
EVF: An Extensible and Expressive Visitor
Framework for Programming Language Reuse∗

Weixin Zhang1 and Bruno C. d. S. Oliveira2

1 The University of Hong Kong, Hong Kong, China
wxzhang2@cs.hku.hk

2 The University of Hong Kong, Hong Kong, China
bruno@cs.hku.hk

Abstract
Object Algebras are a design pattern that enables extensibility, modularity, and reuse in main-
stream object-oriented languages such as Java. The theoretical foundations of Object Algebras
are rooted on Church encodings of datatypes, which are in turn closely related to folds in func-
tional programming. Unfortunately, it is well-known that certain programs are difficult to write
and may incur performance penalties when using Church-encodings/folds.

This paper presents EVF: an extensible and expressive Java Visitor framework. The visitors
supported by EVF generalize Object Algebras and enable writing programs using a generally
recursive style rather than folds. The use of such generally recursive style enables users to more
naturally write programs, which would otherwise require contrived workarounds using a fold-like
structure. EVF visitors retain the type-safe extensibility of Object Algebras. The key advance in
EVF is a novel technique to support modular external visitors. Modular external visitors are able
to control traversals with direct access to the data structure being traversed, allowing dependent
operations to be defined modularly without the need of advanced type system features. To make
EVF practical, the framework employs annotations to automatically generate large amounts
of boilerplate code related to visitors and traversals. To illustrate the applicability of EVF
we conduct a case study, which refactors a large number of non-modular interpreters from the
“Types and Programming Languages” (TAPL) book. Using EVF we are able to create a modular
software product line (SPL) of the TAPL interpreters, enabling sharing of large portions of code
and features. The TAPL software product line contains several modular operations, which would
be non-trivial to define with standard Object Algebras.

1998 ACM Subject Classification D.1.5 Object-oriented Programming, D.3.3 Language Con-
structs and Features, D.3.4 Processors

Keywords and phrases Visitor Pattern, Object Algebras, Modularity, Domain-Specific Lan-
guages

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.29

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.3.2.10

1 Introduction

New Programming or Domain-Specific Language (DSL) implementations are needed all the
time. However creating new languages is hard! There are two major factors that contribute to

∗ This work has been sponsored by the Hong Kong Research Grant Council projects number 27200514
and 17258816.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Weixin Zhang and Bruno C. d. S. Oliveira;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 29; pp. 29:1–29:32

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.29
http://dx.doi.org/10.4230/DARTS.3.2.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

29:2 EVF

such difficulty: 1) the amount of implementation effort; and 2) the need for expert knowledge
in language design/implementation. A lot of implementation effort is involved in the creation
and the maintenance of a language. A programming language consists of various components:
syntactic and semantic analyzers, a compiler or interpreter, and tools that are used to support
the development of programs in that language (e.g. IDE’s or debuggers). Furthermore,
the language has to be maintained, bugs have to be fixed, and new features have to be
implemented. In addition to those engineering problems, software engineers lacking proper
training miss the knowledge to do good language design. Because of these two factors, the
costs for creating a new language are usually prohibitive, or it is hard to find engineers with
the right skills for doing programming language implementation.

One way to address those challenges is to reuse language components. Programming
languages share a lot of features. This is the case with Java or C, for example. Both languages
have mechanisms to declare variables, support basic arithmetic operations as primitives,
have loop constructs, or have similar scoping rules for variables. Moreover, nearly all new
languages or DSLs will “copy” many features from existing languages, rather than having a
completely new set of features. Therefore, there is conceptual reuse in programming languages.
Unfortunately, it is hard to materialize the conceptual reuse into software engineering reuse
in existing programming languages.

A simple way to achieve “reuse” is to copy and paste the code for an existing compiler and
modify that. While this may be relatively effective (if the existing compiler is well-written),
it duplicates code. Changes to the original compiler (bug fixes, new features, refactorings,
etc.) will very likely be difficult to apply to the derived compiler. Because of that, the code
of the two compilers often diverges, leading to duplication. So, reuse by copy&paste only
works in the initial phase. At later stages, reuse becomes harder as careful synchronization
of changes in both code bases is needed.

Many researchers have noticed the problems of copy&paste for reuse before. A popular
approach to reuse of language components is offered by some language workbenches [18,
13, 15, 22]. Language workbenches aim at rapid prototyping of languages and related
programming tools. The importance of modularity, reuse and composition of languages
in language workbenches is well-recognized in the community. Erdweg et al. [15] mention
“Reuse and composition of languages, leading to language-oriented programming both at the
object level and metalevel” as one of the three key trends observed in the field of language
workbenches. Indeed many language workbenches use syntactic meta-programming techniques
to create language implementations and tools. One of the earliest uses of meta-programming
techniques was the ASF+SDF approach to language composition [30]. In ASF+SDF it
is possible to construct a library of language definition modules. Various other language
workbenches (e.g. Spoofax [29] or Neverlang [54]) use similar techniques to modularize
language definitions. However, while this simple syntactic modularization approach works, it
lacks the desirable properties of separate compilation and modular type-checking.

An alternative approach to reuse of language components is offered by design patterns [19]
that work on mainstream programming languages. Until recently it was thought that
limitations in mainstream languages prevented or significantly complicated reusing language
components in a modularly type-safe way. Indeed, well-known (minimalistic) challenges such
as the Expression Problem (EP) [59], were created to illustrate such difficulties. However,
recent research [53, 39, 52, 7, 41, 60] has shown that mainstream languages do allow for
relatively practical solutions to the EP.

One such solution is the so-called Object Algebras [41]. Object Algebras provide a
generalization of abstract factories and can solve challenging modularity problems, including

W.Zhang and B. C. d. S. Oliveira 29:3

the EP. Object Algebras fully preserve separate compilation and modular type-checking.
Nevertheless, solving the EP is just a step towards providing reuse of language components.
Reusability in realistic language components requires addressing other modularity challenges,
which the EP does not account for. Although significant progress [20, 27, 43, 50, 62] has
been made towards scaling up Object Algebras to more realistic language components, there
are still obstacles that need to be overcome.

A particular problem with Object Algebras is that they force a programming style
similar to Church encodings [8] or functional programming folds [26]. While this structure
works for many practical operations, certain operations are hard to express and/or incur on
performance penalties. An example is capture-avoiding substitution [47], which poses two
major challenges: 1) it is typically implemented with a top-down algorithm, which may not
require traversing the full term, if shadowing exists; and 2) it depends on another operation
that collects free variables from a term to avoid capture. Object Algebras are naturally
suited for bottom-up algorithms that do a full traversal of the term. Simulating top-down
algorithms with Object Algebras is possible but can be cumbersome and penalizing in terms
of performance. Moreover, dependencies have to either be encoded via tuples with a heavy
encoding [41] or require sophisticated type system features not available in Java [43, 50].

This paper presents EVF: an extensible and expressive Java Visitor framework. EVF
is helpful to modularize semantic components of programming languages that operate on
Abstract Syntax Trees (ASTs). Examples of such semantic components include: interpreters,
compilers, pretty printers, various program analyses, and several optimizations and trans-
formations over ASTs. EVF semantic components are just standard Java programs that are
type-checked and separately compiled by the Java compiler. With EVF, library writers can
develop such semantic language components modularly for various programming language
features. Users can then simply choose the required features for the language and reuse the
semantic components from the libraries, possibly with some new language constructs added
for their specific purpose. In other words, EVF allows users to develop Software-Product
Lines (SPLs) [10] of semantic language components.

The visitors in EVF generalize Object Algebras, and enable writing programs using a
generally recursive style rather than folds. The use of such generally recursive style enables
users to write programs more naturally. The support for extensibility improves on techniques
used by Object Algebras, and on modular visitors [40]. It is known that Object Algebras
are closely related to internal visitors [44]: a simple, but less expressive, variant of visitors
related to Church encodings of datatypes [6]. The key advance in EVF is a novel technique
to support modular external visitors that works in Java-like languages. In contrast to
internal visitors, external visitors [6, 44] are based on Parigot encodings of datatypes [46]: a
more expressive form of encodings that enables direct control of traversals, and modularly
expressing dependencies.

To alleviate programmers from writing large amounts of boilerplate related to ASTs and
AST traversals, EVF employs annotations to automatically generate such code. In essence, a
user needs only to specify an Object Algebra interface, which describes the desired structure.
EVF processes that interface and generates various useful interfaces and classes. Noteworthy
are EVF’s generic queries and transformations, which generalize Shy-style traversals [62]
and remove the limitation of bottom-up only traversals.

Overall, while there is a cost associated to learning the framework, EVF helps in reducing
both the implementation effort and the required knowledge for programming language
implementations through reuse. Essentially, through reuse, the more complex and intricate
parts of several algorithms can be moved to properly encapsulated library code. Thus, we

ECOOP 2017

29:4 EVF

believe the benefits of using EVF outweigh the costs of learning it. Section 3 shows a detailed
example on how reuse can lower complexity in language implementation.

To further illustrate the applicability of EVF we conduct a case study refactoring many
non-modular interpreters from the “Types and Programming Languages” (TAPL) book [47].
Using EVF we are able to create a modular SPL of the TAPL interpreters, enabling sharing
large portions of code and features. Our programming language SPL contains several modular
operations, which would be non-trivial to define with standard Object Algebras.

In summary, the contributions of this paper are:
A new approach to modular external visitors: We present a novel technique to
support modular external visitors that works in Java-like languages. The new technique
allows modular visitor components to be expressed using a generally recursive style.
Simpler modular dependent operations: Previous attempts to modular dependent
operations either require a lot of boilerplate or sophisticated features not available in
Java-like languages. Modular external visitors solve this problem with simple generics.
Generalized generic queries and transformations: EVF overcomes the bottom-
up limitations of generic queries and transformations of Shy, and supports top-down
traversals as well.
Code generation for AST boilerplate code: Using an annotation processor, EVF
generates large amounts of boilerplate code related to ASTs and AST traversals. Users
only need to specify an annotated Object Algebra interface to trigger code generation.
Implementation and TAPL case study: We illustrate the practical applicability of
EVF with a large case study that refactors a non-trivial and non-modular OCaml code
base into modular and reusable Java code. EVF and the case study are available at:
https://github.com/wxzh/EVF

2 Modular External Visitors

This section provides the background and presents the key technical idea: a form of external
visitors which is modular/extensible, offers control over traversals and only requires a simple
form of generics for its implementation.

2.1 Background: Internal/External Visitors and Object Algebras
The origins of Object Algebras go back to the relationship between type-theoretic encodings
of datatypes and the Visitor pattern. The original connection was established by Buchlovsky
and Thielecke [6]. They pointed out that variants of the Visitor pattern correspond to
different types of type-theoretic encodings. So-called internal visitors correspond to (typed)
Church encodings of datatypes [5], whereas external visitors correspond to Parigot encodings
of datatypes [46, 44].

