ | Σ `e e : {σ}s var f : τ ∈ σ
Γ | Σ `e e.f : τ

(T-Field)

Γ | Σ `e1 e1 : {σ}s var f : τ ∈ σ Γ | Σ `e1 e2 : τ
Γ | Σ `e1 e1.f = e2 : τ

(T-Assign)

Γ | Σ `e e1 : τ1 x : τ1 | Σ `e e2 : τ2

Γ | Σ `e bind x = e1 in e2 : τ2
(T-Bind) l : τ ∈ Σ

Γ | Σ `e l : τ
(T-Loc)

Γ | Σ `e′
l1 : {σ}s def m(x : τ2) : τ1 ∈ σ Γ | Σ `e′

l2 : τ2 Γ | Σ `l1 e : τ1

Γ | Σ `e′
l1.m(l2) B e : τ1

(T-StackFrame)

Γ | Σ `z
s d : σ Γ | Σ `z

s d : σ

∀j, dj ∈ d, σj ∈ σ, Γ | Σ `z
s dj : σj

Γ | Σ `z
s d : σ

(T-Decls)

Γresource = {x : {σ}resource | x : {σ}resource ∈ Γ}
Γpure = Γ \ Γresource Γpure, y : τ1 | Σ `z e : τ2

Γ | Σ `z
pure def m(y : τ1) : τ2 = e : def m(y : τ1) : τ2

(DT-DefPure)

Γ, x : τ1 | Σ `z e : τ2

Γ | Σ `z
resource def m(x : τ1) : τ2 = e : def m(x : τ1) : τ2

(DT-DefResource)

Γ | Σ `z x : τ
Γ | Σ `z

resource var f : τ = x : var f : τ
(DT-Varx)

Γ | Σ `z l : τ
Γ | Σ `z

resource var f : τ = l : var f : τ
(DT-Varl)

µ : Σ

∅ : ∅ (T-StoreEmpty)
µ : Σ x : {σ}s | Σ `x

s d : σ
µ, l 7→ {x⇒ d}s : Σ, l : {σ}s

(T-Store)

Figure 10 Wyvern static semantics.

A pure object is a subtype of a resource object and, thus, can be used in place of a
resource object, but not the other way around. Subtyping rules are presented in full in the
technical report [21].

3.5 Dynamic Semantics

Figure 11 shows Wyvern’s dynamic semantics. The E-Congruence rule subsumes all
evaluation rules with non-terminal forms; the rest of the reduction rules deal with terminal
forms. The E-New rule requires that the definition of the new object is closed, which
is enforced in the progress theorem (below) and guarantees that the authority of the new
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〈e | µ〉 −→ 〈e′ | µ′〉
〈e | µ〉 −→ 〈e′ | µ′〉

〈E[e] | µ〉 −→ 〈E[e′] | µ′〉
(E-Congruence)

l 6∈ dom(µ) news(x⇒ d) is closed
〈news(x⇒ d) | µ〉 −→ 〈l | µ, l 7→ {x⇒ d}s〉

(E-New)

l1 7→ {x⇒ d}s ∈ µ def m(y : τ1) : τ2 = e ∈ d
〈l1.m(l2) | µ〉 −→ 〈l1.m(l2) B [l2/y][l1/x]e | µ〉

(E-Method)

l 7→ {x⇒ d}s ∈ µ var f : τ = l1 ∈ d
〈l.f | µ〉 −→ 〈l1 | µ〉

(E-Field)

l1 7→ {x⇒ d}s ∈ µ var f : τ = l ∈ d
d

′ = [var f : τ = l2/var f : τ = l]d µ′ = [l1 7→ {x⇒ d
′}s/l1 7→ {x⇒ d}s]µ

〈l1.f = l2 | µ〉 −→ 〈l2 | µ′〉
(E-Assign)

〈bind x = l in e | µ〉 −→ 〈[l/x]e | µ〉
(E-Bind)

〈l.m(l1) B l2 | µ〉 −→ 〈l2 | µ〉
(E-StackFrame)

Figure 11 Wyvern dynamic semantics.

object can be fully determined at its creation and onwards. To create a new object, a fresh
store location is chosen, and the object definition is assigned to it. In E-Method, when the
method argument is reduced to a location, a method-call stack frame is put onto the stack,
the caller and the argument are substituted with corresponding locations in the method body,
and the method body starts to execute. An object field is evaluated to the location that it
holds (E-Field), and when an object field’s value is reassigned, the necessary substitutions
are made in the store (E-Assign). Similarly to methods, when the bind’s variable value is
fully evaluated, variables in its body are substituted with their corresponding locations, and
the bind’s body starts to execute (E-Bind). Finally, in the E-StackFrame rule, when a
method body is fully executed, the method-call stack frame is popped from the stack and
the resulting location is returned.

