
31st European Conference on
Object-Oriented Programming

ECOOP’17, June 18–23, 2017, Barcelona, Spain

Edited by

Peter Müller

LIPIcs – Vo l . 74 – ECOOP’17 www.dagstuh l .de/ l ip i c s



Editor
Peter Müller
Department of Computer Science
ETH Zurich
peter.mueller@inf.ethz.ch

ACM Classification 1998
D.1 Programming Techniques and D.2 Software Engineering

ISBN 978-3-95977-035-4

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-035-4.

Publication date
June, 2017

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ECOOP.2017.0

ISBN 978-3-95977-035-4 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-035-4
http://www.dagstuhl.de/dagpub/978-3-95977-035-4
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.0
http://www.dagstuhl.de/dagpub/978-3-95977-035-4
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics


0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Reykjavik University)
Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (LaBRI and University Bordeaux)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Raimund Seidel (Saarland University and Schloss Dagstuhl)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

ECOOP 2017

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics




Contents

Message from the Program Chair
Peter Müller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:ix

Message from the Artifact Evaluation Chairs
Philipp Haller, Michael Pradel, Tijs van der Storm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xi

Message from the President of AITO
Eric Jul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xiii

Organization
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xv

External Reviewers
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xix

List of Authors
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xxi

Abstracts of Keynote Lectures

Challenges to Achieving High Availability at Scale
Wolfram Schulte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1:1–1:1

Composing Software in an Age of Dissonance
Gilad Bracha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2:1–2:1

Retargeting Gradual Typing
Ross Tate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3:1–3:1

Regular Papers

Parallelizing Julia with a Non-Invasive DSL
Todd A. Anderson, Hai Liu, Lindsey Kuper, Ehsan Totoni, Jan Vitek, and
Tatiana Shpeisman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4:1–4:29

Modelling Homogeneous Generative Meta-Programming
Martin Berger, Laurence Tratt, and Christian Urban . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5:1–5:23

Relaxed Linear References for Lock-free Data Structures
Elias Castegren and Tobias Wrigstad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6:1–6:32

Type Abstraction for Relaxed Noninterference
Raimil Cruz, Tamara Rezk, Bernard Serpette, and Éric Tanter . . . . . . . . . . . . . . . . . . . 7:1–7:27

Concurrent Data Structures Linked in Time
Germán Andrés Delbianco, Ilya Sergey, Aleksandar Nanevski, and
Anindya Banerjee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8:1–8:30

Contracts in the Wild: A Study of Java Programs
Jens Dietrich, David J. Pearce, Kamil Jezek, and Premek Brada . . . . . . . . . . . . . . . . . 9:1–9:29

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/


0:vi Contents

Evil Pickles: DoS Attacks Based on Object-Graph Engineering
Jens Dietrich, Kamil Jezek, Shawn Rasheed, Amjed Tahir, and Alex Potanin . . . . . 10:1–10:32

Mixing Metaphors: Actors as Channels and Channels as Actors
Simon Fowler, Sam Lindley, and Philip Wadler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11:1–11:28

µPuppet: A Declarative Subset of the Puppet Configuration Language
Weili Fu, Roly Perera, Paul Anderson, and James Cheney . . . . . . . . . . . . . . . . . . . . . . . 12:1–12:27

A Generic Approach to Flow-Sensitive Polymorphic Effects
Colin S. Gordon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13:1–13:31

IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition
Daco C. Harkes and Eelco Visser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14:1–14:29

What’s the Optimal Performance of Precise Dynamic Race Detection? – A
Redundancy Perspective

Jeff Huang and Arun K. Rajagopalan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15:1–15:22

Speeding Up Maximal Causality Reduction with Static Dependency Analysis
Shiyou Huang and Jeff Huang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16:1–16:22

Strong Logic for Weak Memory: Reasoning About Release-Acquire Consistency in
Iris

Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and
Viktor Vafeiadis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17:1–17:29

A Co-contextual Type Checker for Featherweight Java
Edlira Kuci, Sebastian Erdweg, Oliver Bračevac, Andi Bejleri, and Mira Mezini . . 18:1–18:26

Proactive Synthesis of Recursive Tree-to-String Functions from Examples
Mikaël Mayer, Jad Hamza, and Viktor Kunčak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19:1–19:30

A Capability-Based Module System for Authority Control
Darya Melicher, Yangqingwei Shi, Alex Potanin, and Jonathan Aldrich . . . . . . . . . . 20:1–20:27

Data Exploration through Dot-driven Development
Tomas Petricek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21:1–21:27

Promising Compilation to ARMv8 POP
Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22:1–22:28

Interprocedural Specialization of Higher-Order Dynamic Languages Without
Static Analysis

Baptiste Saleil and Marc Feeley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23:1–23:23

A Linear Decomposition of Multiparty Sessions for Safe Distributed Programming
Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida . . . . . . . . . . . . . . . 24:1–24:31

Mailbox Abstractions for Static Analysis of Actor Programs
Quentin Stiévenart, Jens Nicolay, Wolfgang De Meuter, and Coen De Roover . . . . 25:1–25:30

Compiling Tree Transforms to Operate on Packed Representations
Michael Vollmer, Sarah Spall, Buddhika Chamith, Laith Sakka,
Chaitanya Koparkar, Milind Kulkarni, Sam Tobin-Hochstadt, and Ryan R. Newton 26:1–26:29



Contents 0:vii

Towards Strong Normalization for Dependent Object Types (DOT)
Fei Wang and Tiark Rompf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27:1–27:25

Mixed Messages: Measuring Conformance and Non-Interference in TypeScript
Jack Williams, J. Garrett Morris, Philip Wadler, and Jakub Zalewski . . . . . . . . . . . . 28:1–28:29

EVF: An Extensible and Expressive Visitor Framework for Programming
Language Reuse

Weixin Zhang and Bruno C. d. S. Oliveira . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29:1–29:32

An Empirical Study on Deoptimization in the Graal Compiler
Yudi Zheng, Lubomír Bulej, and Walter Binder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30:1–30:30

ECOOP 2017





Message from the PC Chair

Welcome to the 31st European Conference on Object-Oriented Programming! ECOOP’17
showcases exciting new research in programming languages and software engineering. The
selected papers cover a wide range of topics, including theory, systems, and experimental
work. The research track is complemented by seven workshops and the ECOOP summer
school; together with the co-located Curry On, DEBS, and PLDI conferences, ECOOP’17
promises to be an inspiring event!

As in the previous years, ECOOP used light double-blind reviewing, where author names
are withheld from a reviewer until they have submitted their initial review. We received 81
paper submissions. Each submission received between three and seven reviews. After an
author response period, the papers were first discussed electronically; the program committee
then discussed 48 submissions in depth at a physical PC meeting at ETH Zurich and selected
21 papers for publication. Some of these papers went through a shepherding phase to ensure
that crucial comments were taken into account in the final version. Submissions authored
by a PC member were held to slightly higher standards: they received at least five reviews
(with one exception), had an external reviewer, were discussed and decided upon before the
physical PC meeting, and were accepted only if there was no detractor and if shepherding
was not required. We accepted six PC papers, leading to a total of 27 accepted papers, which
are included in these proceedings. The PC selected the paper Strong Logic for Weak Memory:
Reasoning About Release-Acquire Consistency in Iris by Jan-Oliver Kaiser, Hoang-Hai Dang,
Derek Dreyer, Ori Lahav, and Viktor Vafeiadis for a Best Paper Award.

The final program includes three keynote talks: one by Wolfram Schulte, one by the
winner of the 2017 Dahl-Nygaard Senior Award, Gilad Bracha, and one by the winner of the
2017 Dahl-Nygaard Junior Award, Ross Tate.

Any conference depends first and foremost on the quality of its submissions. I would like
to thank all the authors who submitted their work to ECOOP’17! I am truly impressed by
the members of the program committee. They produced insightful and constructive reviews,
contributed very actively to the online and physical discussions, and were extremely helpful.
It was a honor to work with all of you! I am also grateful to the external reviewers, who
provided their expert opinions, often on short notice, and helped tremendously to reach
well-informed decisions. The organizing committee worked very professionally. I’d like to
thank especially the general chair Antonio Vallecillo and the comfy chair Jan Vitek, who were
a constant source of encouragement and support. I’d also like to thank the artifact evaluation
chairs Philipp Haller, Michael Pradel, and Tijs van der Storm for handling this important
part of the evaluation process. Thanks also to the publicity chair Silvia Crafa and the web
chair Javier Luis Cánovas Izquierdo for keeping the community informed about ECOOP’17.
I am very grateful to the AITO executive board, especially Sophia Drossopoulou and Jan
Vitek, for their trust and support. Finally, I’d like to thank Marlies Weissert for handling
the logistics of the PC meeting and Malte Schwerhoff for his help with the proceedings.

Peter Müller
May, 2017

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/




Message from the Artifact Evaluation Chairs

The ECOOP artifact evaluation (AE) considers artifacts, such as software and experimental
data, associated with a research paper published at ECOOP and reviews them independently
of the paper. The goal is to independently reproduce the results reported in the paper and
to provide a reusable tool, data set, etc., to the community. The long-term importance of
artifacts for the research community has been widely accepted, and this year’s ECOOP
follows a sequence of previous artifact evaluations at ECOOP and other conferences.

Authors of a paper accepted to ECOOP 2017 were invited to submit an accompanying
artifact. Each submitted artifact was reviewed by at least three members of the artifact
evaluation committee. We used a two-phase reviewing process. In the first phase, called
“kick-the-tires” phase, reviewers checked the documentation and the basic functionality of
each artifact and provided feedback to the authors. Next, the authors could respond to this
feedback and fix any minor issues, such as missing documentation or other problems that
might prevent reviewers from fully using the artifact. Finally, in the second phase, reviewers
thoroughly evaluated each artifact. In particular, the reviewers evaluated the quality of
the documentation, whether the results reported in the paper could be reproduced by the
artifact, and to what extent the artifact can be reused, e.g., for follow-up research.

In total, 18 artifacts were submitted for evaluation, i.e., for 67% of all accepted papers.
Out of these 18 artifacts, the committee accepted 16, i.e., a 89% acceptance rate among the
submitted artifacts. As a result, 59% of all research papers published at ECOOP 2017 have
been successfully artifact evaluated.

The effort of creating an artifact is a long-term contribution to the research community.
To recognize the effort invested by the authors, each artifact is archived in the Dagstuhl
Artifacts Series (DARTS) published on the Dagstuhl Research Online Publication Server
(DROPS). Each artifact is assigned a DOI, separate from the ECOOP companion paper,
allowing the community to cite artifacts on their own. Furthermore, all research papers
accompanied by an artifact show a seal of approval by the AEC on their first page.

The quality of the published artifacts depends not only on the authors but also on the
artifact evaluation committee. This year’s committee consisted of 19 members, all of which
did a great job and invested significant time to ensure that artifacts meet their expectations.
As the chairs of the artifact evaluation committee, we would like to thank all committee
members for contributing their time and energy. The organization of the evaluation process
and the publication of the artifacts volume in DARTS benefited greatly from the advice
and experience of previous AEC chairs, in particular, Camil Demetrescu, Matthew Flatt,
and Tijs van der Storm. The guidelines on artifact evaluation by Shriram Krishnamurthi,
Matthias Hauswirth, Steve Blackburn, and Jan Vitek published on the Artifact Evaluation
site (http://www.artifact-eval.org) were an invaluable resource. We are grateful for the
assistance of Michael Wagner in the publication of the artifacts volume. Finally, we would
like to thank the Program Chair Peter Müller for his help ensuring a smooth integration of
the review process for research papers and the artifact evaluation process.

Philipp Haller, Michael Pradel, Tijs van der Storm
May, 2017

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/




Message from the President of AITO

This year marks the 50th anniversary of Object-Orientation in that it is 50 years since the
first object-oriented programming language came into being, namely Simula 67, developed
in Norway under the lead of Ole-Johan Dahl and Kristen Nygaard. Simula was originally
developed to support simulation and the first version from 1964 was an extension of Algol 60
with support for simulation but without Object-Oriented features. These were introduced in
1967 and embodied in the next version of the language, Simula 67, that included fundamental
concepts such as class, object, and inheritance, hereby marking what can be seen as the
birth of Object-Orientation. In 2004, AITO established an annual prize in the name of the
Ole-Johan Dahl and Kristen Nygaard to honor their pioneering work on object-orientation
and Simula 67. At ECOOP 2017, we will mark the 50th anniversary in several ways including
a banquet dinner talk about Simula 67.

On behalf of AITO, I would like to thank the people who contribute to making ECOOP
2017 a successful conference; we hope that you will find it inspiring and, perhaps, even fun.

Eric Jul
May, 2017

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/




Organization

Organizing Committee

General Chair

Antonio Vallecillo, University of Màlaga, Spain

Program Chair

Peter Müller, ETH Zurich, Switzerland

Artifact Evaluation Chairs

Philipp Haller, KTH Royal Institute of Technology, Sweden
Michael Pradel, TU Darmstadt, Germany
Tijs van der Storm, CWI and University of Groningen, The Netherlands

Organizing Chair

Fernando Orejas, Universitat Politècnica de Catalunya, Spain

Sponsorship Chair, Comfy Chair

Jan Vitek, Northeastern University, USA

Publicity Chair

Silvia Crafa, University of Padova, Italy

Student Volunteer Chairs

Robert Clarisó, Universitat Oberta de Catalunya, Spain
Elvira Pino, Universitat Politècnica de Catalunya, Spain

Sponsorship Chair

Laurence Tratt, King’s College London, UK

Web Chair

Javier Luis Cánovas Izquierdo, Universitat Oberta de Catalunya, Spain

Treasurer and Conference Manager

Annabel Satin, P.C.K., UK

Doctoral Symposium Chairs

David Darais, University of Maryland, USA
Lisa Nguyen Quang Do, Fraunhofer IEM, Germany
Adam Ziolkowski, University of East Anglia, UK
31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/


0:xvi Organization

Summer School Chair

Jordi Cabot, Open University of Catalonia, Spain

Workshop Chairs

Werner Dietl, University of Waterloo, Canada
Ernest Teniente, Universitat Politècnica de Catalunya, Spain

Program Committee

Mark Batty, University of Kent, UK
Sebastian Burckhardt, Microsoft Research, USA
Bor-Yuh Evan Chang, University of Colorado Boulder, USA
Maria Christakis, University of Kent, UK
Mike Dodds, University of York, UK
Patrick Eugster, Purdue University, USA
Colin Gordon, Drexel University, USA
Philipp Haller, KTH Royal Institute of Technology, Sweden
Matthias Hauswirth, Università della Svizzera Italiana, Switzerland
Klaus Havelund, Jet Propulsion Laboratory, USA
Gorel Hedin, Lund University, Sweden
Bart Jacobs, KU Leuven, Belgium
Christian Kästner, Carnegie Mellon University, USA
Vu Le, Microsoft, Vietnam
Doug Lea, State University of New York, Oswego, USA
Brandon Lucia, Carnegie Mellon University, USA
Nicholas Matsakis, Mozilla Corporation, USA
Anders Møller, Aarhus University, Denmark
Bruno C. d. S. Oliveira, The University of Hong Kong, Hong Kong
Klaus Ostermann, University of Tübingen, Germany
Matthew Parkinson, Microsoft Research, UK
Corina Pasareanu, NASA Ames Research Center, USA
Tiark Rompf, Purdue University, USA
Grigore Rosu, University of Illinois at Urbana-Champaign, USA
Yannis Smaragdakis, University of Athens, Greece
Frank Tip, Northeastern University, USA
Omer Tripp, Google Inc., USA
Jan Vitek, Northeastern University, USA
Thomas Wies, New York University, USA
Tobias Wrigstad, Uppsala University, Sweden
Nobuko Yoshida, Imperial College London, UK
Francesco Zappa Nardelli, Inria, France



Organization 0:xvii

Artifact Evaluation Committee

Stephan Brandauer, Uppsala University, Sweden
Elias Castegren, Uppsala University, Sweden
Luca Della Toffola, ETH Zurich, Switzerland
Jonathan Eyolfson, University of Waterloo, Canada
Benjamin Greenman, Northeastern University, USA
Filip Krikava, Northeastern University, USA
Ivan Kuraj, MIT, USA
Yue Li, UNSW, Australia
Kasper Luckow, Carnegie Mellon University, USA
Petr Maj, Czech Technical University, Czech Republic
Darya Melicher, Carnegie Mellon University, USA
Lisa Nguyen Quang Do, Fraunhofer IEM, Germany
Leo Osvald, Purdue University, USA
Alceste Scalas, Imperial College London, UK
Michael Steindorfer, Delft University of Technology, The Netherlands
Shengqian Yang, Google, USA

ECOOP 2017





External Reviewers

Adrien Guatto KC Sivaramakrishnan
Alceste Scalas Konrad Seik
Alexander Spiegelman Kwangkeun Yi
Alexey Gotsman Malte Schwerhoff
Aws Albarghouthi Ming-Ho Yee
Benjamin Chung Nicholas Ng
Bernardo Toninho Nikhil Swamy
Chenggang Wu Niklas Broberg
Daniel Lohmann Nils Anders Danielsson
Davide Ancona Olivier Fluckiger
Deepak Garg Patrick Bahr
Dominic Orchard Peter Sestoft
Eelco Visser Rainer Koschke
Emery Berger Raymond Hu
Filip Krikava Rumyana Neykova
Francois Pottier Ruzica Piskac
G Ramalingam Sasa Misailovic
Gàbor Bergmann Sebastian Erdweg
Heiko Mantel Siddharth Krishna
Jan Reineke Ştefan Stănciulescu
Jeremy Siek Stephanie Weirich
Jingling Xue Sung-Shik Jongmans
Jonathan Brachthäuser Tien N. Nguyen
Jonathan Ragan-Kelley Toby Murray
Joseph Devietti Todd Millstein
Juliana Franco Veselin Raychev
Julien Lange Zhendong Su

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/




List of Authors

Jonathan Aldrich
Carnegie Mellon University
Pittsburgh, PA, USA
jonathan.aldrich@cs.cmu.edu

Paul Anderson
University of Edinburgh
Scotland
dcspaul@ed.ac.uk

Todd A. Anderson
Intel Labs
USA
todd.a.anderson@intel.com

Anindya Banerjee
IMDEA Software Institute
Madrid, Spain
anindya.banerjee@imdea.org

Andi Bejleri
Technische Universität Darmstadt
Germany
bejleri@cs.tu-darmstadt.de

Martin Berger
University of Sussex
Brighton, UK
M.F.Berger@sussex.ac.uk

Walter Binder
Università della Svizzera italiana (USI)
Lugano, Switzerland
walter.binder@usi.ch

Oliver Bračevac
Technische Universität Darmstadt
Germany
bracevac@cs.tu-darmstadt.de

Premek Brada
University of West Bohemia
Pilsen, Czech Republic
brada@kiv.zcu.cz

Lubomír Bulej
Charles University
Prague, Czech Republic
lubomir.bulej@d3s.mff.cuni.cz

Elias Castegren
Uppsala University
Sweden
elias.castegren@it.uu.se

Buddhika Chamith
Indiana University
Bloomington, IN, USA
budkahaw@indiana.edu

James Cheney
University of Edinburgh
Scotland
jcheney@inf.ed.ac.uk

Raimil Cruz
University of Chile
Santiago, Chile
racruz@dcc.uchile.cl

Hoang-Hai Dang
MPI-SWS
Kaiserslautern, Germany
haidang@mpi-sws.org

Ornela Dardha
University of Glasgow
UK
ornela.dardha@glasgow.ac.uk

Wolfgang De Meuter
Vrije Universiteit Brussel
Belgium
wdmeuter@vub.ac.be

Coen De Roover
Vrije Universiteit Brussel
Belgium
cderoove@vub.ac.be

Germán Andrés Delbianco
IMDEA Software Institute
Madrid, Spain
Universidad Politécnica de Madrid
Spain
german.delbianco@imdea.org

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/


0:xxii Authors

Jens Dietrich
Massey University
Palmerston North, New Zealand
j.b.dietrich@massey.ac.nz

Derek Dreyer
MPI-SWS
Kaiserslautern, Germany
dreyer@mpi-sws.org

Sebastian Erdweg
TU Delft
The Netherlands
S.T.Erdweg@tudelft.nl

Marc Feeley
Université de Montréal
Quebec, Canada
feeley@iro.umontreal.ca

Simon Fowler
University of Edinburgh
Scotland
simon.fowler@ed.ac.uk

Weili Fu
University of Edinburgh
Scotland
weili.fu@ed.ac.uk

Colin S. Gordon
Drexel University
Philadelphia, PA, USA
csgordon@drexel.edu

Jad Hamza
EPFL
Lausanne, Switzerland
jad.hamza@epfl.ch

Daco C. Harkes
Delft University of Technology
The Netherlands
d.c.harkes@tudelft.nl

Raymond Hu
Imperial College London
UK
raymond.hu@imperial.ac.uk

Jeff Huang
Texas A&M University
College Station, TX, USA
jeff@cse.tamu.edu

Kamil Jezek
University of West Bohemia
Pilsen, Czech Republic
kjezek@kiv.zcu.cz

Jan-Oliver Kaiser
MPI-SWS
Kaiserslautern, Germany
janno@mpi-sws.org

Chaitanya Koparkar
Indiana University
Bloomington, IN, USA
ckoparka@indiana.edu

Edlira Kuci
Technische Universität Darmstadt
Germany
kuci@st.informatik.tu-darmstadt.de

Milind Kulkarni
Purdue University
West Lafayette, IN, USA
milind@purdue.edu

Viktor Kunčak
EPFL
Lausanne, Switzerland
viktor.kuncak@epfl.ch

Lindsey Kuper
Intel Labs
USA
lindsey.kuper@intel.com

Ori Lahav
MPI-SWS
Kaiserslautern, Germany
orilahav@mpi-sws.org

Sam Lindley
University of Edinburgh
Scotland
sam.lindley@ed.ac.uk

Hai Liu
Intel Labs
USA
hai.liu@intel.com

Mikaël Mayer
EPFL
Lausanne, Switzerland
mikael.mayer@epfl.ch



Authors 0:xxiii

Darya Melicher
Carnegie Mellon University
Pittsburgh, PA, USA
darya@cs.cmu.edu

Mira Mezini
Technische Universität Darmstadt
Germany
Lancaster University
UK
mezini@informatik.tu-darmstadt.de

J. Garrett Morris
University of Edinburgh
Scotland
Garrett.Morris@ed.ac.uk

Aleksandar Nanevski
IMDEA Software Institute
Madrid, Spain
aleks.nanevski@imdea.org

Ryan R. Newton
Indiana University
Bloomington, IN, USA
rrnewton@indiana.edu

Jens Nicolay
Vrije Universiteit Brussel
Belgium
jnicolay@vub.ac.be

Bruno C. d. S. Oliveira
The University of Hong Kong
China
bruno@cs.hku.hk

David J. Pearce
Victoria University of Wellington
New Zealand
djp@ecs.vuw.ac.nz

Roly Perera
University of Edinburgh
Scotland
roly.perera@ed.ac.uk
University of Glasgow
UK
roly.perera@glasgow.ac.uk

Tomas Petricek
The Alan Turing Institute
London, UK
Microsoft Research
Cambridge, UK
tomas@tomasp.net

Anton Podkopaev
JetBrains Research
St. Petersburg, Russia
a.podkopaev@2009.spbu.ru

Alex Potanin
Victoria University of Wellington
New Zealand
alex@ecs.vuw.ac.nz

Arun K. Rajagopalan
Texas A&M University
College Station, TX, USA
arunxls@tamu.edu

Shawn Rasheed
Massey University
Palmerston North, New Zealand
s.rasheed@massey.ac.nz

Tamara Rezk
INRIA
Sophia Antipolis, France
tamara.rezk@inria.fr

Tiark Rompf
Purdue University
West Lafayette, IN, USA
tiark@purdue.edu

Laith Sakka
Purdue University
West Lafayette, IN, USA
lsakka@purdue.edu

Baptiste Saleil
Université de Montréal
Quebec, Canada
baptiste.saleil@umontreal.ca

Alceste Scalas
Imperial College London
UK
alceste.scalas@imperial.ac.uk

ECOOP 2017



0:xxiv Authors

Ilya Sergey
University College London
UK
i.sergey@ucl.ac.uk

Bernard Serpette
INRIA
Sophia Antipolis, France
bernard.serpette@inria.fr

Yangqingwei Shi
Carnegie Mellon University
Pittsburgh, PA, USA
shiyqw@pku.edu.cn

Tatiana Shpeisman
Intel Labs
USA
tatiana.shpeisman@intel.com

Sarah Spall
Indiana University
Bloomington, IN, USA
sjspall@indiana.edu

Quentin Stiévenart
Vrije Universiteit Brussel
Belgium
qstieven@vub.ac.be

Amjed Tahir
Massey University
Palmerston North, New Zealand
a.tahir@massey.ac.nz

Éric Tanter
University of Chile
Santiago, Chile
etanter@dcc.uchile.cl

Sam Tobin-Hochstadt
Indiana University
Bloomington, IN, USA
samth@indiana.edu

Ehsan Totoni
Intel Labs
USA
ehsan.totoni@intel.com

Laurence Tratt
King’s College London
UK
laurie@tratt.net

Christian Urban
King’s College London
UK
christian.urban@kcl.ac.uk

Viktor Vafeiadis
MPI-SWS
Kaiserslautern, Germany
viktor@mpi-sws.org

Eelco Visser
Delft University of Technology
The Netherlands
e.visser@tudelft.nl

Jan Vitek
Northeastern University
Boston, USA
Czech Technical University Prague
Czech Republic
j.vitek@neu.edu

Michael Vollmer
Indiana University
Bloomington, IN, USA
vollmerm@indiana.edu

Philip Wadler
University of Edinburgh
Scotland
wadler@inf.ed.ac.uk

Fei Wang
Purdue University
West Lafayette, IN, USA
wang603@purdue.edu

Jack Williams
University of Edinburgh
Scotland
jack.williams@ed.ac.uk

Tobias Wrigstad
Uppsala University
Sweden
tobias.wrigstad@it.uu.se

Nobuko Yoshida
Imperial College London
UK
n.yoshida@imperial.ac.uk



Authors 0:xxv

Jakub Zalewski
University of Edinburgh
Scotland
jakub.zalewski@ed.ac.uk

Weixin Zhang
The University of Hong Kong
China
wxzhang2@cs.hku.hk

Yudi Zheng
Università della Svizzera italiana (USI)
Lugano, Switzerland
yudi.zheng@usi.ch

ECOOP 2017





Challenges to Achieving High Availability at Scale
Wolfram Schulte

Facebook, Menlo Park, CA, USA
wolfram.schulte@outlook.com

Abstract
Facebook is a social network that connects more than 1.8 billion people. To serve these many
users requires infrastructure which is composed of thousands of interdependent systems that
span geographically distributed data centers. But what is the guiding principle for building and
operating these systems?

For Facebook’s infrastructure teams the answer is: Systems must always be available and
never lose data. This talk will explore this quest. We will focus on three aspects.

Availability and consistency. What form of consistency do Facebook’s systems guarantee?
Strong consistency makes understanding easy but has latency penalties, weak consistency is fast
but difficult to reason for developers and users. We describe our usage of eventual consistency
and delve into how Facebook constructs its caching and replicated storage systems to minimize
the duration for achieving consistency. We share empirical data that measures the effectiveness
of our design.

Availability and correctness. With network partitions, relaxed forms of consistency, and
software bugs, how do we guarantee a consistent state? We present two systems to find and
repair structural errors in Facebook’s social graph, one batch and one real-time.

Availability and scale. Sharding is one of the standard answers to operate at scale. But how
can we develop one system that can shard storage as well as compute? We will introduce a new
Sharding-as-a-Service component. We will show and evaluate how its design and service policies
control for latency, failure tolerance and operationally efficiency.

1998 ACM Subject Classification Computer; C 1.4 Distributed Architectures; C.2.4 Distributed
Systems; C.4 Fault Tolerance, Reliability, Availability and Serviceability; D 1.3 Distributed Pro-
gramming; D 4.7 Distributed Systems; E 1 Distributed Data Structures

Keywords and phrases Distributed Systems, Availability, Reliability, Fault Tolerance, Consis-
tency, Scalability, Replication, Sharding, Caching

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.1

Category Invited Talk

© Wolfram Schulte;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 1; pp. 1:1–1:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de




Composing Software in an Age of Dissonance
Gilad Bracha

Google, Mountain View, CA, USA
gilad@bracha.org

Abstract
The power of languages is rooted in composition. An infinite number of sentences can be com-
posed from a finite set of generative rules. The more uniformly the rules apply, the more valid
compositions there are. Hence simpler rules give rise to richer discourse - a case of ‘less is more’.
We must however be careful as to which distinctions we preserve and which we eliminate. If we
abstract too much we risk creating an undifferentiated soup with no landmarks to orient us.

A uniform space of objects with simple rules governing their interaction is an obvious example
of these ideas, but objects also serve as a cautionary tale. Achieving simplicity is not easy; it
requires taste, judgement, experience and dedication. Ingenuity is essential as well, but left
unchecked, it often leads to uncontrollable complexity. The path of least resistance follows the
tautological principle that ‘more is more’, and who can argue with a tautology? Dissonance
dominates.

I will endeavour to illustrate these rather abstract principles by means of examples from my
own work and that of others, in programming languages, software and other domains. We may
speak of many things - mixins, modules and memory, graphics and generics, patterns and parsers,
architecture and automobiles, objects or other things entirely.

1998 ACM Subject Classification Software and its engineering Object oriented languages, Soft-
ware and its engineering Inheritance, Software and its engineering Classes and objects, Software
and its engineering Modules / packages

Keywords and phrases Object-orientation, Programming languages, Modularity, IDEs, Software
Design

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.2

Category Invited Talk

© Gilad Bracha;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 2; pp. 2:1–2:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de




Retargeting Gradual Typing
Ross Tate

Cornell University, Ithaca, NY, USA
ross@cs.cornell.edu

Abstract
Gradual typing is often motivated by efforts to add types to massive untyped code bases. A major
challenge here is the fact that these code bases were not written with types in mind, yet the goal
is to add types to them without requiring any significant changes in their implementation. Thus,
critical to this application is the notion that gradual typing is being added onto a preexisting
system.

But gradual typing also has applications in education, prototyping, and scripting. It allows
programmers to ignore types while they are learning programmatic reasoning, while they are
experimenting with new designs, or while they are interacting with external systems. At the
same time, gradual typing allows these programmers to utilize APIs with types that provide
navigable documentation, that concisely describe interfaces, and that enable IDEs to provide
assistance. In these applications, programmers are working with types even when they are not
writing types. By targeting just these applications, we can lift a major burden from gradual
typing. Rather than being added to something that already exists, here gradual typing can
be integrated into the software-development process, into the core language design, and into the
run-time environment, with each component designed to support gradual typing from conception.

This retargeting provides significant flexibility, enabling designers to tradeoff various capabil-
ities of gradual typing. For example, a designer might choose to require some minor annotation
burden in untyped programs for, say, a hundred-fold improvement in run-time performance. For
the past half decade I have been exploring gradual typing behind the scenes in both academia
and industry, and I will be presenting my experiences with these design tradeoffs so far.

1998 ACM Subject Classification D.3.1 [Programming Languages]: Formal Definitions and The-
ory – Semantics; D.3.2 [Programming Languages]: Language Classifications – Object-oriented
languages; D.3.4 [Programming Languages]: Processors – Run-time environments; F.3.3 [Pro-
gramming Languages]: Studies of Program Constructs – Type structure

Keywords and phrases Design, Efficiency, Gradual Typing, Nominal Types

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.3

Category Invited Talk

© Ross Tate;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 3; pp. 3:1–3:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de




Parallelizing Julia with a Non-Invasive DSL∗

Todd A. Anderson1, Hai Liu2, Lindsey Kuper3, Ehsan Totoni4,
Jan Vitek5, and Tatiana Shpeisman6

1 Parallel Computing Lab, Intel Labs
2 Parallel Computing Lab, Intel Labs
3 Parallel Computing Lab, Intel Labs
4 Parallel Computing Lab, Intel Labs
5 Northeastern University / Czech Technical University Prague
6 Parallel Computing Lab, Intel Labs

Abstract
Computational scientists often prototype software using productivity languages that offer high-
level programming abstractions. When higher performance is needed, they are obliged to rewrite
their code in a lower-level efficiency language. Different solutions have been proposed to address
this trade-off between productivity and efficiency. One promising approach is to create embedded
domain-specific languages that sacrifice generality for productivity and performance, but practical
experience with DSLs points to some road blocks preventing widespread adoption. This paper
proposes a non-invasive domain-specific language that makes as few visible changes to the host
programming model as possible. We present ParallelAccelerator, a library and compiler for high-
level, high-performance scientific computing in Julia. ParallelAccelerator’s programming model is
aligned with existing Julia programming idioms. Our compiler exposes the implicit parallelism
in high-level array-style programs and compiles them to fast, parallel native code. Programs
can also run in “library-only” mode, letting users benefit from the full Julia environment and
libraries. Our results show encouraging performance improvements with very few changes to
source code required. In particular, few to no additional type annotations are necessary.

1998 ACM Subject Classification D.1.3 Parallel Programming

Keywords and phrases parallelism, scientific computing, domain-specific languages, Julia

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.4

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.3.2.7

1 Introduction

Computational scientists often prototype software using a productivity language [8, 19] for
scientific computing, such as MATLAB, Python with the NumPy library, R, or most recently
Julia. Productivity languages free the programmer from having to think about low-level
issues such as how to manage memory or schedule parallel threads, and they typically
come ready to perform common scientific computing tasks through extensive libraries. The
productivity-language programmer can thus work at a level of abstraction that matches
their domain expertise. However, a dilemma arises when the programmer, having produced
a prototype, wants to handle larger problem sizes. The next step is to manually port the

∗ Prof. Vitek’s research has been supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agreement No 695412).

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Todd A. Anderson, Hai Liu, Lindsey Kuper, Ehsan Totoni,
Jan Vitek, and Tatiana Shpeisman;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 4; pp. 4:1–4:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.4
http://dx.doi.org/10.4230/DARTS.3.2.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


4:2 Parallelizing Julia with a Non-Invasive DSL

code to an efficiency language like C++ and parallelize it with tools like MPI. This takes
considerable effort and requires a different skill set. While the result can be fast, it is harder
to maintain or experiment with.

Ideally the productivity language could be automatically converted to efficient code and
parallelized. Unfortunately, automatic parallelization has proved elusive, and efficient com-
pilation of dynamic languages remains an open problem. An alternative is to embed, in
the high-level language, a domain-specific language (DSL) specifically designed for high-
performance scientific computing. That domain-specific language will have a restricted set
of features, carefully designed to allow for efficient code generation and parallelization. Rep-
resentative examples are DSLs developed using the Delite framework [6, 27, 28] for Scala,
Copperhead [7] and DSLs developed using the SEJITS framework [8] for Python, and Accel-
erate [9] for Haskell. Brown et al. posit a “pick 2-out-of-3” trilemma between performance,
productivity, and generality [6]. DSLs choose performance and productivity at the cost of
generality by targeting a particular domain. This allows implementations to make stronger
assumptions about programmer intent and employ domain-specific optimizations.

Practical experience with DSLs points to some road blocks preventing widespread adop-
tion. DSLs have a learning curve that may put off users reluctant to invest time in learning
new technologies. DSLs have functionality cliffs; the fear of hitting a limitation late in the
project discourages some users. DSLs can lack in robustness; they may have long com-
pile times, be unable to use the host’s debugger, or place limits on supported libraries and
platforms.

This paper proposes a non-invasive domain-specific language that makes as few visible
changes to the host programming model as possible. It aims to help developers parallelize
scientific code with minimal alterations using a hybrid compiler and library approach. With
the compiler, ParallelAccelerator provides a new parallel execution model for code that uses
parallelizable constructs, but any program can also run single-threaded with the default
semantics of the host language. This is also the case when the compiler encounters constructs
that inhibit parallelization. In library mode, all features of the host language are available.
The initial learning curve is thus small; users can start writing programs in our DSL by
adding a single annotation. During development, the library mode allows users to sidestep
any compilation overheads, and to retain access to all features of the host language including
its debugger and libraries. The contribution of this paper is a design that leverages existing
technologies and years of research in the high-performance computing community to create
a system that works surprisingly well. The paper also explores the combination of features
needed from a dynamic language for this to work.

ParallelAccelerator is embedded in the Julia programming language. Julia is challenging
to parallelize: its code is untyped, all operators are dynamically bound, and eval allows
loading new code at any time. While some features cannot be parallelized, their presence
in other parts of the program does not prevent us from generating efficient code. Julia
is also interesting because it is among the fastest dynamic languages of the day. Julia’s
LLVM-based just-in-time compiler generates efficient code, giving the language competitive
baseline performance. Languages like MATLAB or Python have much more “fat” that can
be trimmed.

Julia provides high-level constructs in its standard library for scientific computing as
well as bindings to high-performance native libraries (e.g., BLAS libraries). While many
library calls can run in parallel, the real issue is that library calls do not compose in parallel.
Thus porting to an efficiency language is often about making the parallelism explicit and
manually composing constructs to achieve greater performance. ParallelAccelerator focuses



T. A. Anderson, H. Liu, L. Kuper, E. Totoni, J. Vitek, and T. Shpeisman 4:3

on programs written in array style, a style of programming that is widely used in scientific
languages such as MATLAB and R; it identifies the implicit parallelism in array operations
and automatically composes them. The standard Julia compiler does not optimize array-
style code.

ParallelAccelerator provides the @acc annotation, a short-hand for “accelerate”, which in-
structs the compiler to focus on the annotated block or function and attempts to parallelize
its execution. Plain host-language functions and @acc-annotated code can be intermingled
and invoke each other freely. ParallelAccelerator parallelizes array-style constructs already
existing in Julia, such as element-wise array operations, reductions on arrays, and array com-
prehensions, and introduces only a single new construct, runStencil for stencil computations.
While adding annotations is easy, we do rely on users to write code in array style.

ParallelAccelerator is implemented in Julia and is released as a package.1 There is a
small array runtime component written in C. The compiler uses a combination of type
specialization and devirtualization of the Julia code and generates monomorphic OpenMP
C++ code for every @acc-annotated function and its transitive closure. Two features of
Julia made our implementation possible. The first is Julia’s macro system that allows us to
intercept calls to an accelerated function for each unique type signature. The second is access
to Julia’s type inference results. Accurate type information allows us to generate code that
uses efficient unboxed representations and calls to native operations on primitive data types.
Our results demonstrate that ParallelAccelerator can provide orders-of-magnitude speedup
over Julia on a variety of scientific computing workloads, and can achieve performance close
to optimized parallel C++.

2 Background

2.1 Julia
The Julia programming language [3] is a high-level dynamic language that targets scientific
computing. Like other productivity languages, Julia has a read-eval-print loop for continuous
and immediate user interaction with the program being developed. Type annotations can
be omitted on function arguments and variables, in which case they behave as dynamically
typed variables [4]. Julia has a full complement of meta-programming features, including
macros that operate on abstract syntax trees and eval which allows users to construct code
as text strings and evaluate it in the environment of the current module.

Julia comes with an extensive base library, largely written in Julia itself, for everyday
programming tasks as well as a range of functions appropriate for scientific and numerical
computing. In particular, the notation for array and vector computation is close to that
of MATLAB, which suggests an easy transition to Julia for MATLAB programmers. For
example, the following are a selected few array operators and functions:

Unary: - ! log exp sin cos

Binary: .+ .- .* ./ .== .!= .> .< .>= .<=

Julia supports multiple dispatch; that is to say, functions can be (optionally) annotated
with types and Julia allows functions to be overloaded based on the types of their arguments.
Hence the same - (negation) operator that usually takes scalar operands can be overloaded
to take an array object as its argument, and returns the negation of each of its elements in a

1 Source code is available on GitHub: https://github.com/intellabs/ParallelAccelerator.jl.

ECOOP 2017

https://github.com/intellabs/ParallelAccelerator.jl


4:4 Parallelizing Julia with a Non-Invasive DSL

new array. For instance, -[1,2,3] evaluates to [-1,-2,-3], and [1,2,3] .* [3,2,1] evaluates
to [3,4,3] where .* stands for element-wise multiplication. The resolution of any function
call is typically dynamic: at each call, the runtime system will check the tags of arguments
and find the function definition that is the most applicable for these types.

The Julia execution engine is an aggressively specializing just-in-time compiler that emits
intermediate representation for the LLVM compiler. Julia has a fast C function call API,
a garbage collector and, since recently, native threads. The compiler does not optimize
array-style code, so users tend to write (error-prone) explicit loops.

There are a number of design choices in Julia that facilitate the job of ParallelAccelerator.
Optional type annotations are useful, in particular on data type declarations. In Python,
programmers have no way to limit the range of values the fields of a class can take. In R
or MATLAB, things are even worse, as there are not even classes; all data types are built
up dynamically out of basic building blocks such as lists and arrays. In Julia, if a field is
declared to be of some type T, then the runtime system will insert checks at every assignment
(unless the compiler can prove they are redundant). Julia differentiates between abstract
types, which cannot be instantiated but can have subtypes, and concrete types, which can be
instantiated but cannot have subtypes. In Java terminology, concrete types are final. This
property is helpful because the memory layout of a concrete type is thus known, and the
compiler can optimize them (e.g., by stack allocation or field stripping). The eval function
is not allowed to execute in the scope of the current function, as it does in JavaScript, which
means that the damage that it can do is limited to changing global variables (and if the
variables are typed, those changes must be type-preserving) and defining new functions.
Julia’s reflection capacities are limited, so it is not possible to modify the shape of data
structures or add local variables to existing frames as in JavaScript or R.

2.2 Related Work
One way to improve the performance of high-level languages is to reduce interpreter over-
head, as some of these languages are still executed by interpreting abstract syntax trees or
bytecode. For instance, there is work on compiling MATLAB to machine code [10, 5, 22, 16],
but due to the untyped and dynamic nature of the language, a sophisticated just-in-time
compiler performing complex type inference is needed to get any performance improvements.
Several projects have explored how to speed up the R language. Riposte [29] uses tracing
techniques to extract commonly taken operation sequences and efficiently schedule vector
operations. Early versions of FastR [14] exclusively relied on runtime specialization to re-
move high-level overheads; more recent versions also generate native code [25]. Pydron [21]
provides semi-automatic parallelization of Python programs but requires explicit program-
mer annotations of side-effect free, parallelizable functions. Numba [17] is a JIT compiler
for Python, and allows the user to define NumPy math kernels called UFuncs in Python
and run them in parallel on either CPU or GPU. Julia is simpler to optimize, because it
intentionally omits some of the most dynamic features of other productivity languages for
scientific computing. For instance, Julia does not allow a function to delete arbitrary local
variables of its caller (which R allows). ParallelAccelerator takes advantage of the existing Ju-
lia compiler. That compiler performs one and only one major optimization: it aggressively
specializes functions on the run-time type of their arguments. This is how Julia obtains
similar benefits to FastR but with a simpler runtime infrastructure. ParallelAccelerator only
needs a little help to generate efficient parallel code. The main difference between ParallelAc-
celerator and Riposte is the use of static analysis rather than dynamic liveness information.
The difference between ParallelAccelerator and Pydron is the reduction in the number of
programmer-provided annotations.



T. A. Anderson, H. Liu, L. Kuper, E. Totoni, J. Vitek, and T. Shpeisman 4:5

julia > @acc f(x) = x .+ x .* x
f ( generic function with 1 method )

julia > f([1 ,2 ,3])
5- element Array{Int64 ,1}:
2
6
12

Figure 1 A “hello world” motivating example for ParallelAccelerator.

Another way to improve performance is to trade generality for efficiency with domain-
specific languages (DSLs). Delite [6, 27, 28] is a Scala compiler framework and runtime for
high-performance embedded DSLs that leverages Lightweight Modular Staging [24] for run-
time code generation. Our compiler design is inspired by Delite’s Domain IR and Parallel
IR, but does not prevent users from using the host language (by contrast, Delite-based DSLs
such as OptiML support only a subset of Scala [26]). Copperhead [7] provides composable
primitives for data-parallel operations embedded in a subset of Python, and leverages im-
plicit data parallelism for efficiency. DSLs such as Patus [11, 12] target stencil computations.
PolyMage [20] and Halide [23] are highly optimized DSL implementations for image process-
ing pipelines. ParallelAccelerator addresses the lack of generality of these DSLs by providing
full access to the host language. The SEJITS methodology [8] similarly allows full access
to the host language, and employs specializers (micro-compilers) for specific computational
“motifs” [2], which are “stovepipes” [15] from kernels to execution platform. Individual spe-
cializers use domain-specific optimizations to efficiently implement specific kernels, but do
not share a common intermediate representation or runtime like ParallelAccelerator, limiting
composability.

Pochoir [30] is a DSL for stencil computations, embedded in C++ using template metapro-
gramming. Like ParallelAccelerator, it can be used in two modes. In the first mode, which
is analogous to ParallelAccelerator’s library-only mode, the programmer can compile Pochoir
programs to unoptimized code using an ordinary C++ compiler. In the second mode, the
programmer compiles the code using the Pochoir compiler, which acts as a preprocessor to
the C++ compiler and transforms the code into parallel C++.

Improving the speed of array-style code in Julia is the goal of packages such as De-
vectorize.jl [18]. It provides a macro for automatically translating array-style code into
devectorized code. Like Devectorize.jl, the focus of ParallelAccelerator is on speeding up
code written in array style. However, since our approach is compiler-based rather than
library-based, we can do much more in terms of compiler optimizations, and the addition of
parallelism provides a substantial further speedup.

3 Motivating Examples

We illustrate how ParallelAccelerator speeds up scientific computing codes by example. Con-
sider a trivial @acc-annotated function declared and run in the Julia REPL as shown in
Figure 1.

When compiling an @acc-annotated function such as f, ParallelAccelerator optimizes high-
level array operations, such as pointwise array addition (.+) and multiplication (.*). It
compiles them to C++ with OpenMP directives, so that a C++ compiler can then generate
high-performance native code. The C++ code that ParallelAccelerator produces for f is shown

ECOOP 2017



4:6 Parallelizing Julia with a Non-Invasive DSL

1 void f271(j2c_array <double > &x, j2c_array <double > *ret)
2 {
3 int64_t idx , len;
4 double tmp1 , tmp2 , ssa0 , ssa1;
5 j2c_array < double > new_arr ;
6
7 len = x. ARRAYSIZE (1);
8 new_arr = j2c_array <double >:: new_j2c_array_1d (NULL , len);
9 # pragma omp parallel private (tmp1 , ssa1 , ssa0 , tmp2)

10 {
11 # pragma omp for private (idx)
12 for (idx = 1; idx <= len; idx ++)
13 {
14 tmp1 = x. ARRAYELEM (idx);
15 ssa1 = tmp1 * tmp1;
16 tmp2 = x. ARRAYELEM (idx);
17 ssa0 = tmp2 + ssa1;
18 new_arr . ARRAYELEM (idx) = ssa0;
19 }
20 }
21 *ret = new_arr ;
22 }

Figure 2 The generated C++ code for the motivating example from Figure 1.

in Figure 2. In line 1, the function name f is mangled to produce a unique C function name
and the input array x can be seen followed by the pointer argument ret that is used to return
the output array. In line 7, the length of the array x is saved and used as the upper bound of
the for loop in line 12. In line 8, memory is allocated for the output array, similarly matching
the length of x. The parallel OpenMP for loop defined on lines 9-22 iterates through each
element of x, multiplies each element by itself, adds each element to that product, and stores
the result in the corresponding index in the output array. On line 21, the output array is
returned from the function by storing it in ret.

The performance improvements that ParallelAccelerator delivers over standard Julia are
in part a result of exposing parallelism and exploiting parallel hardware, and in part a result
of eliminating run-time inefficiencies such as unneeded array bounds checks and intermedi-
ate array allocations. In fact, ParallelAccelerator often provides a substantial performance
improvement over standard Julia even when running on one thread; see Section 6 for details.

3.1 Black-Scholes option pricing
The Black-Scholes formula for option pricing is a classic high-performance computing bench-
mark. Figure 3 shows an implementation of the Black-Scholes formula, written in a high-
level array style in Julia. The arguments to the blackscholes function, sptprice, strike, rate,
volatility, and time, are all arrays of floating-point numbers. blackscholes performs several
computations involving pointwise addition (.+), subtraction (.-), multiplication (.*), and
division (./) on these arrays. To understand this example, it is not necessary to understand
the details of the Black-Scholes formula; the important thing to notice about the code is
that it does many pointwise array arithmetic operations. When run on arrays of 100 million
elements, this code takes 22 seconds to run under standard Julia.

The many pointwise array operations in this code make it a good candidate for speeding
up with ParallelAccelerator. Doing so requires only minor changes to the code: we need only
import the ParallelAccelerator library, then annotate the blackscholes function with @acc.
With the addition of @acc, the running time drops to 13.1s on one thread, and when we



T. A. Anderson, H. Liu, L. Kuper, E. Totoni, J. Vitek, and T. Shpeisman 4:7

function blackscholes (sptprice , strike , rate , volatility , time)
logterm = log10( sptprice ./ strike )
powterm = .5 .* volatility .* volatility
den = volatility .* sqrt(time)
d1 = ((( rate .+ powterm ) .* time) .+ logterm ) ./ den
d2 = d1 .- den
NofXd1 = 0.5 .+ 0.5 .* erf (0.707106781 .* d1)
NofXd2 = 0.5 .+ 0.5 .* erf (0.707106781 .* d2)
futureValue = strike .* exp(- rate .* time)
c1 = futureValue .* NofXd2
call = sptprice .* NofXd1 .- c1
put = call .- futureValue .+ sptprice

end

Figure 3 An implementation of the Black-Scholes option pricing algorithm. Adding an @acc
annotation to this function improves performance by 41.6× on 36 cores.

function blur(img , iterations )
w, h = size(img)
for i = 1: iterations

img [3:w -2 ,3:h -2] =
img [3 -2:w -4 ,3 -2:h -4] * 0.0030 + img [3 -1:w -3 ,3 -2:h -4] * 0.0133 +

... +
img [3 -2:w -4 ,3 -1:h -3] * 0.0133 + img [3 -1:w -3 ,3 -1:h -3] * 0.0596 +

... +
img [3 -2:w -4 ,3+0:h -2] * 0.0219 + img [3 -1:w -3 ,3+0:h -2] * 0.0983 +

... +
img [3 -2:w -4 ,3+1:h -1] * 0.0133 + img [3 -1:w -3 ,3+1:h -1] * 0.0596 +

... +
img [3 -2:w -4 ,3+2:h -0] * 0.0030 + img [3 -1:w -3 ,3+2:h -0] + 0.0133 +

...
end
return img

end

Figure 4 An implementation of a Gaussian blur in Julia. The ...s elide parts of the weighted
average.

enable 36-thread parallelism, running time drops to 0.5s, for a total speedup of 41.6× over
standard Julia.

3.2 Gaussian blur

In this example, we consider a stencil computation that blurs an image using a Gaussian blur.
Stencil computations, which update the elements of an array according to a fixed pattern
called a stencil, are common in scientific computing. In this case, we are blurring an image,
represented as a 2D array of pixels, by setting the value of each output pixel to a weighted
average of the values of the corresponding input pixel and its neighbors. (At the borders of
the image, we do not have enough neighboring pixels to compute an output pixel value, so
we skip those pixels and do not assign to them.) Figure 4 gives a Julia implementation of
a Gaussian blur that blurs an image (img) a given number of times (iterations). The blur

function is in array style and does not explicitly loop over all pixels in the image; instead,
the loop counter refers to the number of times the blur should be iteratively applied. When
run for 100 iterations on a large grayscale input image of 7095x5322 pixels, this code takes
877s to run under standard Julia.

ECOOP 2017



4:8 Parallelizing Julia with a Non-Invasive DSL

@acc function blur(img , iterations )
buf = Array(Float32 , size(img)...)
runStencil (buf , img , iterations , : oob_skip ) do b, a

b[0 ,0] =
(a[-2,-2] * 0.0030 + a[-1,-2] * 0.0133 + ... +

a[-2,-1] * 0.0133 + a[-1,-1] * 0.0596 + ... +
a[-2, 0] * 0.0219 + a[-1, 0] * 0.0983 + ... +
a[-2, 1] * 0.0133 + a[-1, 1] * 0.0596 + ... +
a[-2, 2] * 0.0030 + a[-1, 2] * 0.0133 + ...

return a, b
end
return img

end

Figure 5 Gaussian blur implemented using ParallelAccelerator.

Using ParallelAccelerator, we can rewrite the blur function as shown in Figure 5. In
addition to the @acc annotation, we replace the for loop in the original code with ParallelAc-
celerator’s runStencil construct.2 The runStencil construct uses relative rather than absolute
indexing into the input and output arrays. The :oob_skip argument tells runStencil to skip
pixels at the borders of the image; unlike in the original code, we do not have to adjust
indices to do this manually. Section 4.5 covers the semantics of runStencil in detail. With
these changes, running under the ParallelAccelerator compiler, running time drops to 38s on
one core and only 1.4s when run on 36 cores — a speedup of over 600× over standard Julia.

3.3 Two-dimensional wave equation simulation
The previous two examples focused on orders-of-magnitude performance improvements en-
abled by ParallelAccelerator. For this example, we focus instead on the flexibility that Par-
allelAccelerator provides through its approach of extending Julia, rather than offering an
invasive DSL alternative to programming in standard Julia.

This example uses the two-dimensional wave equation to simulate the interaction of two
waves. The two-dimensional wave equation is a partial differential equation (PDE) that
describes the propagation of waves across a surface, such as the vibrations of a drum head.
From the discretized PDE, one can derive a formula for the future (f) position of a point
(x, y) on the surface, based on its current (c) and past (p) positions (r is a constant):

f(x, y) = 2c(x, y)−p(x, y)+r2[c(x−∆x, y)+c(x+∆x, y)+c(x, y−∆y)+c(x, y+∆y)−4c(x, y)
]

The above formula expressed in array-style code is:
f[2:s -1 ,2:s -1] = 2*c[2:s -1 ,2:s -1] - p[2:s -1 ,2:s -1]

+ r^2 * ( c[1:s -2 ,2:s -1] + c[3:s ,2:s -1]
+ c[2:s -1 ,1:s -2] + c[2:s -1 ,3:s]
- 4*c[2:s -1 ,2:s -1] )

This code is excerpted from a MATLAB program found “in the wild”3 that simulates the
propagation of waves on a surface. It is written in an idiomatic MATLAB style, making
heavy use of array notation. It represents f , c, and p as three 2D arrays of size s in each

2 Here, runStencil is being called with Julia’s built-in do-block syntax (http://docs.julialang.org/
en/release-0.5/manual/functions/#do-block-syntax-for-function-arguments).

3 See footnote 8 for a link to the original code.

http://docs.julialang.org/en/release-0.5/manual/functions/#do-block-syntax-for-function-arguments
http://docs.julialang.org/en/release-0.5/manual/functions/#do-block-syntax-for-function-arguments


T. A. Anderson, H. Liu, L. Kuper, E. Totoni, J. Vitek, and T. Shpeisman 4:9

dimension, and updates the f array based on the contents of the c and p arrays (skipping
the boundaries of the grid, which are handled separately).

A direct port (preserving the array style of the MATLAB code) of the full program to
Julia has a running time of 4s on a 512×512 grid. The wave equation shown above is part
of the main loop of the simulation. Most of the simulation’s execution time is spent in
computing the above wave equation. To speed up this code with ParallelAccelerator, the key
is to observe that the wave equation is performing a stencil computation. The expression
runStencil (p, c, f, 1, : oob_skip ) do p, c, f

f[0 ,0] = 2*c[0 ,0] - p[0 ,0]
+ r*r * (c[-1,0] + c[1 ,0] + c[0,-1] + c[0 ,1] - 4*c[0 ,0])

end

takes the place of the wave equation formula. Like the original code, it computes an updated
value for f based on the contents of c and p. Unlike the original code, it uses relative rather
than absolute indexing: assigning to f[0,0] updates all elements of f, based on the contents
of the c and p arrays. With this minor change and with the addition of an @acc annotation,
the code runs in 0.3s, delivering a speedup of 15× over standard Julia.

However, for this example the key point is not the speedup enabled by runStencil but
rather the way in which runStencil combines seamlessly with standard Julia features. Al-
though the wave equation dominates the running time of the main loop of the simulation,
most of the code in that main loop (which we omit here) handles other important details,
such as how the simulation should behave at the boundaries of the grid. Most stencil DSLs
support setting the edges to zero values, which in physical terms means that a wave reaching
the edge would be reflected back toward the middle of the grid. However, this simulation
uses “transparent” boundaries, which simulate an infinite grid. With ParallelAccelerator,
rather than needing to add special support for this sophisticated boundary handling, we
can again use :oob_skip in our runStencil call, as was done in Figure 5 for the Gaussian
blur example in the previous section, and instead express the boundary-handling code in
standard Julia.

The sophisticated boundary handling that this simulation requires illustrates one reason
why ParallelAccelerator takes the approach of extending Julia and identifying existing parallel
patterns, rather than providing an invasive DSL: it is difficult for a DSL designer to anticipate
all the features that the user of the DSL might need. Therefore, ParallelAccelerator does not
aim to provide an invasive DSL alternative to programming in Julia. Instead, the user
is free to use domain-specific constructs like runStencil (say, for the wave equation), but
can combine them seamlessly with standard, fully general Julia code (say, for boundary
handling) that operates on the same data structures.

4 Parallel patterns in ParallelAccelerator

In this section, we explain the implicit parallel patterns that the ParallelAccelerator compiler
makes explicit. We also give a careful examination of their differences in expressiveness,
safety guarantees and implementation trade-offs, which hopefully should give a few new
insights even to readers who are already well versed with concepts like map and reduce.

4.1 Building Blocks
Array operators and functions become the building blocks for users to write scientific and
numerical programs and provide a higher level of abstraction than operating on individual
elements of arrays. There are numerous benefits to writing programs in array style:

ECOOP 2017



4:10 Parallelizing Julia with a Non-Invasive DSL

We can safely index array elements without bounds checking once we know the input
array size.
Many operations are amenable to implicit parallelization without changing their seman-
tics.
Many operations do not have side effects, or when they do, their side effects are well-
specified (e.g., modifying the elements of one of the input arrays).
Many operations can be further optimized to make better use of hardware features, such
as caches and SIMD (Single Instruction Multiple Data) vectorization.

In short, such array operators and functions already come with a degree of domain knowledge
embedded in their semantics, and such knowledge enables parallel implementations and
optimization opportunities. In ParallelAccelerator, we identify a range of parallel patterns
corresponding to either existing functions from the base library or language features. We are
then able to translate these patterns to more efficient implementations without sacrificing
program safety or altering program semantics. A crucial enabling factor is the readily
available type information in Julia’s typed AST, which makes it easy to identify what domain
knowledge is present (e.g., dense array or sparse array), and generate safe and efficient code
without runtime type checking.

4.2 Map

Many element-wise array functions are essentially what is called a map operation in func-
tional programming. For a unary function, this operation maps from each element of the
input array to an element of the output array, which is freshly allocated and of the same
size as the input array. For a binary function, this operation maps from each pair of ele-
ments from the input arrays to an element of the output array, again requiring that the two
input arrays and the output array are of the same size. Such arity extension can also be
applied to the output, so instead of just one output, a map can produce two output arrays.
Internally, ParallelAccelerator translates element-wise array operators and functions to the
following construct that we call multi-map, or mmap for short:

(B1, B2, . . .︸ ︷︷ ︸
n

) = mmap((x1, x2, . . .︸ ︷︷ ︸
m

)→ (e1, e2, . . .︸ ︷︷ ︸
n

),A1, A2, . . .︸ ︷︷ ︸
m

)

Here, mmap takes an anonymous lambda function and maps it over m input arraysA1, A2, . . .

to produce n output arrays B1, B2, . . . . The lambda function performs element-wise com-
putation from m scalar inputs to n scalar outputs. The sequential operational semantics
of mmap is to iterate over the array length using an index, call the lambda function with
elements read from the input arrays at this index, and write the results to the output arrays
at the same index.

In addition to mmap, we introduce an in-place multi-map construct, or mmap! for short:4

mmap!((x1, x2, . . . )︸ ︷︷ ︸
m

→ (e1, e2, . . . )︸ ︷︷ ︸
n

,A1, A2, . . .︸ ︷︷ ︸
m

),where m ≥ n

The difference between mmap! and mmap is that mmap! modifies the first n out of its m
input arrays, hence we require that m ≥ n. Below are some examples of how we translate

4 The ! symbol is part of a legal identifier, suggesting mutation.



T. A. Anderson, H. Liu, L. Kuper, E. Totoni, J. Vitek, and T. Shpeisman 4:11

user-facing array operations to either mmap or mmap!:

log(A) ⇒ mmap(x→ log(x), A)
A .* B ⇒ mmap((x, y)→ x*y, A, B)
A -= B ⇒ mmap!((x, y)→ x-y, A, B)
A .+ c ⇒ mmap(x→ x+c, A)

In the last example above, we are able to inline a scalar variable c into the lambda because
type inference is able to tell that c is not an array.

Once we guarantee the inputs and outputs used in mmap and mmap! are of the same size,
we can avoid all bounds checking when iterating through the arrays. Operational safety is
further guaranteed by having mmap and mmap! only as internal constructs to our compiler,
rather than exposing them to users, and translating only a selected subset of higher-level
operators and functions when they are safe to parallelize. This way, we do not risk exposing
the lambda function to our users, and can rule out any unintended side effects (e.g., writing
to environment variables, or reading from a file) that may cause non-deterministic behavior
in a parallel implementation.

4.3 Reduction
Beyond maps, ParallelAccelerator also supports reduction as a parallel construct. Internally
it has the form r = reduce(⊕, φ,A), where ⊕ stands for a binary infix reduction operator,
and φ represents an identity value that accompanies a particular ⊕ for a specific element
type. Mathematically, the reduce operation is equivalent to computing r = φ⊕a1⊕· · ·⊕an,
where a1, . . . , an represent all elements in array A of length n. Reductions can be made
parallel only when the operator ⊕ is associative, which means we can only safely translate
a few functions to reduce, namely:

sum(A) ⇒ reduce(+, 0, A)
product(A) ⇒ reduce(*, 1, A)
any(A) ⇒ reduce(||, false, A)
all(A) ⇒ reduce(&&, true, A)

Unlike the multi-map case, we make a design choice here not to support multi-reduction so
that we can limit ourselves to only operators rather than the more flexible lambda expression.
This is mostly an implementation constraint that can be lifted as soon as our parallel backend
supports custom user functions.

4.4 Cartesian Map
So far, we have focused on a selected subset of base library functions that can be safely
translated to parallel constructs such as mmap, mmap!, and reduce. Going beyond that,
we also look for ways to translate larger program fragments. One such target is a Julia
language feature called comprehension, a functional programming concept that has grown
popular among scripting languages such as Python and Ruby. In Julia, comprehensions have
the syntax illustrated below:

A = [f(x1, x2, . . . , xn) for x1 in r1, x2 in r2, . . . , xn in rn]

where variables x1, x2, . . . , xn are iterated over either range or array objects r1, r2, . . . , rn,
and the result is an n-dimensional dense array A, each value of which is computed by calling

ECOOP 2017



4:12 Parallelizing Julia with a Non-Invasive DSL

function f with x1, x2, . . . , xn. Operationally it is equivalent to creating a rank-n array of
a dimension that is the Cartesian product of the range of variables r1, r2, . . . , rn, and then
going through n-level nested loops that use f to fill in all elements. As an example, we
quote from the Julia user manual5 the following avg function, which takes a one-dimensional
input array x of length n and uses an array comprehension to construct an output array of
length n − 2, in which each element is a weighted average of the corresponding element in
the original array and its two neighbors:
avg(x) = [ 0.25*x[i -1] + 0.5*x[i] + 0.25*x[i+1] for i in 2: length (x) -1 ]

This example explicitly indexes into arrays using the variable i, something that cannot be
expressed as a vanilla map operation as discussed in Section 4.2. Most comprehensions,
however, can still be parallelized provided the following conditions can be satisfied:
1. There are no side effects in the comprehension body (the function f).
2. The size of all range objects r1, r2, . . . , rn can be computed ahead of time.
3. There are no inter-dependencies among the range indices x1, x2, . . . , xn.
The first condition is to ensure that the result is still deterministic when its computation
is made parallel, and ParallelAccelerator implements a conservative code analysis to identify
possible breaches to this rule and reject such code. The second and third are constraints that
allow the result array to be allocated prior to the computation, and in fact Julia’s existing
semantics for comprehension already imposes these rules. Moreover, comprehension syntax
also rules out ways to either mention or index the output array within the body. Therefore,
in our implementation it is always safe to write to the output array without additional
bounds checking. It must be noted, however, that since arbitrary user code can go into the
body, indexing into other array variables is still allowed and must be bounds-checked.

In essence, a comprehension is still a form of our familiar map operation, where instead
of input arrays it maps over the range objects that make up the Cartesian space of the
output array. Internally ParallelAccelerator translates comprehension to a parallel construct
that we call cartesianmap:

A = cartesianmap((i1, . . . )︸ ︷︷ ︸
n

→ f(r1[i1], . . .︸ ︷︷ ︸
n

), len(r1), . . .︸ ︷︷ ︸
n

)

In the above translation, we slightly transform the input ranges to their numerical sizes,
and liberally make use of array indexing notation to read the actual range values so that
xj = r[ij ] for all 1 ≤ i ≤ len(rj) and 1 ≤ j ≤ n. This transformation makes it easier
to enumerate all range objects uniformly. Furthermore, given the fact that cartesianmap
iterates over the Cartesian space of its output array, we can decompose a cartesianmap
construct into two steps: allocating the output array, and in-place mmap!-ing over it, with
the lambda function extended to take indices as additional parameters. We omit the details
of the transformation here.

4.5 Stencil
A stencil computation computes new values for all elements of an array based on the current
values of neighbors. The example we give for comprehensions in Section 4.4 would also
qualify as a stencil computation. It may seem plausible to just translate stencils as if they
were parallel array comprehensions, but there is a crucial difference: stencils have both

5 http://docs.julialang.org/en/release-0.5/manual/arrays/#comprehensions

http://docs.julialang.org/en/release-0.5/manual/arrays/#comprehensions


T. A. Anderson, H. Liu, L. Kuper, E. Totoni, J. Vitek, and T. Shpeisman 4:13

runStencil (Apu , Apv , pu , pv , Ix , Iy , 1, : oob_src_zero ) do Apu , Apv , pu ,
pv , Ix , Iy

ix = Ix [0 ,0]
iy = Iy [0 ,0]
Apu [0 ,0] = ix * (ix*pu [0 ,0] + iy*pv [0 ,0]) + lam *(4.0 f0*pu [0 ,0] -( pu

[ -1 ,0]+ pu [1 ,0]+ pu [0 , -1]+ pu [0 ,1]))
Apv [0 ,0] = iy * (ix*pu [0 ,0] + iy*pv [0 ,0]) + lam *(4.0 f0*pv [0 ,0] -( pv

[ -1 ,0]+ pv [1 ,0]+ pv [0 , -1]+ pv [0 ,1]))
end

Figure 6 Stencil code excerpt from the opt-flow workload (see Section 6) that illustrates multi-
buffer operation.

input and output arrays, and they are all of the same size. This property allows us to
eliminate bounds checking not just when writing to outputs, but also when reading from
inputs. Because Julia does not have a built-in language construct for us to identify stencil
calls in its AST, we introduce a new user-facing language construct, runStencil:

runStencil((A,B, . . .︸ ︷︷ ︸
m

)→ f(A,B, . . .︸ ︷︷ ︸
m

), A,B, . . .︸ ︷︷ ︸
m

, n, s)

The runStencil function takes a function f as the stencil kernel specification, then m image
buffers (dense arrays) A, B, . . . , and optionally a trip-count n for an iterative stencil loop
(ISL), and a symbol s that specifies how to handle stencil boundaries. We also require that:

All buffers are of the same size.
Function f has arity m.
In f , all buffers are relatively indexed with statically known indices, i.e., only integer
literals or constants.
There are no updates to environment variables or I/O in f .
For an ISL, f may return a set of buffers, rotated in position, to indicate the sequence
of buffer swapping in between two consecutive stencil loops.

For boundary handling, we have built-in support for a few common cases such as wrap-
arounds, but users are free to do their own boundary handling outside of the runStencil call,
as mentioned in Section 3.

An interesting aspect of our API is that input and output buffers need not be separated
and that any buffer may be read or updated. This allows flexible stencil specifications over
multiple buffers, combined with support for rotating only a subset of them in case of an ISL.
Figure 6 shows an excerpt from the opt-flow workload (see Section 6) that demonstrates
this use case. It has six buffers, all accessed using relative indices, and only two buffers
Apu and Apv are written to. A caveat is that care must be taken when reading from and
writing to the same output buffer. Although there are stencil programs that require this
ability, output arrays must always be indexed at 0 (i.e., the current position) in order to
avoid non-determinism. We currently do not check for this situation.

Our library provides two implementations of runStencil: one a pure-Julia implementa-
tion, and the other the parallel implementation that our compiler provides. In the latter
case, we translate the runStencil call to an internal construct called stencil! that has some
additional information after a static analysis to derive kernel extents, dimensions, and so
on. Since there is a Julia implementation, code that uses runStencil can run in Julia simply
by importing the ParallelAccelerator library, even when the compiler is turned off, which
can be done by setting an environment variable. Any @acc-annotated function, including

ECOOP 2017



4:14 Parallelizing Julia with a Non-Invasive DSL

those that use runStencil, will run in this library-only mode, but through the ordinary Julia
compilation path.6

5 Implementing ParallelAccelerator

The standard Julia compiler converts programs into ASTs, then transforms them to LLVM
IR, and finally generates native assembly code. The ParallelAccelerator compiler intercepts
this AST, introduces new AST node types for the parallel patterns discussed in Section 4,
performs optimizations, and finally generates OpenMP C++ code (as shown in Figure 7).
Since we assume there is an underlying C++ compiler producing optimized native code,
our general approach to optimization within ParallelAccelerator itself is to only perform
those optimizations that the underlying compiler is not capable of doing, due to the loss
of semantic information present only in our Domain AST (Section 5.1) and Parallel AST
(Section 5.2) intermediate languages.

Functions annotated with the @acc macro are replaced by a trampoline. Calls to those
functions are thus redirected to the trampoline. When it is invoked, the types of all argu-
ments are known. The combination of function name and argument types forms a key that
the trampoline looks for within a cache of accelerated functions. If the key exists, then the
cache has optimized code for this call. If it does not, the trampoline uses Julia’s code_typed

function to generate a type-inferred AST specialized for the argument types. The trampo-
line then coordinates the passage of this AST through the rest of our compilation pipeline,
installs the result in the cache, and calls the newly optimized function. This aggressive code
specialization mitigates the dynamic aspects of the language.

5.1 Domain Transformation

Domain transformation takes a Julia AST and returns a Domain AST where some nodes
have been replaced by “domain nodes” such as mmap, reduce, stencil!, etc. We pattern-
match against the incoming AST to translate supported operators and functions to their
internal representations, and perform necessary safety checks and code analysis to ensure
soundness with respect to the sequential semantics.

Since our compiler backend outputs C++, all transitively reachable functions must be
optimized. This phase processes all call sites, finds the target function(s) and recursively
optimizes them.

The viability of this strategy crucially depends on the compiler’s ability to precisely
determine the target functions at each call site. This, in turn, relies on knowing the type
of arguments of functions. While this is generally an intractable problem for a dynamic
language, ParallelAccelerator is saved by the fact that optimizations are performed at runtime,
the types of the argument to the original @acc call are known, and the types of global
constants are also known. Lastly, at the point when an @acc is actually invoked, all functions
needed for its execution are likely to have been loaded. Users can help by providing type
annotations, but in our experience these are rarely needed.

6 The Julia version of runStencil did not require significant extra development effort. To the contrary,
it was a crucial early step in implementing the native ParallelAccelerator version, because it allowed us
to prototype the semantics of the feature and have a reference implementation.



T. A. Anderson, H. Liu, L. Kuper, E. Totoni, J. Vitek, and T. Shpeisman 4:15

Figure 7 The ParallelAccelerator compiler pipeline.

5.2 Parallel Transformation

Parallel transformation lowers domain nodes down to a common “parallel for” representation
that allows a unified optimization framework for all parallel patterns. The result of this
phase is a Parallel AST which extends Julia ASTs with parfor nodes. Each parfor node
represents one or more tightly nested for loops where every point in the loops’ iteration
space is independent and is thus amenable to parallelization.

This phase starts with standard compiler techniques to simplify and reorder code so as to
maximize later fusion. Next, the AST is lowered by replacing domain nodes with equivalent
parfor nodes. Lastly, this phase performs fusion.

A parfor node consists of pre-statements, loop nests, reductions, body, and post-statements.
Pre- and post-statements are statements executed once before and after the loop. Pre-
statements do things such as output array allocation, storing the length of the arrays used

ECOOP 2017



4:16 Parallelizing Julia with a Non-Invasive DSL

by the loop or the initial value of the reduction variable. The loop nests are encoded by
an array where each element represents one of the nested loops of the parfor. Each such
element contains the index variable, the initial and final values of the index variable, and
the step. All lowered domain operations have a loop nest. The reduction is an array where
each element represents one reduction computation taking place in the parfor. Each reduc-
tion element contains the name of the reduction variable, the initial value of the reduction
variable, and the function by which multiple reduction values may be combined. The body
consists of the statements that perform the element-wise computation of the parfor. The
body is generated in three parts, input, computation, and output, which makes it easier to
perform fusion. In the input, individual elements from input arrays are stored into variables.
Conversely, in the output, variables containing results are stored into their destination array.
The computation is generated by the domain node which takes the variables defined for the
input and output sections and generates statements that perform the computation.

Parfor fusion lowers loop iteration overhead, eliminates some intermediate arrays that
would otherwise have to be created and typically has cache benefits by allowing array ele-
ments to remain in registers or cache across multiple uses. When two consecutive domain
node types are lowered to parfors, we check whether they can be fused. The criteria are:

Loop nests must be equivalent: Since loop nests are usually based on some array’s
dimensions, the check for equivalence often boils down to whether the arrays used by both
parfors are known to have the same shape. To make this determination, we keep track
of how arrays are derived from other arrays and maintain a set of array size equivalence
classes.
The second parfor must not access any piece of data created by the first at a different
point in the iteration space: This means that the second parfor does not use a reduction
variable computed by the first parfor and all array accesses must only access array
elements corresponding to the current point in the iteration space. This also means that
we do not currently fuse parfors corresponding to stencil! nodes.

The fusing of two parfors involves appending the second parfor’s pre-statements, body,
reductions, and post-statements to those of the first parfor’s. Also, since the body of the
second parfor uses loop index variables specific to the second parfor’s loop nest, the second
parfor’s loop index variables are replaced with the corresponding index variables of the first
parfor. In addition, we eliminate redundant loads and stores and unneeded intermediate
arrays. If an array created for the first parfor is not live at end of the second parfor,
then the array is eliminated by removing its allocation statement in the first parfor and by
removing all assignments to it in the fused body.

5.3 Code Generation
The ParallelAccelerator compiler produces executable code from Parallel AST through our
CGen backend which outputs C++ OpenMP code. That code is compiled into a native
shared library with a standard C++ compiler. ParallelAccelerator creates a proxy function
that handles marshalling of arguments and invokes the shared library with Julia’s ccall

mechanism. It is this proxy function that is installed in the code cache.
CGen makes a single depth-first pass over the AST. It uses the following translation

strategy for Julia types, parfor nodes, and method invocations. Unboxed scalar types, such
as 64-bit integers, are translated to the semantically equivalent C++ type, e.g., int64_t. Com-
posite types, such as Tuples, become C structs. Array types are translated into reference-
counted C++ objects provided by our array runtime. Parfor nodes are lowered into OpenMP



T. A. Anderson, H. Liu, L. Kuper, E. Totoni, J. Vitek, and T. Shpeisman 4:17

loops with reduction clauses and operators where appropriate. The parfor nodes also con-
tain metadata from the parallel transformation phase that describes the private variables for
each loop nest, and these are translated into OpenMP private variables. Finally, there are
three kinds of method invocations that CGen has to translate: intrinsics, foreign functions,
and other Julia functions. Intrinsics are primitive operations, such as array indexing and
arithmetic functions on scalars, and CGen translates these into the equivalent native func-
tions or operators and inlines them at the call sites. Julia calls foreign functions through
its ccall mechanism, which includes the names of the library and the function to invoke.
CGen translates such calls into normal function calls to the appropriate dynamic libraries.
Calls to Julia functions, whether part of the standard library or user-defined, cause CGen
to add the function to a worklist. When CGen is finished translating the current method,
it will translate the first function on the worklist. In this way, CGen recursively translates
all reachable Julia functions in a breadth-first order.

CGen imposes certain limitations on the Julia features that ParallelAccelerator supports.
There are some Julia features that could be supported in CGen to some degree with ad-
ditional work, such as string processing and exceptions. More fundamentally, since CGen
must declare a single C type for every variable, CGen cannot support Julia union types (in-
cluding type Any), which occur if Julia type inference determines that a particular variable
could have different types at different points within a function. Global variables are always
type-inferred as Any and so are not supported by CGen. CGen also does not support reflec-
tion or meta-programming, such as eval. Whenever CGen is provided an AST containing
unsupported features, CGen prints a message indicating which feature caused translation to
fail and installs the original, unmodified AST for the function in the code cache so that the
program will still run, albeit unoptimized.

5.3.1 Experimental JGen Backend
We are developing an alternative backend, JGen, that builds on the experimental threading
infrastructure provided recently in Julia 0.5. JGen generates Julia task functions for each
parfor node in the AST. The arguments to the task function are determined by the parfor’s
liveness information plus a range argument that specifies which portion of the parfor’s iter-
ation space the function should perform. The task’s body is a nested for loop that iterates
through the space and executes the parfor body.

JGen replaces parfor nodes with calls to Julia’s threading runtime, specifying the schedul-
ing function, the task, and arguments to the task. The updated AST is stored in the code
cache. When it is called, Julia applies its regular LLVM-based compilation pipeline to gen-
erate native code. Each Julia thread calls the backend’s scheduling function which uses
the thread id to perform a static partitioning of the complete iteration space. Alternative
implementations such as a dynamic load-balancing scheduler are possible. JGen supports
all Julia features.

Code generated by the JGen backend is currently significantly slower (about 2×) than
that generated by CGen, due to factors such as C++ compiler support for vectorization that
is currently lacking in LLVM. Moreover, the Julia threading infrastructure on which JGen is
based is not yet considered ready for production use.7 Therefore all the performance results
we present for ParallelAccelerator in this paper use the CGen backend. However, in the long
run, JGen may become the dominant backend for ParallelAccelerator as it is more general.

7 See http://julialang.org/blog/2016/10/julia-0.5-highlights.

ECOOP 2017

http://julialang.org/blog/2016/10/julia-0.5-highlights


4:18 Parallelizing Julia with a Non-Invasive DSL

Table 1 Description of workloads. The last column shows the compile time for @acc functions.
This compile-time cost is only incurred the first time that an @acc-accelerated function is run during
a Julia session, and is not included in the performance results in Figures 8 and 9.

Workload Description Input size Stencil Comp.
time

opt-flow Horn-Schunck optical flow 5184x2912 image 3 11s
black-scholes Black-Scholes option pricing 100M iters 4s
gaussian-blur Gaussian blur image processing 7095x5322 image, 100 iters 3 2s
laplace-3d Laplace 3D 6-point stencil 290x290x290 array, 1K iters 3 2s
quant Quantitative option pricing 524,288 paths, 256 steps 9s
boltzmann 2D lattice Boltzmann fluid flow 200x200 grid 3 9s
harris Harris corner detection 8Kx8K image 3 4s
wave-2d 2D wave equation simulation 512x512 array 3 6s
juliaset Julia set computation 1Kx1K resolution, 10 iters 4s
nengo Nengo NEF algorithm NA = 1000, NB = 800 7s

6 Empirical Evaluation

Our evaluation is based on a small but hopefully representative collection of scientific work-
loads listed in Table 1. We ran the workloads on a server with two Intel® Xeon® E5-2699
v3 (“Haswell”) processors, 128GB RAM and CentOS v6.6 Linux. Each processor has 18
physical cores (36 cores total) with base frequency of 2.3GHz. The cache sizes are 32KB for
L1d, 32KB for L1i, 256KB for L2, and 25MB for the L3 cache. The Intel® C++ compiler
v15.0.2 compiled the generated code with -O3. All results shown are the average of 3 runs
(out of 5 runs, first and last runs discarded).

Our speedup results are shown in Figure 8. For each workload, we measure the per-
formance of ParallelAccelerator running in single-threaded mode (labeled “@acc (1 thread)”)
and with multiple threads (“@acc (36 threads)”), compared to standard Julia running single-
threaded (“Julia (1 thread)”). We used Julia 0.5.0 to run both the ParallelAccelerator and
standard Julia workloads.

For all workloads except opt-flow and nengo, we also compare with a MATLAB imple-
mentation. The boltzmann, wave-2d, and juliaset workloads are based on previously exist-
ing MATLAB code found “in the wild” with minor adjustments made for measurement
purposes.8 For the other workloads, we wrote the MATLAB code. MATLAB runs used
version R2015a, 8.5.0.197613. The label “Matlab (1 thread)” denotes runs of MATLAB
with the -singleCompThread argument. MATLAB sometimes does not benefit from implicit
parallelization of vector operations (see boltzmann or wave-2d). For the opt-flow and nengo
workloads, we compare with Python implementations, run on version 2.7.10. Finally, for
opt-flow, laplace-3d, and quant, expert parallel C/C++ implementations were available for
comparison. In the rest of this section, we discuss each workload in detail. Julia and Par-
allelAccelerator code for all the workloads we discuss is available in the ParallelAccelerator
GitHub repository.

8 The original implementations are: http://www.exolete.com/lbm for boltzmann, https://www.
piso.at/julius/index.php/projects/programmierung/13-2d-wave-equation-in-octave for wave-
2d, and http://www.albertostrumia.it/Fractals/FractalMatlab/Jul.html for juliaset.

http://www.exolete.com/lbm
https://www.piso.at/julius/index.php/projects/programmierung/13-2d-wave-equation-in-octave
https://www.piso.at/julius/index.php/projects/programmierung/13-2d-wave-equation-in-octave
http://www.albertostrumia.it/Fractals/FractalMatlab/Jul.html


T. A. Anderson, H. Liu, L. Kuper, E. Totoni, J. Vitek, and T. Shpeisman 4:19

Python

Matlab (1 thread)

Matlab

Julia (1 thread)

Julia (explicit loops, 1 thread)

@acc (1 thread)

@acc (36 threads)

C (simple serial, 1 thread)

C/C++ (optimized, 36 threads)

0.1

1

10

100

Sp
ee

du
p

1.0x

(1882.1 s)

11.8x

(160.1 s)

68.9x

(27.3 s)

84.6x

(22.3 s)

opt-flow

0.1

1

10

100

Sp
ee

du
p

1.7x

(12.8 s)

2.9x

(7.7 s)

1.0x

(22.0 s)

1.5x

(15.1 s)

1.7x

(13.1 s)

41.6x

(0.5 s)

black-scholes

0.1

1

10

100

1000

Sp
ee

du
p

2.6x

(339.5 s)

4.7x

(185.9 s)

1.0x

(876.9 s)

23.3x

(37.6 s)

611.9x

(1.4 s)

gaussian-blur

0.1

1

10

100

Sp
ee

du
p

0.2x
(960.5 s)

0.2x
(738.7 s)

1.0x

(148.1 s)

6.0x

(24.8 s)

26.1x

(5.7 s)

6.0x

(24.6 s)

56.6x

(2.6 s)

laplace-3d

0.1

1

10

100

1000

Sp
ee

du
p

2.3x

(5.0 s)

2.7x

(4.3 s)

1.0x

(11.6 s)

3.7x

(3.1 s)

7.8x

(1.5 s)

119.0x

(0.1 s)

150.9x

(0.1 s)

quant

0.1

1

10

100

1000

Sp
ee

du
p

3.1x

(30.0 s)

2.6x

(36.1 s)

1.0x

(93.2 s)

14.0x

(6.6 s)

172.9x

(0.5 s)

boltzmann

0.1

1

10

100

1000

Sp
ee

du
p

1.3x

(10.4 s)

1.7x

(8.1 s)

1.0x

(14.0 s)

12.9x

(1.1 s)

138.1x

(0.1 s)

harris

0.1

1

10

100

Sp
ee

du
p

1.5x

(2.6 s)

0.9x

(4.5 s)

1.0x

(4.0 s)

8.4x

(0.5 s)

14.8x

(0.3 s)

wave-2d

0.1

1

10

Sp
ee

du
p

0.4x

(24.4 s)

1.4x

(6.9 s)

1.0x

(9.8 s)

1.5x

(6.4 s)

2.7x

(3.6 s)

juliaset

0.001

0.01

0.1

1

10

Sp
ee

du
p

0.0x

(77.6 s)

1.0x

(0.5 s)

1.9x

(0.3 s)

0.7x

(0.7 s)

nengo

Figure 8 Speedups. Improvements relative to Julia are at the top of each bar. Absolute
running times are at the bottom of each bar. Note: This figure is best viewed in color.