Internal Visitors and Object Algebras. A simple example of internal visitors is shown in
Figure 1. The example models a basic form of arithmetic expressions consisting of only two
constructs: integer literals and addition. The interface Alg<E> models the visitor interface.
The two methods (Lit and Add) model the so-called visit methods. Object Algebras use
exactly the same interface as internal visitors [41]. In the context of Object Algebras, we
would refer to the interface as an Object Algebra interface. The point at which internal
visitors and Object Algebras differ is on how to create ASTs. Internal visitors use an interface
Exp which contains an accept method. Then, for each language construct, there is a class

https://github.com/wxzh/EVF

W.Zhang and B. C. d. S. Oliveira 29:5

interface Alg<E> {
E Lit(int n);
E Add(E e1, E e2);

}
interface Exp {

<E> E accept(Alg<E> v);
}
class Lit implements Exp {

int n;
public <E> E accept(Alg<E> v) {

return v.Lit(n);
}

}
class Add implements Exp {

Exp e1, e2;
public <E> E accept(Alg<E> v) {

return v.Add(e1.accept(v), e2.accept(v))
;

}
}

Figure 1 Code for internal visitors.

interface EVis<E> {
E Lit(int n);
E Add(EExp e1, EExp e2);

}
interface EExp {

<E> E accept(EVis<E> v);
}
class ELit implements EExp {

int n;
public <E> E accept(EVis<E> v) {

return v.Lit(n);
}

}
class EAdd implements EExp {

EExp e1, e2;
public <E> E accept(EVis<E> v) {

return v.Add(e1, e2);
}

}

Figure 2 Code for external visitors.

that implements such interface. Object Algebras do not use such interface. Instead, they
construct expressions directly through instances of the Alg<E> interface.

A concrete example of an operation on arithmetic expressions is evaluation. Evaluation
is defined as a visitor (or Object Algebra), which implements Alg<Integer>:

class Eval implements Alg<Integer> {
public Integer Lit(int n) { return n; }
public Integer Add(Integer e1, Integer e2) { return e1 + e2; }

}

External Visitors. Figure 2 shows the equivalent code for modeling arithmetic expressions
written with external visitors. The interface EVis plays the same role as Alg. However,
differently from Alg, in EVis the Add method takes two expressions as arguments. There is
also similar code for defining the type of expressions, and the two classes that implement
expressions. Because of the different signature for the Add method in EVis, the definition
of the accept method in EAdd is different as well. Instead of calling the accept method
in the two subexpressions (e1 and e2) and passing the result to Add, the new code passes
the subexpressions directly to Add. In other words, external visitors offer control over the
traversal of the term to the visitor implementation. For example, when defining evaluation,
the Add method now calls the accept method and computes the result:

class EEval implements EVis<Integer> {
public Integer Lit(int n) { return n; }
public Integer Add(EExp e1, EExp e2) { return e1.accept(this) + e2.accept(this);

}
}

ECOOP 2017

29:6 EVF

2.2 Internal versus External Visitors
To better compare the advantages and disadvantages of internal and external visitors, lets
consider an extension to expressions with subtraction and conditionals.

Extension using Internal Visitors. With internal visitors (or Object Algebras) it is simple
to create an interface, which extends the original algebra interface for arithmetic expressions:

interface ExtAlg<E> extends Alg<E> {
E Sub(E e1, E e2);
E If(E e1, E e2, E e3);

}

The extension includes two new constructs for the language: subtraction (Sub), and a simple
form of conditional expressions (If). For simplicity, the condition evaluates to a number with
0 representing false, and any other number representing true. With such extended visitor
interface, writing an extended evaluator is, at first sight, quite easy:

class ExtEval extends Eval implements ExtAlg<Integer> {
public Integer Sub(Integer e1, Integer e2) { return e1 - e2; }
public Integer If(Integer e1, Integer e2, Integer e3) {

return !e1.equals(0) ? e2 : e3; // WRONG!!
}

}

Problem 1: Lack of Control in Internal Visitors. The Sub case is trivial. However, the
definition for If expressions is clearly wrong. Moreover, it is not possible to find a correct
definition without changing how the visitor is instantiated. All methods in the visitor receive
the results of evaluation as an argument: they cannot control when to (recursively) evaluate
expressions. This works very well when the computation being expressed traverses the full
term in a purely bottom-up manner. Unfortunately, for conditionals this is a problem, since
only one branch needs to be evaluated. The implementation in ExtEval, however, evaluates
both branches. This not only is problematic for performance reasons, but it is the wrong thing
to do if the language being implemented supports, for example, some form of side-effects.

The lack of control problem is not fundamental, but it significantly complicates pro-
gramming in practice and may introduce performance penalties. Previous work has shown
how to correctly model far more complicated constructs and languages using Object Al-
gebras [20, 27, 43, 50, 62]. However, this is done by changing the way Object Algebras are
instantiated and using more complex techniques. Instead of choosing Integer as the instanti-
ation for the type parameter of Alg, a different type, which suitably delays evaluation, is used.
Several other problems also arise from the lack of control problem. For example, expressing
dependent (non-compositional) operations (i.e. operations which are modularly defined in
terms of other operations) is very inconvenient. To express such kinds of operations tuples
can be used in Java, but this requires the definition of a lot of boilerplate code [41]. Another
approach is to use intersection types [11, 48] with a special merge operator [51] to perform
composition. This requires a type system more powerful than Java. Scala does support
intersection types and it is possible to encode a weak form of a merge operator [43, 50], but
the lack of support for a native merge operator in Scala complicates code and limits the
scalability of the approach.

All in all, the lack of control problem in Object Algebras is a well-known, more than
80-year-old problem. When Church discovered Church encodings in the untyped lambda

W.Zhang and B. C. d. S. Oliveira 29:7

calculus [8], he realized that certain operations were quite difficult to express. The most
famous instance of that is the predecessor function on Church numerals. When Church
tried to define the predecessor function on Church numerals, it first appeared impossible to
define. Eventually, he realized that it is possible to encode the predecessor function using a
pair, which performs computation bottom-up and rebuilds the original term. While such
an algorithm does compute the predecessor function, it is much more complicated than the
traditional predecessor function, and it takes linear time to compute, instead of being a
constant time operation. Since Church’s work, various other programming techniques have
been based on Church encodings [26, 23, 42, 7], but the essential difficulties in expressing
certain operations remained. Object Algebras are no different. Being essentially Church
encodings, similar difficulties arise for certain operations, and similar workarounds apply, as
Section 3 further illustrates.

Problem 2: Lack of Extensibility with External Visitors. The obvious attempt to solve
the limitations of Object Algebras is to turn to external visitors, which do allow control over
the traversal. However, if we try to do the same extension with external visitors we face a
different problem: it is no longer possible to simply extend the original visitor interface.

In order to account for the extension with subtraction and conditionals, we have to change
or copy&paste existing code for visitors. In other words, the visitor code is non-modular
(unlike the code for Object Algebras). Different interfaces are necessary for the extension:

interface MVis<E> {
E Lit(int x);
E Add(MExp e1, MExp e2);
E Sub(MExp e1, MExp e2);
E If(MExp e1, MExp e2, MExp e3);

}

In external visitors, the visitor interface depends on the AST type and vice-versa. Since
the new AST nodes for subtraction and conditionals require a visitor type that is aware of
the new nodes, it is not possible to use the old interface EExp. Instead, a new interface MExp is
needed with an accept method taking a richer type of visitors. Correspondingly, the visitor
interface has to be changed. The Add method no longer takes expressions of type EExp as
arguments. Instead, it now requires expressions of type MExp. When defining evaluation, the
code for EEval cannot be reused either. Thus, the code for Lit and Add has to be essentially
repeated in MEval:

class MEval implements MVis<Integer> {
public Integer Lit(int n) { return n; }
public Integer Add(MExp e1, MExp e2) { return e1.accept(this) + e2.accept(this);

}
public Integer Sub(MExp e1, MExp e2) { return e1.accept(this) - e2.accept(this);

}
public Integer If(MExp e1, MExp e2, MExp e3) {

return !e1.accept(this).equals(0) ? e2.accept(this) : e3.accept(this);
}

}

However, the implementation of If is now correct! Because external visitors delegate
the control over traversals to the implementation of visitors, the expressions for the then
and else branches only need to be evaluated when the suitable condition applies. Therefore,
unlike internal visitors, no workarounds are necessary to implement the operation.

ECOOP 2017

29:8 EVF

interface AVis<R,E> {
E Lit(int x);
E Add(R e1, R e2);
E visitExp(R e);

}
interface CExp {

<E> E accept(AVis<CExp,E> v);
}
interface CVis<E>

extends AVis<CExp,E> {
default E visitExp(CExp e) {

return e.accept(this);
}

}

class CLit implements CExp {
int n;
public CLit(int n) { this.n = n; }
public <E> E accept(AVis<CExp,E> v) {

return v.Lit(n);
}

}
class CAdd implements CExp {

CExp e1, e2;
public CAdd(CExp e1, CExp e2) {

this.e1 = e1; this.e2 = e2;
}
public <E> E accept(AVis<CExp,E> v) {

return v.Add(e1, e2);
}

}

Figure 3 Modular external visitors with abstracted recursive calls.

2.3 Key Idea: Abstracting Recursive Calls
To solve both problems we propose a new type of external visitors that abstracts the recursive
calls. Figure 3 presents the code for the original arithmetic expressions encoded with the
new visitor. Compared to EVis, this new visitor interface AVis has two changes. First, it
uses an additional type parameter R to decouple itself from any concrete expression type.
This first difference is known in the literature [43], and has been used in the past to provide
generalized versions of Object Algebras. However, the second, and more important difference
is the introduction of a new method visitExp that abstracts the recursive calls. Like the
accept method in the Visitor pattern, visitExp allows programmers to explicitly control
recursive calls. In fact, calls to visitExp are essentially indirect calls to accept. Readers
familiar with type-theoretic encodings of datatypes may find that the use of the visitExp
method reminiscent of Mendler encodings of datatypes [34]. Indeed in Mendler-encodings of
datatypes programmers can also control recursive calls with a function argument. However,
as we shall discuss in Section 7 Modular External Visitors have significant differences to
Mendler-style encodings.

The interface that provides the implementation for visitExp (which just calls accept) is
CVis. Programmers will define their own visitors by implementing the other visit methods.
When an actual visitor instance is needed, a class extending both the user-defined visitor and
CVis is created. Thus, we end up with code which is essentially equivalent to non-modular
external visitor code. Code for defining the AST hierarchy is very similar to non-modular
external visitors. The accept method takes a CVis instance which extends AVis with R
specified as CExp.