Notably, pure objects always remain pure, i.e., if a location l maps to a pure object in
the store µ, then it always maps to a pure object in the store µ′. This can be proven by a
simple induction on the reduction rules.

3.6 Type Soundness

The preservation and progress theorems are stated as follows. The proofs for both the
theorems are fairly standard and are available in the technical report [21].

I Theorem (Preservation). If Γ | Σ `e′′
e : τ , µ : Σ, and 〈e | µ〉 −→ 〈e′ | µ′〉, then

∃Σ′ ⊇ Σ, µ′ : Σ′, and Γ | Σ′ `e′′
e′ : τ .

I Theorem (Progress). If ∅ | Σ `e′′
e : τ (i.e., e is a closed, well-typed expression), then

either e is a value (i.e., a location), or ∀µ such that µ : Σ, ∃e′, µ′ such that
〈e | µ〉 −→ 〈e′ | µ′〉.
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4 Authority Safety

We use the object-oriented core to prove our language authority-safe. Once modules are
translated into objects, objects become the unit of reasoning, and thus our authority-related
formalism is formulated in terms of objects.

In our system, a principal [5] is a resource object. An object—a principal or a pure
object—can directly access a principal if the object has a reference to the principal, either
by capturing it on object creation or acquiring it via a method call or return. The authority
of an entity (an object or an expression) is the set of principals the entity can directly access,
and we say that it has authority over those principals.

The authority safety property states that the authority of an object can only increase
due to the creation of a new object, a method call, or a method return. More precisely, the
situations in which authority can increase are:
1. Object creation: If a resource object A creates a new resource object B, then A gains

authority over B.
2. Method call: If a resource object A does not have authority over a resource object B

and receives B as an argument to one of A’s methods, then A gains authority over B
(perhaps only temporarily, while A’s method is being executed).

3. Method return: If a resource object A does not have authority over a resource object
B and B is returned from a method call that A invoked, then A gains authority over B
(perhaps only temporarily, while A’s method is being executed).
It is important to note that these must be the only situations when authority of an object

increases (e.g., authority cannot increase due to side effects). The authority safety property
is what assures us that all we need to reason about the authority of an object is to examine
actions at its interface: method calls and returns; the case of object creation is usually not
very interesting because the newly created object is born with no more authority than its
creator had.

Note that the third case of authority safety is unique to our non-transitive definition
of authority. In the transitive definitions of authority used in prior work, the caller of a
method always already has the same authority as its callee, or more. This also means that if
an object such as the logger is careful not to return a reference to the underlying file being
used, then objects that use the logger will not have authority over that file, which matches
our intuition about the role of the logger object as a gatekeeper.

For a pure object, an authority increase is inconsequential because a pure object cannot
store mutable state. Thus the definition of authority safety focuses on principals—i.e.,
resource objects. On a technical level—as discussed in more detail below—we treat a pure
object as being part of whatever resource object uses it.

4.1 Significance of Authority Safety
If a Wyvern program typechecks, it is authority-safe, i.e., authority gains are possible only
in the three cases specified by the authority safety theorem. The type system automatically,
at compile time enforces that a module cannot gain authority over and access to another
module by any other means (e.g., via side effects). This property allows developers to reason
effectively about the authority of program modules.

Consider reasoning about the authority of the wordCloud module. wordCloud is born with
only the authority to access its required resources: due to the typechecking rule for bind and
the way that modules are translated, these are the only resources in scope when wordCloud

is instantiated. To see whether wordCloud gains any authority, the authority safety theorem
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tells us we need only inspect its type (WordCloud) and that of its required resources (Logger).
Together the types show over what resources wordCloud can gain authority via method calls
and returns (cases 2 and 3 of the authority safety theorem). For example, it is easy to
verify that no object representing fileIO can go across this interface and thus ensure that all
file access done by wordCloud must go through the logger. Case 1 of authority safety allows
wordCloud to create objects of its own that act as principals, but it cannot thereby gain access
to system resources it did not already have. Notice that we can conclude all of this without
even looking at the code in the wordCloud module—which is a useful property if this module
is provided by a third party in compiled form and the source code is not available.