ECOOP 2017



4:20 Parallelizing Julia with a Non-Invasive DSL

6.1 Horn-Schunck optical flow estimation
This is our longest-running workload. It takes two 5184x2912 images (e.g., from a sequence
of video frames) as input and computes the apparent motion of objects from one image to
the next using the Horn-Schunck method [13]. The implementation in standard Julia9 ran
in 1882s. Single-threaded ParallelAccelerator showed 11.8-fold improvement (160s). Running
on 36 threads results in a speedup of 68.9× over standard Julia (27s). For comparison, a
highly optimized parallel C++ implementation runs in 22s. That implementation is about
900 lines of C++ and uses a hand-tuned number of threads and handwritten barriers to avoid
synchronization after each parallel for loop. With ParallelAccelerator, only 300 lines of code
are needed (including three runStencil calls). We achieve performance within a factor of two
of C++. This suggests it is possible, at least in some cases, to close much of the performance
gap between productivity languages and expert C/C++ implementations. We do not show
Python results because the Python implementation timed out. If we run on a smaller image
size (534x388), then Python takes 1061s, Julia 20s, ParallelAccelerator 2s and C++ 0.2s.

The Julia implementation of this workload consists of twelve functions in two modules,
and uses explicit for loops in many places. To port this code to ParallelAccelerator, we
added the @acc annotation to ten functions using @acc begin ... end blocks (omitting the
two functions that perform file I/O). In one @acc-annotated function, we replaced loops with
three runStencil calls. For example, the runStencil call shown in Figure 6 replaced a 23-line,
doubly nested for loop. Elsewhere, we refactored code to use array comprehensions and
aggregate array operations in place of explicit loops. These changes tended to shorten the
code. However, it is difficult to give a line count of the changes because in the process
of porting to ParallelAccelerator, we also refactored the code to take advantage of Julia’s
support for multiple return values, which simplified the code considerably. We also had to
make some modifications to work around ParallelAccelerator’s limitations; for example, we
moved a nested function to the top level because ParallelAccelerator can only operate on
top-level functions within a module. The overall structure of the code remained the same.

Finally, opt-flow is the only workload we investigated in which it was necessary to add
some type annotations to compile the code with ParallelAccelerator. In particular, type
annotations were necessary for variables used in array comprehensions. Interestingly, though,
this is the case only under Julia 0.5.0 and not under the previous version, 0.4.6, which
suggests that it is not a fundamental limitation but rather an artifact of the way that Julia
currently implements type inference.

6.2 Black-Scholes option pricing model
This workload (described previously in Section 3.1) uses the Black-Scholes model to calculate
the prices of European options for 100 million iterations. The Julia version runs in 22s, the
single-threaded MATLAB implementation takes 12.8s, and the default MATLAB 7.7s. The
gap between the single-threaded Julia and MATLAB running times bears discussion. In
Julia, code written with explicit loops is often faster than code written in vectorized style
with aggregate array operations.10 This is in contrast with MATLAB, which encourages
writing in vectorized style. We also measured a devectorized Julia version of this workload

9 For this workload, we show results for Julia 0.4.6, because a performance regression in Julia 0.5.0 caused
a large slowdown in the standard Julia implementation that would make the comparison unfair. All
other workloads use Julia 0.5.0.

10 See, e.g., https://github.com/JuliaLang/julialang.github.com/issues/353 for a discussion.

https://github.com/JuliaLang/julialang.github.com/issues/353


T. A. Anderson, H. Liu, L. Kuper, E. Totoni, J. Vitek, and T. Shpeisman 4:21

(“Julia (explicit loops, 1 thread)”). As Figure 8 shows, it runs in 15.1s, much closer to
single-threaded MATLAB. ParallelAccelerator on one thread gives a 1.7× speedup over the
array-style Julia implementation (13.1s), and with 36 threads the running time is 0.5s, a
total speedup of 41.6× over Julia and 14.5× over the faster of the two MATLAB versions.
Because the original code was already written in array style, this speedup was achieved
non-invasively: the only modification necessary to the code was to add an @acc annotation.

6.3 Gaussian blur image processing
This workload (described previously in Section 3.2) uses a stencil computation to blur an
image using a Gaussian blur. The Julia version runs in 877s, single-threaded MATLAB
in 340s, and the default MATLAB in 186s. The ParallelAccelerator implementation uses a
single runStencil call and takes 38s on one thread, a speedup of 23.3× over Julia. 36-thread
parallelism reduces the running time to 1.4s — a total speedup of over 600× over Julia and
about 130× over the faster of the two MATLAB versions. The code modification necessary
to achieve this speedup was to replace the loop shown in Figure 4 with the equivalent
runStencil call shown in Figure 5 — an 8-line change, along with adding an @acc annotation.

6.4 Laplace 3D 6-point stencil
This workload solves the Laplace equation on a regular 3D grid with simple Dirichlet bound-
ary conditions. The Julia implementation we compare with is written in devectorized style,
using four nested for loops. It runs in 148s, outperforming default MATLAB (961s) and
single-threaded MATLAB (739s). The ParallelAccelerator implementation uses runStencil.

ParallelAccelerator on one thread runs in 24.8s, a speedup of 6× over standard Julia. This
running time is roughly equivalent to a simple serial C implementation (24.6s). Running
under 36 threads, the ParallelAccelerator implementation takes 5.7s, a speedup of 26× over
Julia and 130× over the faster of the two MATLAB versions. An optimized parallel C
implementation that uses SSE intrinsics runs in 2.6s. The running time of the ParallelAccel-
erator version is therefore nearly within a factor of two of highly optimized parallel C. The
runStencil implementation is very high-level: the body of the function passed to runStencil is
only one line. The C version requires four nested loops and many calls to intrinsic functions.
Furthermore, the C code is less general: each dimension must be a multiple of 4, plus 2. In-
deed, this was the reason we chose the problem size of 290x290x290. The ParallelAccelerator
implementation, though, can handle arbitrary NxNxN input sizes.

For this example, since the original Julia code was written in devectorized style, the
necessary code changes were to replace the loop nest with a single runStencil call and to add
the @acc annotation. We replaced 17 lines of nested for loops with a 3-line runStencil call.

6.5 Quantitative option pricing model
This workload uses a quantitative model to calculate the prices of European and American
options. An array-style Julia implementation runs in 11.6s. As with black-scholes, we also
compare with a Julia version written in devectorized style, which runs 3.7× faster (3.1s).
Single-threaded MATLAB and default MATLAB versions run in 5s and 4.3s, respectively.
Single-threaded ParallelAccelerator runs in 1.5s. With 36 threads, the running time is 0.09s,
a total speedup of 119× over array-style Julia, and 45× over the faster of the two MATLAB
versions. For comparison, an optimized parallel C++ implementation written using OpenMP
runs in 0.08s. ParallelAccelerator is about 1.3× slower than the parallel C++ version.

ECOOP 2017



4:22 Parallelizing Julia with a Non-Invasive DSL

Since this workload was already written in array style, and the bulk of the computation
takes place in a single function, it should have been easy to port to ParallelAccelerator by
adding an @acc annotation. However, we encountered a problem in that the @acc-annotated
function calls the inv function (for inverting a matrix) from Julia’s linear algebra standard
library.11 We had difficulty compiling inv through CGen because Julia has an unusual im-
plementation of linear algebra, making it hard to generate code for most of the linear algebra
library functions (except for BLAS library calls, which are straightforward to translate). As
a workaround, we wrote our own implementation of inv for the @acc-annotated code to call,
specialized to the array size needed for this workload. With that change, ParallelAccelerator
worked well. The need for workarounds like this could be avoided by using the JGen backend
described in Section 5.3.1, which supports all of Julia.

6.6 2D lattice Boltzmann fluid flow model
This workload uses the 2D lattice Boltzmann method for fluid simulation. The ParallelAc-
celerator version uses runStencil. The Julia implementation runs in 93s, and single-threaded
MATLAB and default MATLAB in 30s and 36s, respectively (making this an example of a
workload where MATLAB’s default implicit parallelization hurts rather than helps). Single-
threaded ParallelAccelerator runs in 6.6s, a speedup of 14× over Julia. With 36 threads we
get a further speedup to 0.5s, for a total speedup of 173× over Julia and 56× over the faster
of the two MATLAB versions.

This workload is the only one we investigated in which a use of runStencil is longer than
the code it replaces. The ParallelAccelerator version of the code contains a single 65-line
runStencil call, replacing a 44-line while loop in the standard Julia implementation.12 In
addition to the replacement of the while loop with runStencil, other, smaller differences
between the ParallelAccelerator and Julia implementations arose because ParallelAccelerator
does not support the transfer of BitArrays between C and Julia. Therefore the modifica-
tions needed to run this workload with ParallelAccelerator came the closest to being invasive
changes of any workload we studied. That said, the code is still recognizably “Julia” and
our view is that the resulting 173× speedup justifies the effort.

6.7 Harris corner detection
This workload uses the Harris corner detection method to find corners in an input image.
The ParallelAccelerator implementation uses runStencil. The Julia implementation runs in
14s; single-threaded MATLAB and default MATLAB run in 10.4s and 8.1s, respectively. The
single-threaded ParallelAccelerator version runs in 1.1s, a speedup of 13× over Julia. The
addition of 36-thread parallelism results in a further speedup to 0.1s, for a total speedup of
138× over Julia and 80× over the faster of the two MATLAB versions.

The Harris corner detection algorithm is painful to implement without some kind of sten-
cil abstraction. The ParallelAccelerator implementation of this workload uses five runStencil

calls, each with a one-line function body. The standard Julia code, in the absence of
runStencil, has a function that computes and returns the application of a stencil to an input
2D array. This function has a similar interface to runStencil, but is less general (and, of

11 See http://docs.julialang.org/en/stable/stdlib/linalg/#Base.inv.
12That said, the Julia implementation was a direct port from the original MATLAB code, which was
written with extreme concision in mind (see http://exolete.com/lbm/ for a discussion), while the
runStencil implementation was written with more of an eye toward readability.

http://docs.julialang.org/en/stable/stdlib/linalg/#Base.inv
http://exolete.com/lbm/


T. A. Anderson, H. Liu, L. Kuper, E. Totoni, J. Vitek, and T. Shpeisman 4:23

course, cannot parallelize as runStencil does). Therefore the biggest difference between the
ParallelAccelerator and Julia implementations of this workload is that we were able to remove
the runStencil substitute function from the ParallelAccelerator version, which eliminated over
30 lines of code. The remaining differences between the versions, including addition of the
@acc annotation, are trivial.

6.8 2D wave equation simulation
This workload is the wave equation simulation described in Section 3.3. The ParallelAcceler-
ator implementation uses runStencil. The Julia implementation (4s) outperforms the default
MATLAB implementation (4.5s); however, the single-threaded MATLAB implementation
runs in 2.6s, making this another case where MATLAB’s default implicit parallelization is
unhelpful. The single-threaded ParallelAccelerator version runs in 0.5s, a speedup of 8× over
Julia. The addition of 36-thread parallelism results in a further speedup to 0.3s, for a total
speedup of about 15× over Julia and 10× over the faster of the two MATLAB versions.

The Julia implementation of this workload is a direct port from the MATLAB version
and is written in array style, so it is amenable to speedup with ParallelAccelerator without
any invasive changes. The only nontrivial modification necessary is to replace the one-line
wave equation shown in Section 3.3 with a call to an @acc-annotated function containing a
runStencil call with an equivalent one-line body.

6.9 Julia set computation
This workload computes the Julia set fractal13 for a given complex constant at a resolution of
1000x1000 for ten successive iterations of a loop. The Julia implementation (9.8s) is written
in array style. It outperforms the single-threaded MATLAB version (24s), but is slightly
slower than the default MATLAB version (6.9s). On one thread, ParallelAccelerator runs in
6.4s, a speedup of 1.5× over standard Julia. With 36 threads we achieve a further speedup to
3.6s, for a total speedup of 2.7× over Julia and about 2× over the faster of the two MATLAB
versions. The only modification needed to the standard Julia code is to add a single @acc

annotation. The speedup enabled by ParallelAccelerator is modest because each iteration of
the loop is dependent on results from the previous iteration, and so ParallelAccelerator is
limited to parallelizing array-style operations within each iteration.

6.10 Nengo NEF algorithm
Finally, for our last example we consider a workload that demonstrates poor parallel scal-
ing with ParallelAccelerator. This workload is a demonstration of the Neural Engineering
Framework (NEF) algorithm used by Nengo, a Python software package for simulating neu-
ral systems [1]. It builds a network from two populations of neurons. We ported the NEF
Python code14 to Julia and attempted to parallelize it with ParallelAccelerator. With an
input size of 1000 neurons for the first population and 800 for the second population, the
original Python code runs in 78s. We observed an impressive speedup to 0.5s simply by
porting the code to Julia. On one thread, the ParallelAccelerator version runs in 0.3s, a 1.9×
speedup over standard Julia, but on 36 threads we observed a slowdown to 0.7s.

13 See https://en.wikipedia.org/wiki/Julia_set.
14Available at http://nengo.ca/docs/html/nef_algorithm.html.

ECOOP 2017

https://en.wikipedia.org/wiki/Julia_set
http://nengo.ca/docs/html/nef_algorithm.html


4:24 Parallelizing Julia with a Non-Invasive DSL

Julia (1 thread)

@acc (1 thread, no optimizations)

+Parallelization

+Fusion

+Hoisting

+Vectorization

0.1

1

10

100

Sp
ee

du
p

(1882.1 s)

2.8x

(667.1 s)

17.6x

(107.2 s)

48.1x

(39.1 s)

57.0x

(33.0 s)

68.9x

(27.3 s)

opt-flow

0.1

1

10

100

Sp
ee

du
p

(22.0 s)

1.3x

(16.6 s)

21.1x

(1.0 s)

42.1x

(0.5 s)

42.4x

(0.5 s)

41.6x

(0.5 s)

black-scholes

0.1

1

10

100

1000

Sp
ee

du
p

(876.9 s)

19.8x

(44.3 s)

522.7x

(1.7 s)

508.1x

(1.7 s)

502.0x

(1.7 s)

611.9x

(1.4 s)

gaussian-blur

0.1

1

10

100

Sp
ee

du
p

(148.1 s)

3.1x

(47.5 s)

25.8x

(5.7 s)

25.8x

(5.7 s)

25.7x

(5.8 s)

26.1x

(5.7 s)

laplace-3d

0.1

1

10

100

1000

Sp
ee

du
p

(11.6 s)

3.6x

(3.2 s)

56.3x

(0.2 s)

110.1x

(0.1 s)

116.0x

(0.1 s)

119.0x

(0.1 s)

quant

0.1

1

10

100

1000

Sp
ee

du
p

(93.2 s)

10.0x

(9.3 s)

156.3x

(0.6 s)

145.5x

(0.6 s)

157.2x

(0.6 s)

172.9x

(0.5 s)

boltzmann

0.1

1

10

100

1000

Sp
ee

du
p

(14.0 s)

6.7x

(2.1 s)

91.6x

(0.2 s)

129.8x

(0.1 s)

125.8x

(0.1 s)

138.1x

(0.1 s)

harris

0.1

1

10

100

Sp
ee

du
p

(4.0 s)

6.9x

(0.6 s)

10.1x

(0.4 s)

14.5x

(0.3 s)

13.9x

(0.3 s)

14.8x

(0.3 s)

wave-2d

0.1

1

10

Sp
ee

du
p

(9.8 s)

1.8x

(5.4 s)

2.8x

(3.4 s)

2.8x

(3.4 s)

2.8x

(3.5 s)

2.7x

(3.6 s)

juliaset

0.1

1

Sp
ee

du
p

(0.5 s)

0.7x

(0.7 s)
0.1x
(4.5 s)

0.9x

(0.6 s)

0.9x

(0.6 s)

0.7x

(0.7 s)

nengo

Figure 9 The effects of individual ParallelAccelerator optimizations on a variety of workloads.
Speedup after each successive optimization (compared to Julia baseline) is shown at the top of each
bar (higher is better). The absolute running times are shown at the bottom of each bar.



T. A. Anderson, H. Liu, L. Kuper, E. Totoni, J. Vitek, and T. Shpeisman 4:25

The Julia port of the NEF algorithm is about 200 lines of code comprising several func-
tions. For the ParallelAccelerator implementation, we annotated two of the functions with
@acc, and we replaced roughly 30 lines of code in those functions that had been written us-
ing explicit for loops with their array-style equivalents. Doing so led to the modest speedup
gained by running with ParallelAccelerator on one thread. However, this workload offers
little opportunity for parallelization with ParallelAccelerator, although it might be possible
to obtain better results on a different problem size or with fewer threads.

6.11 Impact of Individual Optimizations
Figure 9 shows a breakdown of the effects of parallelism and individual optimizations imple-
mented by our compiler. The leftmost bar in each plot (labeled “Julia (1 thread)”) shows
standard Julia running times, for comparison. The second bar (“@acc (1 thread, no optimiza-
tions)”) shows running time for ParallelAccelerator with OMP_NUM_THREADS=1 and optimizations
disabled. The difference between the first and second bars in each plot illustrates the impact
of avoiding the run-time overhead of allocation and management of arrays for intermediate
computations and checking array access bounds. As the figure shows, the difference can
be substantial. This is due to the lack of optimization for array-style code in the Julia
compiler. The third bar in each plot (“+Parallelization”) shows the impact of enabling par-
allel execution with OMP_NUM_THREADS=36. Again, the benefits are usually noticeable. The last
three bars in each plot (“+Fusion”, “+Hoisting”, “+Vectorization”) each cumulatively add
an additional compile-time optimization. For many workloads, these optimizations have no
significant impact or even a slight negative impact. Some workloads, such as opt-flow and
gaussian-blur, see a noticeable speedup from vectorization. For opt-flow, black-scholes, and
quant there is a noticeable speedup from fusion. In general, the usefulness of these opti-
mizations depends on the application, but the performance to be gained from them appears
small in comparison to the improvement we see from parallelization and run-time overhead
elimination.

7 Limitations and Future Work

While we are confident that the reported results and claimed benefits of ParallelAccelerator
will generalize to other workloads and other languages, we do acknowledge the following
limitations and opportunities to extend our work.

Workloads: Our empirical evaluation is limited in size to the workloads we were able
to obtain or write ourselves. A larger set of programs would increase confidence in the
applicability and generality of the approach. We considered porting more MATLAB or
R codes to Julia, as they are often naturally vectorized, but the differences in semantics
of the base libraries complicates that task. It turned out that each program in our
benchmark suite represented substantial work. Larger programs in terms of code size
would also help validate the scalability of the compilation strategy. We intend to engage
with the Julia community to port more Julia code currently written with loops to the
array style supported by ParallelAccelerator.
Programming model: ParallelAccelerator only parallelizes programs that are written in
array style; it will not touch explicit loops. Thus it is less suitable for certain applications,
for instance, string and graph processing applications that use pointers. Additionally, the
ParallelAccelerator compiler must be able to statically resolve all operations being invoked.
For this it needs to have fairly accurate approximations of the types of every value.

ECOOP 2017



4:26 Parallelizing Julia with a Non-Invasive DSL

Furthermore, some reflective operations cannot be invoked within an @acc-annotated
function. We can generalize the ParallelAccelerator strategy to accept more programming
styles, although automatic parallelization may be more challenging. As for the type
specialization, it has worked surprisingly well so far. We hypothesize that the kinds
of array codes we work with do not use complex types for performance reasons. They
tend to involve arrays of primitives as programmers try to match what will run fast on
the underlying hardware. One of the reasons why allocation and object operations are
currently not supported is that ParallelAccelerator was originally envisioned as running on
GPUs or other accelerators with a relatively limited programming model, but for CPUs,
we could relax that restriction.
Code bloat: The aggressive specialization used by ParallelAccelerator has the potential
for massive code bloat. This could occur if @acc-annotated functions were called with
many distinct sets of argument types. We have not witnessed it so far, but it could be a
problem and would require a smarter specialization strategy. The aggressive specializa-
tion may lead to generating many native functions that are mostly similar. Instead of
generating a new function for each new type signature, we could try to share the same
implementation for signatures that behave similarly.
User feedback: There is currently limited feedback when ParallelAccelerator fails to
parallelize code (e.g., due to union types for some variables). While the code will run,
users will see a warning message and will not see the expected speedups. Unlike invasive
DSLs, with additional work we can map parallelization failures back to statements in
the Julia program. We are considering how to provide better diagnostic information.
Variability: The benefits of parallelization depend on both the algorithm and the target
parallel architecture. For simplicity, we assume a shared-memory machine without any
communication cost and parallelize all implicitly parallel operations. However, this can
result in poor performance. For example, parallel distribution of array elements across
operations can be inconsistent, which can have expensive communication costs (i.e.,
cache line exchange). We are considering how to expose more tuning parameters to the
user.

8 Conclusion

Typical high-performance DSLs require the use of a dedicated compiler and runtime for users
to use the domain-specific language features. Unfortunately, DSLs often face challenges that
limit their widespread adoption, such as a steep learning curve, functionality cliffs, and a
lack of robustness. Addressing these shortcomings requires significant engineering effort.
Our position is that designing and implementing a DSL is difficult enough without having
to tackle these additional challenges. Instead, we argue that implementors should focus only
on providing high-level abstractions and a highly optimizing implementation, but users of
the DSL should enjoy rapid development and debugging, using familiar tools on the platform
of their choice. This is where the ability to disable the ParallelAccelerator compiler during
development and then enable it again at deployment time comes in: it allows us to offer
users high performance and high-level abstractions while still giving them an easy way to
sidestep problems of compilation time, robustness, debuggability, and platform availability.

In conclusion, ParallelAccelerator is a non-invasive DSL because it does not require whole-
sale changes to the programming model. It allows programmers to write high-level, high-
performance array-style code in a general-purpose productivity language by identifying im-
plicit parallel patterns in the code and compiling them to efficient native code. It also



T. A. Anderson, H. Liu, L. Kuper, E. Totoni, J. Vitek, and T. Shpeisman 4:27

eliminates many of the usual overheads of high-level array languages, such as intermediate
array allocation and bounds checking. Our results demonstrate considerable speedups for
a number of scientific workloads. Since ParallelAccelerator programs can run under stan-
dard Julia, programmers can develop and debug their code using a familiar environment
and tools. ParallelAccelerator also demonstrates that with a few judicious design decisions,
scientific codes written in dynamic languages can be parallelized. While it may be the case
that scientific codes are somewhat more regular in their computational kernels than general-
purpose codes, our experience with ParallelAccelerator was mostly positive: there were very
few cases where we needed to add type annotations or where the productivity-oriented as-
pects of the Julia language prevented our compiler from doing its job. This is encouraging
as it suggests that dynamism and performance need not be mutually exclusive.

Acknowledgments. Anand Deshpande and Dhiraj Kalamkar wrote the parallel C version
of laplace-3d. Thanks to our current and former colleagues at Intel and Intel Labs who
contributed to the design and implementation of ParallelAccelerator and to the collection of
workloads we studied: Raj Barik, Neal Glew, Chunling Hu, Victor Lee, Geoff Lowney, Paul
Petersen, Hongbo Rong, Jaswanth Sreeram, Leonard Truong, and Youfeng Wu. Thanks to
the Julia Computing team for their encouragement of our work and assistance with Julia
internals.

References
1 The Nengo neural simulator, 2016. URL: http://nengo.ca.
2 Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Hus-

bands, Kurt Keutzer, David Patterson, William Lester Plishker, John Shalf, Samuel Webb
Williams, and Katherine Yelick. The landscape of parallel computing research: A view
from Berkeley. Technical report, UC Berkeley, 2006. URL: www.eecs.berkeley.edu/
Pubs/TechRpts/2006/EECS-2006-183.html.

3 Jeff Bezanson, Stefan Karpinski, Viral Shah, and Alan Edelman. Julia: A fast dynamic
language for technical computing. CoRR, abs/1209.5145, 2012. URL: http://arxiv.org/
abs/1209.5145.

4 Gavin Bierman, Erik Meijer, and Mads Torgersen. Adding dynamic types to C]. In Proceed-
ings of the 24th European Conference on Object-oriented Programming, ECOOP’10, pages
76–100, Berlin, Heidelberg, 2010. Springer-Verlag. URL: http://dl.acm.org/citation.
cfm?id=1883978.1883986.

5 João Bispo, Luís Reis, and João M. P. Cardoso. Techniques for efficient MATLAB-to-
C compilation. In Proceedings of the 2nd ACM SIGPLAN International Workshop on
Libraries, Languages, and Compilers for Array Programming, ARRAY 2015, pages 7–12,
New York, NY, USA, 2015. ACM. doi:10.1145/2774959.2774961.

6 Kevin J. Brown, Arvind K. Sujeeth, HyoukJoong Lee, Tiark Rompf, Hassan Chafi, Martin
Odersky, and Kunle Olukotun. A heterogeneous parallel framework for domain-specific
languages. In Proceedings of the 2011 International Conference on Parallel Architectures
and Compilation Techniques, PACT ’11, pages 89–100, Washington, DC, USA, 2011. IEEE
Computer Society. doi:10.1109/PACT.2011.15.

7 Bryan Catanzaro, Michael Garland, and Kurt Keutzer. Copperhead: Compiling an embed-
ded data parallel language. In Proceedings of the 16th ACM Symposium on Principles and
Practice of Parallel Programming, PPoPP ’11, pages 47–56, New York, NY, USA, 2011.
ACM. doi:10.1145/1941553.1941562.

8 Bryan Catanzaro, Shoaib Kamil, Yunsup Lee, Krste Asanovic, James Demmel, Kurt
Keutzer, John Shalf, Kathy Yelick, and Armando Fox. SEJITS: Getting productivity and

ECOOP 2017

http://nengo.ca
www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://arxiv.org/abs/1209.5145
http://arxiv.org/abs/1209.5145
http://dl.acm.org/citation.cfm?id=1883978.1883986
http://dl.acm.org/citation.cfm?id=1883978.1883986
http://dx.doi.org/10.1145/2774959.2774961
http://dx.doi.org/10.1109/PACT.2011.15
http://dx.doi.org/10.1145/1941553.1941562


4:28 Parallelizing Julia with a Non-Invasive DSL

performance with selective embedded JIT specialization. In Workshop on Programmable
Models for Emerging Architecture (PMEA), 2009. URL: http://parlab.eecs.berkeley.
edu/publication/296.

9 Manuel M.T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod
Grover. Accelerating Haskell array codes with multicore GPUs. In Proceedings of the Sixth
Workshop on Declarative Aspects of Multicore Programming, DAMP ’11, pages 3–14, New
York, NY, USA, 2011. ACM. doi:10.1145/1926354.1926358.

10 Maxime Chevalier-Boisvert, Laurie Hendren, and Clark Verbrugge. Optimizing MATLAB
through just-in-time specialization. In Proceedings of the 19th Joint European Conference
on Theory and Practice of Software, International Conference on Compiler Construction,
CC’10/ETAPS’10, pages 46–65, Berlin, Heidelberg, 2010. Springer-Verlag. doi:10.1007/
978-3-642-11970-5_4.

11 Matthias Christen, Olaf Schenk, and Helmar Burkhart. PATUS: A code generation and
autotuning framework for parallel iterative stencil computations on modern microarchitec-
tures. In Proceedings of the 2011 IEEE International Parallel & Distributed Processing
Symposium, IPDPS ’11, pages 676–687, Washington, DC, USA, 2011. IEEE Computer
Society. doi:10.1109/IPDPS.2011.70.

12 Matthias Christen, Olaf Schenk, and Yifeng Cui. Patus for convenient high-performance
stencils: Evaluation in earthquake simulations. In Proceedings of the 2012 International
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’12,
pages 1–10, Washington, DC, USA, 2012. IEEE Computer Society. doi:10.1109/SC.2012.
95.

13 Berthold K. P. Horn and Brian G. Schunck. Determining optical flow. Artif. Intell., 17(1-
3):185–203, August 1981. doi:10.1016/0004-3702(81)90024-2.

14 Tomas Kalibera, Petr Maj, Floreal Morandat, and Jan Vitek. A fast abstract syntax
tree interpreter for R. In Proceedings of the 10th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, VEE ’14, pages 89–102, New York, NY,
USA, 2014. ACM. doi:10.1145/2576195.2576205.

15 Shoaib Ashraf Kamil. Productive High Performance Parallel Programming with Auto-tuned
Domain-Specific Embedded Languages. PhD thesis, EECS Department, University of Cali-
fornia, Berkeley, January 2013. URL: http://www.eecs.berkeley.edu/Pubs/TechRpts/
2013/EECS-2013-1.html.

16 Vineet Kumar and Laurie Hendren. MIX10: Compiling MATLAB to X10 for high per-
formance. In Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA ’14, pages 617–636, New York,
NY, USA, 2014. ACM. doi:10.1145/2660193.2660218.

17 Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A LLVM-based Python JIT
compiler. In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in
HPC, LLVM ’15, pages 7:1–7:6, New York, NY, USA, 2015. ACM. doi:10.1145/2833157.
2833162.

18 Dahua Lin. Devectorize.jl, 2015. URL: https://github.com/lindahua/Devectorize.jl.
19 Derek Lockhart, Gary Zibrat, and Christopher Batten. PyMTL: A unified framework for

vertically integrated computer architecture research. In Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-47, pages 280–292,
Washington, DC, USA, 2014. IEEE Computer Society. doi:10.1109/MICRO.2014.50.

20 Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. PolyMage: Automatic op-
timization for image processing pipelines. In Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’15, pages 429–443, New York, NY, USA, 2015. ACM. doi:10.1145/2694344.
2694364.

http://parlab.eecs.berkeley.edu/publication/296
http://parlab.eecs.berkeley.edu/publication/296
http://dx.doi.org/10.1145/1926354.1926358
http://dx.doi.org/10.1007/978-3-642-11970-5_4
http://dx.doi.org/10.1007/978-3-642-11970-5_4
http://dx.doi.org/10.1109/IPDPS.2011.70
http://dx.doi.org/10.1109/SC.2012.95
http://dx.doi.org/10.1109/SC.2012.95
http://dx.doi.org/10.1016/0004-3702(81)90024-2
http://dx.doi.org/10.1145/2576195.2576205
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-1.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-1.html
http://dx.doi.org/10.1145/2660193.2660218
http://dx.doi.org/10.1145/2833157.2833162
http://dx.doi.org/10.1145/2833157.2833162
https://github.com/lindahua/Devectorize.jl
http://dx.doi.org/10.1109/MICRO.2014.50
http://dx.doi.org/10.1145/2694344.2694364
http://dx.doi.org/10.1145/2694344.2694364


T. A. Anderson, H. Liu, L. Kuper, E. Totoni, J. Vitek, and T. Shpeisman 4:29

21 Stefan C. Müller, Gustavo Alonso, Adam Amara, and André Csillaghy. Pydron: Semi-
automatic parallelization for multi-core and the cloud. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation, OSDI’14, pages 645–659,
Berkeley, CA, USA, 2014. USENIX Association. URL: http://dl.acm.org/citation.
cfm?id=2685048.2685100.

22 Ashwin Prasad, Jayvant Anantpur, and R. Govindarajan. Automatic compilation of
MATLAB programs for synergistic execution on heterogeneous processors. In Proceed-
ings of the 32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’11, pages 152–163, New York, NY, USA, 2011. ACM. doi:
10.1145/1993498.1993517.

23 Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand,
and Saman Amarasinghe. Halide: A language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’13,
pages 519–530, New York, NY, USA, 2013. ACM. doi:10.1145/2491956.2462176.

24 Tiark Rompf and Martin Odersky. Lightweight modular staging: A pragmatic approach
to runtime code generation and compiled DSLs. In Proceedings of the Ninth International
Conference on Generative Programming and Component Engineering, GPCE ’10, pages
127–136, New York, NY, USA, 2010. ACM. doi:10.1145/1868294.1868314.

25 Lukas Stadler, Adam Welc, Christian Humer, and Mick Jordan. Optimizing R language
execution via aggressive speculation. In Proceedings of the 12th Symposium on Dynamic
Languages, DLS 2016, pages 84–95, New York, NY, USA, 2016. ACM. doi:10.1145/
2989225.2989236.

26 Arvind Sujeeth. OptiML language specification 0.2, 2012. URL: stanford-ppl.github.
io/Delite/optiml/downloads/optiml-spec.pdf.

27 Arvind Sujeeth, HyoukJoong Lee, Kevin Brown, Tiark Rompf, Hassan Chafi, Michael Wu,
Anand Atreya, Martin Odersky, and Kunle Olukotun. OptiML: An implicitly parallel
domain-specific language for machine learning. In Lise Getoor and Tobias Scheffer, editors,
Proceedings of the 28th International Conference on Machine Learning (ICML-11), ICML
’11, pages 609–616, New York, NY, USA, June 2011. ACM.

28 Arvind K. Sujeeth, Tiark Rompf, Kevin J. Brown, HyoukJoong Lee, Hassan Chafi, Victoria
Popic, Michael Wu, Aleksandar Prokopec, Vojin Jovanovic, Martin Odersky, and Kunle
Olukotun. Composition and reuse with compiled domain-specific languages. In Proceedings
of the 27th European Conference on Object-Oriented Programming, ECOOP’13, pages 52–
78, Berlin, Heidelberg, 2013. Springer-Verlag. doi:10.1007/978-3-642-39038-8_3.

29 Justin Talbot, Zachary DeVito, and Pat Hanrahan. Riposte: A trace-driven compiler and
parallel VM for vector code in R. In Proceedings of the 21st International Conference on
Parallel Architectures and Compilation Techniques, PACT ’12, pages 43–52, New York,
NY, USA, 2012. ACM. doi:10.1145/2370816.2370825.

30 Yuan Tang, Rezaul Alam Chowdhury, Bradley C. Kuszmaul, Chi-Keung Luk, and
Charles E. Leiserson. The Pochoir stencil compiler. In Proceedings of the Twenty-third
Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’11, pages
117–128, New York, NY, USA, 2011. ACM. doi:10.1145/1989493.1989508.

ECOOP 2017

http://dl.acm.org/citation.cfm?id=2685048.2685100
http://dl.acm.org/citation.cfm?id=2685048.2685100
http://dx.doi.org/10.1145/1993498.1993517
http://dx.doi.org/10.1145/1993498.1993517
http://dx.doi.org/10.1145/2491956.2462176
http://dx.doi.org/10.1145/1868294.1868314
http://dx.doi.org/10.1145/2989225.2989236
http://dx.doi.org/10.1145/2989225.2989236
stanford-ppl.github.io/Delite/optiml/downloads/optiml-spec.pdf
stanford-ppl.github.io/Delite/optiml/downloads/optiml-spec.pdf
http://dx.doi.org/10.1007/978-3-642-39038-8_3
http://dx.doi.org/10.1145/2370816.2370825
http://dx.doi.org/10.1145/1989493.1989508




Modelling Homogeneous Generative
Meta-Programming∗

Martin Berger1, Laurence Tratt2, and Christian Urban3

1 University of Sussex, Brighton, United Kingdom
2 King’s College London, United Kingdom
3 King’s College London, United Kingdom

Abstract
Homogeneous generative meta-programming (HGMP) enables the generation of program frag-
ments at compile-time or run-time. We present a foundational calculus which can model both
compile-time and run-time evaluated HGMP, allowing us to model, for the first time, languages
such as Template Haskell. The calculus is designed such that it can be gradually enhanced with
the features needed to model many of the advanced features of real languages. We demonstrate
this by showing how a simple, staged type system as found in Template Haskell can be added to
the calculus.

1998 ACM Subject Classification D.3.3 Language Constructs and Features.

Keywords and phrases Formal Methods, Meta-Programming, Operational Semantics, Types,
Quasi-Quotes, Abstract Syntax Trees.

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.5

1 Introduction

Homogeneous generative meta-programming (HGMP) enables program fragments to be gen-
erated by a program as it is being either compiled or executed. Lisp was the first language
to support HGMP, and for many years its only well known example. More recent languages
such as MetaML [35, 36] and Template Haskell [33] support varying kinds of HGMP. Simpli-
fying slightly, homogeneous systems are those where the program that creates the fragment
is written in the same language as the fragment itself, in contrast to heterogeneous sys-
tems such as the C preprocessor where two different languages and/or systems are involved
in the generation [32, 37]. Similarly, we use generative to distinguish HGMP from other
forms of meta-programming such as reflection which focus on analysing (but, in general, not
changing) a system.

Perhaps surprisingly, given its long history, HGMP’s semantics have largely been defined
by implementations [20]. Some aspects such as hygiene [1, 20] have been studied in de-
tail. There has also been extensive work on compile-time type-checked, run-time evaluated
HGMP, primarily in the context of MetaML and its descendants [5, 16, 22, 35, 36].

While we do not wish to advocate one style of HGMP over another, we are not aware of
work which provides a natural formal basis for the style of HGMP found in languages such
as Template Haskell and Converge [37] (broadly: compile-time evaluation of normal code
with staged or dynamic type-checking). Our intention in this paper is to directly model,
without encodings, a wider range of HGMP concepts than previously possible, in a simple

∗ Laurence Tratt was funded by the EPSRC ‘Lecture’ fellowship (EP/L02344X/1).

© Martin Berger, Laurence Tratt, and Christian Urban;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 5; pp. 5:1–5:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


5:2 Modelling Homogeneous Generative Meta-Programming

Language Strings ASTs UpMLs Compile-time HGMP Run-time HGMP

Converge • • • • •
JavaScript • ◦ ◦ ◦ •
Lisp • • • • •
MetaML ◦ ◦ • ◦ •
Template Haskell ◦ • • • ◦
Scala (scala.meta) ◦ • • • •

Figure 1 A high-level characterisation of various HGMP languages.

yet expressive way, facilitating greater understanding of how these concepts relate to one
another.

The system we construct is based on a simple untyped λ-calculus, to which we gradually
add features and complexity, including a type system. This allows us to model, for the
first time, HGMP which is evaluated at both compile-time (e.g. Template Haskell-ish) and
run-time (e.g. MetaML-ish) HGMP. As a side benefit, this also gives clear pointers for how
similar features can be added to ‘real’ programming languages.

To summarise, this paper’s key contributions are:
The first clear description of the design space of multiple languages and confusingly
similar, yet distinct, meta-programming systems.
The first calculus to be naturally to naturally model languages such as Template Haskell.
The first calculus to be able to semi-systematically deal with syntactically rich languages.
A demonstration of the calculus’s simplicity by showing how it can be easily extended
to model (monotyped) systems such as Template Haskell’s.

2 HGMP design space

Although HGMP can seem an easy topic to discuss, in reality its various flavours and
communities suffer greatly from incommensurability: important differences are ignored; and
similarities are obscured by terminology or culture. Since we are not aware of previous work
which tries to unify the various branches of the HGMP family, it is vital that we start by
sketching the major points in the design space, so that we can be clear about both general
concepts and the specific terminology we use.

Figure 1 summarises how some well known approaches sit within this classification.
We use ‘Lisp’ as an over-arching term for a family of related languages (from Common
Lisp to Scheme) and ‘MetaML’ to refer to MetaML and its descendants (e.g. MetaOCaml).
Similarly, we use ‘JavaScript’ to represent what are, from this paper’s perspective, similar
languages (e.g. Python and Ruby).

2.1 The HGMP subset of meta-programming
The general area of meta-programming can be categorised in several different ways. In this
paper we consider homogeneous, generative meta-programming.

We use Sheard’s definition of homogeneous and heterogeneous systems: “homogeneous
systems [are those] where the meta-language and the object language are the same, and
heterogeneous systems [are those] where the meta-language is different from the object-
language” [32]. The most well known example of a heterogeneous generative meta-programming
system is C, where the preprocessor is both a separate system and language from C itself.



M.Berger, L. Tratt, and C. Urban 5:3

Heterogeneous systems are more flexible, but their power is difficult to tame and reason
about [38].

In homogeneous systems in particular, we can then differentiate between generative and
reflective. Reflection can introspect on run-time structures and behaviour (as in e.g. Small-
talk or Self [4]). In contrast, generative meta-programming explicitly constructs and executes
program fragments.

2.2 Program fragment representation
An important, yet subtle, choice HGMP languages must make is how to represent the
fragments that a program can generate. Three non-exclusive options are used in practice:
strings; abstract syntax trees (ASTs); and upMLs (often called backquotes or quasi-quotes).
We now define each of these, considering their suitability for our purposes.

2.2.1 Strings
In most cases, the simplest representation of a program is as a plain string. Bigger strings
can be built from smaller strings and eventually evaluated. Evaluation typically occurs
via a dedicated eval function at run-time; a handful of languages provide a compile-time
equivalent, which allows arbitrary strings to be compiled into a source file. If such features
are not available, then a string can simply be saved to a temporary file, compiled, and then
run.

Representing program fragments as strings is trivial, terse, and can express any program
valid in the language’s concrete syntax.1 However, strings can express nonsensical (e.g. syn-
tactically invalid) programs and prevent certain properties (e.g. hygiene or certain notions
of type-safety) from being enforced. Because of this, we believe that representing programs
as strings is too fragile to serve as a sound basis for a foundational model.

2.2.2 ASTs
ASTs represent program fragments as a tree. For example, 2 + 3 may be represented by
the AST astadd(astint(2), astint(3)). ASTs are thus a simplification of a language’s concrete
syntax. Exactly how the concrete syntax should be simplified is influenced by an AST de-
signer’s personal tastes and preferences, and different languages – and, occasionally, different
implementations of the same language – can take different approaches. In general, ASTs
are designed to make post-parsing stages of a system easier to work with (e.g. type-checkers
and code generators). HGMP languages which expose an AST datatype also enable users
directly to instantiate new ASTs. Although ASTs generally allow semantically nonsensical
programs to be created (e.g. referencing variables that are not defined), ASTs provide fewer
opportunities for representing ill-formed programs than strings.

By definition, every valid piece of concrete syntax must have a valid AST representation
(although not every valid AST may have a direct concrete syntax representation; this pos-
sibility is rarely exploited, but see e.g. [38] where it is used to help ensure lexical scoping for
AST fragments generated in module M and inserted into M ′). STs are therefore the most
fundamental representation of programs and we use them as the basis of our calculus.

1 For most languages this means that every possible program can be represented by strings. A few lan-
guages forbid concrete syntax representations of valid ASTs e.g. Converge prevents variables beginning
with $ from being parsed, as part of its hygiene system.

ECOOP 2017



5:4 Modelling Homogeneous Generative Meta-Programming

2.3 UpMLs
UpML (Up MetaLevel) is the name for the concept traditionally called quasi-quote or back-
quote2, which allow AST (or AST-like) structures to be represented by quoted chunks of
normal program syntax3. We have chosen the term ‘upML’ to highlight an important re-
lationship with downMLs (see Section 3.2). UpMLs are often used because they enable a
familiar means of representing code. They can also be used statically to guarantee various
properties.

There are two distinct styles of upMLs in HGMP languages, which we now discuss. The
most common style of upMLs is found in languages such as Lisp and Template Haskell,
where they are used as a ‘front-end’ for creating ASTs. While ASTs in such languages
are powerful, even small syntax fragments lead to deeply nested, unwieldy, ASTs. UpMLs
allow AST fragments to be directly built from a concrete syntax fragment e.g. the upML
expression

↑{2 + 3}

evaluates to the AST

astadd(astint(2), astint(3)).

UpMLs can contain holes which are expressed using a downML ↓{. . .}. The expression in
the hole is expected to evaluate to an AST. For example, if the function f returns the AST
equivalent of 2 + 3 – in other words, f returns astadd(astint(2), astint(3)) – then

↑{↓{f ()} ∗ 4}

will have an intermediate evaluation equivalent to ↑{(2 + 3) ∗ 4}, leading to the eventual
AST

astmult(astadd(astint(2), astint(3)), astint(4)).

In this model, ASTs are the fundamental construct and upMLs a convenience.
In their less common style – found only, to the best of our knowledge, in MetaML and

its descendants – upMLs are a datatype in and of their own right, and do not represent
ASTs. This has the shortcoming that it cannot represent some reasonable forms of meta-
programming. For example, as discussed in [33], one can not use this form of upMLs to
create projection functions such as:

(n, i) 7→ code of λ(x0, ..., xn−1).xi

In contrast, one can always use (perhaps laboriously) AST constructors to create such func-
tions. A related problem relates to the tight coupling of upMLs and a language’s concrete
grammar which may not allow sub-constructs (e.g. an else clause) to be used in isolation
and/or the location of holes can be ambiguous (if a hole follows an if construct, is it expected
to be filled with an else clause, or a separate expression that follows, but is not part of, the
if?).

2 Quasi-quotes were developed by Quine for working with logics [40].
3 Quotation is typically indicated by syntactic annotations such as brackets, but it is also possible to
eschew explicit markers altogether and use types to distinguish between programs and code as data
[23, 31].



M.Berger, L. Tratt, and C. Urban 5:5

Our experience is that languages without upMLs are prohibitively difficult to use, and
find little traction with users. We therefore add upMLs as an optional extension to our
calculus. We choose upMLs as a ’front-end’ for creating ASTs, due to the greater expressivity
and ubiquity of this approach.

2.4 Compile-time vs. run-time execution
In order to be useful, HGMP program fragments must at some point be run. Broadly speak-
ing, execution happens at either compile-time (when the wider program is being compiled
but not executed) or run-time (as part of normal program execution). Different languages
allow evaluation at compile-time and/or run-time depending on the language: Template
Haskell can evaluate ASTs only at compile-time; JavaScript can evaluate strings only at
run-time; while Lisp can evaluate ASTs and strings at both compile-time and run-time.

Run-time evaluation is conceptually simple: a normal user-level function, conventionally
called eval, takes in a program fragment (as a string or AST, depending on the language)
and evaluates it. Every time the program is run, eval is called anew, as any other user-level
function.

Compile-time evaluation is trickier and is represented in our approach with top-level
downMLs ↓{. . .} (i.e. a downML that is not nested inside an upML). When a top-level
downML is encountered, the code inside it is evaluated before the surrounding program; that
code must evaluate to an AST which then overwrites the downML before normal compilation
resumes. In other words, all top-level downMLs are evaluated and ‘eliminated’ before run-
time execution. Once the top-level downMLs are evaluated, a new program is constructed.
No matter how many times the new program is evaluated, the top-level downMLs are not –
cannot be! – reevaluated. We sometimes say that the effects of compile-time evaluation are
’frozen’ in the resulting program.

The practical effects of run-time and compile-time evaluation are best seen by example.
For example, the following program evaluates code at run-time using eval and prints 1 3 6
(where ‘;’ is the sequencing operator):

print(1);
print(2 + eval(print(3); ASTInt(4)))

Replacing the eval with a downML leads to a program which prints 3 1 6:

print(1);
print(2 + ↓{print(3); ASTInt(4)})

These two possibilities have various implications. For example, compile-time evaluation
allows ASTs to interact with early stages of the programming language’s semantics and can
introduce new variables into scope. In contrast, run-time evaluation can reference variables
but not change those in scope in any way. There is also a significant performance difference:
if a calculation can be moved from run-time to compile-time, it then has no run-time impact.

2.5 Implicit and explicit HGMP
Compile-time evaluation can also be subdivided into explicit and implicit flavours. In Lisp,
‘macros’ are special constructs explicitly identified at their point of definition by a user;
in contrast, ‘function calls’ whose name references a macro are identified by the compiler
and the macro evaluated at compile-time with the ‘function call’ arguments passed to it.
Since one cannot tell by looking at a Lisp function call in isolation whether its arguments

ECOOP 2017



5:6 Modelling Homogeneous Generative Meta-Programming

will be evaluated at compile-time or run-time, it allows Lisp programmers to ‘extend’ the
language transparently to the user. Although implicit evaluation has traditionally been seen
as more problematic in syntactically rich languages, Honu [30] shows that a Lisp-like macro
system can be embedded in such languages. However, languages such as Template Haskell
take a different approach, explicitly identifying the locations where compile-time evaluation
will happen using downMLs, allowing the user to call arbitrary user code. To an extent,
the difference between implicit and explicit HGMP is cultural and without wishing to pick
sides, in this paper we concentrate on explicit HGMP. This allows us to concentrate on
the fundamentals of HGMP without the parsing considerations that are generally part of
implicit HGMP.

2.6 HGMP vs. macro expansion
Systems such as Template Haskell share the same compile-time and run-time language (with
the small exception that the run-time language does not feature upMLs): the compile-time
evaluation of code uses the same evaluation rules as run-time evaluation. While some Lisp
systems share this model, some do not. Most notably Scheme, and its descendent Racket,
use a macro expander [13]. Rather than evaluate arbitrary Lisp code, Scheme and Racket
macros share the same syntax as, but a different evaluation semantics to, their surrounding
language. Thus, in our terminology, define-syntax is not a HGMP system. Modern Scheme
and Racket systems have an additional macro system syntax-case which does allow HGMP.

3 A simple HGMP calculus

In this section, we define the minimal calculus which does interesting HGMP so that we
can focus on the core features. In later sections we enrich this calculus with more advanced
constructs. Our starting point is a standard call-by-value (CBV) λ-calculus whose grammar
is as follows:

M ::= x || MN || λx.M || c || M +N || ...

Here, x ranges over variables and c over constants (e.g strings, integers). We include + as
an example of a wide class of common syntactic constructs.

3.1 ASTs
As discussed in Section 2.2.2, ASTs are the most fundamental form of representing programs
in HGMP. In essence, every element of the calculus must have a representation as an AST.
Of the syntactic constructs in the λ-calculus, constants, applications, and additions are most
easily modelled; both variables and λ-abstractions require the representation of variables.
We model variables as strings, which makes modelling later HGMP features easier and
matches ‘real’ systems. We thus extend the λ-calculus as follows:

M ::= ... || astt(M̃)

t ::= var || app || lam || int || string || add || ...

We write M̃ for tuples (M1, ...,Mn) with |M̃ | denoting the length of the tuple. An AST
constructor astt(M̃) takes |M |+ 1 arguments. The first argument t is a tag which specifies
the specific AST datatype, and the rest of the arguments are then relative to that datatype.
For example astvar(”x”) is the AST representation of the variable x, astlam(aststring(”x”),M)
is the AST representation of λx.N , and astint(3) is the AST representation of the constant 3.



M.Berger, L. Tratt, and C. Urban 5:7

x ⇓ct x
Var ct

M ⇓ct A N ⇓ct B
MN ⇓ct AB

App ct
M ⇓ct A

λx.M ⇓ct λx.A
Lam ct

c ⇓ct c
Const ct

M ⇓ct A N ⇓ct B
M +N ⇓ct A+B

Add ct
Mi ⇓ct Ai

astt(M̃) ⇓ct astt(Ã)
Astc ct

M ⇓ct A A ⇓λ B B ⇓dl C
↓{M} ⇓ct C

DownML ct

astvar(”x”) ⇓dl x
Var dl

M ⇓dl M
′ N ⇓dl N

′

astapp(M,N) ⇓dl M
′N ′

App dl

M ⇓dl ”x” N ⇓dl N
′

astlam(M,N) ⇓dl λx.N
′ Lam dl astint(n) ⇓dl n

Int dl

aststring(”x”) ⇓dl ”x” String dl
M ⇓dl M

′ N ⇓dl N
′

astadd(M,N) ⇓dl M
′ +N ′

Add dl

λx.M ⇓λ λx.M Lam
M ⇓λ λx.M ′ N ⇓λ N ′ M ′[N ′/x] ⇓λ L

MN ⇓λ L App

... Mi ⇓λ Ni ...
astt(M̃) ⇓λ astt(Ñ)

Astc

Figure 2 Key big-step reduction rules for the CBV semantics of our simple calculus. Some
standard rules (e.g. ⇓λ for addition) are omitted for brevity.

3.2 Compile-time HGMP
To model compile-time HGMP, we extend the calculus with a new construct downML, which
provides a way of syntactically defining the points in a program where compile-time HGMP
should occur (we do not need a tag for downMLs for reasons that will become clear later):

M ::= ... || ↓{M} t ::= ...

In essence, a downML ↓{M} is an expression which must be evaluated at compile-time,
i.e. before the rest of the program is executed. To model this, we find ourselves in the most
complex and surprising part of our calculus: we have distinct but interacting reduction
relations for the compile-time and run-time stages.

Figure 2 shows the reduction rules for our simple system. We use big-step semantics for
brevity. There are three reduction relations:
⇓ct models a compiler. It takes a program, possibly containing downMLs, as input and

produces a program with no downMLs as output. It does this by recursively scan-
ning through the input program looking for downMLs and evaluating them. Normal
λ-calculus terms are copied from input to output unchanged. When a downML is
encountered, the rule [DownML ct], explained below, evaluates the expression in-
side the downML. Assuming that expression returns an AST, the ⇓dl relation turns
the AST into a normal program which then overwrites the downML. For example,
(λz.z) ↓{aststring((λy.y)”x”)} ⇓ct (λz.z)”x”.

ECOOP 2017



5:8 Modelling Homogeneous Generative Meta-Programming

⇓dl models the conversion of ASTs into ‘normal’ programs. In our case, this means con-
verting ASTs into programs (for example aststring(”x”) ⇓dl ”x”). As this may suggest,
⇓dl is a simple relation which can be semi-mechanically created from the AST structure
of the language.

⇓λ models run-time execution. The rules are normal λ-calculus CBV reduction rules aug-
mented with the minimum rules to evaluate ASTs.

Put another way, ⇓ct and ⇓λ are the key reduction relations, which allow us to accurately
capture the reality that a program is compiled once but run many times:

M ⇓ct︸ ︷︷ ︸
compile-time

A ⇓λ V︸ ︷︷ ︸
run-time

The key rule in ⇓ct is [DownML ct]. Its left-most premise M ⇓ct A first recursively
scans for downMLs nested in M . The middle premise A ⇓λ B is the heart of the rule,
evaluating the expression to produce an AST using normal λ-calculus evaluation. The
simplicity of this premise belies its importance: the expression A can perform arbitrary
computation. For the time being, we assume that the expression returns an AST (we defer
consideration of erroneous computations to Section 6.2). That AST is then converted into a
normal program which overwrites the downML. The program resulting from the ⇓ct relation
can then be run as many times with the ⇓λ relation as desired. Figure 11 shows a fully
worked-out example of a compile-time program and the ⇓ct relation.

3.2.1 Scoping
Our simple calculus intentionally allows variables to be captured dynamically. Although this
naturally follows from the reduction rules, we now explicitly explain how this occurs and why.
First, we note that the [App] rule in the definition of ⇓λ uses traditional capture-avoiding
substitutionM [N/x]. Note that we do not need to extend the definition to downMLs, which
will have been removed by ⇓ct before substitution is applied.

We can create AST representations of variables containing arbitrary variables (for ex-
ample astvar(”x”)) which downMLs will then turn into normal programs. Consider the
following two programs and their compilation:

λx. ↓{astvar(”x”)} ⇓ct λx.x.
λy. ↓{astvar(”x”)} ⇓ct λy.x.

As these examples suggest, our calculus is not hygienic, and thus allows variables to be
captured. This is a deliberate design decision for two reasons. First, not all languages that
we wish to model have an explicit notion of hygiene, instead providing a function which
generates fresh (i.e. unique) names (conventionally called gensym). Second, there is not,
as yet, a single foundational style of hygiene, and different languages take subtly different
approaches. We talk about possible future directions for hygiene in Section 8.

3.3 Run-time HGMP
Having introduced compile-time HGMP, we now have all the basic tools needed to intro-
duce run-time HGMP. We follow the Lisp tradition and use a function called eval. Unlike
downMLs, evals are not eliminated at compile-time: they are, in essence, normal λ-calculus
functions. We extend the calculus grammar (including an AST equivalent) as follows:

M ::= ... || eval(M) t ::= ... || eval



M.Berger, L. Tratt, and C. Urban 5:9

L ⇓λ M M ⇓dl N N ⇓λ N ′
eval(L) ⇓λ N ′

Eval rt
M ⇓ct N

eval(M) ⇓ct eval(N) Eval ct

M ⇓dl N
asteval(M) ⇓dl eval(N) Eval dl

Figure 3 Additional reduction rules for eval.

... Mi ⇓ct Ai ...
astpromote(tagt, M̃) ⇓ct astpromote(tagt, Ã)

Promote ct

L ⇓dl tagt t 6= promote ... Mi ⇓dl Ni ...
astpromote(L, M̃) ⇓dl astt(Ñ)

Promote dl 1

L ⇓dl tagpromote M ⇓dl tagt ... Ni ⇓dl N
′
i ...

astpromote(L,M, Ñ) ⇓dl astpromote(tagt, Ñ
′)

Promote dl 2

... Mi ⇓λ Ai ...
astpromote(tagt, M̃) ⇓λ astpromote(tagt, Ã)

Promote

Figure 4 Additional rules defining ⇓ct , ⇓dl and ⇓λ for AST promotion.

The additional reduction rules for eval are shown in Figure 3. [Eval rt] reduces M to a
value, which must be an AST, and which is then turned into a normal λ term and executed.
Note that unlike compile-time HGMP, eval cannot introduce new variables into a scope. A
detailed example of running eval is given in Figure 11.

4 Enriching the calculus

The simple calculus of the previous section allows readers to concentrate on the core of our
approach. However, it is too spartan to model important properties of real languages. In
this section, we enrich the simple calculus with further features which add complexity but
allow us to model real languages.

4.1 Higher-order ASTs
The simple system in Section 3.1 does not allow higher-order meta-programming (e.g. meta-
meta-programming). While the simple ASTs we introduced in Section 3.1 are sufficient to
represent normal λ-calculus terms as an AST, programs with ASTs cannot be represented
as ASTs. While not all real languages (e.g. Template Haskell) allow higher-order meta-
programming, many do (e.g. MetaML and Converge). We thus introduce higher-order ASTs
now to make the presentation of later features consistent.

Higher-order ASTs need a means to represent programs that can create ASTs as ASTs
themselves. There are many plausible ways that this could be done: the mechanism we
settled upon allows extra syntactic elements to be easily added by further extensions. The
basis of our approach is a new datatype astpromote(M, Ñ) which allows an arbitrary AST
with a tagM and parameters Ñ to be promoted up a meta-level. We thus need to introduce

ECOOP 2017



5:10 Modelling Homogeneous Generative Meta-Programming

M ⇓ul A
↑{M} ⇓ct A

UpML ct
M ⇓ct A
↓{M} ⇓ul A

DownML ul

”x” ⇓ul aststring(”x”) String ul
M ⇓ul A N ⇓ul B
MN ⇓ul astapp(A,B) App ul

M ⇓ul A
µg.λx.M ⇓ul astrec(aststring(”g”), aststring(”x”), A) Rec ul

M ⇓ul A
λx.M ⇓ul astlam(aststring(”x”), A) Lam ul tagt ⇓ul tagt

Tag ul

M ⇓ul A
eval(M) ⇓ul asteval(A) Eval ul

M ⇓ul A A ⇓ul B
↑{M} ⇓ul B

UpML ul

x ⇓ul astvar(”x”) Var ul
... Mi ⇓ul Ai ...

astt(M̃) ⇓ul astpromote(tagt, Ã)
Ast ul

Figure 5 Additional rules for upMLs.

a way for programs to reference tags arbitrarily, and extend the syntax as follows:

M ::= ... || tagt t ::= ... || promote

The corresponding reduction rules are in Figure 4. Note that tags are normal values in the
calculus so that one can write programs which can create higher-order ASTs. Promoted
ASTs can then be reduced one meta-level with the existing ⇓dl relation. For example,
astpromote(string, aststring(”x”)) ⇓dl aststring(”x”).

4.2 UpMLs
Using AST constructors alone to perform HGMP is tiresome—while it gives complete flexib-
ility, the sheer verbosity of such an approach quickly overwhelms even the most skilled and
diligent programmer. UpMLs ameliorate this problem by allowing concrete syntax to be
used to represent ASTs (see Section 2.3). Since, depending on a language’s syntax, upMLs
can be less expressive than ASTs, we model upMLs as a transparent compile-time expansion
to the equivalent AST constructor calls e.g. ↑{2} ⇓ct astint(2).

To add UpMLs to our language, we first extend the grammar as follows:

M ::= ... || ↑{M} t ::= ...

Note that, like downMLs, upMLs have disappeared after the compile-time stage, so we have
no need to make an AST equivalent of them.

Figure 5 shows the reduction rules needed for upMLs including the new ⇓ul reduction
relation which handles the upML to AST conversion. When, during the recursive sweep of
a program by the ⇓ct reduction relation, an upML is encountered, it is handed over to the
⇓ul reduction relation which translates a λ-term into its AST equivalent.

The major subtlety in the new rules relates to an important practical need. UpMLs on
their own can only construct ASTs of a fixed ‘shape’ and are thus rather limited. Languages
with upMLs (or their equivalents) therefore allow holes to be put into them where arbitrary
ASTs can be inserted; in essence, the upML serves as a template with defined points of



M.Berger, L. Tratt, and C. Urban 5:11

variability. In some languages (e.g. Converge) holes inside upMLs are syntactically differ-
entiated from holes outside, but we use downMLs to represent such ‘inner’ holes. In the
same way as top-level downMLs, inner downMLs are expected to return an AST; unlike
top-level downMLs, they are evaluated at run-time not compile-time. The [DownML ul]
rule therefore simply runs the expression inside it through the ⇓ct reduction relation and
uses the result as-is. This allows examples such as the following:

↑{2+ ↓{↑{3 + 4}}} ⇓ct astadd(astint(2), astadd(astint(3), astint(4)))

In our model, upMLs are simple conveniences for AST construction, rather as they were
in early Lisp implementations. More recent languages (e.g. Scheme, Template Haskell) use
upMLs in addition as a means of ensuring referential transparency and hygiene [7]. Our
formulation of upMLs is designed to open the door for such possibilities, but it is beyond
the scope of this paper to tackle them.

4.2.1 The relationship between compile-time levels
Readers may wonder why we have chosen the names upML and downML for what are often
called backquote / quasi-quote and macro call / splice respectively. We build upon an
observation from MetaLua [14] that these two operators are more deeply connected than
often considered, though our explanation is somewhat different. Our starting point is to
note that, during compilation, there are three stages that a compiler can go through: normal
compilation; converting upMLs to ASTs; and running user code in a downML. UpMLs /
downMLs not only control which stage the compiler is in at any point during compilation,
but have a fundamental relation to ASTs which we now investigate.

We call the normal compilation stage level 0. AST constructors in normal λ-terms are
simply normal datatype constructors. When we encounter a top-level upML, we shift stage
‘up’ to level +1. In this level we take code and convert it into an AST which represents the
code. When we encounter a top-level downML, we shift stage ‘down’ to level -1. In this
level we take code and run it.

The basic insight is that the compiler level corresponds to the ASTs created or consumed:
at level 0 we neither create or consume ASTs; at level 1 we create them (with upMLs); and
at level -1, we consume ASTs (downMLs must evaluate to an AST, which is then converted
to a normal λ-term).

Building upon this, we can see that this notion naturally handles downMLs nested within
upMLs (and vice versa), bringing out the symmetry between the two operators, which can
cancel each other out. Consider a program which nests a downML in an upML (i.e. ↑{↓
{M}}). How is the program M dealt with? Compilation starts at level 0; the upML shifts
it to level 1; and the downML shifts it back to level 0. Thus we can see thatM is handled at
the normal compilation level and neither creates or consumes ASTs at compile-time (the fact
that, at run-time, M ultimately needs to evaluate to an AST is irrelevant from a compile-
time perspective). Similarly, consider an upML nested inside a downML (i.e. ↓{↑{M}}).
Since the downML shifts the compiler to level -1 and the upML shifts it back to level 0, we
can see that the end effect is that M is dealt with as if it had always been at the normal
compilation level.

In fact, the notion of these 3 levels (-1, 0, +1) is sufficient to explain arbitrarily nested
downMLs and upMLs. For example, we can clearly see that two nested upMLs (i.e. ↑{↑
{M}}) create an AST representation of M (at level 2) which can be turned back into a
normal λ-term by two nested downMLs (operating at level -2). As this suggests, unlike

ECOOP 2017



5:12 Modelling Homogeneous Generative Meta-Programming

M ⇓ct A A ⇓λ B N [B/x] ⇓ct C
let↓x = M in N ⇓ct C

Let ct

↓{M}[N/x] = ↓{M [N/x]}
↑{M}[N/x] = ↑{M [N/x]}

(let↓x = M in N)[L/y] =
{

let↓x = M [L/y] in N [L/y] x 6= y

let↓x = M in N x = y

Figure 6 The additional reduction rule, as well as the substitution rules, for letdownMLs.

systems such as MetaML, we do not need to label expressions as belonging to a certain
level, nor do we need to do anything special to handle levels extending to −∞ or +∞.

4.3 Lifting
Most HGMP languages allow semi-arbitrary run-time values to be lifted up a meta-level
(e.g. an integer 3 to be converted to an AST astint(3)). In some languages lifting is implicit
(e.g. in Template Haskell, a variable inside an upML which references a definition outside
the upML, and which is of a simple type such as integers, is implicitly lifted), while in others
it is explicit (e.g. Converge forces all lifting to be explicit). All the languages we are aware of
that use implicit lifting determine this statically, and can be trivially translated to explicit
lifting. We thus choose to model explicit lifting. We extend the grammar as follows:

M ::= ... || lift(M) t ::= ... || lift

Figure 7 shows the additional reduction rules. The rules for the ⇓ct , ⇓dl , and ⇓ul relations
are mechanical. Capture-avoiding substitution is given as lift(M)[N/x] = lift(M [N/x]). The
rules for ⇓λ show that lift is a polymorphic function, turning values of type T into an AST
astT e.g. lift(2 + 3) ⇓λ astint(5).

The relation between upMLs and lift can be seen from the following examples (where ◦
represents relational composition):
↑{2 + 3} ⇓ct astadd(astint(2), astint(3))
↑{2 + 3} (⇓ct ◦ ⇓λ) astadd(astint(2), astint(3))
lift(2 + 3) ⇓ct lift(2 + 3)
lift(2 + 3) (⇓ct ◦ ⇓λ) astint(5)

4.4 Cross-level variable scoping
The downMLs modelled in Section 3.2 run each expression in a fresh environment with
no link to the outside world. While in theory this is sufficiently expressive, in practice it
is restrictive: downMLs cannot share code, and so each downML must include within it a
copy of every library function it wishes to use. Languages such as Template Haskell therefore
allow variables defined outside downMLs (e.g. functions) to be referenced within a downML.
Different languages have subtly different mechanisms to define which variables are available
within a downML (e.g. Converge allows, with some restrictions, variables defined within
a module M to be used in a downML within that module; Template Haskell only allows



M.Berger, L. Tratt, and C. Urban 5:13

variables imported from other modules to be used in a downML), and we do not wish to
model the specifics of any one language’s scheme.

We therefore provide a simple abstraction which can be used to model the scoping rules
of different languages. The letdownML construct let↓x = M in N makes a program M

available as x to N at compile-time (i.e. including inside downMLs). We extend the grammar
as follows:

M ::= ... || let↓x = M in N t ::= ...

The additional reduction rule for letdownML is given in Figure 6. As this shows, letdownMLs
are let bindings that are performed at compile-time rather than run-time. Figure 6 therefore
also defines the additional substitution rules required.

4.5 Examples
The staged power function [8] has become a standard way of comparing HGMP approaches.
The idea is to specialise the function λnx.xn with respect to its first argument. This is more
efficient than implementations with variable exponent, provided the cost of specialisation is
amortised through repeated use at run-time. To model this in our calculus, we assume the
existence of the standard recursion operator µg.λx.M that makes g available for recursive
calls in M . The staged power function then becomes:

M = µp.λn.if n = 1 then ↑{x} else ↑{x×↓{p (n− 1)}}
power = λn. ↑{λx. ↓{M n}}

For example power 3 reduces to an AST equivalent to that generated by ↑{λx.x × x × x}.
The function power can be used to specialise code at compile-time:

let cube = ↓{power 3} in (cube 4) + (cube 5)

and at run-time:

let cube = eval(power 3) in (cube 4) + (cube 5)

By stretching the example somewhat, we can also show higher-order HGMP in action.
Assume we wish to produce a variant of power which takes one part of the exponent early
on in a calculation, with the second part known only later (e.g. because we want to compute
λn.xm+n frequently for a small number of different n that become available after m is
known). We can then use the following higher-order meta-program for this purpose:

powerho = λm. ↑{λn. ↑{λx. ↓{M (m+ n)}}}

and use it in a number of different ways e.g.:

let cube = ↓{↓{powerho 1} 2} in cube 4

which specialises both arguments at compile-time, or

let f = ↓{powerho 1} in let cube = f 2 in eval(cube) 4

where the first argument is specialised at compile-time, and the second at run-time.

ECOOP 2017



5:14 Modelling Homogeneous Generative Meta-Programming

M ⇓ct N
lift(M) ⇓ct lift(N)

M ⇓dl N
astlift(M) ⇓dl lift(N)

M ⇓ul N
lift(M) ⇓ul astlift(N)

c is an integer
lift(c) ⇓λ astint(c)

c is a string
lift(c) ⇓λ aststring(c)

Figure 7 Additional rules for lifting. For simplicity, we only define lifting for integers and strings,
but one can define lifting for any type desired.

5 A recipe for creating HGMP calculi

Nothing in the presentation of our calculus has relied on the λ-calculus as starting point.
In this section, we build upon an observation from Converge that HGMP can easily be
detached from the ‘base’ language it has been added to [37]: we informally show how one
can add HGMP features to a typical programming language.

Let us imagine that we have a language L which we wish to extend with HGMP features
to create Lmp. We assume that L has its syntax given as an algebraic signature (with an
indication of bindings), and the semantics as a rule system over the syntax. We require L to
have a string-esque datatype to represent variables; such a datatype can be trivially added
to L if not present. We can then create Lmp as follows:

Mirror every syntactic element of L with an AST and a tag.
Add eval, astpromote and their corresponding tags.
Add upMLs, downMLs, and letdownMLs.
Add appropriate reduction rules for ASTs, upMLs, downMLs, and letdownMLs.

Semi-formally, we define Lmp’s syntax as follows. Assuming that C is the set of L’s program
constructors, Lmp’s constructors and tags are defined as follows:

T = C ∪ {eval, promote}

Cmp = C ∪ {eval, ↓{_}, ↑{_}, let↓} ∪ {astt | t ∈ T} ∪ {tagt | t ∈ T}

The arities and binders of the new syntax are as follows:
If c ∈ C then its arity and binders are unchanged in Cmp.
astc has the same arity as c ∈ C and no binders.
astpromote has variable arity, or, equivalently has arity 2, with the second argument being
of type list. There are no binders.
asteval has arity 1 and no binders.
tagt has arity 0 and no binders for t ∈ T .
eval, ↓{_}, and ↑{_} have arity 1 and no binders.
let↓ has arity 3 and its first argument is binding.

Lmp inherits all of L’s reduction rules. Lmp’s ⇓λ reduction relation is then augmented with
the following rules:

t ∈ T
t ⇓λ t

L ⇓λ M M ⇓dl N N ⇓λ N ′
eval(L) ⇓λ N ′

... Mi ⇓λ Ni ... t ∈ T
astt(M̃) ⇓λ astt(Ñ)

A ⇓dl relation must then be added to Lmp. The definition of this relation follows the same
pattern as that of ⇓dl in the calculus presented earlier in the paper: each L constructor c



M.Berger, L. Tratt, and C. Urban 5:15

must have a rule in ⇓dl to convert it from an AST to a normal calculus term. If a constructor
c has no binders, the corresponding rule is simple:

... Mi ⇓dl Ni ...

astc(M̃) ⇓dl c(Ñ)

Two examples of such rules are as follows:

astvar(”x”) ⇓dl x aststring(”x”) ⇓dl ”x”

Constructors with binders are most easily explained by example. If c has arity 2, with the
first argument being a binder, the following rule must be added:

M ⇓dl ”x” N ⇓dl N
′

astc(M,N) ⇓dl c(x,N ′)

The following rules must be added for higher-order ASTs:

M ⇓dl N
asteval(M) ⇓dl eval(N)

L ⇓dl tagt Mi ⇓dl Ni t ∈ T
astpromote(L, M̃) ⇓dl astc(Ñ)

L ⇓dl tagpromote M ⇓dl tagt Ni ⇓dl Ri
astpromote(L,M, Ñ) ⇓dl astpromote(tagt, R̃)

t ∈ T
tagt ⇓dl tagt

Assuming we wish to enable compile-time HGMP, a ⇓ct relation must be added:

M ∈ {x, ”x”} ∪ {tagt | t ∈ T}
M ⇓ct M

M ⇓ct N
eval(M) ⇓ct eval(N)

Mi ⇓ct Ni c ∈ C
c(M̃) ⇓ct c(Ñ)

Mi ⇓ct Ni t ∈ T
astt(M̃) ⇓ct astt(Ñ)

t ∈ T
tagt ⇓ct tagt

M ⇓ct A A ⇓λ B B ⇓dl C
↓{M} ⇓ct C

M ⇓ct A A ⇓λ B N [B/x] ⇓ct C
let↓x = M in N ⇓ct C

Note that the last two rules (for downMLs and letdownMLs) are added unchanged from
earlier in the paper (we assume for letdownMLs that L has a suitable notion of capture-
avoiding substitution, which is extended to Lmp as described in Section 3). The rules for
upMLs are given by a new relation ⇓ul which is a trivial variation of that in Figure 5 and
omitted for brevity.

While semi-mechanically creating Lmp from L easily results in a new language with
HGMP, we cannot guarantee that Lmp will always respect the ‘spirit’ of L. For example,
adding HGMP to the π-calculus in this fashion would lead to HGMP that executes sequen-
tially (e.g. in the evaluation of downMLs) which may not be desirable (although the resulting
HGMPified π-calculus would be a good starting point for developing message-passing based
forms of HGMP). Nevertheless, for most sequential programming languages, we expect Lmp
to be in the spirit of L. As this shows, the HGMP features of Lmp are easily considered sep-
arately. We suggest this helps explain how such systems have been retro-fitted on languages
such as Haskell, and gives pointers for designers of other languages who wish to consider
adding HGMP.

ECOOP 2017



5:16 Modelling Homogeneous Generative Meta-Programming

Language Monotyped Parameterised Hybrid Dynamic Staged Upfront

Converge ◦ ◦ ◦ • n/a n/a
Lisp ◦ ◦ ◦ • n/a n/a
MetaML ◦ • ◦ ◦ ◦ •
Template Haskell • ◦ ◦ ◦ • ◦
scala.meta • ◦ ◦ ◦ • ◦

Figure 8 How different HGMP languages approach typing.

6 Example: staged typing and HGMP

In conventional programming languages, static typing provides compile-time guarantees that
certain classes of error cannot happen at run-time. However, HGMP blurs the lines between
compile-time and run-time, causing complications in typing that have not yet been fully
resolved. The purpose of this section is to demonstrate that our calculus can also be useful
for studying static typing in an HGMP language. We do this by defining a type system
which is conceptually close to Template Haskell’s.

6.1 Design issues
The three major design questions for static typing in the face of HGMP are: what does
type-safety mean in multi-staged languages? When should static types be enforced? And:
what static types should ASTs have?

Type-safety normally means that programs cannot get ‘stuck’ at run-time, in the sense
that the program gets to a point where no reduction rules can be applied to it, but it has not
yet reached a value. The static typing system identifies such programs and prevents them
from being run. Alas, concepts like “stuck” and even “value” are not straightforward in
HGMP languages. This section will only outline some of the key issues. We leave a detailed
investigation as further work.4

There are two main choices for when static types are to be checked in an HGMP language:
upfront or in stages. Upfront typing as found in MetaML guarantees that any program which
statically type-checks cannot get stuck in any later stage [35, 36]. This strong guarantee
comes at a price: many seemingly reasonable meta-programs fail to type-check, at least for
simple typing systems (e.g. admitting type inference). We therefore believe that – except,
perhaps, for verification-focused languages – staged type-checking is the more practical of
the two approaches. It guarantees only that, whenever an AST is ⇓dl converted to a normal
λ-term as a result of a downML or eval, the program will not get stuck before the next
such conversion. Thus, type-checking might need to be carried out more than once, and the
guarantees at each stage are weaker than in upfront checking. In the rest of this paper, we
only consider staged type-checking.

There are three main ways that code (be that ASTs or MetaML-esque quasi-quotes) can
be statically typed. In a monotyped system, every program representing code has the same
type Code. In a parameterised system, code of type Code〈α〉 can be shifted a meta-level (at

4 For example, the computation described by ⇓ul relation does not have a syntactic notion of value.
Consider the term astint(3). Whether one should consider it as a value with respect to ⇓ul depends
on whether ⇓ul was previously applied to 3 or not. This complicates defining a small-step semantics
corresponding to ⇓ul .



M.Berger, L. Tratt, and C. Urban 5:17

M ⇓ct N
evalα(M) ⇓ct evalα(N)

M ⇓dl N
asteval(α)(M) ⇓dl evalα(N)

M ⇓ul A
evalα(M) ⇓ul asteval(α)(A)

Figure 9 ⇓ct , ⇓dl , ⇓ul reduction relations for the altered eval.

compile-time or run-time) to a program of type α. Finally, it is possible to bridge these two
extremes with a hybrid system which allows both parameterised and monotyped code types.
MetaML uses parameterised code types. Template Haskell is currently monotyped (though
there are proposals for it to move to a hybrid system [28]) and we thus use that as the basis
of our typing system. Figure 8 surveys how different HGMP languages approach typing.

6.2 Staged typing for the foundational calculus
The key properties in the staged typing we define are as follows:

1. All code that is evaluated by the ⇓λ relation will have been previously type-checked and
thus cannot get stuck. This is done by type-checking the expressions inside downMLs and
evals, and type-checking the complete program after all downMLs have been removed.

2. All code that is converted by the ⇓dl relation will have been previously type-checked to
ensure that the ASTs involved are properly formed and thus applying ⇓dl cannot get
stuck.

3. Since the only possible places where ⇓ct could get stuck are where it references ⇓λ and
⇓dl , (1, 2) guarantee that ⇓ct doesn’t get stuck.

4. Since ⇓ul could only get stuck where it references ⇓ct , (3) guarantees that ⇓ul doesn’t
get stuck.

To make this form of typing concrete, we create a type system for this paper’s calculus
(modifying eval for reasons that will soon become clear). The type system can be seen as an
extension of Template Haskell’s, augmented with higher-order HGMP and run-time HGMP.

We first need to extend the calculus grammar to introduce types as follows:

M ::= ... || µg.λx.M || evalα(M)
t ::= ... || rec || eval(α)
α ::= Int || Bool || α→ β || String || Code || Tagt

We assume readers are acquainted with static types for the basic λ-calculus. ASTs have
type Code; each tagt has a corresponding static type Tagt. The only surprising change is
the type annotation of evalα(M) and the corresponding tag eval(α). The type annotation
α is used for type-checking the program N , obtained from M by evaluation to an AST and
subsequent ⇓dl conversion back to a normal λ-term: all we have to do is verify that N has
type α. Without this type annotation, we would have to type-check N and ensure that N ’s
type is compatible with its context. The additional reduction rules for all relations except
⇓λ are shown in Figure 9.

The core of the approach is to intersperse type-checking with reduction, making sure that
we can never run code that has not been type-checked. We therefore first add a ‘normal’

ECOOP 2017



5:18 Modelling Homogeneous Generative Meta-Programming

Γ, x : α `M : β
Γ ` λxM : α→ β

Γ, g : α→ β, x : α `M : β
Γ ` µg.λx.M : α→ β Γ, x : α ` x : α

Γ `M : α→ β Γ ` N : α
Γ `MN : β

Γ `M : String Γ ` N : Code
Γ ` astlam(aststring(M), N) : Code

Γ ` tagt : Tagk
Γ ` L : String Γ `M : String Γ ` N : Code
Γ ` astrec(aststring(L), aststring(M), N) : Code

t 6= lam, rec, promote, string, int ... Γ `Mi : Code ...
Γ ` astt(M̃) : Code

Γ `M : Int
Γ ` astint(M) : Code

Γ `M : String
Γ ` aststring(M) : Code

Γ `M : Code
Γ ` evalα(M) : α

Γ `M : Tagt ... Γ ` Ni : Code ...
Γ ` astpromote(M, Ñ) : Code

Figure 10 Type-checking with type Code for programs not containing upMLs and downMLs.
Some straightforward cases omitted.

type-checking phase between compile-time and run-time (i.e for programs which do not use
downMLs or eval, this phase is the only type-check invoked):

M ⇓ct A︸ ︷︷ ︸
compile-time

type-checking︷ ︸︸ ︷
` A : α A ⇓λ V︸ ︷︷ ︸

run-time

Second, we must add a type-checking phase to ensure that code generated at compile-time
and inserted into the program by downMLs is type-safe (i.e. the expression in a downML
has a static type of Code). We therefore alter [DownML ct] as follows:

M ⇓ct A ` A : Code A ⇓λ B B ⇓dl C

↓{M} ⇓ct C
DownML ct

Finally, we alter [Eval rt] to perform a type-check on the code it will evaluate at run-time:

L ⇓λ M M ⇓dl N ` N : α N ⇓λ N ′

evalα(L) ⇓λ N ′
Eval rt

We define the typing judgement Γ `M : α as follows. M is a program that does not contain
upMLs or downMLs (which will have been removed by ⇓ct before type-checking). Γ is an
environment (i.e. a finite map) from variables to types such that all of M ’s free variables are
in the domain of Γ. Note that type-checking needs to be applied only to programs without
downMLs and upMLs, hence the free variables of a program not containing upMLs and
downMLs can be defined as usual for a program, and we omit the details. We write Γ, x : α
for the typing environment that extends Γ with a single entry, mapping x to α, assuming
that x is not in Γ’s domain. We write `M : α to indicate that the environment is empty.

The rules defining Γ ` M : α are given in Figure 10. The rules for variables, function
abstraction, recursion, and application are as in conventional λ-calculus. For ASTs astt(M̃)
where t is not one of lam, rec, promote, string, or int, if all the arguments have type Code
then astt(M̃) also has type Code. ASTs representing a binding construct (e.g. astlam(M,N))



M.Berger, L. Tratt, and C. Urban 5:19

have type Code if: the terms representing binders are of the form aststring(L) with L having
type String; and N has type Code.

6.3 Examples
With the typing system defined, a few examples can help understand how and when it
operates. First we note that terms such as astlam((λx.x),M) that would get stuck without
the type system do not type-check in our system. Second we can see that some expressions
pass one type-check and fail a later one. Consider the following program:

2 + ↓{ astlam(aststring(”x”), astvar(”x”)) }

The downML ⇓ct reduces to astlam(aststring(”x”), astvar(”x”)) which successfully type-checks
as being of type code. The entire program then ⇓ct-reduces to 2 + λx.x, which is neither a
value nor has any ⇓λ-reductions and fails to type-check.

The type system can also check more complex properties, such as AST constructors with
the wrong number of arguments. Let M be the program astpromote(tagint, astint(1)) in the
following program:

astpromote(tagpromote, tagint,M,M)

When run through a downML or eval for the first time it will yield:

astpromote(tagint, astint(1), astint(1))

which type-checks correctly. However, if this AST is run through a downML or eval it results
in:

astint(1, 1)

which fails to type-check.

7 Related work

Meta-programming is such a long-studied subject that a full related work section would be
a paper in its own right. We have referenced many real-world systems in previous sections;
in this section, we therefore concentrate on related work that has a foundational or formal
bent, and which has not been previously mentioned.

Run-time HGMP has received more attention than compile-time HGMP, with MetaML
and the reFLect language [18] being amongst the well known examples. MetaML is the
closest in spirit to this paper, though it has two major, and two minor, differences. The
minor differences are that MetaML is typed and hygienic, whereas our system can model
untyped and non-hygienic systems, enabling people to experiment with different notions of
each. The first major difference is that MetaML does not model compile-time evaluation of
arbitrary code (see below for a discussion of MacroML, which partly addresses this). The
second major difference is upMLs and ASTs: MetaML has only the former, while our system
has both, with ASTs the ‘fundamental’ construct and upMLs a convenience atop them. As
discussed in Section 2.3, this restricts the programs – and hence programming languages –
that can be expressed.

Run-time HGMP is also the primary object of study in unstaging translations (see e.g. [6,
21, 24]). These are semantics-preserving embeddings of an HGMP language into a language

ECOOP 2017



5:20 Modelling Homogeneous Generative Meta-Programming

without explicit constructs for representing code as data. Depending on the particular
pairing of source and target language, the unstaging translation can be extremely complex,
making it difficult to use as a mechanism for understanding the fundamental constructs. We
are also not aware of unstaging translations that treat compile-time and run-time HGMP
in a unified way. An open research question is whether our general approach in Section 5
can be unstaged in a generic way.

Compile-time HGMP research has mostly focused on Lisp macros (e.g. [3, 20]) or C++
templates (e.g. [17]). Perhaps the work most similar to ours is the formal model of a large
subset of Racket’s macro system [13]. However, this formalises Racket’s define-syntax sys-
tem which is dynamically typed, and not a HGMP system in our definition (see Section 2.6).
The system we define is closer in spirit to a statically typed version of Racket’s syntax-case
system. MacroML [16] investigates Lisp-style macro systems by translation into MetaML.
The key insight is that macros are special constructs which must be entirely expanded in a
separate stage before any normal code is evaluated. Our approach instead models systems
where normal code can be evaluated at both compile-time and run-time.