Evaluation with Control. AEval implements the evaluator for the expression language,
where R is still a type parameter while E is instantiated to Integer:
interface AEval<R> extends AVis<R,Integer> {

default Integer Lit(int n) { return n; }
default Integer Add(R e1, R e2) { return visitExp(e1) + visitExp(e2); }

}

The evaluation on subexpressions of Add are now controlled via visitExp. However, visitExp
should remain abstract for retaining the extensibility on AEval. AEval is hence modeled as an

W.Zhang and B. C. d. S. Oliveira 29:9

interface with Lit and Add implemented using Java 8 default methods. An additional step to
instantiate AEval as a class is needed for the purpose of creating objects. This can be done
through defining a class that implements both AEval and CVis:

class CEval implements AEval<CExp>, CVis<Integer> {}

Then we are able to evaluate an expression using an instance of CEval:

CExp e = new CAdd(new CLit(1), new CLit(2));
e.accept(new CEval()); // 3

Modular Extension. As the dependency on the AST type has been removed from visitors,
modular extensions on the visitor interface and its concrete implementations are enabled:

interface AVisExt<R,E> extends AVis<R,E> {
E Sub(R e1, R e2);
E If(R e1, R e2, R e3);

}
interface AEvalExt<R> extends AEval<R>, AVisExt<R,Integer> {

default Integer Sub(R e1, R e2) { return visitExp(e1) - visitExp(e2); }
default Integer If(R e1, R e2, R e3) {

return !visitExp(e1).equals(0) ? visitExp(e2) : visitExp(e3);
}

}

However, a remaining problem is that we still need a new AST infrastructure for the
extension:

interface CExpExt { <E> E accept(AVisExt<CExpExt,E> v); }
interface CVisExt<E> extends AVisExt<CExpExt,E> {

default E visitExp(CExpExt e) { return e.accept(this); }
}
... // 4 classes elided including Lit and Add

Discussion. The following table summarizes the strength and weakness of each approach:

Approach Modular Visitor Modular AST Traversal Control
Object Algebras Yes Yes No
Internal Visitors Yes No No
External Visitors No No Yes
Modular External Visitors Yes No Yes

Object Algebras and internal visitors do not offer traversal control. Nevertheless, both
visitor code and code for creating ASTs is modular in Object Algebras. The reason why
the code for creating ASTs is modular in Object Algebras is that ASTs are created directly
using an instance of the Object Algebra interface [41]. In contrast, all visitors (whether
internal or external) require AST interfaces (such as Exp, EExp, MExp, CExp), and corresponding
classes implementing those interfaces. However such AST class hierarchies are not reusable
in extensions. External visitors provide traversal control at the price of losing modularity on
the visitor code. Modular external visitors retain traversal control and bring modularity to
the visitor code, but AST code is still not modular.

While AST code is still non-modular with modular external visitors, in practice, it is
the visitor code that is important to modularize. The visitor code is what programmers

ECOOP 2017

29:10 EVF

e ::= x variable
λx.e abstraction
e e application
i literal
e− e subtraction

(a) Syntax

FV (x) = {x}
FV (λx.e) = FV (e) \ {x}
FV (e1 e2) = FV (e1) ∪ FV (e2)
FV (i) = ∅
FV (e1 − e2) = FV (e1) ∪ FV (e2)

(b) Free variables
[x 7→ s]x = s

[x 7→ s]y = y if y 6= x

[x 7→ s](λx.e) = λx.e

[x 7→ s](λy.e) = λy.[x 7→ s]e if y 6= x ∧ y /∈ FV (s)
[x 7→ s](e1 e2) = [x 7→ s]e1 [x 7→ s]e2
[x 7→ s]i = i

[x 7→ s](e1 − e2) = [x 7→ s]e1 − [x 7→ s]e2

(c) Substitution

Figure 4 Formalization of the untyped lambda calculus.

will write to define various operations over ASTs. The AST code is mechanical and can be
automatically generated, which is precisely one of the things that the EVF framework does.
Programming with modular external visitors is, in some sense, similar to programming with
algebraic datatypes in functional languages. That is, programmers can control the code for
functions defined by pattern matching (similar to visitors) but not the code for constructors
(similar to AST code).

3 EVF for Modularity and Reuse of PL Implementations

This section introduces the EVF framework by modeling the untyped lambda calculus. We
are going to implement two operations, free variables and capture-avoiding substitution,
where the latter depends on the former. Based on modular external visitors introduced in
Section 2, EVF allows such dependency to be expressed in a simple way. EVF further
complements modular external visitors by automatically generating boilerplate code related
to ASTs and AST traversals. Compared with the implementations with traditional (non-
modular) visitors and Object Algebras, the EVF implementation has advantages in terms of
simplicity, modularity, and reusability. The section finishes with a discussion on how EVF
reduces both the implementation effort and the need for specialized knowledge for language
implementation.

3.1 Untyped Lambda Calculus: A Running Example
Figure 4 formalizes the untyped calculus: its syntax and two operations, free variables and
capture-avoiding substitution, following Pierce’s definition [47].

Syntax. The language has 5 syntactic forms: variables, lambda abstractions, lambda
applications, integer literals and subtractions. The meta variable e ranges over expressions;
x over names; i over integers. With the syntax, the operational semantics can be defined.

W.Zhang and B. C. d. S. Oliveira 29:11

Free Variables. A variable in an expression is said to be free if it is not bound by any
enclosing abstractions. The operation FV (e) collects the set of free variables from an
expression e. The definition relies on some set notations. Their meanings are: ∅ denotes an
empty set; {x} represents a set with one element x; \ calculates the difference of two sets; ∪
is the set union operator.

Substitution. Substitution, written as [x 7→ s]e, is an operation that replaces all free
occurrences of variable x in the expression e with the expression s. The definition is indeed
quite subtle, especially for the abstraction case. The body of an abstraction will be substituted
only when two conditions are satisfied. The first condition, y 6= x, takes care of shadowing
introduced by the abstraction. The second condition, y /∈ FV (s), avoids free variables in s
being captured after substitution. For example, [x 7→ y](λx.x) and [x 7→ y](λy.x) have no
effect because of the first and the second condition respectively. Thus, the two conditions
together preserve the meaning of an expression after substitution.

3.2 A Summary of the Implementations and Results
We implemented the untyped lambda calculus using the Visitor pattern, Object Algebras
and EVF respectively (full code can be found online). The table below summarizes the
implementations from modularity, the source lines of code (SLOC) and the number of cases
to implement for each operation:

Approach Modular Syntax Free Variables Substitution
SLOC SLOC # Cases SLOC # Cases

The Visitor Pattern No 46 20 5 22 5
Object Algebras (w/ Shy) Yes 7 12 2 55 5
EVF Yes 7 12 2 13 2

From the table we can see that the EVF implementation is best in all these aspects. It
is modular and uses least SLOC and number of cases to implement both operations. The
comparison between the Visitor pattern and EVF shows the power of meta-programming.
By generating AST and AST traversals automatically, EVF eliminates a large portion of
SLOC. On the other hand, the comparison between Object Algebras and EVF illustrates
the expressiveness of EVF. Object Algebras bypass the concrete representation of an AST
structure, making the syntax definition simple. The definition of free variables in Object
Algebras is as short as that in EVF with the help of the Shy framework [62], which generates
traversal templates similar to EVF. However, substitution does not fit any Shy template,
and worse it is very cumbersome to define with Object Algebras causing the expansion of
SLOC. The remainder of this section explains the three implementations and the results in
detail.

3.3 An Implementation with the Visitor Pattern
We first discuss an implementation with the (external) Visitor pattern presented in Figure 5.

Syntax. The visitor interface LamAlg describes the constructs supported by the language.
The Exp interface represents the AST type. Classes that implement Exp, for instance Var and
Abs, are concrete constructs of the language. The LamAlg interface declares visit methods to
deal with these constructs, one for each. Concrete constructs use their corresponding visit
method in implementing the accept method exposed by the Exp interface.

ECOOP 2017

29:12 EVF

interface LamAlg<O> {
O Var(String x);
O Abs(String x, Exp e);
O App(Exp e1, Exp e2);
O Lit(int n);
O Sub(Exp e1, Exp e2);

}
interface Exp {

<O> O accept(LamAlg<O> v);
}
class Var implements Exp {

String x;
Var(String x) { this.x = x; }
public <O> O accept(LamAlg<O> v)

{
return v.Var(x);

}
}
class Abs implements Exp {

String x;
Exp e;
Abs(String x, Exp e) {

this.x = x; this.e = e;
}
public <O> O accept(LamAlg<O> v)

{
return v.Abs(x, e);

}
}
... // 3 classes elided

class FreeVars implements LamAlg<Set<String>>
{

public Set<String> Var(String x) {
return Collections.singleton(x);

}
public Set<String> Abs(String x, Exp e) {

return e.accept(this).stream()
.filter(y -> !y.equals(x))
.collect(Collectors.toSet());

}
... // 3 cases elided

}
class SubstVar implements LamAlg<Exp> {

String x;
Exp s;
SubstVar(String x, Exp s) {

this.x = x; this.s = s;
}
public Exp Var(String y) {

return y.equals(x) ? s : new Var(x);
}
public Exp Abs(String y, Exp e) {

if (y.equals(x)) return new Abs(x, e);
if (s.accept(new FreeVars()).contains(x))

throw new RuntimeException();
return new Abs(x, e.accept(this));

}
... // 3 cases elided

}

Figure 5 Untyped lambda calculus with the Visitor pattern.

Free Variables. Operations for the language are defined as concrete implementations of
the LamAlg interface. A concrete visitor FreeVars collects free variables from an expression.
FreeVars implements LamAlg by instantiating the type parameter as Set<String>. Since the
traversal is controlled by the programmer via the accept method, we call e.accept(this) to
collect free variables from the body of the abstraction.

Substitution. Similarly, the class SubstVar models substitution. Substitution is a trans-
formation over the expression structure. We hence instantiate the abstract type of LamAlg
to the expression type Exp. Like FreeVars, we call e.accept(this) to perform substitution
on children. Indeed, the argument passed to the accept method is not restricted to be this
and can indeed be an arbitrary instance of LamAlg. This allows existing peer visitors to be
reused. For instance, we call s.accept(new FreeVars()) to reuse previously defined FreeVars
for collecting free variables from the expression s.

Summary. The implementation with the Visitor pattern has two problems: it is not
modular (i.e. does not allow new language constructs to be modularly added); and it requires
substantial amounts of code, including AST classes and code for each of the 5 language
constructs for both free variables and substitution.

W.Zhang and B. C. d. S. Oliveira 29:13

@Algebra interface LamAlg<Exp> {
Exp Var(String x);
Exp Abs(String x, Exp e);
Exp App(Exp e1, Exp e2);
Exp Lit(int n);
Exp Sub(Exp e1, Exp e2);

}
class FreeVars implements

LamAlgQuery<Set<String>> {
public Monoid<Set<String>> m() {

return new SetMonoid<>();
}
public Set<String> Var(String x)

{
return Collections.singleton(x)
;

}
public Set<String> Abs(String x,

Set<String> e) {
return e.stream()

.filter(y -> !y.equals(x))

.collect(Collectors.toSet());
}

}
interface IFV {

Set<String> FV();
}
interface ISV<Exp> {

Exp before();
Exp after();

}

class SubstVar<Exp extends IFV>
implements LamAlg<ISV<Exp>> {

String x;
Exp s;
LamAlg<Exp> alg;
SubstVar(String x, Exp s, LamAlg<Exp> alg) {

this.x = x; this.s = s; this.alg = alg;
}
public ISV<Exp> Var(String y) {

return new ISV<Exp>() {
public Exp before() {

return alg.Var(y);
}
public Exp after() {

return y.equals(x) ? s : alg.Var(y);
}};}
public ISV<Exp> Abs(String y, ISV<Exp> e) {

return new ISV<Exp>() {
public Exp before() {

return alg.Abs(y, e.before());
}
public Exp after() {

if (y.equals(x))
return alg.Abs(y, e.before());

if (s.FV().contains(y))
throw new RuntimeException();

return alg.Abs(y, e.after());
}};}
... // 3 cases elided

}

Figure 6 Untyped lambda calculus with Object Algebras.