Authority safety also allows developers to reason about global invariants about the use of
resources, while only needing to inspect part of the program. For example, to verify that the
entire program only accesses the file system to write to log files, we first inspect the top-level
code and observe that the fileIO resource is only passed to the wordProcessor module. We
then inspect wordProcessor and observe that it passes the fileIO module exclusively into the
logger module. Examining the logger’s code, we see that it enforces the desired invariant
of writing only to log files, and does not provide clients with any means of accessing fileIO

functionality. Since authority is non-transitive and neither wordProcessor nor logger expose
fileIO via their methods, it is guaranteed that, besides wordProcessor and logger, no other
program module has authority over fileIO module. It is unnecessary to inspect any other
modules, which could make up an arbitrarily large fraction of the program, because we can
rely on the authority safety property to ensure that those parts of the program can never
acquire authority to fileIO.

Thus, our approach enables reasoning that is impossible in conventional languages, such
as Java, without a global analysis that requires access to all code in the program, or use of the
Java security manager (which is difficult to use correctly due to its excessive complexity [4]).

4.2 Formal Definition of Authority Safety

To formalize authority safety, we must first present a formal notion of authority. Our
authority definition is given by two sets of rules—the auth() and pointsto() rules. Intuitively,
pointsto() captures references between objects, while auth() is a higher-level relation that
builds on pointsto() to define authority. We describe the rules, give an example of how the
rules are applied, state the authority safety theorem, and finally prove Wyvern authority-
safe.

4.2.1 auth() Rules

The authority of an object is determined according to the functions and rules in Figure 12.
Intuitively, our definition of authority has two parts. The first part, authstore, captures the
principals that an object has a reference to in the heap, either as one of its fields, or as a
location captured in one of its methods (which act as closures in Wyvern). The second part,
authstack , is more subtle: it captures the principals that an object has a reference to in an
on-the-fly execution of one of the object’s methods. More formally:

auth(l, e, µ) takes a location l, an expression e, and a store µ, and returns a set of
locations identifying principals that constitute the total authority of an object identified
by l when an expression e is being executed in the context of memory µ.
authstore(l, µ) takes a location l and a store µ and returns a set of locations identifying
principals to which an object identified by l has direct access by virtue of the object’s
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auth(l, e, µ) authstore(l, µ) authstack(l, e, µ)

auth(l, e, µ) = authstore(l, µ) ∪ authstack(l, e, µ)
(auth-config)

l 7→ {x⇒ d}s ∈ µ
authstore(l, µ) = pointsto(l, µ) ∪ pointsto(d, µ)

(auth-store)

l.m(l′) B e′ 6∈ e
authstack(l, e, µ) = ∅

(auth-stack-nocall)

l.m′(l′′) B E′ 6∈ E
authstack(l, E[l.m(l′) B e′], µ) = pointsto(e′, µ) ∪ authstack(l, e′, µ)

(auth-stack)

Figure 12 Authority rules.

static state in the store µ. In other words, the function determines the object’s authority
that can be statically deduced by examining the code stored in the object.
authstack(l, e, µ) takes a location l, an expression e, and a store µ, and returns a set of
locations identifying principals to which an object identified by l has direct access by
virtue of the execution state of methods of l executing in e in the context of memory µ.
That is, the function determines the object’s authority gained on the stack.

Since, in the process of evaluation, methods may have received new principals as ar-
guments and method bodies may have been re-written to include new principals, the sets
returned by authstore(l, µ) and authstack(l, e, µ) may differ.

The auth-config rule defines the relation between the three functions: the total author-
ity of an object consists of authority it has statically from the code it stores and authority
it gained on execution. The auth-store rule defines authstore(l, µ). It requires the object
identified by l to be in the store µ and returns two sets of locations identifying principals to
which an object identified by l has direct access via itself and its declarations.