Research on types for HGMP and the relationship with modal logics via a Curry-Howard
correspondence started with work by Davis and Pfenning [10, 9]. In recent years, more
expressive typing systems along these lines have been investigated (see e.g. [27, 39]). The
axiomatic semantics of HGMP is explored in [2]. Some original approaches towards the
foundations of run-time HGMP are: M-LISP [26] which provides an operational semantics
for a simplified Lisp variant with eval but without macros; Archon [34], which is based on the
untyped λ-calculus but without an explicit representation of code; the two-level λ-calculus
[15] which is based on nominal techniques; and the ρ-calculus [25] which combines ideas
from Conway games and π-calculus.

Issues closely related to HGMP have been studied in the field of logic, often under the
heading of reflection [19]. Little work seems to have been done towards unification of the
multiple approaches to meta-programming. Farmer et al.’s concept of syntax frameworks [11,
12] may well have been the first foray in this direction but are not intended to be a full model
of meta-programming, whether homogeneous or heterogeneous. In particular, they do not
capture the distinction between compile-time HGMP and run-time HGMP.

8 Conclusions

In this paper we presented the first foundational calculus for modelling compile-time and
run-time HGMP as found in languages such as Template Haskell. The calculus is designed
to be considered in increments, and adjusted as needed to model real-world languages. We
provided a type system for the calculus. We hope that the calculus provides a solid basis
for further research into HGMP.

The most obvious simplification in the calculus is its treatment of names. The calculus
deliberately allows capture and is not hygienic since there are different styles of hygiene,
and various possible ways of formalising it. A system similar to Template Haskell’s, for
example, where names in upMLs are preemptively α-renamed to fresh names would be a
simple addition, but other, sometimes more complex, notions are possible (e.g. determining
which variables should be fresh and which should allow capture). We hypothesise that the
formal definition of hygiene in [1], which is based on nominal techniques [29], can be adapted
to our foundational calculus.



M.Berger, L. Tratt, and C. Urban 5:21

Acknowledgements. We thankW. Farmer, A. Kavvos, O. Kiselyov, G. Meredith, S. Peyton
Jones, M. Stay and L. T. van Binsbergen for discussions about meta-programming, and
E. Burmako for answering questions about scala.meta.

References
1 Michael D. Adams. Towards the essence of hygiene. In Proc. POPL, 2015.
2 Martin Berger and Laurence Tratt. Program Logics for Homogeneous Metaprogramming.

In Proc. LPAR, pages 64–81, 2010.
3 Ana Bove and Laura Arbilla. A confluent calculus of macro expansion and evaluation. In

Proc. LFP, pages 278–287, 1992.
4 Gilad Bracha and David Ungar. Mirrors: design principles for meta-level facilities of object-

oriented programming languages. In Proc. OOPSLA, pages 331–344, 2004.
5 Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. Implementing Multi-

stage Languages Using ASTs, Gensym, and Reflection. In Proc. GPCE, pages 57–76, 2003.
6 Wontae Choi, Baris Aktemur, Kwangkeun Yi, and Makoto Tatsuta. Static Analysis of

Multi-staged Programs via Unstaging Translation. In Proc. POPL, pages 81–92, 2011.
7 William Clinger and Jonathan Rees. Macros that work. In Proc. POPL, pages 155–162,

1991.
8 Krzysztof Czarnecki, John O’Donnell, Jörg Striegnitz, and Walid Taha. DSL Implementa-

tion in MetaOCaml, Template Haskell, and C++. In Proc. Dagstuhl Workshop on Domain-
specific Program Generation, volume 3016, pages 50–71, 2004.

9 Rowan Davies. A temporal-logic approach to binding-time analysis. In Proc. LICS, pages
184–195, 1996.

10 Rowan Davies and Frank Pfenning. A modal analysis of staged computation. J. ACM,
48(3):555–604, 2001.

11 William M. Farmer. The formalization of syntax-based mathematical algorithms using
quotation and evaluation. In J. Carette, editor, Intelligent Computer Mathematics, pages
35–50, 2013.

12 William M. Farmer and Pouya Larjani. Frameworks for reasoning about syntax that utilize
quotation and evaluation. McSCert Report 9, McMaster University, 2013. Available at
http://imps.mcmaster.ca/doc/syntax.pdf.

13 Matthew Flatt, Ryan Culpepper, David Darais, and Robert Bruce Findler. Macros that
work together: Compile-time bindings, partial expansion, and definition contexts. JFP,
22(2):181–216, March 2012.

14 Fabien Fleutot and Laurence Tratt. Contrasting compile-time meta-programming in
Metalua and Converge. In Workshop on Dynamic Languages and Applications, July 2007.

15 Murdoch J. Gabbay and Dominic P. Mulligan. Two-level lambda-calculus. In Proc. WFLP,
volume 246, pages 107–129, 2009.

16 Steven E. Ganz, Amr Sabry, and Walid Taha. Macros as multi-stage computations: Type-
safe, generative, binding macros in MacroML. In Proc. ICFP, pages 74–85, 2001.

17 Ronald Garcia and Andrew Lumsdaine. Toward Foundations for Type-Reflective Metapro-
gramming. SIGPLAN Not., 45(2):25–34, October 2009.

18 Jim Grundy, TomMelham, and John O’Leary. A reflective functional language for hardware
design and theorem proving. JFP, 16(2):157–196, 2006.

19 John Harrison. Metatheory and Reflection in Theorem Proving: A Survey and Critique.
Technical Report CRC-053, SRI International, 1995.

20 David Herman and Mitchell Wand. A theory of hygienic macros. In Proc. ESOP, pages
48–62, March 2008.

21 Jun Inoue, Oleg Kiselyov, and Yukiyoshi Kameyama. Staging beyond terms: Prospects
and challenges. In Proc. PEPM, PEPM ’16, pages 103–108, 2016.

ECOOP 2017

http://imps.mcmaster.ca/doc/syntax.pdf
http://www.gabbay.org.uk/papers/twollc.pdf


5:22 Modelling Homogeneous Generative Meta-Programming

22 Jun Inoue and Walid Taha. Reasoning about multi-stage programs. In Proc. ESOP, pages
357–376, 2012.

23 Ulrik Jørring and William L. Scherlis. Compilers and staging transformations. In
Proc. POPL, pages 86–96. ACM, 1986.

24 Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh Shan. Closing the stage: From
staged code to typed closures. In Proc. PEPM, pages 147–157, 2008.

25 L. Gregory Meredith and Matthias Radestock. A Reflective Higher-order Calculus. ENTCS,
141(5):49–67, 2005.

26 Robert Muller. M-LISP: A representation-independent dialect of LISP with reduction
semantics. TOPLAS, 14(4):589–616, October 1992.

27 Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory.
Transactions on Computational Logic, 2007.

28 Simon Peyton Jones. New directions for Template Haskell. http://ghc.haskell.org/
trac/ghc/blog/TemplateHaskellProposal, October 2010.

29 Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, 2013.

30 Jon Rafkind and Matthew Flatt. Honu: Syntactic extension for algebraic notation through
enforestation. In GPCE, pages 122–131, 2012.

31 Tiark Rompf and Martin Odersky. Lightweight modular staging: a pragmatic approach to
runtime code generation and compiled dsls. Commun. ACM, 55(6):121–130, 2012.

32 Tim Sheard. Accomplishments and research challenges in meta-programming. Proc. SAIG
’01, 2196:2–44, September 2003.

33 Tim Sheard and Simon Peyton Jones. Template meta-programming for Haskell. In
Proc. Haskell workshop, pages 1–16, 2002.

34 Aaron Stump. Directly reflective meta-programming. Higher Order Symbol. Comput.,
22(2):115–144, June 2009.

35 Walid Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis, Oregon
Graduate Institute of Science and Technology, 1993.

36 Walid Taha and Michael Florentin Nielsen. Environment classifiers. In Proc. POPL, pages
26–37, 2003.

37 Laurence Tratt. Compile-time meta-programming in a dynamically typed OO language.
In Proc. DLS, pages 49–64, October 2005.

38 Laurence Tratt. Domain specific language implementation via compile-time meta-
programming. TOPLAS, 30(6):1–40, 2008.

39 Takeshi Tsukada and Atsushi Igarashi. A Logical Foundation for Environment Classifiers.
Logical Methods in Computer Science, 6(4:8):1–43, 2010.

40 Willard van Orman Quine. Mathematical Logic. Harvard Univ. Press, 2003.

http://ghc.haskell.org/trac/ghc/blog/Template Haskell Proposal
http://ghc.haskell.org/trac/ghc/blog/Template Haskell Proposal


M.Berger, L. Tratt, and C. Urban 5:23

x
⇓ c

t
x

λ
x
.x
⇓ c

t
λ
x
.x

x
⇓ c

t
x

λ
x
.x
⇓ c

t
λ
x
.x

7
⇓ c

t
7

as
t in

t(
7)
⇓ c

t
as

t in
t(

7)
(λ
x
.x

)a
st

in
t(

7)
⇓ c

t
(λ
x
.x

)a
st

in
t(

7)
..
.

(λ
x
.x

)a
st

in
t(

7)
⇓ λ

as
t in

t(
7)

as
t in

t(
7)
⇓ d

l
7

↓{
(λ
x
.x

)a
st

in
t(

7)
}
⇓ c

t
7

(λ
x
.x

)↓
{(
λ
x
.x

)a
st

in
t(

7)
}
⇓ c

t
(λ
x
.x

)7

λ
x
.x
⇓ λ

λ
x
.x

(λ
x
.x

)a
st

in
t(

7)
⇓ λ

as
t in

t(
7)

as
t in

t(
7)
⇓ d

l
7

7
⇓ λ

7
ev

al
((
λ
x
.x

)a
st

in
t(

7)
)⇓

λ
7

x
[7
/
x

]⇓
λ

7
(λ
x
.x

)(
ev

al
((
λ
x
.x

)a
st

in
t(

7)
))
⇓ λ

7

Fi
gu

re
11

E
xa

m
pl
es

of
co
m
pi
le
-t
im

e
H
G
M
P

(t
op

)
an

d
ru
n-
tim

e
H
G
M
P

(b
ot
to
m
).

ECOOP 2017





Relaxed Linear References for Lock-free Data
Structures∗

Elias Castegren1 and Tobias Wrigstad2

1 Uppsala University, Sweden, Elias.Castegren@it.uu.se
2 Uppsala University, Sweden, Tobias.Wrigstad@it.uu.se

Abstract
Linear references are guaranteed to be free from aliases. This is a strong property that simplifies
reasoning about programs and enables powerful optimisations, but it is also a property that is
too strong for many applications. Notably, lock-free algorithms, which implement protocols that
ensure safe, non-blocking concurrent access to data structures, are generally not typable with
linear references because they rely on aliasing to achieve lock-freedom.

This paper presents LOLCAT, a type system with a relaxed notion of linearity that allows
an unbounded number of aliases to an object as long as at most one alias at a time owns the
right to access the contents of the object. This ownership can be transferred between aliases,
but can never be duplicated. LOLCAT types are powerful enough to type several lock-free data
structures and give a compile-time guarantee of absence of data-races when accessing owned data.
In particular, LOLCAT is able to assign types to the CAS (compare and swap) primitive that
precisely describe how ownership is transferred across aliases, possibly across different threads.
The paper introduces LOLCAT through a sound core procedural calculus, and shows how LOLCAT
can be applied to three fundamental lock-free data structures. It also discusses a prototype
implementation which integrates LOLCAT with an object-oriented programming language.

1998 ACM Subject Classification D.3.3 Language Constructs and Features – Concurrent pro-
gramming structures

Keywords and phrases Type systems, Concurrency, Lock-free programming

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.6

1 Introduction

In the last decade, hardware manufacturers have increasingly come to rely on scaling through
the addition of more cores on a chip, instead of improving the performance of a single core [2].
The underlying reasons are cost-efficiency and problems with heat dissipation. As a result
of this paradigm shift, programmers must write their applications specifically to leverage
parallel resources—applications must embrace parallelism and concurrency [46, 20].

Amdahl’s Law dictates that a program’s scalability depends on saturating it with as
much parallelism as possible. Avoiding serialisation of execution and contention on shared
resources favours lock-free implementations of data structures [40], which employ optimistic
concurrency control without the overhead of software transactional memory [26]. Lock-free
algorithms are complicated and require that all threads that operate on shared data follow a
specific protocol that guarantees that at least one thread makes progress at all times [30].

∗ This work is sponsored by the UPMARC centre of excellence, the FP7 project “UPSCALE” and the
project “Structured Aliasing” financed by the Swedish Research Council.

© Elias Castegren and Tobias Castegren;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 6; pp. 6:1–6:32

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


6:2 Relaxed Linear References for Lock-free Programming

Lock-free programming is based on a combination of speculation and publication. For
example, when inserting into a lock-free linked list, a thread may speculatively read the
contents of some field x.next, v, store v in the next field of a new node, n, and if x.next
remains unchanged, publish n by replacing the contents of x.next by n. A key component of
many lock-free algorithms is the atomicity of the last two actions: checking if x.next == v
and if so, performing x.next = n. A common way to achieve such atomicity is through the
CAS primitive, which is available in modern hardware.

In a lock-free algorithm where several threads compete for the same resource, e.g., access
to the same node, care must be taken so that at most one thread succeeds in acquiring it. If
two threads successfully extract the same object from a data-structure, subsequent accesses
to this object will be subject to data-races—ownership of a resource may not be duplicated.

In the literature on type systems, duplication of ownership is typically prevented using
linear references. A linear (or unique) reference is the only reference to a particular object.
Linearity is a strong property that allows many powerful operations such as type changes and
dynamic object reclassification (e.g., [15]), ownership transfer and zero-copy message passing
(e.g., [12, 43, 14]), and safe memory reclamation of objects without garbage collection (e.g.,
[51]). In the context of parallel programming, linear references do not need concurrency
control as a thread holding a linear reference trivially has exclusive ownership of the referenced
object (no other thread can even know of its existence) (e.g., [22]). Transfer of linear values
across threads without data-races is straightforward.

When programming with linear references one must take care to not accidentally lose
linearity [5] as linear values must be threaded through a computation. Most systems maintain
linearity through destructive reads which nullify variables as they are read [32, 39, 7, 12, 13].
Other systems permit aliasing but additionally require holding a capability (or permission)
to allow dereferencing a pointer [45, 25, 52, 37]. To avoid the burden of explicitly chaining
linear values through a computation, many systems with linear references allow temporary
relaxation of linearity through borrowing, which creates a temporary alias that is eventually
invalidated, at which point linearity is re-established [4, 12, 25].

Even though a functionally correct lock-free algorithm can guarantee that at most
one thread manages to acquire a node in a data structure, linear references and lock-free
programming are at odds. Lock-free algorithms generally require an unbounded number of
threads concurrently reading from and writing to a data structure, which linear references
forbid.

Not only is aliasing a prerequisite of sharing across threads, but using destructive reads
to maintain linearity breaks down in the absence of means to write to several locations in an
atomic step. Consider popping an element off a Stack implemented as a chain of linear links.
A sequential implementation using destructive reads (explicated as consume) would perform:

Link tmp = consume stack.top; // Transfer top to the call stack
stack.top = consume tmp.next; // Transfer top’s next to the Stack object

A lock-free Stack has contention on its top field. Thus, if the top field is temporarily
nullified to preserve linearity, as in the example above, concurrent accesses might witness this
intermediate state and be forced to either abort their operations or wait until the value is
instantiated again. Similarly, if access to the top field is guarded by some capability, threads
must either wait for the capability to become available, or copy the capability and risk
overwriting each other’s results. Other relaxed techniques such as borrowing are generally
not applicable in a concurrent setting as concurrent borrowing of the same object could lead
to data-races.



E. Castegren and T. Wrigstad 6:3

In this paper, we propose a principled relaxation of linearity that separates ownership
from holding a reference and supports the atomic transfer of ownership between different
aliases to a single object without locks or destructive reads. This enables a form of linear
ownership [38] where at any point in time, there is at most one reference allowed to access an
object’s linear resources. We present a type system, LOLCAT—for Lock-free Linear Compare
and Transfer, that statically enforces such linear ownership, and use a combination of static
and dynamic techniques to achieve effective atomicity of ownership transfer strong enough to
express well-known implementations of lock-free data structures, such as stacks [48], linked
lists [27] and queues [36]. While our system does not guarantee the correctness of a data
structure’s implementation with respect to its specification (e.g., it does not guarantee
linearizability [31]), it guarantees that all allowed accesses to an object’s linear resources are
data-race free.

The paper makes the following contributions:
(i) It proposes a linear ownership system that allows the atomic transfer of ownership

between aliases (Section 2), with the goal of facilitating lock-free programming and
giving meaningful types to patterns in lock-free algorithms, including the CAS primitive.

(ii) It shows the design of a type system that enforces linear ownership in the context of a
simple procedural language, and demonstrates its expressiveness by showing that it can
be used to implement several well-known lock-free data structures (Section 2.4).

(iii) It shows a formalisation of the semantics of a simple procedural language using LOLCAT
and proves data-race freedom for accessing linear fields in the presence of aliasing, in
addition to type soundness through progress and preservation (Section 3-4).

(iv) It reports on a proof-of-concept implementation (Section 5) in a fork of the object-oriented
actor language Encore.

2 Lock-Free Programming with Linearity

This paper presents a principled relaxation of linearity that allows programs whose values
are effectively linear, although they may at times be aliased, and a hybrid typing discipline
that enforces this notion of linearity. Our goal is to enable lock-free programming with the
kind of ownership guarantees provided by linear references, and to catch linearity violations
in implementations of lock-free algorithms, such as two threads believing that they are the
exclusive owners of the same resource.

Our system combines a mostly static approach with some dynamic checks from the
literature on lock-free programming (e.g., CAS). The latter is needed to avoid data-races
when multiple threads read and write the same fields concurrently. Rather than employing
advanced program analysis or program logic, we implement our static guarantees as a
simple type system, LOLCAT. This design choice trades reasoning power for simplicity and
modularity; code can be type-checked locally without the need for interprocedural analysis.
This should make it possible or even straightforward to integrate our approach in existing
languages.

Our system captures a number of concepts in lock-free programming such as speculation,
publication, acquisition and stable paths, and imposes a typing discipline to guarantee their
correct usage with respect to linearity. Consequently, we provide a strong notion of ownership
in which a pointer (on the stack or on the heap) may own some resources (i.e., values in
fields of the object pointed to), and where access to owned resources is guaranteed to be
exclusive.

Section 2.1 through Section 2.3 give an overview of the main concepts of LOLCAT.
Section 2.4 gives concrete implementation examples.

ECOOP 2017



6:4 Relaxed Linear References for Lock-free Programming

2.1 The Challenges of Linear Lock-Free Programming
Lock-free programming is complicated, partly due to the lack of mutual exclusion (which e.g.,
locks can provide). A lock-free algorithm must take into account that values may be accessed
and updated concurrently by other threads. This is also the root cause of the challenges one
must overcome when designing a type system for lock-free programming:

CHALLENGE 1: Using linearity to exclude read–write races is too strict as it forces operations
to be serialised and allows observation of a data structure in an inconsistent state.

In the stack popping example from Section 1, we noted that reads of the top field of the
stack must not consume its value, as this prevents concurrent operations from making progress.
Similarly, all threads concurrently pushing to the stack must be able to simultaneously alias
top in the next field of a newly created node in each thread, and compete to publish their
own node at the head of the stack. Both these requirements break linearity.

We address this challenge by relaxing linearity. At the cost of losing the ability to treat
an object’s identity linearly, we allow unbounded aliasing of linear values, as long as each
field in the value is accessible through at most one alias. Hence, we have linearity of an
object’s fields, but not its identity, similar to systems using permissions (e.g., [45]). To be
able to express patterns that appear in lock-free algorithms, we further relax linearity for
certain types of fields, and allow these to be accessed through any alias: immutable val fields
(similar to Java’s final fields), once fields which become immutable after the first write, and
spec fields which explicitly allow concurrent reading and writing. For consistency, “normal”
fields are annotated var.

The main guarantee given by relaxed linearity is that accesses to var fields are free from
data-races. This is ensured by the invariant that a reference ι in a variable or field P is
always a dominator of the transitive closure C of var fields reachable from P . If f is a var
field in C, then any path P ′ ending in f contains ι. If P ′ is a field access x.f, the var field f
is dominated by the stack variable x, so the thread holding x has exclusive access to the field.

The type system tracks this ownership through the static type T of P (x in the example
above). This is important because no two aliases of P may have static types that allow access
to the same var field: the reference ι in P owns all var fields that its type T gives access to.

CHALLENGE 2: Transferring ownership between aliases, without transferring aliases.

Lock-free programming requires setting up speculative structures involving aliasing and
later attempting to acquire the necessary ownership. Since destructive reads impact other
threads’ ability to make progress, we must be able to transfer ownership between existing
aliases rather than equating ownership transfer with alias transfer.

To address this challenge, we employ a novel form of view-point adaptation [41] at the
type-level which we term field restrictions. These come in three forms: weak, strong and
transfer, which all capture existing patterns used in lock-free programming. The intuition of
the field restrictions can be explained through a rely–guarantee [34, 44] interpretation:

Weakly restricted types T | f guarantee that the field f will not be accessed through an alias
of this type, and may rely on nothing. This denotes a speculative view of a value, without
ownership of the field f.

Strongly restricted types T || f guarantee that the field f will not be accessed through an
alias of this type, and may rely on the absence of aliases through which f can be accessed.
This denotes a view of an object whose field f will never be accessed again.



E. Castegren and T. Wrigstad 6:5

Transfer-restricted types T ∼ f guarantee that an alias of this type will not be used to
assert ownership of the object pointed to by the field f, and may rely on the fact that
the field f will not be updated concurrently by another thread. This denotes a view of
an object where the field f is without ownership, either because it contains a speculation
or because ownership has been, or is currently being, transferred from it.

In normal linear type systems, ownership transfer involves moving a unique reference
from one place to another, e.g., by using a destructive read. LOLCAT additionally supports
ownership transfer through the addition of a field restriction for some ι.f in one place and
the corresponding removal of a field restriction for the same ι.f in another. This allows
setting up speculative structures, and also allows transferring ownership from a pointer-based
structure without destroying the pointers.

We base this kind of ownership transfer on the atomic compare-and-swap (CAS) operation.
Even though they are relatively simple, field restrictions let us give a static semantics to
the CAS primitive that precisely captures how ownership is transferred between aliases when
linking and unlinking objects into and out of linked structures (cf. Section 2.3).

CHALLENGE 3: Guaranteeing atomicity of statements that read and write multiple locations.

The atomic operations used in lock-free programming operate on a single location, yet
many lock-free algorithms require operations that modify more than one location without
interference. Due to the lack of hardware support for such operations, algorithms must
employ clever tricks to achieve “effective atomicity”. In a similar fashion, the soundness of our
approach, notably the transfer of ownership in Challenge 2, relies on the absence of concurrent
modifications of certain fields during operations that atomically move ownership of multiple
locations—otherwise, the exclusive access implied by ownership could be compromised.

We solve this problem by leveraging stable paths, i.e., fields that are guaranteed not to
change and which are therefore accessible without fear of concurrent changes. We support
several forms of stable paths: immutable val fields; once fields which are immutable after
initialisation; and fix pointers which are pointers that, once installed in a field, cannot be
overwritten. As a side-effect of installing a fix pointer in x.f where x has type T, the local
type of x changes to T ∼f, which signals that the value in f will not change. A dynamic
check prevents writes through aliases which are not yet aware that the field has been fixed.
See Section 2.5 for an example using fix pointers.

When an object is created, the first reference to it is necessarily globally unique (assuming
garbage collection, see Section 5.3). This trivially gives a guarantee that the fields of that
object will not change under foot until it has been made accessible to other threads. In
LOLCAT, the type annotation pristine denotes an object that has just been created, and
which is accessible through a single alias only.

2.2 Typing the Life of a List Node: Speculation, Publication and
Acquisition

This section exemplifies some of the concepts of LOLCAT by discussing the implementation
of a linked list. In a single-threaded setting this would be simple to implement even using
traditional linear types: insertion constitutes creating a new node and linking it in between
two existing nodes, and removal is done by unlinking a node. Both operations can be
implemented using simple destructive reads as no aliasing is required.

In a multi-threaded lock-free setting, the implementation gets more complicated. Firstly,
care must be taken to preserve the integrity of the list in the presence of concurrent accesses

ECOOP 2017



6:6 Relaxed Linear References for Lock-free Programming

View Type Alias’ Type
Newborn pristine Node N/A
Staged pristine Node∼next N/A
Published Node Node |elem
Acquired Node∼next Node |elem
Speculative Node |elem any
Dummy Node ||elem Node |elem

(a) Views of a list node during different stages
of its life. The Staged and Acquired views see
the next field as a reference without ownership.
The Speculative and Dummy views may not be
used to access the elem field.

N

A

pristine Node 

S

pristine Node ~ next 

D

Node || elem 

P

Node Node ~ next 
N/A

N/A Node | elem

Node | elem

Node | elem

(b) Transitions between views of a list node
during different stages of its life. The types in
red (below each view) show which aliases may
exist. See Section A for a more detailed version
of this figure.

Figure 1 Views, and transitions between views, of a list node with fields var elem and spec
next.

to the next fields. Secondly, if two threads were able to unlink the same node, there could
be data-races on the value stored in that node. For the reasons brought up in Challenge 1
and Section 1 we cannot solve this problem with traditional linearity, e.g., using destructive
reads. In LOLCAT we would implement the list nodes using a type Node with a var field
elem storing the element of the link, and a spec field next of type Node. Remember that
access to a var field is exclusive, while a spec field may be accessed concurrently. The spec
(and once) fields of a data-structure identifies the contention points.

A list Node goes through several distinct stages during its lifetime. First, the node is
created. The LOLCAT type of a newborn node is pristine Node, where pristine captures the
global uniqueness of the object. At this point, the thread holding the reference owns the
node and may initialise the elem field without the risk of data-races.

Second, the intended successor of the new node is speculatively read and written to the
next field, staging the node for publication (i.e., being inserted into the list). As a side-effect
of the field update, the type of the node changes to pristine Node∼next to denote that the
next field contains a speculation. This means that the current thread still owns the new
node, but not the node pointed to by the next field. We call writing a speculative value to a
field a tentative write. During this stage, the next field may be written to several times to
refresh the speculation, but never dereferenced. The fact that the node is pristine (and thus
has no aliases) means that no other thread has a view of the node that allows dereferencing
or updating next concurrently (cf., Challenge 3).

Once the node has been successfully published (cf. Section 2.3), its ownership is moved
from the stack of the publishing thread to the data structure on the heap. The type of the
node internal to the data structure is simply Node. The next field is no longer restricted as
the node now owns its successor, and the node is no longer pristine because global uniqueness
no longer holds; as mentioned in Challenge 2, any thread accessing the data structure may
hold a reference to any of the nodes. The type of such an alias is Node | elem, capturing that
these references are speculations that may not be used to read the elem field. Note that once
lost, pristineness can never be recovered. This is because we cannot place an upper-bound
on the existence of these aliases.

Finally, a thread can manage to acquire ownership of the node and remove it from the list.
The type of an acquired node from the view of the acquiring thread is Node∼next. Since
the restriction on elem is lifted, this field can be safely read without the risk of data-races.



E. Castegren and T. Wrigstad 6:7

a b c

a c
by

a
cz

b

a
b

c a b c
y

a
b

c
y

link

unlink

swap

y

y

Top: linking CAT, atomically moving
ownership of b from y to a and moving
ownership of c from a to b.
Middle: unlinking CAT, atomically moving
ownership of b from a to y and moving
ownership of c from b to a.
Bottom: swapping CAT, atomically moving
ownership of c from z to a and moving
ownership of b from a to y.

Figure 2 Different forms of Compare-And-Transfer. Dashed (red) arrows denote references
without ownership, i.e., results of speculation or pointers from which ownership has been transferred.

The restriction on next captures that next points to an object that is owned by someone
else (by the data structure on the heap, or by some other thread that have since acquired
the successor node). Note that there may still be aliases of the newly acquired node, and
that these will still have the type Node | elem. This is safe from a data-race perspective as
these may not be used to access the elem field.

Figure 1 shows how a node’s type reflects the view of the stage it is currently in, and
which transitions between these views are possible. The type Node || elem was not brought
up in this example, but reflects permanently burying ownership of the elem field (note how
there are no edges going out from this state in Figure 1b), turning the node into a “dummy
node” that will never access elem again. See Section 2.5 for an example where this type is
used. There is a more detailed version of Figure 1b in the appendix (cf. Section A).

2.3 Atomic Transfer of Ownership
As our main mechanism for transferring ownership between aliases we introduce a CAT
(compare-and-transfer) operation, which is purposely similar to a CAS, but with certain
syntactic restrictions. In general, a CAT has the form CAT(x.f, p1, p2), where p1 and p2
are paths of length one or two (i.e., y or y.g). Like a CAS, it atomically compares the values
of x.f and p1, and if they are the same, overwrites x.f with the value in p2. Additionally
the types and values of local variables may be updated as detailed below.

The effect of CAT(x.f, p1, p2) when successful is that ownership is transferred from
p2 to x.f, and from x.f to p1. Remember that LOLCAT guarantees linear ownership of an
object’s var fields; out of all aliases of an object, at most one alias may be used to access the
var fields of that object. Since x.f is overwritten, the transfer of ownership from the original
reference to the alias p1 is safe. Figure 2 overviews the CATs. (The eager reader will find
the formal type rules in Figure 12 and implementation details in Section 5.1.)

In the previous section, we saw two examples of ownership transfer: publishing and
acquiring a node. The syntactic variant CAT(x.f, n.next, n) is called a linking CAT and
publishes the necessarily pristine node n by writing it to x.f. It requires that the next field
is transfer restricted in n (pristine Node∼next) so that it actually contains a speculation
that could be an alias of x.f. If the CAT succeeds, n will be implicitly nullified to fully
transfer the globally unique node from the publishing thread to the heap. This corresponds
to the transition “Staged → Published” of Figure 1b.

Acquiring a node is done with an unlinking CAT of the form CAT(x.f, n, n.next).
This transfers n.next to x.f by overwriting it, and transfers ownership from the newly
overwritten reference in x.f to n. If x.f has ownership of a var field elem, the type of n must

ECOOP 2017



6:8 Relaxed Linear References for Lock-free Programming

1 struct Stack {
2 spec top : Node
3 }
4

5 struct Node {
6 var elem : T // T is some elided struct type
7 val next : Node
8 }
9

10 def push(s : Stack, e : T) : void {
11 let n = new Node; // n : pristine Node
12 n.elem = consume e;
13 let t = s.top; // t : Node | elem
14 n.next = t; // n : pristine Node ~ next
15 tryPush(s, consume n);
16 }

17def tryPush(s : Stack,
18n : pristine Node ~ next) : void {
19if (CAT(s.top, n.next, n)) {
20// link n between top and next success!
21} else {
22let t = s.top; // t : Node | elem
23n.next = t;
24tryPush(s, consume n);
25}
26}
27

28def pop(s : Stack) : T {
29let t = s.top; // t : Node | elem
30if (CAT(s.top, t, t.next)) { // unlink top
31// t : Node ~ next
32return consume t.elem;
33} else {
34return pop(s);
35}
36}

Figure 3 A Treiber Stack with linear nodes and elements. null-checks omitted for brevity.

have the elem field restricted (Node | elem), signaling that it is a speculative value (otherwise
the two references could not be aliases). After a successful CAT, the restriction on elem is
lifted from n making this reference the new owner of the field. However, since x.f now owns
the value in n.next, n must be marked to show that the field is without ownership via the
type Node∼next. This corresponds to the transition “Published → Acquired” of Figure 1b.

If n.next could change concurrently while performing CAT(x.f, n, n.next), this could
lead to inconsistencies in the list as well as duplicated ownership. As mentioned in Challenge
3, there is no hardware support for atomically comparing x.f and n and dereferencing
n.next. For this reason, the unlinking CAT requires that n.next is a stable field, either by
being a val or a once field, or by having a fix pointer installed. Section 2.5 has an example
of the latter.

Finally, a swapping CAT of the form CAT(x.f, n1, n2), can be used to switch a node
on the heap for a node on the stack. Like a linking CAT, it consumes (nullifies) the owning
reference n2 on success, and like an unlinking CAT, the ownership in x.f is transferred to
n1. Even though the nodes referred to by n1 and n2 switch owners, the views of the nodes
remain the same. Thus, there is no corresponding transition in Figure 1b.

2.4 LOLCAT in Action: Implementation of a Treiber Stack
Figure 3 shows an implementation of a lock-free Treiber stack [48] in a simple procedural
language using LOLCAT. The stack data structure is constructed of two data types, Stack
and Node. Stack “objects” hold a reference to a linked chain of nodes in its top field. In a
Treiber stack, multiple threads may read and write the top field concurrently. In LOLCAT,
top must therefore be marked as speculatable using the spec field modifier (Line 2).

Stack nodes in Figure 3 have two fields: var elem:T and val next:Node. The elem field
is a mutable field containing an element pushed onto the stack. The next field is immutable,
meaning that a node’s next node is fixed for life after publication.

Our relaxed linearity allows stack and node objects to be aliased freely, but guarantees
that for each node there may be at most one alias that can read its element field—all other
aliases must have type Node | elem. Because top’s type is Node, it is guaranteed to hold the



E. Castegren and T. Wrigstad 6:9

only pointer to the top node through which its element is accessible. The same holds for the
remainder of the stack because of the type of the next field is also Node. To enforce that the
only way to obtain an element in the stack is to first acquire the node holding it, we only
allow variables as targets of field accesses; the elem field can only be read after storing a
node into a local variable.

Pushing—Speculation & Publication. Pushing an element onto the Treiber stack is im-
plemented by the two functions push (Lines 10–16) and tryPush (Lines 17–26). In a real
programming language with loops, these would have been a single, much shorter, function.
We rely on recursion instead of loops in order to simplify the formalism in Section 3

The push function creates a new node n from the element argument and the current value
of top. The type of n is pristine Node, which means it is not (yet) visible to other threads.
With this knowledge, we can safely allow writes to immutable val fields (somewhat similar to
constructors writing final fields in e.g., Java) repeatedly, until the object is no longer pristine.

Line 13 performs a speculative read of top. Speculative reads copy references without
transferring ownership. This is visible as variable t on Line 13 has type Node|elem, which
means a node whose element field is inaccessible. Note that the spec field s.top has type
Node, meaning it does own the elem field. All reads of spec fields are speculative—they do
not transfer ownership, but create an alias to which ownership can later be transferred.

The assignment n.next = t on Line 14 is a tentative write. Although the next field in
the Node struct has type Node, we are allowed to store t in it, even though t is a speculation
and does not have the required ownership of elem (visible from it’s type Node|elem). This
prima facie type-violating field update is allowed—and sound—for two reasons:

1. It requires that we transfer-restrict next in n’s type, so that no ownership can be
transferred from next. This happens as a side-effect of the assignment in LOLCAT.

2. Since n is pristine, we know that there are no aliases to n, meaning that the type change
from Node to Node∼next is a strong update.

To obtain ownership of the object pointed to by n.next, the current thread must succeed
in overwriting the source of the speculation, s.top, while s.top == n.next holds (i.e.,
perform a successful CAT). This will allow the restriction on n’s type to be lifted, so that
aliasing this object with Node as its static type is sound.

The function tryPush takes a node n of type pristine Node∼next and attempts to replace
the current top by n. If it fails, it will re-read top, update n.next with the new value, and
re-attempt to replace top by n. Lines 22–24 are identical to lines 12–14 in push.

The pivotal line in tryPush is Line 19. It employs a linking CAT (cf. Section 2.3)
to attempt to push the node onto the stack. CAT(s.top, n.next, n) should be inter-
preted as “if no other thread has pushed or popped since we speculatively read s.top (i.e.,
s.top == n.next holds), transfer ownership from n to s.top and from s.top to n.next”.
If successful, the CAT will consume (nullify) n, transferring its ownership from the call stack
of tryPush to the top field of the stack data structure on the heap.

Popping—Acquisition. Popping elements off the stack is less involved than pushing them
onto the stack. The function pop speculatively reads the current value of top and then
employs an unlinking CAT, the dual version of the CAT in tryPush, to remove the node
from the linked structure. CAT(s.top, t, t.next) should be read as “if no other thread
has pushed or popped since we speculatively read s.top (i.e., s.top == t holds), transfer
ownership from t.next to s.top and from s.top to t”. The unlinking CAT requires n.next

ECOOP 2017



6:10 Relaxed Linear References for Lock-free Programming

s a b

oldTop1 : Node | elem

oldTop2 

top : Node next : Node

elem : T

s
a

b
top : Node

next : Node
oldTop2 : Node | elem: Node | elem

oldTop1 : Node ~ next
elem : T

Figure 4 A Treiber stack before and after a successful pop.

to be a stable path (cf. Section 2.3), which is true by construction as next is a val field in
Node.

Notably, the transfer of ownership from t.next to s.top preserves the reference in
t.next. Thus, there are two aliases to the same object, both with type Node which seemingly
breaks linear ownership. However, on success, the type of t is changed to Node∼next which
captures that t.next does not own its value, statically preventing using t to obtain an
owning reference through next. Since t owns elem (otherwise the field would have been
restricted in its type), t.elem may be destructively read and returned on Line 32, without
risking data-races.

Any alias t’ of t in another thread will have the type Node | elem and can therefore not
access the element field. Since ownership has been transferred from the heap, there is no way
for these threads to subsequently acquire ownership of the node just popped: since s.top
has changed value, CAT(s.top, t’, t’.next) will fail until a thread manages to perform
the CAT with an up-to-date speculation of s.top in t’.

Element Ownership. Figure 4 shows a Treiber stack before (left) and after (right) a
successful pop, focusing on the ownership of the elements. On the left, s.top owns a.elem,
and a.next owns b.elem. The types, Node|elem of the two oldTop references prevent both
oldTops from accessing any elem fields. On the right, oldTop1 holds the unlinked node and
thus owns a.elem. Although a.next is not touched by the operation, it has lost its ownership
of b.elem to s.top. This is tracked at the type level by updating the type of oldTop1 to
Node∼next. This is consistent with the global view of next fields as val—unlike spec fields
like top, their ownership cannot be directly extracted by overwriting them using a CAT.

Summary. The Treiber stack example demonstrated spec fields and speculative reads, val
fields and stable paths, pristine values and tentative writes, and how different operations
impose or lift weak restrictions and transfer restrictions to preserve linear access to fields.
It also exemplified the two dual variants of the compare-and-transfer operation used for
publication and acquisition.

An important observation is that all three arguments to a CAT have the same type
(modulo restrictions) meaning it is tailored for recursive data structures. Although a CAT
involves multiple operations, the required restrictions on its arguments ensure that it is
always possible to implement using a single CAS with effective atomicity guaranteed.

2.5 Data Structures with Multiple Contention Points
As demonstrated by the previous example, linking and unlinking nodes in a LIFO stack can
rely on the inherent stability of val fields to avoid modification of nodes concurrent with
unlinking. This is possible because there is only a single point of contention in the data



E. Castegren and T. Wrigstad 6:11

1 def delete(l : List, key : int) : T {
2 let (left, right) = search(l, key);
3 if ((right == l.tail) || (right.key != key))
4 return null; // key does not exist, abort
5 else if (!isStable(right.next))
6 if (fix(right.next)) // Try to fix the field
7 if (CAT(left.next, right, right.next)) // Try to unlink right
8 return consume right.elem;
9 else

10 search(l, right.key); // Someone else came first. Try to help
11 return delete(l, key); // Something went wrong, retry
12 }

Figure 5 Harris-style linked list (Excerpt [10])

structure. To support data structures with multiple points of contention, we apply one of
the two other techniques for achieving stability mentioned under Challenge 3 in Section 2.1:

Fix Pointers References that cannot be overwritten. Storing a fix pointer into a field
effectively makes that field stable. Fix pointers can be implemented with a mark-bit à la
next pointers in a Tim Harris linked list [27]. The operation fix(x.f) creates a fix pointer
from the reference in x.f and subsequently installs it in the same field, returning true or
false depending on if the operation succeeds or not. Section 5.1 discusses implementation.

Once Fields Fields that can only be assigned once, after which they remain constant.
They are similar to Java’s final fields (and LOLCAT’s val fields), except that threads may
race on their initialisation. We implement once fields using fix pointers. We use a try
operation to write to once fields which implicitly creates a fix pointer and which may fail
due to concurrent writes from other threads.

While once fields can be replaced by a principled use of spec fields and fix pointers, they also
capture programmer intent in a clear way. A programmer can dynamically check for the
presence of a fix pointer using the predicate isStable. On a successful branch on isStable(x.f)
or fix(x.f), the type T of x is updated to T ∼f to reflect our knowledge that x.f is stable.

Figure 5 shows an excerpt of a Harris-style linked list [27] (full code is in the technical
report [10]) with one point of contention for each node. Inserting a node in a Harris-style
list is similar to the Treiber stack, but the possibility of concurrent modification of a node’s
next field during its unlinking (in contrast to the stack, where next fields were always val)
greatly complicates unlinking. To overcome this problem, Harris introduces a logical deletion
step, in which a node is rendered immutable by setting a low bit in its next pointer, causing
subsequent CAS operations on this field to fail. We mimic this design using fix pointers in
Figure 5. When right points to the node to be unlinked, we make sure it is not already
logically deleted by checking if it is fixed (Line 5), and then try to fix it ourselves (Line 6).

In a Michael–Scott queue [36], there are three points of contention: the first and last
pointers in the queue head, and the next pointer of the last node. For this data structure,
once fields are a perfect match, as they guarantee stability after initialisation, but allow many
threads to race to initialise the field in an enqueue operation. We show an implementation
of a Michael–Scott queue in Figure 6. Note that an empty queue contains a single dummy
node.

Enqueuing to a Michael–Scott queue is similar to pushing to a Treiber stack, with the
difference that the new node is appended rather than prepended. The try operation on Line
19 of Figure 6 attempts to write the new node to the next field of the last node. On success,

ECOOP 2017



6:12 Relaxed Linear References for Lock-free Programming

1 struct Node {
2 var elem : Elem;
3 once next : Node
4 }
5

6 struct Queue {
7 spec first : Node || elem;
8 spec last : Node | elem
9 }

10

11 def enqueue(q : Queue, x : Elem) : void {
12 let n = new Node;
13 n.elem = consume x;
14 tryEnqueue(q, consume n);
15 }
16

17 def tryEnqueue(q : Queue, n : pristine Node) : void {
18 let oldLast = q.last;
19 if (try(oldLast.next = n)) {
20 // Success, try advance last pointer, return
21 CAT(q.last, oldLast, oldLast.next);
22 } else { // help by advancing last, then retry
23 CAT(q.last, oldLast, oldLast.next);
24 tryEnqueue(q, consume n);
25 }
26 }

27def newQueue() : Queue {
28let q = new Queue;
29let dummy = new Node;
30q.first = consume dummy;
31q.last = this.first;
32return q;
33}
34

35def dequeue(q : Queue) : Elem {
36let oldFirst = q.first;
37if (isStable(oldFirst.next)) {
38// oldFirst.next has been written to.
39// Try to advance first
40if (CAT(q.first, oldFirst,
41oldFirst.next) => elem) {
42return consume elem;
43} else {
44// Someone else dequeued before us, retry
45return dequeue(q);
46}
47} else {
48// oldFirst.next has not been written to.
49// Retry or fail (here, fail)
50return null;
51}
52}

Figure 6 Michael–Scott queue.

a CAT is used to advance the last pointer. If the write fails, the once field has already been
written to, and the same CAT tries to help global progress by advancing the last pointer. In
both branches, we know that oldLast.next is stable, and so we change the type of oldLast
from Node | elem to Node | elem∼next.

Finally, we get to demonstrate the use of strong field restrictions in the type of first, i.e.,
Node || elem. Dequeuing from a Michael–Scott queue involves swinging the first pointer
forward to point to first.next, making the new first node the new dummy node and
extracting the element from it. Because first.next’s type is Node, first.next is the only
pointer with ownership of first.next.elem. When first.next is stored in first, this
ownership is lost, making the elem field globally inaccessible. To avoid this, a CAT is able
to preserve aliases of otherwise lost fields if they are strongly restricted in the target. We
call this residual aliasing, and it is shown on Line 41 of Figure 6 as => elem. This introduces
a variable elem which aliases the field of the same name in the node that was written to
q.first.

While the types of first and last differ, the fields alias when the queue is empty. This
is fine, as neither type grants ownership of the elem field. Also note that variables and/or
fields with overlapping strong restrictions cannot alias because each alias could be used to
create residual aliases of the same field.

Figure 7 shows an overview of our three example data structures. The labels on the
arrows show the fields’ modifiers and types. The legend shows what features of our system
are exercised by the example. Thick purple arrows show contended fields. Only the once
field in the node in last is contented in the Michael–Scott queue.



E. Castegren and T. Wrigstad 6:13

Figure 7 Concepts exercised in the examples.

3 Formalising Linear Ownership in LOLCAT

This section formalises the static and dynamic semantics of a simple procedural language
using LOLCAT. Without loss of generality, we exclude “normal references” and consider
all references linear. Our implementation of LOLCAT is in an object-oriented language
(cf. Section 5).

Figure 8 shows the syntax. A program P is a sequence of structs (à la C) and functions
followed by an initial expression. Structs are named sequences of fields. A field has a modifier,
a name and a type. s and f ranges over names of structs and fields. There are four modifiers
on fields that control how a field’s content may be modified and shared across threads: var
fields are mutable and unshared; val fields are immutable and shared; spec and once fields are
mutable and shared. A once field may be written once. Read–write races are only possible
on once and spec fields. Writes to such fields may fail under contention.

Types are constructed from structs. A type can be pristine, denoting a globally unaliased
value. Types may have weak and strong field restrictions, and transfer restrictions. The
meta variable T ranges over all types and the meta variable t ranges over non-pristine types.

Expressions are values (including locations in the dynamic semantics, where they are also
subscripted by static types to simplify proofs), paths (variable accesses or field accesses),
destructive reads of paths, field updates, creation of new values, function calls, forking of new
threads, let-expressions and conditionals. Without loss of generality we restrict functions to
a single parameter. More parameters can be encoded using an extra object indirection.

Conditionals branch on boolean expressions which mostly deal with contended writes
to fields which may possibly fail due to concurrent modifications: CAT publishes and/or
acquires values; try attempts to install a value in a once field; fix attempts to write a fix
pointer into a spec field; isStable allows dynamically checking if a field has been fixed.

For simplicity, we formalise our system with let bindings instead of sequences and a flow-
sensitive type system, using the standard trick of encoding sequences e1; e2 as let _ = e1 in e2.
Consequently, CAT, fix and try must be used as guards of conditionals, and we reflect changes

ECOOP 2017



6:14 Relaxed Linear References for Lock-free Programming

P ::= S F e (Program)
S ::= struct s { Fd } (Struct)

Fd ::= mod f : T (Field)
mod ::= var | val | once | spec (Modifier)

F ::= def fn(x : T) : T { e } (Function)
T ::= pristine t | t (Type)
t ::= s | t | f | t || f | t ∼f (Struct type)
e ::= vT | p | consume p | new s | x.f = e | fn(e) |

fork fn(e); e | let x = e in e | if b { e } else { e } (Expression)
p ::= x | x.f (Path)
v ::= ι | null (Value)
b ::= CAT(x.f, e, e)⇒ z | try(x.f = y) | fix(x.f, y) | isStable(x.f) (Boolean Expr.)

Figure 8 Syntax of LOLCAT. We write x to mean “many x”.

` P ` S ` Fd ` F (Declarations)

wf-program
` S ` F
ε ` e : T

` SF e

wf-struct
` Fd

` struct s {Fd }

wf-field
` T

safeOnHeap (mod, T)
` mod f : T

wf-function
x : T1 ` e : T2

` def fn(x : T1) : T2 { e }

Figure 9 Well-formed declarations

of ownership in the types differently in the different branches. When unused, we don’t write
out the residual alias (⇒ z) of a CAT. We also rely on recursion instead of loops. These
decisions were made to simplify the presentation, and are not necessary for the soundness of
the approach. For example, by employing a simple data flow analysis, we could omit several
of the local destructive reads necessary to reflect type changes.

3.1 Static Semantics
Declarations (Figure 9). The well-formedness definitions are straightforward (WF-PROGRAM,
WF-STRUCT, WF-FIELD and WF-FUNCTION). The only unusual premise is found in WF-

FIELD—the predicate safeOnHeap that prevents fields’ types to be pristine or have transfer
restrictions. Additionally, val and once fields may not be strongly restricted. The details can
be found in the technical report [10].

Types and Field Lookup (Figure 10). Top left: The type s denotes a value which is an
instance of struct s Any well-formed struct type can be pristine. Types can additionally
have weak or strong restrictions on var fields, and transfer restrictions on non-var fields.

Top right: The relation ` T T′ denotes that a value of type T can flow (be assigned)
into a field or variable of type T′. A type t1 can flow into t2 if all fields which are restricted
in t1 are also restricted in t2 (FLOW-*-L). Notably, a value with a strongly restricted field
can only flow into a variable where the same field is weakly restricted (FLOW-STRONG-L).
We use |f ∈ t to mean “f is weakly restricted in t” and similarly for the other restrictions.
For arbitrary restrictions we write f ∈ t. By FLOW-R/S, a non-restricted type can always
flow into an additionally restricted version of itself. (We write _ f to mean | f, || f, or ∼f.)
A pristine type can flow into another pristine type (FLOW-PRIST-PRIST), and pristineness
can be forgotten if the underlying types are flow-related (FLOW-PRIST).



E. Castegren and T. Wrigstad 6:15

` T (Well-formed type)

t-struct
S (s) = Fd
` s

t-p
` t

` pristine t

t-weak
` t

F(t, f ) = var f : T

` t| f

t-strong
` t

F(t, f ) = var f : T

` t ‖ f

t-transfer
` t ∼ f /∈ t

F(t, f ) = mod f : T mod 6= var
` t ∼ f

` T T′ (Type flow)

flow-weak-l
|f ∈ t′ ` t t′

` t| f  t′

flow-strong-l
|f ∈ t′ ` t t′

` t ‖ f  t′

flow-transfer-l
∼ f ∈ t′ ` t t′

` t ∼ f  t′

flow-r
` s  t

` s  t_ f

flow-s

` s  s

flow-prist-prist
` pristine t t′

` pristine t pristine t′

flow-prist
` t t′

` pristine t t′

F(T, f) = mod f : T′ (Field lookup)

lkup-f-weak
f 6= g F(t, f ) = mod f : T

F(t| g, f ) = mod f : T

lkup-f-strong
f 6= g F(t, f ) = mod f : T

F(t ‖ g, f ) = mod f : T

lkup-f-transfer-eq
F(t, f ) = mod f : T

F(t ∼ f , f ) = val f : T

lkup-f-transfer-neq
f 6= g F(t, f ) = mod f : T

F(t ∼ g, f ) = mod f : T

Figure 10 Typing and selected field lookup (F) rules.

Bottom: A weakly or strongly restricted field cannot be accessed at all (LKUP-F-WEAK),
(LKUP-F-STRONG). A transfer restricted field appears stable (LKUP-F-TRANSFER-*). For
brevity, we relegate some cases of field from Figure 10 to the technical report [10].

Expressions (Figure 11). To keep track of the static types of locations in the dynamic
semantics, we subscript values with the static type of the expression from which they were
reduced. For example, if x has static type T, and holds null at run-time, we write nullT in
the program under reduction. Type subscripts are only used to simplify the proofs, and do
not affect the semantics of a program.

As usual, null can have any valid type (E-NULL). A location is well-typed if its dynamic
type can flow into its subscripted (static) type (E-LOC). Typing locations in a program under
reduction is only used in the meta-theory. Linear variables can be read non-destructively if
the type is not pristine and all var fields are forgotten in the resulting type (E-VAR). We
use the helper function restrict(T) to restrict all var fields in a type T, preserving the linear
ownership of any var fields in x. Similarly, fields can be read non-destructively if all var
fields are forgotten in the resulting type (E-SELECT). By design, once fields cannot be read
directly, but must first be checked to have a value using isStable(x.f). This restricts the
field, making it appear as an (accessible) val field (B-STABLE) (cf., Figure 13).

Destructively reading a variable or field transfers its value to the stack of the current thread.
As the values are transferred, they are not restricted (E-CONSUME-VAR, E-CONSUME-FD).
By design, destructive reads are only available on var fields and always succeed.

Values are created from well-formed struct declarations and start in a pristine state
(E-NEW). A value remains pristine until written to the heap (i.e., it is published).

ECOOP 2017



6:16 Relaxed Linear References for Lock-free Programming

Γ ` e : t (Expressions)

e-null
` T ` Γ
Γ ` nullT : T

e-loc
Γ(ι) = s ` s  T ` Γ

Γ ` ιT : T

e-var
Γ(x) = t ` Γ
Γ ` x : restrict (t)

e-select
` Γ Γ(x) = Tx

F (Tx , f ) = mod f : Tf
mod /∈ {var, once}

Γ ` x.f : restrict (Tf )

e-consume-var
Γ(x) = T ` Γ
Γ ` consume x : T

e-consume-fd
` Γ Γ(x) = Tx

F (Tx , f ) = var f : Tf

Γ ` consume x.f : Tf

e-new
` s ` Γ

Γ ` new s : pristine s

e-update
Γ(x) = Tx

F (Tx , f ) = var f : Tf
Γ ` e : T ` T Tf

Γ ` x.f = e : Tx

e-update-pristine
Γ(x) = pristine tx F (tx , f ) = mod f : Tf
mod ∈ {val, spec} Γ ` e : T ` T Tf

Γ ` x.f = e : pristine tx

e-update-tentative
Γ(x) = pristine tx F (tx , f ) = mod f : Tf

mod ∈ {val, spec} Γ ` e : T 6 ∃ g . ∼ g ∈ T
6 ∃ g . ‖ g∈ T 6 ∃ g . ‖ g∈ Tf Tf 6= T ` Tf  T

Γ ` x.f = e : pristine tx ∼ f

e-if
Γ ` b a Γ′

Γ′ ` e1 : T Γ ` e2 : T

Γ ` if (b) { e1 } else { e2 } : T

e-call
P (fn) = (x : T1, T2, e2)

Γ ` e1 : T1

Γ ` fn(e1) : T2

e-fork
P (fn) = (x : T1, T2, e2)
Γ ` e1 : T1 Γ ` e : T

Γ ` fork fn(e1); e : T

e-let
Γ ` e1 : T1

Γ, x : T1 ` e2 : T2

Γ ` let x = e1 in e2 : T2

Figure 11 Well-typed expressions. P denotes function lookup.

As var fields are only accessible to one thread at a time, access is data race-free. The
resulting value of a field update x.f = e is the target x, which is consumed in the process
(E-UPDATE). By binding the result in a let-expression we can track type changes to the target
(see below). With a fully flow-sensitive type system, such a trick would not be necessary.

Pristine targets allow updating val and spec fields without the use of a CAT (E-UPDATE-

PRISTINE). Since pristine values are unaliased, updates to a val field are not visible to
other threads, and writes to spec fields are uncontended. We are allowed to assign a
weakly restricted value into an unrestricted field to perform a tentative write (E-UPDATE-

TENTATIVE). This causes a strong update of the target that restricts the field written to,
which prevents unsoundly extracting an owning alias of the speculative value. We are however
allowed to publish the pristine object with a linking CAT, overwriting the source of the
speculation. This confirms the validity of the speculation and lifts the restriction on the field
(cf., B-CAT-LINK in Figure 12). To maintain the property that a strongly restricted field is
globally inaccessible, we disallow tentative writes when either type involved has any strongly
restricted fields1.

1 This is strictly not necessary since the field written to will be transfer restricted, which keeps the value
inaccessible. However, showing this is complicated, and there doesn’t seem to be much to gain from
allowing it.



E. Castegren and T. Wrigstad 6:17

Γ ` b a Γ′ (Compare and transfer)

b-cat-link
` Γ Γ(x) = Tx Γ(y) = pristine ty ∼ g
F (Tx , f ) = spec f : Tf F (ty ∼ g, g) = val g : Tg

` Tf  Tg ` ty  Tf

Γ ` CAT (x.f , y.g, y) a Γ

b-cat-unlink
` Γ Γ(x) = Tx Γ(y) = Ty

F (Tx , f ) = spec f : Tf F (Ty, g) = val g : Tg

` Tf  Ty ` Tg  Tf

Γ ` CAT (x.f , y, y.g) a Γ[y 7→ Tf ∼ g]

b-cat-swap
` Γ Γ(x) = Tx Γ(y) = Ty Γ(z) = Tz

F (Tx , f ) = spec f : Tf ` Tf  Ty ` Tz  Tf

Γ ` CAT (x.f , y, z) a Γ[y 7→ Tf ]

b-cat-residual
Γ(x) = Tx F (Tx , f ) = spec f : Tf
‖ g∈ Tf Γ ` CAT (x.f , p1, p2) a Γ′

Γ ` p2 : T2 F (T2, g) = var g : Tg

Γ ` CAT(x.f , p1, p2)⇒ zg a Γ′[zg 7→ Tg]

Figure 12 Compare and transfer.

For simplicity, we propagate type changes through if statements (E-IF). With a fully
flow-sensitive type system operations such as writing to once fields could appear anywhere,
as the field will be stable regardless of whether the write succeeds or not. The type rules for
boolean expressions b are found in Figure 12 and Figure 13. The else branch of if statements
always maintains the environment.

Function calls, forking and let-bindings are straightforward.

Compare and Transfer (Figure 12). Compare and transfer comes in three forms (cf.,
Figure 2): link (CAT(x.f,y.g,y)) inserts an object in a chain of links; its dual, unlink
(CAT(x.f,y,y.g)) removes an object from a chain; swap (CAT(x.f,y,z)) trades places
of whole trees dominated by the arguments of the CAT. To highlight these differences, we
describe each form in a separate type rule.

On success, CAT operations may modify the environment by lifting restrictions on var
fields in local variables involved in the CAT, or by adding residual aliases. Residual aliases
are otherwise lost as a side-effect of strong field restrictions on the value being transferred.
For simplicity, we consider only a single residual alias, whose type is inferred from the types
involved in the CAT. For example, if transferring a value of type T into a field of type T || f,
the residual alias be the value of the f field.

By B-CAT-LINK, inserting an object o to create a chain of links o1.f → o.g → o2 · · ·
requires that o is pristine and that its g field is transfer restricted. The requirement that it is
pristine guarantees that the g field is not modified concurrently. The restriction requirement
ensures that g actually contains a speculation, and prevents using o to obtain an owning
reference from o.g (cf., E-UPDATE-TENTATIVE). The field f where o is inserted must be a
spec field and have a type that o can flow into when the transfer restriction on g is lifted.

By B-CAT-UNLINK, unlinking the object o from the chain above requires that its g field
is stable (note that transfer restricted spec and once fields appear as val fields) and that
the target is a spec field with a type that o.g can flow into. A successful transfer installs
an owning reference to o in y, but with the g field transfer restricted. This allows keeping
the reference in o.g to avoid confusing other threads accessing o concurrently, but prevents
violating linearity by using y to turn o.g into an owning reference.

The rule for swapping two owning references, B-CAT-SWAP, corresponds to a common
CAS, except that we require the target field to be explicitly denoted speculatable.

ECOOP 2017



6:18 Relaxed Linear References for Lock-free Programming

Γ ` b a Γ′ (Fix pointers and once fields)

b-try
` Γ Γ(x) = Tx Γ(y) = pristine ty

F (Tx , f ) = once f : Tf ` ty  Tf

Γ ` try (x.f = y) a Γ[x 7→ Tx ∼ f ]

b-fix
` Γ Γ(x) = Tx Γ(y) = Ty

F (Tx , f ) = spec f : Tf ` Tf  Ty

Γ ` fix (x.f , y) a Γ[x 7→ Tx ∼ f ]

b-stable
` Γ F (Tx , f ) = mod f : Tf Γ(x) = Tx mod ∈ {once, spec}

Γ ` isStable (x.f ) a Γ[x 7→ Tx ∼ f ]

Figure 13 Operations on fix pointers and once fields.

By B-CAT-RESIDUAL, a successful CAT will produce a residual alias from a strongly
restricted field whose value would otherwise be lost. For example, transferring a pointer
ι with ownership over ι.g holding v into some field whose type strongly restricts g would
lead to the program globally losing access to v in the program. Thus, v can be “saved” as a
residual alias (⇒ zg in the figure).

Fix Pointers (Figure 13). Writes to once fields must be performed using try and placed in
an if statement to handle both possible outcomes (success and failure). After a successful
write to a once field, we update the type of the target to prevent further writes to the field by
the current thread (B-TRY). This restriction means field lookups will make the field appear
as a val field, which is needed for the linking and unlinking CATs. If the write fails, the field
is also stable as it is already written to (cf., Section 2.5). For simplicity we omit that type
change in the formalism, as adding a call to isStable in the else branch gives the same result.
Even though the type change is only visible in the first branch of the if statement, having
an unrestricted alias is fine as subsequent attempted writes will fail. While writes to once
fields are discernible through the target’s type, we use specialised syntax to highlight that its
semantics is different from a normal assignment (which always succeeds).

A speculatable field can be fixed, which causes all future writes to it to fail (B-FIX). Since
fix pointer creation involves a contended write, we require a witness of the intended value.
Fixing the pointer will succeed if the witness is equal to the field. Like with try, a successful
fix changes the type of x to a type where f is transfer restricted. The same type change
occurs when checking if a field has a fix pointer installed (B-STABLE).

3.2 Dynamic Semantics

A configuration is a triple 〈H;V ;T 〉. H is a heap mapping locations ι to structs (s, F ),
where s is the type of the struct and F is a map from field names to values. V is a map
from variables to values and their static types. The types of structs and variables are only
recorded to simplify meta-theoretic reasoning and do not affect the semantics of a program.
T is a list e1|| . . . ||en of expressions running in parallel, that never block and can step at any
time.

To simplify the meta-theoretic reasoning, we subscript values on the stack with their
static type. Values on the heap are subscripted by φ ::= ε | ∗ which captures whether a
reference is a fix pointer (∗) or may be overwritten (ε). This corresponds to a Harris-style
mark bit in a pointer [27].



E. Castegren and T. Wrigstad 6:19

cfg ↪→ cfg′ (Dynamic semantics)

d-var
V (x) = vT

〈H ; V ; x〉 ↪→ 〈H ; V ; vrestrict (T)〉

d-consume-var
V (x) = vT

〈H ; V ; consume x〉 ↪→ 〈H ; V [x 7→ nullT]; vT〉

d-consume-fd
V (x) = ιT H (ι) = (s,F) F(f ) = vφ F (T, f ) = mod f : T′

〈H ; V ; consume x.f 〉 ↪→ 〈H [ι 7→ (s,F [f 7→ nullε])]; V ; vT′〉

d-select
V (x) = ιT

H (ι)(f ) = vφ F (T, f ) = mod f : T′

〈H ; V ; x.f 〉 ↪→ 〈H ; V ; vrestrict (T′)〉

d-new
ι fresh S (s) = modi fi : Ti

n

〈H ; V ; new s〉 ↪→ 〈H , ι 7→ (s, fi 7→ nullε
n); V ; ιpristine s〉

d-update
V (x) = ιTx H (ι) = (s,F) T′ = updateReturnType (Tx , f , T)
〈H ; V ; x.f = vT〉 ↪→ 〈H [ι 7→ (s,F [f 7→ vε])]; V [x 7→ nullTx ]; ιT′〉

Figure 14 Dynamic Semantics 1/2 (Uncontended operations).

The amount of branching to deal with success and failure of contended operations makes
the dynamic semantics surprisingly large for such a small language. In this submission, we
therefore relegate the less interesting rules (let bindings, function calls, parallelism, etc.) to
the technical report [10].

To track local type changes in the branches of if expressions, we employ a dynamic
variable substitution scheme. The expression x:T[e] should be read as “e with the type of x
changed to T”. The details can be found in the technical report [10].

Uncontended Operations (Figure 14). The rules D-VAR and D-SELECT show that vari-
ables and fields may be read non-destructively, creating an alias with a restricted type.
Destructively reading a variable or field preserves linearity. The rules D-CONSUME-* show
how the source variable or field is nullified as a side-effect of a consume. Note that destruct-
ively reading a field is uncontended because the static semantics requires that the target is
an owning reference. By D-NEW, new objects are pristine and have their fields initialised to
null.

The rule D-UPDATE captures the semantics of an uncontended field update. The helper
function updateReturnType calculates the subscript for the return value, based on the static
types of the receiver and right-hand side value (cf., E-UPDATE-*). Note that the receiver
variable is nullified in the process, and the entire expression instead returns a new alias of the
receiver with an updated type. This is a simple implementation of tracking how a variable
changes types due to tentative writes (cf., E-UPDATE-TENTATIVE).

Contended Operations (Figure 15). Because of the possibility of failure, contended op-
erations are wrapped in conditionals, causing them to appear somewhat unwieldy. D-CAT-

SUCCESS describes a successful CAT (vε = v2). The rule abstracts over the three possible
shapes of CAT using the helper macro C, which returns a map ρ showing how variables’
types are changed in the then branch, and an assignment map α of variables to be nullified.
ρ(e) denotes an expression with all substitutions in ρ performed. α(V ) denotes a variable

ECOOP 2017



6:20 Relaxed Linear References for Lock-free Programming

cfg ↪→ cfg′ (Dynamic semantics)

d-cat-success
V (x) = ιTx H (ι) = (s,F) F(f ) = vε 〈H ; V ; p1〉

∗
↪→ v1T1 vε = v1

〈H ; V ; p2〉
∗
↪→ v2T2 F (Tx , f ) = mod f : Tf C (Tf , T2, (p1, p2)) = (ρ, α)

〈H ; V ; if (CAT (x.f , p1, p2)) { e1 } else { e2 } 〉 ↪→ 〈H [ι 7→ (s,F [f 7→ v2ε])];α(V ); ρ(e1)〉

d-cat-residual
〈H ; V ; if (CAT (x.f , p1, p2)) { e1 } else { e2 } 〉 ↪→ 〈H ′; V ′; e′1〉

V (x) = ιTx H (ι)(f ) = vε 〈H ; V ; p1〉
∗
↪→ v1T1 vε = v1

〈H ; V ; p2〉
∗
↪→ ιT F (T, g) = var g : Tg H (ι)(g) = v′φ z ′ fresh e′′1 = e′1[zg 7→ z ′]

〈H ; V ; if (CAT(x.f , p1, p2)⇒ zg) { e1 } else { e2 } 〉 ↪→ 〈H ′; V ′, z ′ 7→ v′Tg ; e′′1 〉

d-try-success
V (x) = ιTx V (y) = v1Ty H (ι) = (s,F) F(f ) = v2ε

〈H ; V ; if (try (x.f = y)) { e1 } else { e2 } 〉 ↪→ 〈H [ι 7→ (s,F [f 7→ v1∗])]; V [y 7→ nullTy ];x:Tx∼f [e1]〉

d-fix-success
V (x) = ιTx H (ι) = (s,F) F(f ) = v1ε V (y) = v2Ty v1ε = v2

〈H ; V ; if (fix (x.f , y)) { e1 } else { e2 } 〉 ↪→ 〈H [ι 7→ (s,F [f 7→ v2∗])]; V ;x:Tx∼f [e1]〉

d-cat-fail
V (x) = ιTx H (ι)(f ) = vφ 〈H ; V ; p1〉

∗
↪→ v1T1 vφ 6= v1

〈H ; V ; if (CAT (x.f , p1, p2)) { e1 } else { e2 } 〉 ↪→ 〈H ; V ; e2〉

d-try-fail
V (x) = ιTx H (ι)(f ) = v∗

〈H ; V ; if (try (x.f = y)) { e1 } else { e2 } 〉 ↪→ 〈H ; V ; e2〉

d-fix-fail
V (x) = ιTx H (ι)(f ) = v1φ V (y) = v2T v1φ 6= v2

〈H ; V ; if (fix (x.f , y)) { e1 } else { e2 } 〉 ↪→ 〈H ; V ; e2〉

d-stable-true
V (x) = ιT H (ι)(f ) = v∗

〈H ; V ; if (isStable (x.f )) { e1 } else { e2 } 〉 ↪→ 〈H ; V ;x:T∼f [e1]〉

d-stable-false
V (x) = ιT H (ι)(f ) = vε

〈H ; V ; if (isStable (x.f )) { e1 } else { e2 } 〉 ↪→ 〈H ; V ; e2〉

where the form of CAT is chosen by the shape of the arguments:

(link) C(_, T, (y.g, y)) = (∅, {y = nullT})
(unlink) C(T,_, (y, y.g)) = ({y : T ∼g}, ∅)

(swap) C(Tf , Tz, (y, z)) = ({y : Tf}, {z = nullTz})

Figure 15 Dynamic Semantics 2/2 (Contended operations). Note that v∗ 6= v′ for all v and v′.



E. Castegren and T. Wrigstad 6:21

Γ ` cfg Γ ` H Γ; T ` F Γ ` T (Well-formed configuration)

wf-cfg
Γ ` H Γ ` V Γ ` T
` pristineness (H ,V ,T)

` strongRestrictions (H ,V ,T)
` linearOwnership (H ,V ,T)

Γ ` 〈H ; V ; T〉

wf-heap
∀ ι.Γ(ι) = s ⇒ H (ι) = (s,F)

dom (H ) ⊆ dom (Γ)
∀ ι.H (ι) = (s,F)⇒ Γ; s ` F

Γ ` H

wf-vars
∀ x.Γ(x) = T⇒ V (x) = vT

dom (V ) ⊆ dom (Γ)
Γ ` V

wf-f-val
F (s, f ) = mod f : T

Γ ` vT : T Γ; s ` F
Γ; s ` F , f 7→ vφ

wf-f-empty

Γ; s ` ε

wf-t-e
Γ ` e : T

Γ ` e

wf-t-fork
Γ = Γ1 + Γ2

Γ1 ` e Γ2 ` T
Γ ` e ‖ T

` Γ (Well-formed static typing environment)

wf-env-e

` ε

wf-env-x
` Γ x 6∈ dom (Γ) ` T

` Γ, x : T

wf-env-l
` Γ ι 6∈ dom (Γ) ` s

` Γ, ι : s

Figure 16 (Top) Well-formed configuration. Definitions of pristineness and linearOwnership can
be found in Section 4. (Bottom) Typing environment.

map extended with the assignments of α.

The third argument of a CAT is nullified in linking or swapping CATs. In the case of an
unlinking or swapping CAT, the second argument of the CAT gets a new type corresponding
to the respective static rules. D-CAT-RESIDUAL shows how additionally a residual alias can
be introduced as a fresh variable z′, as long as the underlying CAT succeeds. This rule uses
direct substitution in the form of e[zg 7→ z′] rather than x:T[e]. This is because there is no
change of types involved in residual aliasing.

〈H;V ; p〉 ∗↪→ vT denotes the side-effect free evaluation of a stable path p. While we reduce
the whole CAT in a single step, the type system rejects programs where the arguments p1
and p2 can change under foot—by B-CAT-* all paths are either local variables or stable val
fields. Thus, the size of this atomic step is not important for the soundness or feasibility of
our approach.

If the second argument of a CAT is not equal to the first, the write fails (D-CAT-FAIL).
By definition, a fix pointer v∗ is not equal to any value. (This is implemented by the CAS
because fix pointers have their least significant bit set, which no aliases on the stack will).

Writing to a once field succeeds if the field is not yet fixed (D-TRY-SUCCESS). If the field
is already fixed (H(ι)(f) = v∗) the write fails (D-TRY-FAIL). Creating and installing a fix
pointer is a contended write that attempts to update the existing value v of a field with
v∗ (D-FIX-SUCCESS). It atomically compares the current value stored in the field with the
expected value, and if they are the same, updates the field with a fixed alias of the value.
The operation fails if the expected value is not equal to the field value (D-CAT-FAIL).

D-STABLE-* checks whether a field contains a fix pointer or not.

ECOOP 2017



6:22 Relaxed Linear References for Lock-free Programming

4 Meta Theory

This sections describes the key properties of LOLCAT and sketches the proofs of why they
hold. Full proofs can be found in the technical report [10]

Figure 16 defines well-formed configurations and environments. The definitions of a
well-formed heap H and variable map V state that they are modelled by the environment
Γ. In a well-formed heap, all objects have fields with values corresponding to their static
type. A well-formed thread structure T consists of well-typed expressions. The “frame rule”
Γ = Γ1 + Γ2 in WF-T-FORK makes sure that two parallel expressions cannot access the same
local variables.

The rest of this section deals with three key definitions: pristineness states that if a
reference has pristine type, then this reference has no aliases (this guarantees that such
references are globally unique); strongRestrictions states that a strongly restricted field is
globally inaccessible (cf., the rely-guarantee interpretation in Section 2.1) and that two
aliases cannot strongly restrict the same field; linearOwnership states that if two references
are aliases that both allow reading the same var field, the static type of the paths to one of
the references must prevent acquisition of the reference’s ownership.

We prove the preservation of these properties separately, as a part of proving that well-
formedness is preserved by the dynamic semantics. As a corollary of linearOwnership we
show that reading or writing a var field is always free from data-races. To save space here,
we summarize all the preservation properties with the following schema. The full definitions
and proofs can be found in the technical report [10].

I Preservation of X. If a well-formed configuration 〈H;V ;T 〉 can take a step to 〈H ′;V ′;T ′〉,
this configuration will uphold X:

Γ ` 〈H;V ;T 〉 ∧ 〈H;V ;T 〉 ↪→ 〈H ′;V ′;T ′〉 ⇒ ` X

All three properties involve reasoning about the set of references in a configuration.
A reference r ranges over fields ι.f in H, variables x in V , and locations ι appearing as
subexpressions in T . Note that a reference is not an object but a means to access an object:
after executing let x = y, x and y have the same value (are aliases), but are distinct references.
If x is reduced to ι, this value, a (sub)expression in T , is also a distinct reference that aliases
x and y.

The set of movableReferences is a subset of references and contains all r’s whose value
can be fully transferred into fields or variables of the same type. References in val and once
fields are fixed, and therefore never in movableReferences. We explain the notation and the
properties of references we are interested in below.

H;V ` r : T means r has the (static) type T
H;V ` r ↪→ v means r has the value v
H;V ` r owns ι.f means the value of r is ι and the field f is unrestricted in the type of r
H;V ` r reaches ι.f means there is a path from r to ι.f that does not include restricted

fields, and where all references in the path have types where f is unrestricted
H;V ` r reaches ι.f through r′ means r reaches a field ι.f through a path that ends with

the reference r′

The intuition for the reachability properties is that if r reaches some field ι.f , that field
can be accessed through a series of operations on r. Note that LOLCAT does not allow the
expression x.f.g, but requires x.f to first be read into a local variable z. Thus, if x.f owns



E. Castegren and T. Wrigstad 6:23

H;V ` r owns ι.f H;V ` r reaches ι.f [through r′] (see caption)

ref-owns
H ; V ` r ↪→ ι H ; V ` r : T

F (T, f ) = mod f : Tf
f 6∈ T

H ; V ` r owns ι.f

ref-reaches-owns
H ; V ` r owns ι.f

H ; V ` r reaches ι.f

ref-reaches-transitive
H ; V ` r : T f 6∈ T

H ; V ` r ′ : T′ ` T′  T
H ; V ` r reaches r ′

H ; V ` r ′ reaches ι.f
H ; V ` r reaches ι.f

ref-reaches-residual
H ; V ` r : T ‖ f ∈ T

H ; V ` ι′.g : T′ ` T′  T
H ; V ` r owns ι′.g

H ; V ` ι′.g reaches ι.f
H ; V ` r reaches ι.f

ref-reaches-through
H ; V ` r : T f 6∈ T H ; V ` r ′ : T′ ` T′  T

H ; V ` r reaches r ′ H ; V ` r ′ owns ι.f
H; V ` r reaches ι.f through r ′

Figure 17 Reference reachability.

g, we will require proper operations (e.g., CAT or consume) to obtain z. How reachability
changes after a successful pop in the Treiber Stack of Section 2.4 was illustrated in Figure 4.

Figure 17 defines reachability formally. Note that a reference with a strong restriction on
a field f , and that owns some field through which it can reach another field ι.f , also reaches
ι.f (REF-REACHES RESIDUAL). This is because a series of CATs ending with the extraction
of a residual alias of ι.f . REF-REACHES RESIDUAL instantiated for the Michael–Scott queue
of Figure 6 states that q.head reaches q.head.next.elem because elem is strongly restricted
in q.head’s type, and it owns q.head.next, which in turn reaches q.head.next.elem. On
lines 40-41 of Figure 6, q.head is overwritten and a residual alias elem is introduced. Note
that after this operation, q.first no longer reaches its own elem field.

Pristineness. The pristineness property states that if r is a reference of pristine type, there
is no other reference r′ that has the same value:

` pristineness(H,V, T ) ≡
∀r ∈ references(H,V, T ) .
H;V ` r : pristine t ∧H;V ` r ↪→ ι⇒
∀r′ ∈ references(H,V, T ) .
H;V ` r′ ↪→ ι⇒ r = r′

Proof sketch. We prove preservation of pristineness by induction over the structure of T .
By assumption 〈H;V ;T 〉 is well-formed, and in particular all existing pristine references are
globally unique. It is straightforward to show that reduction does not create any aliases of
pristine references without nullifying that reference. J

Strong Restrictions. References with strongly restricted fields rely on these fields being
globally inaccessible, which allows the creation of residual aliases. This precludes the existence
of two aliasing references that strongly restrict the same field. If this was the case, they
could both be used to extract the same residual alias, which would violate linear ownership.

To capture this, strongRestrictions states that if a reference r has the value ι and a type
with a strongly restricted field f , ι.f is globally unreachable. Additionally, there can be no

ECOOP 2017



6:24 Relaxed Linear References for Lock-free Programming

other reachable alias of r that also has f strongly restricted (unreachable is defined later):

` strongRestrictions(H,V, T ) ≡
∀r ∈ references(H,V, T ) .
H;V ` r : T ∧ ‖ f ∈ T ∧ H;V ` r ↪→ ι⇒
unreachable(ι.f) ∧
∀r′ ∈ references(H,V, T ) .
H;V ` r′ : T′ ∧ ‖ f ∈ T′ ∧ H;V ` r′ ↪→ ι⇒
r = r′ ∨H;V ` unreachable(r′)

This property exemplified for the Michael–Scott queue of Figure 6 states that the field
q.head.elem must be globally unreachable at all times, and that there can be no aliases of
q.head that also has elem strongly restricted. Note that strongRestrictions also precludes
any other references into the queue with a strongly restricted elem field as this would violate
the reachability provided through REF-REACHES-RESIDUAL (cf., Figure 17).

Proof sketch. We prove preservation of strongRestrictions by induction over the structure
of T . It is straightforward to show that a strongly restricted field f is always globally
inaccessible since a value that flows into a reference where f is strongly restricted must have
f unrestricted. The source of this value, which by linearOwnership held the sole ownership
of f , is nullified or buried in the process. The same constraints on how values may flow
into strongly restricted references make it straightforward to show that two such reachable
references will never alias. J

Linear Ownership. Our relaxed notion of linearity allows unlimited aliasing, as long as
ownership is linear. Operations maintains linearity by either transferring a pointer (CAT or
consume), adding field restrictions on the source reference (possibly in combination with fix
pointers), or by making the source reference inaccessible to the program (cf., alias burying
[4]). The latter is captured by unreachable:

H;V ;T ` unreachable(r) ≡
r = ι.f∧
6 ∃r′ ∈ movableReferences(H,V, T ) . H;V ` r′ reaches r

After a tentative write, e.g., Line 14 in Figure 3, the field written to will have overlapping
ownership with some other reference. The tentative write changes the type of the target to
one where the written field is transfer restricted, so the field is no longer considered reachable
through the target. Since the target is a pristine value it has no aliases, and so the field is
globally unreachable. Note that variables and locations are always considered reachable.

Sometimes an alias is reachable, but only from references whose types prevent them from
transferring the ownership out of the reference. To reasoning about these situations we define
a notion of ownership burying:

H;V ;T ` buried(r, ι.f) ≡
H ` stableField(r) ∧
6 ∃r′ ∈ movableReferences(H,V, T ) . H;V ` r′ reaches ι.f through r

Let r be a reference whose value is ι. Now, r’s ownership of the field ι.f is buried if
r is some stable field y.g (i.e., is a val field or contains a fix pointer), and there are no
movable references that can reach ι.f through it. Stability of y.g ensures that we cannot CAT
against y.g to acquire the value in ι.f (for example by unlinking ι: z = y.g;CAT(y.g, z, z.g′)).



E. Castegren and T. Wrigstad 6:25

The condition that no references reach ι.f through y.g ensures that even if there is some
speculatable field x.f ′ aliasing y (x.f ′ reaches y.g which in turn owns ι.f), and we swing
x.f ′ forward to alias y.g by CAT(x.f ′, y, y.g), the type of x.f ′ does not grant access to f .
This was exemplified in Figure 4: after the pop, the field a.next still owns b.elem, but this
ownership is buried (and therefore benign).

Finally, linearOwnership states that if two different references in a configuration alias
some location ι, and can read or write the same var field ι.f (they both own ι.f), then
either (1) one of the references’ ownership of ι.f is buried, or (2) one of the references is
unreachable:

` linearOwnership(H,V, T ) ≡
∀ι, f . H ` varField(ι.f)⇒
∀r1, r2 ∈ references(H,V, T ) .
H;V ` r1 owns ι.f ∧H;V ` r2 owns ι.f ⇒
r1 = r2
∨H;V ;T ` buried(r1, ι.f) ∨H;V ;T ` buried(r2, ι.f) (1)
∨H;V ;T ` unreachable(r1) ∨H;V ;T ` unreachable(r2) (2)

Note that a reference ι′.g being unreachable still allows aliases of ι′, but any such alias
must have g transfer restricted, meaning it appears as a val field and cannot be acquired by
a CAT.

Proof sketch. We prove preservation of linearOwnership by induction over the structure
of T , making sure that whenever an alias owning some var field is introduced, (1) and (2)
are preserved. The proof also shows that no configuration changes affect reachability from
existing references in such a way that (1) or (2) is violated.

In any well-formed configuration we have a set of references r (fields, variables and free
locations) for which linearOwnership holds. An observation we make use of in the proof is
that if we step to a configuration where the new set of references r′ is a subset of r and any
types that might have changed are more restricted than the original types we do not break
(1) or (2), since these are ultimately concerned with which references are not reachable. The
intuition here is that removing a reference cannot make a previously unreachable reference
reachable. Similarly, restricting fields in the type of a value will not enable reaching any
references previously unreachable since restrictions shrink the set of reachable fields. J

Corollary: Data-Race Free Var Field Accesses. A corollary of linearOwnership is that
two variables on the stack can never alias unless the intersection of their accessible var fields
is empty. This means that reading or writing a var field x.f is always free from data-races,
as there can never be a variable y aliasing x that can read or write the same field.

5 Prototype Implementation & OO Support

We have a prototype implementation of LOLCAT in a fork of the Encore programming
language [9]. Encore is an actor-based object-oriented programming language with trait-
based inheritance and a capability-based type system that includes a linear capability
denoting the only reference to an object in the system, and a subordinate capability denoting
a reference that may not escape its enclosing structure (key to providing actor isolation).

We extend Encore with a lockfree capability, once fields, spec fields, and associated
operations. Speculative reads are explicated using a speculate keyword. An object with a

ECOOP 2017



6:26 Relaxed Linear References for Lock-free Programming

lockfree capability must not contain var fields, and may thus be aliased freely. We restrict
once and spec fields to hold values whose types are both linear and subordinate, and relax the
semantics of the linear capability to allow non-destructive reads following the LOLCAT rules.
As subordinate objects may not escape their enclosing objects, this restricts the data-flow of
linear references and encapsulates all shared mutable state inside lockfree capabilities. This
is useful for garbage collection (cf. Section 5.3) and keeps LOLCAT specific types isolated.

We have used our prototype to implement the examples of this paper (using loops rather
than recursion). Additionally we have implemented a dictionary based on Fomitchev and
Ruppert’s lock-free skip list [19], as well as a set based on the lock-free binary search tree
by Ellen et al. [16]. LOLCAT can also be used to implement simpler constructs such as
spin-locks, a variant of which has been used to implement the lazy list-based set by Heller
et al. [29].

5.1 Implementing CAT and Fix Pointers

The Encore compiler is a source-to-source translator from Encore into C11. The spec fields
and once fields are implemented as word-aligned fields in structs that correspond to classes.
Fix pointers are implemented using a mark bit in the least significant bit of pointer addresses.
Consequently, reading speculative fields and once fields involve masking this bit out which
causes some overhead.