3.4 An Implementation with Object Algebras
Next, we discuss an implementation with Object Algebras shown in Figure 6.

Syntax. Object Algebras bypass the concrete AST representation, making it simple to
model the language. The Object Algebra interface LamAlg is similar to the visitor interface
except that both recursive arguments and return values are of the abstract type Exp. Note
that LamAlg is annotated with @Algebra provided by the Shy framework. Through annotation
processing, Shy will generate traversal templates for LamAlg.

Free Variables. Operations over the language are defined as Object Algebras, which are
implementations of the LamAlg interface. The Object Algebra FreeVars is very much like
the visitor version. The difference to the visitor version is that programmers have indirect
control over the traversal due to the bottom-up nature of Object Algebras. This makes
the operation definition simpler by removing accept invocations. Also, by using Shy, the
number of cases to implement is reduced to 2. The LamAlgQuery template provides a default
implementation for each case by using a client-supplied monoid instance. Regarding FreeVars,
it should return an empty set for a base case or unite the intermediate sets from subtrees
for an intermediate case. By supplying a set monoid and overriding the variable and the
abstraction case, we are able to give the complete definition for FreeVars.

ECOOP 2017

29:14 EVF

Substitution. Modeling substitution using Object Algebras is tricky. There are two major
difficulties: 1) expressing the dependency on free variables modularly; 2) substitution traverses
the expression structure in a flexible way, and not in a purely bottom up manner. For the
first difficulty, we define an interface IFV and set it as the upper bound of the Exp. This
way, we are able to call FV on the expression s. For the second difficulty, a similar technique
to that employed in defining the predecessor function on Church numerals is applied (see
discussion in Section 2.2). Instead of just returning the expression after substitution, we also
keep track of the original expression. The pair-like interface ISV is defined for such purpose.
This interface is critical for the definition of Abs because the body can either be substituted
or not depending on whether the condition holds. As the body e is now of type ISV<Exp>, we
can call before or after for obtaining the expression before and after substitution.

Summary. Although capture-avoiding substitution is possible to model using Object Al-
gebras, the implementation is rather inefficient and complicated. The dependency on free
variables is pushed to the successor algebra that is applied after SubstVar, which requires
additional boilerplate for composing that algebra with FreeVars. Unlike the implementation
of free variables, which can benefit from the Shy framework to reduce the number of cases,
the definition of substitution does not fit any of the traversal templates offered by the Shy
framework. Thus 5 cases are needed for substitution.

3.5 An Implementation with EVF
The corresponding implementation of the untyped lambda calculus with EVF is given by
Figure 7. EVF uses a Java annotation processor for generating the boilerplate code related
to AST creation and various traversal templates. The Java annotation processor uses the
standard javax.annotation.processing API, which is part of the Java platform. To interact
with EVF, users simply annotate the standard Object Algebra interfaces with @Visitor.
The companion infrastructure code will then be automatically generated at compile-time. In
a modern IDE like Eclipse or IntelliJ, usually each time the code is saved, the compilation is
triggered with new infrastructure generated.

From Object Algebras to Modular Visitors. EVF is used to complement code written
with modular external visitors with code generation. Modular external visitor interfaces are
the basis of the generated code. However, users of EVF do not need to write such modular
external visitor interfaces directly. Instead, EVF allows clients to write the traditional
Object Algebra interfaces, as done for example in lines 1-7 of Figure 7. Since it is possible to
automatically generate a modular external visitor interface from an Object Algebra interface,
this is done automatically by EVF. This is good for users because Object Algebra interfaces
are simpler than modular external visitor interfaces. Figure 8 shows the corresponding
modular external visitor interface generated for LamAlg. Note that GLamAlg is parameterized
by two types Exp and OExp, where Exp captures recursive arguments and OExp is for return
values. It replaces the return type of constructors with OExp and inserts a method visitExp
that converts Exp to OExp. We leave the discussion on the technical details to Section 4.

Code Generation for Structural Traversals. Neither FreeVars nor SubstVar extend GLamAlg
directly. Instead, they extend the generated traversal templates LamAlgQuery and
LamAlgTransform respectively. Similarly to Shy, EVF supports various traversal patterns
that can be used to remove boilerplate code. The implementation of FreeVars using EVF is
close to that using Object Algebras. One difference is that subexpressions are of abstract

W.Zhang and B. C. d. S. Oliveira 29:15

1 @Visitor interface LamAlg<Exp> {
2 Exp Var(String x);
3 Exp Abs(String x, Exp e);
4 Exp App(Exp e1, Exp e2);
5 Exp Lit(int n);
6 Exp Sub(Exp e1, Exp e2);
7 }
8 interface FreeVars<Exp> extends LamAlgQuery<Exp,Set<String>> {
9 default Monoid<Set<String>> m() {

10 return new SetMonoid<>();
11 }
12 default Set<String> Var(String x) {
13 return Collections.singleton(x);
14 }
15 default Set<String> Abs(String x, Exp e) {
16 return visitExp(e).stream().filter(y -> !y.equals(x))
17 .collect(Collectors.toSet());
18 }
19 }
20 interface SubstVar<Exp> extends LamAlgTransform<Exp> {
21 String x();
22 Exp s();
23 Set<String> FV(Exp e);
24 default Exp Var(String y) {
25 return y.equals(x()) ? s() : alg().Var(y);
26 }
27 default Exp Abs(String y, Exp e) {
28 if (y.equals(x())) return alg().Abs(y, e);
29 if (FV(s()).contains(y)) throw new RuntimeException();
30 return alg().Abs(y, visitExp(e));
31 }
32 }

Figure 7 Complete code for the untyped lambda calculus with EVF.

AST type Exp and we call visitExp explicitly to trigger the traversal on subexpressions, e.g.
in line 16. The ability to control the traversal makes a great difference in defining SubstVar.
Shy only supports bottom-up traversals, due to the inherited limitation from standard Object
Algebras. In contrast, EVF does not limit the traversal strategy and traversal patterns
can be used in top-down operations such as SubstVar. As a result, the implementation of
SubstVar is not only simpler and more efficient than the one with Object Algebras, but it
also requires only the explicit definition of 2 cases (instead of 5) due to EVF’s ability to
reuse more flexible traversal templates. In Section 4.3 we will give formal specifications of
the traversal templates and introduce more forms of traversal patterns.

Modular Dependent Visitors. The support for external visitors allows modular dependent
operations to be defined with simple generics. For example, to express the dependency on
free variables in the definition of substitution, we declare an abstract method FV in line 23 of
Figure 7, which takes an expression and returns a set of free variables. Then we are able to
collect the free variable set from s by calling FV in line 29. The reader may have noticed that
FV and FreeVars’s visitExp share the same signature. In fact, FV is implemented by calling
visitExp on an instance of FreeVars. But the coupling with peer visitors such as FreeVars
are deferred to the instantiation stage of the dependent visitor, as we will see next. This

ECOOP 2017

29:16 EVF

interface GLamAlg<Exp,OExp> {
OExp Var(String x);
OExp Abs(String x, Exp e);
OExp App(Exp e1, Exp e2);
OExp Lit(int n);
OExp Sub(Exp e1, Exp e2);
OExp visitExp(Exp e);

}

Figure 8 Generated modular external visitor interface for the untyped lambda calculus.

1 class FreeVarsImpl implements FreeVars<CExp>, LamAlgVisitor<Set<String>> {}
2 class SubstVarImpl implements SubstVar<CExp>, LamAlgVisitor<CExp> {
3 String x;
4 CExp s;
5 public SubstVarImpl(String x, CExp s) { this.x = x; this.s = s; }
6 public String x() { return x; }
7 public CExp s() { return s; }
8 public Set<String> FV(CExp e) { return new FreeVarsImpl().visitExp(e); }
9 public LamAlg<CExp> alg() { return new LamAlgFactory(); }

10 }
11 public class LC {
12 public static void main(String[] args) {
13 LamAlgFactory alg = new LamAlgFactory();
14 CExp exp = alg.App(alg.Abs("y", alg.Var("y")), alg.Var("x")); // (\y.y) x
15 new FreeVarsImpl().visitExp(exp); // {"x"}
16 new SubstVarImpl("x", alg.Lit(1)).visitExp(exp); // (\y.y) 1
17 }
18 }

Figure 9 Instantiation and client code for the untyped lambda calculus.

simple reuse mechanism improves the modularity of visitors significantly, and can be used
together with OO inheritance for modularity and extensibility. This is in contrast with the
Object Algebras approach, which requires significant complexity to deal with dependencies.

Instantiation and Client Code. Abstract recursive calls and modular dependencies prevent
visitors from being modeled as concrete classes. An additional step for instantiation is
necessary for object creation. We use interfaces and default methods to define visitors and to
make them extensible by exploiting Java 8 multiple interface inheritance. EVF generates
LamAlgVisitor, an interface that extends GLamAlg with visitExp implemented. Line 1 and
lines 2-10 of Figure 9 illustrate how to instantiate FreeVars and SubstVar using the generated
LamAlgVisitor. The dependencies declared in SubstVar must be fulfilled. For example, in
line 8, we call the visitExp method on an FreeVarsImpl instance to realize the FV method.

Concrete AST Representation. Different from conventional Object Algebras, the construc-
tion and interpretation of an AST are separated in EVF. An AST infrastructure like that in
Figure 5 is automatically generated by EVF. The generated factory class, LamAlgFactory, is
exposed to the clients for constructing ASTs. Once created, an AST will reside in memory
and is able to accept different visitors to traverse itself. For example, we construct an AST
of form (λy.y) x in line 14. By invoking the visitExp method defined on visitor instances,
we traverse the same AST using FreeVars and SubstVar in line 15 and 16 respectively.

W.Zhang and B. C. d. S. Oliveira 29:17

@Visitor ExtLamAlg<Exp> extends LamAlg<Exp> {
Exp Bool(boolean b);
Exp If(Exp e1, Exp e2, Exp e3);

}
interface ExtFreeVars<Exp> extends ExtLamAlgQuery<Exp,Set<String>>, FreeVars<Exp>

{}
interface ExtSubstVar<Exp> extends ExtLamAlgTransform<Exp>, SubstVar<Exp> {}

Figure 10 Untyped lambda calculus with extensions.