The auth-stack-nocall and auth-stack rules define authstack(l, e, µ). The auth-
stack-nocall rule is used when there are no method-call stack frames with the receiver l
on the stack (l.m(l′) B e′ 6∈ e) and returns an empty set, as in such cases, l gains no authority
from executing e. If the stack contains method-call stack frames where the receiver is l, the
auth-stack rule is used, and the authority is “collected” from the outermost such method-
call stack frame (i.e., the furthest method-call stack frame from the expression that is being
evaluated) up to the expression being evaluated. The condition l.m′(l′′) B E′ 6∈ E means
that there must be no method-call stack frames with l as the receiver preceding the method
call in consideration, which assures that, as we go down the stack, we do not miss any
method calls with l as a receiver. The authstack(l, e, µ) returns a set of locations identifying
the principals that the method body contains and the principals that l can access on the
rest of the stack.

4.2.2 pointsto() Rules

Authority functions use pointsto() functions (Figure 13). The pointsto() functions take an
expression e, a declaration d, or a list of declarations d and a store µ, and return a set
of locations identifying principals to which the expression, the declaration, or the list of
declarations point (i.e., have direct access) in the context of memory µ.
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pointsto(e, µ) pointsto(d, µ) pointsto(d, µ)

pointsto(x, µ) = ∅
(pointsto-var)

pointsto(news(x⇒ d), µ) = pointsto(d, µ)
(pointsto-new)

pointsto(e.m(e′), µ) = pointsto(e, µ) ∪ pointsto(e′, µ)
(pointsto-method)

pointsto(e.f, µ) = pointsto(e, µ)
(pointsto-field)

pointsto(e.f = e′, µ) = pointsto(e, µ) ∪ pointsto(e′, µ)
(pointsto-assign)

pointsto(bind x = e in e′, µ) = pointsto(e, µ) ∪ pointsto(e′, µ)
(pointsto-bind)

l 7→ {x⇒ d}resource ∈ µ
pointsto(l, µ) = {l}

(pointsto-principal)
l 7→ {x⇒ d}pure ∈ µ
pointsto(l, µ) = ∅

(pointsto-pure)

l 7→ {x⇒ d}resource ∈ µ
pointsto(l.m(l′) B e, µ) = {l}

(pointsto-call-principal)

l 7→ {x⇒ d}pure ∈ µ
pointsto(l.m(l′) B e, µ) = pointsto(e, µ)

(pointsto-call-pure)

pointsto(d, µ) = ∪
⋃

d∈d
pointsto(d, µ)

(pointsto-decls)

pointsto(def m(x : τ1) : τ2 = e, µ) = pointsto(e, µ)
(pointsto-def)

pointsto(var f : τ = x, µ) = ∅
(pointsto-varx)

pointsto(var f : τ = l, µ) = pointsto(l, µ)
(pointsto-varl)

Figure 13 pointsto() rules.

A variable does not point to any location (pointsto-var). A new expression points to
locations to which the new object’s declarations points (pointsto-new). A method, an
object field and its assignment, as well as a bind construct (pointsto-method, pointsto-
field, pointsto-assign, and pointsto-bind respectively) point to locations in their
subexpressions. Depending on whether a location is identifying a principal or a pure object,
it points to either itself (pointsto-principal) or nothing (pointsto-pure) respectively.
Depending on whether the method caller is a principal or a pure object, a method-call stack
frame points to either itself (pointsto-call-principal) or a set of locations pointed to by
the method body (pointsto-call-pure) respectively.

pointsto-principal and pointsto-pure look similar to authstore(l, µ), but differ se-
mantically: in these pointsto() rules, l is treated as an expression, not as a location identi-
fying a principal, and so the only location l can access is itself.

A list of declarations points to a union of sets of locations to which each declaration in
the list points (pointsto-decls). A method declaration points to the locations to which
the method body points (pointsto-def). A field declaration points to locations to which
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the field’s value points: if the field’s value is a variable, the field declaration does not point
to any location (pointsto-varx), and if the field’s value is a location, the field declaration
points to the same location as the value location (pointsto-varl).

In our system, authority is non-transitive for principal objects and transitive for pure
objects to which a principal points. As pure objects do not have fields, they cannot point
to any resources and their methods cannot capture resources. Thus, pointsto-principal
and pointsto-pure do not involve declarations of the object identified by the location
(cf. pointsto-new). However, an executing method of a pure object can have resources
in it if they were passed as arguments. Since the pure object cannot own the resource
arguments, in this case, the authority is transitive, and the resource arguments are owned
by the resource caller down the stack. Therefore, pointsto-call-principal considers only
the principal caller, whereas pointsto-call-pure allows a principal caller down the stack
to have authority over principals in a pure callee’s method.