Well-typed linking and unlinking CATs desugar into several statements surrounding a
swapping CAT. The statement if CAT(x.f, y, y.g) then e1 else e2, desugars to:

let tmp = speculate y.g in // tmp fresh
if CAT(x.f, y, tmp) then e1 else e2

The swapping CAT is translated into C as CAS(&x.f, y, tmp). The try and fix expressions
are translated similarly, but also manipulate the mark bit; e.g., try(x.f, y) desugars into:

void *z = mark_least_significant_bit(y); CAS(&x.f, y, z);

Future work involves support for installing fix pointers in multiple fields of the same
object atomically through a double-word CAS in the case of two (adjacent) fields, and a
hidden pointer indirection to an immutable tuple of pointers in the case of more than two
fields.

5.2 LOLCAT and Object-Oriented Programming

Extending LOLCAT with support for object-oriented programming is straightforward. The
key problem going from procedural to object-oriented is solving the issue of self typing in the
presence of field restrictions. In a procedural setting, changing the type of a variable x from T
to T | f propagates the restriction on f because x must be passed to all functions as an explicit
argument, requiring that the function’s signature has a type which is at least as restrictive.
With object-oriented programming, care must be taken so that the restriction does not only
apply to the client view of the object but to the object’s view of itself. Several approaches
exist in the literature: annotate each method to reflect the self type (e.g., [39, 50]); employ
an effect system [47] that captures what variables are read and disallow x.m() on x : T | f if
m reads or writes x (e.g., [24, 11]); or use program analysis.

While Encore does not have an effect system as such, traits in Encore explicitly require
fields and provide methods. A trait’s methods can only use fields it requires. This enables
straightforward field restrictions: if x : T | f, then x.m() is allowed only if m is defined



E. Castegren and T. Wrigstad 6:27

in a trait that does not require f. This admittedly somewhat coarse-grained support for
restriction is still enough to implement all examples mentioned above.

5.3 Garbage Collection and ABA

Traditional linear types have been useful in the past to detect when a value can be deallocated
without causing dangling pointers. Our relaxation of linearity notably excludes this use. In
this paper we have implicitly assumed garbage collection (GC), and Encore is also a garbage
collected language. However, the invariants of LOLCAT can be made to hold without GC.
Without a GC, we could automatically compile CATs to use a monotonically increasing
counter (cf., [33]) in combination with pointer identity, effectively implementing an LL/SC
on-top of CAS, to avoid ABA problems.

Recently, in the context of the implementation of LOLCAT in Encore, Yang and Wrigstad
devised Isolde [53], a slot-in GC protocol that leverages the LOLCAT type system. Isolde
manages the memory in each lock-free data structure separately from the rest of the system,
and does not stop threads from making progress for GC. Notably, Isolde relies on identifying
the type of CAT to insert different GC behaviour.

6 Related Work

We are not aware of other type systems aimed at implementing lock-free algorithms, or type
systems that allow atomic transfer of ownership without using locks or destructive reads.
Specifically, we have not seen types that give meaningful static semantics to the CAS primitive.
There are several type systems for programming with linear (or unique) references, alone
e.g., [32, 39, 18, 4] or with other techniques [7, 1, 12, 3, 6, 8, 42, 13, 25, 22], or systems with
linear reference permissions [52, 45]. These systems rely on one or more of the following
techniques:

1. Destructive reads enforce strict linearity;
2. Alias burying allows aliases of linear variables guaranteed to be updated before next use;
3. Borrowing allows temporary violations of linearity for a well-defined scope, after which

linearity is re-established;
4. Linear references are guaranteed to be the only reference to an object outside of the

object’s representation.

Several of the systems above use linearity in the context of concurrent and parallel
programming to avoid data-races, e.g., holding the only reference to an object guarantees
absence of concurrent readers or writers. None of the systems handle lock-free programming
because of the reliance of destroying or burying aliases. Conceptually, the “life cycle” of a
linear reference in LOLCAT: newborn → published → acquired is similar to borrowing, but
we are statically never able to get back to a strictly linear state after publication. Similarly,
acquisition is also conceptually similar to burying: we transfer an owning reference to the
stack, where it is guaranteed to remain until the current thread voluntarily gives it up.

Wadler notes that linear values can be deallocated as soon as they are used [51]. Kobay-
ashi’s Quasi-Linear types allow deallocating a linear value when it goes out of scope [35].
Our relaxation of linearity prevents this optimisation as linear objects may have restricted
aliases. Ennals et al. define a concurrent linearly typed programming language for packet
processing which relaxes linearity to allow multiple references from the same thread [17].

ECOOP 2017



6:28 Relaxed Linear References for Lock-free Programming

Turon defines reagents, basic building blocks for lock-free programming [49]. These
simplify implementation of lock-free data structures, but do not provide any guarantees of
data-race freedom for acquired references.

Militão uses Rely-Guarantee Protocols to guarantee safe interference over shared memory,
allowing unbounded aliasing but only a single linear capability to an object [37]. The transfer
of this capability is very similar to LOLCAT’s ownership transfer, but uses locks to ensure
mutual exclusion, whereas LOLCAT allows non-blocking atomic transfer of ownership.

Gordon uses Rely-Guarantee References to verify functional correctness of lock-free data
structures [21]. This system is more expressive than ours, but also more heavyweight as it
requires writing specifications and mechanised proofs. Gotsman et al. use rely-guarantee
reasoning for similar purposes but also develop a tool for automating the proofs [23]. Haziza
et al. develop a tool that can automatically verify correctness of the Treiber Stack and
Michael–Scott Queue with little or no hints from the programmer [28].

Compared to systems that facilitate manual or automatic verification of lock-free al-
gorithms, LOLCAT trades reasoning power for simplicity and modularity. LOLCAT types
have meaning on their own and provide useful invariants without requiring inter-procedural
analysis; looking at the types of a piece of code explains how it this code affects ownership.

7 Conclusions & Future Work

LOLCAT is a type system for lock-free programming with linear types. It provides static
semantics for a number of patterns found in lock-free programming, such as speculation,
publication and acquisition. Specifically, it gives meaningful types to the CAS primitive which
precisely describe ownership transfer in linked data structures. The type system is expressive
enough to encode several algorithms from the literature on lock-free programming.

In future work, we will develop a library of lock-free data structures in our Encore
implementation to further evaluate the expressiveness of LOLCAT. We are currently working
on a garbage collection scheme that uses our types to achieve pause-free garbage collection
[53]. We will also consider other correctness aspects of lock-free algorithms and investigate
how the language can be extended to further aid programmers in writing correct lock-free
code.

Acknowledgments. We are grateful for the comments from Dave Clarke, Sophia Dros-
sopoulou, the SLURP reading group at Imperial College, and the anonymous reviewers.

References
1 Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias annotations for pro-

gram understanding. In ACM SIGPLAN Notices, volume 37, pages 311–330. ACM, 2002.
2 Shekhar Borkar and Andrew A Chien. The future of microprocessors. Communications of

the ACM, 54(5):67–77, 2011.
3 Chandrasekhar Boyapati and Martin Rinard. A parameterized type system for race-free

java programs. In ACM SIGPLAN Notices, volume 36, pages 56–69. ACM, 2001.
4 John Boyland. Alias burying: Unique variables without destructive reads. Softw., Pract.

Exper., 31(6):533–553, 2001.
5 John Boyland. The interdependence of effects and uniqueness. In Workshop on Formal

Techs. for Java Programs, 2001.
6 John Boyland. Checking interference with fractional permissions. In Static Analysis, pages

55–72. Springer, 2003.



E. Castegren and T. Wrigstad 6:29

7 John Boyland, James Noble, and William Retert. Capabilities for sharing. In ECOOP
2001—Object-Oriented Programming, pages 2–27. Springer, 2001.

8 John Tang Boyland and William Retert. Connecting effects and uniqueness with adoption.
ACM SIGPLAN Notices, 40(1):283–295, 2005.

9 Stephan Brandauer, Elias Castegren, Dave Clarke, Kiko Fernandez-Reyes, EinarBroch
Johnsen, KaI. Pun, S.LizethTapia Tarifa, Tobias Wrigstad, and AlbertMingkun Yang. Par-
allel Objects for Multicores: A Glimpse at the Parallel Language Encore. In Formal Meth-
ods for Multicore Programming, volume 9104 of LNCS, pages 1–56. Springer International
Publishing, 2015. doi:10.1007/978-3-319-18941-3_1.

10 E. Castegren and T. Wrigstad. Lolcat: Relaxed linear references for lock-free program-
ming. Technical Report 2016-013, 2016. Uppsala University. URL: http://www.it.uu.
se/research/publications/reports/2016-013/.

11 Dave Clarke and Sophia Drossopoulou. Ownership, encapsulation and the disjointness of
type and effect. In ACM SIGPLAN Notices, volume 37, pages 292–310. ACM, 2002.

12 Dave Clarke and Tobias Wrigstad. External uniqueness is unique enough. ECOOP 2003,
pages 59–67, 2003.

13 Dave Clarke, Tobias Wrigstad, Johan Östlund, and Einar Johnsen. Minimal ownership for
active objects. Programming Languages and Systems, pages 139–154, 2008.

14 Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil. Deny capab-
ilities for safe, fast actors. In AGERE, 2015.

15 Sophia Drossopoulou, Ferruccio Damiani, Mariangiola Dezani-Ciancaglini, and Paola Gi-
annini. Fickle: Dynamic object re-classification. In ECOOP 2001—Object-Oriented Pro-
gramming, pages 130–149. Springer, 2001.

16 Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-blocking
binary search trees. In Proceedings of the 29th ACM SIGACT-SIGOPS symposium on
Principles of distributed computing, pages 131–140. ACM, 2010.

17 Robert Ennals, Richard Sharp, and Alan Mycroft. Linear types for packet processing. In
Programming Languages and Systems, pages 204–218. Springer, 2004.

18 Manuel Fahndrich and Robert DeLine. Adoption and focus: Practical linear types for
imperative programming. In ACM SIGPLAN Notices, volume 37, pages 13–24. ACM,
2002.

19 Mikhail Fomitchev and Eric Ruppert. Lock-free linked lists and skip lists. In Proceedings
of the twenty-third annual ACM symposium on Principles of distributed computing, pages
50–59. ACM, 2004.

20 Anwar Ghuloum. Face the inevitable, embrace parallelism. Communications of the ACM,
52(9):36–38, 2009.

21 Colin S Gordon. Verifying Concurrent Programs by Controlling Alias Interference. PhD
thesis, University of Washington, 2014.

22 Colin S Gordon, Matthew J Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy.
Uniqueness and reference immutability for safe parallelism. In ACM SIGPLAN Notices,
volume 47, pages 21–40. ACM, 2012.

23 Alexey Gotsman, Byron Cook, Matthew Parkinson, and Viktor Vafeiadis. Proving that
non-blocking algorithms don’t block. In ACM SIGPLAN Notices, volume 44, pages 16–28.
ACM, 2009.

24 Aaron Greenhouse and John Boyland. An object-oriented effects system. In
ECOOP’99—Object-Oriented Programming, pages 205–229. Springer, 1999.

25 Philipp Haller and Martin Odersky. Capabilities for uniqueness and borrowing. In ECOOP
2010–Object-Oriented Programming, pages 354–378. Springer, 2010.

ECOOP 2017

http://dx.doi.org/10.1007/978-3-319-18941-3_1
http://www.it.uu.se/research/publications/reports/2016-013/
http://www.it.uu.se/research/publications/reports/2016-013/


6:30 Relaxed Linear References for Lock-free Programming

26 Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Composable
memory transactions. In Proceedings of the tenth ACM SIGPLAN symposium on Prin-
ciples and practice of parallel programming, pages 48–60. ACM, 2005.

27 Timothy L Harris. A pragmatic implementation of non-blocking linked-lists. In DISC,
volume 1, pages 300–314. Springer, 2001.

28 Frédéric Haziza, Lukáš Holík, Roland Meyer, and Sebastian Wolff. Pointer Race Free-
dom, pages 393–412. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016. doi:10.1007/
978-3-662-49122-5_19.

29 Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N Scherer III, and
Nir Shavit. A lazy concurrent list-based set algorithm. In International Conference On
Principles Of Distributed Systems, pages 3–16. Springer, 2005.

30 Maurice Herlihy. A methodology for implementing highly concurrent data structures. In
ACM SIGPLAN Notices, volume 25, pages 197–206. ACM, 1990.

31 Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condition for con-
current objects. ACM Transactions on Programming Languages and Systems (TOPLAS),
12(3):463–492, 1990.

32 John Hogg. Islands: Aliasing protection in object-oriented languages. In ACM SIGPLAN
Notices, volume 26, pages 271–285. ACM, 1991.

33 IBM. Ibm system/370 extended architecture, principles of operation, 1983. publication no.
SA22-7085.

34 Cliff B Jones. Specification and design of (parallel) programs. In IFIP congress, volume 83,
pages 321–332, 1983.

35 Naoki Kobayashi. Quasi-linear types. In Proceedings of the 26th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 29–42. ACM, 1999.

36 Maged M Michael and Michael L Scott. Simple, fast, and practical non-blocking and block-
ing concurrent queue algorithms. In Proceedings of the fifteenth annual ACM symposium
on Principles of distributed computing, pages 267–275. ACM, 1996.

37 Filipe Militão. Rely-Guarantee Protocols for Safe Interference over Shared Memory. PhD
thesis, Carnegie Mellon University & Universidade de Lisboa, 2015.

38 Filipe Militão, Jonathan Aldrich, and Luís Caires. Aliasing control with view-based
typestate. In Proceedings of the 12th Workshop on Formal Techniques for Java-Like Pro-
grams, page 7. ACM, 2010.

39 Naftaly H Minsky. Towards alias-free pointers. In ECOOP’96—Object-Oriented Program-
ming, pages 189–209. Springer, 1996.

40 Mark Moir and Nir Shavit. Concurrent data structures. Handbook of Data Structures and
Applications, pages 47–14, 2007.

41 Peter Müller. Modular Specification and Verification of Object-oriented Programs. Springer-
Verlag, Berlin, Heidelberg, 2002.

42 Peter Müller and Arsenii Rudich. Ownership transfer in universe types. In ACM SIGPLAN
Notices, volume 42, pages 461–478. ACM, 2007.

43 Johan Östlund. Language Constructs for Safe Parallel Programming on Multi-cores. PhD
thesis, Department of Information Technology, Uppsala University, Jan 2016.

44 Amir Pnueli. In transition from global to modular temporal reasoning about programs. In
Logics and models of concurrent systems, pages 123–144. Springer, 1985.

45 Francois Pottier and Jonathan Protzenko. Programming with permissions in Mezzo. In
Proceedings of the 2013 ACM SIGPLAN International Conference on Functional Program-
ming (ICFP’13), pages 173–184, September 2013.

46 Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in software.
Dr. Dobb’s journal, 30(3):202–210, 2005.

http://dx.doi.org/10.1007/978-3-662-49122-5_19
http://dx.doi.org/10.1007/978-3-662-49122-5_19


E. Castegren and T. Wrigstad 6:31

47 Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. Information and
computation, 111(2):245–296, 1994.

48 R Kent Treiber. Systems programming: Coping with parallelism. International Business
Machines Incorporated, Thomas J. Watson Research Center, 1986.

49 Aaron Turon. Reagents: expressing and composing fine-grained concurrency. In ACM
SIGPLAN Notices, volume 47, pages 157–168. ACM, 2012.

50 Jan Vitek and Boris Bokowski. Confined types in java. Software: Practice and Experience,
31(6):507–532, 2001.

51 Philip Wadler. Linear types can change the world. In IFIP TC, volume 2, pages 347–359.
Citeseer, 1990.

52 Edwin Westbrook, Jisheng Zhao, Zoran Budimli, and Vivek Sarkar. Practical permissions
for race-free parallelism. In James Noble, editor, ECOOP 2012, volume 7313 of LNCS,
pages 614–639. Springer, 2012. doi:10.1007/978-3-642-31057-7_27.

53 Albert Mingkun Yang and Tobias Wrigstad. Type-assisted automatic garbage collection
for lock-free data structures. In International Symposium on Memory Management, 2017.

ECOOP 2017

http://dx.doi.org/10.1007/978-3-642-31057-7_27


6:32 Relaxed Linear References for Lock-free Programming

A Type Transitions in LOLCAT

The figure below shows how the type of a node in a linked data structure changes to reflect
the different views of the node during its lifetime. It is an extended version of Figure 1b with
added transition labels showing which operations changes the view of the node. Depending
on the data structure and operation at hand, the field x.f represents the top field of a stack,
the first field of a queue, or the next field of another node. Other transitions are possible,
but we focus on operations that appear in our examples and where ownership changes.

The types above each view is the type of the node as seen by its owning reference, which
may be stored in a local variable on the stack, or in a field on the heap. The types below
each view (in red) show which types aliases of the node may have. In the transition labels,
when the variable n is red it is a speculative alias of the node.

The labels on the nodes refer to the same views as in Figure 1a: Newborn, Staged,
Published, and Acquired. It also includes the view Dummy, where ownership of a var field
has been permanently buried, and the view Fixed, where a spec or once field has been made
immutable. In the Fixed view, there is no single type that completely describes the node;
the internal type Node does not show that the next field has been fixed, but the external
type Node∼next | elem does not have ownership of the elem field. Once a fixed node has
been acquired however, the acquiring thread again sees the fully accurate type Node∼next.
If the node was fixed before being acquired, aliases of type Node∼next | elem may still exist,
as well as “normal” speculative aliases of type Node | elem.

The transition “Newborn → Dummy” permanently forgets the ownership of the elem
field. The transition “Published → Dummy” allows extracting a residual alias elem since
the owning reference in n.next is buried in a strongly restricted field (cf. Section 2.5). Note
that in this transition, it is actually the view of the node originally in n.next which changes.

x.f = consume n

N

A

pristine Node 

S

pristine Node ~ next 

D

Node || elem 

P
Node Node ~ next 

N/A

N/A

Node | elem

Node | elem

Node | elem 
(Node ~ next | elem)

let nxt = x.f 
n.next = nxt

CAT(x.f, n.next, n)

CAT(x.f, n, n.next)
CAT(x.f, n, n.next) => elem

F

fix(n.next)

Node ~ next | elem 
Node | elem

n.next is val

n.next is spec/once

nxt : Node|elem

isStable(n.next)

try(x.f = n)
x.f is once

x is pristine
let n = new Node



Type Abstraction for Relaxed Noninterference∗

Raimil Cruz1, Tamara Rezk2, Bernard Serpette3, and Éric Tanter4

1 PLEIAD Lab, Computer Science Department (DCC), University of Chile
racruz@dcc.uchile.cl

2 INRIA - Indes Project-Team, Sophia Antipolis, France
Tamara.Rezk@inria.fr

3 INRIA - Indes Project-Team, Sophia Antipolis, France
Bernard.Serpette@inria.fr

4 PLEIAD Lab, Computer Science Department (DCC), University of Chile
etanter@dcc.uchile.cl

Abstract
Information-flow security typing statically prevents confidential information to leak to public

channels. The fundamental information flow property, known as noninterference, states that a
public observer cannot learn anything from private data. As attractive as it is from a theoretical
viewpoint, noninterference is impractical: real systems need to intentionally declassify some
information, selectively. Among the different information flow approaches to declassification,
a particularly expressive approach was proposed by Li and Zdancewic, enforcing a notion of
relaxed noninterference by allowing programmers to specify declassification policies that capture
the intended manner in which public information can be computed from private data. This
paper shows how we can exploit the familiar notion of type abstraction to support expressive
declassification policies in a simpler, yet more expressive manner. In particular, the type-based
approach to declassification—which we develop in an object-oriented setting—addresses several
issues and challenges with respect to prior work, including a simple notion of label ordering
based on subtyping, support for recursive declassification policies, and a local, modular reasoning
principle for relaxed noninterference. This work paves the way for integrating declassification
policies in practical security-typed languages.

1998 ACM Subject Classification D.4.6 Security and Protection: Information flow controls,
D.3.2 Language Classifications: Object-oriented languages

Keywords and phrases type abstraction, relaxed noninterference, information flow control

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.7

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.3.2.9

1 Introduction

Information-flow security typing enables statically classifying program entities with respect
to their confidentiality levels, expressed via a lattice of security labels [18]. For instance,
a two-level lattice L 4 H allows distinguishing public or low data (e.g. IntL) from confid-
ential or high data (e.g. IntH). An information-flow security type system statically ensures
noninterference, i.e. that high-confidentiality data may not flow directly or indirectly to

∗ This work was partially funded by Project Conicyt REDES 140219 “CEV: Challenges in Practical
Electronic Voting”. Raimil Cruz is funded by CONICYT-PCHA/Doctorado Nacional/2014-63140148.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Raimil Cruz, Tamara Rezk, Bernard Serpette, and Éric Tanter;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 7; pp. 7:1–7:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.7
http://dx.doi.org/10.4230/DARTS.3.2.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


7:2 Type Abstraction for Relaxed Noninterference

lower-confidentiality channels [36]. To do so, the security type system tracks the confiden-
tiality level of computation based on the confidentiality of the data involved.

As attractive as it is, noninterference is too strict to be useful in practice, as it prevents
confidential data to have any influence whatsoever on observable, public output. Indeed,
even a simple password checker function violates noninterference. Consider the following:

String login( String guess , String password )
if( password == guess)

return "Login Successful "
else

return "Login failed "
}

By definition, a public observer that tries to log in should be able to “learn something”
about the confidential input (here, password), thereby violating the confidentiality restriction
imposed by noninterference.

This problem with noninterference has long been recognized. Supporting such intentional
downward information flows is called declassification, which can be supported in many dif-
ferent ways [29]. For example, Jif [24] supports an explicit declassify operator to allow
downward flows to be accepted by the security type system. In the above example, one
can use declassify(password == guess) to state that the returned value is public knowledge.
However, arbitrary uses of a declassify operator may lead to serious information flow leaks;
for instance declassify(password) simply makes the password publicly available. One solu-
tion adopted by Jif is to control declassification using principals with privileges, as in the
Decentralized Label Model (DLM) [25]. Trusted declassification [21] restricts Jif’s mech-
anism to specify authorization in a global policy file and formulate noninterference modulo
trusted methods. Robust declassification [40] relies on integrity to ensure that low integrity
flows do not influence high confidentiality data that will later be declassified.

To capture the essence of expressive declassification without appealing to additional
mechanisms like integrity or authority, Li and Zdancewic proposed an expressive mechanism
for declassification policies that supports the extensional specification of secrets and their
intended declassification [22]. A declassification policy is a function that captures what
information on a confidential value can be declassified to eventually produce a public value.
For the password checker example, if the declassification policy for password is λx.λy.x==y,
then an equality comparison with password can be declassified (and thus be made public).
However, this declassification policy for password disallows arbitrary declassifications such as
revealing the password. Furthermore, declassification can be progressive, requiring several
operations to be performed in order to obtain public data: e.g. λx.λy.hash(x)==y specifies
that only the result of comparing the hash of the password for equality can be made public.

The formal security property, called relaxed noninterference, states that a secure pro-
gram can be rewritten into an equivalent program without any variable containing confid-
ential data but whose inputs are confidential and declassified. For the password checker
example with p , λx.λy.x==y as the declassification policy for password, the program
login(guess,password) can be rewritten to the equivalent program login’(guess,p(password))
where login’ is:

String login ’( String guess , String→Bool eq){
if(eq(guess )) ...

}

Note that p(password) is a closure that strongly encapsulates the secret value, and only
allows equality comparisons.



R. Cruz, T. Rezk, B. Serpette, and É. Tanter 7:3

While the proposal of Li and Zdancewic elegantly and formally captures the essence
of flexible declassification while retaining a way to state a clear and extensional security
property of interest, it suffers from a number of limitations that jeopardize its practical
adoption. First, security labels are sets of functions that form a security lattice whose or-
dering, based on a semantic interpretation of these sets of functions, is far from trivial [22]:
it relies on a general notion of program equivalences that would be both hard to implement
and to comprehend. Second, Li and Zdancewic explicitly rule out recursive declassifica-
tion policies, which are however natural when expressing declassification of recursive data
structures. Finally, the rewriting-based definition of relaxed noninterference is unsatisfying
for practical software development, as it rigidly requires all secrets to be both global and
external, thereby losing modular reasoning; as recognized by the authors, local language
constructs for introducing secrets and their policies are lacking [22].

In this work, we exploit the familiar notion of type abstraction to capture declassifica-
tion policies in a simpler, yet more expressive manner. Type abstraction in programming
languages manifests in different ways [26]; here, we specifically adopt the setting of object-
oriented programming, where object types are interfaces, i.e. the set of methods available
to the client of an object, and type abstraction is driven by subtyping. For instance, the
empty interface type—the root of the subtyping hierarchy—denotes an object that hides all
its attributes, which intuitively coincides with secret data, while the interface that coincides
with the implementation type of an object exposes all of them, which coincides with public
data. Our initial observation is that any interface in between these two extremes denotes
declassification opportunities. Additionally, choosing objects, as opposed to records, allows
us to explore recursive declassification policies from the start, given that the essence of data
abstraction in OOP are recursive types [17].

The type-based approach to confidentiality is very intuitive as it only relies on concepts
that are readily available in object-oriented languages: a declassification policy is simply a
method signature, a security label is an object interface, and label ordering boils down to
subtyping. Progressive declassification occurs through chaining of method invocations. In
fact, the only extension to the standard programming model is that a security type has two
facets, each representing the view available to a private and public observer, respectively. In
addition to being intuitive, the type-based approach addresses the issues and challenges of
the downgrading policies of Li and Zdancewic: a) there is no need to rely on general program
equivalences to define and decide label ordering, which is just standard, syntactic subtyping;
b) declassification naturally scales to recursive policies over recursive data structures; and
c) type-based relaxed noninterference is formulated as a modular reasoning principle, and
local secrets can be introduced with standard type annotations.

This work makes the following contributions:
We develop a novel type-based approach to declassification policies, which supports in-
teresting scenarios while appealing to standard programming concepts such as interface
types and subtyping (Section 2).
We capture the essence of type-based declassification in a core object-oriented language,
ObSEC, in which a security type is a pair of (recursive) object types (Section 3). We
describe the static and dynamic semantics of ObSEC and prove type safety.
We specify the formal semantic notion of type-based relaxed noninterference, which ac-
counts for type-based declassification policies, independently of any enforcement mechan-
ism (Section 4). We then prove type soundness of ObSEC: a well-typed program satisfies
type-based relaxed noninterference.
We informally explore how the expressiveness of declassification policies scales with the

ECOOP 2017



7:4 Type Abstraction for Relaxed Noninterference

expressiveness of types (Section 5), identifying interesting venues for extensions.
Section 6 discusses related work and Section 7 concludes. Auxiliary definitions are provided
in Appendix.

2 Type-Based Declassification Policies

We now progressively and informally introduce the type-based approach to declassification
policies, appealing first to a simple intuitive connection with type abstraction. We then
explain why this first intuition is insufficient, and refine it in order to support the key
features of a security-typed language with expressive declassification. We end by discussing
the security guarantee supported by the approach.

Type abstraction and confidentiality. It is well-known that type abstraction can capture
the need to expose only a subset of the operations of an object. For instance, if the password
secret is made available using the interface type StringEq , [eq : String→ Bool], the login
function from Section 1 can be rewritten as follows:

String login(String guess , StringEq password ){
if( password .eq(guess )) ...

}

Because password has type StringEq, the login function cannot accidentally leak information
about the password. In particular, note that the function cannot even return the password
because StringEq is a supertype of String, not a subtype. Therefore, the standard substitut-
ability expressed by subtyping seems to align well with the valid information flows permitted
in a confidentiality type system: a (public) string value at type String can be used freely,
and passed as argument expecting a (mostly) private StringEq, which only exposes equality
comparison. Similarly, any value can flow to a private variable, characterized by the empty
interface type, > , [ ].1

Progressive declassification policies can be expressive with nested interface types. For
instance, assume that String objects have a hash method, of type Unit → Int. To specify
that only the hash of the password can be compared for equality, it suffices to expose the
password at type StringHashEq , [hash : Unit→ IntEq], where IntEq , [eq : Int→ Bool]:

String login(Int guess , StringHashEq password ){
if( password .hash (). eq(guess )) ...

}

In the code above, the only available operation on password is hash(), which in turn returns
an integer that only exposes an equality comparison. Note that here again, StringHashEq >:
String and IntEq >: Int.

Recursive declassification. The informal presentation of type-based declassification so far
has exemplified two of the main advantages of our approach: security label ordering is
syntactic subtyping, and secrets and their declassification policies can be declared locally,
by standard type annotations. We now illustrate recursive declassification policies.

1 The reader might wonder at this point about the effect of using arbitrary downcasts, as supported in
Java. Indeed, downcasts are a way to violate type abstraction, and therefore to violate the type-based
security guarantees. For instance, the login function could return (String)password, thereby returning
the password for public consumption. Fortunately, there is a simple solution to this issue, which we
discuss in Section 5.



R. Cruz, T. Rezk, B. Serpette, and É. Tanter 7:5

Recursive declassification policies are desirable to express interesting declassification of
either inductive data structures or object interfaces (whose essence are recursive types [17]).
Consider for instance a secret list of strings, for which we want to allow traversal of the
structure and comparison of its elements with a given string. This can be captured by the
recursive type StrEqList defined as:

StrEqList , [isEmpty : Unit→ Bool, head : Unit→ StringEq, tail : Unit→ StrEqList]

To allow traversal, the declassification policy exposes the methods isEmpty, head and tail,
with the specific constraints that a) accessing an element through head yields a StringEq, not
a full String, and b) the tail method returns the tail of the list with the same declassification
policy. Type-based declassification policies can therefore naturally be recursive, as long as
the underlying type language allows (some form of) recursive types.

Facets of computation. With the standard programming approach described so far, a
program that attempts to violate the declassification protocol of an object is rejected by the
(standard) type system because it is ill-typed. For instance:

String login(Int guess , StringEq password ){
if( password . length (). eq(guess )) ...

}

is rejected because length is not part of the exposed interface of password.
However, security-typed languages typically are more flexible than this: they allow com-

putation to proceed with private information, but ensure the result of such computation is
itself private [38]. For instance, adding a public integer and a private integer yields a private
result. Li and Zdancewic follow the same approach with declassification policies: using a
secret in a way that does not follow its declassification policy yields a private result [22].
The justification of these approaches is that computation with private data is relevant, but
only visible to a high security, private observer; noninterference only dictates that a low
security, public observer should not be able to deduce information about private data by
observing public outputs.

This means that security-typed languages inherently adopt a multi-faceted view of com-
putation, where each observation level corresponds to a different facet. Sticking to a two-
facet, private/public model, the definition of login above is well-typed if one “knows” that
password is in fact a String object. In this case using length is valid: it just yields a private
result. Flow-sensitivity then ensures that the result of login, which follows from a conditional
branching computed based on a private value, is also private.

Faceted types. To accommodate the possibility of computing with private data, we extend
standard types to faceted types. A security type S, noted T / U , consists of two standard
types: type T for the private interface, and type U for the public interface.2. In this paper,
we often use the notation TL as a shortcut for the lowest-confidentiality security type T / T ,
in which the public facet exposes the same interface as the private facet, and TH for the
fully-confidential security type T /> in which the public facet is empty.

To express that password is a private string that can only be declassified through equality
comparison, we can use the following signature for login:

2 Similarly to multi-faceted execution [8], one can extend the model to support n levels of observations,
by introducing security types with n facets.

ECOOP 2017



7:6 Type Abstraction for Relaxed Noninterference

StringL login(IntL guess , String/StringEq password )

With this signature the previous definition of login, which invokes length, is still ill-
typed. Indeed, the body of the function now has type StringL, capturing the fact that the
resulting string is private, but the signature pretends that the result of login is public, which
violates noninterference. For login to be well-typed, either the declared return type should
be changed to StringH, or the conditional should adhere to the public facet StringEq.

Note that subtyping naturally extends covariantly to faceted types, i.e. T1 / U1 <: T2 / U2
iff both T1 <: T2 and U1 <: U2. Therefore, it is invalid to pass a private string of type
String /> to a function expecting a declassifiable string of type String / StringEq, because
> is not a subtype of StringEq. Subtyping on the public facet corresponds to security label
ordering; compared to the semantic, equivalence-based interpretation of labels of Li and
Zdancewic, here label ordering is just standard syntactic subtyping.

Object types directly support the possibility to offer different declassification
paths for the same secret. For instance, the security type
String / [hash : UnitL → IntL, length : UnitL → IntL] allows a client to obtain a public integer
from a string by using either its hash or its length. Naturally, by breadth subtyping, such a
secret with two possible declassification paths can also be used as a more restricted secret,
e.g. one that only exposes its hash publicly.

Type-based relaxed noninterference. The security property we establish in this work is a
particular form of termination insensitive noninterference, called typed-based relaxed nonin-
terference (TRNI for short). Like the relaxed noninterference result of Li and Zdancewic [22],
TRNI accounts for declassification policies.

To understand the intuition behind TRNI, we must first establish a notion of type-based
observational equivalence between objects. The starting point of the notion of equivalence is
that an object is defined by the observations that can be made on it, that is, by invoking its
methods [17]. More precisely, two objects o1 and o2 are said to be observationally equivalent
at type S, with S , T / U , if for each method m : S1 → S2 of the public facet U , invoking
m on o1 and o2 with equivalent arguments at type S1, yields equivalent results at type S2.
Crucially, the definition of equivalence uses the public facet of the type, thereby accounting
for observational equivalence only up to declassified information.

For example, the strings "john" and "mary" are not equivalent at type String / String,
because a public observer can observe the first character of each string and realize they
are different. However, these strings are equivalent when observed at String / StringLen,
where StringLen , [length : UnitL → IntL], because the only declassified information about
the strings is their length, which is here equal. This also means that "john" and "james" are
equivalent when are observed at type StringH (i.e. String />) since there are no observations
available to distinguish them. In fact, any two objects of type T are equivalent at type TH.

Given this notion of equivalence, a program satisfies TRNI at type Sout, if given two
inputs that are equivalent at type Sin, it produces two results that are equivalent at type
Sout. Intuitively, the types Sin and Sout capture the knowledge of public observers. Another
way to understand TRNI is that, if the initial knowledge implies the final knowledge, then
the program is secure for the public observer.

For instance, consider a program with an input x of type String / StringLen. The program
x.length satisfies TRNI at type Int / Int: two executions of the program with related inputs
at String / StringLen, such as "john" and "mary", yields two identical results at type Int / Int
(i.e. 4 in both cases). However, the program if(x.eq("mary")) return 1 else 2 does not satisfy



R. Cruz, T. Rezk, B. Serpette, and É. Tanter 7:7

e ::= v | e.m(e) | x (terms)
v ::=

[
z : S ⇒ m (x) e

]
(values)

T,U ::= O | α (types)
O ::= Obj(α).

[
m : S → S

]
(object type)

S ::= T / U (security type)

x, y, z (variables)
α, β (type variables)
m (method labels)

TL , T / T TH , T />

Figure 1 ObSEC: Syntax.

TRNI at type Int / Int because there are equivalent inputs at type String / StringLen ("john"

and "mary") that yield different outputs at type Int / Int (1 and 2). For this program, the
only secure observation level is Int />.

We formally define these notions, and prove that the type system we propose enforces
TRNI, in Section 4.

3 An Object Language for Type-Based Declassification

We develop type-based declassification and relaxed noninterference using a core object-
oriented language, ObSEC, whose syntax is presented in Figure 1. The syntax of ObSEC
is similar to that of the object calculi of Abadi and Cardelli [2]. It includes three kinds of
expressions: variables, objects and method invocations. Note that we do not include method
updates or classes, both unnecessary to formulate our proposal. An object

î
z : S ⇒ m (x) e

ó
is a collection of method definitions, where method names are unique. The object definition
explicitly binds the self variable z in method bodies, with ascribed security type S. The
distinguishing feature of ObSEC are security types: as introduced in Section 2, a security type
S is a two-faceted type T / U , where T (resp. U) is the private (resp. public) facet. The
public facet corresponds to the declassification policy of an object. A fully opaque secret
has type T /> (also noted TH), exposing no method at all, while a low-confidentiality object
has type T / T (also noted TL), publicly exposing its full interface. A type T or U is either
a (recursive) object type Obj(α).

[
m : S → S

]
, where method types can use the self type

variable α, or a type variable. Note that we do not model parametric polymorphism in this
core calculus, so type variables are only used for self types. Following the tradition of Abadi
and Cardelli [2], ObSEC does not include base (non-object) types, however they can be easily
added or encoded.

Subtyping. The ObSEC subtyping judgment Φ ` T <: U is presented in Figure 2. The
subtyping environment Φ is a set of subtyping assumptions between type variables, i.e.
Φ ::= · | Φ, α <: β.3 For all judgments in this work, we often omit the empty environment,
e.g. we write ` T <: U for · ` T <: U .

Rule (SObj) accounts for subtyping between object types. Object type T1 is a subtype of
object type T2 if T1 has at least the same methods as T2, possibly more specialized. For this,
the rule checks subtyping between method types under a subtyping assumption between the
self type variable of T1 and that of T2. For instance, consider the following object types:

Counter , Obj(α). [get : UnitL → IntL, inc : UnitL → αL, dec : UnitL → αL]
IncCounter , Obj(β). [get : UnitL → IntL, inc : UnitL → βL] .

3 Type variables must appear at most once in the subtyping environment.

ECOOP 2017



7:8 Type Abstraction for Relaxed Noninterference

Φ ` T <: T

(SObj)

O1 , Obj(α).
[
m : S1 → S2

]
O2 , Obj(β).

[
m′ : S′1 → S′2

]
m′ ⊆ m

mi = m′j =⇒ (Φ, α <: β ` S′1j <: S1i Φ, α <: β ` S2i <: S′2j)
Φ ` O1 <: O2

(SVar)
α <: β ∈ Φ
Φ ` α <: β (SSubEq) O1 ≡ O2

Φ ` O1 <: O2
(STrans) Φ ` T1 <: T2 Φ ` T2 <: T3

Φ ` T1 <: T3

Φ ` S <: S

(TSubST) Φ ` T1 <: T2 Φ ` U1 <: U2

Φ ` T1 / U1 <: T2 / U2

Figure 2 ObSEC: Subtyping rules.

methsig(O,m) = S → S

O , Obj(α).
[
m : S1 → S2

]
S , S1i [O/α] S′ , S2i [O/α]

methsig(O,mi) = S → S′

m ∈ O

O , Obj(α).
[
m : S1 → S2

]
mi ∈ O

methimpl(o,m) = x.e

o ,
[
z : S ⇒ m (x) e

]
methimpl(o,mi) = x.ei

Figure 3 ObSEC: Some auxiliary definitions.

To establish that Counter is a subtype of IncCounter, the covariance between the return
types of the inc method requires a subtyping assumption between type variables, here α <:
β. Rule (SVar) specifies subtyping between type variables, which only holds if the relation is
in the subtyping environment. Rule (SSubEq) justifies subtyping between equivalent types.
We consider type equivalence up to renaming and folding/unfolding of self type variables;
for instance:

Obj(α). [m : αL → αL] ≡ Obj(β). [m : βL → βL] (alpha equivalence)
Obj(α). [m : S → αL] ≡ Obj(α).

[
m : S → Obj(β). [m : S → βL]L

]
(fold/unfold equivalence)

(Appendix A.4 provides the complete definition of type equivalence.)
Rule (STrans) is standard. Rule (TSubST) justifies subtyping between security types,

which is covariant in both facets.
Figure 3 presents auxiliary functions used to test method membership in a type (m ∈ T ),

to get the type of a method in an object type (methsig) and to get the implementation of
a method (methimpl). These operations are standard; the only interesting thing to note is
that in methsig we close the types in the method signature, by replacing type variables with
their object types.

Static semantics. Figure 4 shows the typing rules of ObSEC. The type judgment Γ ` e : S
gives a security type to an expression under a type environment Γ that binds variables
to types (Γ ::= · | Γ, x : S). In what follows, we assume well-formedness of types and
environments: informally, an environment is well-formed if all security types are closed and



R. Cruz, T. Rezk, B. Serpette, and É. Tanter 7:9

Γ ` e : S

(TVar)
x ∈ dom(Γ)
Γ ` x : Γ(x)

(TSub) Γ ` e : S′ ` S′ <: S
Γ ` e : S

(TObj)
S , T / U methsig(T,mi) = S′i → S′′i Γ, z : S, x : S

′
i ` ei : S′′i

Γ `
[
z : S ⇒ m (x) e

]
: S

(TmD)
Γ ` e1 : T / U m ∈ U methsig(U,m) = S1 → S2 Γ ` e2 : S1

Γ ` e1.m(e2) : S2

(TmH)
Γ ` e1 : T / U m /∈ U methsig(T,m) = S1 → T2 / U2 Γ ` e2 : S1

Γ ` e1.m(e2) : T2 / >

Figure 4 ObSEC: Static semantics.

well-formed; a well-formed security type satisfies the requirement that the private type is a
subtype of the public type. We further discuss well-formedness at the end of this section.

Rules (TVar) and (TSub) are standard. The (TObj) rule accounts for objects. It requires
each method body to be well-typed with respect to the private facet of the object. In
particular, the method body must match the return type of the method signature in the
private facet of the self type S.

From a security point of view, the interesting rules are the ones for method invocation.
Rule (TmD) applies when the invoked method is part of the public facet of the receiver. In
this case, because the method invocation respects the declassification policy, the overall type
of the invocation is the return type of the method in the public facet. This expresses that
the invocation advances a step in the progressive declassification of the object. For instance,
if the expression e1 has the public type StringHashEq , [hash : UnitL → Int / IntEq], the
invocation e1.hash() has type Int / IntEq, expressing that the returned value is a secret that
can further be declassified by calling the method eq from IntEq.

Rule (TmH) applies when the method is not in the public type U , but only in the private
type T (if the method is not in T , the expression is ill typed). In this case, the method call is
accessing the “secret” part of the object: the result of the method invocation must therefore
be protected by changing its public facet to >. This rule captures the design decision that
using a secret beyond its declassification policy is allowed, but the result must be secret. In
other words, only a private observer can use objects beyond their declassification policies;
to a public observer, the results of these interactions are unobservable.4

Dynamic semantics. We define a standard call-by-value small-step semantics for ObSEC,
based on evaluation contexts E ::= [ ] | E.m(e) | v.m(E).

The language includes a single reduction rule, for method invocation, which is standard:

(EMInv)
o , [z : _⇒ _] methimpl(o,m) = x.e

E[o.m(v)] 7−→ E[e [o/z] [v/x]]

4 Access modifiers in object-oriented languages, such as private and public in Java are a really differ-
ent mechanism. Such modifiers are about encapsulation, not about information flow. The essential
difference can be observed in rule (TmH), which propagates privacy on return values.

ECOOP 2017



7:10 Type Abstraction for Relaxed Noninterference

VkJSK = {v = [z : S1 ⇒ _] | S , T / U ` S1 <: S ∧
(∀j < k. v ∈ VjJS1K ∧

(∀m ∈ T, v′. methsig(T,m) = S′ → S′′ methimpl(v,m) = x.e

v′ ∈ VjJS′K =⇒ e [v/z] [v′/x] ∈ CjJS′′K))}

CkJSK = {e | ∀j < k. ∀e′.(e 7−→j e′ ∧ irred(e′)) =⇒ e′ ∈ Vk−jJSK}

Figure 5 ObSEC: Unary logical relation for safety.

Type safety. We now establish that well-typed ObSEC programs are safe. Note that type
safety does not provide any security guarantees for ObSEC. (Security guarantees will be
addressed in Section 4.) A program e is safe, noted safe(e), if it does not get stuck, i.e. if it
either reduces to a value or diverges.

I Definition 1 (Safety). safe(e)⇐⇒ ∀e′. e 7−→∗ e′ =⇒ e′ = v or ∃e′′. e′ 7−→ e′′

We prove type safety for ObSEC using a semantic interpretation of types as a unary lo-
gical relation [3]. We cannot however define the logical relation based on a direct induction
over the structure of types, because of recursive types, which would make such a definition
ill-founded. Therefore, we use a step-indexed logical relation [4, 6]. We establish an inter-
mediary result for a fixed number k of steps, meaning that a term is safe for k evaluation
steps, and then quantify ∀k ≥ 0 to obtain the general result. Step indexing ensures the
well-foundedness of the logical relation.

Figure 5 defines the unary logical relation that captures the safety interpretation of types
as values and computations, in a mutually recursive manner. The set VkJSK denotes the safe
value interpretation of type S for k steps; it contains all the values (i.e. objects) for which
it is safe (for any j < k number of steps) to invoke methods of the private type T of the
security type S , T / U . Note that the definition needs to assume that the self object is in
the value interpretation of S, for j < k steps; without step-indexing, this relation would be
ill-founded due to the recursive nature of objects through their self variables. The set CkJSK
contains all the expressions that can be safely executed for k steps at the security type S. In
the definition, the irred(e) predicate denotes irreducible expressions, i.e. expressions e such
that @e′.e 7−→ e′.

We define semantic typing, written |= e : S, to denote that a closed expression e executes
safely for any fixed number of steps:

I Definition 2 (Semantic typing). |= e : S ⇐⇒ ∀k ≥ 0. e ∈ CkJSK.

We then first prove that semantic typing does imply safety as per Definition 1.

I Lemma 3 (Semantic type safety). |= e : S =⇒ safe(e)

Proof. To show safe(e) we need to consider an arbitrary e′ such that e 7−→∗ e′ and then
show that either e′ = v or ∃e′′. e′ 7−→ e′′

Let us consider an arbitrary j1 to count the step that takes e 7−→∗ e′. Let us denote l = j1+1
By expanding the definition of |= e : S we have ∀k ≥ 0. e ∈ CkJSK. We instantiate this with
k = l to obtain e ∈ ClJSK. By expanding this we have:
∀j < l. ∀e1.(e 7−→j e1 ∧ irred(e1)) =⇒ e1 ∈ Vk−jJSK. We instantiate e ∈ ClJSK with j1
and e′ and we obtain: (e 7−→j1 e′ ∧ irred(e′)) =⇒ e′ ∈ Vk−j1JSK.
There are two cases to consider: ¬irred(e′) and irred(e′) . If ¬irred(e′), then by definition
∃e′′. e′ 7−→ e′′. If irred(e′), we have that e′ ∈ Vk−jJSK, so e′ is a value. J



R. Cruz, T. Rezk, B. Serpette, and É. Tanter 7:11

Second, we prove that syntactic typing (Figure 4) implies semantic typing.

I Lemma 4 (Syntactic typing implies semantic typing). ` e : S =⇒ |= e : S

Proof. The result follows from a similar lemma on open terms: Γ ` e : S =⇒ Γ |= e : S.
We define a standard notion of safe value substitutions [3], i.e. partial maps from variables
to safe values, γ ∈ GkJΓK and Γ |= e : S as follows:
γ ∈ GkJΓK ⇐⇒ dom(γ) = dom(Γ) and ∀x ∈ dom(Γ).γ(x) ∈ VkJΓ(x)K
Γ |= e : S ⇐⇒ ∀k ≥ 0, ∀γ. γ ∈ GkJΓK =⇒ γ(e) ∈ CkJSK.
Then we prove that Γ ` e : S =⇒ Γ |= e : S by induction on the typing derivation
of e. The case (TVar) is direct from the definition of γ ∈ GkJΓK. The case (TSub) fol-
lows directly from a subsumption lemma (e ∈ CkJSK ∧ ` S <: S′ =⇒ e ∈ CkJS′K).
Cases (TObj), (TmD) and (TmH) are proven by unfolding the definitions of CkJSK and
VkJSK, and applying the induction hypotheses for smaller indexes. For these cases, we use
mainly a monotonicity lemma for the value interpretation of a type regarding the index,
i.e. e ∈ VkJSK ∧ j ≤ k =⇒ v ∈ VjJSK. J

Together, Lemmas 3 and 4 imply that well-typed programs are safe.

I Theorem 5 (Syntactic type safety). ` e : S =⇒ safe(e)

Now that we have established that ObSEC is a well-defined, type-safe language, Section 4
will develop its security guarantees.

A note on well-formedness. Before we proceed, however, we need to mention a technical
yet important issue that we overlooked so far. For the main results of Section 4 to hold,
we need to ensure that we work with well-formed security types, i.e. that the private facet
type is a subtype of the public facet type. In a language with simple, non-recursive types,
defining such subtyping constraints is straightforward. However, in the presence of recursive
(object) types, defining the rules for the subtyping constraint of security types is rather
subtle and involved. The subtlety with type variables is that, at some point, we might
have to check well-formedness of a security type with a type variable in one of its facets, e.g.
α / T , without knowing any relation between α and T . To address this, we need to remember
the surrounding recursive object type O that binds α, and to transform the check ` α <: T
to ` O <: T . For conciseness, we leave out the well-formedness rules from the main body
of the paper; they are fully described in Appendix A.2. In what follows, we systematically
assume that security types (and by extension, type environments) are well-formed.

4 Type-Based Relaxed Noninterference

Faceted security types support information-flow security with declassification. The security
property that type-based declassification supports is a form of relaxed noninterference [22],
which we informally explained in Section 2. This section formally defines the notion of
type-based relaxed noninterference (TRNI) independently of any enforcement mechanism.
Then, we prove that the type system of ObSEC is sound with respect to this property.

Type-based equivalence. As introduced in Section 2, TRNI is defined in terms of a notion
of type-based equivalence between objects: a program satisfies TRNI at type Sout, if given
two inputs at type Sin, it produces two equivalent results at type Sout. Equivalence at a type
accounts for the possible observations (i.e. method invocations) that one is allowed to make

ECOOP 2017



7:12 Type Abstraction for Relaxed Noninterference

v1 ≈k v2 : VJSK ⇐⇒ S , T / U vi , [z : _⇒ _]
`1 vi : T ∧ (∀m ∈ U. methsig(U,m) = S′ → S′′ methimpl(vi,m) = x.ei

∀j < k, v′1, v
′
2. v1 ≈j v2 : VJSK ∧

(v′1 ≈j v
′
2 : VJS′K =⇒ e1 [v1/z] [v′1/x] ≈j e2 [v2/z] [v′2/x] : CJS′′K))

e1 ≈k e2 : CJSK ⇐⇒ S , T / U

`1 ei : T ∧ (∀j < k.(e1 7−→≤j v1 ∧ e2 7−→≤j v2) =⇒ v1 ≈k−j v2 : VJSK)

Figure 6 Step-indexed logical relation for type-based equivalence.

on an object. We define this equivalence as a step-indexed logical relation [4], in Figure 6.
We define how to relate values (i.e. objects) as well as computations (i.e. expressions). Step
indexing is required due to the recursive nature of object types, as explained below.

Note that the definitions use a simple typing judgment that does not account for security
typing at all; its sole purpose is to ensure safety. This is crucial: the public facets of security
types only play the role of specifications of declassification policies, and the logical relation
specifies the meaning of these specifications, without any consideration for an enforcement
mechanism. In particular, observe that the definitions in Figure 6 do not appeal to security
type judgments (`), but only to simple type judgments (`1).

I Definition 6 (Simple typing judgment). Based on the security typing judgment Γ ` e : S,
we define the simple typing judgment Γ `1 e : T by focusing only on the private facet of
security types. Formally: Γ `1 e : T ⇐⇒ Γ ` e : T / U for some U .
(The inductive definition of simple typing is in Appendix A.5.)

Intuitively, two objects v1 and v2 are equivalent at type S , T / U for k steps, noted
v1 ≈k v2 : VJSK, when one cannot distinguish them by invoking any method m of U . More
precisely, to ensure safety, we first demand that both values are well-typed at T with the
simple type system. Then, for each method m ∈ U and every j < k, the invocations of
m on v1 and v2 with related arguments at the argument type S′ of m must be equivalent
computations at the return type S′′ for j steps, as defined below. Finally, note that the
definition also requires that v1 and v2 are related self objects, for j < k steps; this is
necessary for the relation to be well-founded. (Observe that two simply well-typed objects
are vacuously equivalent for zero steps.)

Two expressions e1 and e2 are equivalent at security type S , T / U for k steps, noted
e1 ≈k e2 : CJSK, if they are both (simply) well-typed at T and, provided that they both
reduce to values in at most j < k steps (noted e 7−→≤j v), then both values are equivalent
at type S for the remaining k− j steps. Note that this definition is termination insensitive:
if one expression does not terminate in less than k steps, then both expressions are deemed
equivalent.

Defining TRNI. The type-based approach to declassification policies allows us to formulate
the corresponding relaxed noninterference property as a modular reasoning principle, simil-
arly to the common formulation of noninterference in languages without declassification [38],
thereby avoiding the global and external formulation of the transformation approach [22].

Standard noninterference is usually stated as a modular reasoning principle on open
terms [38]: given a well-typed open term, which depends on some private variables, clos-
ing the term with private inputs yields equivalent programs when observed by a low-
confidentiality observer. This statement can be generalized using the notion of value substi-



R. Cruz, T. Rezk, B. Serpette, and É. Tanter 7:13

tutions, i.e. partial maps from variables to values: given an open term that typechecks in
a given environment Γ, applying two related substitutions yields equivalent computations.
Applying a substitution, noted γ(e), substitutes the free variables of e with their values in
γ.

I Definition 7 (Satisfactory substitution). A substitution γ satisfies type environment Γ,
noted γ |= Γ, iff dom(γ) = dom(Γ) ∧ ∀x ∈ dom(Γ). `1 γ(x) : T where Γ(x) , T / U

I Definition 8 (Related substitutions). Two substitutions γ1 and γ2 are equivalent for k steps
with respect to a type environment Γ, noted γ1 ≈k γ2 : GJΓK, if γi |= Γ and

∀x ∈ dom(Γ).γ1(x) ≈k γ2(x) : VJΓ(x)K

The statement of type-based relaxed noninterference is a direct generalization of standard
noninterference: an open term e, simply well-typed in environment Γ, satisfies type-based
relaxed noninterference at security type S, noted TRNI(Γ, e, S), if two executions of e with
related substitutions with respect to Γ produce equivalent computational expressions at type
S, for any number of steps.

I Definition 9 (Type-based relaxed noninterference).

TRNI(Γ, e, S) ⇐⇒ S , T / U Γ `1 e : T ∧
∀k ≥ 0. ∀γ1, γ2. γ1 ≈k γ2 : GJΓK =⇒ γ1(e) ≈k γ2(e) : CJSK

This definition captures the semantic characterization of TRNI-secure expressions, in-
dependently of any enforcement mechanism (recall that, in Figure 6, the public facets of
security types only play the role of specifications of declassification policies). The ObSEC
type system is a sound, conservative enforcement mechanism for TRNI.

Security type soundness. To establish that well-typed ObSEC programs satisfy TRNI, we
first introduce a general notion of type-based equivalence between open expressions. Two
open expressions, well-typed under a type environment Γ, are equivalent at a security type
S , T / U , if both expressions have simple type T , and given two related value substitutions
for Γ, closing each expression with a satisfactory substitution yields equivalent expressions
at type S.

I Definition 10 (Equivalence of open terms).

Γ ` e1 ≈ e2 : S ⇐⇒ S , T / U Γ `1 ei : T∧
∀k ≥ 0. ∀γ1, γ2. γ1 ≈k γ2 : GJΓK =⇒ γ1(e1) ≈k γ2(e2) : CJSK

As is clear from the definitions, if a term is equivalent to itself at type S, then it satisfies
TRNI at S.

I Lemma 11 (Self-equivalence). Γ ` e ≈ e : S =⇒ TRNI(Γ, e, S)

Type soundness of ObSEC follows from the fact that the ObSEC type system enforces such a
self-equivalence.

I Lemma 12 (Fundamental property). Γ ` e : S =⇒ Γ ` e ≈ e : S

Proof. The proof is by induction on the typing derivation of e. The (TVar) case follows
directly from Definition 8 and the (TSub) case follows from a subtyping lemma: if e1 ≈k

e2 : CJSK and ` S <: S′ then e1 ≈k e2 : CJS′K. The (TObj) case applies the induction

ECOOP 2017



7:14 Type Abstraction for Relaxed Noninterference

hypothesis (IH) on method bodies. To use the IH results, we need to show that the value
substitutions that result from extending the current substitutions with both self and actual
arguments are also related. This step requires auxiliary lemmas of monotonicity of the
logical relations regarding smaller indexes. The (TmD) case follows from applying the IH
over both subexpressions, selecting adequate indexes. The (TmH) case is simpler because
there is no method to invoke in the public type >. J

Finally, type soundness for ObSEC follows directly from Lemmas 11 and 12.

I Theorem 13 (Security type soundness). Γ ` e : S =⇒ TRNI(Γ, e, S)

Illustration. We now illustrate the relation between the security typing and the definition
of TRNI. In the examples we use some standard constructs like conditionals, not included
in ObSEC, but easily encodable.

As introduced in Section 2, the property TRNI(Γ, e, T / U) can be intuitively understood
as: the initial knowledge of a public observer in Γ (i.e. the declassification policies) implies
the final knowledge (i.e. the resulting public type U) that the observer has at hand to
distinguish the results of two arbitrary executions of the secure program e of simple type T .

Let us recall the type StringLen , [length : UnitL → IntL] from the end of Section 2.
Consider the open term e , x.length under the type environment Γ , x : String / StringLen.
The judgment Γ ` e : IntL ensures that TRNI(Γ, e, IntL) holds. It says that executing e, with
two different strings v1 and v2 of the same length is secure because the observer does not
learn anything new by exploiting the knowledge of distinguishing the resulting integers with
any method of Int. In fact, if we use the definition of TRNI, for any equivalent substitutions
γ1 and γ2 such that γ1 ≈k γ2 : GJΓK, such as γi , x 7→ vi, we need to show γ1(x).length()
≈k γ2(x).length() : CJIntLK. It is easy to see that this result follows from the assumption
that v1 and v2 have the same length (i.e. are equivalent at String / StringLen).

We have a different situation if we consider e′ , if(x.eq("mary")) return 1 else 2, with
the same type environment Γ. We cannot prove that TRNI(Γ, e′, IntL) holds, meaning this
program is not secure at type IntL. Indeed, take γ1 , x 7→ "mary" and γ2 , x 7→ "john".
Because both strings have the same length, we have "mary" ≈k "john" : VJString / StringLenK,
so the two substitutions are equivalent. However, we cannot show that γ1(e′) ≈k γ2(e′) :
CJIntLK, because this requires to show that 1 ≈k 2 : VJIntLK, which is obviously false.

The type system of ObSEC indeed rejects the judgment Γ ` e : IntL. It does accept the
judgment Γ ` e : IntH, meaning that e′ is secure at type IntH. This is correct because then
the public observer has no ability to compare the resulting values of e′. Note in fact that any
simply well-typed expression of type T is secure at type TH. Such expressions are opaque to
a public observer, but are observable by a private observer.

Principles of declassification. Our approach to type-based declassification satisfies the
declassification principles stated by Sabelfeld and Sands [29].5 We now briefly introduce
each principle and informally argue why it is respected.

Conservativity—i.e. “Security for programs with no declassification is equivalent to non-
interference”. It is easy to see that if a program satisfies TRNI(Γ, e, TL), for some T , and

5 Sabelfeld and Sands mention a fourth principle, non-occlusion, which addresses the interaction between
declassification and covert channels, such as heap assignments, exceptions or termination behavior.
ObSEC has neither mutation nor control operators, and termination is not considered a covert channel
because we only deal with termination-insensitive noninterference.



R. Cruz, T. Rezk, B. Serpette, and É. Tanter 7:15

all security types in both Γ and e are either highly confidential (TH) or not confidential
at all (TL), then the definition of TRNI coincides exactly with the definition of pure
noninterference [38]. Therefore type-based relaxed noninterference is a generalization of
pure noninterference.

Monotonicity of Release—i.e. “Adding further declassifications to a secure program can-
not render it insecure”. This lemma follows from subtyping naturally. Recall that in
our approach, in the judgment TRNI(Γ, e, S), declassification policies come from types
ascribed in both Γ and e. “Adding further declassification” in the inputs means in our
context replacing security types in Γ with subtypes, more precisely, where the public
facets are subtypes of the original types. The security typing judgment also holds in
this scenario of additional declassification in the inputs. Similarly, adding declassific-
ation in the expression e means specializing the public facets of types in object type
declarations. Again, this does not affect the semantic TRNI judgment. Note, however,
that if argument types are specialized, the program might not be typable anymore with
the security type system, as such a change breaks the contravariance of subtyping for
argument method types.

Semantic Consistency—i.e. “The (in)security of a program is invariant under semantics-
preserving transformations of declassification-free subprograms.”. The principle says that
it is possible to replace an expression that does not use declassification with another
semantically-equivalent expression, without affecting security. As observed by Sabelfeld
and Sands, the approach to declassification policies of Li and Zdancewic [22] violates this
principle, because they rely on a restricted, mostly-syntactic form of program equivalence
to decide label ordering. Therefore, many semantically-equivalent programs are not
deemed equivalent, hence affecting their (in)security. In contrast, our notion of type-
based equivalence (Figure 6) is semantic, not syntactic.

Limitations of security typing. The ObSEC type system is a static enforcement mechanism
for type-based relaxed noninterference. As such, it is inherently conservative. This has two
implications regarding Theorem 12.

First, the type system can reject some programs that are in fact secure. For example,
consider the following definitions:
T , Obj(α). [n : StringL → StringL]
T ′ , Obj(α). [m : StringH → StringH]
v , [z : TL ⇒ n (x) "hello"]
v′ , [z : T ′L ⇒ m (x) v.n(x)]

Here, v′ is not well-typed using the security type system, because of the call v.n(x)
(` StringH ≮: StringL). However, we can show that v′ does satisfy TRNI(·, v′, T ′L), because a
public observer always obtains the same result (i.e. "hello") for any two secrets passed to
method m; the program is not leaking any information.

Second, the type system can assign the security type T /> to an expression, despite the
fact that > is not the tighter secure type for TRNI to hold. For instance, let us assume that
Int has built-in methods mod2 and mod4 with the standard mathematical meaning, and we
define the type IntMod4 , [mod4 : UnitL → IntL]. Consider Γ , v : Int / IntMod4 and e ,
v.mod2(). The type system admits Γ ` e : IntH, which implies TRNI(Γ, e, IntH), but it does
not admit Γ ` e : IntL; despite the fact that TRNI(Γ, e, IntL) also holds—because if a and b
are equivalent modulo 4, then they are also equivalent modulo 2.

ECOOP 2017



7:16 Type Abstraction for Relaxed Noninterference

5 Expressiveness of Declassification Policies

Our approach to type-based declassification policies builds upon an underlying type system.
While we have chosen a simple model of recursive object types to develop the approach in
the previous sections, it is interesting to explore how the expressiveness of the underlying
type discipline affects the range of declassification policies that can be defined.

Recursive types. It is possible to exploit the idea of type-based declassification policies
without recursive object types. We only need a type abstraction mechanism, such as that
enabled by subtyping. In fact, with only record types and subtyping, we can already capture
a set of interesting policies, such as those mentioned at the begin of Section 2 (e.g. StringEq,
StringHashEq). TRNI depends on the notion of equivalence between values and computa-
tions, which can be easily simplified for the non-recursive setting; in particular, we can get
rid of step-indexing in the logical relations.

Of course, without recursive object types in the core formalism, we lose the ability
to express recursive declassification policies (which are useful to declassify recursive data
structures, as illustrated in Section 2). With records but without objects, we can add
general recursive types of the form µX.T to support recursive declassification policies. Note
however that combining general recursive types and subtyping is challenging, and there are
different definitions that may not be complete (i.e. unable to establish a subtyping relation
that indeed holds); in particular, our subtyping rules are not complete regarding subtyping
between infinite trees [5]. This challenge solely affects the kinds of security types that can
be defined and deemed well-formed.

Finally, one characteristic of recursive declassification policies is that they potentially
allow to chain arbitrarily many invocations of a declassification method. For instance,
consider an infinite stream of strings, and a declassification that allows equality comparisons
on its elements:

StrEqStream , [head : UnitL → StringEqL, tail : UnitL → StrEqStreamL]

In case tolerating an unbounded number of observations would represent an unacceptable
accumulated leak, the programmer can define a more restrictive declassification policy that
restricts the number of tolerated calls by explicitly nesting interface types instead of defining
a fully recursive one. Obviously, to be practical, one would need to define a convenient
surface syntax such as:

StrEqStream , [head : UnitL → StringEqL, tail : UnitL → StrEqStreamL@k]

to specify that the declassification policy only supports at most k unfoldings of StrEqStream
through tail, and to desugar it to a finite nesting of interface types.

Universal types. Universal types allow programmers to define programs that are paramet-
erized by types. This can be used to define generic data structures, such as lists:

List [X] , {isEmpty : UnitL → BoolL, head : UnitL → XL, tail : UnitL → List[X ]L}

If we add parametric polymorphism to ObSEC, then in addition to get polymorphism
over implementation types, we naturally get a general form of security label polymorphism,
which is very useful (and supported in Jif [24]). For example, we can define generic data
structures that are polymorphic with respect to the security labels of their inner data; the
list structure defined above is a specific example.



R. Cruz, T. Rezk, B. Serpette, and É. Tanter 7:17

Similarly, a declassification policy can exploit parametric polymorphism. Recall the
recursive declassification example of Section 2, in which we allow traversing a list and only
comparing its elements with a given public element. We can express a generic version of
this declassification policy with the following type:

ListEq [X] , [isEmpty : UnitL → BoolL, head : UnitL → X / Eq[X ], tail : UnitL → ListEq[X ]L]
Eq [X] , [eq : XL → BoolL]

Note that the above definition is however invalid, because ListEq is not well-formed: in order
to satisfy the subtyping constraint between the facets of a security type such as X / Eq[X ],
we need to bound the type variable X, which leads us to bounded parametric polymorphism.
Then, the type ListEq can be correctly defined as follows:

ListEq [X <: Eq [X ]] ,
[isEmpty : UnitL → BoolL, head : UnitL → X / Eq[X ], tail : UnitL → ListEq[X ]L]

Refinement types. Refinement types, as found in e.g. LiquidHaskell [35], enrich standard
types with predicates over a decidable logic. For instance, the type {x : Int | x ≥ 0} denotes
natural numbers. Additionally, refinement types usually support a form of dependent types,
allowing refinements to refer to variables in scope as well as function arguments. Combining
such expressive types with our approach allows interesting declassification policies to be
defined, such as restricting successive arguments of a progressive declassification.

As an example, consider the following policy:

IntModProd , [mod : {x : IntL} → [mult : {y : IntL | x = y} → IntL]L]

This progressive declassification allows revealing the result of the chain of invocations
mod then mult, only if the argument to both invocations is the same. Note that IntModProd
is a proper supertype of Int, since {y : Int | x = y} is a subtype of Int.

More advanced scenarios. There are other interesting declassification policies that seem
more challenging to support with our type-based approach. An interesting example is spe-
cifying that a string secret can be leaked only after it has been encrypted; it is highly unlikely
that the standard String class exposes an encryption method. However, our approach does
appeal to the actual interface of an object in order to define its declassification. Hicks et
al. [21] introduce special declassifier functions to express arbitrary declassification that can
involve operations that are not defined on the declassified object itself. Therefore a possible
solution to address this example in our setting would be to rely on an external method
specification mechanism, such as open classes or mixin-based composition of traits in Scala.

Nevertheless, the above approach would still fall short of expressing global declassification
policies, as described by Li and Zdancewic [22], which can relate the declassification of dif-
ferent secrets at once. While the value dependencies can be expressed using, e.g. refinement
types, the challenge is to ensure that the obtained security types are still well-formed (i.e. the
public facet must be a supertype of the private facet). These are interesting challenges for
future development of the approach.

A note about casts. In Section 2 we alluded to the challenge of integrating explicit down-
casts in a language that adopts type-based declassification policies. Casts can be soundly
incorporated in such a language provided that we only allow casting values from a security

ECOOP 2017



7:18 Type Abstraction for Relaxed Noninterference

type to another one that has the same public type, i.e. casts cannot affect the declassification
policy. Therefore the interesting typing rule for a cast expression 〈T 〉 e is:

(TCast) Γ ` e : T ′ / U ` T <: T ′
Γ ` 〈T 〉 e : T / U

As usual in security languages with casts, cast errors are seen as a non-termination
channel, hence not affecting the security definitions.

6 Related work

Information flow security in general, and declassification in particular, are very active areas
of research. We now discuss the most salient proposals related to this work.

Secure information flow and type abstraction. Our work shows a connection between
type abstraction and declassification policies for secure information flow. Previous works
also attempt to connect type abstraction and secure information flow.

Tse and Zdancewic [32] encode the Dependency Core Calculus (DCC) [1] in System F.
The correctness theorem of their translation aims at showing that the parametricity theorem
of System F implies the noninterference property. Unfortunately, Shikuma and Igarashi
identify a mistake in the proof of their main result [30]; they also gave a noninterference-
preserving translation for a version of DCC to the simply-typed lambda calculus. However,
this translation left open the connection between parametricity and noninterference, initially
aimed by Tse and Zdancewic.

Recently, Bowman and Ahmed [14] provide a translation from DCC to System Fω, suc-
cessfully demonstrating that noninterference can be encoded via parametricity. Our work
generalizes this by showing that type abstraction implies relaxed noninterference. Informa-
tion flow analyses have been proposed to generalize parametricity in the presence of runtime
type analysis [37]. Using security labels, a programmer can specify data structures that
should remain confidential in order to hide implementation details and rely on type abstrac-
tion for abstract datatypes.

An interesting research direction is to investigate whether our proposal of solving inform-
ation flow problems via type abstraction, here through subtyping, can be used to generalize
parametricity as proposed by Washburn and Weirich [37].

Declassification. As extensively discussed, our policies and security property are based on
the work of Li and Zdancewic [22], which proposes two kinds of downgrading policies (which
we call here declassification policies, since they only relate to confidentiality): local and
global policies. The declassification policies in this paper directly correspond to local policies,
as discussed in the introduction. Global policies refer to declassifications that involve more
than one secret simultaneously. As discussed in Section 5, it is unclear if and how global
policies can be supported using our type-driven approach; further exploration is necessary
to settle this issue. Additionally, in contrast to the definition of relaxed noninterference of Li
and Zdancewic [22], our definition is independent from the security enforcement mechanism.
This allows us to distinguish programs that are not secure from programs that are not
typable due to a necessarily conservative static security mechanism (see Section 4). Also,
our definition of relaxed noninterference is formulated as a generalization of the semantic
characterization of pure noninterference [38], providing a modular reasoning principle, as
opposed to the global translation approach of Li and Zdancewic.



R. Cruz, T. Rezk, B. Serpette, and É. Tanter 7:19

In the following, we focus on the closest related work on declassification policies starting
from 2005 and refer the reader to [29] for a survey prior to 2005.

Typing declassification in object-oriented languages. Since 2005, several works have stud-
ied static enforcement of declassification in object-oriented languages [9, 21, 11, 16].

Banerjee and Naumann [9] study the interaction between security typing for noninter-
ference and access control in a Java-like language. Security levels are not fixed but rather
depend on access permissions. In contrast to our work, security levels are independent of
method signatures or types and thus their typing does not relate to type abstraction.

Hicks et al. [21] propose trusted declassification for an object calculus. Principals in
a program have access to specified trusted declassifier functions or methods. Typeable
programs are secure for noninterference modulo trusted methods, in the same spirit as
typing of noninterference of programs with cryptographic functions [20]. In contrast to
relaxed noninterference, trusted declassification does not consider declassifiers as part of
security levels. Instead, declassifiers need to be associated by a policy to different principals
(security labels in our setting) in the lattice.

Barthe et al. [11] propose a modular method to extend type systems and proofs for
noninterference to declassification and discuss how the method extends to object-oriented
languages. The declassification property called delimited non-disclosure [23] does not sup-
port fine-grained specification of how to declassify a given secret, as supported by relaxed
noninterference.

Tse and Zdancewic [33] propose a security-typed language for robust declassification:
declassification cannot be triggered unless there is a digital certificate to assert the proper
authority. Their language inherits many features from System F<: and uses monadic labels
as in DCC [1]. The monadic style allows them to integrate computational effects, which
we do not support. In contrast to our work, security labels are based on the Decentralized
Label Model (DLM) [25], and are not semantically unified with the standard safety types of
the language.

Chong and Myers [16] propose hybrid typing to enforce declassification and erasure
policies and implement it in Jif [24]. Their language features a special declassification func-
tion that takes as input the expression and levels to declassify and also the conditions under
which declassification can occur. Security policies are specified by means of security levels
and conditions to downgrade them. This resembles our declassification policies, which spe-
cify the methods that can be applied in order to (partially) declassify; at a more abstract
level, the interface types of the public facet can be seen as “conditions” for declassifying.
The type system developed by Chong and Myers statically checks that conditions in de-
classification commands comply with the specified security policies. A dynamic mechanism
enforces this, or returns a dummy value (instead of the declassified value) at runtime. In
contrast to our work, their type system significantly departs from standard typing rules, and
dynamic checks are required for guaranteeing security.

Extensional specification of declassification policies. The language Air [31] expresses
declassification policies as security automata. The policies, seen as automata, transition
when a release obligation is satisfied. When an accepting state is reached, declassification
is performed. These policies resemble relaxed noninterference and our own declassification
policies but they require very specific typing rules.

Banerjee et al. [10] study declassification properties using ideas from epistemic logic can
capture global policies (as in the original work of relaxed noninterference) with an extensional
property. Their policies are not expressed using standard types as in our work.

ECOOP 2017



7:20 Type Abstraction for Relaxed Noninterference

The language Paralocks [15] supports declassification policies represented as Horn clauses,
whose antecedents are conditions that should be satisfied for a flow to occur. There is a nat-
ural order between declassification policies that correspond to the logical entailment when
viewing policies as Horn clauses. The policies together with the logical entailment order
define a lattice that supports an extensional specification of secrets and their intended de-
classification, as in our work. However, declassification policies in Paralocks are not specified
by using the standard types of the language, and thus their enforcement requires specific
typing rules.

Multiple facets for dynamic enforcement of declassification. Austin and Flanagan intro-
duce Multiple Facets [8] as a dynamic mechanism to enforce secure information flow. The
main idea behind multiple facets is to execute a program using multiple values, one value or
facet for each security level of observation. A value considered confidential will only flow to
a public facet by facet declassification, based on robust declassification [40]. Robust declas-
sification requires the decision to declassify to be trusted according to integrity labels used
to model trust. In our work, we do not consider integrity labels or robust declassification.
However, the idea of multiple facets (having a facet for each observer at a given security
level) is similar to our faceted types. Just as Austin and Flanagan can run a program for dif-
ferent facets simultaneously, we type check programs providing different views to observers
with different security clearances.

Multiple facets are also inspired by Secure Multi Execution (SME) [19, 12], a dynamic
mechanism that roughly executes a program multiple times in order to enforce noninterfer-
ence. Hence, observers with different security clearances will potentially observe different
values during the execution of a program. Several works have studied declassification in
the context of SME [27, 34, 13]. Rafnsson and Sabelfeld [27] propose declassification in
SME based on the gradual release property [7]. This property differs from the property we
consider in our work in that it is not possible to extensionally specify what is being released
or declassified. The latest works on SME declassification [34, 13] generalize security levels
as declassifier functions, resembling declassification policies of both Li and Zdancewic and
ours. Since SME is a dynamic enforcement mechanism, these declassification policies are
not used for relating declassification and type abstraction.

7 Conclusion

One of the open challenges in the area of information flow security is integrating informa-
tion flow mechanisms with existing infrastructures [39]. Our work partially addresses this
challenge by showing a connection between type abstraction, more precisely that induced
by the the subtyping relation in an object-oriented language, and the order relation in se-
curity lattices. In particular, we exploit an intuitive connection between object interfaces
and declassification policies: an object interface already gives a way to control the exposed
behavior of an object. These connections imply that standard type systems can be used as
a direct means to enforce secure information flow, when types express security policies. It is
left to explore how this connection scales in practice, but we expect the economy of concepts
to be an important asset for adoption.

We plan to study the impact of more advanced typing disciplines on the expressiveness of
type-based declassification, especially dependent object types [28] and refinement types [35].
It remains to be seen whether global policies can be expressed, and how. Another venue
for future work is to develop our approach in a setting that relies on other forms of type



R. Cruz, T. Rezk, B. Serpette, and É. Tanter 7:21

abstraction, such as existential types. Finally, we intend to explore how to infer the minimal
knowledge that has to be exposed to a public observer in order to guarantee a relaxed
noninterference guarantee at a given type. Inferring the minimal input declassifications of a
secure program can for instance be useful to assess the impact some refactoring or extensions
of that program have on security.

References
1 Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core calculus of

dependency. In Proceedings of the 26th ACM Symposium on Principles of Programming
Languages (POPL 99), pages 147–160, San Antonio, TX, USA, January 1999. ACM Press.

2 Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996.
3 Amal Ahmed. Semantics of Types for Mutable State. PhD thesis, Princeton University,

2004.
4 Amal Ahmed. Step-indexed syntactic logical relations for recursive and quantified types. In

Peter Sestoft, editor, Proceedings of the 15th European Symposium on Programming (ESOP
2006), volume 3924 of Lecture Notes in Computer Science, pages 69–83. Springer-Verlag,
2006.

5 Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. In David S. Wise,
editor, Conference Record of the Eighteenth Annual ACM Symposium on Principles of
Programming Languages (POPL 91), pages 104–118. ACM Press, 1991.

6 Andrew W. Appel and David McAllester. An indexed model of recursive types for found-
ational proof-carrying code. ACM Transactions on Programming Languages and Systems,
23(5):657–683, September 2001.

7 Aslan Askarov and Andrei Sabelfeld. Gradual release: Unifying declassification, encryption
and key release policies. In Proceedings of the 27th IEEE Symposium on Security and
Privacy (S&P 2007), pages 207–221. IEEE Computer Society Press, May 2007.

8 Thomas H. Austin and Cormac Flanagan. Multiple facets for dynamic information flow. In
Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL 2012), pages 165–178. ACM Press, January 2012.

9 Anindya Banerjee and David A. Naumann. Stack-based access control and secure inform-
ation flow. Journal of Functional Programmming, 15(2):131–177, September 2005.

10 Anindya Banerjee, David A. Naumann, and Stan Rosenberg. Expressive declassification
policies and modular static enforcement. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P 2008), pages 339–353. IEEE Computer Society Press, May 2008.

11 Gilles Barthe, Salvador Cavadini, and Tamara Rezk. Tractable enforcement of declassifica-
tion policies. In Proceedings of the 21st IEEE Computer Security Foundations Symposium
(CSF 2008), pages 83–97. IEEE Computer Society Press, June 2008.

12 Natalia Bielova and Tamara Rezk. Spot the difference: Secure multi-execution and multiple
facets. In Proceedings of the 21st European Symposium on Research in Computer Security
(ESORICS 2016), pages 501– 519, 2016.

13 Iulia Bolosteanu and Deepak Garg. Asymmetric secure multi-execution with declassific-
ation. In Proceedings of the 5th International Conference on Principles of Security and
Trust (POST 2016), pages 24–45. Springer-Verlag, April 2016.

14 William J. Bowman and Amal Ahmed. Noninterference for free. In Proceedings of the 20th
ACM SIGPLAN Conference on Functional Programming (ICFP 2015), pages 101–113.
ACM Press, August 2015.

15 Niklas Broberg and David Sands. Paralocks: role-based information flow control and bey-
ond. In Proceedings of the 37th annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL 2010), pages 431–444. ACM Press, January 2010.

ECOOP 2017



7:22 Type Abstraction for Relaxed Noninterference

16 Stephen Chong and Andrew C. Myers. End-to-end enforcement of erasure and declassific-
ation. In Proceedings of the 21st IEEE Computer Security Foundations Symposium (CSF
2008), pages 98–111. IEEE Computer Society Press, June 2008.

17 William R. Cook. On understanding data abstraction, revisited. ACM SIGPLAN Notices,
44(10):557–572, 2009.

18 Dorothy E. Denning. A lattice model of secure information flow. Communications of the
ACM, 19(5):236–243, May 1976.

19 Dominique Devriese and Frank Piessens. Noninterference through Secure Multi-execution.
In Proceedings of the 31st IEEE Symposium on Security and Privacy (S&P 2010), pages
109–124. IEEE Computer Society Press, May 2010.

20 Cédric Fournet, Jérémy Planul, and Tamara Rezk. Information-flow types for homomorphic
encryptions. In Proceedings of the Conference on Computer and Communications Security
(CCS 2011), pages 351–360. ACM Press, October 2011.

21 Boniface Hicks, Dave King, Patrick McDaniel, and Michael Hicks. Trusted declassification:
high-level policy for a security-typed language. In Proceedings of the workshop on Program-
ming Languages and Analysis for Security (PLAS 2006), pages 65–74. ACM Press, June
2006.

22 Peng Li and Steve Zdancewic. Downgrading policies and relaxed noninterference. In Pro-
ceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2005), pages 158–170. ACM Press, January 2005.

23 Ana Almeida Matos and Gérard Boudol. On declassification and the non-disclosure policy.
In Proceedings of the IEEE Computer Security Foundations Workshop (CSFW 2005), pages
549–597. IEEE Computer Society Press, October 2005.

24 Andrew C. Myers. Jif homepage. http://www.cs.cornell.edu/jif/, accessed May 2017.
25 Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized label

model. ACM Transactions on Software Engineering and Methodology, 9:410–442, October
2000.

26 Benjamin C. Pierce. Types and programming languages. MIT Press, Cambridge, MA, USA,
2002.

27 Willard Rafnsson and Andrei Sabelfeld. Secure multi-execution: Fine-grained,
declassification-aware, and transparent. In Proceedings of the 26th IEEE Computer Se-
curity Foundations Symposium (CSF 2013), pages 33–48. IEEE Computer Society Press,
June 2013.

28 Tiark Rompf and Nada Amin. Type soundness for dependent object types (DOT). In Eelco
Visser and Yannis Smaragdakis, editors, Proceedings of the 2016 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2016), pages 624–641. ACM Press, November 2016.

29 Andrei Sabelfeld and David Sands. Declassification: Dimensions and principles. Journal
of Computer Security, 17(5):517–548, 2009.

30 Naokata Shikuma and Atsushi Igarashi. Proving noninterference by a fully complete trans-
lation to the simply typed lambda-calculus. In Mitsu Okada and Ichiro Satoh, editors,
Proceedings of the 11th Asian Computing Science Conference (ASIAN 2006), volume 4435
of Lecture Notes in Computer Science, pages 301–315. Springer-Verlag, 2006.

31 Nikhil Swamy and Michael Hicks. Verified enforcement of stateful information release
policies. In Úlfar Erlingsson and Marco Pistoia, editors, Proceedings of the Workshop on
Programming Languages and Analysis for Security (PLAS 2008), pages 21–32. ACM Press,
December 2008.

32 Stephen Tse and Steve Zdancewic. Translating dependency into parametricity. In Pro-
ceedings of the 7th ACM SIGPLAN Conference on Functional Programming (ICFP 2004),
pages 115–125, Snowbird, Utah, USA, September 2004. ACM Press.



R. Cruz, T. Rezk, B. Serpette, and É. Tanter 7:23

33 Stephen Tse and Steve Zdancewic. A design for a security-typed language with certificate-
based declassification. In Proceedings of the 14th European Symposium on Programming
Languages and Systems (ESOP 2005), volume 2986 of Lecture Notes in Computer Science,
pages 279–294. Springer-Verlag, 2005.

34 Mathy Vanhoef, Willem De Groef, Dominique Devriese, Frank Piessens, and Tamara Rezk.
Stateful declassification policies for event-driven programs. In Proceedings of the 27th IEEE
Computer Security Foundations Symposium (CSF 2014). IEEE Computer Society Press,
2014.

35 Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones.
Refinement types for haskell. In Proceedings of the 19th ACM SIGPLAN Conference on
Functional Programming (ICFP 2014), pages 269–282. ACM Press, August 2014.

36 Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type system for secure flow
analysis. Journal of Computer Security, 4(2-3):167–187, January 1996.

37 Geoffrey Washburn and Stephanie Weirich. Generalizing parametricity using information-
flow. In Proceedings of the 20th IEEE Symposium on Logic in Computer Science (LICS
2005), pages 62–71. IEEE Computer Society Press, June 2005.

38 Steve Zdancewic. Programming Languages for Information Security. PhD thesis, Cornell
University, August 2002.

39 Steve Zdancewic. Challenges for information-flow security. In Proceedings of Programming
Language Interference and Dependence, 2004.

40 Steve Zdancewic and Andrew C. Myers. Robust declassification. In Proceedings of the 14th
IEEE Computer Security Foundations Workshop (CSFW-14), pages 15–23. IEEE Com-
puter Society Press, June 2001.

ECOOP 2017



7:24 Type Abstraction for Relaxed Noninterference

A Auxiliary Definitions

A.1 Environments
Γ ::= · | Γ, x : S (type environment)
Φ ::= · | Φ, α <: β (subtyping environment)
∆ ::= · | ∆, α (type variable environment)
Σ ::= · | Σ, α , O (type definition environment)

Γ is a finite map from variables to closed and well-formed security types. Σ is a finite
map from type variables to object types. Φ is a set of subtyping relations between type
variables. ∆ is a set of type variables.
dom(Env) (where Env could be Γ, Σ or Φ) is the set of variables for which the finite
map Env is defined. In the case of dom(Φ), it is the set of the type variables in the left
part of the subtyping relation.
We also use the notations Γ, x : S or Σ, α , O or Φ, α <: β to extend the environments
Γ, Σ , Φ with a new binding or relation, respectively. If x ∈ dom(Γ), α ∈ dom(Σ) or
either α or β ∈ dom(Φ)∪ cod(Φ) the extension operation is not defined for the respective
environment.
The notation ∆, α extends the set ∆ with a new type variable. If α ∈ ∆ the operation
is not defined.