3.6 Discussion
Suppose we wish to implement a larger language based on the untyped lambda calculus.
Instead of defining everything from scratch, we can easily build this language through reusing
existing EVF components, as illustrated by Figure 10. The annotated Object Algebra
interface ExtLamAlg extends LamAlg with constructs for boolean values and if-expressions. To
support free variables and substitution for this extended language, we can simply compose
existing components defined for LamAlg (FreeVars and SubstVar) with newly generated tem-
plates for ExtLamAlg (ExtLamAlgQuery and ExtLamAlgTransform). We can even combine more
features via multiple interface inheritance. Of course, similar instantiation code shown in
Figure 9 is needed for the client code.

We discuss the strength and weakness of PL implementations using EVF here:
1. Modularity: Like Object Algebras, EVF components are modular, extensible and

type-safe. This means that it is possible to create libraries of language components. For
example, the implementations of the untyped lambda calculus can be put in a library, and
be reused in implementations of larger programming languages that include the untyped
lambda calculus. This is simply not possible (in a type-safe way) with an implementation
based on traditional (non-modular) visitors. In other words, modularity enables the
creation of SPLs of language components.

2. Reduction of Implementation Effort: A direct consequence of modularity is that
implementation effort can be reduced through reuse. In EVF there are two different
mechanisms which support reuse:

Reuse from Extensibility: A larger language can extend the existing operations
and define only cases for the new language constructs. As the above example shows,
for defining a new language that extends the untyped lambda calculus, only the cases
for the extended constructs would be defined by the programmer.
Reuse from Traversal Templates: Many operations, including free variables and
substitution are structure-shy. That is, in most cases the definition is a congruent
recursive traversal of the children. Only a few cases (variables and binders) are actually
defining interesting behavior. Thus, traversal templates significantly reduce the number
of cases that needs to be written by language implementers. Indeed, if an extension to
the untyped lambda calculus does not have new binders or types of variables like the
above example, programmers do not need to define any new cases for free variables
and substitution: they get an automatic implementation from the traversal templates.

3. Reduction of Knowledge about PL Implementations: Reuse enables moving
complex aspects of PL implementations to library code. For example, it is well-known that
capture-avoiding substitution is a rather subtle operation to define. If PL implementers
can simply reuse implementations of such operations, they do not need to understand the
tricky details of the operation. With EVF any language extensions that do not involve
new types of binders or variables, do not require users to understand how capture-avoiding
substitution works.

ECOOP 2017

29:18 EVF

Syntax of Object Algebra Interfaces
L ::= interface I0 extends I {C} Object Algebra interfaces
C ::= X c(T x); constructors
I ::= A<X> interface types
T ::= X | int | boolean | . . . argument types
Translation Scheme
J@Visitor interface I0 extends I {C}K = interface JI0K extends JIK { JCK visitXin(I0)}
JA<X>K = GA<X,[OX | X ∈ allXin(AT(I))]>
JX c(T x);K = OX c(T x);
Auxiliary Definitions
returntype(X c(T x);) = X
allXin(interface I0 extends I {C}) = {returntype(C) | C ∈ C} ∪

⋃
I∈I allXin(AT(I))

newXin(interface I0 extends I {C}) = allXin(AT(I0)) \
⋃

I∈I allXin(AT(I))
visitXin(I) = [OX visitX(X x); | X ∈ newXin(AT(I))]

Figure 11 Translation from Object Algebra interfaces to modular visitor interfaces.

There are also two main limitations of the EVF framework:
1. Learning Effort: The definitions of EVF visitors may not be very intuitive at first

glance. It takes some effort from users to learn the modular visitor encoding, various
traversal templates and how to instantiate visitors.

2. Boilerplate Instantiation: Although most boilerplate code is eliminated by EVF,
there is still some left. Visitors have to be instantiated manually before they can be
actually used, which may require significant amounts of code (see Figure 9 for example).

4 Code Generation in EVF

To facilitate development using modular external visitors, EVF automatically generates a
lot of boilerplate code related to ASTs and AST traversals. This section gives the details
about the generated code in a formal way.

4.1 Modular External Visitor Interfaces
It is cumbersome for users to directly write down the modular external visitor interfaces,
especially when multiple sorts are needed. This motivates us to let EVF automatically
translate a conventional Object Algebra interface into its corresponding modular external
visitor interface. A generated modular external visitor interface has been shown in Figure 8.
Figure 11 formalizes the translation.

Syntax of Object Algebra Interface. We first give the grammar of standard Object Algebra
interfaces. The metavariable A ranges over Object Algebra interface names; X ranges over
type parameters; c and x range over names. We write I as shorthand for I1, . . . , In, X for
X1, . . . ,Xn; C for C1 . . .Cn (no commas in between). We abbreviate operations on pairs of
sequences similarly, writing “T x” for “T1 x1, . . . ,Tn xn”, where n is the length of T and x.
Following standard practice, we assume an Object Algebra interface table (AT) that maps
an Object Algebra interface type I to its declaration L.

Translation Scheme. Translation rules are defined using semantic brackets (J·K). The
bracket notation [f(A) | A ∈ A] denotes that the function f is applied to each element in the

W.Zhang and B. C. d. S. Oliveira 29:19

list A sequentially to generate a new list. The curly brace notation {f(A) | A ∈ A} is similar
to the bracket notation except that it collects a set of elements while preserving their order.

The fundamental step of the translation is to separate input types from the type parameter
list. We classify a type parameter as an input type if it is a return type of any constructor
from the algebra interface hierarchy. These type parameters are special because they have
corresponding output type and visitX method. The translation scheme consists of three
main steps. First, we find out all input types and augment the type parameter list with their
corresponding output types. Second, the return types of the constructors are replaced by
output types. Last, the visitX methods are generated for new input types.

Auxiliary Definitions. The translation scheme relies on auxiliary definitions: returntype gets
the return type of a constructor (considered as an input type); allXin collects all input types
from the interface hierarchy; newXin collects input types that are not introduced by super
interfaces; finally, visitXin generates one visitX method for each input type.

4.2 AST Infrastructure
Each modular visitor interface should have the corresponding AST infrastructure for instan-
tiation and client code. However, such AST infrastructure is non-modular and tedious to
write, as we have seen in Section 2. This is because whenever extending a modular visitor,
we have to define a new AST hierarchy representing both newly introduced constructs as well
as all existing constructs. Fortunately, EVF automatically generates such infrastructure for
us. For example, the following code shows the generated AST infrastructure for the untyped
lambda calculus:
public interface Exp { <OExp> OExp accept(GLamAlg<Exp,OExp> v); }
public interface LamAlgVisitor<OExp> extends GLamAlg<Exp,OExp> {

default OExp visitExp(Exp e) { return e.accept(this); }
}
public class LamAlgFactory implements LamAlg<Exp> {

public Exp Var(String x) {
return new Exp() {

public <OExp> OExp accept(GLamAlg<Exp,OExp> v) {
return v.Var(x);

}};}
public Exp Abs(String x, Exp e) {

return new Exp() {
public <OExp> OExp accept(GLamAlg<Exp,OExp> v) {

return v.Abs(x, e);
}};}
...

}

The code is slightly different from the code shown in Figure 3. Instead of generating one
class per construct, EVF generates a concrete factory LamAlgFactory that implements the
Object Algebra interface (abstract factory). LamAlgFactory exposes one factory method for
each construct, which not only simplifies the creation of ASTs (without using new all the
time) but also can be used for instantiating modular transformations. For example, line 9
and line 13-14 in Figure 9 illustrate the use of LamAlgFactory.

4.3 Boilerplate Traversals
AST traversals often contain a lot of boilerplate code. To address that problem the Shy
framework [62] provides a number of boilerplate traversals automatically for Object Algebras.

ECOOP 2017

29:20 EVF

EVF also supports boilerplate traversals just as Shy does, but it generalizes them to modular
external visitors. Notably, and unlike Shy, boilerplate traversals in EVF are not restricted
to be bottom-up. We have seen how such traversals help in eliminating boilerplate code in
Section 3. In this section, we formalize two core traversal templates and additionally introduce
a novel type of traversal pattern. Other Shy templates like contextual transformations are
omitted for space reasons, but they are essentially variations of these core templates.

Queries with Default Values. Inspired by wildcard patterns in functional languages, EVF
supports a new type of queries with default values. This template gives each case an
implementation using the client-supplied default value, which is handy for defining operations
with a lot of cases sharing the same behavior. Consider the untyped calculus again. We
may want to inspect the form of an expression, for example whether it is a literal. It would
be tedious to define such an operation because we have to define a lot of repetitive cases -
all cases except for Lit return a false. With the LamAlgDefault template, however, we only
need to supply a default value (false) once via implementing the m method instead of giving
each of those repetitive cases an implementation manually:
interface IsLit<Exp> extends LamAlgDefault<Exp, Boolean> {

default Zero<Boolean> m() { return () -> false; }
default Boolean Lit(int n) { return true; }

}

Now we give the template of queries with default values formally. Given an Object Algebra
interface A, let X denote the input types of A where X = allXin(AT(A)). The template is:
interface Zero<O> { O empty(); }

interface A0Default<X0,O> extends GA0<X0,

|X0|︷ ︸︸ ︷
O,...,O>, ADefault<X,O> {

Zero<O> m();
default O c(T x) { return m().empty(); }

}

The functional interface Zero is the default value provider on which Default depends. Default
implements all cases of an interface simply through returning that default value. The default
value is obtained by invoking m().empty(). The implementation of m is delayed to concrete
visitors that use the Default template, for allowing different default values to be specified.

Queries by Aggregation. Another form of query traverses the whole AST and aggregates a
value. Recall the definition of FreeVars shown in Figure 7. It uses the template LamAlgQuery.
The template for queries by aggregation is given below:
interface Monoid<O> extends Zero<O> { O join(O x, O y); }

interface A0Query<X0,O> extends GA0<X0,

|X0|︷ ︸︸ ︷
O,...,O>, AQuery<X,O> {

Monoid<O> m();
default O c(T x) {

return


m().empty(); if @T ∈ T ∧ T ∈ X0,

Stream.of([visitT(x)|T ∈ T ∧ T ∈ X0]) otherwise.
.reduce(m().empty(),m()::join);

}
}

The Monoid interface can not only provide the default value through the empty method
inherited from Zero, but also exposes a join method for combining intermediate results.