4.2.3 Determining Authority of an Object
To demonstrate how authority of an object is determined, consider the following definition
of the prettyChart module:

module def prettyChart(logger : Logger) : WordCloud
def updateLog(entry : String) : Unit

logger.appendToLog(entry)

Assume that the definition of the logger module is as in Figure 2 and that the last line in
the above code snippet is currently being executed, i.e., the method appendToLog() is called
on the logger object. The logger object in the store µ looks like:
llogger 7→ { x⇒ def appendToLog(entry : String) : Unit

lio.open(“∼/log.txt”).append(entry) }resource

To find the authority llogger has statically, i.e., from the code it contains, we apply auth-
store, pointsto-principal, pointsto-def, pointsto-method, pointsto-principal,
and pointsto-var as follows:
authstore(llogger , µ)

= pointsto(llogger , µ) ∪ pointsto(def appendToLog(...) ..., µ)
= {llogger} ∪ pointsto(def appendToLog(entry : String) : Unit

lio.open(“∼/log.txt”).append(entry), µ)
= {llogger} ∪ pointsto(lio.open(“∼/log.txt”).append(entry), µ)
= {llogger , lio}

To find the authority llogger gained on the stack, we use auth-stack, auth-stack-nocall,
pointsto-method, pointsto-principal, and pointsto-var as follows:
authstack(llogger , E[llogger .appendToLog(lentry) B lio.open(“∼/log.txt”).append(entry)], µ)

= pointsto(lio.open(“∼/log.txt”).append(entry), µ)
∪ authstack(llogger , lio.open(“∼/log.txt”).append(entry), µ)
= pointsto(lio.open(“∼/log.txt”).append(entry), µ)
= {lio}

Finally, by auth-config, the total authority of llogger when executing the appendToLog()
method is
auth(llogger , E[llogger .appendToLog(lentry) B lio.open(“∼/log.txt”).append(entry)], µ)

= authstore(llogger , µ)
∪ authstack(llogger , E[llogger .appendToLog(lentry) B lio.open(“∼/log.txt”).append(entry)], µ)
= {llogger , lio}
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As expected, llogger has authority over lio and no other resource object.
This way, the auth() and pointsto() rules allow us to determine authority of every object

on every step of execution, which serves as a basis for our formal system and the authority
safety proof.

4.2.4 Authority Safety Theorem
We now state the authority safety theorem formally.

I Theorem (Authority Safety). If
1. Γ | Σ `e′′

e : τ ,
2. 〈e | µ〉 −→ 〈e′ | µ′〉,
3. l0 7→ {x⇒ d0}resource ∈ µ′,
4. l 7→ {x⇒ d}resource ∈ µ, and
5. auth(l, e′, µ′) \ auth(l, e, µ) ⊇ {l0},
then one of the following must be true:
1. Object creation:

a. e = E[l.m(l′) B E′[newresource(x⇒ d0)]] and
b. e′ = E[l.m(l′) B E′[l0]], where
c. ∀la.ma(l′a) B E′′ ∈ E′, la 7→ {x⇒ da}pure ∈ µ

2. Method call:
a. e = E[l.m(l0)],
b. e′ = E[l.m(l0) B [l0/y][l/x]e′′], and
c. y ∈ e′′

3. Method return:
a. e = E[l.m(l′) B E′[la.ma(l′a) B l0]] and
b. e′ = E[l.m(l′) B E′[l0]], where
c. ∀lb.mb(l′b) B E′′ ∈ E′, lb 7→ {x⇒ db}pure ∈ µ

The formal statement of authority safety makes the informal statement above more
precise, in that:
1. The principal gaining authority in the given evaluation step must be a receiver of a

method-call stack frame on the stack, but not necessarily the immediate receiver for the
expression under evaluation.

2. Receivers of all method-call stack frames between the principal receiver and the expres-
sion under evaluation must be pure.

These points allow us to define authority safety comprehensively, while treating pure
objects as essentially a part of the principal that uses them. Below is a sketch of the proof
of the authority safety theorem; the full proof is presented in the technical report [21].