We use the following functions to access to the elements of the environments:
Γ(x) returns the security type associated to x in Γ. If x /∈ dom(Γ), then Γ(x) is undefined.
Σ(α) returns the type associated to α in Σ. If α /∈ dom(Σ), then Σ(α) is undefined.
α <: β ∈ Φ is true if Φ(α) = β, false otherwise. Φ(α) returns the type variable in the
right part of the subtyping relation with α in Φ. If α /∈ dom(Φ), then Φ(α) is undefined.

A.2 Well-formedness of types and environments
For the main results of the Section 4 to hold we need to ensure we work with well-formed
security types.

Well formed types. We use the predicate valid(S) to denote that a security type S is closed
and that the object types that S contains have unique method members. The definition of
valid(S) is based on a standard notion well-formedness of object types [2] (Figure 7).

To check for well-formed security types, i.e. that the private type is a subtype of the
public type we define the judgment Σ `s S (Figure 8). The (WFS-ST) rule is the most
important. For this rule to hold, the subtyping relation between both facets must hold and
also the same principle must hold for the all the security types in each facet.

The presence of type variables in the facets of a security type and the corresponding
subtyping constraint introduces subtle cases to manage before using the subtyping judgment.
Consider the following object type: O , Obj(α). [m : S → α /Obj(β). [m : S → α / β]]. For
`s O to hold, α , O `s α /Obj(β). [m : S → α / β] must hold. It implies to check ` α <:
Obj(β). [m : S → α / β]. Note that, we can not justify that subtyping judgment, because we
do not have a subtyping premise involving the type variable α. To address this, we need to
remember (in Σ) the surrounding recursive object type O that binds α, and to transform the
check α , O `s α /Obj(β). [m : S → α / β] to ` O <: Obj(β). [m : S → O / β] by closing α
with the mappings in Σ (i.e. O). We use the notation Σ [T ] to substitute the free variables
in type T according to the bindings in Σ.



R. Cruz, T. Rezk, B. Serpette, and É. Tanter 7:25

∆ `t T

(WF-V) α ∈ ∆
∆ `t α

(WF-O)

T ≡ Obj(α).
[
m : S1 → S2

]
(i 6= j =⇒ mi 6= mj)

∆, α `t S1i ∆, α `t S2i

∆ `t T

∆ `t S

(WF-ST) ∆ `t T ∆ `t U

∆ `t T / U

· `t S

valid(S)

Figure 7 Standard well-formedness of object types and type variables, and its lifting to security
types.

Σ `s T

T ≡ Obj(α).
[
m : S1 → S2

]
Σ, α : T `s S1i Σ, α : T `s S2i

Σ `s T
(WFS-V) Σ `s α

Σ `s S

(WFS-ST)
Σ `s T Σ `s U · ` Σ [T ] <: Σ [U ]

Σ `s T / U

` S

(WF)
valid(S) · `s S

` S

Figure 8 Well-formedness of security types.

Finally, we say that a security type S is well-formed (notation ` S) if the type is valid
and the subtyping constraints for S hold (· `s S)

Well-formedness of a type environment. A type environment is well formed, noted Γ ` �,
if all types in the environment are well-formed:

(EEnvOk) · ` � (EnvOk)
Γ ` � ` S x /∈ dom(Γ)

Γ, x : S ` �

A.3 Subtyping
The gray parts in the subtyping rules of the Figure 9 were not included in the Figure 2 of the
main document. They prevent justifying inconsistent subtyping judgments by controlling
the uses of type variables.

For example, consider the following types:
T1 , Obj(α). [n : S → Obj(β). [m1 : βL → S′ m2 : S1 → S2]L]
T2 , Obj(β). [n : S → Obj(α). [m1 : αL → S′]L]
For ` T1 <: T2 to hold, after using the rule (SObj) twice, the contravariance of m1 parameters
·, α <: β, β <: α ` α <: β must hold. We can justify this by applying the rule (SVar) because
we have the assumption α <: β in the subtyping environment. So, we justify ` T1 <: T2 and
it is not the case that T1 is subtype of T2. The problem is the occurrence of the variables
α and β in both types, that creates subtyping assumptions in both directions and it allows
to justify subtyping between type variables that represent unrelated types (by subtyping).
The well-formedness condition of the subtyping environment Φ prevents this kind of cases,

ECOOP 2017



7:26 Type Abstraction for Relaxed Noninterference

Φ ` T <: T

(SObj)

O1 , Obj(α).
[
m : S1 → S2

]
O2 , Obj(β).

[
m′ : S′1 → S′2

]
m′ ⊆ m

mi = m′j =⇒ (Φ, α <: β ` S′1j <: S1i Φ, α <: β ` S2i <: S′2j)
Φ ` � dom(Φ) ∪ cod(Φ) `t Oi

Φ ` O1 <: O2

(SVar)

Φ ` �
α <: β ∈ Φ
Φ ` α <: β (SSubEq) T1 ≡ T2

Φ ` T1 <: T2
(STrans) Φ ` T1 <: T2 Φ ` T2 <: T3

Φ ` T1 <: T3

Φ ` S <: S

(TSubST) Φ ` T1 <: T2 Φ ` U1 <: U2

Φ ` T1 / U1 <: T2 / U2

Figure 9 Subtyping.

Φ ` �

(EEnvSubOk)
· ` �

(EnvSubOk)
Φ ` � αi /∈ dom(Φ) ∪ cod(Φ)

Φ, α1 <: α2 ` �

Figure 10 Well-formedness of the subtyping environment.

because we cannot extend the environment with a subtyping premise, where one of the
involved variables is already in the environment (Figure 10).

A.4 Type equivalence
Two types are equivalent (Figure 11) if the equivalence can be derived through the congru-
ence induced by rules (Alpha-Eq) and (Fold-Unfold). For example:
Obj(α). [m : α→ α] ≡ Obj(β). [m : β → β]
Obj(α). [m : > → α] ≡ Obj(α). [m : > → Obj(β). [m : > → β]]

A.5 Simple type system
The simple typing judgment Γ `1 e : T is defined in terms of “single-facet typing” (Fig-
ure 12). Single-facet typing Γ `sf e : S is a simplification of security typing: the rules
(TmD) and (TmH) are replaced by a single rule (T1mI) that simply ignores the public type.
Furthermore, the subtyping judgment Φ ` S1 <: S2 is replaced by the simple subtyping
judgment Φ `sf S1 <: S2 that only takes care of subtyping between the private facets of the
security types. Its definition is direct and omitted here.

I Lemma 14. Γ ` � ∧ Γ ` e : T / U then Γ `1 e : T

Proof. Trivial induction on typing derivations of e. J

I Lemma 15.

Γ ` � ∧ Γ `1 e : T =⇒ ∃U. Γ ` e : T / U



R. Cruz, T. Rezk, B. Serpette, and É. Tanter 7:27

T ≡ T

(Sym)
T ≡ T (Refl) T1 ≡ T2

T2 ≡ T1
(Trans) T1 ≡ T2 T2 ≡ T3

T1 ≡ T3

(O-Congr)
S1i ≡ S′1i S2i ≡ S′2i

Obj(α).
[
m : S1 → S2

]
≡ Obj(α).

[
m : S′1 → S′2

]
(Alpha-Eq)

O , Obj(α).
[
m : S1 → S2

]
β fresh

O ≡ O [β/α]
(Fold-Unfold)

O ≡ O [O/α]

S ≡ S

T1 ≡ T2 U1 ≡ U2

T1 / U1 ≡ T2 / U2

Figure 11 Type equivalence.

Γ `sf e : S

(T1Var)
x ∈ dom(Γ)

Γ `sf x : Γ(x)
(T1Sub) Γ `sf e : S′ `sf S

′ <: S ` S
Γ `sf e : S

(T1Obj)
` S S , T / U methsig(T,mi) = S′i → S′′i Γ, z : S, xi : S

′
i `sf ei : S′′i

Γ `sf
[
z : S ⇒ m (x) e

]
: S

(T1mI)
Γ `sf e1 : T / U methsig(T,m) = S1 → S2 Γ `sf e2 : S1

Γ `sf e1.m(e2) : S2

Γ `1 e : T

Γ `sf e : T / U
Γ `1 e : T

Figure 12 Simple typing, defined in terms of single-facet typing.

Proof. By induction of the typing derivation of Γ `1 e : T . In all the cases, we simply
choose U to be the private type T . J

ECOOP 2017





Concurrent Data Structures Linked in Time∗

Germán Andrés Delbianco1, Ilya Sergey2, Aleksandar Nanevski3,
and Anindya Banerjee4

1 IMDEA Software Institute, Madrid, Spain, and
Universidad Politécnica de Madrid, Spain
german.delbianco@imdea.org

2 University College London, United Kingdom
i.sergey@ucl.ac.uk

3 IMDEA Software Institute, Madrid, Spain
aleks.nanevski@imdea.org

4 IMDEA Software Institute, Madrid, Spain
anindya.banerjee@imdea.org

Abstract

Arguments about correctness of a concurrent data structure are typically carried out by using the
notion of linearizability and specifying the linearization points of the data structure’s procedures.
Such arguments are often cumbersome as the linearization points’ position in time can be dynamic
(depend on the interference, run-time values and events from the past, or even future), non-local
(appear in procedures other than the one considered), and whose position in the execution trace
may only be determined after the considered procedure has already terminated.

In this paper we propose a new method, based on a separation-style logic, for reasoning
about concurrent objects with such linearization points. We embrace the dynamic nature of
linearization points, and encode it as part of the data structure’s auxiliary state, so that it can
be dynamically modified in place by auxiliary code, as needed when some appropriate run-time
event occurs. We name the idea linking-in-time, because it reduces temporal reasoning to spatial
reasoning. For example, modifying a temporal position of a linearization point can be modeled
similarly to a pointer update in separation logic. Furthermore, the auxiliary state provides a
convenient way to concisely express the properties essential for reasoning about clients of such
concurrent objects. We illustrate the method by verifying (mechanically in Coq) an intricate
optimal snapshot algorithm due to Jayanti, as well as some clients.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs,
D.2.4 Software/Program Verification, F.1.2: Parallelism and concurrency, D.1.3 Concurrent Pro-
gramming

Keywords and phrases Separation logic, Linearization Points, Concurrent snapshots, FCSL

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.8

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.3.2.4

∗ This research is partially supported by EPSRC grant EP/P009271/1, the ERC consolidator grant
Mathador–DLV–724464, and the US National Science Foundation (NSF). Any opinion, findings, and
conclusions or recommendations expressed in the material are those of the authors and do not necessarily
reflect the views of NSF.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Germán Andrés Delbianco, Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 8; pp. 8:1–8:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.8
http://dx.doi.org/10.4230/DARTS.3.2.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


8:2 Concurrent Data Structures Linked in Time

1 Introduction

Formal verification of concurrent objects commonly requires reasoning about linearizabil-
ity [19]. This is a standard correctness criterion whereby a concurrent execution of an object’s
procedures is proved equivalent, via a simulation argument, to some sequential execution.
The clients of the object can be verified under the sequentiality assumption, rather than by
inlining the procedures and considering their interleavings. Linearizability is often established
by describing the linearization points (LP) of the object, which are points in time where
procedures take place, logically. In other words, even if the procedure physically executes
across a time interval, exhibiting its linearization point enables one to pretend, for reasoning
purposes, that it occurred instantaneously (i.e., atomically); hence, an interleaved execution
of a number of procedures can be reduced to a sequence of atomic events.

Reasoning about linearization points can be tricky. Many times, a linearization point
of a procedure is not local, but may appear in another procedure or thread. Equally bad,
linearization points’ place in time may not be determined statically, but may vary based on
the past, and even future, run-time information, thus complicating the simulation arguments.
A particularly troublesome case is when run-time information influences the logical order of a
procedure that has already terminated. This paper presents a novel approach to specification
of concurrent objects, in which the dynamic and non-local aspects inherent to linearizability
can be represented in a procedure-local and thread-local manner.

The starting point of our idea is to realize what are the shortcomings of linearizability as
a canonical specification method for concurrent objects. Consider, for instance, the following
two-threaded program manipulating a correct implementation of stack by invoking its push
and pop methods, which are atomic, i.e., linearizable:

push(3); push(4)
t1 := pop(); t2 := pop();

Assuming that the execution started in an empty stack, we would like to derive that it
returns an empty stack and (t1, t2) is either (3, 4) or (4, 3). Linearizability of the stack
guarantees that the overall trace of push/pop calls is coherent with respect to a sequential
stack execution. However, it does not capture client-specific partial knowledge about the
ordering of particular push/pop invocations in sub-threads, which is what allows one to prove
the desired result as a composition of separately-derived partial specifications of the left and
the right thread.

This thread-local information, necessary for compositional reasoning about clients, can
be captured in a form of auxiliary state [33] (a generalization of history variables [2]), widely
used in Hoare-style specifications of concurrent objects [38, 27, 24, 23]. A testament of
expressivity of Hoare-style logics for concurrency with rich auxiliary state are the recent
results in verification of fine-grained data structures with helping [38], concurrent graph
manipulations [37], barriers [23, 10], and even non-linearizable concurrent objects [39].

Although designed to capture information about events that happened concurrently in
the past (hence the original name history variables), auxiliary state is known to be of little
use for reasoning about data structures with speculative executions, in which the ordering
of past events may depend on other events happening in the future. Handling such data
structures requires specialized metatheory [28] that does not provide convenient abstractions
such as auxiliary state for client-side proofs. This is one reason why the most expressive
client-oriented concurrency logics to date avoid reasoning about speculative data structures
altogether [23].



G. A. Delbianco, I. Sergey, A. Nanevski, and A. Banerjee 8:3

1 write pp, vq t
2 p :“ v;
3 bÐ readpSq;
4 if b
5 then pfwd pq :“ vu

fwd pp : ptrq t
return pp “ xq ? fx: fy u

6 scan : pAˆAq t
7 S :“ true;
8 fx :“K;
9 fy :“K;
10 vx Ð readpxq;
11 vy Ð readpyq;
12 S :“ false;
13 ox Ð readpfxq;
14 oy Ð readpfyq;
15 rx Ð if pox ‰ Kq then ox else vx;
16 ry Ð if poy ‰ Kq then oy else vy;
17 return prx, ryqu

Figure 1 Jayanti’s single-scanner/single-writer snapshot algorithm.

1.0.1 Our contributions

The surprising result we present in this paper is that by allowing certain internal (i.e., not
observable by clients) manipulations with the auxiliary state, we can use an existing program
logic for concurrency, like, e.g., FCSL [31, 37], to specify and verify algorithms whose
linearizability argument requires speculations, i.e., depends on the dynamic reordering of
events based on run-time information from the future. To showcase this idea, we provide a
new specification (spec) and the first formal proof of a very sophisticated snapshot algorithm
due to Jayanti [22], whose linearizability proof exhibits precisely such kind of dependence.

While we specify Jayanti’s algorithm by means of a separation-style logic, the spec
nevertheless achieves the same general goals as linearizability, combined with the benefits
of compositional Hoare-style reasoning. In particular, our Hoare triple specs expose the
logical atomicity of Jayanti’s methods (Section 3), while hiding their true fine-grained and
physically non-atomic nature. The approach also enables that the separation logic reasoning
is naturally applied to clients (Section 4). Similarly to linearizability, our clients can reason
out of procedures’ spec, not code. We can also ascribe the same spec to different snapshot
algorithms, without modifying client’s code or proof.

In more detail, our approach works as follows. We use shared auxiliary state to record,
as a list of timed events (e.g., writes occurring at a given time), the logical order in which
the object’s procedures are perceived to execute, each instantaneously (Section 5). Tracking
this time-related information through state enables us to specify its dynamic aspects. We
can use auxiliary code to mutate the logical order in place, thereby permuting the logical
sequencing of the procedures, as may be needed when some run-time event occurs (Sections 6
and 7). This mutation is similar to updating pointers to reorder a linked list, except that it
is executed over auxiliary state storing time-related data, rather than over real state. This is
why we refer to the idea as linking-in-time.

Encoding temporal information by way of representing it as mutable state allows us to use
FCSL off-the-shelf to verify example programs. In particular, FCSL has been implemented
in the proof assistant Coq, and we have fully mechanized the proof of Jayanti’s algorithm.
The latter artifact, which is available for download from the FCSL project website [1], has
been unanimously accepted by ECOOP 2017’s AEC.

ECOOP 2017



8:4 Concurrent Data Structures Linked in Time

l: write (x,2);
c: scan () r: write (x,3)

write (y,1)

(a) Parallel composition of three threads l, c, r.
1 c: S := true
2 c: fx :=K
3 c: fy :=K
4 c: read(x) // vx <- 5
5 c: read(y) // vy <- 0
6 l: x := 2
7 l: read(S) // b <- true
8 l: fx := 2
9 l: return ()

10 r: x := 3

11 l: y := 1
12 l: read(S) // b <- true
13 l: fy := 1
14 l: return ()
15 c: S := false
16 r: read(S) // b <- false
17 r: return ()
18 c: read(fx) // ox <- 2
19 c: read(fy) // oy <- 1
20 c: return (2,1)

(b) A possible interleaving of the threads in (a).

Figure 2 An example leading to a scanner miss.

2 Verification challenge and main ideas

Jayanti’s snapshot algorithm [22] provides the functionality of a shared array of size m,
operated on by two procedures: write, which stores a given value into an element, and scan,
which returns the array’s contents. We use the single-writer/single-scanner version of the
algorithm. which assumes that at most one thread writes into an element, and at most one
thread invokes the scanner, at any given time. In other words, there is a scanner lock and m
per-element locks. A thread that wants to scan, has to acquire the scanner lock first, and
a thread that wants to write into element i has to acquire the i-th element lock. However,
scanning and writing into different elements can proceed concurrently. This is the simplest of
Jayanti’s algorithms, but it already exhibits linearization points of dynamic nature. We also
restrict the array size to m“ 2 (i.e., we consider two pointers x and y, instead of an array).
This removes some tedium from verification, but exhibits the same conceptual challenges.

The difficulty in this snapshot algorithm is ensuring that the scanner returns the most
recent snapshot of the memory. A naïve scanner, which simply reads x and y in succession,
is unsound. To see why, consider the following scenario, starting with x “ 5, y “ 0. The
scanner reads x, but before it reads y, another thread preempts it, and changes x to 2 and,
subsequently, y to 1. The scanner continues to read y, and returns x “ 5, y “ 1, which was
never the contents of the memory. Moreover, px, yq, changed from p5, 0q to p2, 0q to p2, 1q as
a result of distinct non-overlapping writes; thus, it is impossible to find a linearization point
for the scan because linearizability only permits reordering of overlapping operations.

To ensure a sound snapshot, Jayanti’s algorithm internally keeps additional forwarding
pointers fx and fy, and a Boolean scanner bit S. The implementation is given in Figure 1.1
The intuition is as follows. A writer storing v into p (line 2), will additionally store v into
the forwarding pointer for p (line 5), provided S is set. If the scanner missed the write
and instead read the old value of p (lines 10–11), it will have a chance to catch v via the
forwarding pointer (lines 13–14). The scanner bit S is used by writers (line 3) to detect a
scan in progress, and forward v.

1 Following Jayanti, we simplify the presentation and omit the locking code that ensures the single-
writer/single-scanner setup. Of course, in our Coq development [1], we make the locking explicit.



G. A. Delbianco, I. Sergey, A. Nanevski, and A. Banerjee 8:5

(a) (b)

Figure 3 Changing the logical ordering (solid line σ) of write events from (5, 0, 2, 3, 1) in (a) to
(5, 0, 2, 1, 3) in (b), to reconcile with scan returning the snapshot x “ 2, y “ 1, upon missing the
write of 3. Dashed lines χ represent real-time ordering.

As Jayanti proves, this implementation is linearizable. Informally, every overlapping calls
to write and scan can be rearranged to appear as if they occurred sequentially. To illustrate,
consider the program in Figure 2a, and one possible interleaving of its primitive memory
operations in Figure 2b. The threads l, c, and r, start with x “ 5, y “ 0. The thread c is
scheduled first, and through lines 1–5 sets the scanner bit, clears the forwarding pointers,
and reads x “ 5, y “ 0. Then l intervenes, and in lines 6–9, overwrites x with 2, and seeing
S set, forwards 2 to fx . Next, r and l overlap, writing 3 into x and 1 into y. However, while
1 gets forwarded to fy (line 13), 3 is not forwarded to fx , because S was turned off in line 15
(i.e., the scan is no longer in progress). Hence, when c reads the forwarded values (lines 18,
19), it returns x “ 2, y “ 1.

While x“ 2, y“ 1 was never the contents of the memory, returning this snapshot is nev-
ertheless justified because we can pretend that the scanner missed r’s write of 3. Specifically,
the events in Figure 2b can be reordered to represent the following sequential execution:

write px, 2q; write py, 1q; scan pq; write px, 3q (1)

Importantly, the client programs have no means to discover that a different scheduling
actually took place in real time, because they can access the internal state of the algorithm
only via interface methods, write and scan.

This kind of temporal reordering is the most characteristic aspect of linearizability proofs,
which typically describe the reordering by listing the linearization points of each procedure.
At a linearization point, the procedure’s operations can be spliced into the execution history
as an uninterrupted chunk. For example, in Jayanti’s proof, the linearization point of scan is
at line 12 in Figure 1, where the scanner bit is unset. The linearization point of write,
however, may vary. If write starts before an overlapping scan’s line 12, and moreover, the
scan misses the write—note the dynamic and future-dependent nature of this property—,
then write should appear after scan; that is, the write’s linearization point is right after
scan’s linearization point at line 12. Otherwise, write’s linearization point is at line 2. In
the former case, write exactly has a non-local and future-dependent linearization point,
because the decision on the logical order of this write depends on the execution of scan in
a different thread. This decision takes effect on lines 13–14, which can take place after the
execution of write has terminated. For instance, in Figure 2b the execution of write in r
terminates at step 17, yet, in Jayanti’s proof, the decision to linearize this write after the
overlapping scan is taken at line 18, when the scan reads the value from the previous write.

ECOOP 2017



8:6 Concurrent Data Structures Linked in Time

Obviously, the high-level pattern of the proof requires tracking the logical ordering of the
write and scan events, which differs from their real-time ordering. As the logical ordering is
inherently dynamic, depending on properties such as scan missing a write, we formalize it
in Hoare logic, by keeping it as a list of events in auxiliary state that can be dynamically
reordered as needed. For example, Figure 3 shows the situation in the execution of scan that
we reviewed above. We start with the (initializing) writes of 5 and 0 already executed, and
our program performs the writes of 2, 3 and 1 in the real time order shown by the position
of the events on the dashed lines. In Figure 3a, the logical order σ coincides with real-time
order, but is unsound for the snapshot x “ 2, y “ 1 that scan wants to return. In that case,
the auxiliary code with which we annotate scan, will change the sequence σ in-place, as
shown in Figure 3b.

Our specification and verification challenge then lies in reconciling the following require-
ments. First, we have to posit specs that say that write performs a write, and scan performs
a scan of the memory, with the operations executing in a single logical moment. Second, we
need to implement the event reordering discipline so that a method call only reorders events
that overlap with it; the logical order of the past events should be preserved. This will be
accomplished by introducing yet further structures into the auxiliary state and code. Finally,
the specs must hide the specifics of the reordering discipline, which should be internal to the
snapshot object. Different snapshot implementations should be free to implement different
re-orderings, without changing the method specs.

3 Specification

General considerations. For the purposes of specification and proof, we record a history
of the snapshot object as a set of entries of the form t ÞÑ pp, vq. The entry says that at time
t (a natural number), the value v was written into the pointer p. We thus identify a write
event with a single moment in time t, enabling the specs of write and scan to present the
view that write events are logically atomic. Moreover, in the case of snapshots, we can ignore
the scan events in the histories. The latter do not modify the state in a way observable by
clients who can access the shared pointers only via interface methods write and scan.

We keep three auxiliary history variables. The history variables χ s and χ o are local to the
specified thread, and record the terminated write events carried out by the specified thread,
and that thread’s interfering environment, respectively. We refer to χ s as the self -history,
and to χ o as the other-history [27, 31, 30, 38]. The role of χ o is to enable the spec of write
to situate the performed write event within the larger context of past and ongoing writes, and
the spec of scan to describe how it logically reordered the writes that overlapped with it. The
third history variable χ j records the set of write events that are in progress. These are events
that have been initiated, timestamped, and have executed their physical write to memory,
but have not terminated yet. It is an important component of our auxiliary state design that
when a write event terminates, it is moved from χ j to the invoking thread’s χ s, to indicate
the ownership of the write by the invoking thread. We name by χ the union χ s Ÿ χ o Ÿ χ j,
which is the global history of the data structure. As common in separation logic, the union
is disjoint, i.e., it is undefined if the components contain duplicate timestamps. By the
semantics of our specs, χ is always defined, thus χ s, χ o and χ j never duplicate timestamps.

The real-time ordering of the timestamped events is the natural numbers ordering on
the timestamps. To track the logical ordering, we need further auxiliary notions. The first
is the auxiliary variable σ, whose type is a mathematical sequence. The sequence σ is a
permutation of timestamps from χ showing the logical ordering of the events in χ. We



G. A. Delbianco, I. Sergey, A. Nanevski, and A. Banerjee 8:7

write pp, vq : tχ s “ Hu tDt. χ
1
s “ t ÞÑ pp, vq ^ dompχ oq Y scanned Ω Ď Ω1

�

tu@C

scan : tχ s “ Hu tr. Dt. χ
1
s “ H^r “eval tΩ1 χ1 ^dompχqĎ Ω1 Ó t^t P scanned Ω1u@C

Figure 4 Snapshot method specification.

write t1 ďσ t2, and say that t1 is logically ordered before t2, if t1 appears before t2 in σ.
The sequence σ resides in joint state, and can be dynamically modified by any thread. For
example, the execution of the scanner may reorder σ, as shown in Figure 3b. Because σ is a
sequence, the order ďσ is linear.

Because sequence σ changes dynamically under interference, it is not appropriate for
specifications. Thus, our second auxiliary notion is the partial order Ω, a suborder of ďσ
that is stable in the following sense. It relates the timestamps of events whose logical order
has been determined, and will not change in the future. Thus Ω can grow over time, to add
new relations between previously unrelated timestamps, but cannot change the old relations.

To illustrate the distinction between the two orders, we refer to Figure 3a. There, σ
represents the linear order 5´0´2´3´1, which changes in Figure 3b to 5´0´2´1´3. Since 1
and 3 exchange places, the stable order Ω cannot initially relate the two. Thus, in Figure 3a,

Ω is represented by the Hasse diagram 5´0´2ă 1
3 . In Figure 3b, the relation 1´3 is added

to this partial order, making it the linear order 5´0´2´1´3. Note how the previous relations
remain unchanged.

The third auxiliary notion is the set scanned Ω of timestamps. A write’s timestamp is
placed in scanned Ω, if that write has been observed by some scanner; that is, the written
value is returned in some snapshot, or has been rewritten by another value that is returned
in some snapshot. To illustrate, in the above example, t5, 0, 2u Ď scanned Ω. Intuitively,
we want to model that after a write has been observed, the ordering of the events logically
preceding the write must be stabilized, and moreover, must be a sequence. Thus, scanned Ω
is a linearly ordered subset of Ω.2 The set scanned Ω can also be seen as representing all
the scans that have already been executed. Such representation of scans allows us to avoid
tracking scan events directly in the history.

In the sequel, we concretize Ω and scanned Ω in terms of σ and other auxiliary state.
However, we keep the notions abstract in the method specs and in client reasoning. This
enables the use of different snapshot algorithms, with the same specs, without invalidating
the client proofs. We also mention that σ, Ω and scanned Ω can be encoded as user-level
concepts in FCSL, and require no new logic to be developed.

Snapshot specification. Figure 4 presents our specs for scan and write. These are partial
correctness specs that describe how the methods change the state from the precondition
(first braces) to the postcondition (second braces), possibly influencing the value r that the
procedure returns. We use VDM-style notation with unprimed variables for the state before,
and primed variables for the state after the method executes. We use Greek letters for
state-dependent values that can be mutated by the method, and Latin letters for immutable
variables. The component C is a state transition system (STS) that describes the state
space of the algorithm, i.e, the invariants on the auxiliary and real state, and the transitions,

2 In terminology of linearizability, one may say that scanned Ω is the set of “linearized” writes.

ECOOP 2017



8:8 Concurrent Data Structures Linked in Time

i.e., the allowed atomic mutations of the state. For now, we keep C abstract, but will
define it in Sections 5 and 6. We denote by Ω Ó t the downward-closed set of timestamps
Ω Ó t “ ts | s Ω tu. Let Ω

�

t “ pΩ Ó tqzttu.
The spec for write says the following. The precondition starts with the empty self history

χ s, indicating that the procedure has not made any writes. In the postcondition, a new write
event t ÞÑ pp, vq has been placed into χ1s. Thus, a call to write wrote v into pointer p. The
timestamp t is fresh, because χ1 does not contain duplicate timestamps. Moreover, the write
appears as if it occurred atomically at time t, thus capturing the logical atomicity of write.

The next conjunct, dompχ oq Y scanned Ω Ď Ω1

�

t, positions the write t into the context
of other events. In particular, if s P dompχ oq, i.e., if s finished prior to invoking write, then
s is logically ordered strictly before t. In other words, write cannot reorder prior events
that did not overlap with it. The definition of linearizability contains a similar prohibition
on reordering non-overlapping events, but here, we capture it using a Hoare-style spec.
For similar reasons, we require that scanned Ω Ď Ω1

�

t. As mentioned before, scanned Ω
represents all the scans that finished prior to the call to write. Consequently, they do not
overlap with write in real time, and have to be logically ordered before t.

Notice what the spec of write does not prevent. It is possible that some event, say with
a timestamp s, finishes in real time before the call of write at time t. Events s and t do
not overlap, and hence cannot be reordered; thus s Ω t always. However, the relationship of
s with other events that ran concurrently with s, may be fixed only later, thus supporting
implementation of “future-dependent” nature, such as Jayanti’s.

In the case of scan, we start and terminate with an empty χ s, because scan does not
create any write events, and we do not track scan events. However, when scan returns the
pair r “ prx, ryq, we know that there exists a timestamp t that describes when the scan took
place. This t is the timestamp of the last write preceding the call to scan.

The postcondition says that t is the moment in which the snapshot was logically taken,
by the conjunct r “ eval t Ω1 χ1. Here, eval is a pure, specification-level function that
works as follows. First, it reorders the entire real-time post-history χ1 according to logical
post-ordering Ω1. Then, it computes and returns the values of x and y that would result from
executing the write events of such reordered history up to the timestamp t. For example, if t
is the timestamp of event 1 in Figure 3b, then eval t Ω1 χ1 would return p2, 1q. Hence, the
conjunct says that scan performed a scan of x and y, consistent with the ordering Ω1, and
returned the read values into r. The scan appears as if it occurred atomically, immediately
after time t, thus capturing the atomicity of scan.

The next conjunct, dompχq Ď Ω1 Ó t, says that the scanner returned a snapshot that is
current, rather than corresponding to an outdated scan. For example, referring to Figure 3,
if scan is invoked after the events 2 and 1 have already executed, then scan should not
return the pair p5, 0q and have t be the timestamp of the event 0, because that snapshot is
outdated. Specifically, the conjunct says that the write events from χ are ordered no later
than t, similar to the postcondition of write. However, while in write we constrained the
events from dompχ oqY scanned Ω, here we constrain the full global history χ “ χ o Ÿχ j. The
addition of χ j shows that the scanner will observe and order all of the write events that have
been timestamped and recorded in χ j (and thus, that have written their value to memory),
prior to the invocation of scan.

Lastly, the conjunct t P scanned Ω1 explicitly says that t has been observed by the just
finished call to scan.

Again, it is important what the spec does not prevent. It is possible that the timestamp t
identified as the moment of the scan, corresponds to a write that has been initiated, but has



G. A. Delbianco, I. Sergey, A. Nanevski, and A. Banerjee 8:9

not yet terminated. Despite being ongoing, t is placed into scanned Ω1 (i.e., t is “linearized”).
Also, notice that the postcondition of scan actually specifies the “linearization” order of
events that are initiated by another method, namely write, thus supporting implementations
of “non-local” nature, such as Jayanti’s.

We close the section with a brief discussion of how the specs are used. Because C, Ω and
scanned are abstracted from the clients, we need to provide an interface to work with them.
The interface consists of a number of properties showing how various assertions interact,
summarized in the statements below.

The first statement presents the invariants on the transitions of STS C, often referred to
as 2-state invariants. Another way of working with such invariants is to include them in the
postcondition of every method.3 For simplicity, here we agglomerate the properties, and use
them implicitly in proofs as needed.

§ Invariant 1 (Transition invariants). In any program respecting the transitions of C:
1. χ Ď χ1, χ s Ď χ1s, and χ o Ď χ1o.
2. Ω Ď Ω1 and scanned Ω Ď scanned Ω1.
3. For every s P scanned Ω, Ω Ó s “ Ω1 Ó s.

Invariant 1.1 says that histories only grow, but does not insist that χ j Ď χ1j, as timestamps
can be removed from χ j and transferred to χ s. Invariant 1.2 states that Ω is monotonic, and
the same applies for scanned Ω. This is a fundamental stability requirement for our system:
no transition in the STS C can change the relations between write events in Ω and, moreover,
write events which have been observed by the scanner— and thus are in scanned Ω— cannot
be unobserved. Invariant 1.3 says that if a new event is added to increase Ω to Ω1, that event
appears logically later than any s P scanned Ω. In other words, once events are observed by a
scanner, and placed into scanned Ω in a certain order, we cannot insert new events among
them to modify the past observation.

The second statement exposes the properties of Ω, scanned , and eval that are used for
client reasoning:

§ Invariant 2 (Relating scanned and snapshots). The set scanned Ω satisfies the following
properties:
1. if t1 P scanned Ω and t2 P scanned Ω, then t1 Ω t2 _ t2 Ω t1 (linearity).
2. if t2 P scanned Ω and t1 Ω t2, then t1 P scanned Ω (downward closure).
3. if t P scanned Ω, χ Ď χ1, Ω Ď Ω1, scanned Ω Ď scanned Ω1, and Ω Ó t “ Ω1 Ó t then

eval tΩχ “ eval tΩ1 χ1. (snapshot preservation).

The first two properties merely state that the subset scanned Ω is totally-ordered (2.1)
and also downward closed (2.1). The last property is the most interesting: it entails that once
a snapshot is observed by scan, its validity will not be compromised by future or ongoing
calls to write. Thus, snapshots returned from previous calls to scan are still valid and
observable in the future.

4 Client reasoning

Comparison with linearizability specifications. In linearizability one would specify write
and scan by relating them, via a simulation argument, to sequential programs for writing

3 In fact, this is what we currently do in our Coq files.

ECOOP 2017



8:10 Concurrent Data Structures Linked in Time

and scanning, respectively. On the face of it, such specs are indeed simpler than ours above,
as they merely state that write writes and scan scans. Our specs capture this property
with one conjunct in each postcondition. The remainders of the postconditions describe the
relative order of the atomic events, observed by threads, including explicit prohibition on
reordering non-overlapping events, which is itself inherent in the definition of linearizability.

However, the additional specifications are not pointless, and they become useful when it
comes to reasoning about clients. Linearizability tells us that we can simplify a fine-grained
client program by replacing the occurrences of write and scan with the atomic and sequential
equivalents, thus turning the client into an equivalent coarse-grained concurrent program.
However, linearizability is not directly concerned with verifying that coarse-grained equivalent
itself. Then, if one is interested in proving client properties which involve timing and/or
ordering properties of such events, it is likely that the simple sequential spec described above
do not suffice, and extra auxiliary state is still required.

On the other hand, if one wants to reason about such clients using a Hoare logic, then
our specs are immediately useful. Moreover, in our setting, client reasoning depends solely
on the API for scan and write, regardless of the different linearizations of a program. In the
sequel, we illustrate this claim by deriving interesting client timing properties out of the
specs of write and scan.

Moreover, because we use separation logic, our approach easily supports reasoning about
programs with a dynamic number of threads, and about programs that transfer state
ownership. In fact, as we already commented in Section 3, our proofs rely on transferring
write events from χ j (joint ownership) to χ s (private ownership), upon write’s termination.
This is immediate in FCSL, as reasoning about histories inherits the infrastructure of the
ordinary heap-based separation logic, such as framing and, in this case, ownership transfer.
In contrast, Linearizability is usually considered for a fixed number of threads, and its
relationship with ownership transfer is more subtle [14, 4].

An additional benefit of specifying the event orders by Hoare triples at the user level, is
that one can freely combine methods with different event-ordering properties, that need not
respect the constraints of linearizability [39].

Example clients. We first consider the client e, defined as follows:

write px, 2q;
write py, 1q scan pq write px, 3q

It is our running example from Figure 2a. We will show that it satisfies the spec below. In
the sequel we omit the STS C, as it never changes.

e : tχ s “ Hu tr. Dt1 t2 t3 ts. χ
1
s “ t1 ÞÑ py, 1q Ÿ t2 ÞÑ px, 2q Ÿ t3 ÞÑ px, 3q ^ dompχq Ď Ω1 Ó ts^

dompχ oq Ď Ω1

�

t2,Ω1

�

t3 ^ t2 Ω1 t1 ^ r “ eval ts Ω1 χ1u

The spec of e states that (1) write px, 2q, timestamped t2, occurs sequentially before
write py, 1q which is timestamped t1, (2) the remaining write, timestamped t3, and the
scan, timestamped ts, are not temporally constrained, and (3) the writes that terminated
before the client started are ordered before t2 (and thus before t1), t3 and ts. The example
illustrates how to track timestamps and their order, but does not utilize the properties of
scanned Ω. We illustrate the latter in another example at the end of this section.

We first verify the subprograms scan pq ‖ write px, 3q and write px, 2q; write py, 1q
separately, and then combine them into the full proof. As proof outlines show intermediate,



G. A. Delbianco, I. Sergey, A. Nanevski, and A. Banerjee 8:11

in addition to pre- and post-state, we cannot quite utilize VDM notation in them. As a
workaround, we explicitly introduce logical variables h and ho to name (subsets of) the initial
global and other history.

1 tχ s “ H^ h Ď χ^ ho Ď χ ou

2a tχ s “ H^ h Ď χ^ ho Ď χ ou

3a scan pq
4a tr. D ts. χ s “ H^ domphq Ď Ω Ó ts ^

r “ eval ts Ωχu

2b tχ s “ H^ h Ď χ^ ho Ď χ ou

3b write px, 3q
4b tD t3. χ s “ t3 ÞÑ px, 3q ^

domphoq Ď Ω

�

t3u

5 tr. Dt3 ts. χ s “ t3 ÞÑ px, 3q ^ domphoq Ď Ω

�

t3 ^ domphq Ď Ω Ó ts ^ r “ eval ts Ω χu

The proof applies the rule for parallel composition of FCSL. This rule is described in
Appendix A. Here, we just mention that, upon forking, the rule distributes the value of χ s
of the parent thread, to the χ s values of its children; in this case, all these are H. Dually,
upon joining, the χ s values of the children in lines 4a and 4b, are collected, in line 5, into
that of the parent. The other assertions in 4a and 4b directly follow from the specs of scan
and write and the Invariants 1.1 and 1.2, and directly transfer to line 5. While the proof
outline does not establish how scan and write interleaved, it establishes that t3 and ts both
appear after the writes that are prior to the client’s call.

1 tχ s “ H^ h Ď χ^ ho Ď χ ou

2 write px, 2q;
3 tD t2. χ s “ t2 ÞÑ px, 2q ^ domphoq Ď Ω

�

t2u

4 write py, 1q
5 tD t1 t2. χ s “ t1 ÞÑ py, 1q Ÿ t2 ÞÑ px, 2q ^ domphoq Ď Ω

�

t2 ^ t2 Ω t1u

The second proof outline starts with the same precondition. Then line 3 directly follows
from the spec of write, using ho Ď χ o. To proceed, we need to apply FCSL framing: the
precondition of write requires χ s “ H, but we have χ s “ t2 ÞÑ px, 2q. The frame rule is
explained in Appendix A. Here we just mention that framing modifies the spec of write by
joining t2 ÞÑ px, 2q to χ s, χ1s and χ o as follows.

write pp, vq : tχ s “ t2 ÞÑ px, 2qu tDt. χ1s “ t ÞÑ pp, vq Ÿ t2 ÞÑ px, 2q ^
dompχ o Ÿ t2 ÞÑ px, 2qq Y scanned Ω Ď Ω1

�

tu

Such a framed spec for write gives us that after line 4: (1) χ s “ t1 ÞÑ py, 1q Ÿ t2 ÞÑ

px, 2q, and (2) dompho Ÿ t2 ÞÑ px, 2qq Ď Ω

�

t1. From Invariants 1, we also obtain that (3)
domphoq Ď Ω

�

t2, which simply transfers from line 3. Now, in the presence of (2), we can
simplify (3) into t2 Ω t1, thus obtaining the postcondition in line 5.

The final step applies the rule for parallel composition to the two derivations, splitting
χ s upon forking, and collecting it upon joining:

e : tχ s “ H^ h Ď χ^ ho Ď χ ou

tr. D t1 t2 t3 ts. χ s “ t1 ÞÑ py, 1q Ÿ t2 ÞÑ px, 2q Ÿ t3 ÞÑ px, 3q ^ domphq Ď Ω Ó ts ^
domphoq Ď Ω

�

t2,Ω

�

t3 ^ t2 Ω t1 ^ r “ eval ts Ωχu

From here, the VDM spec of e is derived by priming the Greek letters in the postcondition,
and choosing h “ χ and ho “ χ o.

The spec of e can be further used in various contexts. For example, to recover the context
from Section 2, where e is invoked with x “ 5, y “ 0, we can frame e wrt. χ s “ t5 ÞÑ

ECOOP 2017



8:12 Concurrent Data Structures Linked in Time

px, 5q Ÿ t0 ÞÑ py, 0q to make explicit the events that initialize x and y. Then, it is possible to
derive in FCSL that if e executes without interference (i.e., if χ “ χ o “ χ1 “ χ1o “ H), then
the result at the end must be r P tp5, 0q, p2, 0q, p3, 0q, p2, 1q, p3, 1qu. As expected, r ‰ p5, 1q,
because the write of 2 sequentially precedes the write of 1.

We next illustrate the use of Invariants 2, which are required for clients that use scan in
sequential composition. We consider the program

e1 “ r Ð scan; write px, vq; return r

and prove that e1 can be ascribed the following spec:

e1 : tχ s “ Hu tD ts tx. χ
1
s “ tx ÞÑ px, vq ^ ts P Ω1

�

tx ^ r “ eval ts Ω1 χ1u

The spec says that the write event (tx) is subsequent to the scan (ts), as one would
expect. In particular, the snapshot r remains valid, i.e., the write does not change the order
Ω and history χ in a way that makes r cease to be a valid snapshot in Ω1 and χ1. The proof
outline follows, with the explanation of the critical steps.

1 tχ s “ Hu

2 r Ð scan;
3 tD ts, w

1p“ Ωq, h1p“ χq. χ s “ H^ ts P scannedw1 ^ r “ eval ts w1 h1u
4 write px, vq;
5 tD ts tx. χ s “ tx ÞÑ px, vq ^ ts P Ω

�

tx ^ ts P scanned Ω^ r “ eval ts Ω χu

6 return r

Line 3 is a direct consequence of the spec of scan, where we omitted the conjunct
dompχq Ď Ω1 Ó ts, as we do not need it for the subsequent derivation. We also introduce
explicit names w1 and h1 for the current values of Ω and χ. Now, to derive line 5, by the
spec of write, we know there exists a timestamp tx corresponding to the write, such that (1)
χ s “ tx ÞÑ px, vq, which is a conjunct in line 5, and also (2) dompχ oq Y scannedw1 Ď Ω

�

tx.
Furthermore, (3) ts P scannedw1, and (4) r “ eval ts w1 h1, simply transfer from line 3. From
(2) and (3), we infer that ts P Ω

�

tx. To complete the derivation of line 5, it remains to show
that ts P scanned Ω and r “ eval ts Ω χ. For this, we use (3), (4) and the Invariants 1 and 2,
as follows. First, by Invariant 1.3, and because ts P scannedw1, we get w1 Ó ts “ Ω Ó ts. By
Invariant 1.2, this gives us ts P scanned Ω as well. By Invariant 1.1, h1 Ď χ, and then by
Invariant 2.3, r “ eval ts w1 h1 “ eval ts Ω χ, completing the deduction of line 5.

Observe that the main role of scanned in proofs is to enable showing stability of values
obtained by eval, using Invariant 2.3. The remaining Invariants 2.1 and 2.2 allow us to
replace a number of conjuncts about scanned by a single one that expresses the membership
of the largest timestamp in the current scanned set.

5 Internal auxiliary state

In order to verify the implementations of write and scan, we require further auxiliary state
that does not feature in the specifications, and is thus hidden from the clients.

First, we track the point of execution in which write and scan are, but instead of line
numbers, we use datatypes to encode extra information in the constructors. For example,
the scanner’s state is a triple pSs, Sx, Syq. Ss is drawn from tSOn,SOff tu. If SOn, then the
scanner is in lines 7–11 in Figure 1. If SOff t, the the scanner reached line 12 at “time” t,
and is now in 13–17. Sx is a Boolean bit, set when the scanner clears fx in line 8, and reset



G. A. Delbianco, I. Sergey, A. Nanevski, and A. Banerjee 8:13

upon scanner’s termination (dually for Sy and fy). Writers’ state for x is tracked by the
auxiliary Wx (dually, Wy). These are drawn from tWOff ,New t v,Fwd t v,Done t vu, where t
marks the beginning of the write and v is the value written to pointer p. If WOff , then no
write is in progress. If New t v, then the writer is in line 2. If Fwd t v, then b has been set in
line 3, triggering forwarding. If Done t v, the writer is free to exit.

Second, like in linearizability, we record the ending times of terminated events, using
an auxiliary variable τ . τ is a function that takes a timestamp identifying the beginning
of some event, and returns the ending time of that event, and is undefined if the event
has not terminated. However, we do not generate fresh timestamps to mark event ending
times. Instead, at the end of write, we simply read off the last used timestamp in χ, and
use it as the ending time of write. This is a somewhat non-standard way of keeping time,
but it suffices to prove that events t1 and t2 which are non-overlapping (i.e., τpt1q ă t2 or
τpt2q ă t1) are never reordered. The latter is required by the postconditions of write and
scan, as we discussed in Section 3. Formally, the following is an invariant of the snapshot
object; i.e., a property of the state space of STS C from Figure 4, preserved by C’s transition.

§ Invariant 3. The logical order ăσ preserves the real time order of non-overlapping events:
@t1 P dompτq, t2 P dompχq, if τpt1q ă t2 then t1 ăσ t2.

Third, we track the rearrangement status of write events wrt. an ongoing active scan,
by colors. A scan is active if it has cleared the forwarding pointers in lines 8 and 9, and is
ready to read x and y. We keep the auxiliary variable κ, which is a function mapping each
timestamp in χ to a color, as follows.

Green timestamps identify write events whose position in the logical order is fixed in
the following sense: if κpt1q “ green and t1 ăσ t2, then t1 ăσ1 t2 for every σ1 to which σ
may step by auxiliary code execution (Section 6). For example, since we only reorder
overlapping events, and only the scanner reorders events, every event that finished before
the active scan started will be green. Also, a green timestamp never changes its color.
Red timestamps identify events whose order is not fixed, but which will not be manipulated
by the active scan, and are left for the next scan.
Yellow timestamps identify events whose order is not fixed yet, but which may be
manipulated by the ongoing active scan, as follows. The scan can push a yellow timestamp
in logical time, past another green or yellow timestamp, but not past a red one. This is
the only way the logical ordering can be modified.

There are a number of invariants that relate colors and timestamps. We next list the
ones that are most important for understanding our proof. We use χp to denote the sequence
of writes into the pointer p that appear in the history χ, sorted by their order in σ4.

§ Invariant 4 (Colors). The colors of χp are described by the regular expression g`y?r˚: there
is a non-empty prefix of green timestamps, followed by at most one yellow, and arbitrary
number of reds.

By the above invariant, the yellow color identifies the write event into the pointer p, that
is the unique candidate for reordering by the ongoing active scan. Moreover, all the writes
into p prior to the yellow write, will have already been colored green (and thus, fixed in
time), whether they overlapped with the scanner or not.

4 For reasoning purposes, it serves us better to think of χp as sub-histories, with an external ordering
given by σ. We do, however, implement χp as a list filter: χp “ filter pλ t. t ÞÑ pp,_q P χq σ.

ECOOP 2017



8:14 Concurrent Data Structures Linked in Time

§ Invariant 5 (Color of forwarded values). Let Ss “ SOff toff , and p P tx, yu, and Sp “ True
(i.e., scanner is in lines 13–16), and v ‰ K has been forwarded to p; i.e., fwd p ÞÑ v. Then
the event of writing v into p is in the history, i.e., there exists t such that t ÞÑ pp, vq P χp.
Moreover, t is the last green, or the yellow timestamp in χp.

The above invariant restricts the set of events that could have forwarded a value to the
scanner, to only two: the event with the (unique) yellow timestamp, or the one corresponding
to the last green timestamp. By Invariant 4, these two timestamps are consecutive in χp.

§ Invariant 6 (Red zone). If Ss “ SOff toff , Sx “ True, Sy “ True, then χ satisfies the pg|yq`r˚
pattern. Moreover, for every t P dompχq:

κptq “ green ùñ t ď toff
κptq “ yellow ùñ t ď toff ď τptq

κptq “ red ùñ toff ă t

This invariant restricts the global history χ (not the pointer-wise projections χp). First,
the red events in χ are consecutive, and cannot be interspersed among green and yellow
events. Thus, when a scanner pushes a yellow event past a green event, or past another
yellow event, it will not “jump over” any reds. Second, the invariant relates the colors to the
time toff at which the scanner was turned off (in line 12, Figure 1). This moment is important
for the algorithm; e.g., it is the linearization point for scan in Jayanti’s proof [22]. We will
use the above inequalities wrt. toff in our proofs, to establish that the events reordered by
the scanner do overlap, as per Invariant 3.

We can now define the stable logical order Ω, and the set scanned Ω, using the internal
auxiliary state of colors and ending times.

§ Definition 7 (Logical order Ω and scanned Ω). 1. t1 Ω t2 p“ pt1 “ t2q_pτpt1q ă t2q_pt1 ăσ
t2 ^ κpt1q “ greenq

2. scanned Ω “ tt | Ω Ó t “ ďσ Ó t^ @s P Ω Ó t. κpsq “ greenu.

From the definition of Ω, notice that t1 Ω t2 is stable (i.e., invariant under interference),
since threads do not change the ending times τ , the color of green events, or the order of
green events in ăσ, as we already discussed. From the definition of scanned Ω, notice that for
every t P scanned Ω, it must be that Ω Ó t is a linearly-ordered set wrt. Ω, because it equals a
prefix of the sequence σ.

We close this section with a few technical invariants that we use in the sequel.

§ Invariant 8 (Last write). Let pointer p P tx, yu, and lastσ χp be the timestamp in χp that is
largest wrt. the logical order ďσ. Then the contents of p equals the value written by the
event associated with lastσ χp. That is, p ÞÑ χpplastσχpq.

§ Invariant 9 (Joint history). Let pointer p P tx, yu. If the writer for p is active i.e. Wp ‰ WOff ,
then the write event that it is performing is timestamped and placed into joint history χ j.
Dually, if t P dompχ jq, then the event t is performed by the active writer for p:

t ÞÑ pp, vq P χ j ðñ Wp “ New t v _Wp “ Fwd t v _Wp “ Done t v

§ Invariant 10 (Terminated events). Histories χ o and χ s store only terminated events, i.e.,
events whose ending times are recorded in τ . Moreover, the codomain of τ is bounded by
the maximal timestamp, in real time, in dompχq:
1. dompτq “ dompχ sq Ÿ dompχ oq.
2. @a P dompτq. τpaq ď max pdompχqq.



G. A. Delbianco, I. Sergey, A. Nanevski, and A. Banerjee 8:15

1 write pp, vq t
2 x p :“ v; registerpp, vqy;
3 x bÐ readpSq; checkpp, bqy;
4 if b
5 then x fwd p :“ v; forwardppqy;
5’ xfinalizeppqyu

6 scanpq : pAˆAq t
7 xS :“ true; setptrueqy;
8 x fx :“K; clearpxqy;
9 x fy :“K; clearpyqy;

10 vx Ð xreadpxqy;
11 vy Ð xreadpyqy;
12 xS :“ false; setpfalseqy;
13 ox Ð xreadpfxqy;
14 oy Ð xreadpfyqy;
15 rx Ð if pox ‰ Kq then ox else vx;
16 ry Ð if poy ‰ Kq then oy else vy;
17 x relinkprx, ryq; return prx, ryq yu

Figure 5 Snapshot procedures annotated with auxiliary code.

§ Lemma 11 (Green/yellow read values). Let p P tx, yu. If the scanner state is Ss “ SOn, Sp “

True, i.e., the scanner is between lines 10–11 in Figure 1, and p ÞÑ v in the physical heap,
then exists t such that t ÞÑ pp, vq P χp. Moreover, t is the last green or the yellow timestamp
in χp.

§ Lemma 12 (Chain). If t P dompχq and κpďσ Ó tq“ green, then Ω Ó t “ ďσ Ó t.

6 Auxiliary code implementation

Figure 5 annotates Jayanti’s procedures with auxiliary code (typed in italic), with
xangle bracesy denoting that the enclosed real and auxiliary code execute simultaneously (i.e.,
atomically). The auxiliary code builds the histories, evolves the sequence σ, and updates
the color of various write events, while respecting the invariants from Section 3. Thus, it is
the constructive component of our proofs. Each atomic command in Figure 5 represents one
transition of the STS C from Figure 4.

The auxiliary code is divided into several procedures, all of which are sequences of reads
followed by updates to auxiliary variables. We present them as Hoare triples in Figure 6,
with the unmentioned state considered unchanged. The bracketed variables preceding the
triples (e.g., rt, vs) are logical variables used to show how the pre-state value of some auxiliary
changes in the post-state. To symbolize that these triples define an atomic command, rather
than merely stating the command’s properties, we enclose the pre- and postcondition in
angle brackets x´y.

Auxiliary code for write. In line 2, registerpp, vq creates the write event for the assignment
of v to p. It allocates a fresh timestamp t, inserts the entry t ÞÑ pp, vq into χ j, and adds t to
the end of σ, thus registering t as the currently latest write event. The fresh timestamp t is
computed out of the history χ; we take the largest natural number occurring as a timestamp
in χ, and increment it by 1. The variable Wp updates the writer’s state to indicate that the
writer finished line 2 with the timestamp t allocated, and the value v written into p. The
color of t is set to yellow (i.e., the order of t is left undetermined), but only if pSs “ SOnq&Sp
(i.e., an active scanner is in line 10). Otherwise, t is colored red, indicating that the order of
t will be determined by a future scan.

ECOOP 2017



8:16 Concurrent Data Structures Linked in Time

registerpp, vq : xWp “ WOffy

xσ1
“ snoc σ t, χ1

j “ χ j Ÿ t ÞÑ pp, vq, W 1
p “ New t v,

κ1
“ if pSs “ SOnq&Sp then κrt ÞÑ yellows else κrt ÞÑ redsy

where t “ fresh χ “ max pdompχqq ` 1
check pp, bq : rt, vs. xWp “ New t vy xW 1

p “ if b then Fwd t v else Done t vy
forward ppq : rt, vs. xWp “ Fwd t vy

xW 1
p “ Done t v, κ1

“ if pSs “ SOnq&Sp then κrt ÞÑ greens else κy
finalizeppq : rt, vs. xWp “ Done t v, t ÞÑ pp, vq P χ jy

xW 1
p “ WOff , χ

1
s “ χ s Ÿ t ÞÑ pp, vq, χ1

j“ χ jzttu, τ
1
“ τ Ÿt ÞÑ max pdompχqqy

setpbq : xSs “ if b then SOff p_q else SOn, Sx “  b, Sy “  by

xS1
s “ if b then SOn else SOff plast χq, S1

x “  b, S
1
y “  by

clearppq : xSs “ SOn, Sp “ Falsey
xS1

s “ SOn, S
1
p “ True, κ1

“ κrχp ÞÑ greensy
relinkprx, ryq : rtx, tys. xSs “ SOffp_q, tx ÞÑ px, rxq, ty ÞÑ py, ryq P χ, Sx “ Sy “ True,

@p P tx, yu. lastGY p tpy

xS1
s “ Ss, S

1
x “ S1

y “ False, κ1
“ κrtx, ty ÞÑ greens,

σ1
“ if pd “ Yes x sq then push s ty σ
else if pd “ Yes y sq then push s tx σ else σy

where d “ inspect tx ty σ κ

Figure 6 Auxiliary procedures for write and scan. Bracketed variables (e.g., rt, vs) are logical
variables that scope over precondition and postcondition.

In line 3, checkpp, bq, depending on b, sets the writer state to Fwd, indicating that a scan
is in progress, and the writer should forward, or to Done, indicating that the writer is ready
to terminate.

In line 5, forward colors the allocated timestamp t green, if an active scanner has passed
lines 8–9 and is yet to reach line 12, because such a scanner will definitely see the write,
either by reading the original value in lines 10–11, or by reading the forwarded value in
lines 13–14. Thus, the logical order of t becomes fixed. In fact, it is possible to derive from
the invariants in Section 3, that this order is the same one t was assigned at registration, i.e.,
the linearization point of this write is line 2.

In line 5’, finalize moves the write event t from the joint history χ j to the thread’s self
history χ s, thus acknowledging that t has terminated. The currently largest timestamp of χ
is recorded in τ as t’s ending time. By definition of Ω, all the writes that terminated before t
in real time, will be ordered before t in Ω.

Auxiliary code for scan. Method set toggles the scanner state Ss on and off. When executed
in line 12, it returns the timestamp toff that is currently maximal in real time, as the moment
when the scanner is turned off.

The procedure clearppq is executed in lines 8–9 simultaneously with clearing the forwarding
pointer for p. In addition to recording that the scanner passed lines 8 or respectively 9, by
setting the Sp bit, it colors the sub-history χp green. Thus, by definition of scanned Ω, the
ongoing one and all previous writes to p are recorded as scanned, and thus linearized.

Finally, the key auxiliary procedure of our approach is relink. It is executed at line 17 just
before the scanner returns the pair prx, ryq. Its task is to modify the logical order of the
writes, to make prx, ryq appear as a valid snapshot. This will always be possible under the



G. A. Delbianco, I. Sergey, A. Nanevski, and A. Banerjee 8:17

precondition of relink that the timestamps tx, ty of the events that wrote rx, ry respectively,
are either the last green or the yellow ones in the respective histories χx and χy, and relink
will consider all four cases. This precondition holds after line 16 in Figure 5, as one can
prove from Invariants 4 and 5. In the precondition we introduce the following abbreviation:

lastGY p t p“ t “ last_greenσ χp _ κptq “ yellow (2)

Relink uses two helper procedures inspect and push, to change the logical order. Inspect
decides if the selected tx and ty determine a valid snapshot, and push performs the actual
reordering. The snapshot determined by tx and ty is valid if there is no event s such that
tx ăσ s ăσ ty and s is a write to x (or, symmetrically ty ăσ s ăσ tx, and s is a write to y).
If such s exists, inspect returns Yes x s (or Yes y s in the symmetric case). The reordering
is completed by push, which moves s right after ty (after tx in the symmetric case) in ďσ.
Finally, relink colors tx and ty green, to fix them in Ω. We can then prove that prx, ryq is
a valid snapshot wrt. Ω, and remains so under interference. Notice that the timestamp s
returned by inspect is always uniquely determined, and yellow. Indeed, since tx and ty are
not red, no timestamp between them can be red either (Invariant 6). If tx ăσ s ăσ ty and
s is a write to x (and the other case is symmetric), then tx must be the last green in χx,
forcing s to be the unique yellow timestamp in χx, by Invariant 4.

To illustrate, in Figure 3a we have rx “ 2, ry “ 1, tx and ty are both the last green
timestamp of χx and χy, respectively, and tx ăσ ty. However, there is a yellow timestamp s
in χx coming after tx, encoding a write of 3. Because tx ăσ s ăσ ty, the pair prx, ryq is not
a valid snapshot, thus inspect returns Yes x s, after which push moves 3 after 1.

We have omitted the definitions of inspect and push for the sake of brevity. These are
presented in Appendix B. We conclude this section with the main property of relink, whose
proof can be found in our Coq files [1].

§ Lemma 13 (Main property of relink). Let the precondition of relink hold, i.e., Ss “ SOffp_q,
tx ÞÑ px, rxq, ty ÞÑ py, ryq P χ, Sx “ Sy “ True, and @p P tx, yu. lastGY p tp. Then the ending
state of relink satisfies the following:
1. For all p P tx, yu, tp “ last_greenσ1 χ1p.
2. Let t “ maxσ1ptx, tyq. Then for every s ďσ1 t, κ1psq “ green.

7 Correctness

We can now show that write and scan satisfy the specifications from Figure 4. As before,
we avoid VDM notation in proof outlines by using logical variables.

Proof outline for write. The proof outline for write is presented in Figure 7. Line 1
introduces logical variables w, h and ho, which name the initial values of Ω, χ, and χ o. Line
2 adds the knowledge that the writer for the pointer p is turned off (Wp “ WOff). This
follows from our implicit assumption that there is only one writer in the system, which, in
the Coq code, we enforce by locks.

Line 3 is the first command of the program, and the most important step of the proof.
Here register allocates a fresh timestamp t for the write event, puts t into χ j, coloring it
yellow or red, and changes Wp to New t v, simultaneously with the physical update of p with
v (see Figure 6). The importance of the step shows in line 4, where we need to establish
that t is placed into the logical order after all the other finished or scanned events (i.e.,
domphoq Y scanned Ω Ď Ω

�

t). This information is the most difficult part of the proof, but
once established, it merely propagates through the proof outline.

ECOOP 2017



8:18 Concurrent Data Structures Linked in Time

1 tχ s “ H^ w Ď Ω^ h Ď χ^ ho Ď χ ou

2 tχ s “ H^Wp “ WOff ^ w Ď Ω^ h Ď χ^ ho Ď χ ou

3 x p :“ v; registerpvqy;
4 tDt . χ s “ H^Wp “ New t v ^ t ÞÑ pp, vq P χ j ^ domphoq Y scannedw Ď Ω

�

tu

5 x bÐ readpSq; checkpp, bqy;
6 tDt. χ s “ H^Wp “ if b then Fwd t v else Done t v ^ t ÞÑ pp, vq P χ j ^

domphoq Y scannedwĎ Ω

�

tu

7 if b then x fwd p :“ v; forwardpp, vqy;
8 tDt. χ s “ H^Wp “ Done t v ^ t ÞÑ pp, vq P χ j ^ domphoq Y scannedw Ď Ω

�

tu

9 xfinalizepi, vqy
10 tDt. χ s “ t ÞÑ pp, vq ^ domphoq Y scannedw Ď Ω

�
tu

Figure 7 Proof outline for write.

Why does this inclusion hold? From the definition, we know that register appends t to
the end of the list σ (the clause σ1 “ snoc σ t in the definition of register in Figure 6). Thus,
after the execution of line 3, we know that for every other timestamp s, s ăσ t. In particular,
s ‰ t, so it suffices to prove s Ω t. We consider two cases: s P domphoq and s P scanned Ω. In
the first case, by Invariant 10, s P dompτq. By freshness of t wrt. global history h (which
includes ho), we get τpsq ă t, and then the desired s Ω t follows from the definition of Ω. In
the second case, by definition of scanned , κpsq “ green. Since s ăσ t, the result again follows
by definition of Ω.

Still regarding line 4, we note that t P dompχ jq holds despite the interference of other
threads. This is ensured by the Invariant 9, because no other thread but the writer for p,
can modify Wp. Thus, this property will continue to hold in lines 6 and 8.

In line 6, the writer stateWp is updated following the definition of the auxiliary procedure
check. The conjunct on domphoqY scannedw Ď Ω

�

t propagates from line 4, by monotonicity
of Ω (Invariant 1). Similarly, in line 8, Wp is changed following the definition of forward, and
the the other conjunct propagates. Forward further colors a number of timestamps green,
but this is done in order to satisfy the state space invariants from Section 3, and is not
exposed in the proof of write. Finally, in line 10, finalize moves t ÞÑ pp, vq from χ j to χ s,
thus completing the proof.

Proof outline for scan. Finally, the proof outline for is given in Figure 8. Line 1 introduces
the logical variable h to name the initial χ. Line 2 adds the knowledge that Ss “ SOff _ and
Sx “ Sy “ False, i.e., that there are no other scanners around, which is enforced by locking
in our Coq files.

Line 3 is the first line of the code; it simply sets the scanner bit S, and the auxiliaries
Sx and Sy, following the definition of set. The conjunct h Ď χ follows from monotonicity
by Invariant 1. The first important property comes from the lines 5 and 7. In these lines,
clear sets the values of Sx and Sy, but, importantly, also colors the events from h green,
first coloring x-events, and then y-events. This will be important at the end of the proof,
where the fact that h is all green will enable inferring the postcondition. Moreover, because
green events are never re-colored, we propagate this property to subsequent lines without
commentary.



G. A. Delbianco, I. Sergey, A. Nanevski, and A. Banerjee 8:19

1 tχ s “ H^ h Ď χu

2 tχ s “ H^ Ss “ SOff _^ Sx “ Sy “ False^ h Ď χu

3 xS :“ true; setptrueqy;
4 tχ s “ H^ Ss “ SOn ^ Sx “ Sy “ False^ h Ď χu

5 x fx :“K; clearpxqy;
6 tχ s “ H^ Ss “ SOn ^ Sx “ True^ Sy “ False^ h Ď χ^ κpdomphxqq “ greenu
7 x fy :“K; clearpyqy;
8 tχ s “ H^ Ss “ SOn ^ Sx “ Sy “ True^ h Ď χ^ κpdomphqq “ greenu
9 vx Ð xreadpxqy;
10 tD tx. χ s “ H^ Ss “ SOn ^ Sx “ Sy “ True^

h Ď χ^ κpdomphqq “ green^ fwdLastGY x tx vxu
11 vy Ð xreadpyqy;
12 tD tx ty. χ s “ H^ Ss “ SOn ^ Sx “ Sy “ True^ h Ď χ^

κpdomphqq “ green^ fwdLastGY x tx vx ^ fwdLastGY x tx vyu
13 xS :“ false; setpfalseqy;
14 tD tx ty toff . χ s “ H^ Ss “ SOff toff ^ Sx “ Sy “ True^ h Ď χ^

κpdomphqq “ green^ fwdLastGY x tx vx ^ fwdLastGY y ty vyu
15 ox Ð xreadpfxqy;
16 t D ty t

1
x toff . χ s “ H^ Ss “ SOff toff ^ Sx “ Sy “ True^ h Ď χ^

κpdomphqq “ green^ fwdLastGY y ty vy^
lastGYHist x t1x pif r “ K then vx else rqu

17 oy Ð xreadpfyqy;
18 t D t1x t

1
y toff . χ s “ H^ Ss “ SOff toff ^ Sx “ Sy “ True^ h Ď χ^

κpdomphqq “ green^ lastGYHist x t1x pif ox “ K then vx else oxq^
lastGYHist y t1y pif oy “ K then vy else oyqu

19 rx Ð if pox ‰ Kq then ox else vx;
20 ry Ð if poy ‰ Kq then oy else vy;
21 t D t1x t

1
y toff . χ s “ H^ Ss “ SOff toff ^ Sx “ Sy “ True^ h Ď χ^

κpdomphqq “ green^ lastGYHist x t1x rx ^ lastGYHist y t1y ryu
22 x relinkprx, ryq; return prx, ryq y
23 t r. Dt. χ s “ H^ r “ eval t Ω χ^ domphq Ď Ω Ó t^ t P scanned Ωu

Figure 8 Proof outline for scan.

The read from x in line 9, and from y in line 11, must return the last green, or the yellow
event of their pointer, if no values are forwarded in fx and fy, respectively. This holds by
Lemma 11, and is reflected by the conjuncts fwdLastGY x tx vx and fwdLastGY x tx vy in
line 12, where:

fwdLastGY p t v p“ fwd p ÞÑ K ùñ lastGY p t^ t ÞÑ pp, vq P χ

The implication guard fwd p ÞÑ K will be stripped away in the future, if and when the reads
of forwarding pointers in lines 15 and 17 observe that no forwarding values exist.

In line 13, the scanner unsets the bit S and records the ending time of the scanner into
the variable toff in line 14. The conjuncts fwdLastGY x tx vx and fwdLastGY y ty vy from line
12 transfer to line 14 directly. This is so because set does not change any colors. Moreover,
any writes that may run concurrently with this scan cannot invalidate the conjuncts. To see

ECOOP 2017



8:20 Concurrent Data Structures Linked in Time

this, assume that we had a concurrent write to x (reasoning is symmetric for y). Such a
write may add a new yellow timestamp s, but only if tx itself is the last green, in accord
with Invariant 4. In that case, tx remains the last green timestamp, and fwdLastGY x tx vx

remains valid. The concurrent write may change the color of s to green, by invoking forward
(Figure 5, line 5), but then fx becomes non-K, thus making fwdLastGY x tx vx hold trivially.

In lines 15 and 17, scan reads from the forwarding pointers fx and fy and stores the
obtained values into ox and oy, respectively. By Invariant 5, we know that if ox ‰ K, there
exists t1x s.t. t1x ÞÑ px, oxq P χ, and t1x is the last green or yellow write event of χx. In case
ox “ K, we know from the fwdLastGY conjunct preceding the read from fx, that such last
green or yellow event is exactly tx. The consideration for fy is symmetric, giving us the
assertion in line 18, where:

lastGYHist p t v p“ lastGY p t^ t ÞÑ pp, vq P χ

Next, line 19 merely names by rx the value of vx, if ox equals K, and similarly for
ry in line 20, leading to line 21. Finally, on line 22, the method finishes by invoking
x relinkprx, ryq; return prx, ryq y. Thus, it returns the selected snapshot prx, ryq and relinks
the events so that the Ω justifies the choice of snapshots.

We prove that the final state satisfies the postcondition in line 23, by using the main
property of relink (Lemma 13). First, we pick t “ maxσpt1x, t1yq. Then r “ eval t Ω χ holds,
by the following argument. By Lemma 13.1, rx is the value of the last green timestamp in
χx. By Lemma 13.2, all the timestamps below t are green, thus rx is the value of the last
timestamp in χx that is smaller or equal to t. By a symmetric argument, the same holds of
ry. But then, the pair r “ prx, ryq is the snapshot at t, i.e., equals eval t Ω χ.

The conjunct t P scanned Ω is proved as follows. Unfolding the definition of scanned , we
need to show Ω Ó t “ ďσ Ó t, and @s P Ω Ó t. κpsq “ green. The first conjunct follows from
Lemma 12. The second immediately follows from the first by Lemma 13.2.

To establish domphq Ď Ω Ó t, we proceed as follows. Let s P domphq. From line 21, we
know κpsq “ green. Because t1x and t1y are last green (by σ) or yellow events, by Invariant 4
it must be s ďσ t1x, t1y, and thus s ďσ t. However, we already showed that Ω Ó t “ ďσ Ó t.
Thus, s Ω t, finally establishing the postcondition.

8 Discussion

Comparison with linearizability, revisited As we argued in Section 3, our specifications
for the snapshot methods directly capture that the method calls can be placed in a linear
sequence, in a way that preserves the order of non-overlapping calls. This is precisely what
linearizability achieves as well, but by technically different means. We here discuss some
similarities and differences between our method and linearizability.

The first distinction is that linearizability is a property of a concurrent object, whereas
our specifications are ascribed to individual methods, as customary in Hoare logic. This
immediately enables us to use an of-the-shelf Hoare logic, such as FCSL, for specification.

Second, linearizability draws its power from the connection to contextual refinement [11]:
one can substitute a potentially complex method A in a larger context, by a simpler method
B, to which A linearizes. In our setting, such a property is enabled by a general substitution
principle, which says that programs with the same spec can be interchanged in a larger
context, without affecting the larger context’s proof. Moreover, contextual refinement (and
thus linearizability) is defined for general programs, without regard to their preconditions and
postconditions. However, it is often the case that the refinement only holds if the substituted



G. A. Delbianco, I. Sergey, A. Nanevski, and A. Banerjee 8:21

1 scan pq : pAˆAq t
2 pcx, vxq Ð readpxq;
3 pcy,_q Ð readpyq;
5 p_, txq Ð readpxq;
5 if vx “ tx

6 then return pcx, cyq
7 else scan pq; u

Figure 9 A scan method implementation using version numbers.

programs satisfy some Hoare logic spec. In this sense, our setting is more expressive, since
the substitution principle is given relative to a Hoare logic spec.

Finally, while our specification of the snapshot methods are motivated by linearizability,
there is no requirement—and hence no proof—that an FCSL specification implies linearizab-
ility. But this is a feature, rather than a bug. It enables us to specify and combine, in one
and the same logic, programs that are linearizable, with those that are not. We refer to [39]
for examples of how to specify and verify non-linearizable programs in FCSL.

Alternative snapshot implementations. FCSL’s substitution principle can be exploited
further in an orthogonal way: it allows us to re-use the specs for write and scan in Figure 4,
ascribing them to a different concurrent snapshot algorithm. For that matter, we re-visit the
previous verification in FCSL of the pair-snapshot algorithm [38]. We present only scan in
Figure 9, as write is trivial.

In this example, the snapshot structure consists of pointers x and y storing tuples pcx, vxq
and pcy, vyq, respectively. cx and cy are the payload of x and y, whereas vx and vy are version
numbers, internal to the structure. Writes to x and y increment the version number, while
scan reads x, y and x again, in succession. Snapshot inconsistency is avoided by restarting
if the two version numbers of x differ. In this paper’s notation, the specification proved for
scan in [38] reads:

scan : tχ s “ Hu tDt. χ
1
s “ H^ r “ eval t χ1 ^ dompχq Ď χ1 Ó tu

This spec is indeed very similar to the one of scan in Figure 4, but exhibits that the algorithm
does not require dynamic modification to the event ordering. Thus, by defining Ω to be the
natural ordering on timestamps in the global history χ (so that Ω1 Ó t “ χ1 Ó t), and taking
scanned Ω to be the set of all timestamps in χ (so that t P scanned Ω is trivially true and can
be added to the postcondition above), the above spec directly weakens into that of Figure 4.
Since client proofs are developed in FCSL out of the specs, and not the code of programs, we
can substitute different implementations of snapshot algorithms in clients, without disturbing
the clients’ proofs. This is akin to the property that programs that linearize to the same
sequential code are interchangeable in clients.

Relation to Jayanti’s original proof. Finally, we close this section by noting that our proof
of Jayanti’s algorithm seems very different from Jayanti’s original proof. Jayanti relies on
so-called forwarding principles, as a key property of the proof. For example, Jayanti’s First
Forwarding Principle says (in paraphrase) that if scan misses the value of a concurrent
write through lines 10–11 of Figure 1, but the write terminates before the scanner goes

ECOOP 2017



8:22 Concurrent Data Structures Linked in Time

through line 12 (the linearization point of scan), then the scanner will catch the value in
the forwarding pointers through lines 13–14. Instead of forwarding principles, we rely on
colors to algorithmically construct the status of each write event as it progresses through
time, and express our assertions using formal logic. For example, though we did not use
the First Forwarding Principle, we nevertheless can express a similar property, whose proof
follows from Invariants introduced in Section 5:

§ Proposition 14. If Ss “ SOff toff and Sx “ Sy “ True—i.e., the scanner is in lines 13–16
and it has unset S in line 12 at time toff—then: @t P χ. t ď τptq ă toff ùñ κptq “ green.

9 Related work

Program logics for linearizability. The proof method for establishing linearizability of
concurrent objects based on the notion of linearization points has been presented in the
original paper by Herlihy and Wing [19]. The first Hoare-style logic, employing this method
for compositional proofs of linearizability was introduced in Vafeiadis’ PhD thesis [44, 43].
However, that logic, while being inspired by the combination of Rely-Guarantee reasoning
and Concurrent Separation logic [45] with syntactic treatment of linearization points [44],
did not connect reasoning about linearizability to the verification of client programs that
make use of linearizable objects in a concurrent environment.

Both these shortcomings were addressed in more recent works on program logics for
linearizability [28, 26], or, equivalently, observational refinement [11, 42]. These works
provided semantically sound methodologies for verifying refinement of concurrent objects,
by encoding atomic commands as resources (sometimes encoded via a more general notion
of tokens [26]) directly into a Hoare logic. Moreover, the logics [28, 42] allowed one to give
the objects standard Hoare-style specifications. However, in the works [28, 42], these two
properties (i.e., linearizability of a data structure and validity of its Hoare-style spec) are
established separately, thus doubling the proving effort. That is, in those logics, provided a
proof of linearizability for a concurrent data structure, manifested by a spec that suitably
handles a command-as-resource, one should then devise a declarative specification that
exhibits temporal and spatial aspects of executions (akin to our history-based specs from
Figure 4), required for verifying the client code.

Importantly, in those logics, determining the linearization order of a procedure is tied
with that procedure “running” the command-as-resource within its execution span. This
makes it difficult to verify programs where the procedure terminates before the order is
decided on, such as write operation in Jayanti’s snapshot. The problem may be overcome by
extending the scope of prophecy variables [2] or speculations beyond the body of the specified
procedure. However, to the best of our knowledge, this has not been done yet.

Hoare-style specifications as an alternative to linearizability. A series of recent Hoare
logics focus on specifying concurrent behavior without resorting to linearizability [38, 39,
41, 8, 24]. This paper continues the same line of thinking, building on [38], which explored
patterns of assigning Hoare-style specifications with self/other auxiliary histories to concurrent
objects, including higher-order ones (e.g., flat combiner [17]), and non-linearizable ones [39]
in FCSL [31], but has not considered non-local, future-dependent linearization points, as
required by Jayanti’s algorithm.

Alternative logics, such as Iris [24, 23] and iCAP [41], employ the idea of “ghost call-
backs” [21], to identify precisely the point in code when the callback should be invoked. Such
a program point essentially corresponds to a local linearization point. Similarly to the logical



G. A. Delbianco, I. Sergey, A. Nanevski, and A. Banerjee 8:23

linearizability proofs, in the presence of future-dependent LPs, this method would require
speculating about possible future execution of the callback, just as commented above, but
that requires changes to these logics’ metatheory, in order to support speculations, that have
not been carried out yet.

The specification style of TaDA logic [8] is closer to ours in the sense that it employs atomic
tracking resources, that are reminiscent of our history entries. However, the metatheory of
TaDA does not support ownership transfer of the atomic tracking resources, which is crucial
for verifying algorithms with non-local linearization points. As demonstrated by this paper
and also previous works [38, 39], history entries can be subject to ownership transfer, just
like any other resources.

The key novelty of the current work with respect to previous results on Hoare logics with
histories [12, 28, 13, 3, 38, 16] is the idea of representing logical histories as auxiliary state,
thus enabling constructive reasoning, by relinking, about dynamically changing linearization
points. Since relinking is just a manipulation of otherwise standard auxiliary state, we
were able to use FCSL off the shelf, with no extensions to its metatheory. Furthermore, we
expect to be able to use FCSL’s higher-order features to reason about higher-order (i.e.,
parameterized by another data structure) snapshot-based constructions [34]. Related to our
result, O’Hearn et al. have shown how to employ history-based reasoning and Hoare-style
logic to non-constructively prove the existence of linearization points for concurrent objects
out of the data structure invariants [32]; this result is known as the Hindsight Lemma. The
reasoning principle presented in this paper generalizes that idea, since the Hindsight Lemma
is only applicable to “pure” concurrent methods (e.g., a concurrent set’s contains [15]) that
do not influence the position of other threads’ linearization points. In contrast, our history
relinking handles such cases, as showcased by Jayanti’s construction, where the linearization
point of write depends on the (future) outcome of scan.

Semantic proofs of linearizability. There has been a long line of research on establishing
linearizability using forward-backwards simulations [36, 7, 6]. These proofs usually require a
complex simulation argument and are not modular, because they require reasoning about
the entire data structure implementation, with all its methods, as a monolithic STS.

Recent works [18, 5, 9] describe methods for establishing linearizability of sophisticated
implementations (such as the Herlihy–Wing queue [19] or the time-stamped stack [9]) in
a modular way, via aspect-oriented proofs. This methodology requires devising, for each
class of objects (e.g., queues or stacks), a set of specification-specific conditions, called
aspects, characterizing the observed executions, and then showing that establishing such
properties implies its linearizability. This approach circumvents the challenge of reasoning
about future-dependent linearization points, at the expense of (a) developing suitable aspects
for each new data structure class and proving the corresponding “aspect theorem”, and (b)
verifying the aspects for a specific implementation. Even though some of the aspects have
been mechanized and proved adequate [9], currently, we are not aware of such aspects for
snapshots.

Our approach is based on program logics and the use of STSs to describe the state-space of
concurrent objects. Modular reasoning is achieved by means of separately proving properties
of specific STS transitions, and then establishing specifications of programs, composed out of
well-defined atomic commands, following the transitions, and respecting the STS invariants.

Proving linearizability using partial orders. Concurrently with us, Khyzha et al. [25] have
developed a proof method for proving linearizability, which can handle certain class of

ECOOP 2017



8:24 Concurrent Data Structures Linked in Time

data structures with similar future dependent behavior. The method works by introducing
a partial order of events for the data structure as auxiliary state, which in turn defines
the abstract histories used for satisfying the sequential specification of the data structure.
Relations are added to this partial order at commitment points of the instrumented methods,
which the verifier has to identify.

The ultimate goal of this method is to assert the linearizability of a concurrent data
structure. As we have shown in Section 4, FCSL goes beyond as it provides a logical
framework to carry out formal proofs about the correctness of a concurrent data structure
and its clients.

The proof technique also tracks the ordering of events differently from ours. Where we
keep a single witness for the current total ordering of events at all stages of execution, their
technique requires keeping many witnesses. Their main theorem requires a proof that all
linearizations of the abstract histories—i.e. all possible linear extensions of the partial order
into a total order—satisfy the sequential specification of the data structure.

Through personal communication we learned that the technique cannot apply, for instance,
to the verification of the time-stamped (TS) stack [9]. This is because a partial order does
not suffice to characterize the abstract histories required to verify the data structure. In
contrast, given the flexibility of FCSL in designing and reasoning with auxiliary state, we
believe that our technique would not suffer such shortcomings.

10 Conclusions

The paper illustrates a new approach allowing one to specify that the execution history of a
concurrent data structure can be seen as a sequence of atomic events. The approach is thus
similar in its goals to linearizability, but is carried out exclusively using a separation-style
logic to uniformly represent the state and time aspects of the data structure and its methods.

Reasoning about time using separation logic is very effective, as it naturally supports
dynamic and in-place updates to the temporal ordering of events, much as separation logic
supports dynamic and in-place updates of spatially linked lists. The need to modify the
ordering of events frequently appears in linearizability proofs, and has been known to be
tricky, especially when the order of a terminated event depends on the future. In our
approach, the modification becomes a conceptually simple manipulation of auxiliary state of
histories of colored timestamps.

We have carried out and mechanized our proof of Jayanti’s algorithm [22] in FCSL, without
needing any additions to the logic. Such development, together with the fact that FCSL
has previously been used to verify a number of non-trivial concurrent structures [38, 37, 39],
gives us confidence that the approach will be applicable, with minor modifications, to other
structures whose linearizations exhibit dynamic dependence on the future [9, 29, 20].

One modification that we envision will be in the design of the data type of timestamped
histories. In the current paper, a history of the snapshot object needs to keep only the write
events, but not the scan events. In contrast, in the case of stacks, a history would need to
keep both events for push and pop operations. But in FCSL, histories are a user-defined
concept, which is not hardwired into the semantics of the logic. Thus, the user can choose
any particular notion of history, as long as it satisfies the properties of a Partial Commutative
Monoid [27, 31]. Such a history can track pushes and pops, or any other auxiliary notion
that may be required, such as, e.g., specific ordering constraints on the events.



G. A. Delbianco, I. Sergey, A. Nanevski, and A. Banerjee 8:25

Acknowledgments. We thank the anonymous PC and AEC reviewers for their thorough
feedback and suggestions. We are also thankful to Ruy Ley-Wild, Juan Manuel Crespo, and
Artem Khyzha for their comments on earlier drafts of this manuscript.

References

1 FCSL: Fine-grained concurrent separation logic. http://software.imdea.org/fcsl/.
2 Martín Abadi and Leslie Lamport. The existence of refinement mappings. In Proceedings

of the Third Annual Symposium on Logic in Computer Science (LICS ’88), pages 165–175.
IEEE Computer Society, 1988. doi:10.1109/LICS.1988.5115.