W.Zhang and B. C. d. S. Oliveira 29:21

Query gives different implementations to a constructor according to whether it is a primitive
(i.e. no argument of any input types) or a combinator. If the constructor is a primitive,
the result is m().empty(); otherwise corresponding visitX methods get called on recursive
arguments and their results are combined using m().join(). For example, in the definition
of FreeVars, the generic SetMonoid class is used for fulfilling the m dependency where empty
returns an empty set and join is the union of two sets:
class SetMonoid<T> implements Monoid<Set<T>> {

public Set<T> empty() { return Collections.emptySet(); }
public Set<T> join(Set<T> x, Set<T> y) {

return Stream.concat(x.stream(), y.stream()).collect(Collectors.toSet());
}

}

Transformations. Transformations are operations that transform an AST to another AST.
Transformations use a factory to construct another AST that is further transformed or
consumed. Recall the definition of SubstVar shown in Figure 7. It uses the transforma-
tion template LamAlgTransform for eliminating boilerplate code. The general template for
transformations is given below:

interface A0Transform<X0> extends GA0<X0,X0>, ATransform<X,X> {
A0<X0> alg();
default X c(T x) { return alg().c(visitT (T, x)); }

}

In Transform the output types are the same as input types, reflecting the essence of a
transformation. An auxiliary definition visitT is needed, which transforms an argument only
when it is of any input types:

visitT (T, x) =
{

visitT(x) if T ∈ X0,

x otherwise.

5 Case Study

To reveal the utility of EVF, we implemented a large number of interpreters from TAPL [47].
TAPL is a good benchmark for modularity mainly because it contains a dozen of languages,
where subsequently defined languages are extensions of the previously defined ones. The
original implementation in OCaml1 is, however, non-modular. Using EVF we are able to
create a modular SPL of the TAPL interpreters, enabling sharing large portions of code and
features. Our programming language SPL contains several modular operations, which would
be non-trivial to define with standard Object Algebras.

5.1 Overview
Terms and types are the main data structures for modeling languages, on which families of
operations are defined. Such operations include: interpreters and type-checkers for terms;
type equality and subtype relations for types. Starting from a simple untyped arithmetic
language, TAPL gradually introduces new features (lambdas, records, references, exceptions,
etc.) and combines them with some of existing features to form various languages. However,

1 https://www.cis.upenn.edu/~bcpierce/tapl

ECOOP 2017

https://www.cis.upenn.edu/~bcpierce/tapl

29:22 EVF

arith

boolnat

extension

recordfloatstringlet tyarith

typed

fullerror

simplebool

bot

fullref

fullsimple

variant

fullsub

moreextension

varapp

top

fulluntyped

untyped

rcdsubbot

arith

boolnat

extension

recordliterallet tyarith

typed

fullerror

simplebool

bot

fullref

fullsimple

variant

fullsub

moreextension

varapp

top

fulluntyped

untyped

rcdsubbot

LEGEND
original package

extracted package
term dependency
type dependency

Figure 12 Package dependency graph.

due to the use of algebraic datatypes in OCaml, “combining” features is actually done
through copy&paste, causing modularity issues. EVF, on the other hand, is equipped with
modular composition mechanisms and can compose features without code duplication.

Figure 12 gives a bird’s-eye view of the EVF implementation of TAPL. To enhance
modularity, we extract conceptually independent features into separate packages for reuse.
In Figure 12, original packages are represented using boxes and extracted packages are
represented using ellipses. The interactions among languages are explicitly revealed by the
arrows. For example, bool is an extracted language representing booleans and conditionals,
on which arith and simplebool are built.

Composable Language Implementations. According to the criteria set by Erdweg et
al. [14], EVF has a good support for language composition. Specifically, three forms of
language composition — language extension, language unification and extension composition
— are supported. The support for language composition in EVF owes to Java 8 multiple
interface inheritance. For example, arith unifies nat and bool with an extension (TmIsZero)
that supports testing whether a term is zero or not:

@Visitor interface TermAlg<Term> extends bool.TermAlg<Term>, nat.TermAlg<Term> {
Term TmIsZero(Term t);

}

Instead of duplicating constructs from nat and bool, we reuse them by extending their
respective TermAlg. From Figure 12 we can see that arith, as an extension, is further
composed by extension. This kind of composability retains on operations as well.

Multiple Sorts. The case study also illustrates how multi-sorted languages can be defined
using EVF. The demand for multiple sorts arises when a term needs a type in its definition.
For instance, typed implements the typed lambda calculus, whose TermAlg is multi-sorted:

@Visitor interface TermAlg<Term,Ty> extends varapp.TermAlg<Term> {

W.Zhang and B. C. d. S. Oliveira 29:23

Term TmAbs(String x, Ty ty, Term t);
}

The abstraction (TmAbs) requires its argument of a specific type. Here we use another type
parameter Ty to loosely capture the dependency on types and model types in a separate
Object Algebra interface:

@Visitor interface TyAlg<Ty> {
Ty TyArr(Ty ty1, Ty ty2);

}

The reason to separate types and terms is that they belong to different syntactic categories in
the typed lambda calculus, on which two completely different sets of operations are defined.
It would make no sense to have a small-step evaluator on types or defining subtyping relations
on terms. This separation makes visitors fine-grained, allowing independent extensibility on
both types and terms.

Dependent Operations. A key difference between TAPL and other case studies conducted
on modularity is that operations in TAPL may have complex dependencies. An instance is
the typechecking function, which has complex dependencies in the presence of subtyping:

Typeof
Join SubtypeMeet TyEqv

The typechecker Typeof directly depends on Join and Subtype for calculating the least
supertype of the two branches of an if-expression and performing a subtype check between
the calculated type against the expected type respectively. Join and Subtype have their own
dependencies on Meet and TyEqv. Meet in turn depends on Join, making the dependency circu-
lar. Such complex dependencies pose difficulties in modularizing Typeof. Fortunately, EVF
makes the implementation of Typeof straightforward using similar dependency mechanism
presented in Section 3.

5.2 Components

De Bruijn Indices. In TAPL, de Bruijn indices are used in languages based on the lambda
calculus for modeling binder-related constructs. As opposed to the nominal representation
used in Section 3, a variable is represented by a natural number, denoting the distance from
the closest binder to its corresponding binder. For example, the nominal term λx.λy.(x y)
corresponds to the de Bruijn term λ.λ.(1 0). From the implementation point of view, de Bruijn
indices have many advantages, making it simpler to define substitution and α-equivalence.
However, terms represented in de Bruijn indices become less readable and not so intuitive to
manipulate. Hence, operations on de Bruijn indices are a good candidate to be part of the
library so that end users can enjoy benefits of de Bruijn indices without being bothered by
their technical details. We encapsulate these operations including shifting and substitution
as EVF components and put into the extracted varapp package. To reuse de Bruijn indices
and their associated operations elsewhere, an EVF user can easily reuse these components in
their own languages via some glue code similar to Figure 10. On the other hand, an OCaml
user would have to copy&paste the code snippet and modify it accordingly.

ECOOP 2017

29:24 EVF

Constant Function Elimination. Optimizations are another suitable source of candidates
to be modeled as components. The reason is that an optimization typically focuses on a
small set of language constructs with a fixed algorithm. By implementing optimizations as
EVF components, their complexity is hidden and they can be easily adapted elsewhere.

We added constant function elimination [32] to the TAPL case study for demonstration
purposes. An abstraction λx.e1 is a constant function if x is not used in e1. Then, an
application (λx.e1) e2 can be safely replaced by e1 while retaining the semantics. Our goal
is to eliminate all such constant functions in a term. This optimization is nontrivial to define
as it has several dependencies.

First, we need to extract the body from an abstraction:
interface GetBodyFromTmAbs<Term> extends TermAlgDefault<Term,Optional<Term>> {

default Zero<Optional<Term>> m() { return () -> Optional.empty(); }
default Optional<Term> TmAbs(String x, Term t) { return Optional.of(t); }

}

By using the TermAlgDefault template, only the abstraction case needs to be explicitly defined.
Next, we check whether the variable introduced by the abstraction is used in the body:
interface IsVarUsed<Term> extends TermAlgQueryWithCtx<Integer,Boolean,Term> {

default Monoid<Boolean> m() { return new OrMonoid(); }
default Function<Integer, Boolean> TmVar(int x, int n) { return c -> x == c; }
default Function<Integer,Boolean> TmAbs(String x, Term t) {

return c -> visitTerm(t).apply(c+1);
}

}

The traversal template TermAlgQueryWithCtx is a variant of queries by aggregation, which
additionally takes a context in recursive calls. Finally, we are able to define the optimization:
interface ConstFunElim<Term> extends TermAlgTransform<Term> {

Term termShift(int d, Term t);
Optional<Term> getBodyFromTmAbs(Term t);
Boolean isVarUsed(int i, Term t);
default Term TmApp(Term e1, Term e2) {

Term e = visitTerm(e1);
return getBodyFromTmAbs(e)

.map(t -> isVarUsed(0, t) ? alg().TmApp(e, visitTerm(e2)) : termShift(-1, t))

.orElse(alg().TmApp(e, visitTerm(e2)));
}

}

ConstFunElim traverses the AST top down. When a TmApp is found, it will first optimize
e1 to be e and then extract the body t from e using getBodyFromTmAbs. Next we check
whether the variable is used in the body via isVarUsed. If not, the whole expression will
be replaced by t with its de Bruijn indices decreased by 1 using termShift. Otherwise, the
optimization continues on e2 and wraps the optimized e1 and e2 back to TmApp. Constant
function elimination as well as various other operations (including the small-step evaluators)
would be tricky to model using Object Algebras because they are in essence top-down
operations. However, with modular external visitors such operations are easy to model and
traversal templates can be used to eliminate boilerplate on them.

5.3 Evaluation
To evaluate EVF’s implementation of the case study, we compare to the original OCaml
implementation. Table 1 compares SLOC (excluding blank lines and comments) of the EVF

W.Zhang and B. C. d. S. Oliveira 29:25

Table 1 SLOC statistics EVF vs OCaml: A package perspective.

Extracted Package EVF Original Package EVF OCaml % Reduced
bool 98 arith 33 102 68%
extension 34 bot 61 184 67%
floatstring 104 fullerror 105 366 72%
let 47 fullref 247 880 72%
moreextension 106 fullsimple 83 651 88%
nat 103 fullsub 116 628 82%
record 198 fulluntyped 47 300 85%
top 86 rcdsubbot 39 255 85%
typed 138 simplebool 38 211 77%
utils 172 tyarith 26 135 78%
varapp 65 untyped 46 128 61%
variant 161 Total 2153 3840 44%

implementation2 with the non-modular OCaml version. The left-hand side counts SLOC
of the extracted packages and the right-hand side compares SLOC of the original packages.
Although an OOP language like Java is considerably more verbose than a functional language
like OCaml, EVF’s implementation reduces 44% of SLOC counting all packages, thanks
to modularity and code generation techniques. The reduction of SLOC for each original
package is on average 76%. For feature-rich languages like fullsimple, the reduction is even
more dramatic and can be up to 88%. The reason is that all these original packages reuse
features from other packages more or less. If all these languages were orthogonal in features,
OCaml would beat EVF in terms of SLOC without question. However, from Figure 12
we can see that features like the lambda calculus are frequently reused by other packages
directly or indirectly, which makes a great difference to the total SLOC.