Proof Sketch. The proof is by induction on a derivation of 〈e | µ〉 −→ 〈e′ | µ′〉. We start
by considering E-Congruence and rely on the following fact (formally stated and proven
in Lemma 8 in the technical report [21]):

If there are only pure principals after the last method-call stack frame where l is the
caller, i.e., l was the last principal caller on the stack, then
auth(l, E[e′], µ′) \ auth(l, E[e], µ)

= authstore(l, µ′) ∪ pointsto(e′, µ′) ∪ authstack(l, e′, µ′)
\ authstore(l, µ) ∪ pointsto(e, µ) ∪ authstack(l, e, µ)
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Otherwise, if the last method-call stack frame where l is the caller is followed by a
method-call stack frame with a principal caller that is not l, or if the stack has no
method-call stack frames with principal callers, then
auth(l, E[e′], µ′) \ auth(l, E[e], µ)

= authstore(l, µ′) ∪ authstack(l, e′, µ′) \ authstore(l, µ) ∪ authstack(l, e, µ)

This implies that the changes in authority when 〈E[e] | µ〉 −→ 〈E[e′] | µ′〉 depend on
expressions in 〈e | µ〉 −→ 〈e′ | µ′〉. Next, we consider all possible terminal-form reduction
steps and, using the auth() and pointsto() rules, calculate the difference in authority of the
principals before and after the reduction step.

The subcases of E-New, E-Method, and E-StackFrame produce the three situations
states in the theorem. The rest of the reduction rules do not cause any authority gains. J

5 Implementation

We have implemented the module system and core theory described in this paper as part of
the open source Wyvern compiler and interpreter, available on GitHub: https://github.
com/wyvernlang/wyvern. Although some features of a full-fledged language are missing,
we have implemented examples from Figures 2, 3, and 4. The example code runs as part of
the wyvern.tools.tests.Figures test suite and can be found in the tools/src/wyvern/
tools/tests/figs subdirectory of the project. In ongoing development work, we are con-
tinuing to add features and improve the state of the implementation.

6 Limitations

Our threat model makes an important assumption that the code in the trusted code base
of a software system is trustworthy. We assume that the security and privacy experts who
are in charge of the trusted code base are honest and do not make mistakes. This may
not be true in practice, and thus our approach is susceptible to insider attacks, which are
common to systems that reason about trusted code bases and involve vulnerabilities inside
the trusted code base.

For example, an expert responsible for the trusted code base may have a malicious
intent and subvert the software system by exporting the functionality of system resources
via wrapper functions. A wrapper function is a function of a module (e.g., logger) that
“wraps” the functionality of a function of another module (e.g., a module of type FileIO),
performing the same operations as the original function, e.g.:

module def logger(io : FileIO) : Logger
def write(fileName : String, text : String)

io.write(fileName, text)

By calling logger.write(), an extension importing logger could write to any file in the file
system, and this would not be exposed in the logger’s type or interface. In a similar fashion,
the malicious logger module may export functionality of an entire file I/O module, poten-
tially changing function names to obfuscate the exposure. In such a case, an extension that
is allowed to import logger would, in essence, have authority over a module of type FileIO.

Although insider attacks directed at the trusted parts of a system are beyond our reach,
our approach allows developers to formally reason about the isolation of security- and
privacy-related resources in a software system and gives developers a tool to enforce certain
isolation properties. Also, the described limitations can be mitigated either by using more
rigorous software development practices, e.g., code reviews, for critical parts of the system,
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or by complementing our approach with more complex analyses, e.g., by using an effects
system or an information flow analysis.

7 Related Work

Introduced to secure operating system resources [5], capabilities were later generalized to
protect arbitrary services and resources [43], including programming language resources [28].
The object-capability model, in which capabilities guard more fine-grained programming lan-
guage resources—objects—has recently been advocated by Miller [25]. The two pioneering
languages that used object capabilities are E [24] and W7 [32]. Wyvern carries forward this
line of work by exploring a statically typed, capability-safe language and providing support
for modules as capabilities.