3 Christian J. Bell, Andrew W. Appel, and David Walker. Concurrent separation logic for
pipelined parallelization. In Radhia Cousot and Matthieu Martel, editors, Static Analysis
- 17th International Symposium, SAS 2010, Perpignan, France, September 14-16, 2010.
Proceedings, volume 6337 of Lecture Notes in Computer Science, pages 151–166. Springer,
2010. doi:10.1007/978-3-642-15769-1_10.

4 Andrea Cerone, Alexey Gotsman, and Hongseok Yang. Parameterised linearisability. In
Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Auto-
mata, Languages, and Programming - 41st International Colloquium, ICALP 2014, Pro-
ceedings, Part II, volume 8573 of LNCS, pages 98–109. Springer, 2014. doi:10.1007/
978-3-662-43951-7_9.

5 Soham Chakraborty, Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis. Aspect-
oriented linearizability proofs. Logical Methods in Computer Science, 11(1), 2015. doi:
10.2168/LMCS-11(1:20)2015.

6 Robert Colvin, Simon Doherty, and Lindsay Groves. Verifying concurrent data structures
by simulation. Electr. Notes Theor. Comput. Sci., 137(2):93–110, 2005. doi:10.1016/j.
entcs.2005.04.026.

7 Robert Colvin, Lindsay Groves, Victor Luchangco, and Mark Moir. Formal verification of
a lazy concurrent list-based set algorithm. In Thomas Ball and Robert B. Jones, editors,
Computer Aided Verification, 18th International Conference, CAV 2006, Seattle, WA, USA,
August 17-20, 2006, Proceedings, volume 4144 of Lecture Notes in Computer Science, pages
475–488. Springer, 2006. doi:10.1007/11817963_44.

8 Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. Tada: A logic
for time and data abstraction. In Richard Jones, editor, ECOOP 2014 - Object-Oriented
Programming - 28th European Conference. Proceedings, volume 8586 of LNCS, pages 207–
231. Springer, 2014. doi:10.1007/978-3-662-44202-9_9.

9 Mike Dodds, Andreas Haas, and Christoph M. Kirsch. A scalable, correct time-stamped
stack. In Rajamani and Walker [35], pages 233–246. doi:10.1145/2676726.2676963.

10 Mike Dodds, Suresh Jagannathan, Matthew J. Parkinson, Kasper Svendsen, and Lars
Birkedal. Verifying custom synchronization constructs using higher-order separation logic.
ACM Trans. Program. Lang. Syst., 38(2):4:1–4:72, 2016. doi:10.1145/2818638.

11 Ivana Filipovic, Peter W. O’Hearn, Noam Rinetzky, and Hongseok Yang. Abstraction for
concurrent objects. Theor. Comput. Sci., 411(51-52):4379–4398, 2010. doi:10.1016/j.
tcs.2010.09.021.

12 Ming Fu, Yong Li, Xinyu Feng, Zhong Shao, and Yu Zhang. Reasoning about optimistic
concurrency using a program logic for history. In Paul Gastin and François Laroussinie, edit-
ors, CONCUR 2010 - Concurrency Theory, 21th International Conference, CONCUR 2010,
Paris, France, August 31-September 3, 2010. Proceedings, volume 6269 of Lecture Notes in
Computer Science, pages 388–402. Springer, 2010. doi:10.1007/978-3-642-15375-4_27.

13 Alexey Gotsman, Noam Rinetzky, and Hongseok Yang. Verifying concurrent memory re-
clamation algorithms with grace. In Matthias Felleisen and Philippa Gardner, editors, Pro-
gramming Languages and Systems - 22nd European Symposium on Programming, ESOP

ECOOP 2017

http://software.imdea.org/fcsl/
http://dx.doi.org/10.1109/LICS.1988.5115
http://dx.doi.org/10.1007/978-3-642-15769-1_10
http://dx.doi.org/10.1007/978-3-662-43951-7_9
http://dx.doi.org/10.1007/978-3-662-43951-7_9
http://dx.doi.org/10.2168/LMCS-11(1:20)2015
http://dx.doi.org/10.2168/LMCS-11(1:20)2015
http://dx.doi.org/10.1016/j.entcs.2005.04.026
http://dx.doi.org/10.1016/j.entcs.2005.04.026
http://dx.doi.org/10.1007/11817963_44
http://dx.doi.org/10.1007/978-3-662-44202-9_9
http://dx.doi.org/10.1145/2676726.2676963
http://dx.doi.org/10.1145/2818638
http://dx.doi.org/10.1016/j.tcs.2010.09.021
http://dx.doi.org/10.1016/j.tcs.2010.09.021
http://dx.doi.org/10.1007/978-3-642-15375-4_27


8:26 Concurrent Data Structures Linked in Time

2013, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, volume 7792 of Lecture Notes
in Computer Science, pages 249–269. Springer, 2013. doi:10.1007/978-3-642-37036-6_
15.

14 Alexey Gotsman and Hongseok Yang. Linearizability with ownership transfer. In Maciej
Koutny and Irek Ulidowski, editors, CONCUR 2012 - Concurrency Theory - 23rd Inter-
national Conference, CONCUR 2012, Newcastle upon Tyne, UK, September 4-7, 2012.
Proceedings, volume 7454 of Lecture Notes in Computer Science, pages 256–271. Springer,
2012. doi:10.1007/978-3-642-32940-1_19.

15 Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N. Scherer III, and
Nir Shavit. A lazy concurrent list-based set algorithm. In James H. Anderson, Giuseppe
Prencipe, and Roger Wattenhofer, editors, Principles of Distributed Systems, 9th Inter-
national Conference, OPODIS 2005, Pisa, Italy, December 12-14, 2005, Revised Selected
Papers, volume 3974 of Lecture Notes in Computer Science, pages 3–16. Springer, 2005.
doi:10.1007/11795490_3.

16 Nir Hemed, Noam Rinetzky, and Viktor Vafeiadis. Modular verification of concurrency-
aware linearizability. In Yoram Moses, editor, Distributed Computing - 29th Interna-
tional Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings, volume
9363 of Lecture Notes in Computer Science, pages 371–387. Springer, 2015. doi:10.1007/
978-3-662-48653-5_25.

17 Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and the
synchronization-parallelism tradeoff. In Friedhelm Meyer auf der Heide and Cynthia A.
Phillips, editors, SPAA 2010: Proceedings of the 22nd Annual ACM Symposium on Paral-
lelism in Algorithms and Architectures, Thira, Santorini, Greece, June 13-15, 2010, pages
355–364. ACM, 2010. doi:10.1145/1810479.1810540.

18 Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis. Aspect-oriented linearizability
proofs. In Pedro R. D’Argenio and Hernán C. Melgratti, editors, CONCUR 2013 - Concur-
rency Theory - 24th International Conference, CONCUR 2013, Buenos Aires, Argentina,
August 27-30, 2013. Proceedings, volume 8052 of Lecture Notes in Computer Science, pages
242–256. Springer, 2013. doi:10.1007/978-3-642-40184-8_18.

19 Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990. doi:10.1145/
78969.78972.

20 Moshe Hoffman, Ori Shalev, and Nir Shavit. The baskets queue. In Eduardo Tovar,
Philippas Tsigas, and Hacène Fouchal, editors, Principles of Distributed Systems, 11th
International Conference, OPODIS 2007, Guadeloupe, French West Indies, December 17-
20, 2007. Proceedings, volume 4878 of Lecture Notes in Computer Science, pages 401–414.
Springer, 2007. doi:10.1007/978-3-540-77096-1_29.

21 Bart Jacobs and Frank Piessens. Expressive modular fine-grained concurrency specifica-
tion. In Thomas Ball and Mooly Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, TX,
USA, January 26-28, 2011, pages 271–282. ACM, 2011. doi:10.1145/1926385.1926417.

22 Prasad Jayanti. An optimal multi-writer snapshot algorithm. In Proceedings of the 37th
Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005,
pages 723–732. ACM, 2005. doi:10.1145/1060590.1060697.

23 Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. Higher-order ghost state.
In Jacques Garrigue, Gabriele Keller, and Eijiro Sumii, editors, Proceedings of the 21st
ACM SIGPLAN International Conference on Functional Programming, ICFP 2016, pages
256–269. ACM, 2016. doi:10.1145/2951913.2951943.

http://dx.doi.org/10.1007/978-3-642-37036-6_15
http://dx.doi.org/10.1007/978-3-642-37036-6_15
http://dx.doi.org/10.1007/978-3-642-32940-1_19
http://dx.doi.org/10.1007/11795490_3
http://dx.doi.org/10.1007/978-3-662-48653-5_25
http://dx.doi.org/10.1007/978-3-662-48653-5_25
http://dx.doi.org/10.1145/1810479.1810540
http://dx.doi.org/10.1007/978-3-642-40184-8_18
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1007/978-3-540-77096-1_29
http://dx.doi.org/10.1145/1926385.1926417
http://dx.doi.org/10.1145/1060590.1060697
http://dx.doi.org/10.1145/2951913.2951943


G. A. Delbianco, I. Sergey, A. Nanevski, and A. Banerjee 8:27

24 Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,
and Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent
reasoning. In Rajamani and Walker [35], pages 637–650. doi:10.1145/2676726.2676980.

25 Artem Khyzha, Mike Dodds, Alexey Gotsman, and Matthew J. Parkinson. Proving lin-
earizability using partial orders. In Hongseok Yang, editor, Programming Languages and
Systems - 26th European Symposium on Programming, ESOP 2017. Proceedings, volume
10201 of LNCS, pages 639–667. Springer, 2017. doi:10.1007/978-3-662-54434-1_24.

26 Artem Khyzha, Alexey Gotsman, and Matthew J. Parkinson. A generic logic for proving
linearizability. In John S. Fitzgerald, Constance L. Heitmeyer, Stefania Gnesi, and Anna
Philippou, editors, FM 2016: Formal Methods - 21st International Symposium, Limassol,
Cyprus, November 9-11, 2016, Proceedings, volume 9995 of Lecture Notes in Computer
Science, pages 426–443, 2016. doi:10.1007/978-3-319-48989-6_26.

27 Ruy Ley-Wild and Aleksandar Nanevski. Subjective auxiliary state for coarse-grained con-
currency. In Roberto Giacobazzi and Radhia Cousot, editors, The 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13,
pages 561–574. ACM, 2013. doi:10.1145/2429069.2429134.

28 Hongjin Liang and Xinyu Feng. Modular verification of linearizability with non-fixed lin-
earization points. In Hans-Juergen Boehm and Cormac Flanagan, editors, ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, Seattle, WA,
USA, June 16-19, 2013, pages 459–470. ACM, 2013. doi:10.1145/2462156.2462189.

29 Adam Morrison and Yehuda Afek. Fast concurrent queues for x86 processors. In Alex
Nicolau, Xiaowei Shen, Saman P. Amarasinghe, and Richard W. Vuduc, editors, ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’13, Shen-
zhen, China, February 23-27, 2013, pages 103–112. ACM, 2013. doi:10.1145/2442516.
2442527.

30 Aleksandar Nanevski. Separation logic and concurrency. Oregon programming languages
summer school, 2016. URL: http://software.imdea.org/~aleks/oplss16/notes.pdf.

31 Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco. Commu-
nicating state transition systems for fine-grained concurrent resources. In Shao [40], pages
290–310. doi:10.1007/978-3-642-54833-8_16.

32 Peter W. O’Hearn, Noam Rinetzky, Martin T. Vechev, Eran Yahav, and Greta Yorsh.
Verifying linearizability with hindsight. In Andréa W. Richa and Rachid Guerraoui, editors,
Proceedings of the 29th Annual ACM Symposium on Principles of Distributed Computing,
PODC 2010, Zurich, Switzerland, July 25-28, 2010, pages 85–94. ACM, 2010. doi:10.
1145/1835698.1835722.

33 Susan S. Owicki and David Gries. Verifying properties of parallel programs: An axiomatic
approach. Commun. ACM, 19(5):279–285, 1976. doi:10.1145/360051.360224.

34 Erez Petrank and Shahar Timnat. Lock-free data-structure iterators. In Yehuda Afek,
editor, Distributed Computing - 27th International Symposium, DISC 2013, Jerusalem,
Israel, October 14-18, 2013. Proceedings, volume 8205 of Lecture Notes in Computer Science,
pages 224–238. Springer, 2013. doi:10.1007/978-3-642-41527-2_16.

35 Sriram K. Rajamani and David Walker, editors. Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015,
Mumbai, India, January 15-17, 2015. ACM, 2015.

36 Gerhard Schellhorn, Heike Wehrheim, and John Derrick. How to prove algorithms linear-
isable. In P. Madhusudan and Sanjit A. Seshia, editors, Computer Aided Verification -
24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceed-
ings, volume 7358 of Lecture Notes in Computer Science, pages 243–259. Springer, 2012.
doi:10.1007/978-3-642-31424-7_21.

ECOOP 2017

http://dx.doi.org/10.1145/2676726.2676980
http://dx.doi.org/10.1007/978-3-662-54434-1_24
http://dx.doi.org/10.1007/978-3-319-48989-6_26
http://dx.doi.org/10.1145/2429069.2429134
http://dx.doi.org/10.1145/2462156.2462189
http://dx.doi.org/10.1145/2442516.2442527
http://dx.doi.org/10.1145/2442516.2442527
http://software.imdea.org/~aleks/oplss16/notes.pdf
http://dx.doi.org/10.1007/978-3-642-54833-8_16
http://dx.doi.org/10.1145/1835698.1835722
http://dx.doi.org/10.1145/1835698.1835722
http://dx.doi.org/10.1145/360051.360224
http://dx.doi.org/10.1007/978-3-642-41527-2_16
http://dx.doi.org/10.1007/978-3-642-31424-7_21


8:28 Concurrent Data Structures Linked in Time

37 Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. Mechanized verification of fine-
grained concurrent programs. In David Grove and Steve Blackburn, editors, Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design and Implement-
ation, PLDI 2015, pages 77–87. ACM, 2015. doi:10.1145/2737924.2737964.

38 Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. Specifying and verifying concur-
rent algorithms with histories and subjectivity. In Jan Vitek, editor, Programming Lan-
guages and Systems - 24th European Symposium on Programming, ESOP 2015. Proceedings,
volume 9032 of LNCS, pages 333–358. Springer, 2015. doi:10.1007/978-3-662-46669-8_
14.

39 Ilya Sergey, Aleksandar Nanevski, Anindya Banerjee, and Germán Andrés Delbianco.
Hoare-style specifications as correctness conditions for non-linearizable concurrent objects.
In Eelco Visser and Yannis Smaragdakis, editors, Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications, OOPSLA 2016, pages 92–110. ACM, 2016. doi:10.1145/2983990.2983999.

40 Zhong Shao, editor. Programming Languages and Systems - 23rd European Symposium
on Programming, ESOP 2014, Proceedings, volume 8410 of LNCS. Springer, 2014. doi:
10.1007/978-3-642-54833-8.

41 Kasper Svendsen and Lars Birkedal. Impredicative Concurrent Abstract Predicates. In
Shao [40], pages 149–168. doi:10.1007/978-3-642-54833-8_9.

42 Aaron Turon, Derek Dreyer, and Lars Birkedal. Unifying refinement and hoare-style reason-
ing in a logic for higher-order concurrency. In Greg Morrisett and Tarmo Uustalu, editors,
ACM SIGPLAN International Conference on Functional Programming, ICFP’13, pages
377–390. ACM, 2013. doi:10.1145/2500365.2500600.

43 Viktor Vafeiadis. Modular fine-grained concurrency verification. PhD thesis, University of
Cambridge, 2007. URL: http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-726.pdf.

44 Viktor Vafeiadis, Maurice Herlihy, Tony Hoare, and Marc Shapiro. Proving correctness
of highly-concurrent linearisable objects. In Josep Torrellas and Siddhartha Chatterjee,
editors, Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, PPOPP 2006, New York, New York, USA, March 29-31, 2006, pages
129–136. ACM, 2006. doi:10.1145/1122971.1122992.

45 Viktor Vafeiadis and Matthew J. Parkinson. A marriage of rely/guarantee and separation
logic. In Luís Caires and Vasco Thudichum Vasconcelos, editors, CONCUR 2007 - Concur-
rency Theory, 18th International Conference, CONCUR 2007, Lisbon, Portugal, September
3-8, 2007, Proceedings, volume 4703 of Lecture Notes in Computer Science, pages 256–271.
Springer, 2007. doi:10.1007/978-3-540-74407-8_18.

A A brief introduction to FCSL

A state of a resource in FCSL [31], such as that of snapshot data structure discussed in this
paper, always consists of three distinct auxiliary variables that we name as, ao and aj. These
stand for the abstract self state, other state, and shared (joint) state.

However, the user can pick the types of these variables based on the application. In
this paper, we have chosen as and ao to be histories, and have correspondingly named them
χ s and χ o. On the other hand, aj consists of all the other auxiliary components that we
discussed, such as the variables χ j, τ , κ, Sx, Sy, Wx and Wy. These variables become merely
projections out of aj. It is essential that as and ao have a common type, which moreover,
exhibits the algebraic structure of a partial commutative monoid (PCM). A PCM requires a
partial binary operation ‚ which is commutative and associative, and has a unit. PCMs are

http://dx.doi.org/10.1145/2737924.2737964
http://dx.doi.org/10.1007/978-3-662-46669-8_14
http://dx.doi.org/10.1007/978-3-662-46669-8_14
http://dx.doi.org/10.1145/2983990.2983999
http://dx.doi.org/10.1007/978-3-642-54833-8
http://dx.doi.org/10.1007/978-3-642-54833-8
http://dx.doi.org/10.1007/978-3-642-54833-8_9
http://dx.doi.org/10.1145/2500365.2500600
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-726.pdf
http://dx.doi.org/10.1145/1122971.1122992
http://dx.doi.org/10.1007/978-3-540-74407-8_18


G. A. Delbianco, I. Sergey, A. Nanevski, and A. Banerjee 8:29

important, as they give a generic way to define the inference rule for parallel composition.

e1 : tP1u A tQ1u@C e2 : tP2u B tQ2u@C

e1 ‖ e2 : tP1 f P2u pAˆBq trr.1{rsQ1 f rr.2{rsQ2u@C

Here, f is defined over state predicates P1 and P2 as follows.

pP1 f P2qpas, aj, aoq ðñ Dx1 x2. as “ x1 ‚ x2 ^ P1px1, aj, x2 ‚ aoq ^ P2px2, aj, x1 ‚ aoq

The inference rule, and the definition of f, formalize the intuition that when a parent
thread forks e1 and e2, then e1 is part of the environment for e2 and vice-versa. This is so
because the self component as of the parent thread is split into x1 and x2; x1 and x2 become
the self parts of e1, and e2 respectively, but x2 is also added to the other component ao of
e1, and dually, x1 is added to the other component of e2.

In this paper, the PCM we chose is that of histories, which are a PCM under the operation
of disjoint union Ÿ, with the H history as the unit. More common in separation logic is
to use heaps, which, similarly to histories, form PCM under disjoint (heap) union and the
empty heap, empty. In FCSL, these can be combined into a Cartesian product PCM, to
enable reasoning about both space and time in the same system.

The frame rule is a special case of the parallel composition rule, obtained when e2 is
taken to be the idle thread.

e : tP u A tQu@C

e : tP fRu A tQfRu@C
R is stable

For the purpose of this paper, the rule is important because it allows us to generalize
the specifications of write and scan from Figure 4. In that figure, both procedures start
with the precondition that χ s “ H. But what do we do if the procedures are invoked by
another one which has already completed a number of writes, and thus its χ s is non-empty.
By f-ing with the frame predicate R p“ pχ s “ kq, the frame rule allows us to generalize
these specs into ones where the input history equals an arbitrary k:

write pp, vq : tχ s “ ku

tDt. χ1s “ h Ÿ t ÞÑ pp, vq ^ dompχ oq Y scanned Ω Ď Ω1

�

tu@C
scan : tχ s “ ku

tr. Dt. χ1s “ k ^ r “eval tΩ1 χ1 ^ dompχq Ď Ω1 Ó t^ t P scanned Ω1u@C

These two large-footprint instances of the rules for scan and write are those used in the proof
of our clients in Section 4. For further details on FCSL, its semantics and implementation,
we refer the reader to [31].

B Implementation and Correctness of relink

In Section 6, we described briefly the implementation of relink, without giving much details
on the auxiliary helper functions inspect and push. We give here their definitions, together
with some associated properties:

ECOOP 2017



8:30 Concurrent Data Structures Linked in Time

§ Definition 15 (inspect). Given two timestamps tx, ty then inspect tx ty σ κ is defined as
follows:

inspect tx ty κ p“

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Yes x tz if tx ăσ ty, tx “ last_greenσ χx,
tz “ yellow_timestampσ χx, and tz ăσ ty

Yes y tz if ty ăσ tx, ty “ last_greenσ χy,
tz “ yellow_timestampσ χy, and tz ăσ tx

No otherwise

§ Definition 16 (push). push is a surgery operation defined on σ as follows:

Let σ “ σăi `̀ i `̀ σi..j `̀ j `̀ σąj , then push i j σ “ σăi`̀ σi..j `̀ j `̀ i `̀ σąj

The definition of inspect works under the assumption that tx and ty are, respectively, the
last green or yellow timestamp in χx and χy. This latter fact is recovered in the definition of
relink in Figure 6 and reinforced in line 21 in the proof of scan in Figure 8. When inspect
returns Yes p tz, σ1 is computed by pushing some i timestamp past another timestamp j in
σ. The definition of push above shows that this operation is an algebraic manipulation on
sequences. In fact, we implement it using standard surgery operations on lists: `̀ , take, etc.

In Section 6, we have mentioned that the correctness aspect of auxiliary code involves
proving that the code preserves the auxiliary state invariants from Section 5. For example,
the correctness proof of relink, relies on the following helper lemmas. The first lemma asserts
that inspect correctly determines the “offending” timestamp; the second and the third lemma
assert that push modifies σ in a way that allows us to prove (in Section 7), that the pair
prx, ryq a valid snapshot.

§ Lemma 17 (Correctness of inspect). If tx, ty are timestamps for write events of rx, ry,
then inspect tx ty σ κ correctly determines that prx, ryq is a valid snapshot under ordering
ăσ and colors κ, or otherwise returns the “offending” timestamp. More formally, if Ss “
SOff toff , Sx “ True, Sy “ True, and for each p P tx, yu, tp ÞÑ pp, rpq P χ and lastGY p tp, the
following are exhaustive possibilities.

1. If tx ăσ ty and κptxq “ yellow, then inspect tx ty σ κ “ No. Symmetrically for ty ăσ tx.
2. If tx ăσ ty, tx “ last_green χx, and @s P χx. tx ăσ s ùñ ty ăσ s, then

inspect tx ty σ κ “ No. Symmetrically for ty ăσ tx.
3. If tx ăσ ty, tx “ last_green χx, s P χx, and tx ăσ s ăσ ty, it follows that inspect tx tyσκ “

Yesx s and κpsq “ yellow. Symmetrically for ty ăσ tx.

§ Lemma 18 (Push Mono). Given elements a, b, i, j, all in σ, and σ1 “ push i j σ, then:
1. If a ăσ i then a ăσ b ùñ a ă1σ b.
2. If j ăσ b then a ăσ b ùñ a ă1σ b.
3. If a ‰ i then a ăσ b ùñ a ă1σ b

§ Lemma 19 (Correctness of push). Given Ss “ SOff toff , Sx “ Sy “ True, and for p P tx, yu,
we have tp ÞÑ pp, rpq P χ, lastGY p tp, and inspect tx ty σ κ “ Yes p ts. If we name
tz P ttx, tyu, with p ‰ z, and σ1 “ push ts tz σ, then:
1. relink satisfies the 2-state invariants from Invariant 1.
2. χ1, σ1, τ 1, κ1 satisfies all the resource invariants from Section 5, i.e. Invariants 3–10.

In our mechanization, these three lemmas allow us to prove Lemma 13, relink’s main
property.



Contracts in the Wild: A Study of Java Programs∗

Jens Dietrich1, David J. Pearce2, Kamil Jezek3, and Premek Brada4

1 School of Engineering and Advanced Technology, Massey University
Palmerston North, New Zealand
j.b.dietrich@massey.ac.nz

2 School of Engineering and Computer Science
Victoria University of Wellington, Wellington, New Zealand
djp@ecs.vuw.ac.nz

3 NTIS – New Technologies for the Information Society
Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech
Republic
kjezek@kiv.zcu.cz

4 NTIS – New Technologies for the Information Society
Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech
Republic
brada@kiv.zcu.cz

Abstract
The use of formal contracts has long been advocated as an approach to develop programs that

are provably correct. However, the reality is that adoption of contracts has been slow in practice.
Despite this, the adoption of lightweight contracts — typically utilising runtime checking — has
progressed. In the case of Java, built-in features of the language (e.g. assertions and exceptions)
can be used for this. Furthermore, a number of libraries which facilitate contract checking have
arisen.

In this paper, we catalogue 25 techniques and tools for lightweight contract checking in Java,
and present the results of an empirical study looking at a dataset extracted from the 200 most
popular projects found on Maven Central, constituting roughly 351,034 KLOC. We examine
(1) the extent to which contracts are used and (2) what kind of contracts are used. We then
investigate how contracts are used to safeguard code, and study problems in the context of two
types of substitutability that can be guarded by contracts: (3) unsafe evolution of APIs that may
break client programs and (4) violations of Liskov’s Substitution Principle (LSP) when methods
are overridden. We find that: (1) a wide range of techniques and constructs are used to represent
contracts, and often the same program uses different techniques at the same time; (2) overall,
contracts are used less than expected, with significant differences between programs; (3) projects
that use contracts continue to do so, and expand the use of contracts as they grow and evolve;
and, (4) there are cases where the use of contracts points to unsafe subtyping (violations of Liskov
Substitution Principle) and unsafe evolution.

1998 ACM Subject Classification D.1.5 Object-oriented Programming, D.2.4 Software/Pro-
gram Verification, D.3.3 Language Constructs and Features

Keywords and phrases verification, design-by-contract, assertions, preconditions, postconditions,
runtime checking, java, input validation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.9

∗ This project was supported by a gift from Oracle Labs Australia to the first author and by the Ministry
of Education, Youth and Sports of the Czech Republic under the project PUNTIS (LO1506) under the
program NPU I.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Jens Dietrich, David J. Pearce, Kamil Jezek, and Premek Brada;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 9; pp. 9:1–9:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


9:2 Contracts in the Wild

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.3.2.6

1 Introduction

The idea of providing formal specifications of computer programs in the form of pre- and
post-conditions has a long history in Computer Science. The seminal works of Floyd, Hoare,
and Naur proposed rigorous techniques for reasoning about programs and establishing their
specifications [65, 58, 82]. Hoare, for example, provided an axiomatic means for relating pre-
conditions to post-conditions. By the mid-seventies the vernacular of contracts, specifically
pre- and post-conditions, was widespread. The idea of one program mechanically verifying
another soon arose, and early efforts included that of King [74], Deutsch [46], the Gypsy
Verification Environment [61] and the Stanford Pascal Verifier [78].

A verifying compiler, following Hoare’s vision, “uses automated mathematical and logical
reasoning to check the correctness of the programs that it compiles” [64]. The modern
era of verifying compilers can be traced back to the pioneering work at Compaq Systems
Research Center which led to the Extended Static Checker for Modula-3 and subsequently for
Java [45, 57]. Since then a variety of other tools employing contracts have blossomed, including
JML [42], Spec# [18, 19], Dafny [76, 77], Why3 [56], VeriFast [69, 68], Frama-C [43, 62] and
Whiley [84, 85]. Spark/ADA is a notable exception as a commercially developed system used
extensively in industry [70, 17]. Examples of this include space-control systems [28], aviation
systems [37], automobile systems [66] and railway systems [50].

At this point we must acknowledge that, despite some success stories, tools for compile-
time checking of contracts are not in widespread use [27, 81]. Spec# is a pertinent example as
a project that aimed to “build a real system that real programmers can use on real programs to
do real verification” [18]. But, despite considerable investment, the project failed to deliver on
this and wrapped up without making it into production. 1 However, one idea stemming from
the project has made its way into production. Specifically, Code Contracts were introduced
in .NET 4.0 which, essentially, constitutes a library for static and runtime checking of pre-
and post-conditions [55].

1.1 Contracts and Their Checking

Whilst the adoption of static verification has been hampered by a lack of effective tooling,
runtime contract checking remains a cost-effective and pragmatic alternative [39]. Empirical
studies have consistently shown runtime contracts as effective at identifying faults and aiding
diagnosis [92, 95, 15, 32]. Testing and coverage frameworks compound these benefits by giving
mechanisms to exercise contracts and establish when a program is “correct enough” [63, 88].

Our notion of contract respects the general assume-guarantee principle and follows
the Design by Contract viewpoint promoted by Meyer [80], where contracts are viewed as
lightweight specifications: “The principles of Design by Contract form the basis of the Eiffel
approach and account for a good deal of its appeal. Eiffel’s contracts are the result of a design
trade-off between the full extent of formal specifications and what is acceptable to practicing
software developers.”

1 Despite these comments, we do believe the project was a success in many respects and has helped to
advance the field considerably.

http://dx.doi.org/10.4230/DARTS.3.2.6


J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:3

A key observation here is that usability is as important as the strength of the formalism.
That is, techniques which are heavy in formalism and specialized syntax have a low chance
of being adopted by ordinary programmers [80]. Simpler forms like type annotations and
assertions should therefore have higher adoption rates in general. As an example, Hoare
reported that the Microsoft Office source code contained (at that time) around 250M runtime
assertions [63].

In practice, contracts manifest themselves in a variety of ways: firstly, testing frameworks
typically provide specialised constructs (e.g. JUnit’s assertNotNull()); secondly, most
languages support runtime assertions (e.g. Java assert) within the code itself; finally,
one can always utilise more ad-hoc methods (e.g. Java IllegalArgumentException) and,
indeed, a number of libraries have sprung up here (e.g. Guava with its Preconditions.check*
methods, etc). There are also specific language extensions which support contracts to various
degrees. For example, Eiffel [79] and the contract languages of JML [75] and Spec# [18]
support runtime contract checking.

1.2 Contracts and Evolution
Another aspect related to the use of contracts in practice is evolution — that is, how the
contracts vary between different versions of a program and how this can affect its clients.
This is important with the prevalence of modern build tools, like Maven and Gradle, which
automate dependency resolution. Frameworks like OSGi [98] take this further and resolve
dependencies at runtime against components supplied via repositories. Such systems support
declarative dependencies using version ranges and, oftentimes, checks normally performed
at build time (e.g. testing) are bypassed as dependencies are automatically updated at
deployment or runtime. In this context, contracts of different kinds [24] play an important
part to safeguard this process of composition using “contractually specified interfaces” [96].
This is especially true if they can be aggregated in computed and automatically enforced
meta-data such as semantic versions [89].

1.3 Research Questions and Contributions
This paper is concerned with how contracts are used in practice in the world of Java programs.
We first examine a number of different ways that contracts can manifest themselves in Java.
Then we investigate two related issues: firstly, whether contracts are actually being used and
how often; secondly, how they evolve and whether or not they identify breaking changes in
client-supplier composition. Specifically, we try to answer the following research questions:

RQ1 Which language features are used to represent contracts in real-world Java programs?
RQ2 How does the use of contracts change throughout the evolution of a program?
RQ3 Are contracts used correctly in the context of program evolution in real-world Java

programs?
RQ4 Are contracts used correctly in the context of subtyping in real-world Java programs?

Note, RQ4 can be rephrased roughly as: are there contract-based violations of Liskov’s
Substitution Principle in real-world Java programs? In an attempt to answer these questions,
we performed a detailed analysis of a data set extracted from the Maven Central repository
of Java-based program artefacts which is unbiased with respect to contract use. The
contributions of this paper are:

1. We present a classification of contract constructs in existing Java programs and a
lightweight static analysis for their identification. Our analysis looks for patterns in the

ECOOP 2017



9:4 Contracts in the Wild

program source, e.g. the use of Java assert, throwing of IllegalArgumentExceptions,
use of various contract APIs (such as Guava’s Preconditions) and annotations (like
JSR303 and JSR305). Altogether, we investigated the presence of 25 different techniques
to represent contracts.

2. We report on an empirical study of 176 projects with 6,934 versions hosted on Maven
central, constituting 351,034 KLOC. Our findings suggest that: firstly, contracts of
different types are being used (though less than might perhaps be expected); and,
secondly, that problems with respect to contracts do indeed arise in the wild in the
contexts of subtyping and evolution.

2 Contract Patterns in Java

2.1 Terminology
For the purpose of our analysis, we consider a contract as composed of contract elements.
Contracts are associated with code artefacts such as methods, fields or classes. The contract
elements associated with a method are pre- and post-conditions which specify the constraints
on its input and output values, representing the methods’s assumptions and guarantees,
respectively. We also consider class invariants as contract elements associated with classes
and fields. Class invariants are not associated with particular methods, but apply to all
(public) methods of the respective class. According to Meyer [80], class invariants can be
considered as quantified contract elements for all (public) methods of a class: “In effect,
then, the invariant is added to the precondition and postcondition of every exported routine
of the class”.

Contracts can be used for static verification and/or evaluated at runtime. Contract
elements generally fit into the pattern condition-action-message, though this is sometimes
hidden or implicit. That is, a condition that can be evaluated to true or false, indicating
whether the constraint is satisfied or not, and an action that is executed in case the constraint
is violated. A contract element might also include an optional message to provide additional
information useful for diagnosis. If the condition and action are explicit, then the element
carries its own enforcement semantics. For instance, this is the case for assertion-based
contracts in Java: at runtime, if assertion checking is enabled and the evaluation of the
asserted expression fails, an AssertionError is created and thrown. If a contract element is
not associated with a condition and action, the enforcement semantics is provided by other
means such as naming convention, tooling or documentation. For instance, this is the case
for certain annotation-based contracts where pluggable annotation processors are used for
this purpose.

Our notion of contract element corresponds to assertions used by Meyer [80] and in
Eiffel: “Eiffel encourages software developers to express formal properties of classes by writing
assertions, which may in particular appear in the following roles: .. routine preconditions
.. routine postconditions .. class invariants” 2. Unfortunately, the term assertion has a
slightly different meaning in Java as it is associated with the assert statement. As we will
discuss in more detail below, assert statements can be used to write post-conditions and
class invariants, but they are not suitable for pre-conditions. Furthermore, they can also be
used in a manner where they do not represent any contract element.

2 https://archive.eiffel.com/doc/online/eiffel50/intro/language/invitation-07.html (ac-
cessed 10 January 2017)

https://archive.eiffel.com/doc/online/eiffel50/intro/language/invitation-07.html


J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:5

Table 1 Contract constructs and their classification.

Category Example constructs
CREs IllegalArgumentException
(2 types) IllegalStateException

NullPointerException
IndexOutOfBoundsException
ArrayIndexOutOfBoundsException
StringIndexOutOfBoundsException
UnsupportedOperationException

APIs com.google.common.base.Preconditions.* (Guava)
(4 types) org.apache.commons.lang3.Validate.*

org.springframework.util.Assert.*
Assertions assert (Java)
(1 type)
Annotations javax.annotation.* (JSR305)
(17 types) javax.annotation.concurrent.* (JSR305)

javax.validation.constraints.* (JSR303, JSR349)
org.jetbrains.annotations.*
org.intellij.lang.annotations.*
edu.umd.cs.findbugs.annotations.*

Other (1 type) (jContractor)

In the following subsections we discuss the various categories of contract element patterns
and forms we investigated, and for each one provide examples of concrete types of constructs
by which they are expressed. The list of categories and the initial set of types was extracted
from a study of academic and grey literature (wikipedia, stackoverflow, c2.com). Table 1
summarises the classification. The numbers in the first column indicate the number of
patterns found in the respective category; the total number of patterns we considered is 25.

2.2 Conditional Runtime Exceptions (CRE) and Unsupported
Operations

This is the most basic approach, and constitutes throwing an exception on condition failure,
enforcing the contract at runtime. In Effective Java, Bloch suggests using runtime exceptions
to indicate programming errors, typically pre-condition violations [26, item 58]. Rudimentary
support is provided in the Java standard library through exceptions specifically aimed at
signalling violations, such as IllegalArgumentException. Listing 1 illustrates an example.

We are particularly interested in these runtime exceptions: IllegalStateException,
IllegalArgumentException, NullpointerException, IndexOutOfBoundsException, Un-
supportedOperationException (all in the java.lang package). Of these, Unsupported-
OperationException is especially interesting as it indicates when a method is unavailable.
This models the semantics of optional methods (such as Iterator.remove()), and also
the absence of platform-specific operations (e.g. for the user interface). In this sense,
UnsupportedOperationException represents the strongest possible pre-condition that can-
not be satisfied by any caller. The common usage pattern is that a method only instantiates
and throws the exception without using a guard condition.

ECOOP 2017



9:6 Contracts in the Wild

1 static public double binomial(int k, int n, double p) {
2 if( (p < 0.0) || (p > 1.0) )
3 throw new IllegalArgumentException();
4 if( (k < 0) || (n < k) )
5 throw new IllegalArgumentException();
6 ...
7 }

Listing 1 Use of conditional runtime exceptions in pre-condition checks in
cern.jet.stat.Probability (in colt 1.2.0 ).

1 public static void checkArgument(boolean expression) {
2 if (!expression) {
3 throw new IllegalArgumentException();
4 }
5 }

Listing 2 Contract API method defined in com.google.common.base.Preconditions (in
Guava 19.0 ).

2.3 Contract APIs

The next level of sophistication is to provide a contract API consisting of wrappers around
conditional exceptions (see for example Listing 2). This provides a potentially richer language
for expressing contracts, conveys the programmer’s intention more clearly, and introduces
less clutter. Contract API methods are typically facilitated by making them static (i.e.
to be used as though locally defined via static imports). Static methods also facilitate fast
execution as static dispatch (via invokestatic) is used.

The popular Guava [6] library contains the com.google.common.base.Preconditions
class with multiple static check* methods (e.g. checkArgument(), checkState(), etc). The
documentation stipulates this class contains “Static convenience methods that help a method
or constructor check whether it was invoked correctly (whether its preconditions have been
met)”. 3 The same document also indicates that these methods are not to be used for other
checks (including post-condition and invariant checks): “It is of course possible to use the
methods of this class to check for invalid conditions which are not the caller’s fault. Doing
so is not recommended because it is misleading to future readers of the code and of stack
traces.”. Listing 3 shows some code from the Hadoop project illustrating the use of Guava to
represent a pre-condition.

Likewise, Apache Commons provides the class Validate [1] with similar semantics which
the documentation states “assists in validating arguments”.4 Other examples are Spring
Assert [12] (org.springframework.util.Assert) and valid4j [13] which has similar goals
and is notable for using the hamcrest internal DSL [7] for representing conditions.

There are two caveats concerning contract APIs in practical use. Firstly, they introduce
some performance overhead, because the message is always constructed and the condition

3 https://google.github.io/guava/releases/19.0/api/docs/com/google/common/base/
Preconditions.html (accessed 10 January 2017)

4 https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/
lang3/Validate.html (accessed 10 January 2017)

https://google.github.io/guava/releases/19.0/api/docs/com/google/common/base/Preconditions.html
https://google.github.io/guava/releases/19.0/api/docs/com/google/common/base/Preconditions.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/Validate.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/Validate.html


J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:7

1 import com.google.common.base.Preconditions;
2 ...
3 FileDistributionCalculator(Configuration conf,
4 long maxSize,int steps,PrintWriter out) {
5 this.conf=conf;
6 this.maxSize=maxSize==0?MAX_SIZE_DEFAULT:maxSize;
7 this.steps=steps==0?INTERVAL_DEFAULT:steps;
8 this.out=out;
9 long numIntervals=this.maxSize/this.steps;

10 // avoid OutOfMemoryError when allocating an array
11 Preconditions.checkState(numIntervals<=MAX_INTERVALS,
12 "Too many distribution intervals (maxSize/step): " +
13 numIntervals + ", should be less than " +
14 (MAX_INTERVALS+1) + ".");
15 this.distribution=new int[1+(int)(numIntervals)];
16 }

Listing 3 Use of the Guava contract API in org.apache.hadoop.hdfs.tools.offlineImage-
Viewer.FileDistributionCalculator (in Hadoop 2.5.0 ).

evaluated completely (i.e. to pass them to the contract API method). With conditional
exceptions, error messages are only constructed if the condition is violated. The Guava
documentation explicitly recommends reverting to conditional exceptions in performance-
critical situations for this reason. Secondly, the use of APIs adds a dependency to projects.
This makes the use of APIs a less obvious choice. A good example is the decision of the
ElasticSearch project to remove the use of the Guava pre-condition API for those reasons5.

Apart from the example APIs mentioned above, it is possible that further contract APIs
exist. In some cases, these are only defined and used locally within the scope of a certain
project or a group of related projects. One such case will be discussed in section 4.2.

2.4 Assertions
Java has supported assertions through the assert keyword since version 1.4 released in 2002.
Assertions implement runtime checks by evaluating boolean conditions. If this check fails, an
error (AssertionError) is thrown.

By default, runtime assertion checking is disabled and an explicit parameter must be
used in order to switch assertion checking on when the JVM starts. While the ability to
switch off assertions centrally is useful for addressing performance overhead, this has some
implication on how assertions can be used. Most importantly, assert statements are not
primarily intended for checking pre-conditions. An Oracle tech note warns: “Do not use
assertions to check the parameters of a public method. An assert is inappropriate because
the method guarantees that it will always enforce the argument checks. It must check its
arguments whether or not assertions are enabled.”6 The same note then outlines the use of
asserts in invariants and post-conditions. The note explicitly suggests how to use assertions
for class invariants. However, the suggested pattern does not fully comply to the definition

5 https://github.com/elastic/elasticsearch/issues/13224 (accessed 10 January 2017)
6 https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html#

preconditions (accessed 10 January 2017)

ECOOP 2017

https://github.com/elastic/elasticsearch/issues/13224
https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html#preconditions
https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html#preconditions


9:8 Contracts in the Wild

1 import javax.validation.constraints.*;
2 ..
3 @Max(-42)
4 public int negate(@Min(42) int i) {..}

Listing 4 Using JSR303 annotations for pre- and post-conditions.

of class invariants according to Meyer [80] that requires that the invariants are applied to
all public methods of a class. In many cases, the invariants expressed by assertions are
method-local invariants, such as control flow invariants.

2.5 Contract Annotations

The idea of annotation-based approaches is to add meta-data to artefacts (methods, fields,
classes and method parameters) that describe their validity. The standard Java annotation
API is widely used for implementation. Some older tools predate the annotation API and
simulate annotations using, for example, structured comments. Annotation-based approaches
are very declarative in nature, and as such can be interpreted and used by a wide-range of
tools for both static and runtime checks. For runtime checks, additional code that enforces
the constraints must be generated and deployed. This is often done, for example, using
injection-based techniques like AOP [72]. We now examine some popular approaches in more
detail, loosely grouped by their major usage.

Bean Validation. The Bean Validation specification, JSR303 (version 1.0) [23] and JSR349
(version 1.1) [22], and a popular reference implementation, the hibernate validator [8], aim
at providing a set of standard annotations and associated processing APIs for server-based
enterprise (J2EE) applications. It offers an API to request validation which must be called
explicitly by the programmer. The API is intended for use with higher-level frameworks
that intercept program flow to check constraints. This is described in the documentation
as follows: “This service only deals with the actual validation of method parameters/return
values itself, but not with the invocation of such a validation. It is expected that this invocation
is triggered by an integration layer using AOP or similar method interception facilities such
as the JDK’s Proxy API or CDI. Such an integration layer would typically intercept each
method call to be validated, validate the call’s parameters, proceed with the method invocation
and finally validate the invocation’s return value.”7.

Bean Validation represents post-conditions as constraints on method return values. An
example is given in Listing 4. The standard states that “As of version 1.1, Bean Validation
constraints can also be applied to the parameters and return values of methods of arbitrary
Java types. Thus the Bean Validation API can be used to describe and validate the contract
(comprising pre- and postconditions) applying to a given method (“Programming by Contract”,
PbC).” [22, sect. 1.2]. The Bean Validation standard also contains several restrictions to
ensure correct behavioural subtyping according to the Liskov’s Substitution Principle (LSP)
[22, sect. 4.5.5].

7 https://docs.jboss.org/hibernate/validator/4.2/api/org/hibernate/validator/method/
MethodValidator.html (accessed 10 January 2017)

https://docs.jboss.org/hibernate/validator/4.2/api/org/hibernate/validator/method/MethodValidator.html
https://docs.jboss.org/hibernate/validator/4.2/api/org/hibernate/validator/method/MethodValidator.html


J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:9

Static Checking. Various tools offer limited static analysis of annotations, such as for
null analysis. The Checker Framework [83] provides annotations that can then be checked
via compiler plugins. Many IDEs and static analysis tools provide similar capabilities for
finding bugs at compile time, such as Eclipse, IntelliJ and FindBugs. This has lead to an
unfortunate situation where annotations such as @NonNull and @Nullable with the same
name exist in different name spaces. To rectify this, JSR305 aims to establish a set of
standard annotations [90].

The Java Modelling Language (JML) is a mature framework that aims to bring full-
fledged programming by contract to Java, and uses comment-based annotations to express
constraints. The latest version of OpenJML also supports true annotations. JML supports
both runtime checks and static verification [75] using additional tools like ESC/Java2 [42].

There are numerous other, somehow less popular approaches to annotation-based contracts,
including oval [11], CoFoJa [4], Jass/ModernJASS [20], lombok [73], c4j [2], and the dormant
iContract [51], AssertMate [5], javadbc [10] and chex4j [3] projects.

2.6 Other Approaches
While the above patterns cover the majority of cases, other means of expressing contracts
exist in the Java world. jContractor [71] is unique in associating constraints with methods via
naming conventions. For instance, the pre-conditions for a method named push are written
by implementing a method push_Precondition. Constraints can also be written in separate
contract classes which are again recognised by a certain naming convention. Behavioural
subtyping is supported by aggregating inherited contracts (with “or” for pre-, and “and” for
post-conditions). Contracts are weaved into code using bytecode instrumentation.

3 Methodology

In the following subsections we discuss how we obtained, processed and analysed the data
when looking for the use of contracts in Java programs.

3.1 Data Sets
We initially considered several curated data sets, such as the Qualitas Corpus [97] and
DaCapo [25]. However, we found DaCapo to be too small, outdated and without evolution
data, and found that Qualitas does not contain the latest version of many programs and
completely omits some widely used libraries (including Guava). Furthermore, for Qualitas,
the projects do not have a canonical format making automated analysis difficult. Instead, we
chose to extract a data set from the Maven Central Repository.

The Maven Central Repository is a simple directory-based repository of open-source
projects. It contains a large number of Java programs in a canonical structure with meta-data
that facilitates automated analysis. We used the ranking of projects by popularity from
https://mvnrepository.com/, where popularity is determined by the number of incoming
dependencies from other projects hosted on Maven. We extracted our data set as follows: first,
we parsed the name, group and version of the first 200 artefacts from the MVN Repository
website on the 3 August 2016; second, we used the search API 8 to download all available
versions of the respective artefacts; finally, we removed projects for which Java source code

8 http://search.maven.org/#api (accessed 10 January 2017)

ECOOP 2017

https://mvnrepository.com/


9:10 Contracts in the Wild

Table 2 Data set metrics.

metric value
programs 176
program versions 6,934
compilation units 2,233,298
unparsable compilation units 223
classes 2,787,686
methods (all) 22,263,421
constructors (all) 2,465,260
methods (public and protected) 18,744,459
constructors (public and protected) 2,002,327
KLOC incl comments 351,034

was not available (e.g. projects containing only Scala source code, or projects consisting only
of meta data, etc). This resulted in 176 projects with 6,934 versions, and with an overall size
of 4.6GB.

Metrics extracted from our data set are reported in Table 2. The number of compilation
units corresponds to top-level classes but excludes inner classes. There were some compilation
units where parsing failed, but they were relatively few (less than 0.01 %) and should not
significantly impact our results. The number of classes and methods is significant here, since
contracts are primarily applied to – and analysed for – these program elements. Note that
only public and protected methods/constructors were considered in our studies. This is
because private members do not play any role from a program’s clients viewpoint and,
from the perspective of evolution, cannot introduce breaking changes. Thus, to be consistent
across our various experiments, we excluded them. Overall, the amount of code investigated
is similar to the data set used in [53]; however, we use only released versions and not revisions,
and have therefore significantly more variability in our data set.

Finally, we note that our data set does not include project dependencies. Since we also
study contracts in inheritance hierarchies, we considered including the dependency closure of
each project to ensure all supertype references could be resolved. We investigated this and
found that this would have added another 14,832 versions from 972 programs, increasing
the overall size by 5.9 GB. Unfortunately, this would have slowed down our experiments
considerably. We therefore opted against including dependencies, but added the source for
openjdk 1.8.0_91, assuming that a vast number of supertype relationships can be resolved
against the Java core class libraries, and since the core libraries are known for their high
level of stability (i.e. public APIs don’t disappear between JDK versions).

3.2 Contract Element Classification
The studies reported on in this paper focus on the usage, classification and evolution of
contract elements found. This requires a simple and mechanical means to classify the contract
elements. In particular, we cannot attempt to determine the programmer’s intention behind
a particular programming construct (e.g. whether throwing an exception guarded by a
conditional is checking a pre- or post-condition, etc). Fortunately, there are many signals
that we can use to help classify concrete program code constructs as contract elements:

CREs. As discussed previously, the names of runtime exceptions in many cases indicate
they are designed for signalling contract violations (e.g. IllegalArgumentException),



J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:11

and standard Java literature clearly indicates that the purpose of certain runtime excep-
tions is to enforce pre-conditions [26, item 58]. Our data analysis methods exploit this to
classify the uses of (conditional) runtime exceptions accordingly.
APIs. These provide a potentially richer language for expressing pre- and potentially
also post-conditions, and class and method names and documentation usually signal their
purpose. The purpose of all APIs we have encountered and investigated is to represent
pre-conditions only.
Assertions. In contrast to those above (and as already discussed in section 2.4) assert
statements are not intended for checking pre-conditions. Therefore, we can only infer
that some assertions might represent post-conditions or class invariants. We therefore
decided to include assertions as potential contract elements in the study. But, we take a
conservative approach and do not to classify them as this could have a significant impact
on the precision of the study.
Annotations. A special case are annotation-based approaches. Here the type of contract
can often be inferred from how the annotation is used. For instance, consider again
Listing 4. Here, two JSR303 annotations are used. The annotation on the method is
actually a contract element on the method return value and is therefore a post-condition,
while the @Min annotation is a contract element on the parameter and is therefore a
pre-condition. Annotations on classes and fields are interpreted as class invariants.
Other. jContractor contract elements can be easily classified based on the naming
patterns used. However, we did not include this in the classification scheme used as we
did not find any use of jContractor in the data set used in this study.

Figure 1 summarises the classification algorithm employed in this study. In classifying
contract elements according to the above rules, we do not consider the relative position of a
particular check within a method. That is, one might argue that a check near the entry of
a method is “likely” to be a pre-condition check. However, our experience suggests that it
is quite common to find legitimate pre-condition checks embedded deep within a method’s
body. Listing 3 illustrates such an example taken from a real-world codebase. The contract
on line 11 should be classified as a pre-condition check, but we note it is not located near the
method’s entry. Indeed, if we just consider its relative position within the method, then it
would look more like a post-condition check. One could further argue that this use actually
denotes a class invariant as it checks the state of an object (rather than the parameters of
the method). What is more, concepts like “at method entry” or “before method exit” are
further complicated – for the purpose of source code analysis – by the presence of comments
and the potential presence of injected code from cross-cutting concerns such as logging or
security checks. Sometimes these concerns are present in source code, but often tools like
AOP [72] are used to inject or “weave” additional code (into source or byte code) at method
entry and/or exit.

For this study, we therefore decided to use a set of classification rules extracted from the
definition of the respective construct language. For annotations in particular, we take into
account the type of annotation as discussed above.

3.3 Methodology for Contract Usage Study
This study looks at and classifies the usage of the several types of contract elements across
our dataset, providing also the base data for subsequent studies described below. The
approach taken was to identify the contract element using source code analysis, which is
able to check all annotations including those which might be removed by the compiler.

ECOOP 2017



9:12 Contracts in the Wild

API ?

pre-conditionCRE ?

assert ? not classified

contract element

annotation 
?

class invariant

pre-condition

method 
annot.? post-condition

method 
param ann. 

?
pre-condition

YES

YES

YES

YES

YES

NO

NO

NO

YES

NO

field 
annot.?

class 
annot.?

not classified

NO

class invariant

not classified

NO

NO

NO

YES

YES

Figure 1 Contract element classification algorithm.

Furthermore, comment-based annotations used by some older tools (e.g. JML) also require
source code-based analysis. Analysing conditional runtime exceptions and assertions in this
manner was relatively straightforward. However, for the remaining contract patterns, we
investigated their actual use in two stages.

In stage one, we developed screening scripts that looked for any sign that a certain pattern
of contract construct might be present. These scripts use simple text matching algorithms
and look mainly for the presence of type-specific package names (for APIs and annotations)
or comment patterns (for comment-based annotations). These scripts revealed that only the
following API and annotation-based contract types are present in programs in our data set:
Commons Validate, Guava preconditions, Spring asserts, Bean Validation (JSR303, JSR349),
JSR305, FindBugs, IntelliJ, Lombok. We however removed Lombok because of its particular
contract semantics: annotations are translated into conditional runtime exceptions at build
time, and this would have lead to double-counting. Lombok is also only used by itself.

We later found that the preprocessing screening scripts produced false positives for
FindBugs and IntelliJ tool-bound annotations. Specifically, the data set contains programs



J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:13

defining FindBugs contract annotations but not actually using them, and IntelliJ annotations
are only referenced in comments (using their fully qualified class names). The result of this
was that we did not find any instances of the respective tool-bound contract patterns in
actual use, and we do not report them explicitly in the results tables.

In stage two of the extraction, a collection script was used to extract contract construct
data and export it to JSON files stored for further analysis. This script uses a set of pluggable
extractors for each contract pattern, the extractors perform a detailed AST analysis using
the Java parser API [9].

3.4 Methodology for Evolution Study
The evolution study asked how contracts change between adjacent program versions, from
the viewpoint of what effects this can have on a program’s existing clients. This required
us to identify the adjacent versions which is easy for projects that use common versioning
schemes (i.e. <major,minor, micro> plus an optional qualifier or build number). However,
some projects do not follow this convention which makes adjacency detection rather difficult.
For instance, we encountered cases with letters in the major version number and cases with
alphanumeric qualifiers with unclear semantics. The script which detects adjacent versions
therefore uses a set of rules to correctly order versions by qualifier status (such as alpha,
beta, release candidate, final, etc) in addition to the numerical versioning scheme. However,
this still left us with 138 program versions that did not fit; we therefore blacklisted those
and excluded them from the evolution study as it was not clear how they fit into a linear
program evolution.

The evolution study uses contract data extracted in the previous step, and builds diff
records that contain contracts for the same artefact (method or class) in two adjacent
program versions. These records are then classified using pluggable diff rules to detect
contract evolution patterns such as non-critical changes (e.g. only the program messages are
changed), the addition of post-conditions, etc. These diff rules are not intended to provide a
completely precise classification – this might actually be impossible, but they can be used to
automatically classify a vast number of simple cases.

Diff rules do not capture cases when contract elements specified informally (for instance,
in comments) are formalised using any of the approaches described above, or vice versa. This
study is about the correct use of contracts in the context of evolution, and correctness is
defined with respect to actual program behaviour. While informal contracts specify intended
program behaviour, they do not influence actual behaviour. Therefore, (de)formalising
contract elements is a potentially critical operation.

We use the following set of diff rules, corresponding to the principles of substitutability:
1. Unchanged – the two contracts compared are the same.
2. IgnoreOrderAndMessage – the order of contract constructs attached to an artefact and

the message (used as message in exception -, annotation- and API-type contracts) of
some of these constructs has changed. Although scenarios can be constructed where this
changes the semantics of a program, this change is probably benign.

3. PreconditionsStrengthened – a pre-condition has been added to a method, or a clause
(boolean expression) has been added to an existing pre-condition using the & or &&
operator. This is potentially critical.

4. PreconditionsWeakened – a pre-condition has been removed from a method, or a clause
has been added to an existing pre-condition using the | or || operator. This is benign.

5. PostconditionsWeakened – a post-condition has been removed from a method, or a
clause has been added to an existing post-condition condition using the | or || operator.

ECOOP 2017



9:14 Contracts in the Wild

This is potentially critical.
6. PostconditionsStrengthened – a post-condition has been added to a method, or a

clause has been added to an existing post-condition using the & or && operator. This is
benign.

7. NullablePostconditionRemoved – the removal of a Nullable post-condition annotation
is not considered as a significant weakening of guarantees made, this is classified as a
benign change.

The data reported later in sections 4.2 and 4.4 show that with these simple rules, a large
percentage of contract changes can be automatically classified.

3.5 Methodology for LSP Study
In this study we look for violations of Liskov’s Substitution Principle (LSP), i.e. we look
for contradictory specifications between super- and sub-classes, and then use the respective
contracts to analyse whether they are used correctly. The experimental setup uses the same
infrastructure as the evolution study, the main difference is that the diff records are extracted
differently. Here we look for contracts on methods in an override relationship and analyse
imports and inner classes to compute precise inheritance information. We also filter the
extracted diff records in order to remove those that duplicate the same issue in a different
version of the same program.

For the internal representation of contract data, we encode methods similarly to descriptors
used in byte code, but with return types removed. This allows us to capture overriding with
covariant return types.

3.6 Verifiability
The data sets (raw data, and contract data extracted) are available here: https://goo.gl/
2R28gS. The code used for extraction and analysis is available from https://bitbucket.org/
jensdietrich/contractstudy. The repository readme.md contains detailed instructions
how to build the project, add the data for analysis, and reproduce the results reported.

4 Results

4.1 Contract Usage (RQ1)
Table 3 reports the different types of contract elements and their appearance in the data
set. In column 3, the overall number of contract elements of the respective type is reported.
These numbers are high. However, one reason for this is that the same elements are counted
again and again in different versions. We therefore also computed the number of contract
elements found for the latest versions of each program within the data set, this is reported in
column 4. These values are much lower. We also investigated the number of programs using
constructs of the respective type in any version. These numbers are displayed in column 5.
The adoption of the various API and annotation-based approaches is surprisingly low, and
even the number of projects using assertions is lower than expected.

We also computed the gini coefficient [60] in order to measure the distribution of constructs
amongst the latest versions of each program. The gini is very high at 0.74 indicating that
while there are a few projects that use contracts very intensively, the vast majority of
projects do not use them significantly. Interestingly, the gini computed for the distribution
of assertions is 0.83 — much higher than the overall gini. On the other hand, the gini for

https://goo.gl/2R28gS
https://goo.gl/2R28gS
https://bitbucket.org/jensdietrich/contractstudy
https://bitbucket.org/jensdietrich/contractstudy


J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:15

Table 3 Number of contract elements found in dataset by type.

type category
constructs
(all ver.)

constructs
(latest
v.)

programs

assert assertion 131,340 3,284 52
conditional runtime exceptions CRE 484,964 15,720 155
unsupported operation exception CRE 123,966 3,084 122
guava preconditions API 49,021 1,188 6
spring assert API 100,232 2,148 13
commons validate API 879 110 6
JSR303, JSR349 annotation 586 20 1
JSR305 annotation 33,281 911 6

Table 4 Top programs using contracts (latest versions only). The numbers in brackets are the
numbers of contract elements found in the respective program.

category programs
CRE open-jdk (3,695), elasticsearch (1,348), lucene-core (612), netty (553),

hadoop-common (550)
API guava (948), spring (661), spring-test (262), spring-web (218), spring-core

(208)
assertion lucene-core (1,000), elasticsearch (656), open-jdk (390), gwt-user (371),

gwt-servlet (371)
annotation guava (859), reflections (46), hibernate-validator (20), annotations (4),

jsr305 (2)

the distribution of APIs is lower (0.6), indicating a more equal distribution. This seems
counter-intuitive as there are many more programs using assertions than contract APIs. But
while more programs use assertions, most of them use very few — in several cases only one
single assertion.

Table 4 shows the programs with the highest usage of contract elements of each type,
with indication of their number in the respective latest version. This data also shows the
uneven distribution of contract usage, as the numbers quickly trail off.

We also investigated popular combinations of contract types. We found that 16 programs
do not use any contracts, 32 programs use one type of contract element (of which 28 use
conditional runtime exceptions), 63 use two types of contracts (the most popular combination
being unconditional “unsupported operation” exceptions and conditional runtime exceptions
with 54 occurrences). There were 59 programs with three types, 4 with four types and
finally 2 programs with five types of contracts (elasticsearch and guava both use assertions,
conditional and unconditional exceptions, the Guava contract API and JSR305 annotations).

Finally, in Table 5 we report the classification of the contract elements found. As discussed
earlier, a precise classification is not possible. But this data suggests that pre-conditions
are more frequently used than post-conditions. This would still be the case if all assertions
encountered (and reported as not classified in Table 5) were classified as post-conditions.

A possible explanation for the dominance of pre-conditions is the high level of reuse
of (library) code in general, and of open source programs in particular. This implies that
modern libraries have to provide defensive API surfaces to deal with unknown clients. As
Meyer [80] notes: “A pre-condition violation indicates a bug in the client (caller). The caller
did not observe the conditions imposed on correct calls. A post-condition violation is a bug

ECOOP 2017



9:16 Contracts in the Wild

Table 5 Number of contract elements found in dataset by classification.

kind constructs (all versions) constructs (latest version) programs
pre-condition 786,723 22,969 160
post-condition 2,413 112 6
class invariant 3,793 100 5
not classified 131,340 3,284 52

in the supplier (routine). The routine failed to deliver on its promises.’ ’. Therefore, by
using pre-conditions, clients can shift the responsibility to comply to clients. This has many
practical advantages with respect to program maintenance: if a program fails and an illegal
argument or similar exceptions occur in stacktraces due to a failed pre-condition, this makes
it very clear who is to blame, and reduces the workload on the side of the supplier as it does
not have to deal with bug reports.

While this may explain the relative popularity of pre-conditions, it does not explain why
post-conditions are not as widely used. One possible reason is the widespread use of unit
testing. Since method callers are often unknown at build time, tests are written that create
synthetic callers in test fixtures. The test assertions comparing computed values against test
oracles are basically post-conditions specialised for a particular fixture. We note that tests
written in modern testing frameworks like junit are following a contract-oriented pattern: “if
the assumptions (pre-conditions) are true before the method under test is invoked then the
assertions (post-conditions) must be true after the method under test has been invoked”. But
the focus is clearly on the post-condition check, and we believe that many developers are not
aware that pre-condition checks are supported by junit in the form of org.junit.Assume or
(less explicit) by TestNG through org.testng.SkipException.

4.2 Contract Evolution (RQ2)

We also tried to answer the question whether there is some evidence that programs use more
contracts as they evolve, similarly to [53] but with a coarser granularity due to the extent
of our study. To answer this, we divided the number of contracts found by the number
of methods, and compared the respective ratio between the first and last version of each
program. The aggregated result of this experiment is shown as a box plot in Figure 2. The
median value of the ratio does not change much (from 0.021 to 0.023) between the first and
the last version within the version ranges investigated. This indicates that if projects use
contracts, they keep using them.

To see if this observation is of importance, we also considered the growth of the size of
the respective programs. The average growth in the number of methods between the first
and the last version is 174 % (although this is dominated by a few outliers — for instance,
the first version of spring-core in the dataset (1.2.1) has 324 methods, while the last version
(4.3.2.RELEASE) has 3,276 methods). But even when considering the median, the number
of methods still increases significantly, by 68.5 %. This means that the overall number of
contract elements used increases proportionally with the size of the programs.

There are only two programs in the data set for which the number of contract elements
used declines significantly between the first and the last version investigated, both in
relative and absolute terms: httpclient (from 1,154 methods with 298 contract elements
in version 4.0-beta1 to 2,772 methods with 26 contract elements in version 4.5.2) and
the related httpcore (from 923 methods with 252 contract elements in version 4.0-beta2



J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:17

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

first versions last versions 

Min Outlier Max Outlier 

Figure 2 Comparison of contract-to-method ratios between first and last versions

to 1,584 methods with 46 contract elements in version 4.4.5). A more detailed analysis
shows that both projects adopted a shared project-specific contract API very similar to
Guava’s Preconditions, the respective API is org.apache.http.util.Args, introduced in
httpcore 4.3-alpha1. When taking this into account, the situation changes: httpclient-4.5
has 584 call sites for methods defined in Args corresponding to API-type contracts , while
this class is not used at all in 4.0-beta1. While Args provides a centralised API for input
validation that is used to replace IllegalArgumentExeptions, there are also two documented
cases where IllegalStateExceptions are replaced by a project-specific checked exception
(ConnectionClosedException) that are not captured in our analysis9.

We also looked into contract evolution in programs that made heavy use of contracts
in their respective first version. For this purpose, we filtered out programs with at least
100 contract elements in their first version. This is the case for 27 programs. Of these
programs, only three show significant changes in contract usage, which we defined by a
change of the contract element-to-method count ratio larger than 0.1. Two of those programs
are httpclient and httpcore, already discussed above, the third program is lucene-core that
shows a significant increase of contract usage between versions 2.3.0 (3,096 methods with
158 contract elements) and 6.1.0 (8,954 methods with 1,612 contract elements), respectively.

From this we conclude that projects that use contracts continue to do so, and expand the
use of contracts as they grow and evolve, presumably because contracts are seen as beneficial.

4.3 Contract Safety and Program Evolution (RQ3)
Next, we looked for evolution patterns. In particular, we were interested in cases where
contract evolution was unsafe in terms of substitutability. This means, if there are cases
where a client using an API with a contract could break after an upgrade because an API
method had either strengthened its pre-conditions, or weakened its post-conditions. Table 6
gives an overview of the results. As discussed in section 3.4, our classification is not complete
as it is not feasible to precisely capture the notion of strengthening and weakening constraints
if the respective constructs can be written in a full-fledged programming language. But we
did extract some interesting results, and discuss some examples in more detail.

9 https://archive.apache.org/dist/httpcomponents/httpcore/RELEASE_NOTES.txt (accessed 10
January 2017)

ECOOP 2017

https://archive.apache.org/dist/httpcomponents/httpcore/RELEASE_NOTES.txt


9:18 Contracts in the Wild

Table 6 Contract evolution data result summary.

evolution critical count
unchanged no 652,395
minor change no 1,512
pre-conditions weakened no 12,675
post-conditions strengthened no 18
pre-conditions strengthened yes 2,777
post-conditions weakened yes 7
unclassified ? 5,028

Table 7 Contract hierarchy data result summary

evolution critical count
unchanged no 351
minor change no 193
pre-conditions weakened no 40
post-conditions strengthened no 0
pre-conditions strengthened yes 1,242
post-conditions weakened yes 0
unclassified ? 556

In slf4j-api (logging library) the class org.slf4j.LoggerFactory has the method get-
ILoggerFactory(). A JSR305 Nonnull post-condition annotation is present in this method
in version 1.7.8 but removed in version 1.7.9. This breaks the guarantees made to clients
using this class. Note that the change happens during a micro version change, which is
supposed to maintain API compatibility according to the rules of semantic versioning.

In commons-cli (CLI library), the method addValue(String) in org.apache.commons.-
cli.Option has a (rather complex) implementation in version 1.0, but support for this
method was then removed in version 1.1 by throwing an UnsupportedOperationException
with the message “The addValue method is not intended for client use. ..’.

4.4 LSP Study (RQ4)
We analysed our data set for cases where contracts gave an indication of potential violations
of Liskov’s Substitution Principle (LSP), and found numerous such cases summarised in Table
7. Closer inspection of the data also revealed certain programming patterns where runtime
exceptions were not being used to communicate violated contracts, but to return information
to the applications. A good example for this are certain adapters in ASM 5.0 that perform
various checks on byte code, such as org.objectweb.asm.util.CheckSignatureAdapter.
To do so, these adapters have to override visit methods in the adapter supertypes. The
rules to check for are implemented using the unconditional runtime exception pattern. I.e.,
a runtime exception is thrown if the check fails. Here runtime exceptions are used with a
semantics similar to return values.

We provide some examples of programs that violate the rules of behavioural subtyping
according to how they use contracts.

In hibernate-core-3.5.0, the class org.hibernate.dialect.Dialect is subclassed by
IngresDialect in the same package. Dialect implements the method getLimitString(
String,int,int), the implementation does not throw a runtime exception. It is overridden in



J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:19

IngresDialect, and an UnsupportedOperationException is thrown if the second argument
(offset) is negative. This is a case of unsafe substitution, where a pre-condition on a
parameter is added in a subclass. There is no indication in the documentation of the method
in Dialect warning developers that a runtime exception might be thrown in overriding
methods.

In spring-webmvc-3.2.11.RELEASE, in the package org.springframework.web.serv-
let.tags.form, FormTag extends AbstractHtmlElementTag and overrides setCssError-
Class(String). While the implementation in the superclass is a plain setter, the overridden
method throws an unsupported operation exception with the message “The ’cssErrorClass’
attribute is not supported for forms”. There is again no indication in the super class that
some subclasses might not support this method.

5 Limitations and Threats to Validity

5.1 Data Set
The data set used only consists of open source programs. This is a consequence of (1)
our methodology that requires source code to be analysed and (2) the simple fact that we
did not have access to real-world commercial code. It is therefore not clear whether our
results apply to closed-source commercial programs. We also suspect the data set is biased
towards libraries as they are re-used by many other programs (hence have a higher ranking
on Maven Central). In particular, this could cause an under-reporting of annotation-based
contracts which might be more common in J2EE applications using frameworks providing
those annotations.

5.2 Contract Extraction
While we carefully studied academic as well as grey literature for references to tools and
APIs used to represent contracts in Java, there is no guarantee that our list is complete.
The bigger limitation however is that we did not capture project-specific techniques such as
custom annotations or APIs. We discovered one such case in httpclient, discussed in more
detail in Section 4.2.

Our extraction of pattern-based contracts could lead to under-reporting. First, we
could have considered other runtime exception classes. The ones we used were chosen after
inspecting the documentation and assessing their suitability of expressing pre-conditions.
Our choice is consistent with the various contract APIs which use exactly those classes to
offer API-based pre-condition checking. But there could still be (project-specific) classes
we missed. Furthermore, we might have missed certain patterns for how these exceptions
are used. We can at least approximate the worst case scenario for this by counting all
instantiation sites for the respective exception classes. We found 841,815 instantiation sites
across all versions. This compares to 624,269 contracts found (combined conditional and
unconditional exceptions), i.e. we have a precision of at least 74 % for this type of contract
construct.

One of the annotation-based APIs we investigated has a proprietary mechanism for
“contract inheritance”. JSR305 [90] defines the annotation javax.annotation.Parameters-
AreNullableByDefault with the following semantics: if a class is annotated, then all method
parameters in all methods of this class are nullable by default. There are only two annotations
we are aware of that have this semantics, and we did not model this in this study. This
therefore leads to an under-approximation of the contracts found in programs.

ECOOP 2017



9:20 Contracts in the Wild

We already discussed the special case of assertions (see Section 2.4). This leads to some
over-approximation in the overall number of contract elements extracted as not all assertions
represent contract elements, and to an under-approximation of post-conditions extracted as
we do not classify assertions. This is discussed in the result section in detail.

5.3 Evolution

There are two limitations here. Firstly, our analysis under-approximates inheritance-related
problems as we miss some inheritance relationships due to the fact that we did not investigate
the full dependency closure of our data set, as discussed in section 3.5.

Secondly, our analysis is completely mechanical and detects possible problems, but does
not attempt to weigh them and to assess their actual impact. For instance, many issues
detected in the PreconditionsStrengthened category flag potential problems that may have
an impact on clients. But many of these changes are cases where contracts are introduced to
methods. This might just be a case of making existing “closet contracts” [16] more explicit.
In many cases this will change the way in which a contract violation is reported, i.e. the type
of runtime exception that is being thrown. This is of course a semantic change that could
break existing clients, but it is unlikely that it actually does. A similar case is when a project
decides to change its approach to contracts completely, for instance by replacing contract
API calls by runtime exceptions or vice versa. We are aware of one such case, discussed is
section 2.3. Secondly, evolution issues impact on clients with separate lifecycles. This means
that even incompatible changes of public methods may not be critical if they are not part of
the public API of a given program. This is partially caused by the properties of the Java
programming language that offers no easy way to enforce program-private access to APIs10.

5.4 LSP Study

The analysis shares some issues around the validity of potential problems discussed with
the evolution study. A specific issue are LSP violations with annotation-based contracts.
These contracts are usually deployed using injection-based techniques, and at this stage the
respective contract framework can take care of merging the constraints of methods with the
constraints of overridden methods in order to satisfy LSP. We found however that only 2.76
% of the diff records extracted and investigated use annotations.

With the more explicit, code-based approaches like APIs and explicit runtime exceptions,
this kind of contract merging would require the use of super. We excluded all methods using
super references from the analysis for this reason, but this again produces a conservative
under-approximation of potential LSP issues. However, only 2.77 % of diff records refer to
methods overriding with super.

6 Related Work

We now review a cross-section of related work, paying particular attention to empirical work
and contract languages.

10Although this can be achieved via classloader-based add-on technologies, such as OSGi.



J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:21

6.1 Empirical Studies

Casalnuovo et al. undertook an empirical study of the 100 most popular C/C++ projects
on GitHub [32]. Their primary interest was the connection between assertions and defect
occurrences and their main finding was that the presence of assertions in a method had a
small (but significant) effect on reducing defects within it. In taking these measurements
they correctly identified — and controlled for — a number of well-known confounds, such
as method size and number of contributors. However, they later identified a flaw in their
experimental setup related to the reliance on git for identifying the enclosing method of
a commit [31]. Having fixed and repeated this part of the study, they subsequently found
the opposite result — namely, that the presence of assertions in a method had a small (but
significant) effect on increasing the number of defects. Indeed, this is perhaps more intuitive
as one expects the presence of assertions to increase the observability of faults [99, 39]. That
said, the authors conservatively concluded “that there is no evidence that non-test asserts
have an effect on defects”. Of most relevance here was their finding that 69 out of 100
projects contained “more than a minimal presence” of assert statements. This contrasts
with our observations that only 52 out of 176 projects used them, and one explanation for
this maybe their focus on C/C++ projects compared with our focus on Java projects. For
example, Java developers may eschew assert statements in favour of conditional runtime
exceptions which are always enabled (Table 3 supports this to some extent). Finally, another
interesting finding of Casalnuovo et al. was that “methods with asserts are more likely to take
on the role of hubs” (roughly speaking, methods which call many other methods). Whilst
our results do not provide any specific insight into this, it would certainly be interesting to
see whether contracts are similarly correlated (as one might expect them to be).

Another relevant work is that of Estler et al. who examined contract usage in practice
[53]. Their empirical study looked at a suite of projects written in Eiffel, C# and Java across
7700 revisions and totalling 260MLOC. For the C# and Java projects, the contract languages
employed were (respectively) Microsoft Code Contracts [14] and JML [75]. Contrasting
with our work, they only considered projects which actually used contracts in a meaningful
way (roughly speaking, around 5% of methods had to have some kind of specification to
be included). As such, the occurrence of contracts was much higher and, on average, the
proportion of methods with contracts was around 40%. Regarding usage patterns, they
found no strong preference for the kind of contract used (i.e. pre-/post-condition, class
invariant, etc). However, they did find that preconditions, when used, tended to be larger.
This contrasts with our observations that preconditions were, by far, the more frequent (recall
Table 5). This difference may be explained in two ways: firstly, the contract constructs we
analysed tend to favour preconditions (recall Figure 1); secondly, there was a considerable
difference in the nature of projects considered, as Estler et al. specifically selected projects
with significant contract usage. Indeed, they comment that “In the majority of projects
in our study, developers devoted a considerable part of their programming effort to writing
specifications”. Another relevant aspect of their work was an attempt to examine how
contracts evolve over time and, consistent with our findings, concluded that “the fraction of
routines and classes with some specification is quite stable over time”. They also considered a
concept of “strength” similar to ours by counting the number of clauses in a contract. Again,
they observed that the average strength of a contract was relatively stable over time. Finally,
they also compared implementation code against contracts and, as perhaps expected, found
that a method’s implementation changes much more frequently that its contract. These
latter findings complemented their earlier work where they identified a general trend for
contracts [54]. Specifically, that they tend to change frequently in the early phases of a
project, before stabilising.

ECOOP 2017



9:22 Contracts in the Wild

Schiller et al. examined the use of Code Contracts across a corpus of 90 C# programs
listed on Ohloh comprising around 3.5MLOC, with the goal of providing guidance for the
design of contract languages [94]. Their approach was multi-pronged. Of particular relevance
here is their use of an automatic analysis to categorise contract properties (i.e. clauses).
Their focus was on whether contracts were checking common or simple properties (e.g. null
checks) or richer application-specific properties and, unfortunately, found that by far the
majority of contracts (around 73%) focused on null checks. Their conclusion was that writing
nullness contracts may be consuming developer’s limited time and "crowding out" other
(more interesting) application-specific contracts. Their results also provide another data
point on the question of pre-conditions versus post-conditions. Specifically, consistent with
our findings, they observed a clear bias towards developers writing pre-conditions over post-
conditions (68% vs 26%, with the rest being class invariants). Schiller et al. also employed a
dynamic invariant synthesis tool (Daikon [52]) to infer contracts and then compared them
with what the programmer wrote. They found that the tool inferred more post-conditions
than pre-conditions, and concluded that “the strong developer bias towards preconditions ...
cannot be attributed to an absence of potential postconditions”.

An earlier study on the use of contracts was conducted by Chalin [34]. His corpus consisted
of 85 Eiffel projects totalling 7.9MLOC, including many freely available and open-source
projects as well as a large number of proprietary projects. The study counted the lines of code
used for contract elements, and categorised them according to use (e.g. pre-/post-condition,
class/loop invariant, inline assertion, etc). Categorisation was simpler than in our case, since
Eiffel provides explicit keywords signalling usage (e.g. requires for pre-condition, ensures for
post-condition, etc). The experiment found that, roughly speaking, around 5% of measured
lines were for contract elements. Of these, slightly more pre-conditions (50%) were observed
than post-conditions (40%), with relatively few class invariants (7.1%). Compared with our
findings and that of Schiller et al., this shows a larger proportion of post-conditions and
is more consistent with the findings of Estler et al. Chalin also found that only 35% of
contract elements were null checks and, perhaps more surprisingly, that only 3% were for
inline assertions. The latter suggests programmers find writing contracts more beneficial
than checking internal invariants, perhaps because they aid interaction with others (e.g. via
APIs).

Arnout and Meyer investigated the implicit contracts found in languages without linguistic
support for them [16]. Their basic assumption was that, despite language limitations,
programmers will still encode contracts using whatever means they have available and they
refer to this as the Closet Contract Conjecture. This includes using exceptions to check
pre- and post-conditions, but also includes mechanisms (i.e. encapsulation) for maintaining
invariants over state. Their approach was to manually investigate a small number of classes
from the .NET standard library (ArrayList, Stack, Queue and some related interfaces).
Most importantly, from the perspective of this paper, they found strong evidence that
exceptions were used to enforce contracts.

The work of Shrestha and Rutherford provides useful insight into the benefits of contracts
with runtime assertion checking [95]. For a small set of Java classes, they measured the
effectiveness of JML contracts in finding faults injected using mutation analysis, and observed
a significant improvement over the null oracle (i.e. the underlying runtime system).

6.2 Contract Languages
There have been numerous attempts to add contracts to existing languages, such as Java,
C# and C. Early examples include that of App [92] and Turing [67], and we now examine
the more widely-used systems in detail.



J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:23

Eiffel is perhaps the most influential and widely used language to support contracts [79].
Through this, Meyer promoted the idea of “Design by Contract” as a lightweight alternative
to formal specification [80]. Numerous studies (some discussed above) have explored the
use of contracts in Eiffel. For example, to automatically repair programs [86], to investigate
strong specifications [88], to model programs in other programming languages [16] and much
more.

The Java Modelling Language (JML) was an attempt to extend the Java language
with a standard notation for expressing contracts [35, 36, 75]. The intention was that
contracts in JML could be statically verified using ESC/Java [57]. Although ESC/Java was
demonstrated on several real-world examples (e.g. for checking specifications for an electronic
purse implementation [33]), the tool suffered many problems in practice. To help, JML
also supported runtime assertion checking [38, 30, 75, 36]. Finally, work on JML continues
through the OpenJML initiative [41, 93, 40]

The Spec# system followed ESC/Java, included a number of linguistic improvements
over JML, and employed the Z3 automated theorem prover (as opposed to Simplify) [44].
Both of these meant it is capable of verifying a much wider range of programs than ESC/Java.
Whilst the Spec# project has wrapped up, the authors did provide some reflections on their
experiences [18]. Of particular relevance here is the following comment: “There is a spectrum
of possibilities for checking Spec# contracts. One extreme would be to verify all of them
statically, another extreme would be to check them all dynamically. Either is impractically
expensive.”. Here, they argued that the “runtime overhead is prohibitive” when using runtime
checking.

6.3 Contracts in Component Composition and Evolution
In the context of component-based software engineering, contracts are used with a more
general meaning and also include aspects such as API compatibility, quality of service
attributes and more [24]. Several component frameworks have been proposed which use
such contractual specifications, including Fractal [29], SOFA [87] and Treaty [47]. Dietrich
and Stewart [49] looked into extracting formal contracts from Eclipse extension point
documentations and found that by formalising them, they could find violations of social
coding etiquette (Eclipse house rules [59]). Empirical studies on component and library
evolution indicate significant potential for contract-breaking changes leading to compatibility
problems [91, 48, 21, 49].

7 Conclusion

We have studied the use of contracts in a large set of widely-used, real-world Java programs.
Although we found contracts being used, there is no evidence of their widespread application.
If the Closet Contract Conjecture of Arnout and Meyer holds, then the contracts referred to
are hidden deeper, where we couldn’t find them. We also found no evidence that the adoption
of contracts is increasing. However, when projects do use contracts, they continue to do so
and expand the use of contracts as they grow and evolve, presumably because contracts are
seen as beneficial. We did also find cases of incorrect use, that is, where the use of contracts
does not guarantee safe substitution, neither in the context of evolution nor in the context of
inheritance.

We do not have any ultimate answer as to the reasons for these findings, and can merely
offer some possible explanations. Aspects that we think are of importance here include:
the fragmentation of technologies and the lack of standardisation; the actual and perceived

ECOOP 2017



9:24 Contracts in the Wild

performance overhead of enforcing contracts; the lack of tooling; and, the widespread use
of testing that has a similar purpose. In summary, all of this impacts on the (actual and
perceived) return on investment from using contracts. A more detailed study to explore the
reasons behind our findings is an interesting and important area of future research.

Finally, an interesting question is how our results can be actioned. For researchers the
novel insights gained into the kinds of contracts used in practice facilitates the development
of new tooling. We have demonstrated, for example, that it is not difficult to extract rich
semantic information regarding contracts from real-world programs. Likewise, this paper
and the associated artifact (data and scripts) help to address the limited data available on
real-world systems for comparison purposes. For practitioners the study has revealed a
significant amount of technology fragmentation that hampers progress. As such, practitioners
would ideally work towards better standards (e.g. for contract APIs / annotations), and
create tools for processing contracts (as illustrated in this paper).

Acknowledgements. We would like the thank the anonymous readers for their helpful
comments on this paper.

References
1 Apache commons lang. Accessed 12 August 2016. URL: https://commons.apache.org.
2 C4J - DBC for Java. Accessed 12 August 2016. URL: https://sourceforge.net/

projects/c4j/.
3 chex4j. Accessed 12 August 2016. URL: https://sourceforge.net/projects/chex4j/.
4 cofoja. Accessed 12 August 2016. URL: https://github.com/nhatminhle/cofoja.
5 Design by contract. Accessed 12 August 2016. URL: http://c2.com/cgi/wiki?

DesignByContract.
6 Google core libraries for java 6+. Accessed 12 August 2016. URL: https://github.com/

google/guava.
7 Hamcrest. Accessed 12 August 2016. URL: http://hamcrest.org/.
8 Hibernate validator. Accessed 12 August 2016. URL: http://hibernate.org/validator/.
9 Java parser. Accessed 12 August 2016. URL: http://javaparser.org/.

10 javadbc. Accessed 12 August 2016. URL: https://www.openhub.net/p/javadbc.
11 Oval - object validation framework for java. Accessed 12 August 2016. URL: http://oval.

sourceforge.net/.
12 Spring framework. Accessed 12 August 2016. URL: http://spring.io/.
13 Valid4j. Accessed 12 August 2016. URL: http://www.valid4j.org/.
14 Code contracts, 2008. URL: https://www.microsoft.com/en-us/research/project/

code-contracts/.
15 Wladimir Araujo, Lionel C. Briand, and Yvan Labiche. On the effectiveness of contracts as

test oracles in the detection and diagnosis of functional faults in concurrent object-oriented
software. IEEE Transactions on Software Engineering, 40(10):971–992, 2014.

16 Karine Arnout and Bertrand Meyer. Finding implicit contracts in.NET components. In
Proceedings of the Formal Methods for Components and Objects (FMCO), volume 2852 of
LNCS, pages 285–318. Springer-Verlag, 2002.