The comparison of SLOC between packages is not that straightforward: EVF’s imple-
mentation has dependencies whereas the OCaml implementation is stand-alone. Table 2
does the comparison from the component perspective which sums the SLOC of two core
components, AST definitions and small-step evaluators, for all packages. The results show
that both SLOC are reduced significantly, which explains why the total SLOC of EVF is
reduced.

As discussed in Section 3, the drawback of EVF components is an additional step for
instantiation. The SLOC needed for instantiating an operation is proportional to the number
of dependencies it has. To measure the instantiation overhead, we count the SLOC of
instantiation per original package. The statistics show that the SLOC grows together with
the language. Concretely, the SLOC for the simplest (arith), the medium (simplebool) and
the largest (fullref) languages are 26, 63 and 109. The reason is that feature-rich languages
support more operations and/or their supported operations have more dependencies.

6 Performance Measurements

This section gives the preliminary performance measurements on EVF. The novel visitX
methods introduced by EVF add one more level of dispatching to the standard Visitor

2 We count only the files core.ml and syntax.ml, excluding the parser, the REPL and etc.

ECOOP 2017

29:26 EVF

Table 2 SLOC statics EVF vs OCaml: A component perspective.

Component EVF OCaml % Reduced
AST Definition 85 231 64%
Small-step Evaluator 263 481 46%

Table 3 Performance.

Approach Time (ms)
Imperative Visitor 133
Functional Visitor 163
Runabout 278
EVF 262

pattern, which causes some execution overhead. To have a rough idea about the impact
of the visitX methods on performance, we run a microbenchmark adapted from [45]. We
compare ourselves with respect to the two variants of the Visitor pattern [6]: imperative
visitors and functional visitors. An imperative visitor uses side effects to do the computation
whereas a functional visitor computes a result via return values. We also compare ourselves
to Runabout [21], a performant reflection-based approach for achieving extensibility.

The benchmark requires each approach to model linked lists and sum a linked list of
length 2000 for 10000 times. Implementations with these four approaches can be found
online. The benchmark programs were compiled using Oracle JDK 1.8 and executed on
the JVM in 64bit server mode on a 2.6 GHz MacBook Pro Intel Core i5 with 8GB memory.
Table 3 summarizes the run time of each approach. The results show that imperative visitors
are fastest among the four approaches. The functional visitor implementation ran slower
than the imperative visitor approach due to the heavy use of recursion. One more layer of
indirection brings additional performance penalty to EVF, which takes about double of the
time with respect to the imperative visitor but still outperforms the Runabout. Of course,
more rigorous and extensive benchmarks need to be performed to validate the results.

7 Related Work

Extensible Visitors. Early work on the Visitor pattern [31, 58, 45] pointed out extensibility
limitations of the Visitor pattern and proposed several solutions. Those early approaches
use runtime checks and can suffer from runtime errors without careful use. Palsberg and
Jay [45] proposed a generic class Walkabout as the root of visitors. By using Java’s runtime
reflection, the Walkabout removes the need for accept methods in AST types. This decouples
the AST type from the visitor interface, allowing new variants to be introduced as well.
Unfortunately, the extensive use of introspection causes severe performance penalties. Based
on the Walkabout, Grothoff proposed Runabout [21], attempting to achieve reasonable
performance through sophisticated bytecode generation and caching. Forax’s Sprintabout [17]
further improves the performance of Runabout by eliminating the manual creation of AST
infrastructure. However, Walkabout and its successors are not type-safe. Torgersen [53]
developed variations of the Visitor pattern to solve the Expression Problem [59]. The
solutions are type-safe but rely on advanced features of generics such as wildcards or F-bounds.
Also, the programming patterns are relatively complex thus hard for programmers to learn.
Inspired by other type-safe variations of Visitor pattern [44, 40, 24] using advanced Scala

W.Zhang and B. C. d. S. Oliveira 29:27

type system features, our work applies similar techniques but requires only simple generics
available in Java. The visitX methods in modular external visitor interfaces are a novel
contribution of our work, and greatly account for the simplicity and flexibility of EVF.

Structure-Shy Traversals with Visitors. There has also been work on eliminating boilerplate
code in the Visitor pattern. A typical way is to use default visitors [38]. A default visitor
defines the traversal template for a specific visitor interface. By subclassing the default
visitor, concrete visitors only need to override interesting cases. Walkabout [45] removes the
need of a new traversal template for every visitor interface by providing a single traversal
template that works for all visitors. The default traversal in Walkabout is achieved through
invoking the overloaded visit method on children. EVF employs annotation processing to
automatically generate specialized traversal templates for each modular visitor interface.
But the fundamental difference is that static type safety is preserved in EVF. Visser [57]
ported ideas from the rewriting system Stratego [56] to the Visitor pattern. The resulting
framework JJTraverler exposes a series of visitor combinators to achieve flexible traversal
control and visitor combination. The proposed combinators can express various traversal
strategies such as bottom-up, top-down, sequential or alternative composition of visitors.
To make these combinators generic, runtime reflection is also used. The combinators are
developed in the setting of imperative visitors and hence can not be directly mapped to
EVF. We would like to explore a library of visitor combinators in EVF as future work.

Object Algebras and Church Encodings. Various programming techniques have been
inspired by Church encodings in the past. Hinze [23] firstly Church-encoded datatypes using
type classes in Haskell. Based on Hinze’s work, Oliveira et al. [42] presented solutions to
the EP using type classes. Carette et al. [7] and Hofer et al. [25] further illustrated the
applicability of those techniques for defining interpreters and embedded DSLs. Another well-
known solution to the EP is “Data types à la carte” (DTC) [52]. DTC represents a data type
as a functor, where a type parameter is used for capturing recursive occurrences of that data
type, enabling extensibility. A type-level fixpoint is defined for tying the knot. As discussed in
detail in Section 2, Church encodings suffer from lack of traversal control. A variant of Church
encodings called Mendler encoding [34] offers recursion control. Delaware et al. [12] combines
Mendler encodings and DTC to develop modular meta-theory. Technically speaking, Modular
external visitors differ from Mendler-style encodings in that they require recursive types. The
use of recursive types is unproblematic in Java and it is the key for dealing with dependencies
and achieving more efficient traversals. Mendler encodings, on the other hand, do not rely on
recursive types, but cannot deal with dependencies and (just as regular Church encodings)
suffer from efficiency problems. In object-oriented programming, Object Algebras [41] are also
a modular design pattern based on Church encodings. Object Algebras solve the recursion
control problem by instantiating Object Algebra interface using thunks [41]. Improved
support for dependencies for Object Algebras have been proposed [43, 50]. Unfortunately,
this cannot be ported to Java as more sophisticated features are required. Other problems
such as no concrete AST representation hinder the practical use of Object Algebras [20].
EVF visitors solve these problems with only simple generics, thus eliminating the need for
various techniques used with Object Algebras.

Component-Based Language Development. The idea of constructing languages by as-
sembling components dates back to the 1980s [30]. Most closely related is Mosses’s work
on component-based semantics [36]. The idea is to provide a collection of highly reusable
fundamental constructs (funcons) with predefined semantics [9]. By mapping the constructs

ECOOP 2017

29:28 EVF

of a language to these funcons, the operational semantics of the language can be obtained
for free. The semantics of these funcons are specified using modular structural operational
semantics (MSOS) [35]. Later work on Implcitly MSOS (I-MSOS) [37] deals with the con-
text propagation problem, further improving the modularity and reusability of semantics
specification. From MSOS/I-MSOS specifications, interpreters can be derived [49]. Similar
funcons can also be developed as EVF components.

Language Workbenches. Language workbenches are aimed at lowering the amount of
effort to develop new languages. Examples of modern, mature language workbenches include:
Xtext [13], MPS [18], Spoofax [29]. At the moment some language workbenches and other
tools provide support for code reuse through syntactic modularization techniques, based on
meta-programming and code generation. For example, DynSem [55] is a DSL integrated
into Spoofax for generating interpreters from I-MSOS like specifications. Such techniques
allow language components to be specified in separate files. However, more semantic aspects
of modularity, such as the ability to do separate compilation and modular type-checking
are typically missing. Recent work on MontiCore [22] generates both the visitor and the
AST infrastructure from the grammar specification. MontiCore allows two dimensions of
extensibility. The extensibility on data variants is achieved through making the extended
AST types subtypes of the initial AST types, and overriding the accept methods inherited
from the initial AST types appropriately. MontiCore automatically overrides the accept
methods by checking the runtime type of the visitor instance and casting it to the most
specific one. Moreover, since the accept methods are overloaded in extended AST types, the
compiler gives no warning when an initial visitor is applied to an extended AST, leading
to unexpected behavior. The technique is quite similar to Krishnamurthi et. al’s [31]
early solution to extensible visitors. Like their solution, Monticore’s approach does not
fully support modular type-checking, due to the use of casts. EVF provides a different
approach to the composition of semantic language components that fully supports type-safe
extensibility, as well as separate compilation. Unlike MontiCore, EVF generates different
AST infrastructures for different visitor interfaces and requires no casts. Hence, the compiler
will capture the mismatch between the visitors and the AST. However, EVF does not support
modularization of syntactic language components (such as grammars and/or parsers) for the
moment. An interesting venue for future work would be to integrate the EVF techniques
into a language workbench, such as MontiCore.

Software Product-Lines. Software Product-Lines (SPLs) [10, 33, 28] allow similar systems
(with different variations) to be generated from a set of common features. There are various
tools that can be used to develop SPLs, including GenVoca [4], AHEAD [3], FeatureC++ [2]
and FeatureHouse [1]. SPLs tools can also be used to modularize features in programming
languages and are an alternative to language workbenches. In contrast to language work-
benches, SPLs tools are targeted at general purpose software development. Similarly to most
language workbenches, most SPLs tools use syntactic modularization mechanisms, which do
not support separate compilation and/or modular type-checking.

8 Conclusion

We have presented EVF: an extensible and expressive Java Visitor framework. EVF’s
support for modular external visitors allows complex dependencies between operations to
be expressed modularly and provides users with flexible traversal strategies for defining

W.Zhang and B. C. d. S. Oliveira 29:29

expressive operations. To make EVF easy to use, we develop an annotation processor to
generate boilerplate code. Users only need to annotate the Object Algebra interfaces. Then
all the infrastructure will be automatically generated, including ASTs and AST traversals.
The TAPL case study demonstrates the applicability and benefits of EVF in reducing both
implementation effort and the need for specialized PL implementation knowledge. Currently,
EVF users have to instantiate visitors manually. One line of future work is to investigate
automatic instantiation of visitors. Similar instantiation problem has been identified by
Wang and Oliveira [60] and solved by Wang et al. [61]. It may be possible to automatically
instantiate visitors in EVF through a combination of family polymorphism [16] and the
technique from [61]. Another avenue of future work is to use EVF in larger applications,
such as compilers or program analysis tools.

Acknowledgements. We would like to thank the anonymous reviewers for their helpful
comments.

References
1 Sven Apel, Christian Kastner, and Christian Lengauer. Featurehouse: Language-

independent, automated software composition. In Proceedings of the 31st International
Conference on Software Engineering, 2009.