Our approach to modules was primarily inspired by the capability-passing modules design
in Newspeak [2] and its predecessors, such as MzScheme’s Units [13]. As in Newspeak,
Wyvern modules are first-class. However, Wyvern’s static types support reasoning about
capabilities based on module interfaces (Newspeak is dynamically typed), and Wyvern re-
duces the overhead of ubiquitous module parameterization by allowing pure modules to be
directly imported, rather than passed in as arguments (in Newspeak, all module dependen-
cies must be passed in as arguments).

Several research efforts limited mainstream, non-capability programming languages to
turn them into capability languages. Typically the imposed restrictions disallow mutable
global state (e.g., static fields), tame the original language’s APIs (e.g., reflection API),
and prohibit ambient authority [40]. Sometimes sandboxing is used to facilitate isolation of
program components (e.g., add-ons). Programming languages in this category include Joe-
E [22] (a restricted subset of Java), Emily [37] (a performant subset of OCaml), CaPerl [17]
(a subset of modified Perl), Oz-E [36] (a proposed variation of Oz), and Google’s Caja [14, 26]
(an enforced subset of JavaScript). In contrast, our work explores a module system with
explicit support for capabilities without the constraint of adapting an existing language,
enabling a cleaner design.

Shill [27] is a secure shell scripting programming language that takes a declarative
approach to access control. In Shill, capabilities are used to control access to system
resources, contracts are used to specify what capabilities each script requires, and capability-
based sandboxes are used to enforce contracts at runtime. Shill supports compositional
reasoning by tracing authority through program invocations and, if necessary, attenuating
authority on every transition. The authority of the program’s entry point is ambient, but
its transition to other parts of the program is limited via contracts and sandboxes. Shill
does not include mutable state (e.g., variables), which are part of Wyvern’s model and make
Wyvern’s notion of authority safety more interesting; nor does Shill include a module
system.

Maffeis et al. [20] formalized the notions of capability and authority safety and proved
that capability safety implies authority safety, which in turn implies resource isolation. They
showed that these semantic guarantees hold in a Caja-based subset of JavaScript and other
object-capability languages. Maffeis et al.’s formal system defines authority topologically
(objects are represented as nodes in a graph, and a path between two nodes implies that the
source node can access the destination node) and thus transitive. In contrast, our formal
definition of authority is non-transitive, enabling the important forms of reasoning discussed
in Section 4.1.

Devriese et al. [6] presented an alternative formalization of capability safety that is based
on logical relations. They argue that formalizations like Maffeis et al.’s [20] are too syntactic
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and the topological definition of authority is insufficient to characterize capability safety as
it leads to over-approximation of authority. Our non-transitive definition of authority is
similarly more precise than prior, transitive topological definitions. However, our focus is
on a relatively simple (compared to logical relations) type system that provides authority
safety with respect to this more refined notion of authority, along with support for modules
as capabilities.

Another line of related work assumes a capability-safe base language and develops logics
or advanced type systems to state and prove properties that are built on capabilities. Dros-
sopoulou et al. analyzed Miller’s mint and purse example [25], rewrote it in Joe-E [8] and
Grace [30], and based on their experience, proposed and refined a specification language to
define policies required in the mint and purse example [9, 10, 11, 12]. Also, Dimoulas et
al. [7] proposed a way to extend an underlying capability-safe language with declarative ac-
cess control and integrity policies for capabilities, and proved that their system can soundly
enforce the declarative policies. Dimoulas et al.’s formalization, like that of Maffeis et al.
but unlike ours, formalizes authority transitively.

8 Conclusion

We presented a module system design that allows software developers to limit and control
the authority granted to each module in a software system. Our module system supports
first-class modules and uses capabilities to protect access to security- and privacy-related
resource modules. It simplifies the reasoning for determining the authority of a module
down to examining the module’s interface, the module’s imports, and the interfaces of the
modules it imports, making security auditing more practical. Furthermore, unlike previous
module systems (cf. Newspeak) that put significant overhead on developers by requiring
all modules to be fully parameterized, in the Wyvern module system, parameterization is
necessary only for resource modules, and the number of non-resource-module imports is
unlimited. Our work also advances theoretical models of capabilities by modeling authority
in a non-transitive way, which allows for attenuating a module’s authority, such as when
a powerful capability (e.g., file I/O) is encapsulated inside an attenuated capability (e.g.,
logging). We formally defined what it means for a module system to be authority-safe and
proved that our module system possesses this property.
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