17 J. Barnes. High Integrity Ada: The SPARK Approach. Addison Wesley Longman, Inc.,
1997.

18 M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller, W. Schulte, and H. Venter. Specific-
ation and verification: the Spec# experience. Communications of the ACM, 54(6):81–91,
2011.

https://commons.apache.org
https://sourceforge.net/projects/c4j/
https://sourceforge.net/projects/c4j/
https://sourceforge.net/projects/chex4j/
https://github.com/nhatminhle/cofoja
http://c2.com/cgi/wiki?DesignByContract
http://c2.com/cgi/wiki?DesignByContract
https://github.com/google/guava
https://github.com/google/guava
http://hamcrest.org/
http://hibernate.org/validator/
http://javaparser.org/
https://www.openhub.net/p/javadbc
http://oval.sourceforge.net/
http://oval.sourceforge.net/
http://spring.io/
http://www.valid4j.org/
https://www.microsoft.com/en-us/research/project/code-contracts/
https://www.microsoft.com/en-us/research/project/code-contracts/


J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:25

19 Mike Barnett, Robert De ine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram Schulte.
Verification of object-oriented programs with invariants. Journal of Object Technology,
3(6):27–56, 2004.

20 Detlef Bartetzko, Clemens Fischer, Michael Möller, and Heike Wehrheim. Jass—Java with
assertions. Electronic Notes in Theoretical Computer Science, 55(2):103–117, 2001.

21 Jaroslav Bauml and Premek Brada. Automated Versioning in OSGi: a Mechanism for
Component Software Consistency Guarantee. In Proceedings of the Conference on Software
Engineering and Advanced Applications (SEAA), pages 428–435, 2009.

22 Emmanual Bernard. Jsr 349: Bean validation 1.1, 2013. URL: http://beanvalidation.
org/1.1/.

23 Emmanuel Bernard and Steve Peterson. Jsr 303: Bean validation, 2009. URL: http:
//beanvalidation.org/1.0/.

24 Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien Watkins. Making
Components Contract Aware. Computer, 32(7):38–45, 1999.

25 Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khang, Kathryn S McKin-
ley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z Guyer, et al.
The DaCapo benchmarks: Java benchmarking development and analysis. In Proceedings
of the ACM conference on Object-Oriented Programming, Systems, Languages and Applic-
ations (OOPSLA), number 10, pages 169–190. ACM, 2006.

26 Joshua Bloch. Effective Java. Pearson Education, 2008.
27 J. Bowen and M. Hinchey. Ten commandments of Formal Methods . . . ten years later.

IEEE Computer, 39(1):40–48, 2006.
28 Carl Brandon and Peter Chapin. A SPARK/Ada CubeSat control program. In Proceedings

of the Conference on Reliable Software Technologies (RST), pages 51–64, 2013.
29 Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean Stefani.

The fractal component model and its support in Java. Software: Practice and Experience,
36:1257–1284, 2006.

30 Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph Kiniry, Gary T.
Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools and applications.
Electronic Notes in Computer Science, 80:75–91, 2003.

31 Casey Casalnuovo, Premkumar T. Devanbu, Vladimir Filkov, and Baishakhi Ray. Replic-
ation of assert use in github projects. Technical report, 2015.

32 Casey Casalnuovo, Premkumar T. Devanbu, Abilio Oliveira, Vladimir Filkov, and
Baishakhi Ray. Assert use in github projects. In Proceedings of the International Con-
ference of Software Engineering (ICSE), pages 755–766. IEEE Computer Society Press,
2015.

33 Néstor Cataño and Marieke Huisman. Formal specification and static checking of Gemplus’
electronic purse using ESC/Java. In Proceedings of the Symposium on Formal Methods
Europe (FME), volume 2391 of LNCS, pages 272–289. Springer-Verlag, 2002.

34 Patrice Chalin. Are practitioners writing contracts? In Rigorous Development of Complex
Fault-Tolerant Systems [FP6 IST-511599 RODIN project], pages 100–113, 2006.

35 Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll. Beyond assertions: Ad-
vanced specification and verification with JML and ESC/Java2. In Symposium on Formal
Methods for Components and Objects (FMCO), pages 342–363, 2005.

36 Patrice Chalin and Frédéric Rioux. JML runtime assertion checking: Improved error re-
porting and efficiency using strong validity. In Proceedings of the Symposium on Formal
Methods (FM), volume 5014 of LNCS, pages 246–261. Springer-Verlag, 2008.

37 Roderick Chapman and Florian Schanda. Are we there yet? 20 years of industrial theorem
proving with SPARK. In Proceedings of the Conference on Interactive Theorem Proving
(ITP), pages 17–26, 2014.

ECOOP 2017

http://beanvalidation.org/1.1/
http://beanvalidation.org/1.1/
http://beanvalidation.org/1.0/
http://beanvalidation.org/1.0/


9:26 Contracts in the Wild

38 Y. Cheon and G. T. Leavens. A simple and practical approach to unit testing: The JML and
JUnit way. In Proceedings of the European Confereince on Object-Oriented Programming
(ECOOP), pages 231–255, 2002.

39 L. A. Clarke and D. S. Rosenblum. A historical perspective on runtime assertion checking
in software development. ACM Software Engineering Notes, 31(3):25–37, 2006.

40 David R. Cok. OpenJML: JML for Java 7 by extending OpenJDK. In Proceedings of the
NASA Formal Methods Symposium (NFM), volume 6617 of LNCS, pages 472–479. Springer-
Verlag, 2011.

41 David R. Cok. OpenJML: Software verification for Java 7 using JML, OpenJDK, and
eclipse. In Proceedings of the Workshop on Formal Integrated Development Environment
(F-IDE), volume 149, pages 79–92, 2014.

42 David R. Cok and Joseph Kiniry. ESC/Java2: Uniting ESC/Java and JML. In Proceedings
of the Conference on Construction and Analysis of Safe, Secure, and Interoperable Smart
Devices (CASSIS), volume 3362 of LNCS, pages 108–128. Springer-Verlag, 2005.

43 P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-C:
A Software Analysis Perspective. In Proceedings of the Conference on Software Engineering
and Formal Methods (SEFM), pages 233–247. 2012.

44 Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Proceedings
of the conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), pages 337–340, 2008.

45 David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended static
checking. SRC Research Report 159, Compaq Systems Research Center, 1998.

46 L. Peter Deutsch. An interactive program verifier. Ph.D., 1973.
47 Jens Dietrich and Graham Jenson. Components, contracts and vocabularies-making dy-

namic component assemblies more predictable. Journal of Object Technology, 8(7):131–148,
2009.

48 Jens Dietrich, Kamil Jezek, and Premek Brada. Broken promises: An empirical study
into evolution problems in Java programs caused by library upgrades. In Proceedings of
the Conference on Software Maintenance, Reengineering and Reverse Engineering (CSMR-
WCRE), pages 64–73. IEEE Computer Society Press, 2014.

49 Jens Dietrich and Lucia Stewart. Component contracts in Eclipse - A case study. In
Proceedings of the Symposium on Component-Based Software Engineering (CBSE), volume
6092, pages 150–165, 2010.

50 C. Dross, P. Efstathopoulos, D. Lesens, D. Mentre, and Y. Moy. Rail, space, security:
Three case studies for SPARK 2014. In Proceedings of the Embedded Real Time Software
And Systems (ERTS), 2014.

51 Oliver Enseling. icontract: Design by contract in Java. Accessed 12
August 2016. URL: http://www.javaworld.com/article/2074956/learn-java/
icontract--design-by-contract-in-java.html.

52 Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco,
Matthew S. Tschantz, and Chen Xiao. The Daikon system for dynamic detection of likely
invariants. Science of Computer Programming, 69(1-3):35–45, 2007.

53 H.-Christian Estler, Carlo A. Furia, Martin Nordio, Marco Piccioni, and Bertrand Meyer.
Contracts in practice. In Proceedings of the Symposium on Formal Methods (FM), volume
8442 of LNCS, pages 230–246. Springer-Verlag, 2014.

54 H.-Christian Estler, Marco Piccioni, Carlo A. Furia, Martin Nordio, and Bertrand Meyer.
How specifications change and why you should care. Computing Research Repository
(CoRR), abs/1211.4775, 2012.

http://www.javaworld.com/article/2074956/learn-java/icontract--design-by-contract-in-java.html
http://www.javaworld.com/article/2074956/learn-java/icontract--design-by-contract-in-java.html


J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:27

55 Manuel Fähndrich, Michael Barnett, and Francesco Logozzo. Embedded contract languages.
In Proceedings of the Symposium on Applied Computing (SAC), pages 2103–2110. ACM,
2010.

56 J. Filliâtre and A. Paskevich. Why3 — where programs meet provers. In Proceedings of
the European Symposium on Programming (ESOP), pages 125–128, 2013.

57 C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Extended
static checking for Java. In Proceedings of the ACM conference on Programming Language
Design and Implementation (PLDI), pages 234–245, 2002.

58 R. W. Floyd. Assigning meaning to programs. In Proceedings of Symposia in Applied
Mathematics, volume 19, pages 19–31. American Mathematical Society, 1967.

59 Erich Gamma and Kent Beck. Contributing to Eclipse: principles, patterns, and plug-ins.
Addison-Wesley Professional, 2004.

60 Olga Goloshchapova and Markus Lumpe. On the application of inequality indices in compar-
ative software analysis. In Proceedings of the Australasian Software Engineering Conference
(ASWEC), pages 117–126. IEEE, 2013.

61 D. I. Good. Mechanical proofs about computer programs. In Mathematical logic and
programming languages, pages 55–75, 1985.

62 Alwyn E. Goodloe, César Muñoz, Florent Kirchner, and Loïc Correnson. Verification of
numerical programs: From real numbers to floating point numbers. In Proceedings of the
NASA Formal Methods Symposium (NFM), pages 441–446, 2013.

63 C. A. R. Hoare. Assertions: A personal perspective. IEEE Annals of the History of
Computing, 25(2):14–25, 2003.

64 C.A.R. Hoare. The verifying compiler: A grand challenge for computing research. Journal
of the ACM, 50(1):63–69, 2003.

65 Charles Antony Richard Hoare. An axiomatic basis for computer programming. Commu-
nications of the ACM, 12(10):576–580, 1969.

66 Ashlie B. Hocking, John C. Knight, M. Anthony Aiello, and Shinichi Shiraishi. Arguing soft-
ware compliance with ISO 26262. In Proceedings of the Symposium on Software Reliability
Engineering (ISSRE), pages 226–231. IEEE Computer Society, 2014.

67 Richard C. Holt, Philip A. Matthews, J. Alan Rosselet, and James R. Cordy. The Turing
Programming Language. Design and Definition. Prentice Hall, 1988.

68 B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F. Piessens. Verifast:
A powerful, sound, predictable, fast verifier for C and Java. In Proceedings of the NASA
Formal Methods Symposium (NFM), pages 41–55, 2011.

69 B. Jacobs, J. Smans, and F. Piessens. A quick tour of the verifast program verifier. In
Proceedings of the Asian Symposium on Programming Languages and Systems (APLAS),
pages 304–311, 2010.

70 T. J. Jennings and B. A. Carré. A subset of Ada for formal verification (SPARK). Ada
User, 9(Supplement):121–126, 1989.

71 Murat Karaorman, Urs Hölzle, and John Bruno. jContractor: A reflective Java library to
support design by contract. In Proc. REFLECTION, pages 175–196, 1999.

72 Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programming. In Proceedings of the
European Confereince on Object-Oriented Programming (ECOOP), pages 220–242, 1997.

73 Michael Kimberlin. Reducing boilerplate code with project lombok. URL: http://jnb.
ociweb.com/jnb/jnbJan2010.html.

74 S. King. A Program Verifier. PhD thesis, Carnegie-Mellon University, 1969.
75 G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok. How the design of JML ac-

commodates both runtime assertion checking and formal verification. Science of Computer
Programming, 55(1-3):185–208, March 2005.

ECOOP 2017

http://jnb.ociweb.com/jnb/jnbJan2010.html
http://jnb.ociweb.com/jnb/jnbJan2010.html


9:28 Contracts in the Wild

76 K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness.
In Proceedings of the Conference on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR), volume 6355 of LNCS, pages 348–370. Springer-Verlag, 2010.

77 K. Rustan M. Leino. Developing verified programs with Dafny. In Proceedings of the
Conference on Verified Software: Theories, Tools, Experiments (VSTTE), volume 7152 of
LNCS, pages 82–82. Springer-Verlag, 2012.

78 D. Luckham, SM German, F. von Henke, R. Karp, P. Milne, D. Oppen, W. Polak, and
W. Scherlis. Stanford Pascal Verifier user manual. Technical Report CS-TR-79-731, Stan-
ford University, Department of Computer Science, 1979.

79 B. Meyer. Eiffel: A language and environment for software engineering. Journal of Systems
and Software, 8(3):199–246, 1988.

80 B. Meyer. Applying ’design by contract’. Computer, 25(10):40–51, 1992.
81 Emerson Murphy-Hill and Dan Grossman. How programming languages will co-evolve with

software engineering: a bright decade ahead. In Proceedings of the on Future of Software
Engineering (FOSE). ACM, 2014.

82 Peter Naur. Proof of algorithms by general snapshots. BIT Numerical Mathematics, 6,
1966.

83 Matthew M Papi, Mahmood Ali, Telmo Luis Correa Jr, Jeff H Perkins, and Michael D
Ernst. Practical pluggable types for Java. In Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA), pages 201–212, 2008.

84 D. J. Pearce and L. Groves. Whiley: a platform for research in software verification. In
Proceedings of the Conference on Software Language Engineering (SLE), pages 238–248,
2013.

85 D. J. Pearce and L. Groves. Designing a verifying compiler: Lessons learned from developing
whiley. Science of Computer Programming, 113(2):191–220, 2015.

86 Yu Pei, Carlo A. Furia, Martin Nordio, Yi Wei, Bertrand Meyer, and Andreas Zeller.
Automated fixing of programs with contracts. IEEE Transactions on Software Engineering,
40(5):427–449, 2014.

87 Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for software components.
IEEE transactions on Software Engineering, 28(11):1056–1076, 2002.

88 N. Polikarpova, C. Furia, Y. Pei, Y. Wei, and B. Meyer. What good are strong specific-
ations? In Proceedings of the International Conference of Software Engineering (ICSE),
pages 262–271, 2013.

89 Tom Preston-Werner. Semantic versioning 2.0.0. Accessed 12 August 2016. URL: http:
//semver.org/.

90 William Pugh. Jsr305: Annotations for software defect detection, 2013. URL: https:
//jcp.org/en/jsr/detail?id=305.

91 S. Raemaekers, A. van Deursen, and J. Visser. Semantic versioning versus breaking changes:
A study of the Maven repository. In Proceedings of the Working Conference on Source Code
Analysis & Manipulation, pages 215–224. IEEE Computer Society Press, 2014.

92 David S. Rosenblum. A practical approach to programming with assertions. IEEE Trans-
actions on Software Engineering, 21(1):19–31, 1995.

93 José Sánchez and Gary T. Leavens. Static verification of PtolemyRely programs using
OpenJML. In Proceedings of the Workshop on Foundations of Aspect-Oriented Languages
(FOAL), pages 13–18. ACM Press, 2014.

94 Todd W. Schiller, Kellen Donohue, Forrest Coward, and Michael D. Ernst. Case studies
and tools for contract specifications. In Proceedings of the International Conference of
Software Engineering (ICSE), pages 596–607, 2014.

95 Kavir Shrestha and Matthew J. Rutherford. An empirical evaluation of assertions as oracles.
In ICST, pages 110–119. IEEE Computer Society Press, 2011.

http://semver.org/
http://semver.org/
https://jcp.org/en/jsr/detail?id=305
https://jcp.org/en/jsr/detail?id=305


J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:29

96 Clemens Szyperski. Component Software, Second Edition. ACM Press, Addison-Wesley,
2002.

97 Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus Lumpe, Hayden
Melton, and James Noble. The Qualitas Corpus: A curated collection of Java code for
empirical studies. In Asia Pacific Software Engineering Conference (APSEC), pages 336–
345. IEEE, 2010.

98 The OSGi Alliance. OSGi service platform, 2012. Release 4.3.
99 Jeffrey M. Voas and Keith W. Miller. Putting assertions in their place. In Proceedings of

the Symposium on Software Reliability Engineering (ISSRE), pages 152–157, 1994.

ECOOP 2017





Evil Pickles: DoS Attacks Based on Object-Graph
Engineering∗

Jens Dietrich1, Kamil Jezek2, Shawn Rasheed3, Amjed Tahir4, and
Alex Potanin5

1 School of Engineering and Advanced Technology, Massey University
Palmerston North, New Zealand
j.b.dietrich@massey.ac.nz

2 NTIS – New Technologies for the Information Society
Faculty of Applied Sciences, University of West Bohemia
Pilsen, Czech Republic
kjezek@kiv.zcu.cz

3 School of Engineering and Advanced Technology, Massey University
Palmerston North, New Zealand
s.rasheed@massey.ac.nz

4 School of Engineering and Advanced Technology, Massey University
Palmerston North, New Zealand
a.tahir@massey.ac.nz

5 School of Engineering and Computer Science
Victoria University of Wellington, Wellington, New Zealand
alex@ecs.vuw.ac.nz

Abstract
In recent years, multiple vulnerabilities exploiting the serialisation APIs of various programming
languages, including Java, have been discovered. These vulnerabilities can be used to devise in-
jection attacks, exploiting the presence of dynamic programming language features like reflection
or dynamic proxies. In this paper, we investigate a new type of serialisation-related vulnerabilit-
ies for Java that exploit the topology of object graphs constructed from classes of the standard
library in a way that deserialisation leads to resource exhaustion, facilitating denial of service
attacks. We analyse three such vulnerabilities that can be exploited to exhaust stack memory,
heap memory and CPU time. We discuss the language and library design features that enable
these vulnerabilities, and investigate whether these vulnerabilities can be ported to C#, Java-
Script and Ruby. We present two case studies that demonstrate how the vulnerabilities can be
used in attacks on two widely used servers, Jenkins deployed on Tomcat and JBoss. Finally, we
propose a mitigation strategy based on contract injection.

1998 ACM Subject Classification D.2.2 Design Tools and Techniques, D.2.4 Software/Pro-
gram Verification, D.3.3 Language Constructs and Features, D.3.4 Processors, D.4.6 Security
and Protection, E.2 Data Storage Representations

Keywords and phrases serialisation, denial of service, degradation of service, Java, C#, JavaS-
cript, Ruby, vulnerabilities, library design, collection libraries

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.10

∗ This project was supported by a gift from Oracle Labs Australia to the first author and by the Ministry
of Education, Youth and Sports of the Czech Republic under the project PUNTIS (LO1506) under the
program NPU I.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Jens Dietrich, Kamil Jezek, Shawn Rasheed, Amjed Tahir, and Alex Potanin;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 10; pp. 10:1–10:32

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


10:2 Evil Pickles

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.3.2.13

1 Introduction

The Java platform was created with built-in features to address the security problems
resulting from the execution of downloaded code. The security of the Java platform has been
frequently challenged - currently there are 475 registered vulnerabilities for Oracle’s Java
Runtime Environment, of which 37 were reported in 2016 [24].

A recent cluster of Java vulnerabilities exploit weaknesses in the serialisation API [8].
Serialisation is a core feature supported by most modern programming languages, it is used
to write (serialise, marshal, encode, pickle, dump) an object graph to a stream using some
binary or text-based format. Serialisation is accompanied by a matching feature to read
(deserialise, unmarshal, decode, unpickle, parse) an object graph from a stream. Typical
applications of serialisation include object persistency, remoting and deep cloning. In Java,
serialisation is the foundation of several important platform features and protocols, including
Remote Method Invocation (RMI), Common Object Request Broker Architecture (CORBA),
Java Management Extensions (JMX) and Java Messaging Service (JMS).

A basic weakness of object deserialisation is that the process is not just a side effect-free
recovery of state; instead, sometimes methods are invoked to compute state. For instance,
when a hash map is read from a stream, its internal structure is computed by invoking
hashCode() on its (deserialised) elements. Similarly, a sorted container like PriorityQueue
will compute the order of its elements by invoking compareTo. Such behaviours are referred
to as trampolines. A number of serialisation-based attacks have been reported recently. These
attacks are based on the idea to craft a call chain (“gadget”) starting from a trampoline and
terminating in calls to Runtime.exec(), therefore enabling injection attacks. The original
attack [22] worked under the assumption that the popular Apache Commons Collection
library is present in the classpath of the system under attack, and exploited some of its
dynamic features. There are some simple counter-measures that can be used to prevent this,
in particular restricting the types of the object to be deserialised. There is now a proposal to
standardise those counter-measures [55].

While injection attacks usually rely on some dynamic language features such as reflection or
dynamic proxies that can be relatively easily sand-boxed, there is another kind of vulnerability
that requires a different approach. A pivotal vulnerability in this space is billion laughs
[13]. It uses a small crafted XML document with multiple cross-referencing entities. Entity
expansion by the parser (such as libxml2 ) is very expensive in terms of both memory and
CPU consumption and this can be exploited by attackers to trigger a Denial of Service (DoS)
attack. XML expansion results in large strings consisting of “lol” tokens, hence the name
“billion laughs”. This is also related to algorithmic complexity vulnerabilities [20] which aim
at manipulating a system in a way so that the average-case performance of data structures
deteriorates to worst-case. An example is an attack on web caches that use hashed data
structures by submitting a large number of different web sites that all have the same hash
code, therefore causing hash collision and O(n) (instead of O(1)) lookup complexity.

In this paper, we analyse a new category of vulnerabilities that are closely related to al-
gorithmic complexity vulnerabilities. These vulnerabilities take advantage of the serialisation
features of a programming language, and rely on a certain implementation of common data
structures in standard libraries. The vulnerabilities can be used for DoS attacks by causing
resource exhaustion. The targeted resources are runtime (CPU), stack and heap memory.

http://dx.doi.org/10.4230/DARTS.3.2.13


J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:3

We make the following contributions in this paper:

1. We present three Java vulnerabilities that lead to resource exhaustion during deseri-
alisation. One of these vulnerabilities has been reported before, the remaining two
vulnerabilities have been found as part of this study.

2. We analyse the resource consumption caused when a payload that contains these vulner-
abilities is being processed.

3. We identify features in programming languages, runtimes and libraries that enable these
vulnerabilities, and discuss how these features can be restricted.

4. We demonstrate how the vulnerabilities can be used to launch a DoS attack against two
popular real-world servers, Jenkins/Tomcat and JBoss.

5. We investigate the portability of the Java vulnerabilities to some other mainstream
languages: C#, Ruby and JavaScript. We find that some vulnerabilities can be ported to
C# and Ruby.

We will also present a mitigation strategy based on thread-based sandboxing and instru-
mentation of code with contracts for vulnerability detection and prevention. We assess the
overhead imposed by these contracts, using the DaCapo benchmark.

We would like to point out that none of the vulnerabilities discussed here is an issue of a
particular programming language in the sense that it is not the direct result of the syntax
and semantics of a language. Instead, these vulnerabilities are the result of certain choices
that were made when the standard library of a language was designed and implemented.
But from a software engineering point of view, they become language vulnerabilities as a
language cannot be used productively without its standard library.

2 The Java Vulnerabilities

In this section we discuss several vulnerabilities for the Java platform. We confirmed the
functionality of these vulnerabilities with experiments using Oracle’s Java(TM) SE Runtime
Environment 1.8.0_101. The SerialDOS vulnerability discussed in subsection 2.3 was reported
(but not fully analysed) independently in 2015, the other vulnerabilities discussed in this
section were discovered and reported by the authors.

We present the vulnerabilities using scripts that produce the respective payloads (i.e.,
the objects to be deserialised). Serialisation and deserialisation are asymmetric in the sense
that the resource exhaustion only occurs during the deserialisation. The reason is the order
in which methods computing object state are invoked. We will discuss this in more detail
using a concrete vulnerability in Section 2.2. But we note that malicious streams could even
been crafted without creating the respective object graph in the host language first.

2.1 Terminology
We start this section by defining some concepts used throughout the paper. In object-oriented
languages, objects form a directed object graph where the objects are represented by vertices,
and references to other objects are represented by edges. In Java-like languages, object1
references object2 if object2 is the value of a field of object1. In some cases, we will consider
logical references instead of physical references to abstract from internal data structures used
to organise references. For instance, the Java class java.util.HashSet uses an internal map
to reference its elements. In this case we will condense the object graph and assume that
there is a direct edge from the set to its elements. This has the effect that in some cases we
may under-approximate the size of the object graph.

ECOOP 2017



10:4 Evil Pickles

1 HashMap map = new HashMap ();
2 List list = new ArrayList ();
3 map.put(list ,"");
4 list.add(list);
5 return map;

Listing 1 Turtles all the way down payload construction.

Given an object graph, we are particularly interested in subgraphs formed by objects of
some type T , and these objects have more than one predecessor and successors of type T .
We refer to these structures as many-to-many (m2m) patterns. Common collection types in
Java form such m2m patterns as for instance lists can be elements of multiple other lists.

We also consider child-recursive methods, defined as follows: a method m is called child-
recursive iff the invocation with a receiver object obj, obj.m(..) triggers the invocation of
c.m(..) for some successors c of obj in the object graph.

In order to calculate resource usage at runtime, we will use call trees that model the
invocation of methods at runtime. The vertices in a call tree are method invocations, and
two invocations (inv1, inv2) are connected by an edge if inv2 is the successor of inv1 on
the stack at some stage during program execution. The call tree has the full calling context
information. For many scenarios, aggregated forms of the call tree like call graphs and
calling-context trees [2] can be used, but for our discussion we need the raw, uncompressed
information. Whenever a method is invoked, a new vertex is created.

Similar to how we deal with intermediate object references in the object graph, we
consider a simplified call tree that abstracts some calls caused by the use of intermediate data
structures (such as the maps used inside sets). This will again lead to an under-approximation
of the size of call trees. I.e., when we make statements about call trees being so large that this
causes problems, the actual call trees might be even larger (by a constant factor). For instance,
when we consider the call tree representing the invocation of (recursive) hashCode() methods
on a Java collection, we will only consider edges linking the invocation of hashCode() on
the container to the invocations of hashCode() on its elements, ignoring a fixed number of
additional method invocations per node such as iterator() that are necessary to obtain
references to the elements.

2.2 Turtles all The Way Down

The first vulnerability discussed aims at creating a stack overflow error when an object is read
from a binary stream. This can be achieved easily given that Java supports nested containers
such as lists within lists, and hashCode() is child-recursive for collections. The code is given
in Listing 1. The listing only shows the construction of the payload, i.e. the object that is
being serialised and then deserialised using the standard Java binary serialisation mechanism.
During deserialisation, the hashCode() method is invoked in order to organise the keys of
the hash map that is being constructed into buckets. Because the hash code of an ArrayList
is computed from the hash codes of its elements and the list contains itself, the invocation of
hashCode() results in a stack overflow.

Note that the payload construction is possible because the list is added to itself after it
was added to the map. I.e. if the state of an object changes, the container is not notified and
the hashCode() is not recomputed in order to rearrange the respective object by moving it
into a different bucket.



J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:5

1 Set root = new HashSet ();
2 Set s1 = root;
3 Set s2 = new HashSet ();
4 for (int i = 0; i < 100; i++) {
5 Set t1 = new HashSet ();
6 Set t2 = new HashSet ();
7 t1.add("foo");
8 s1.add(t1);
9 s1.add(t2);

10 s2.add(t1);
11 s2.add(t2);
12 s1 = t1;
13 s2 = t2;
14 }
15 return root;
16

Listing 2 SerialDOS payload construction.

2.3 SerialDOS

The SerialDOS vulnerability was published by Wouter Coekaerts in 2015 [12]. It is inspired
by the billion laughs vulnerability in libxml2 [13] that uses a crafted XML document with
nested entity references. Expanding these references results in a heavy computational load
that can be exploited.

The idea is to create an object graph that results in a large call tree of limited depth,
therefore avoiding a stack overflow but resulting in an extremely long-running task. The code
used to construct the payload is shown in Listing 2. Figure 1 shows the (incomplete) object
graph created. Java’s HashSet uses internal maps to organise and reference its elements – we
ignore these intermediate objects for brevity of the presentation. The depth of this structure
is defined by the constant defining the number of iterations (100 in this case). Note that
both the overall number of objects created (203, including the "foo" string literal) as well as
the number of references (500, not counting a similar number of references between internal
structures of HashSet such as arrays) is reasonably small. The reason that the "foo" literal
is added to one of the two sets created in each step is to ensure that those two sets are not
equal, and therefore both are added to their respective parent sets.

When the payload root (aliases as s1) is deserialized, readObject() is invoked which
then computes the hash of the elements in the set. These sets form a m2m pattern, and
hashCode() is child-recursive. At runtime, this combination results in the call tree depicted
in Figure 21. Whenever a new level is added (i.e., the depth is increased from k to k + 1),
each invocation t1_<k>.hashCode() triggers three new invocations t1_<k+1>.hashCode(),
t2_<k+1>.hashCode() and "foo".hashCode(), and each invocation t2_<k>.hashCode()
triggers two additional invocations t1_<k+1>.hashCode() and t2_<k+1>.hashCode(). The
total number of invocations for a graph of depth n is defined by the following formula:
inv(n) = 5 × 2n−1 − 2, the proof can be found in Appendix B. If 100 iterations are used,
we can estimate inv(100) ≈ 3.169 × 1030. If we assume that a single invocation takes only
one ns, the overall hash code computation triggered by deserialisation takes approximately
5 × 1013 years, more than the age of the universe.

1 As before, we omit intermediate invocations of methods invoked on the maps used in the internal
representation of elements in HashSet

ECOOP 2017



10:6 Evil Pickles

t1_1

t1_2

t1_3

t1_4

t2_2

t2_3

t2_4

"foo"

t2_1

s1 s2

Figure 1 SerialDOS object graph (the value after the underscore indicates the iteration when
the respective object was created).

t1_1.hashCode()

"foo".hashCode()

t2_1.hashCode()

s1.readObject(java.io.ObjectInputStream)

t2_2.hashCode() t1_2.hashCode() t2_2.hashCode() t1_2.hashCode()

.. .. .. .. .. .. .. .. .. ..

Figure 2 Call tree created by the SerialDOS payload during deserialisation (the value after the
underscore indicates the iteration when the respective object was created).

2.4 Pufferfish
This vulnerability uses an object graph with a topology similar to the one used in SerialDOS.
However, a different trampoline is used. The class javax.management.BadAttributeValue-
ExpException has a field val of type Object. When the constructor BadAttributeValue-
ExpException(Object) is invoked, the parameter is converted to a string and set as the value
of this field. This class also implements readObject(), which calls this.val.toString()
if no security manager is set. This can be exploited for payload construction. Note that val
must be set through reflection, as the constructor stringifies values before setting them, and
no other API (such as setVal()) exists. This makes it possible to construct a toString()
trampoline2. The source code is shown in Listing 3, the respective object graph created is
shown in Figure 3.

The calculation of the total number of invocations is similar to the analysis we used
for the SerialDOS payload. Each invocation of t1_<k>.toString() triggers three new
invocations t1_<k+1>.toString(), t2_<k+1>.toString() and "0".toString(), and simil-
arly t2_<k>.toString() triggers three new invocations t1_<k+1>.toString(), t2_<k+1>.-

2 This trampoline was reported by Chris Frohoff, see https://github.com/frohoff/ysoserial/blob/
master/src/main/java/ysoserial/payloads/CommonsCollections5.java

https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsCollections5.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsCollections5.java


J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:7

1 Collection s1 = new ArrayList ();
2 Collection s2 = new ArrayList ();
3 BadAttributeValueExpException root = new BadAttributeValueExpException (null);
4 Field valfield = root. getClass (). getDeclaredField ("val");
5 valfield . setAccessible (true);
6 valfield .set(root , s1);
7 for (int i = 0; i < 100; i++) {
8 Collection t1 = new ArrayList ();
9 Collection t2 = new ArrayList ();

10 t1.add("0");
11 t2.add("1");
12 s1.add(t1);
13 s1.add(t2);
14 s2.add(t1);
15 s2.add(t2);
16 s1 = t1;
17 s2 = t2;
18 }
19 return root;

Listing 3 Pufferfish payload construction.

toString() and "1".toString(). As in SerialDOS, this leads to exponential explosion, it
can be easily shown that the number of invocations is inv(n) = 3 × 2n − 2, the proof can be
found in Appendix B. The deserialisation of root invokes s1.toString(). The complete
call tree is shown in Figure 4. The toString() method in ArrayList builds a string by
concatenating all strings of the elements of the list, without checking the size of the list or
restricting the size of computed strings.

To analyse memory utilisation, we use a bottom-up approach. Let t1(0) represent the
object created in line 8 of Listing 3 in the last iteration, t2(1) the object created in line 9 in
the second to last iteration etc. Let size(k) be the size of the string (in characters) returned
by toString() invoked on t1(k). Since the example is symmetric, this is also the length of
the string returned by toString() invoked on t2(k). At level 0, the strings created are either
"[0]" or "[1]", and therefore size(1) = 3. At each level, a new string is generated using
the following pattern: an opening square bracket followed by 0 or 1, followed by a comma,
the two string representations of the lists on the next level separated by another comma,
terminated by a closing square bracket. This can be described by the following recursive
definition: size(k + 1) = 5 + 2 × size(k). This is equivalent to the following non-recursive
definition: size(n) = 2n+3 − 5. Hence, size(100) is approximately 1031. Even if we assumed
that only one byte is needed to encode a single character, this would approximately be 1022

GB, so an out of memory error is inevitable.
Note that this example prevents the SerialDOS scenario from occurring first by avoiding

hashed containers. If the lists were replaced by hash sets, the long running SerialDOS
scenario would take place before the out of memory error occurs.

An obvious limitation of this vulnerability is that it only works if the security manager is
not set. But we can construct a similar vulnerability that uses a different trampoline not
guarded by a security manager, but which depends on the presence of the popular Google
Guava library3 in the classpath. The root object is an instance of java.util.PriorityQueue.
When a priority queue is deserialised, entries are read and sorted4. This creates a trampoline
for the compareTo method. The comparator used for sorting can be serialised as well. Here

3 https://github.com/google/guava
4 Interestingly, this is different from the [OpenJDK implementation] of another sorted container,

java.util.TreeSet that assumes that entries are stored in the correct order and sorting after reading
is not required.

ECOOP 2017

https://github.com/google/guava


10:8 Evil Pickles

1 import com. google . common . collect . Ordering ;
2 ...
3 Comparator <Object > comp = Ordering . usingToString ();
4 PriorityQueue < Collection > root = new PriorityQueue (comp);
5 Collection s1 = new ArrayList < >(); Collection s2 = new ArrayList ();
6 root.add(s1); root.add(s2);
7 for (int i = 0; i < 100; i++) {
8 ..
9 }

Listing 4 Guava Pufferfish payload construction (the code in the loop is omitted, it is identical
to Listing 3, lines 8-17).

t2_1

t2_2

t2_3

t2_4

t1_2

t1_3

t1_4

"1"

t1_1

s1 s2

"0"

root

Figure 3 Pufferfish object graph (the value after the underscore indicates the iteration when the
respective object was created).

we use Guava’s Ordering comparator which compares objects by calling toString() and
then comparing the respective strings. This allows us to construct an alternative toString()
trampoline.

2.5 Enabling Language, Runtime and Library Features
The vulnerabilities described above depend on the presence of several features found in (the
standard library of) Java. By identifying these features, we can establish whether these
vulnerabilities can be ported to other languages. The enabling features are:

1. m2m patterns in object graphs – the fact that objects have in- and out-degrees of
at least two is exploited in both SerialDOS and Pufferfish

2. child-recursive methods – the methods used in the three vulnerabilities discussed,
ArrayList.hashCode(), HashSet.hashCode() and ArrayList.toString() are all child-
recursive.

3. resource-monotonic methods - child-recursive methods where the program requires
more system resources after method execution than before. An example is ArrayList.to-
String() used in Pufferfish – the size of the returned strings is not bounded, and cannot



J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:9

root.readObject(java.io.ObjectInputStream)

s1.tS()

t1_1.tS() t2_1.tS()

t1_2.tS() t2_2.tS() t1_2.tS() t2_2.tS()"0".tS() "1".tS()

.. .. .. .. .. .. .. .. .. .. .. ..

Figure 4 Call tree created by the Pufferfish payload during deserialisation (the value after the
underscore indicates the iteration when the object was created, tS() is short for toString()).

Table 1 Language/library features enabling the various vulnerabilities (all are required to enable
a vulnerability).

feature Turtles .. SerialDOS Pufferfish
m2m patterns in object graphs no yes yes
child-recursive methods yes yes yes
resource-monotonic methods no no yes
trampoline yes yes yes

be garbage collected as it is referenced from the stack of the caller. Methods accumulating
data in global (static) fields, or creating log entries exhausting secondary system storage
could be used to construct similar vulnerabilities. Even if the net effect of a single
invocation on system resources is small, it is the cumulative effect of a large number of
such invocations that can be exploited.

4. trampolines that trigger the invocation of child-recursive and resource-monotonic meth-
ods.

Table 1 cross-references these features with the particular vulnerabilities they enable. We
will discuss later in Section 5 how the design of a language, runtime or library can restrict
those features.

It is the combination of suitable trampolines, child-recursive methods and the m2m
pattern that facilitates the construction of payloads that result in exponentially growing call
trees. An interesting question is what the worst case scenario is, i.e., which object graph
topology creates the largest call tree. A particular constraint is that the trees should have a
bounded depth in order to avoid stack overflows that would terminate the computation early
and therefore restrict the size of the call tree. This means that the object graphs should
be acyclic. The denser the object graph, the wider the call tree becomes as each object
reference triggers additional invocations at runtime. Therefore, the worst case scenario is the
densest possible acyclic graph, a so-called tournament. It follows that the topology of the
object graphs used in SerialDOS and Pufferfish does not result in the worst case complexity.
For instance, additional references creating edges from t1_k to t2_k in the object graphs
represented in Figures 1 and 3 could be inserted without making the respective graphs cyclic.
However, the overall size of the call tree would still be exponential.

ECOOP 2017



10:10 Evil Pickles

3 Case Studies

In order to demonstrate the impact these vulnerabilities may have on real-world applications,
we created two attacks targeting Jenkins and JBoss. These attacks are derived from the
attacks reported by Breen [8], we modified the respective payloads and created different
clients to facilitate the experiments we conducted.

We used the following methodology. First, we implemented simple Java clients by porting
the Python scripts and Burp5 configurations from [8], and replaced the payloads by the
respective payloads discussed in section 2. This allowed us to send malicious requests to
the respective server. Next, we developed and deployed a simple servlet with non-trivial
computational complexity to be used as the target for benign (regular) requests. The servlet
performs a number of tasks including request parameter parsing, request forwarding to a
JSP, random number generation and computation of Fibonacci numbers. This workload
takes around 120 ms on the configuration used for testing.

There are two different test clients - one for benign, and one for malicious requests, that
are started simultaneously. The benign client continuously sends benign requests one after
another, and records runtimes and HTTP status codes. The experiment starts with 5 warmup
requests after the server start is detected to make sure that server performance stabilises.
Servers usually need longer to handle the first requests, as they have to perform tasks like
initialising caches and compiling server pages while they are already able to process incoming
requests. After warmup, the benign client sends another 200 benign requests sequentially, i.e.,
once the client receives a response, the client waits for 1s and then sends the next request.

30s after the benign client started to send benign requests (circa after 25 benign requests),
a batch of malicious requests is sent by the malicious client to simulate an attack from
another client session. We keep recording response times and status for the benign requests.
The experiment is executed twice with 5 and 500 malicious requests, respectively. In the
first experiment we demonstrate that a small attack can considerably slow down the server
while keeping it responsive, while in the second case we demonstrate an attack rendering the
server unresponsive.

The experiments were conducted on a system with a Intel(R) Core(TM) i5-4300U 1.90GHz
CPU, 8GB RAM, a 500GB HDD magnetic + 32GB SSD hard drive running under Ubuntu
16.04. The Java version used was a Java(TM) SE Runtime Environment (build 1.8.0_111-b14)
with a Java HotSpot(TM) 64-Bit Server VM (build 25.111-b14, mixed mode).

3.1 Jenkins / Tomcat
The first scenario uses Jenkins version 1.596 deployed on a Tomcat 8.5.5 server. Both
applications were installed using default settings. Jenkins is a popular and widely-used
continuous integration tool. It is distributed as a Java Web Archive (war file), which can be
deployed on Tomcat. Jenkins is then available as a web application after Tomcat is started.

The attack targets the Tomcat server, but the deployed Jenkins web application provides
the attack surface via its remote command line interface (CLI) that uses a custom protocol
with embedded serialised objects. Figure 5 shows the results of this experiment for 5 malicious
requests. For all benign requests the response code 200 OK was returned by the server.

The Turtles attack has little impact. The threads handling the malicious requests quickly
terminate with a stack overflow error, and the server can replace them in the respective

5 https://portswigger.net/burp/

https://portswigger.net/burp/


J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:11

Figure 5 Jenkins/Tomcat server response times before and after attacks with 5 malicious requests.

Figure 6 Jenkins/Tomcat server response times before and after attacks with 500 malicious
requests.

thread pool by new threads. There could be some measurable impact if the workload of the
server increased due to the overhead of thread replacement and error logging, but this was
not significant enough to be observable in the experiment setup we used.

Server performance deteriorates for the whole measured period after the SerialDOS attack,
indicating that several threads are permanently busy with deserialising malicious streams.
We confirmed this by taking thread dumps using VisualVM. We observed a slow down from
about 120ms before the attack to about 400ms, a degradation of a factor 3-4. Further analysis
with a system monitoring tool shows constant 90%-100% CPU loads after the attack. Due
to the already discussed time complexity of the attack, we can expect that the performance
degradation would remain steady until the server is restarted.

After launching the Pufferfish attack, the server response times increase significantly,
from typical values of around 120 ms to values of around 3s. However, the server recovers
after a while and performance returns back to values observed before the attack after the
benign request number #56. The reason for this is that Java is capable of recovering from
the out of memory errors that occur in the respective threads. If the error occurs, the thread
that is trying to allocate more heap memory is terminated and the JVM will attempt to run
garbage collection in order to free memory. The server can then replace the missing thread in
the respective thread pool. For which thread the error occurs is non-deterministic. It is most
likely that the error will occur in a thread processing Pufferfish, but other threads (including
a system thread that cannot be easily replaced by the server) could also be affected. The

ECOOP 2017



10:12 Evil Pickles

Figure 7 JBoss server response times before and after attacks with 5 malicious requests.

server slow down is more considerable in this scenario as Java utilises CPU for garbage
collection and the JVM requires some time before it realises that no more memory can be
allocated and the thread is terminated.

The result of the experiment with 500 malicious requests is depicted in Figure 6. It shows
that the turtles attack again did not have a considerable impact. The SerialDOS attack
also behaved as in the previous scenario. The only difference is that performance degraded
more considerably. In particular, it slowed from about 120ms before the attack to up to
43s, and then oscillated along 30-40s for the rest of the experiment. After the Pufferfish
attack, the server is defacto unable to handle benign requests as each benign request sent
after the attack hangs. For this reason, the graph shows no data for Pufferfish after the
attack (blue line). Depending on the server configuration such a request may hang for hours.
To obtain some results in meaningful time, we timed out requests after 1min, and stopped
the experiment after 10 requests had times out. The analysis of server logs later revealed
that the server did not crash but spent several hours with threads that handle malicious
requests, and eventually all threads terminated with an out of memory error.

For all benign requests that did not time out, the response code 200 OK was returned by
the server.

3.2 JBoss

In the second case study we created an attack on JBoss version 6.1.0 (similar to [8]). JBoss is
a popular open source application server. It uses a servlet (JMXInvokerServlet) to support
JMX via HTTP. This makes it possible to create HTTP post requests with the content
type application/x-java-serialized-object and a serialised object as payload. It is also
possible to send multiple malicious requests concurrently. JBoss was installed using default
settings.

The results follow the same pattern we observed for the Jenkins / Tomcat experiment.
The respective runtimes are shown in Figure 7 for 5 malicious requests and in Figure 8 for
500 malicious requests. The Turtles attack has little impact. Pufferfish overloaded the server
for a limited period (up-to request #32) when 5 malicious requests were. For 500 malicious
requests, Pufferfish had an effect on server performance similar to what we observed in the
Jenkins experiment. SerialDOS caused a lasting degradation of performance (from 120ms to
about 400ms).



J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:13

Figure 8 JBoss server response times before and after attacks with 500 malicious requests.

3.3 Discussion
The case studies demonstrate how at least two of the vulnerabilities discussed can be exploited
to launch denial of service attacks. While the servers are not stopped, their performance
is significantly compromised. This is still a denial of service attack according to RFC4949
defining it as “the prevention of authorized access to a system resource or the delaying of
system operations and functions”[63]. This type of DoS attack is sometimes also referred to
as a degradation-of-service attack.

In the case of the Pufferfish attack, we observed a strong temporary degradation of
performance up to a factor of 100 (and even 1,000 for JBoss) for 5 malicious requests, while
for the SerialDOS attacks the rate of slowdown observed was less pronounced (by a factor of
3-4), but permanent.

A combination of SerialDOS and Pufferfish and modifying the number of malicious
requests could be used to design customised DoS attacks ranging from moderate lasting
attacks to short attacks that effectively disable servers completely. The impact of such
attacks on systems and the organisations owning them can be significant. For instance, it
has been reported that even a small degradation of response time results in a large drop of
customer engagement for online businesses and therefore loss of revenue [64].

The experiments show that a Pufferfish can render a server unable to operate. On the
other hand, SerialDOS leads to permanent degradation of service even when a low number of
attacks is used. This might be particularly dangerous in practice as it may remain unnoticed.

4 Object-Graph Engineering in other Languages

In this section we investigate whether the vulnerabilities discussed above can be ported to
other languages. We included C# as a language that is conceptually close to Java as it
uses a similar type system and deployment model based on bytecode. We also looked into
the portability of the identified vulnerabilities to a popular dynamic language, Ruby and a
scripting language, JavaScript.

4.1 Ruby
There are different Ruby implementations in wider use, with potentially inconsistent behaviour.
We experimented with MRI Ruby 2.0.0p648 and JRuby 9.1.6.0.

ECOOP 2017



10:14 Evil Pickles

Ruby has several serialisation mechanisms, including YAML, Marshal and JSON. Deserial-
isation of hash maps also triggers the execution of hash, and nested containers are supported.
However, unlike Java, hash is executed in a controlled environment that prevents recursion6.
If recursion is detected, a special constant value is returned.

The second difference to Java is that the object stringify method (to_s) for containers
does not attempt to concatenate the string representation of the elements. Also, we could
not find a stringify trampoline suitable to construct the Pufferfish vulnerability.

This means that of the three vulnerabilities, we were only able to port SerialDOS. The
respective source code is shown in Listing 8 in Appendix A. A very similar version can be
constructed by replacing Marshal by the alternative YAML serialisation API.

A similar, serialisation-related vulnerability was discovered and reported in 2013 [17].
Using this vulnerability it was possible to initiate a DoS attack by using a crafted JSON
document to create a large number of symbols which were never garbage collected. In
response to this, the garbage collector in newer versions of Ruby also collects symbols7.

4.2 C#

We conducted experiments on both .NET 4.5 and Mono 4.6.1. The results were consistent
for both implementations.

.NET offers several serialisation mechanisms, including XML and binary serialisation. .NET
has separate generic and non-generic collections, the non-generic collection types in the
namespace System.Collections include Hashtable and ArrayList, while the generic types
in the namespace System.Collections.Generic include HashSet<T> and LinkedList<T>.
The methods to establish equality and compute the hash code of collections are delegated to
special comparer objects defined by the interface System.Collections.IEqualityComparer
and its generic counterpart. This facilitates the implementation of collections with alternative
comparison semantics, such as identity maps. Comparers are serialisable.

The deserialisation of Hashtable objects triggers the execution of HashCode() defined
in the comparer being used, and nested containers are supported by all collection types
and arrays. The behaviour of the hash calculation depends on the comparer being used.
From the comparers available in the standard library, HashSetEqualityComparator used
with nested (generic) hash sets did not exhibit the behaviour necessary to construct a
HashCode call chain down the nested containers. We believe that this is actually due to
a bug in .NET due to a broken contract between Equals and GetHashCode in this class.
This bug was reported and accepted8. However, constructing a non-generic Hashtable with
a StructuralEqualityComparer results in recursive calls to HashCode() as expected, and
can therefore be used to port the turtles and SerialDOS vulnerabilities. The code is shown
in Listings 9 and 10 in Appendix A, respectively.

Unlike the Java implementation of collection types, ToString for containers is not
overridden. Therefore, we did not succeed in porting the Pufferfish vulnerability.

6 In JRuby, the crucial behaviour showing how recursion is controlled can be found in
org.jruby.runtime.Helpers, see goo.gl/xc5mMK

7 https://www.ruby-lang.org/en/news/2014/12/25/ruby-2-2-0-released/
8 https://github.com/dotnet/corefx/issues/12560

goo.gl/xc5mMK
https://www.ruby-lang.org/en/news/2014/12/25/ruby-2-2-0-released/
https://github.com/dotnet/corefx/issues/12560


J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:15

4.3 JavaScript
We used node.js v0.12.7 for this study. The version of JavaScript that is widely supported at
the moment, standardised as ECMA-262, is 5 [28]. JavaScript has an on-board serialisation
mechanism provided by the built-in JSON object [28, sect. 15.12]. JavaScript 5 has no
explicit support for maps or similar data structures in its type system [28, sect. 8], and the
Object type [28, sect. 8.6] is used to represent map-like structures. The consequence of this
is that only strings are allowed as keys in maps.

JavaScript 6 adds support for proper maps that allow arbitrary ECMAScript language
values (including objects) as both keys and values [29, sect. 23.1]. However, the JSON
serialiser does not serialise maps. For instance, evaluating the script in Listing 5 produces an
empty string.

1 var map = new Map ();
2 map.set(’foo ’, 42);
3 var serMap = JSON. stringify (map);
4 // will output "{}"
5 console .log( serMap );

Listing 5 JavaScript 6 maps are not serialised

The semantics of JavaScript 6 maps is similar to identity maps in Java in the sense that
it is not based on user-defined equality [29, sect. 7.2.10]. While the standard stipulates
that the “Map object must be implemented using either hash tables or other mechanisms
that, on average, provide access times that are sublinear on the number of elements in the
collection.” [29, sect. 23.1], such a hash function would be an implementation-specific system
hash consistent with the built-in equality of objects. Therefore, JavaScript 6 does not provide
recursive hash functions that can be exploited.

The JSON serialisation mechanism can be customised by providing revivers (for deserial-
isation) and replacers (for serialisation). Knowledge of specific revivers could still be used to
initiate denial of service attacks.

There are several alternative serialisation mechanisms outside the standard. This includes
the XMLSerializer that is part of the Mozilla JavaScript extensions9. However, at the time
of writing, this was not supported by any major web browser, including Firefox. js-yaml is a
popular library that supports the YAML format10. However, map objects are currently not
supported (in version 3.6.1) and attempts to serialise maps lead to a YAMLException being
thrown.

JavaScript arrays (but neither objects nor maps) have a monotonic stringify method
(toString()), but we are not aware of a suitable trampoline to exploit this.

4.4 Summary
Table 2 summarises language support for features enabling the vulnerabilities. Table 3
summarises which of the vulnerabilities we were able to port to the languages investigated.
Note that a no entry in this table does not imply that it is impossible to port the respective
vulnerability. It merely means that we were not able to do so. In some cases we were able to
very systematically check for the presence of certain enabling features simply by inspecting
source code or reading a language specification. But to check for the presence of trampolines
is much harder. A full analysis requires a full-fledged sound static analysis. This is outside

9 https://developer.mozilla.org/en-US/docs/Web/API/XMLSerializer
10 https://github.com/nodeca/js-yaml

ECOOP 2017

https://developer.mozilla.org/en-US/docs/Web/API/XMLSerializer
https://github.com/nodeca/js-yaml


10:16 Evil Pickles

Table 2 Support for enabling features in various languages.

feature Java Ruby C# JS

m2m pattern yes yes yes yes11

child-rec. hash yes no yes no
child-rec. stringify yes no yes no
res.-mon. stringify yes no no yes
hash trampoline yes yes yes no
stringify trampol. yes no no no

Table 3 Object-graph vulnerabilities in various languages.

vulnerability Java Ruby C# JS

Turtles .. yes no yes no
SerialDOS yes yes yes no
Pufferfish yes no no no

the scope of this paper, and might even be impossible due to issues with the soundness of
static analysis in the presence of dynamic programming languages features like reflection
[47].

5 Mitigation

In this section we discuss mitigation strategies that can be used to avoid attacks exploiting the
Java vulnerabilities discussed above. The source code of the solution discussed can be found
in the public project repository (https://bitbucket.org/jensdietrich/evilpickles).

5.1 JEP290
JEP290 [55] is a recent proposal to address a range of serialisation-related vulnerabilities [8].
The proposal uses customisable filters that can be used by serialisation clients in order to
validate incoming streams during processing. JEP290 does not specify the behaviour that
should occur if the filters reject a stream, but the most likely scenario is that this should
result in a runtime exception being thrown.

The filters proposed can be used to allow/reject classes instantiated during deserialisation,
control the sizes of arrays being created, and enforce limits on stream length, stream depth,
and number of references encountered as the stream is being decoded.

None of these mechanisms is effective in detecting the vulnerabilities discussed in Section
2 since (1) they rely only on common collection types in the standard library which many
users may not want to blacklist (2) the number of references and the reference depth is
relatively small.

The SerialDOS and Pufferfish vulnerabilities both use a deep object graph with a default
depth set to 100. This is the bound of the loop in Listings 2 and 3, respectively. The number
of objects and references is a small multiple of the depth. It is worth noting here that a much
smaller depth is sufficient to cause problems. To confirm this, we designed a small experiment
with parameterised versions of SerialDOS and Pufferfish. The results reported here were

11 JS6 only

https://bitbucket.org/jensdietrich/evilpickles


J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:17

obtained using the configuration described in Section 3. To conduct these experiments, we
created a payload with a given depth. Starting at a small value 10, we increased the depth
and measured runtime and the memory needed for the strings computed in Pufferfish. At
depth 30, the time needed to deserialise the Pufferfish payload already exceeds one min
(69,416 ms) and from thereon almost exactly doubles with each increase in depth as expected.
At depth 26, the heap memory needed for the string computed in Pufferfish exceeds 1 GB
(1,280 MB), and again doubles with each increase in depth as expected. We conclude from
this that even small graphs can cause problems, and a different approach is needed.

5.2 Restricting Enabling Language, Runtime and Library Features
There is a trivial solution to deal with the vulnerabilities: to make sure that there are no
unsecured ports that can be used to input malicious streams. While this is in some sense the
perfect solution, history has shown that multiple levels of defence are necessary to effectively
protect systems.

Another very general solution is to restrict programming language, runtime or library
features that facilitate vulnerabilities. This is difficult for a mature platform like Java with a
strong commitment to compatibility [26]. The respective changes would be invasive, and
are likely to break a significant amount of existing programs. One possible change with
manageable impact would be to change the implementation of toString() in the collection
classes to ensure that a maximum string length is not exceeded. This can be achieved by
returning shorter string representations for large nested connections, for instance, by using
wildcards (*, ...) to represent multiple elements.

Another change that is easy to implement is to remove or restrict Guava’s Ordering.-
usingToString(). The documentation of this class suggests to use the lambda expression
Comparator.comparing(Object::toString) instead for Java 812. There is a subtle differ-
ence: the Guava comparator is serialisable, while the comparator returned by the lambda is
not. Making com.google.common.collect.UsingToStringOrdering non-serialisable would
prevent the version of Pufferfish that bypasses the security manager.

The approach taken in JEP290 to give users more control over the deserialisation process
could be extended with a call back mechanism that allows clients to monitor, and if necessary,
interrupt deserialisation.

Many object models allow the construction of object graphs exhibiting the m2m pattern.
However, patterns focusing on tree-like structures such as composite [33], are more common.
Often, library (API-level) defences are used to protect the integrity of these structures.
An example for this is the user interface component hierarchy in Java AWT with the core
types java.awt.Component and java.awt.Container, respectively. When adding an AWT
component to a container, a check is performed whether the component already has a
parent, and the component is re-parented if necessary. By using reflection it is often possible
to bypass API-level restrictions and therefore to create m2m patterns, although this API
bypass could break some of the object’s invariants and this could lead to exceptions that
could prevent the vulnerabilities discussed. For instance, in the one to many relationship
between Container and Component, both directions of the reference are maintained (using
the Container.component and Component.parent fields, respectively). An invariant is that
if c1 is the parent of c2, then c2 must be in c1.component, and vice versa. Manipulation

12 https://google.github.io/guava/releases/21.0/api/docs/com/google/common/collect/
Ordering.html

ECOOP 2017

https://google.github.io/guava/releases/21.0/api/docs/com/google/common/collect/Ordering.html
https://google.github.io/guava/releases/21.0/api/docs/com/google/common/collect/Ordering.html


10:18 Evil Pickles

of only one field via reflection can be used to violate this contract, and this leads to
IllegalArgumentExceptions being thrown in methods like Container.add..(..) and
Container.remove..(..).

As an example of how to create a m2m pattern from a composite by using reflection
consider nested Swing borders (javax.swing.border.CompoundBorder). Using reflective
field access, it is possible to create an object graph similar to SerialDOS (see Listing 7 in
Appendix A). AWT and Swing components are serialisable, and paintBorder(..)) is child-
recursive. (Un)fortunately we could not find a trampoline to trigger paintBorder(..)). But
this scenario could still be exploited for an attack if the attacker knows that the deserialised
object is a user interface that is going to be opened and rendered by the application.

There are also language-level options to restrict the topology of object graphs. Firstly,
in languages that provide ownership control [11], constraints can be put in place to ensure
that objects cannot be element of multiple collections. Secondly, the type system of a
language could be used to prevent certain kinds of data structures from serialisation. For
example, if Serializable was parameterised with a flag expressed with either a dependent
type or in a template-like language (as in C++) then serialisation could be allowed or
disallowed depending on the internal dependencies of the data structure in question. Just like
decidability issues in Java can be avoided by imposing some restrictions on generic types [36]
perhaps it is time to consider further restrictions that would guarantee serialisation safety
too and utilise either more flexible dependent types or more restrictive ownership guarantees
to detect unsafe cases.

A possible library-level solution to deal with child-recursive methods is to guard against
uncontrolled recursion. In order to do this effectively, language-level features are necessary
to provide an API that allows programmers to query the stack. Examples of such APIs are
Smalltalk’s thisContext, Ruby’s Kernel.caller and Java’s StackWalker (from version 9)
protocols.

Resource-monotonic methods can be controlled by measuring resource usage at method
exit, and intervene if thresholds are exceeded. While this is a library-level solution, it requires
that the runtime and the language provide APIs to query resource usage. This is potentially
a problem for Java, where this functionality is provided by the famous sun.misc.Unsafe [49]
API, and there are ongoing discussions to restrict access to it.

Static analysis techniques could be used for vulnerability detection. They have the
advantage that they can predict vulnerabilities before programs are deployed. However,
in the context of the vulnerabilities discussed here this is not very helpful as the topology
of the object graph creating the problems will only become known at runtime when an
incoming stream is processed. The best we can hope for is a hybrid analysis that pre-reads
(looks ahead) the stream, and builds a contextual call graph (consisting of target objects and
methods) from the information read from the stream and a pre-computed static model of the
program (call graph and points-to). This data structure could then be used to predict the
space and time complexity of deserialisation, and throw a SecurityException if thresholds
have been exceeded indicating a DoS attack.

Despite some recent progress to scale static analysis to handle programs of significant size
- for instance, the JDK itself [27], the computation of suitable models of sufficient precision
is still a challenge, and the size of the models makes it difficult to deploy them as part of a
program.

The alternative is a purely dynamic analysis that sandboxes the processing of the stream,
and intercepts the process if time or memory limits are exceeded. To some extent, such a
mechanism already exists as part of the Java executor framework [34].



J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:19

5.3 Thread-Based Sandboxing
The executor framework can be used to design a SecureObjectInputStream (SOIS) as a
drop-in replacement for ObjectInputStream (OIS). The SOIS uses the executor framework
to process an incoming stream with a standard OIS in a worker thread.

If a turtles payload is processed, a stack overflow error occurs in the worker thread
and terminates this thread. The executor framework wraps the StackoverflowError in an
ExecutionException that can be caught and communicated back to the application as a
security exception.

The executor framework can also be used to prevent SerialDOS attacks by setting timeouts.
When the operation times out, a TimeoutException is thrown. Again, this exception can be
caught, wrapped and rethrown as a SecurityException to communicate to the application
that a potential attack has been prevented.

The limitation of this design is that the TimeoutException does not stop the worker
thread. Unfortunately, there is no safe API to explicitly stop a thread. The recommended
way is to use a collaborative model where a flag is set that is checked frequently by the code
executed in the worker thread. The respective code includes the hashCode() methods in
core collection classes, and this makes the use of explicit new fields to control cancellation
unattractive. A better alternative is to use interrupts. I.e., after the TimeoutException has
been caught, the worker thread is interrupted.

5.4 Sandboxing via Contracts
To actually check the interrupt flag still requires an instrumentation of the methods invoked
by the worker thread, in particular hashCode() in collection classes. Conceptually, this can
be considered as a precondition: the operation is only to be performed if the thread has not
been interrupted. The violations of the precondition is signalled with a runtime exception [7],
an UncheckedInterruptedException in our case. This mechanism can be contextualised
to ensure that this exception is only thrown if the interrupt occurs while processing a stream
with a SOIS. This can be achieved by using a special thread factory, and a guard is used
when the precondition is checked that verifies that the thread has been created using this
factory.

The approach to use a precondition to enforce a security policy points towards a solution to
detect instances of Pufferfish. For detection, a postcondition can be used. The postcondition
can be used to check the memory consumption of objects at method exit. This can be
applied to (1) the return value, (2) parameters and (3) the target object (pointed to by
this). There are libraries that can be used to recursively measure the heap used by objects,
we used ehcache’s SizeOf for this purpose13. Once the memory usage is known, it can be
compared to a threshold, and a MemoryLimitExceededException is thrown if the threshold
is exceeded. This exception can then be caught in the main thread, wrapped and re-thrown
as a security exception, in analogy to how stack overflow errors are handled.

The use of contracts to formalise non-functional requirements has been advocated by the
component-based software engineering community, a detailed discussion of the topic can be
found in the seminal paper by Beugnard et al [4].

The approach outlined above requires us to inject pre- and postcondition checks into
system libraries. For this purpose we used AspectJ [45]. The injected pre- and post conditions
invoke static methods in the classes Preconditions and Postconditions provided by a

13 https://github.com/ehcache/sizeof

ECOOP 2017

https://github.com/ehcache/sizeof


10:20 Evil Pickles

1 public aspect ContractAspect {
2 pointcut interruptible ():
3 execution (* java.util.*. hashCode ())
4 || execution (java.lang. String java.util.*. toString ())
5 ;
6 pointcut memoryCritical ( Object o) :
7 execution (java.lang. String java.util.*. toString ()) && this(o)
8 ;
9 before (): interruptible () {

10 Preconditions . checkInterrupt ();
11 }
12 after ( Object o) returning ( String r): memoryCritical (o) {
13 Postconditions . checkMemoryLimit (r);
14 }
15 }

Listing 6 Contract injection via AspectJ.

small runtime library. These classes are modelled after the popular guava Preconditions
API14. I.e., the methods check a condition and throw an appropriate runtime exception if
the condition is violated. The respective aspect definition is shown in Listing 6. This aspect
can be easily modified if new similar vulnerabilities are discovered that use different parts of
the standard library or external libraries.

The SecureObjectInputStream API has three parameters that can be used to calibrate
the checks performed during deserialisation: timeout (default: 5,000 ms), maxMemory
(default: 1 MB) and maxReads (default: 1) to restrict the number of read method invocations.
This is to avoid situations where multiple smaller objects are deserialised and resource
exhaustion only occurs when an application attempts to read multiple objects.

5.5 Validation
To validate the mitigation strategy proposed in Section 5, we conducted two sets of ex-
periments in order to establish whether the use of SecureObjectInputStream (SOIS) can
prevent attacks exploiting the vulnerabilities, and to assess the overhead the instrumentation
has on real-world programs. The platform configuration used for these experiments was
identical with the configuration described in Section 3.

For the purpose of functional testing we created a set of plain JUnit tests to check
whether the the SOIS can detect and prevent attacks using the vulnerabilities discussed. The
respective tests use the SOIS with malicious payloads, and use the SecurityException as
test oracle. This is done by means of a JUnit custom rule. The rule does not only check
whether the expected exception is thrown, but also asserts that the worker thread has been
terminated. In addition to this, we also tested that the SOIS correctly reads benign objects.

In order to assess the performance overhead caused by the instrumentation, we conducted
experiments on the popular DaCapo benchmark [6]. First, we established how often the
methods with injected code were invoked. The results can be seen in Table 4. It shows that
there are significant differences between programs, not surprisingly postcondition checks are
relatively rare as we only instrumented the toString() methods in classes in the java.util
package.

Next we measures the runtime overhead of instrumentation. In order to obtain meaningful
results, we only included the programs with a significant number of pre- and postcondition

14 https://google.github.io/guava/releases/19.0/api/docs/com/google/common/base/
Preconditions.html

https://google.github.io/guava/releases/19.0/api/docs/com/google/common/base/Preconditions.html
https://google.github.io/guava/releases/19.0/api/docs/com/google/common/base/Preconditions.html


J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:21

Table 4 Invocations of injected code in projects from the DaCapo benchmark.

benchmark precondition invocations postcondition invocations
avrora 16 1
batik (*) 7,039 393
h2 (*) 2,182,210 1,088,624
fop 83 20
pmd 22,170 1
eclipse (*) 1,756 137
jython (*) 63,844 15,690
luindex 7,493 4
lusearch 16 1
sunflow 349 71
tomcat (*) 22,492 5,260
tradebeans (*) 221,459 175
tradesoap (*) 275,378 176
xalan 24 1

Figure 9 Runtimes of original vs instrumented versions of DaCapo programs with significant
invocations of instrumented code, in ms.

invocations. We set the threshold to 1,000 pre – and 100 postcondition invocations. There
are 7 programs passing this threshold, respective programs are starred in Table 4. To run
the benchmarks, we follow the methodology suggested in [44] using 12 iterations of which we
only measured the runtime of the last one. The results are shown in Figure 9. This indicates
that the overhead is modest or negligible for most cases, the largest overhead by far we
encountered was Eclipse where the runtime increased by 37%.

5.6 Discussion
In this section we have provided a simple yet elegant solution to prevent the vulnerabilities
discussed. For this to be useful in practice, it is important (1) that the instrumentation does
not change the semantics of the program and (2) that the overhead is acceptable.

We note that our approach to inject contracts is not different from other, now widely used
instrumentation-based techniques (e.g. measuring test coverage or profiling): this can be done

ECOOP 2017



10:22 Evil Pickles

transparently to a large extent, but one can always invent scenarios where this changes the
semantics of the instrumented program, e.g., if the program reasons about its own bytecode.
The main impact of our instrumentation-based technique is on performance, and for many
practical applications the reported performance overhead will be prohibitive. However,
engineers always have to make trade-offs balancing different design goals (e.g., performance
vs security), and in some security-critical areas the overhead might be acceptable. The
proposed solution also enables engineers to fine-tune this trade-off: if the classes instantiated
by incoming streams are restricted (e.g., by using JEP290 white lists), then the pointcuts
can be easily refined to only apply to certain types in order to improve performance.

6 Related Work

6.1 Object Serialisation
Serialisation is the mechanism by which program state is captured for persistence of runtime
data or for procedure calls across process boundaries. It involves the conversion of internal
runtime representations to binary or text representations and back. The mechanism has been
described in [39] and it was introduced to Java in [59]. The feature is supported in many
object-oriented languages including Java, C#, Python and Ruby. Serialisation-based object
storage and retrieval is used for lightweight persistence, communications over sockets, and
Java Remote Method Invocation (Java RMI). Serialisation is widely used in services that
enable distributed computing such as Java Naming and Directory Interface (JNDI), Java
Management Extensions (JMX), and Java Messaging (JMS) [52]. In addition to the standard
library routines, alternate serialisation libraries are also available. Distributed computing
frameworks such as Apache Storm [51] and Apache Spark use these alternatives for efficiency
reasons [51]. Amongst these alternatives are Kryo [31], Protocol Buffers [35] and XStream
[68].

6.2 Serialisation-Related Vulnerabilities in Java
The improper use of Java serialisation can compromise application safety [48], which may
result in attacks ranging from service unavailability or degradation to arbitrary code execution.
In [41], Holzinger et al present a comprehensive study of Java vulnerabilities and they identify
15% of the attacks in the study as attacks related to serialisation and two DoS exploits, one
caused by disk space exhaustion and the other, a result of a bug in garbage collecting deeply
nested structures. They present a meta model prepared from a large body of exploits to
determine the commonalities in attacks that identify Java language features and weaknesses
that cause them.

There are two known weaknesses in Java binary serialisation: (1) the possibility of
malformed objects and (2) unchecked deserialisation involves calling the readObject method
of an object with an unknown type where the type is dictated by the data from the stream.
Hence, an application that uses binary deserialisation can inadvertently instantiate any class
on the classpath. With the use of serialisation, fields that are otherwise inaccessible can
be modified and, hence, corrupted [7]. Unchecked deserialisation of corrupt data can lead
the application to an unexpected state. An attacker who has access to the communication
medium can craft serialised objects that potentially break the object’s invariants [7]. Custom
deserialisation has to be implemented with defensive checks to ensure that deserialised objects
are valid [7]. However, implementing defensive deserialisation can be a complex task as
serialisation is a feature that works against the Java security model’s goals [41].



J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:23

Peles and Hay [56] present a critical serialisation-related vulnerability in Android inter-
process communication that can result in arbitrary code execution or privilege escalation. A
whitepaper from Hewlett Packard Enterprise [52] describes various recent serialisation-related
vulnerabilities and countermeasures. A serialisation attack on the Java Messaging Service
(JMS) has been described by Kaiser [43]. It demonstrates the existence of production software
that remain vulnerable to such attacks. In [10], Cifuentes et al. note the recent spikes in
Java-related vulnerabilities and how other classes of Java vulnerabilities can result from
serialisation.

6.3 DoS Attacks
A Denial of service (DoS) attack is a threat to the security of computer networks, as it
attempts to make the services of a computer system unavailable to its users. Common DoS
attacks work by exhausting the resources of a server to the point that it is not available
for use. A number of vulnerabilities in software can expose a system to DoS attacks. Such
attacks can be broadly categorised into network-based and host-based attacks [37]. In this
paper we focus on the latter, and on application-layer vulnerability attacks also referred to
as semantic attacks [1]. Network-based attacks are beyond the scope of this paper.

In Java, DoS attacks can either target memory (resulting in memory exhaustion), or
cause worse-case algorithmic complexity behaviour that induce indefinitely long computations
resulting in service unavailability. Two of these vulnerabilities are presented by Polesovsky
[57]. A nested set of arrays is crafted with each array having a maximum possible size set
to the maximum integer value. Deserialising this object exhausts heap space as it allocates
large chunks of memory for each object. The second payload that targets Java 1.7 uses hash
collisions, by creating a HashMap or Hashtable with the initial capacity set to the load factor
of the Hashtable results in a degenerated hash table that uses a single bucket to store all
items. There are a few other serialisation-based attacks that can cause severe time complexity
such as SerialDOS for Java described earlier and an exploit that uses a serialised regular
expression pattern object [21]. The regular expression exploit, described by Schönefeld in
[62], is a result of doubling compile time for each group in a pattern, and deserialising a
pattern with fewer than a hundred groups can take several hundred years to compile.

6.4 Algorithmic Complexity Vulnerabilities
Widely used data structures have efficient average time complexity but they can exhibit poor
behaviour on certain input. Examples are hash tables that degenerate to lists, from constant
time to linear time lookups, on inputs with hash collisions. An attacker can take advantage
of such performance issues in a program to execute a DoS attack [20].

Billion laughs is a well-known DoS attack that targets XML parsers [13]. It consists of
a Document Type Definition (DTD) part, which describes the structure/grammar of the
document within itself, that causes parsers to consume the processor or memory to the extent
that it results in a DoS. The inline DTD defines a list of nested XML entities where each
entity’s definition contains references to the preceding entity definition. The expansion of
the entity defined at the bottom results in an exponentially large string that in effect causes
the service to degrade or fail. Some parsers protect against this attack by introducing a
threshold for entity references within a document. Another variant of the attack, known
as the quadratic blowup [18] cannot be avoided using a simple threshold. Quadratic blowup
consists of an entity definition with a single large string that can be referenced a few times
(a quadratic growth) to cause a performance blow up when parsing the document.

ECOOP 2017



10:24 Evil Pickles

Späth et al. [65] describe recursively defined entities, which reference each other in their
definitions. Even though the XML specification forbids such definitions, some parsers are
susceptible to DoS attacks via such XML documents that put the parser in an infinite
loop. This attack is similar in nature to the turtles vulnerability described above. A similar
DoS vulnerability that exploits PDF file document outlines, which is implemented as a
doubly-linked list structure within the document, is discussed in [30], where a badly-formed
outline with cycles is demonstrated to cause DoS in PDF clients.

6.5 Arbitrary Code Execution Vulnerabilities

Several serialisation-related arbitrary code execution vulnerabilities were presented by Frohoff
et al. in [32]. The discovered vulnerabilities exploit features found in version 3.x of the
Apache Commons Collections library, and are caused by the deserialisation from a stream
which instantiate any arbitrary class along with data from the stream.

The exploit consists of an elaborate set of objects chained together to cause the side-effect
of executing an arbitrary command during deserialisation. The object graph of the payload
used in the exploit has a collections data structure decorated with a chain of transformers.
The reconstruction of the collection from serialised data causes a call to the vulnerable
InvokerTransformer in the transformer chain, which is setup in the payload to transform
values as the collection is accessed. The InvokerTransformer’s serialised data is set to an
arbitrary command that is executed when the map is transformed as the data structure is
rebuilt on deserialisation.

Similar remote code execution deserialisation vulnerabilities that use dynamic proxies
have been discovered [53] in BeanShell[23] and Jython.

6.6 Serialisation-Related Vulnerabilities in Other Languages

Serialisation related vulnerabilities are common in other languages, and they generally fall
under the untrusted input validation class of vulnerabilities [66]. CVE-2013-3171, CVE-2012-
0161 and CVE-2012-0160 [15] [14] [19] document arbitrary code execution using serialisation
vulnerabilities in the Microsoft .NET platform. Python documentation warns against using its
serialisation module, pickles, for deserialising untrusted data. CVE-2012-4406 [16] documents
a pickling related vulnerability in a distributed object storage application written in Python.
A Ruby DoS attack reported in [17] documents how parsing JSON can cause memory
exhaustion for maliciously crafted JSON data. During parsing data can be coerced into Ruby
symbols - which are not garbage-collected, resulting in an exploitable memory leak.

6.7 Detection of DoS Vulnerabilities

Qie et al [58] present a toolkit to make software that is robust against DoS attacks. This
defensive approach prescribes annotating code where resources are used and released thus
assisting in abuse detection and action at runtime. SAFER [9] is a tool that detects semantic
vulnerabilities in C programs that may be vulnerable to DoS attacks using malicious inputs.
Holland et al [40] discuss the inadequacies in detecting algorithmic complexity vulnerabilities
using static analysis and propose to use a hybrid approach. Olivo et al [54] study redundant
traversal performance bugs, limited to traversals in non-recursive functions, and a static
analysis to detect them.



J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:25

6.8 Strategies Against Untrusted Deserialisation
Most of the current mitigation strategies are based on defence-in-depth approaches, that
is at the outermost level, the network perimeter is monitored for serialised objects. At
the next level instrumentation is used to monitor serialisation or the ObjectInputStream
can be wrapped to perform preliminary checks before its functionality is used. Subclassing
ObjectInputStream can implement whitelisting or blacklisting of deserialisable classes15. For
applications that use third-party libraries that utilize serialisation, instrumentation based
approaches are feasible to guard against open deserialisation. For example, NotSoSerial16
monitors calls to resolveClass in the ObjectInputStream and prevents deserialisation of
objects that are not in the whitelist. The subclass inspired approach has already been
implemented in ValidatingObjectInputStream in the Apache Commons IO library and a
filter-based stream is planned in JEP290 for Java 9 [55]. Neither of these are completely
effective [52] as deserialisation of system classes (as we describe) can result in DoS attacks.

6.9 Resource Limits And Isolation
In DoS attacks on Java applications, one of the issues is that a thread consuming excessively
from shared resources can bring the entire application down. Resource management and
process isolation are normally in the domain of the operating system. However, in Java
containers where multiple applications may reside shared common resources such issues
do arise. Solutions to the problem are available in managing resource management and
isolation, as described in [60] which discusses the availability-related security risks of hosting
applications in OSGi and application containers.

JRes[25] offers resource accounting to apply constraints on the level of resources that a
component can use. JRes works by rewriting classes to keep track of resource allocation, and
reclaim resources from threads that violate resource policies by terminating them. Other
systems that offer resource control functionality are Luna[38] and KaffeOS [3]. Binder et al
describe JSEAL-2 in [5], which is a portable resource control system unlike KaffeOS. JSR
284, Resource Consumption Management API [42] specifies the presentation of resources as
entities presented to programs that can be subjected to management. JSR 284 is not yet
included in any releases of Java.

6.10 Contracts
Meyer [50] proposed the notion of contracts in software design, which encompasses precondi-
tions, postconditions and invariants in software specification and implementation. Beugnard
et al [4] identified four categories of contracts that can be used: syntactic, behavioural, syn-
chronization and quality of service (QoS) contracts. Wang et al [67] described non-functional
aspects such as task response time as QoS attributes and they propose a specification lan-
guage for these characteristics. In component-based software engineering, QoS contracts
centre around negotiating requirements for the component to adapt to QoS levels to function
successfully [61]. Contracts as a means to express and monitor resource requirements has
been proposed in an experimental platform described by Sommer et al [46]. The JAMUS
[46] platform models system resources as objects - a request broker manages admission of

15 http://www.ibm.com/developerworks/library/se-lookahead
16 https://github.com/kantega/notsoserial

ECOOP 2017

http://www.ibm.com/developerworks/library/se-lookahead
https://github.com/kantega/notsoserial


10:26 Evil Pickles

components based on the resource requirements they express contractually, and the platform
monitors and enforces resource usage against the component’s contracts.

7 Conclusion

In this paper, we have discussed three vulnerabilities targeting the serialisation APIs and
leading to different types of resource exhaustion affecting CPU, heap and stack memory. We
investigated these vulnerabilities in the context of different programming languages – Java,
JavaScript, Ruby and C#, and demonstrated how these vulnerabilities can be exploited
to engineer denial of service attacks on two popular Java servers. Finally, we presented a
possible mitigation strategy based on thread-based sandboxing and contract injection, and
assessed the overhead of this method on real-world programs.

We have reported these vulnerabilities to Oracle and Microsoft. This study also led to
the discovery of a broken contract between equals and hash code in .NET, the respective
bug has been accepted. The source code for the various experiments conducted and the
SecureObjectInputStream class and its helpers can be found in the public source code
repository (https://bitbucket.org/jensdietrich/evilpickles).

Possible directions for future research include (1) the design of a static analysis to detect
trampolines and other features that could be used to construct object graphs and call chains
leading to the vulnerabilities discussed, and (2) the design of alternative mitigation strategies
with lower performance overheads.

Acknowledgements. The authors would like to thank (in alphabetical order) Cristina
Cifuentes, Max Dietrich, Andrew Gross, Luke Inkster, David Pearce, Konstantin Raev and
Manu Sridharan for their valuable feedback.

References
1 Mehmud Abliz. Internet denial of service attacks and defense mechanisms. University of

Pittsburgh, Department of Computer Science, Technical Report, 2011.
2 Glenn Ammons, Thomas Ball, and James R Larus. Exploiting hardware performance

counters with flow and context sensitive profiling. In Proceedings PLDI’97. ACM, 1997.
3 Godmar Back and Wilson C. Hsieh. The kaffeos java runtime system. ACM Trans. Program.

Lang. Syst., 27(4):583–630, July 2005. doi:10.1145/1075382.1075383.
4 Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien Watkins. Making

components contract aware. Computer, 32(7):38–45, 1999.
5 Walter Binder, Jane G. Hulaas, and Alex Villazón. Portable resource control in java. In

Proceedings OOPSLA ’01, pages 139–155. ACM, 2001.
6 Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khang, Kathryn S McKin-

ley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z Guyer, et al.
The dacapo benchmarks: Java benchmarking development and analysis. In Proceedings
OOPSLA ’06. ACM, 2006.

7 Joshua Bloch. Effective Java (2nd Edition) (The Java Series). Prentice Hall PTR, NJ,
USA, 2 edition, 2008.

8 Stephen Breen. What Do WebLogic, WebSphere, JBoss, Jenkins, OpenNMS, and Your
Application Have in Common? This Vulnerability, 2015. [Online; accessed 5-November-
2016]. URL: https://goo.gl/cx7X4D.

9 Richard Chang, Guofei Jiang, Franjo Ivancic, Sriram Sankaranarayanan, and Vitaly
Shmatikov. Inputs of coma: Static detection of denial-of-service vulnerabilities. In Pro-
ceedings CSF’09, pages 186–199. IEEE, 2009.

https://bitbucket.org/jensdietrich/evilpickles
http://dx.doi.org/10.1145/1075382.1075383
https://goo.gl/cx7X4D


J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:27

10 Cristina Cifuentes, Andrew Gross, and Nathan Keynes. Understanding caller-sensitive
method vulnerabilities: A class of access control vulnerabilities in the java platform. In
Proceedings SOAP’15, pages 7–12. ACM, 2015.

11 David G Clarke, John M Potter, and James Noble. Ownership types for flexible alias
protection. In Proceedings OOPSLA’98. ACM, 1998.

12 Wouter Coekaerts. SerialDOS, 2015. [Online; accessed 31-October-2016]. URL: https:
//gist.github.com/coekie/a27cc406fc9f3dc7a70d.

13 CVE-2003-1564 (Billion Laughs), 2003. [Online; accessed 31-October-2016]. URL: https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1564.

14 CVE-2012-0160 (.NET Framework Serialization Vulnerability), 2012. [Online; ac-
cessed 31-October-2016]. URL: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2012-0160.

15 CVE-2012-0161 (.NET Framework Serialization Vulnerability), 2012. [Online; ac-
cessed 31-October-2016]. URL: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2012-0161.

16 CVE-2012-4406 (Deserialization Vulnerability in OpenStack Object Storage), 2012. [On-
line; accessed 3-December-2016]. URL: https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2012-4406.

17 CVE-2013-0269 (Denial of Service and Unsafe Object Creation Vulnerability in JSON),
2013. [Online; accessed 31-October-2016]. URL: https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2013-0269.

18 CVE-2015-2937 (MediaWiki quadratic blowup vulnerability), 2015. [Online; ac-
cessed 3-December-2016]. URL: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2015-2937.

19 CVE-2013-3171 (Delegate Serialization Vulnerability), 2016. [Online; accessed 31-October-
2016]. URL: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3171.

20 Scott A Crosby and Dan S Wallach. Denial of service via algorithmic complexity attacks.
In Proceedings of 21th Usenix Security Symposium, volume 2, 2003.

21 CVE-2009-1190 (Algorithmic Complexity Vulnerability in java.util.regex.Pattern.compile),
2009. [Online; accessed 31-October-2016]. URL: http://www.cvedetails.com/cve/
CVE-2009-1190/.

22 CVE-2015-6420 (Vulnerability in Java Deserialization), 2015. [Online; accessed 31-October-
2016]. URL: http://www.cvedetails.com/cve/CVE-2015-6420/.

23 CVE-2016-2510 (Vulnerability in Java Deserialization), 2016. [Online; accessed 31-October-
2016]. URL: http://www.cvedetails.com/cve/CVE-2016-2510/.

24 Oracle » JRE: Vulnerability Statistics, 2016. [Online; accessed 15-December-2016]. URL:
https://www.cvedetails.com/product/19117/Oracle-JRE.html?vendor_id=93.

25 Grzegorz Czajkowski and Thorsten von Eicken. Jres: A resource accounting interface for
java. In Proceedings OOPSLA ’98, pages 21–35. ACM, 1998.

26 Joseph D. Darcy. JDK Release Types and Compatibility Regions, 2009. [Online;
accessed 5-November-2016]. URL: https://blogs.oracle.com/darcy/entry/release_
types_compatibility_regions.

27 Jens Dietrich, Nicholas Hollingum, and Bernhard Scholz. Giga-scale exhaustive points-to
analysis for java in under a minute. In OOPSLA’15. ACM, 2015.

28 ECMAScript Language Specification, Standard ECMA-262 5.1 Edition / June 2011,
2011. [Online; accessed 31-October-2016]. URL: http://www.ecma-international.org/
ecma-262/5.1/index.html.