2 Sven Apel, Thomas Leich, Marko Rosenmüller, and Gunter Saake. Featurec++: on the
symbiosis of feature-oriented and aspect-oriented programming. In International Confer-
ence on Generative Programming and Component Engineering, 2005.

3 Don Batory. Feature-oriented programming and the ahead tool suite. In Proceedings of the
26th International Conference on Software Engineering, 2004.

4 Don Batory and Bart J. Geraci. Composition validation and subjectivity in genvoca gen-
erators. IEEE Transactions on Software Engineering, 23(2):67–82, 1997.

5 Corrado Böhm and Alessandro Berarducci. Automatic synthesis of typed λ-programs on
term algebras. Theoretical Computer Science, 39:135–154, 1985.

6 Peter Buchlovsky and Hayo Thielecke. A type-theoretic reconstruction of the visitor pattern.
Electronic Notes in Theoretical Computer Science, 155:309–329, 2006.

7 Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. Finally tagless, partially evaluated:
Tagless staged interpreters for simpler typed languages. Journal of Functional Programming,
19(05):509–543, 2009.

8 Alonzo Church. A set of postulates for the foundation of logic I. Annals of Mathematics,
33:346–366, 1932.

9 Martin Churchill, Peter D. Mosses, and Paolo Torrini. Reusable components of semantic
specifications. In Proceedings of the 13th International Conference on Modularity, 2014.

10 Paul Clements and Linda Northrop. Software product lines. Addison-Wesley„ 2002.
11 Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Functional characters of

solvable terms. Mathematical Logic Quarterly, 27(2-6):45–58, 1981.
12 Benjamin Delaware, Bruno C. d. S. Oliveira, and Tom Schrijvers. Meta-theory à la carte.

In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2013.

13 Sven Efftinge and Markus Völter. oAW xText: A framework for textual DSLs. InWorkshop
on Modeling Symposium at Eclipse Summit, 2006.

14 Sebastian Erdweg, Paolo G Giarrusso, and Tillmann Rendel. Language composition un-
tangled. In Proceedings of the Twelfth Workshop on Language Descriptions, Tools, and
Applications, 2012.

ECOOP 2017

29:30 EVF

15 Sebastian Erdweg, Tijs Van Der Storm, Markus Völter, Meinte Boersma, Remi Bosman,
William R Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex Loh, et al. The
state of the art in language workbenches. In International Conference on Software Language
Engineering, 2013.

16 Erik Ernst. Family polymorphism. In European Conference on Object-Oriented Program-
ming, 2001.

17 Rémi Forax, Etienne Duris, and Gilles Roussel. Reflection-based implementation of java
extensions: the double-dispatch use-case. In Proceedings of the 2005 ACM symposium on
Applied computing, 2005.

18 Martin Fowler. Language workbenches: The killer-app for domain specific languages, 2005.
http://martinfowler.com/articles/languageWorkbench.html.

19 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns : Ele-
ments of Reusable Object-Oriented Software. Addisson-Wesley, 1994.

20 Maria Gouseti, Chiel Peters, and Tijs van der Storm. Extensible language implementation
with object algebras. In Proceedings of the 2014 International Conference on Generative
Programming: Concepts and Experiences, 2014.

21 Christian Grothoff. Walkabout revisited: The runabout. In European Conference on Object-
Oriented Programming, 2003.

22 Robert Heim, Pedram Mir Seyed Nazari, Bernhard Rumpe, and Andreas Wortmann. Com-
positional language engineering using generated, extensible, static type-safe visitors. In
European Conference on Modelling Foundations and Applications, 2016.

23 Ralf Hinze. Generics for the masses. Journal of Functional Programming, 16(4-5), 2006.
24 Christian Hofer and Klaus Ostermann. Modular domain-specific language components in

scala. In Proceedings of the 9th International Conference on Generative Programming and
Component Engineering, 2010.

25 Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adriaan Moors. Polymorphic
embedding of dsls. In Proceedings of the 7th international conference on Generative pro-
gramming and component engineering, 2008.

26 Graham Hutton. A tutorial on the universality and expressiveness of fold. Journal of
Functional Programming, 9(4):355–372, 1999.

27 Pablo Inostroza and Tijs van der Storm. Modular interpreters for the masses. In Pro-
ceedings of the 2015 International Conference on Generative Programming: Concepts and
Experiences, 2015.

28 Christian Kästner, Sven Apel, and Klaus Ostermann. The road to feature modularity? In
Proceedings of the 15th International Software Product Line Conference, Volume 2, 2011.

29 Lennart C.L. Kats and Eelco Visser. The spoofax language workbench: Rules for declarative
specification of languages and ides. In Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications, 2010.

30 Paul Klint. A meta-environment for generating programming environments. ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 1993.

31 Shriram Krishnamurthi, Matthias Felleisen, and Daniel P Friedman. Synthesizing object-
oriented and functional design to promote re-use. In Proceedings of the 12th European
Conference on Object-Oriented Programming, 1998.

32 Ralf Lämmel, Joost Visser, and Jan Kort. Dealing with large bananas. In Johan Jeuring,
editor, Workshop on Generic Programming, Ponte de Lima, July 2000. Technical Report
UU-CS-2000-19, Universiteit Utrecht.

33 Roberto E Lopez-Herrejon, Don Batory, and William Cook. Evaluating support for fea-
tures in advanced modularization technologies. In European Conference on Object-Oriented
Programming, 2005.

W.Zhang and B. C. d. S. Oliveira 29:31

34 Nax Paul Mendler. Inductive types and type constraints in the second-order lambda calcu-
lus. Annals of pure and Applied logic, 51(1-2):159–172, 1991.

35 Peter D Mosses. Modular structural operational semantics. The Journal of Logic and
Algebraic Programming, 60:195–228, 2004.

36 Peter D Mosses. Component-based semantics. In Proceedings of the 8th international
workshop on Specification and verification of component-based systems, 2009.

37 Peter D. Mosses and Mark J. New. Implicit propagation in structural operational semantics.
Electronic Notes in Theoretical Computer Science, 229(4):49–66, August 2009.

38 Martin E Nordberg III. Variations on the visitor pattern. Ann Arbor, 1996.
39 Martin Odersky and Matthias Zenger. Independently extensible solutions to the expres-

sion problem. In The 12th International Workshop on Foundations of Object-Oriented
Languages, 2005.

40 Bruno C. d. S. Oliveira. Modular visitor components. In Proceedings of the 23rd European
Conference on Object-Oriented Programming, 2009.

41 Bruno C. d. S. Oliveira and William R. Cook. Extensibility for the masses: Practical
extensibility with object algebras. In Proceedings of the 26th European Conference on
Object-Oriented Programming, 2012.

42 Bruno C. d. S. Oliveira, Ralf Hinze, and Andres Löh. Extensible and modular generics for
the masses. Trends in Functional Programming, 7:199–216, 2006.

43 Bruno C. d. S. Oliveira, Tijs van der Storm, Alex Loh, and William R. Cook. Feature-
oriented programming with object algebras. In Proceedings of the 27th European Conference
on Object-Oriented Programming, 2013.

44 Bruno C. d. S. Oliveira, Meng Wang, and Jeremy Gibbons. The visitor pattern as a reusable,
generic, type-safe component. In Proceedings of the 2008 ACM International Conference
on Object Oriented Programming Systems Languages and Applications, 2008.

45 Jens Palsberg and C. Barry Jay. The essence of the visitor pattern. In Proceedings of the
22nd International Computer Software and Applications Conference, 1998.

46 Michel Parigot. Recursive programming with proofs. Theoretical Computer Science,
94(2):335–356, 1992.

47 Benjamin C Pierce. Types and programming languages. MIT press, 2002.
48 Garrel Pottinger. A type assignment for the strongly normalizable λ-terms. To HB Curry:

essays on combinatory logic, lambda calculus and formalism, pages 561–577, 1980.
49 Casper Bach Poulsen and Peter D Mosses. Generating specialized interpreters for modular

structural operational semantics. In International Symposium on Logic-Based Program
Synthesis and Transformation, 2013.

50 Tillmann Rendel, Jonathan Immanuel Brachthäuser, and Klaus Ostermann. From object
algebras to attribute grammars. In Proceedings of the 2014 ACM International Conference
on Object-Oriented Programming Systems Languages and Applications, 2014.

51 John C Reynolds. The coherence of languages with intersection types. In International
Symposium on Theoretical Aspects of Computer Software, 1991.

52 Wouter Swierstra. Data types à la carte. Journal of functional programming, 18(04):423–
436, 2008.

53 Mads Torgersen. The expression problem revisited – four new solutions using generics. In
Proceedings of the 18th European Conference on Object-Oriented Programming, 2004.

54 Edoardo Vacchi and Walter Cazzola. Neverlang: A framework for feature-oriented language
development. Computer Languages, Systems & Structures, 43:1–40, 2015.

55 Vlad Vergu, Pierre Neron, and Eelco Visser. Dynsem: A dsl for dynamic semantics specific-
ation. In 26th International Conference on Rewriting Techniques and Applications, 2015.

ECOOP 2017

29:32 EVF

56 Eelco Visser. Stratego: A language for program transformation based on rewriting
strategies system description of stratego 0.5. In International Conference on Rewriting
Techniques and Applications, 2001.

57 Joost Visser. Visitor combination and traversal control. In Proceedings of the 2001 ACM
International Conference on Object-Oriented Programming Systems Languages and Applic-
ations, 2001.

58 John Vlissides. Visitor in frameworks. C++ Report, 11(10):40–46, 1999.
59 Philip Wadler. The Expression Problem. Email, November 1998. Discussion on the Java

Genericity mailing list.
60 Yanlin Wang and Bruno C. d. S. Oliveira. The expression problem, trivially! In Proceedings

of the 15th International Conference on Modularity, 2016.
61 Yanlin Wang, Haoyuan Zhang, Bruno C d S Oliveira, and Marco Servetto. Classless java.

In Proceedings of the 2016 ACM SIGPLAN International Conference on Generative Pro-
gramming: Concepts and Experiences, 2016.

62 Haoyuan Zhang, Zewei Chu, Bruno C. d. S. Oliveira, and Tijs van der Storm. Scrap your
boilerplate with object algebras. In Proceedings of the 2015 ACM International Conference
on Object-Oriented Programming Systems Languages and Applications, 2015.

	Introduction
	Modular External Visitors
	Background: Internal/External Visitors and Object Algebras
	Internal versus External Visitors
	Key Idea: Abstracting Recursive Calls

	EVF for Modularity and Reuse of PL Implementations
	Untyped Lambda Calculus: A Running Example
	A Summary of the Implementations and Results
	An Implementation with the Visitor Pattern
	An Implementation with Object Algebras
	An Implementation with EVF
	Discussion

	Code Generation in EVF
	Modular External Visitor Interfaces
	AST Infrastructure
	Boilerplate Traversals

	Case Study
	Overview
	Components
	Evaluation

	Performance Measurements
	Related Work
	Conclusion