29 ECMAScript 2015 Language Specification, Standard ECMA-262 6th Edition / June 2015,
2015. [Online; accessed 31-October-2016]. URL: http://www.ecma-international.org/
ecma-262/6.0/index.html.

ECOOP 2017

https://gist.github.com/coekie/a27cc406fc9f3dc7a70d
https://gist.github.com/coekie/a27cc406fc9f3dc7a70d
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1564
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1564
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0161
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0161
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4406
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4406
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0269
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0269
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2937
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2937
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3171
http://www.cvedetails.com/cve/CVE-2009-1190/
http://www.cvedetails.com/cve/CVE-2009-1190/
http://www.cvedetails.com/cve/CVE-2015-6420/
http://www.cvedetails.com/cve/CVE-2016-2510/
https://www.cvedetails.com/product/19117/Oracle-JRE.html?vendor_id=93
https://blogs.oracle.com/darcy/entry/release_types_compatibility_regions
https://blogs.oracle.com/darcy/entry/release_types_compatibility_regions
http://www.ecma-international.org/ecma-262/5.1/index.html
http://www.ecma-international.org/ecma-262/5.1/index.html
http://www.ecma-international.org/ecma-262/6.0/index.html
http://www.ecma-international.org/ecma-262/6.0/index.html


10:28 Evil Pickles

30 G. Endignoux, O. Levillain, and J. Y. Migeon. Caradoc: A pragmatic approach to pdf
parsing and validation. In 2016 IEEE Security and Privacy Workshops (SPW), pages
126–139, May 2016. doi:10.1109/SPW.2016.39.

31 Kryo: Java serialization and cloning: fast, efficient, automatic, 2016. [Online; accessed
31-October-2016]. URL: https://github.com/EsotericSoftware/kryo.

32 Christopher Frohoff and Gabriel Lawrence. Marshalling Pickles, 2015. [Online; accessed 31-
October-2016]. URL: http://frohoff.github.io/appseccali-marshalling-pickles/.

33 Erich Gamma, John Vlissides, Ralph Johnson, and Richard Helm. Design patterns: ele-
ments of reusable object-oriented software. Addison-Wesley, 1994.

34 Brian Goetz and Tim Peierls. Java concurrency in practice. Pearson Education, 2006.
35 Protocol Buffers, 2016. [Online; accessed 30-November-2016]. URL: https://developers.

google.com/protocol-buffers/.
36 Ben Greenman, Fabian Muehlboeck, and Ross Tate. Getting f-bounded polymorphism into

shape. In Proceedings PLDI’14. ACM, 2014.
37 Gu and Liu. Denial of Service Attacks, 2015. [Online; accessed 5-November-2016]. URL:

https://s2.ist.psu.edu/paper/ddos-chap-gu-june-07.pdf.
38 Chris Hawblitzel and Thorsten von Eicken. Luna: A flexible java protection system. In

Proceedings OSDI ’02, pages 391–403. ACM, 2002.
39 Maurice P Herlihy and Barbara Liskov. A value transmission method for abstract data

types. ACM Transactions on Programming Languages and Systems (TOPLAS), 4(4):527–
551, 1982.

40 Benjamin Holland, Ganesh Ram Santhanam, Payas Awadhutkar, and Suresh Kothari.
Statically-informed dynamic analysis tools to detect algorithmic complexity vulnerabilit-
ies. In Proceedings SCAM’16. IEEE, 2016.

41 Philipp Holzinger, Stefan Triller, Alexandre Bartel, and Eric Bodden. An in-depth study
of more than ten years of java exploitation. In Proceedings CCS’16. ACM, 2016.

42 JSR 284: Resource Consumption Management API, 2016. [Online; accessed 1-December-
2016]. URL: https://jcp.org/en/jsr/detail?id=284.

43 Matthias Kaiser. Pwning Your Java Messaging With Deserialization Vulnerabilities, 2016.
[Online; accessed 31-October-2016]. URL: https://goo.gl/5ZQku0.

44 Tomas Kalibera and Richard Jones. Rigorous benchmarking in reasonable time. In Pro-
ceedings ISMM’13, pages 63–74. ACM, 2013.

45 Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G
Griswold. An overview of aspectj. In Proceedings ECOOP ’01, pages 327–354. Springer,
2001.

46 Nicolas Le Sommer and Frédéric Guidec. A contract-based approach of resource-constrained
software deployment. In Proceedings CD’02. Springer, 2002.

47 Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhoták, José Nelson
Amaral, Bor-Yuh Evan Chang, Samuel Z Guyer, Uday P Khedker, Anders Møller, and
Dimitrios Vardoulakis. In defense of soundiness: a manifesto. Commun. ACM, 58(2):44–
46, 2015.

48 Fred Long. Software vulnerabilities in java. Technical Report CMU/SEI-2005-TN-044,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 2005. URL:
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7573.

49 Luis Mastrangelo, Luca Ponzanelli, Andrea Mocci, Michele Lanza, Matthias Hauswirth,
and Nathaniel Nystrom. Use at your own risk: the java unsafe api in the wild. In Proceedings
OOSPSLA’15. ACM, 2015.

50 Bertrand Meyer. Applying’design by contract’. Computer, 25(10):40–51, 1992.

http://dx.doi.org/10.1109/SPW.2016.39
https://github.com/EsotericSoftware/kryo
http://frohoff.github.io/appseccali-marshalling-pickles/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://s2.ist.psu.edu/paper/ddos-chap-gu-june-07.pdf
https://jcp.org/en/jsr/detail?id=284
https://goo.gl/5ZQku0
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7573


J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:29

51 Heather Miller, Philipp Haller, Eugene Burmako, and Martin Odersky. Instant pickles:
generating object-oriented pickler combinators for fast and extensible serialization. In Pro-
ceedings OOPSLA’13, pages 183–202. ACM, 2013.

52 A. Muñoz and C. Schneider. The Perils of Java Deserialization, 2016. [Online; ac-
cessed 1-December-2016]. URL: https://community.hpe.com/t5/Security-Research/
The-perils-of-Java-deserialization/ba-p/6838995#.WECzUsJ96cY.

53 Alvaro Muñoz. Serial Killer: Silently Pwning Your Java Endpoints, 2016. [Online; accessed
3-December-2016]. URL: https://www.rsaconference.com/writable/presentations/
file_upload/asd-f03-serial-killer-silently-pwning-your-java-endpoints.pdf.

54 Oswaldo Olivo, Isil Dillig, and Calvin Lin. Static detection of asymptotic performance bugs
in collection traversals. In Proceedings PLDI’15, pages 369–378. ACM, 2015.

55 JEP 290: Filter Incoming Serialization Data, 2016. [Online; accessed 5-November-2016].
URL: http://openjdk.java.net/jeps/290.

56 Or Peles and Roee Hay. One class to rule them all: 0-day deserialization vulnerabilities in
android. In Proceedings WOOT’15. USENIX, 2015.

57 Tomas Polesovsky. Java Deserialization Denial-of-Service Payloads, 2016. [Online; ac-
cessed 31-October-2016]. URL: http://topolik-at-work.blogspot.co.nz/2016/04/
java-deserialization-dos-payloads.html.

58 Xiaohu Qie, Ruoming Pang, and Larry Peterson. Defensive programming: Using an an-
notation toolkit to build dos-resistant software. ACM SIGOPS Operating Systems Review,
36(SI):45–60, 2002.

59 Roger Riggs, Jim Waldo, Ann Wollrath, and Krishna Bharat. Pickling state in the java
system. In Proceedings COOTS’96. USENIX, 1996.

60 Luis Rodero-Merino, Luis M. Vaquero, Eddy Caron, Adrian Muresan, and Frédéric Desprez.
Building safe paas clouds: A survey on security in multitenant software platforms. Comput.
Secur., 31(1):96–108, February 2012. doi:10.1016/j.cose.2011.10.006.

61 Christophe Scholliers, Éric Tanter, and Wolfgang De Meuter. Computational contracts.
Science of Computer Programming, 98(P3):360–375, 2015.

62 Marc Schönefeld. Refactoring of Security Antipatterns in Distributed Java Components.
Schriften aus der Fakultät Wirtschaftsinformatik und Angewandte Informatik der Otto-
Friedrich-Universität Bamberg. University of Bamberg Press, 2010.

63 Robert W Shirey. Internet security glossary, version 2, 2007. [Online; accessed 25-November-
2016]. URL: https://tools.ietf.org/html/rfc4949.

64 Steve Sounders. Velocity and the Bottom Line, 2009. [Online; accessed 25-November-2016].
URL: http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html.

65 Christopher Späth, Christian Mainka, Vladislav Mladenov, and Jörg Schwenk. Sok: Xml
parser vulnerabilities. In Proceedings WOOT’16. USENIX, 2016.

66 Katrina Tsipenyuk, Brian Chess, and Gary McGraw. Seven pernicious kingdoms: a
taxonomy of software security errors. IEEE Security Privacy, 3(6):81–84, Nov 2005.
doi:10.1109/MSP.2005.159.

67 Changzhou Wang, Guijun Wang, Haiqin Wang, Alice Chen, and Rodolfo Santiago. Qual-
ity of service (qos) contract specification, establishment, and monitoring for service level
management. In Proceedings EDOCW’06. IEEE, 2006.

68 Xstream, a simple library to serialize objects to xml and back again, 2016. [Online; accessed
31-October-2016]. URL: http://x-stream.github.io/.

ECOOP 2017

https://community.hpe.com/t5/Security-Research/The-perils-of-Java-deserialization/ba-p/6838995#.WECzUsJ96cY
https://community.hpe.com/t5/Security-Research/The-perils-of-Java-deserialization/ba-p/6838995#.WECzUsJ96cY
https://www.rsaconference.com/writable/presentations/file_upload/asd-f03-serial-killer-silently-pwning-your-java-endpoints.pdf 
https://www.rsaconference.com/writable/presentations/file_upload/asd-f03-serial-killer-silently-pwning-your-java-endpoints.pdf 
http://openjdk.java.net/jeps/290
http://topolik-at-work.blogspot.co.nz/2016/04/java-deserialization-dos-payloads.html
http://topolik-at-work.blogspot.co.nz/2016/04/java-deserialization-dos-payloads.html
http://dx.doi.org/10.1016/j.cose.2011.10.006
https://tools.ietf.org/html/rfc4949
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
http://dx.doi.org/10.1109/MSP.2005.159
http://x-stream.github.io/


10:30 Evil Pickles

A Additional Source Code Listings

A.1 Java

1 public static Object payload () throws Exception {
2 JFrame frame = new JFrame (); JPanel panel = new JPanel ();
3 frame . setContentPane ( panel );
4 CompoundBorder root = BorderFactory . createCompoundBorder ();
5 CompoundBorder s1 = root;
6 CompoundBorder s2 = BorderFactory . createCompoundBorder ();
7 for (int i = 0; i < 100; i++) {
8 CompoundBorder t1 = BorderFactory . createCompoundBorder ();
9 CompoundBorder t2 = BorderFactory . createCompoundBorder ();

10 setField (s1 ," outsideBorder ",t1); setField (s1 ," insideBorder ",t2);
11 setField (s2 ," outsideBorder ",t1); setField (s2 ," insideBorder ",t2);
12 s1 = t1; s2 = t2;
13 }
14 setField (s1 ," outsideBorder ",BorderFactory . createEtchedBorder ());
15 setField (s2 ," insideBorder ",BorderFactory . createEtchedBorder ()); return frame ;
16 }
17 private static void setField ( Object object ,String fieldName ,Object value )
18 throws Exception {
19 Field field = object . getClass (). getDeclaredField ( fieldName );
20 field . setAccessible (true); field .set( object ,value );
21 }

Listing 7 Swing-based SerialDOS payload construction.

A.2 Ruby

1 require ’set ’
2 root = Set.new
3 s1 = root
4 s2 = Set.new
5 for i in 1..100 do
6 t1 = Set.new
7 t2 = Set.new
8 t1.add("foo")
9 s1.add(t1)

10 s1.add(t2)
11 s2.add(t1)
12 s2.add(t2)
13 s1 = t1
14 s2 = t2
15 end
16 data = Marshal .dump(root)
17 deser = Marshal .load(data)

Listing 8 SerialDOS in Ruby (Marshal version).

A.3 C#

1 using System ;
2 using System . Collections ;
3 using System . Runtime . Serialization ;
4 using System .IO;
5 using System . Runtime . Serialization . Formatters . Binary ;
6 public class SerialDOS {
7 public static void Main (){
8 // serialize
9 var outStream = new MemoryStream ();

10 var bf = new BinaryFormatter ();
11 bf. Serialize (outStream , payload ());
12 // deserialize
13 var inStream = new MemoryStream ( outStream . ToArray ());
14 var deserializedObject = bf. Deserialize ( inStream );
15 }
16 public static Object payload () {
17 var top = new object [2];



J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:31

18 var comp = StructuralComparisons . StructuralEqualityComparer ;
19 var root = new Hashtable (comp);
20 root.Add(top , "foo");
21 var s1 = top;
22 var s2 = new object [2];
23 for (int i = 0; i < 50; i++) {
24 var t1 = new object [2]; var t2 = new object [2];
25 s1 [0] = t1; s1 [1] = t2;
26 s2 [0] = t1; s2 [1] = t2;
27 s1 = t1; s2 = t2;
28 }
29 return root;
30 }
31 }

Listing 9 .NET/C# SerialDOS.

1 public static Object payload () {
2 var top = new object [1];
3 var comp = StructuralComparisons . StructuralEqualityComparer ;
4 var root = new Hashtable (comp);
5 root.Add(top ,"");
6 top [0]= top;
7 return root;
8 }

Listing 10 .NET/C# Turtles all the way down (payload construction only).

B Proofs

I Observation 1. The number of invocations needed to deserialise the SerialDOS payload is
inv(n) = 5 × 2n−1 − 2.

Proof. We prove the theorem by induction. At level 1, there are three invocations as
shown in Figure 2, and indeed we find inv(3) = 5 × 20 − 2 = 3 The number of invoc-
ations of t?_<k>.hashCode() doubles at each level, starting with 2 at level 1 as each
invocation of t?_<k>.hashCode() (? is either 1 or 2) leads to two new invocations
t1_<k+1>.hashCode() and t2_<k+1>.hashCode(), respectively. Therefore, the number
of invocations of t?_<k>.hashCode() is invt(k) = 2k. The number of invocations of
t1_<k>.hashCode() is half this, 2k−1. Since each invocation of t1_<k>.hashCode() triggers
an invocation of “foo“.hashCode() on the next level, the number of new invocations of
“foo“.hashCode() at level k is invfoo(k) = 2k−2. Now lets assume the above formula
holds for level k. We compute the number of invocations at level k + 1 by adding the new
invocations at level k + 1 to the total number of invocations at level k:

inv(k + 1) = inv(k) + invt(k + 1) + invfoo(k + 1) = 5 × 2k−1 − 2 + 2k+1 + 2k−1

= 5 × 2k−1 + 4 × 2k−1 + 2k−1 − 2 = 10 × 2k−1 − 2
= 5 × 2k − 2

QED

I Observation 2. The number of invocations needed to deserialise the Pufferfish payload is
inv(n) = 3 × 2n − 2.

Proof. We prove the theorem by induction. We first consider invocations at level 1, this is
when the first two invocations t1_1.toString() and t2_1.toString() occur (see Figure 4).
We find that inv(1) = 6 − 2 = 4, as expected. Now consider an arbitrary level k. In analogy
to the proof of observation 1, we find that invt(k) = 2k, where invt(k) is the number of
invocations of t?_k.toString(), and inv10(k) = 2k−1, where inv10(k) is the number of new
invocations of “0“.toString() and “1“.toString() at level k. Therefore we find that:

ECOOP 2017



10:32 Evil Pickles

inv(k + 1) = inv(k) + invt(k + 1) + inv01(k + 1) = 3 × 2k − 2 + 2k+1 + 2k

= 3 × 2k + 2 × 2k + 2k − 2 = 6 × 2k − 2
= 3 × 2k+1 − 2

QED



Mixing Metaphors: Actors as Channels and
Channels as Actors∗

Simon Fowler1, Sam Lindley2, and Philip Wadler3

1 University of Edinburgh, Edinburgh, United Kingdom
simon.fowler@ed.ac.uk

2 University of Edinburgh, Edinburgh, United Kingdom
sam.lindley@ed.ac.uk

3 University of Edinburgh, Edinburgh, United Kingdom
wadler@inf.ed.ac.uk

Abstract
Channel- and actor-based programming languages are both used in practice, but the two are often
confused. Languages such as Go provide anonymous processes which communicate using buffers
or rendezvous points—known as channels—while languages such as Erlang provide addressable
processes—known as actors—each with a single incoming message queue. The lack of a common
representation makes it difficult to reason about translations that exist in the folklore. We define
a calculus λch for typed asynchronous channels, and a calculus λact for typed actors. We define
translations from λact into λch and λch into λact and prove that both are type- and semantics-
preserving. We show that our approach accounts for synchronisation and selective receive in
actor systems and discuss future extensions to support guarded choice and behavioural types.

1998 ACM Subject Classification D.1.3 Concurrent Programming

Keywords and phrases Actors, Channels, Communication-centric Programming Languages

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.11

1 Introduction

When comparing channels (as used by Go) and actors (as used by Erlang), one runs into an
immediate mixing of metaphors. The words themselves do not refer to comparable entities!

In languages such as Go, anonymous processes pass messages via named channels, whereas
in languages such as Erlang, named processes accept messages from an associated mailbox.
A channel is either a named rendezvous point or buffer, whereas an actor is a process. We
should really be comparing named processes (actors) with anonymous processes, and buffers
tied to a particular process (mailboxes) with buffers that can link any process to any process
(channels). Nonetheless, we will stick with the popular names, even if it is as inapposite as
comparing TV channels with TV actors.

Figure 1 compares asynchronous channels with actors. On the left, three anonymous pro-
cesses communicate via channels named a, b, c. On the right, three processes named A,B,C
send messages to each others’ associated mailboxes. Actors are necessarily asynchronous,
allowing non-blocking sends and buffering of received values, whereas channels can either be
asynchronous or synchronous (rendezvous-based). Indeed, Go provides both synchronous
and asynchronous channels, and libraries such as core.async [24] provide library support

∗ This work was supported by EPSRC grants EP/L01503X/1 (University of Edinburgh CDT in Pervasive
Parallelism) and EP/K034413/1 (A Basis for Concurrency and Distribution).

© Simon Fowler, Sam Lindley, and Philip Wadler;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 11; pp. 11:1–11:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


11:2 Mixing Metaphors

a

b

c

(a) Asynchronous Channels.

A B

C

(b) Actors.

Figure 1 Channels and Actors.

for asynchronous channels. However, this is not the only difference: each actor has a single
buffer which only it can read—its mailbox—whereas asynchronous channels are free-floating
buffers that can be read by any process with a reference to the channel.

Channel-based languages such as Go enjoy a firm basis in process calculi such as CSP [25]
and the π-calculus [38]. It is easy to type channels, either with simple types (see [46], p.
231) or more complex systems such as session types [26, 27, 17]. Actor-based languages such
as Erlang are seen by many as the "gold standard" for distributed computing due to their
support for fault tolerance through supervision hierarchies [6, 7].

Both models are popular with developers, with channel-based languages and frameworks
such as Go, Concurrent ML [45], and Hopac [28]; and actor-based languages and frameworks
such as Erlang, Elixir, and Akka.

1.1 Motivation

This paper provides a formal account of actors and channels as implemented in programming
languages. Our motivation for a formal account is threefold: it helps clear up confusion; it
clarifies results that have been described informally by putting practice into theory; and it
provides a foundation for future research.

Confusion. There is often confusion over the differences between channels and actors. For
example, the following questions appear on StackOverflow and Quora respectively:

“If I wanted to port a Go library that uses Goroutines, would Scala be a good choice
because its inbox/[A]kka framework is similar in nature to coroutines?” [31], and

“I don’t know anything about [the] actor pattern however I do know goroutines and
channels in Go. How are [the] two related to each other?” [29]

In academic circles, the term actor is often used imprecisely. For instance, Albert et al. [5]
refer to Go as an actor language. Similarly, Harvey [21] refers to his language Ensemble
as actor-based. Ensemble is a language specialised for writing distributed applications
running on heterogeneous platforms. It is actor-based to the extent that it has lightweight,
addressable, single-threaded processes, and forbids co-ordination via shared memory. However,
Ensemble communicates using channels as opposed to mailboxes so we would argue that it is
channel-based (with actor-like features) rather than actor-based.



S. Fowler, S. Lindley, and P. Wadler 11:3

Putting practice into theory. The success of actor-based languages is largely due to their
support for supervision. A popular pattern for writing actor-based applications is to arrange
processes in supervision hierarchies [6], where supervisor processes restart child processes
should they fail. Projects such as Proto.Actor [44] emulate actor-style programming in a
channel-based language in an attempt to gain some of the benefits, by associating queues
with processes. Hopac [28] is a channel-based library for F#, based on Concurrent ML [45].
The documentation [1] contains a comparison with actors, including an implementation
of a simple actor-based communication model using Hopac-style channels, as well as an
implementation of Hopac-style channels using an actor-based communication model. By
comparing the two, this paper provides a formal model for the underlying techniques, and
studies properties arising from the translations.

A foundation for future research. Traditionally, actor-based languages have had untyped
mailboxes. More recent advancements such as TAkka [22], Akka Typed [4], and Typed
Actors [47] have added types to mailboxes in order to gain additional safety guarantees. Our
formal model provides a foundation for these innovations, characterises why naïvely adding
types to mailboxes is problematic, and provides a core language for future experimentation.

1.2 Our approach
We define two concurrent λ-calculi, describing asynchronous channels and type-parameterised
actors, define translations between them, and then discuss various extensions.

Why the λ calculus? Our common framework is that of a simply-typed concurrent λ-
calculus: that is, a λ-calculus equipping a term language with primitives for communication
and concurrency, as well as a language of configurations to model concurrent behaviour.
We work with the λ-calculus rather than a process calculus for two reasons: firstly, the
simply-typed λ-calculus has a well-behaved core with a strong metatheory (for example,
confluent reduction and strong normalisation), as well as a direct propositions-as-types
correspondence with logic. We can therefore modularly extend the language, knowing which
properties remain; typed process calculi typically do not have such a well-behaved core.

Secondly, we are ultimately interested in functional programming languages; the λ calculus
is the canonical choice for studying such extensions.

Why asynchronous channels? While actor-based languages must be asynchronous by
design, channels may be either synchronous (requiring a rendezvous between sender and
receiver) or asynchronous (where sending happens immediately). In this paper, we consider
asynchronous channels since actors must be asynchronous, and it is possible to emulate
asynchronous channels using synchronous channels [45]. We could adopt synchronous channels,
use these to encode asynchronous channels, and then do the translations. We elect not to
since it complicates the translations, and we argue that the distinction between synchronous
and asynchronous communication is not the defining difference between the two models.

1.3 Summary of results
We identify four key differences between the models, which are exemplified by the formalisms
and the translations: process addressability, the restrictiveness of communication patterns,
the granularity of typing, and the ability to control the order in which messages are processed.

ECOOP 2017



11:4 Mixing Metaphors

P1 P1

P2 P2

P3 P3

sender receiver

(a) Channel.

P1 P1

P2 P2

P3 P3

sender receiver

(b) Mailbox.

Figure 2 Mailboxes as pinned channels.

Process addressability. In channel-based systems, processes are anonymous, whereas chan-
nels are named. In contrast, in actor-based systems, processes are named.

Restrictiveness of communication patterns. Communication over full-duplex channels is
more liberal than communication via mailboxes, as shown in Figure 2. Figure 2a shows the
communication patterns allowed by a single channel: each process Pi can use the channel
to communicate with every other process. Conversely, Figure 2b shows the communication
patterns allowed by a mailbox associated with process P2: while any process can send to
the mailbox, only P2 can read from it. Viewed this way, it is apparent that the restrictions
imposed on the communication behaviour of actors are exactly those captured by Merro and
Sangiorgi’s localised π-calculus [37].

Readers familiar with actor-based programming may be wondering whether such a
characterisation is too crude, as it does not account for processing messages out-of-order.
Fear not—we show in Section 7 that our minimal actor calculus can simulate this functionality.

Restrictiveness of communication patterns is not necessarily a bad thing; while it is
easy to distribute actors, delegation of asynchronous channels is more involved, requiring a
distributed algorithm [30]. Associating mailboxes with addressable processes also helps with
structuring applications for reliability [7].

Granularity of typing. As a result of the fact that each process has a single incoming
message queue, mailbox types tend to be less precise; in particular, they are most commonly
variant types detailing all of the messages that can be received. Naïvely implemented, this
gives rise to the type pollution problem, which we describe further in Section 2.

Message ordering. Channels and mailboxes are ordered message queues, but there is no
inherent ordering between messages on two different channels. Channel-based languages
allow a user to specify from which channel a message should be received, whereas processing
messages out-of-order can be achieved in actor languages using selective receive.

The remainder of the paper captures these differences both in the design of the formalisms,
and the techniques used in the encodings and extensions.

1.4 Contributions and paper outline
This paper makes five main contributions:

1. A calculus λch with typed asynchronous channels (Section 3), and a calculus λact with type-
parameterised actors (Section 4), based on the λ-calculus extended with communication



S. Fowler, S. Lindley, and P. Wadler 11:5

chanStack(ch) , rec loop(st).
let cmd⇐ take ch in
case cmd {

Push(v) 7→ loop(v :: st)
Pop(resCh) 7→

case st {
[ ] 7→ give (None) resCh;

loop [ ]
x :: xs 7→ give (Some(x)) resCh;

loop xs }
}

chanClient(stackCh) ,
give (Push(5)) stackCh;
let resCh⇐ newCh in
give (Pop(resCh)) stackCh;
take resCh

chanMain ,
let stackCh⇐ newCh in
fork (chanStack(stackCh) [ ]);
chanClient(stackCh)

(a) Channel-based stack.

actorStack , rec loop(st).
let cmd⇐ receive in
case cmd {

Push(v) 7→ loop(v :: st)
Pop(resPid) 7→

case st {
[ ] 7→ send (None) resPid;

loop [ ]
x :: xs 7→ send (Some(x)) resPid;

loop xs }
}

actorClient(stackPid) ,
send (Push(5)) stackPid;
let selfPid⇐ self in
send (Pop(selfPid)) stackPid;
receive

actorMain ,
let stackP id⇐ spawn (actorStack [ ]) in
actorClient(stackPid)

(b) Actor-based stack.

Figure 3 Concurrent stacks using channels and actors.

primitives specialised to each model. We give a type system and operational semantics for
each calculus, and precisely characterise the notion of progress that each calculus enjoys.

2. A simple translation from λact into λch (Section 5), and a more involved translation from
λch into λact (Section 6), with proofs that both translations are type- and semantics-
preserving. While the former translation is straightforward, it is global, in the sense of
Felleisen [12]. While the latter is more involved, it is in fact local. Our initial translation
from λch to λact sidesteps type pollution by assigning the same type to each channel in
the system.

3. An extension of λact to support synchronous calls, showing how this can alleviate type
pollution and simplify the translation from λch into λact (Section 7.1).

4. An extension of λact to support Erlang-style selective receive, a translation from λact with
selective receive into plain λact, and proofs that the translation is type- and semantics-
preserving (Section 7.2).

5. An extension of λch with input-guarded choice (Section 7.3) and an outline of how λact
might be extended with behavioural types (Section 7.4).

The rest of the paper is organised as follows: Section 2 displays side-by-side two implement-
ations of a concurrent stack, one using channels and the other using actors; Section 3–7
presents the main technical content; Section 8 discusses related work; and Section 9 concludes.

2 Channels and actors side-by-side

Let us consider the example of a concurrent stack. A concurrent stack carrying values of type
A can receive a command to push a value onto the top of the stack, or to pop a value and return

ECOOP 2017



11:6 Mixing Metaphors

chanClient2(intStackCh, stringStackCh) ,
let intResCh⇐ newCh in
let strResCh⇐ newCh in
give (Pop(intResCh)) intStackCh;
let res1⇐ take intResCh in
give (Pop(strResCh)) stringStackCh;
let res2⇐ take strResCh in
(res1, res2)

actorClient2(intStackPid, stringStackPid) ,
let selfPid⇐ self in
send (Pop(selfPid)) intStackPid;
let res1⇐ receive in
send (Pop(selfPid)) stringStackPid;
let res2⇐ receive in
(res1, res2)

Figure 4 Clients interacting with multiple stacks.

it to the process making the request. Assuming a standard encoding of algebraic datatypes,
we define a type Operation(A) = Push(A) | Pop(B) (where B = ChanRef(A) for channels, and
ActorRef(A) for actors) to describe operations on the stack, and Option(A) = Some(A) | None
to handle the possibility of popping from an empty stack.

Figure 3 shows the stack implemented using channels (Figure 3a) and using actors
(Figure 3b). Each implementation uses a common core language based on the simply-typed
λ-calculus extended with recursion, lists, and sums.

At first glance, the two stack implementations seem remarkably similar. Each:

1. Waits for a command
2. Case splits on the command, and either:

Pushes a value onto the top of the stack, or;
Takes the value from the head of the stack and returns it in a response message

3. Loops with an updated state.

The main difference is that chanStack is parameterised over a channel ch, and retrieves
a value from the channel using take ch. Conversely, actorStack retrieves a value from its
mailbox using the nullary primitive receive.

Let us now consider functions which interact with the stacks. The chanClient function
sends commands over the stackCh channel, and begins by pushing 5 onto the stack. Next, it
creates a channel resCh to be used to receive the result and sends this in a request, before
retrieving the result from the result channel using take. In contrast, actorClient performs
a similar set of steps, but sends its process ID (retrieved using self) in the request instead of
creating a new channel; the result is then retrieved from the mailbox using receive.

Type pollution. The differences become more prominent when considering clients which
interact with multiple stacks of different types, as shown in Figure 4. Here, chanClient2
creates new result channels for integers and strings, sends requests for the results, and creates
a pair of type (Option(Int) × Option(String)). The actorClient2 function attempts to do
something similar, but cannot create separate result channels. Consequently, the actor must
be able to handle messages either of type Option(Int) or type Option(String), meaning that
the final pair has type (Option(Int) + Option(String))× (Option(Int) + Option(String)).

Additionally, it is necessary to modify actorStack to use the correct injection into the
actor type when sending the result; for example an integer stack would have to send a
value inl (Some(5)) instead of simply Some(5). This type pollution problem can be addressed
through the use of subtyping [22], or synchronisation abstractions such as futures [10].



S. Fowler, S. Lindley, and P. Wadler 11:7

Syntax

Types A,B ::= 1 | A→ B | ChanRef(A)
Variables and names α ::= x | a
Values V,W ::= α | λx.M | ()
Computations L,M,N ::= V W

| let x⇐M in N | returnV
| forkM | giveV W | takeV | newCh

Value typing rules Γ ` V : A
Var
α : A ∈ Γ
Γ ` α : A

Abs
Γ, x : A `M : B

Γ ` λx.M : A→ B

Unit

Γ ` () : 1

Computation typing rules Γ `M : A
App
Γ ` V : A→ B Γ `W : A

Γ ` V W : B

EffLet
Γ `M : A Γ, x : A ` N : B

Γ ` let x⇐M in N : B

Return
Γ ` V : A

Γ ` returnV : A

Give
Γ ` V : A

Γ `W : ChanRef(A)
Γ ` giveV W : 1

Take
Γ ` V : ChanRef(A)

Γ ` takeV : A

Fork
Γ `M : 1

Γ ` forkM : 1

NewCh

Γ ` newCh : ChanRef(A)

Figure 5 Syntax and typing rules for λch terms and values.

3 λch: A concurrent λ-calculus for channels

In this section we introduce λch, a concurrent λ-calculus extended with asynchronous channels.
To concentrate on the core differences between channel- and actor-style communication, we
begin with minimal calculi; note that these do not contain all features (such as lists, sums,
and recursion) needed to express the examples in Section 2.

3.1 Syntax and typing of terms
Figure 5 gives the syntax and typing rules of λch, a λ-calculus based on fine-grain call-by-
value [34]: terms are partitioned into values and computations. Key to this formulation are two
constructs: returnV represents a computation that has completed, whereas let x⇐M in N
evaluates M to returnV , substituting V for x in M . Fine-grain call-by-value is convenient
since it makes evaluation order explicit and, unlike A-normal form [13], is closed under
reduction.

Types consist of the unit type 1, function types A → B, and channel reference types
ChanRef(A) which can be used to communicate along a channel of type A. We let α range
over variables x and runtime names a. We write letx = V inM for (λx.M)V and M ;N for
let x⇐M in N , where x is fresh.

Communication and concurrency for channels. The giveV W operation sends value V
along channel W , while takeV retrieves a value from a channel V . Assuming an extension of
the language with integers and arithmetic operators, we can define a function neg(c) which
receives a number n along channel c and replies with the negation of n as follows:

neg(c) , let n⇐ take c in let negN⇐ (−n) in givenegN c

ECOOP 2017



11:8 Mixing Metaphors

Syntax of evaluation contexts and configurations

Evaluation contexts E ::= [ ] | let x⇐ E in M
Configurations C,D, E ::= C ‖ D | (νa)C | a(−→V ) |M
Configuration contexts G ::= [ ] | G ‖ C | (νa)G

Typing rules for configurations Γ; ∆ ` C
Par
Γ; ∆1 ` C1 Γ; ∆2 ` C2

Γ; ∆1,∆2 ` C1 ‖ C2

Chan
Γ, a : ChanRef(A); ∆, a:A ` C

Γ; ∆ ` (νa)C

Buf
(Γ ` Vi : A)i

Γ; a : A ` a(−→V )

Term
Γ `M : 1
Γ; · `M

Figure 6 λch configurations and evaluation contexts.

The forkM operation spawns a new process to evaluate term M . The operation returns
the unit value, and therefore it is not possible to interact with the process directly. The
newCh operation creates a new channel. Note that channel creation is decoupled from process
creation, meaning that a process can have access to multiple channels.

3.2 Operational semantics

Configurations. The concurrent behaviour of λch is given by a nondeterministic reduction
relation on configurations (Figure 6). Configurations consist of parallel composition (C ‖ D),
restrictions ((νa)C), computations (M), and buffers (a(−→V ), where −→V = V1 · . . . · Vn).

Evaluation contexts. Reduction is defined in terms of evaluation contexts E, which are
simplified due to fine-grain call-by-value. We also define configuration contexts, allowing
reduction modulo parallel composition and name restriction.

Reduction. Figure 7 shows the reduction rules for λch. Reduction is defined as a determin-
istic reduction on terms (−→M) and a nondeterministic reduction relation on configurations
(−→). Reduction on configurations is defined modulo structural congruence rules which
capture scope extrusion and the commutativity and associativity of parallel composition.

Typing of configurations. To ensure that buffers are well-scoped and contain values of the
correct type, we define typing rules on configurations (Figure 6). The judgement Γ; ∆ ` C
states that under environments Γ and ∆, C is well-typed. Γ is a typing environment for
terms, whereas ∆ is a linear typing environment for configurations, mapping names a to
channel types A. Linearity in ∆ ensures that a configuration C under a name restriction
(νa)C contains exactly one buffer with name a. Note that Chan extends both Γ and ∆,
adding an (unrestricted) reference into Γ and the capability to type a buffer into ∆. Par
states that C1 ‖ C2 is typeable if C1 and C2 are typeable under disjoint linear environments,
and Buf states that under a term environment Γ and a singleton linear environment a:A, it
is possible to type a buffer a(−→V ) if Γ ` Vi:A for all Vi ∈

−→
V . As an example, (νa)(a(−→V )) is

well-typed, but (νa)(a(−→V ) ‖ a(−→W )) and (νa)(return ()) are not.

Relation notation. Given a relation R, we write R+ for its transitive closure, and R∗ for
its reflexive, transitive closure.



S. Fowler, S. Lindley, and P. Wadler 11:9

Reduction on terms

(λx.M)V −→M M{V/x} let x⇐ returnV in M −→M M{V/x} E[M1] −→M E[M2]
(if M1 −→M M2)

Structural congruence

C ‖ D ≡ D ‖ C C ‖ (D ‖ E) ≡ (C ‖ D) ‖ E C ‖ (νa)D ≡ (νa)(C ‖ D) if a 6∈ fv(C)

G[C] ≡ G[D] if C ≡ D

Reduction on configurations

Give E[giveW a] ‖ a(−→V ) −→ E[return ()] ‖ a(−→V ·W )
Take E[take a] ‖ a(W · −→V ) −→ E[returnW ] ‖ a(−→V )
Fork E[forkM ] −→ E[return ()] ‖M
NewCh E[newCh] −→ (νa)(E[return a] ‖ a(ε)) (a is a fresh name)
LiftM G[M1] −→ G[M2] (if M1 −→M M2)
Lift G[C1] −→ G[C2] (if C1 −→ C2)

Figure 7 Reduction on λch terms and configurations.

Properties of the term language. Reduction on terms preserves typing, and pure terms
enjoy progress. We omit most proofs in the body of the paper which are mainly straightforward
inductions; selected full proofs can be found in the extended version [15].

I Lemma 1 (Preservation (λch terms)). If Γ `M : A and M −→M M ′, then Γ `M ′ : A.

I Lemma 2 (Progress (λch terms)). Assume Γ is empty or only contains channel references
ai:ChanRef(Ai). If Γ `M :A, then either:

1. M = returnV for some value V , or
2. M can be written E[M ′], where M ′ is a communication or concurrency primitive (i.e.,

giveV W, takeV, forkM , or newCh), or
3. There exists some M ′ such that M −→M M ′.

Reduction on configurations. Concurrency and communication is captured by reduction
on configurations. Reduction is defined modulo structural congruence rules, which capture
the associativity and commutativity of parallel composition, as well as the usual scope
extrusion rule. The Give rule reduces giveW a in parallel with a buffer a(−→V ) by adding
the value W onto the end of the buffer. The Take rule reduces take a in parallel with a
non-empty buffer by returning the first value in the buffer. The Fork rule reduces forkM
by spawning a new thread M in parallel with the parent process. The NewCh rule reduces
newCh by creating an empty buffer and returning a fresh name for that buffer.

Structural congruence and reduction preserve the typeability of configurations.

I Lemma 3. If Γ; ∆ ` C and C ≡ D for some configuration D, then Γ; ∆ ` D.

I Theorem 4 (Preservation (λch configurations)). If Γ; ∆ ` C1 and C1 −→ C2 then Γ; ∆ ` C2.

3.3 Progress and canonical forms
While it is possible to prove deadlock-freedom in systems with more discerning type systems
based on linear logic [48, 35] or those using channel priorities [41], more liberal calculi such

ECOOP 2017



11:10 Mixing Metaphors

as λch and λact allow deadlocked configurations. We thus define a form of progress which
does not preclude deadlock; to help with proving a progress result, it is useful to consider the
notion of a canonical form in order to allow us to reason about the configuration as a whole.

I Definition 5 (Canonical form (λch)). A configuration C is in canonical form if it can be
written (νa1) . . . (νan)(M1 ‖ . . . ‖Mm ‖ a1(−→V1) ‖ . . . ‖ an(−→Vn)).

Well-typed open configurations can be written in a form similar to canonical form, but
without bindings for names already in the environment. An immediate corollary is that
well-typed closed configurations can always be written in a canonical form.

I Lemma 6. If Γ; ∆ ` C with ∆ = a1 : A1, . . . , ak : Ak, then there exists a C′ ≡ C such that
C′ = (νak+1) . . . (νan)(M1 ‖ . . . ‖Mm ‖ a1(−→V1) ‖ . . . ‖ an(−→Vn)).

I Corollary 7. If ·; · ` C, then there exists some C′ ≡ C such that C′ is in canonical form.

Armed with a canonical form, we can now state that the only situation in which a well-typed
closed configuration cannot reduce further is if all threads are either blocked or fully evaluated.
Let a leaf configuration be a configuration without subconfigurations, i.e., a term or a buffer.

I Theorem 8 (Weak progress (λch configurations)).
Let ·; · ` C, C 6−→, and let C′ = (νa1) . . . (νan)(M1 ‖ . . . ‖ Mm ‖ a1(−→V1) ‖ . . . an(−→Vn)) be a
canonical form of C. Then every leaf of C is either:

1. A buffer ai(
−→
Vi);

2. A fully-reduced term of the form returnV , or;
3. A term of the form E[take ai], where

−→
Vi = ε.

Proof. By Lemma 2, we know each Mi is either of the form returnV , or can be written
E[M ′] where M ′ is a communication or concurrency primitive. It cannot be the case that
M ′ = forkN or M ′ = newCh, since both can reduce. Let us now consider give and take,
blocked on a variable α. As we are considering closed configurations, a blocked term must
be blocked on a ν-bound name ai, and as per the canonical form, we have that there exists
some buffer ai(

−→
Vi). Consequently, giveV ai can always reduce via Give. A term take ai can

reduce by Take if −→Vi = W ·
−→
V ′i ; the only remaining case is where −→Vi = ε, satisfying (3). J

4 λact: A concurrent λ-calculus for actors

In this section, we introduce λact, a core language describing actor-based concurrency. There
are many variations of actor-based languages (by the taxonomy of De Koster et al,̇ [11], λact
is process-based), but each have named processes associated with a mailbox.

Typed channels are well-established, whereas typed actors are less so, partly due to the
type pollution problem. Nonetheless, Akka Typed [4] aims to replace untyped Akka actors,
so studying a typed actor calculus is of practical relevance.

Following Erlang, we provide an explicit receive operation to allow an actor to retrieve a
message from its mailbox: unlike take in λch, receive takes no arguments, so it is necessary
to use a simple type-and-effect system [18]. We treat mailboxes as a FIFO queues to keep
λact as minimal as possible, as opposed to considering behaviours or selective receive. This
is orthogonal to the core model of communication, as we show in Section 7.2.



S. Fowler, S. Lindley, and P. Wadler 11:11

Syntax

Types A,B,C ::= 1 | A→C B | ActorRef(A)
Variables and names α ::= x | a
Values V,W ::= α | λx.M | ()
Computations L,M,N ::= V W

| let x⇐M in N | returnV
| spawnM | sendV W | receive | self

Value typing rules Γ ` V : A
Var
α : A ∈ Γ
Γ ` α : A

Abs
Γ, x : A | C `M : B
Γ ` λx.M : A→C B

Unit

Γ ` () : 1

Computation typing rules Γ | B `M : A

App
Γ ` V : A→C B

Γ `W : A
Γ | C ` V W : B

EffLet
Γ | C `M : A

Γ, x : A | C ` N : B
Γ | C ` let x⇐M in N : B

EffReturn
Γ ` V : A

Γ | C ` returnV : A

Send
Γ ` V : A

Γ `W : ActorRef(A)
Γ | C ` sendV W : 1

Recv

Γ | A ` receive : A

Spawn
Γ | A `M : 1

Γ | C ` spawnM : ActorRef(A)

Self

Γ | A ` self : ActorRef(A)

Figure 8 Syntax and typing rules for λact.

4.1 Syntax and typing of terms
Figure 8 shows the syntax and typing rules for λact. As with λch, α ranges over variables and
names. ActorRef(A) is an actor reference or process ID, and allows messages to be sent to
an actor. As for communication and concurrency primitives, spawnM spawns a new actor to
evaluate a computation M ; sendV W sends a value V to an actor referred to by reference W ;
receive receives a value from the actor’s mailbox; and self returns an actor’s own process ID.

Function arrows A →C B are annotated with a type C which denotes the type of the
mailbox of the actor evaluating the term. As an example, consider a function which receives
an integer and converts it to a string (assuming a function intToString):

recvAndShow , λ().let x⇐ receive in intToString(x)

Such a function would have type 1→Int String, and as an example would not be typeable
for an actor that could only receive booleans. Again, we work in the setting of fine-grain
call-by-value; the distinction between values and computations is helpful when reasoning
about the metatheory. We have two typing judgements: the standard judgement on values
Γ ` V : A, and a judgement Γ | B ` M : A which states that a term M has type A under
typing context Γ, and can receive values of type B. The typing of receive and self depends
on the type of the actor’s mailbox.

4.2 Operational semantics
Figure 9 shows the syntax of λact evaluation contexts, as well as the syntax and typing rules
of λact configurations. Evaluation contexts for terms and configurations are similar to λch.
The primary difference from λch is the actor configuration 〈a,M,

−→
V 〉, which can be read as

ECOOP 2017



11:12 Mixing Metaphors

Syntax of evaluation contexts and configurations

Evaluation contexts E ::= [ ] | let x⇐ E in M
Configurations C,D, E ::= C ‖ D | (νa)C | 〈a,M,

−→
V 〉

Configuration contexts G ::= [ ] | G ‖ C | (νa)G

Typing rules for configurations Γ; ∆ ` C

Par
Γ; ∆1 ` C1 Γ; ∆2 ` C2

Γ; ∆1,∆2 ` C1 ‖ C2

Pid
Γ, a : ActorRef(A); ∆, a : A ` C

Γ; ∆ ` (νa)C

Actor
Γ, a : ActorRef(A) | A `M : 1
(Γ, a : ActorRef(A) ` Vi : A)i

Γ, a : ActorRef(A); a : A ` 〈a,M,
−→
V 〉

Figure 9 λact evaluation contexts and configurations.

“an actor with name a evaluating term M , with a mailbox consisting of values −→V ”. Whereas
a term M is itself a configuration in λch, a term in λact must be evaluated as part of an
actor configuration in order to support context-sensitive operations such as receiving from
the mailbox. We again stratify the reduction rules into functional reduction on terms, and
reduction on configurations. The typing rules for λact configurations ensure that all values
contained in an actor mailbox are well-typed with respect to the mailbox type, and that a
configuration C under a name restriction (νa)C contains an actor with name a. Figure 10
shows the reduction rules for λact. Again, reduction on terms preserves typing, and the
functional fragment of λact enjoys progress.

I Lemma 9 (Preservation (λact terms)). If Γ `M : A and M −→M M ′, then Γ `M ′ : A.

I Lemma 10 (Progress (λact terms)). Assume Γ is either empty or only contains entries of
the form ai : ActorRef(Ai). If Γ | B `M : A, then either:

1. M = returnV for some value V , or
2. M can be written as E[M ′], where M ′ is a communication or concurrency primitive (i.e.

spawnN , sendV W , receive, or self), or
3. There exists some M ′ such that M −→M M ′.

Reduction on configurations. While λch makes use of separate constructs to create new
processes and channels, λact uses a single construct spawnM to spawn a new actor with
an empty mailbox to evaluate term M . Communication happens directly between actors
instead of through an intermediate entity: as a result of evaluating sendV a, the value V
will be appended directly to the end of the mailbox of actor a. SendSelf allows reflexive
sending; an alternative would be to decouple mailboxes from the definition of actors, but this
complicates both the configuration typing rules and the intuition. Self returns the name of
the current process, and Receive retrieves the head value of a non-empty mailbox.

As before, typing is preserved modulo structural congruence and under reduction.

I Lemma 11. If Γ; ∆ ` C and C ≡ D for some D, then Γ; ∆ ` D.

I Theorem 12 (Preservation (λact configurations)). If Γ; ∆ ` C1 and C1 −→ C2, then Γ; ∆ ` C2.

4.3 Progress and canonical forms
Again, we cannot guarantee deadlock-freedom for λact. Instead, we proceed by defining
a canonical form, and characterising the form of progress that λact enjoys. The technical
development follows that of λch.



S. Fowler, S. Lindley, and P. Wadler 11:13

Reduction on terms

(λx.M)V −→M M{V/x} let x⇐ returnV in M −→M M{V/x} E[M ] −→M E[M ′]
(if M −→M M ′)

Structural congruence

C ‖ D ≡ D ‖ C C ‖ (D ‖ E) ≡ (C ‖ D) ‖ E C ‖ (νa)D ≡ (νa)(C ‖ D) if a 6∈ fv(C)

G[C] ≡ G[D] if C ≡ D

Reduction on configurations

Spawn 〈a,E[spawnM ],−→V 〉 −→ (νb)(〈a,E[return b],−→V 〉 ‖ 〈b,M, ε〉)
(b is fresh)

Send 〈a,E[sendV ′ b],−→V 〉 ‖ 〈b,M,
−→
W 〉 −→ 〈a,E[return ()],−→V 〉 ‖ 〈b,M,

−→
W · V ′〉

SendSelf 〈a,E[sendV ′ a],−→V 〉 −→ 〈a,E[return ()],−→V · V ′〉
Self 〈a,E[self],−→V 〉 −→ 〈a,E[return a],−→V 〉

Receive 〈a,E[receive],W · −→V 〉 −→ 〈a,E[returnW ],−→V 〉
Lift G[C1] −→ G[C2] (if C1 −→ C2)

LiftM 〈a,M1,
−→
V 〉 −→ 〈a,M2,

−→
V 〉 (if M1 −→M M2)

Figure 10 Reduction on λact terms and configurations.

I Definition 13 (Canonical form (λact)). A λact configuration C is in canonical form if C can
be written (νa1) . . . (νan)(〈a1,M1,

−→
V1〉 ‖ . . . ‖ 〈an,Mn,

−→
Vn〉).

I Lemma 14. If Γ; ∆ ` C and ∆ = a1 : A1, . . . ak : Ak, then there exists C′ ≡ C such that
C′ = (νak+1) . . . (νan)(〈a1,M1,

−→
V1〉 ‖ . . . ‖ 〈an,Mn,

−→
Vn〉).

As before, it follows as a corollary of Lemma 14 that closed configurations can be written in
canonical form. We can therefore classify the notion of progress enjoyed by λact.

I Corollary 15. If ·; · ` C, then there exists some C′ ≡ C such that C′ is in canonical form.

I Theorem 16 (Weak progress (λact configurations)).
Let ·; · ` C, C 6−→, and let C′ = (νa1) . . . (νan)(〈a1,M1,

−→
V1〉 ‖ . . . ‖ 〈an,Mn,

−→
Vn〉) be a

canonical form of C. Each actor with name ai is either of the form 〈ai, returnW,−→Vi〉 for some
value W , or 〈ai, E[receive], ε〉.

5 From λact to λch

With both calculi in place, we can define the translation from λact into λch. The key idea is to
emulate a mailbox using a channel, and to pass the channel as an argument to each function.
The translation on terms is parameterised over the channel name, which is used to implement
context-dependent operations (i.e., receive and self). Consider again recvAndShow.

recvAndShow , λ().let x⇐ receive in intToString(x)

A possible configuration would be an actor evaluating recvAndShow (), with some name a
and mailbox with values −→V , under a name restriction for a.

(νa)(〈a, recvAndShow (),−→V 〉)

ECOOP 2017



11:14 Mixing Metaphors

Translation on types

J ActorRef(A) K = ChanRef(JA K) JA→C B K = JA K→ ChanRef(JC K)→ JB K J 1 K = 1

Translation on values

Jx K = x J a K = a Jλx.M K = λx.λch.(JM K ch) J () K = ()

Translation on computation terms
J let x⇐M in N K ch = let x⇐ (JM K ch) in JN K ch

JV W K ch = let f ⇐ (JV K JW K) in f ch
J returnV K ch = return JV K

J self K ch = return ch
J receive K ch = take ch

J spawnM K ch = let chMb⇐ newCh in
fork (JM K chMb);
return chMb

J sendV W K ch = give (JV K) (JW K)

Translation on configurations

J C1 ‖ C2 K = J C1 K ‖ J C2 K J (νa)C K = (νa) J C K J 〈a,M,
−→
V 〉 K = a(J−→V K) ‖ (JM K a)

Figure 11 Translation from λact into λch.

The translation on terms takes a channel name ch as a parameter. As a result of the
translation, we have that:

J recvAndShow () K ch = let x⇐ take ch in intToString(x)

with the corresponding configuration (νa)(a(J−→V K) ‖ J recvAndShow () K a). The values from
the mailbox are translated pointwise and form the contents of a buffer with name a. The
translation of recvAndShow is provided with the name a which is used to emulate receive.

5.1 Translation (λact to λch)
Figure 11 shows the formal translation from λact into λch. Of particular note is the translation
on terms: J− K ch translates a λact term into a λch term using a channel with name ch
to emulate a mailbox. An actor reference is represented as a channel reference in λch;
we emulate sending a message to another actor by writing to the channel emulating the
recipient’s mailbox. Key to translating λact into λch is the translation of function arrows
A→C B; the effect annotation C is replaced by a second parameter ChanRef(C), which is
used to emulate the mailbox of the actor. Values translate to themselves, with the exception
of λ abstractions, whose translation takes an additional parameter denoting the channel used
to emulate operations on a mailbox. Given parameter ch, the translation function for terms
emulates receive by taking a value from ch, and emulates self by returning ch.

Though the translation is straightforward, it is a global translation [12], as all functions
must be modified in order to take the mailbox channel as an additional parameter.

5.2 Properties of the translation
The translation on terms and values preserves typing. We extend the translation function
pointwise to typing environments: Jα1 : A1, . . . , αn : An K = α1 : JA1 K, . . . , αn : JAn K.

I Lemma 17 (J− K preserves typing (terms and values)).

1. If Γ ` V : A in λact, then J Γ K ` JV K : JA K in λch.



S. Fowler, S. Lindley, and P. Wadler 11:15

2. If Γ | B `M : A in λact, then J Γ K, α : ChanRef(JB K) ` JM K α : JA K in λch.

The proof is by simultaneous induction on the derivations of Γ ` V :A and Γ | B `M :A.
To state a semantics preservation result, we also define a translation on configurations; the
translations on parallel composition and name restrictions are homomorphic. An actor
configuration 〈a,M,

−→
V 〉 is translated as a buffer a(J−→V K), (writing J

−→
V K = JV0 K·, . . . , ·JVn K

for each Vi ∈
−→
V ), composed in parallel with the translation of M , using a as the mailbox

channel. We can now see that the translation preserves typeability of configurations.

I Theorem 18 (J− K preserves typeability (configurations)).
If Γ; ∆ ` C in λact, then J Γ K; J ∆ K ` J C K in λch.

We describe semantics preservation in terms of a simulation theorem: should a configura-
tion C1 reduce to a configuration C2 in λact, then there exists some configuration D in λch
such that J C1 K reduces in zero or more steps to D, with D ≡ J C2 K. To establish the result,
we begin by showing that λact term reduction can be simulated in λch.

I Lemma 19 (Simulation of λact term reduction in λch).
If Γ `M1 : A and M1 −→M M2 in λact, then given some α, JM1 K α −→∗M JM2 K α in λch.

Finally, we can see that the translation preserves structural congruences, and that λch
configurations can simulate reductions in λact.

I Lemma 20. If Γ; ∆ ` C and C ≡ D, then J C K ≡ JD K.

I Theorem 21 (Simulation of λact configurations in λch).
If Γ; ∆ ` C1 and C1 −→ C2, then there exists some D such that J C1 K −→∗ D, with D ≡ J C2 K.

6 From λch to λact

The translation from λact into λch emulates an actor mailbox using a channel to implement
operations which normally rely on the context of the actor. Though global, the translation is
straightforward due to the limited form of communication supported by mailboxes. Trans-
lating from λch into λact is more challenging, as would be expected from Figure 2. Each
channel in a system may have a different type; each process may have access to multiple
channels; and (crucially) channels may be freely passed between processes.

6.1 Extensions to the core language
We require several more language constructs: sums, products, recursive functions, and
iso-recursive types. Recursive functions are used to implement an event loop, and recursive
types to maintain a term-level buffer. Products are used to record both a list of values in the
buffer and a list of pending requests. Sum types allow the disambiguation of the two types
of messages sent to an actor: one to queue a value (emulating give) and one to dequeue a
value (emulating take). Sums are also used to encode monomorphic variant types; we write
〈`1 : A1, . . . , `n : An〉 for variant types and 〈`i = V 〉 for variant values.

Figure 12 shows the extensions to the core term language and their reduction rules;
we omit the symmetric rules for inr. With products, sums, and recursive types, we can
encode lists. The typing rules are shown for λch but can be easily adapted for λact, and it is
straightforward to verify that the extended languages still enjoy progress and preservation.

ECOOP 2017



11:16 Mixing Metaphors

Syntax
Types A,B,C ::= . . . | A×B | A+B | List(A) | µX.A | X
Values V,W ::= . . . | rec f(x) .M | (V,W ) | inlV | inrW | roll V
Terms L,M,N ::= . . . | let (x, y) = V inM | case V {inl x 7→M ; inr y 7→ N} | unroll V

Additional value typing rules Γ ` V : A
Rec
Γ, x : A, f : A→ B `M : B

Γ ` rec f(x) .M : A→ B

Pair
Γ ` V : A Γ `W : B

Γ ` (V,W ) : A×B

Inl
Γ ` V : A

Γ ` inlV : A+B

Roll
Γ ` V : A{µX.A/X}

Γ ` roll V : µX.A

Additional term typing rules Γ `M : A
Let

Γ ` V : A×A′
Γ, x : A, y : A′ `M : B

Γ ` let (x, y) = V inM : B

Case
Γ ` V : A+A′

Γ, x : A `M : B Γ, y : A′ ` N : B
Γ ` case V {inlx 7→M ; inr y 7→ N} : B

Unroll
Γ ` V : µX.A

Γ ` unroll V : A{µX.A/X}

Additional term reduction rules M −→M M ′

(rec f(x) .M)V −→M M{(rec f(x) .M)/f, V/x}
let (x, y) = (V,W ) inM −→M M{V/x,W/y}

case (inlV ) {inlx 7→M ; inr y 7→ N} −→M M{V/x}
unroll (roll V ) −→M returnV

Encoding of lists
List(A) , µX.1 + (A×X) [ ] , roll (inl ()) V :: W , roll (inr (V,W ))

case V {[ ] 7→M ;x :: y 7→ N} , let z ⇐ unroll V in case z {inl () 7→M ; inr (x, y) 7→ N}

Figure 12 Extensions to core languages to allow translation from λch into λact.

6.2 Translation strategy (λch into λact)

To translate typed actors into typed channels (shown in Figure 13), we emulate each channel
using an actor process, which is crucial in retaining the mobility of channel endpoints.
Channel types describe the typing of a communication medium between communicating
processes, where processes are unaware of the identity of other communicating parties, and
the types of messages that another party may receive. Unfortunately, the same does not hold
for mailboxes. Consequently, we require that before translating into actors, every channel has
the same type. Although this may seem restrictive, it is both possible and safe to transform
a λch program with multiple channel types into a λch program with a single channel type.

As an example, suppose we have a program which contains channels carrying values
of types Int, String, and ChanRef(String). It is possible to construct a recursive variant
type µX.〈`1 : Int, `2 : String, `3 : ChanRef(X)〉 which can be assigned to all channels in the
system. Then, supposing we wanted to send a 5 along a channel which previously had type
ChanRef(Int), we would instead send a value roll 〈`1 = 5〉 (where roll V is the introduction
rule for an iso-recursive type). Appendix A [15] provides more details.

6.3 Translation

We write λch judgements of the form {B} Γ `M : A for a term where all channels have type
B, and similarly for value and configuration typing judgements. Under such a judgement,
we can write Chan instead of ChanRef(B).



S. Fowler, S. Lindley, and P. Wadler 11:17

b

a

(a) Before Translation.

a

c

a

d b e

(b) After Translation.

Figure 13 Translation strategy: λch into λact.

Meta level definitions. The majority of the translation lies within the translation of newCh,
which makes use of the meta-level definitions body and drain. The body function emulates
a channel. Firstly, the actor receives a message recvVal, which is either of the form inlV to
store a message V , or inrW to request that a value is dequeued and sent to the actor with
ID W . We assume a standard implementation of list concatenation (++ ). If the message is
inlV , then V is appended to the tail of the list of values stored in the channel, and the new
state is passed as an argument to drain. If the message is inrW , then the process ID W is
appended to the end of the list of processes waiting for a value. The drain function satisfies
all requests that can be satisfied, returning an updated channel state. Note that drain does
not need to be recursive, since one of the lists will either be empty or a singleton.

Translation on types. Figure 14 shows the translation from λch into λact. The translation
function on types L− M is defined with respect to the type of all channels C and is used
to annotate function arrows and to assign a parameter to ActorRef types. The (omitted)
translations on sums, products, and lists are homomorphic. The translation of Chan is
ActorRef(LC M+ActorRef(LC M)), meaning an actor which can receive a request to either store
a value of type LC M, or to dequeue a value and send it to a process ID of type ActorRef(LC M).

Translation on communication and concurrency primitives. We omit the translation on
values and functional terms, which are homomorphisms. Processes in λch are anonymous,
whereas all actors in λact are addressable; to emulate fork, we therefore discard the reference
returned by spawn. The translation of give wraps the translated value to be sent in the left
injection of a sum type, and sends to the translated channel name LW M. To emulate take,
the process ID (retrieved using self) is wrapped in the right injection and sent to the actor
emulating the channel, and the actor waits for the response message. Finally, the translation
of newCh spawns a new actor to execute body.

Translation on configurations. The translation function L− M is homomorphic on parallel
composition and name restriction. Unlike λch, a term cannot exist outwith an enclosing actor
context in λact, so the translation of a process evaluating term M is an actor evaluating LM M
with some fresh name a and an empty mailbox, enclosed in a name restriction. A buffer is
translated to an actor with an empty mailbox, evaluating body with a state containing the
(term-level) list of values previously stored in the buffer.

Although the translation from λch into λact, is much more verbose than the translation
from λact to λch, it is (once all channels have the same type) a local transformation [12].

ECOOP 2017



11:18 Mixing Metaphors

Translation on types (wrt. a channel type C)

L Chan M = ActorRef(LC M + ActorRef(LC M)) LA→ B M = LA M→L C M LB M

Translation on communication and concurrency primitives

L forkM M = let x⇐ spawn LM M in return ()
L giveV W M = send (inl LV M) LW M

L newCh M = spawn (body ([ ], [ ]))

L takeV M = let selfPid⇐ self in
send (inr selfPid) LV M;
receive

Translation on configurations

L C1 ‖ C2 M = L C1 M ‖ L C2 M L (νa)C M = (νa)L C M LM M = (νa)(〈a, LM M, ε〉)
a is a fresh name

L a(−→V ) M = 〈a, body (L−→V M, [ ]), ε〉 where L
−→
V M = LV0 M :: . . . :: LVn M :: [ ]

Meta level definitions
body , rec g(state) .

let recvVal⇐ receive in
let (vals, pids) = state in
case recvVal {

inl v 7→ let vals′ ⇐ vals++ [v] in
let state′ ⇐ drain (vals′, pids) in
g (state′)

inr pid 7→ let pids′ ⇐ pids ++ [pid] in
let state′ ⇐ drain (vals, pids′) in
g (state′) }

drain , λx.

let (vals, pids) = x in
case vals {

[ ] 7→ return (vals, pids)
v :: vs 7→

case pids {
[ ] 7→ return (vals, pids)
pid :: pids 7→ send v pid;

return (vs, pids)
} }

Figure 14 Translation from λch into λact.

6.4 Properties of the translation
Since all channels in the source language of the translation have the same type, we can
assume that each entry in the codomain of ∆ is the same type B.

I Definition 22 (Translation of typing environments wrt. a channel type B).

1. If Γ = α1:A1, . . . , αn : An, define L Γ M = α1 : LA1 M, . . . , αn : LAn M.
2. Given a ∆ = a1 : B, . . . , an : B, define L ∆ M =

a1 : (LB M + ActorRef(LB M)), . . . , an : (LB M + ActorRef(LB M)).

The translation on terms preserves typing.

I Lemma 23 (L− M preserves typing (terms and values)).

1. If {B} Γ ` V :A, then L Γ M ` LV M:LA M.
2. If {B} Γ `M :A, then L Γ M | LB M ` LM M:LA M.

The translation on configurations also preserves typeability. We write Γ � ∆ if for each
a : A ∈ ∆, we have that a : ChanRef(A) ∈ Γ; for closed configurations this is ensured by
Chan. This is necessary since the typing rules for λact require that the local actor name is
present in the term environment to ensure preservation in the presence of self, but there is
no such restriction in λch.

I Theorem 24 (L− M preserves typeability (configurations)).
If {A} Γ; ∆ ` C with Γ � ∆, then L Γ M; L ∆ M ` L C M.



S. Fowler, S. Lindley, and P. Wadler 11:19

It is clear that reduction on translated λch terms can simulate reduction in λact.

I Lemma 25. If {B} Γ `M1 : A and M1 −→M M2, then LM1 M −→M LM2 M.

Finally, we show that λact can simulate λch.

I Lemma 26. If Γ; ∆ ` C and C ≡ D, then L C M ≡ LD M.

I Theorem 27 (Simulation (λact configurations in λch)).
If {A} Γ; ∆ ` C1, and C1 −→ C2, then there exists some D such that L C1 M −→∗ D with
D ≡ L C2 M.

Remark. The translation from λch into λact is more involved than the translation from λact
into λch due to the asymmetry shown in Figure 2. Mailbox types are less precise; generally
taking the form of a large variant type.

Typical implementations of this translation use synchronisation mechanisms such as
futures or shared memory (see Section 7.1); the implementation shown in the Hopac docu-
mentation uses ML references [1]. Given the ubiquity of these abstractions, we were surprised
to discover that the additional expressive power of synchronisation is not necessary. Our
original attempt at a synchronisation-free translation was type-directed. We were surprised to
discover that the translation can be described so succinctly after factoring out the coalescing
step, which precisely captures the type pollution problem.

7 Extensions

In this section, we discuss common extensions to channel- and actor-based languages. Firstly,
we discuss synchronisation, which is ubiquitous in practical implementations of actor-inspired
languages. Adding synchronisation simplifies the translation from channels to actors, and
relaxes the restriction that all channels must have the same type. Secondly, we consider an
extension with Erlang-style selective receive, and show how to encode it in λact. Thirdly, we
discuss how to nondeterministically choose a message from a collection of possible sources,
and finally, we discuss what the translations tell us about the nature of behavioural typing
disciplines for actors. Establishing exactly how the latter two extensions fit into our framework
is the subject of ongoing and future work.

7.1 Synchronisation
Although communicating with an actor via asynchronous message passing suffices for many
purposes, implementing “call-response” style interactions can become cumbersome. Practical
implementations such as Erlang and Akka implement some way of synchronising on a result:
Erlang achieves this by generating a unique reference to send along with a request, selectively
receiving from the mailbox to await a response tagged with the same unique reference.
Another method of synchronisation embraced by the Active Object community [33, 10, 32]
and Akka is to generate a future variable which is populated with the result of the call.

Figure 15 details an extension of λact with a synchronisation primitive, wait, which encodes
a deliberately restrictive form of synchronisation capable of emulating futures. The key idea
behind wait is it allows some actor a to block until an actor b evaluates to a value; this value
is then returned directly to a, bypassing the mailbox. A variation of the wait primitive is
implemented as part of the Links [9] concurrency model. This is but one of multiple ways of
allowing synchronisation; first-class futures, shared reference cells, or selective receive can
achieve a similar result. We discuss wait as it avoids the need for new configurations.

ECOOP 2017



11:20 Mixing Metaphors

Additional types, terms, configuration reduction rule, and equivalence

Types ::= ActorRef(A,B) | . . . Terms ::= waitV | . . .

〈a,E[wait b],−→V 〉 ‖ 〈b, returnV ′,−→W 〉 −→ 〈a,E[returnV ′],−→V 〉 ‖ 〈b, returnV ′,−→W 〉
(νa)(〈a, returnV,−→V 〉) ‖ C ≡ C

Modified typing rules for terms Γ | A,B `M : A

Sync-Spawn
Γ | A,B `M : B

Γ | C,C′ ` spawnM : ActorRef(A,B)

Sync-Wait
Γ ` V : ActorRef(A,B)
Γ | C,C′ ` waitV : B

Sync-Self

Γ | A,B ` self : ActorRef(A,B)

Modified typing rules for configurations Γ; ∆ ` C
Sync-Actor

Γ, a:ActorRef(A,B) `M :B
(Γ, a:ActorRef(A,B) ` Vi:A)i

Γ, a : ActorRef(A,B); a:(A,B) ` 〈a,M,
−→
V 〉

Sync-Nu
Γ, a : ActorRef(A,B); ∆, a : (A,B) ` C

Γ; ∆ ` (νa)C

Modified translation

L ChanRef(A) M =
ActorRef(LA M + ActorRef(LA M, LA M),1)

LA→ B M = LA M→C,1 LB M

L takeV M = let requestorPid⇐ spawn (
let selfPid⇐ self in
send (inr selfPid) LV M;
receive) in

wait requestorPid

Figure 15 Extensions to add synchronisation to λact.

We replace the unary type constructor for process IDs with a binary type constructor
ActorRef(A,B), where A is the type of messages that the process can receive from its mailbox,
and B is the type of value to which the process will eventually evaluate. We assume that
the remainder of the primitives are modified to take the additional effect type into account.
We can now adapt the previous translation from λch to λact, making use of wait to avoid
the need for the coalescing transformation. Channel references are translated into actor
references which can either receive a value of type A, or the PID of a process which can
receive a value of type A and will eventually evaluate to a value of type A. Note that the
unbound annotation C, 1 on function arrows reflects that the mailboxes can be of any type,
since the mailboxes are unused in the actors emulating threads.

The key idea behind the modified translation is to spawn a fresh actor which makes the
request to the channel and blocks waiting for the response. Once the spawned actor has
received the result, the result can be retrieved synchronously using wait without reading from
the mailbox. The previous soundness theorems adapt to the new setting.

I Theorem 28. If Γ; ∆ ` C with Γ � ∆, then L Γ M; L ∆ M ` L C M.

I Theorem 29. If Γ; ∆ ` C1 and C1 −→ C2, then there exists some D such that L C M −→∗ D
with D ≡ L C2 M.

The translation in the other direction requires named threads and a join construct in λch.



S. Fowler, S. Lindley, and P. Wadler 11:21

Additional syntax

Receive Patterns c ::= (〈` = x〉 when M) 7→ N

Computations M ::= receive {−→c } | . . .

Additional term typing rule
Sel-Recv−→c = {〈`i = xi〉 when Mi 7→ Ni}i i ∈ J
Γ, xi : Ai `P Mi : Bool Γ, xi : Ai | 〈`j : Aj〉j∈J ` Ni : C

Γ | 〈`j : Aj〉j∈J ` receive {−→c } : C

Additional configuration reduction rule

∃k, l.∀i.i < k ⇒ ¬(matchesAny(−→c , Vi)) ∧matches(cl, Vk) ∧ ∀j.j < l⇒ ¬(matches(cj , Vk))

〈a,E[receive {−→c }],−→W · Vk ·
−→
W ′〉 −→ 〈a,E[Nl{V ′k/xl}],

−→
W ·
−→
W ′〉

where

−→c = {〈`i = xi〉 when Mi 7→ Ni}i
−→
W = V1 · . . . ·Vk−1

−→
W ′ = Vk+1 · . . . ·Vn Vk = 〈`k = V ′k〉

matches((〈` = x〉 when M) 7→ N, 〈`′ = V 〉) , (` = `′) ∧ (M{V/x} −→∗M return true)

matchesAny(−→c , V ) , ∃c ∈ −→c .matches(c, V )

Figure 16 Additional syntax, typing rules, and reduction rules for λact with selective receive.

7.2 Selective receive

The receive construct in λact can only read the first message in the queue, which is cumbersome
as it often only makes sense for an actor to handle a subset of messages at a given time.

In practice, Erlang provides a selective receive construct, matching messages in the mailbox
against multiple pattern clauses. Assume we have a mailbox containing values V1, . . . Vn

and evaluate receive {c1, . . . , cm}. The construct first tries to match value V1 against clause
c1—if it matches, then the body of c1 is evaluated, whereas if it fails, V1 is tested against c2
and so on. Should V1 not match any pattern, then the process is repeated until Vn has been
tested against cm. At this point, the process blocks until a matching message arrives.

More concretely, consider an actor with mailbox type C = 〈PriorityMessage :Message,
StandardMessage :Message,Timeout : 1〉 which can receive both high- and low-priority mes-
sages. Let getPriority be a function which extracts a priority from a message.

Now consider the following actor:

receive {
〈PriorityMessage = msg〉 when (getPrioritymsg) > 5 7→ handleMessagemsg
〈Timeout = msg〉 when true 7→ ()

};
receive {
〈PriorityMessage = msg〉 when true 7→ handleMessagemsg
〈StandardMessage = msg〉 when true 7→ handleMessagemsg
〈Timeout = msg〉 when true 7→ ()

}

This actor begins by handling a message only if it has a priority greater than 5. After the
timeout message is received, however, it will handle any message—including lower-priority
messages that were received beforehand.

ECOOP 2017



11:22 Mixing Metaphors

Translation on types

bActorRef(〈`i : Ai〉i)c = ActorRef(〈`i : bAic〉i) bA×Bc = bAc × bBc bA+Bc = bAc+ bBc

bµX.Ac = µX.bAc bA→C Bc = bAc →bCc List(bCc)→bCc (bBc × List(bCc))

where C = 〈`i : A′i〉i, and bCc = 〈`i : bA′ic〉i
Translation on values

bλx.Mc = λx.λmb.(bMcmb) brec f(x) .Mc = rec f(x) . λmb.(bMcmb)

Translation on computation terms (wrt. a mailbox type 〈`i : Ai〉i)
bV W cmb = let f⇐ (bV c bW c) in f mb

breturnV cmb = return (bV c,mb)
blet x⇐M in Ncmb = let resPair⇐ bMcmb in let (x,mb′) = resPair in bNcmb′

bselfcmb = let selfPid⇐ self in return (selfPid,mb)
bsendV W cmb = let x⇐ send (bV c) (bW c) in return (x,mb)
bspawnMcmb = let spawnRes⇐ spawn(bMc[ ]) in return (spawnRes,mb)

breceive {−→c }cmb = find(−→c ,mb)
Translation on configurations

b(νa)Cc = {(νa)D | D ∈ bCc}
bC1 ‖ C2c = {D1 ‖ D2 | D1 ∈ bC1c ∧ D2 ∈ bC2c}

b〈a,M,
−→
V 〉c = {〈a, bMc [ ], b

−→
V c 〉} ∪

{〈a, (bMc
−→
W 1

i ),
−→
W 2

i 〉 | i ∈ 1..n}

where
−→
W 1

i = bV1c :: . . . :: bVic :: [ ]
−→
W 2

i = bVi+1c · . . . · bVnc

Figure 17 Translation from λact with selective receive into λact.

Figure 16 shows the additional syntax, typing rule, and configuration reduction rule
required to encode selective receive; the type Bool and logical operators are encoded using
sums in the standard way. We write Γ `P M : A to mean that under context Γ, a term M

which does not perform any communication or concurrency actions has type A. Intuitively,
this means that no subterm of M is a communication or concurrency construct.

The receive {−→c } construct models an ordered sequence of receive pattern clauses c of the
form (〈` = x〉 when M) 7→ N , which can be read as “If a message with body x has label `
and satisfies predicate M , then evaluate N”. The typing rule for receive {−→c } ensures that for
each pattern 〈`i = xi〉 when Mi 7→ Ni in −→c , we have that there exists some `i : Ai contained
in the mailbox variant type; and when Γ is extended with xi : Ai, that the guard Mi has
type Bool and the body Ni has the same type C for each branch.

The reduction rule for selective receive is inspired by that of Fredlund [16]. Assume that
the mailbox is of the form V1 · . . . ·Vk · . . . Vn, with

−→
W = V1 · . . . ·Vk−1 and

−→
W ′ = Vk+1 · . . . ·Vn.

The matches(c, V ) predicate holds if the label matches, and the branch guard evaluates to
true. The matchesAny(−→c , V ) predicate holds if V matches any pattern in −→c . The key idea
is that Vk is the first value to satisfy a pattern. The construct evaluates to the body of the
matched pattern, with the message payload V ′k substituted for the pattern variable xk; the
final mailbox is −→W ·

−→
W ′ (that is, the original mailbox without Vk).

Reduction in the presence of selective receive preserves typing.

I Theorem 30 (Preservation (λact configurations with selective receive)). If Γ; ∆ | 〈`i : Ai〉i ` C1
and C1 −→ C2, then Γ; ∆ | 〈`i : Ai〉i ` C2.

Translation to λact. Given the additional constructs used to translate λch into λact, it is
possible to translate λact with selective receive into plain λact. Key to the translation is



S. Fowler, S. Lindley, and P. Wadler 11:23

find(−→c ,mb) ,
(recfindLoop(ms) .

let (mb1,mb2) = ms in
casemb2 {

[ ] 7→ loop(−→c ,mb1)
x :: mb′2 7→

let mb′ ⇐ mb1 ++ mb′2 in
case x {branches(−→c ,mb′,
λy.(let mb′1 ⇐ mb1 ++ [y] in

findLoop (mb′1,mb′2)))}) ([ ],mb)

label(〈` = x〉 when M 7→ N) = `

labels(−→c ) = noDups([label(c) | c← −→c ])
matching(`,−→c ) = [c | (c← −→c ) ∧ label(c) = `]
unhandled(−→c ) = [` | (〈` : A〉 ← 〈`i : Ai〉i) ∧ ` 6∈ labels(−→c )]

ifPats(mb, `, y, ε, default) = default 〈` = y〉
ifPats(mb, `, y,

(〈` = x〉 when M 7→ N) · pats, default) =
let resPair⇐ (bMcmb){y/x} in
let (res,mb′) = resPair in
if res then (bNcmb){y/x}
else ifPats(mb, `, y, pats, default)

loop(−→c ,mb) ,
(rec recvLoop(mb) .

let x⇐ receive in
case x {branches(−→c ,mb,
λy.let mb′ ⇐ mb ++ [y] in

recvLoopmb′)})mb

branches(−→c ,mb, default) = patBranches(−→c ,mb, default) · defaultBranches(−→c ,mb, default)
patBranches(−→c ,mb, default) =

[〈` = x〉 7→ ifPats(mb, `, x,−→c` , default) | (`← labels(−→c )) ∧ −→c` = matching(`,−→c ) ∧ x fresh]
defaultBranches(−→c ,mb, default) = [〈` = x〉 7→ default 〈` = x〉 | (`← unhandled(−→c )) ∧ x fresh]

Figure 18 Meta level definitions for translation from λact with selective receive to λact (wrt. a
mailbox type 〈`i : Ai〉i).

reasoning about values in the mailbox at the term level; we maintain a term-level ‘save queue’
of values that have been received but not yet matched, and can loop through the list to find
the first matching value. Our translation is similar in spirit to the “stashing” mechanism
described by Haller [19] to emulate selective receive in Akka, where messages can be moved
to an auxiliary queue for processing at a later time.

Figure 17 shows the translation formally. Except for function types, the translation on
types is homomorphic. Similar to the translation from λact into λch, we add an additional
parameter for the save queue.

The translation on terms bMcmb takes a variable mb representing the save queue as its
parameter, returning a pair of the resulting term and the updated save queue. The majority of
cases are standard, except for receive {−→c }, which relies on the meta-level definition find(−→c ,
mb): −→c is a sequence of clauses, and mb is the save queue. The constituent findLoop function
takes a pair of lists (mb1,mb2), where mb1 is the list of processed values found not to match,
and mb2 is the list of values still to be processed. The loop inspects the list until one either
matches, or the end of the list is reached. Should no values in the term-level representation
of the mailbox match, then the loop function repeatedly receives from the mailbox, testing
each new message against the patterns.

Note that the case construct in the core λact calculus is more restrictive than selective
receive: given a variant 〈`i : Ai〉i, case requires a single branch for each label. Selective
receive allows multiple branches for each label, each containing a possibly-different predicate,
and does not require pattern matching to be exhaustive.

We therefore need to perform pattern matching elaboration; this is achieved by the
branches meta level definition. We make use of list comprehension notation: for example,

ECOOP 2017



11:24 Mixing Metaphors

[c | (c← −→c ) ∧ label(c) = `] returns the (ordered) list of clauses in a sequence −→c such that
the label of the receive clause matches a label `. We assume a meta level function noDups
which removes duplicates from a list. Case branches are computed using the branches meta
level definition: patBranches creates a branch for each label present in the selective receive,
creating (via ifPats) a sequence of if-then-else statements to check each predicate in turn;
defaultBranches creates a branch for each label that is present in the mailbox type but
not in any selective receive clauses.

Properties of the translation. The translation preserves typing of terms and values.

I Lemma 31 (Translation preserves typing (values and terms)).

1. If Γ ` V :A, then bΓc ` bV c : bAc.
2. If Γ | 〈`i :Ai〉i `M :B, then
bΓc,mb : List(〈`i : bAic〉i) | 〈`i : bAic〉i ` bMcmb : (bBc × List(〈`i : bAic〉i)).

Alas, a direct one-to-one translation on configurations is not possible, since a message in a
mailbox in the source language could be either in the mailbox or the save queue in the target
language. Consequently, we translate a configuration into a set of possible configurations,
depending on how many messages have been processed. We can show that all configurations
in the resulting set are type-correct, and can simulate the original reduction.

I Theorem 32 (Translation preserves typing). If Γ; ∆ ` C, then ∀D ∈ bCc, it is the case that
bΓc; b∆c ` D.

I Theorem 33 (Simulation (λact with selective receive in λact)). If Γ; ∆ ` C and C −→ C′,
then ∀D ∈ bCc, there exists a D′ such that D −→+ D′ and D′ ∈ bC′c.

Remark. Originally we expected to need to add an analogous selective receive construct to
λch in order to be able to translate λact with selective receive into λch. We were surprised (in
part due to the complex reduction rule and the native runtime support in Erlang) when we
discovered that selective receive can be emulated in plain λact. Moreover, we were pleasantly
surprised that types pose no difficulties in the translation.

7.3 Choice
The calculus λch supports only blocking receive on a single channel. A more powerful
mechanism is selective communication, where a value is taken nondeterministically from two
channels. An important use case is receiving a value when either channel could be empty.

Here we have considered only the most basic form of selective choice over two channels.
More generally, it may be extended to arbitrary regular data types [42]. As Concurrent
ML [45] embraces rendezvous-based synchronous communication, it provides generalised
selective communication where a process can synchronise on a mixture of input or output
communication events. Similarly, the join patterns of the join calculus [14] provide a general
abstraction for selective communication over multiple channels.

As we are working in the asynchronous setting where a give operation can reduce
immediately, we consider only input-guarded choice. Input-guarded choice can be added
straightforwardly to λch, as shown in Figure 19. Emulating such a construct satisfactorily in
λact is nontrivial, because messages must be multiplexed through a local queue. One approach
could be to use the work of Chaudhuri [8] which shows how to implement generalised choice
using synchronous message passing, but implementing this in λch may be difficult due to the
asynchrony of give. We leave a more thorough investigation to future work.



S. Fowler, S. Lindley, and P. Wadler 11:25

Γ ` V : ChanRef(A) Γ `W : ChanRef(B)
Γ ` chooseV W : A+B

E[choose a b] ‖ a(W1 ·
−→
V1) ‖ b(−→V2) −→ E[return (inlW1)] ‖ a(−→V1) ‖ b(−→V2)

E[choose a b] ‖ a(−→V1) ‖ b(W2 ·
−→
V2) −→ E[return (inrW2)] ‖ a(−→V1) ‖ b(−→V2)

Figure 19 Additional typing and evaluation rules for λch with choice.

7.4 Behavioural types
Behavioural types allow the type of an object (e.g. a channel) to evolve as a program
executes. A widely studied behavioural typing discipline is that of session types [26, 27],
which are channel types sufficiently expressive to describe communication protocols between
participants. For example, the session type for a channel which sends two integers and
receives their sum could be defined as !Int.!Int.?Int.end. Session types are suited to channels,
whereas current work on session-typed actors concentrates on runtime monitoring [39].

A natural question to ask is whether one can combine the benefits of actors and of session
types—indeed, this was one of our original motivations for wanting to better understand
the relationship between actors and channels in the first place! A session-typed channel
may support both sending and receiving (at different points in the protocol it encodes), but
communication with another process’ mailbox is one-way. We have studied several variants
of λact with polarised session types [43, 36] which capture such one-way communication, but
they seem too weak to simulate session-typed channels. In future, we would like to find an
extension of λact with behavioural types that admits a similar simulation result to the ones
in this paper.

8 Related work

Our formulation of concurrent λ-calculi is inspired by λ(fut) [40], a concurrent λ-calculus
with threads, futures, reference cells, and an atomic exchange construct. In the presence
of lists, futures are sufficient to encode asynchronous channels. In λch, we concentrate on
asynchronous channels to better understand the correspondence with actors. Channel-based
concurrent λ-calculi form the basis of functional languages with session types [17, 35].

Concurrent ML [45] extends Standard ML with a rich set of combinators for synchronous
channels, which again can emulate asynchronous channels. A core notion in Concurrent ML
is nondeterministically synchronising on multiple synchronous events, such as sending or
receiving messages; relating such a construct to an actor calculus is nontrivial, and remains
an open problem. Hopac [28] is a channel-based concurrency library for F#, based on
Concurrent ML. The Hopac documentation relates synchronous channels and actors [1],
implementing actor-style primitives using channels, and channel-style primitives using actors.
The implementation of channels using actors uses mutable references to emulate the take
function, whereas our translation achieves this using message passing. Additionally, our
translation is formalised and we prove that the translations are type- and semantics-preserving.

Links [9] provides actor-style concurrency, and the paper describes a translation into
λ(fut). Our translation is semantics-preserving and can be done without synchronisation.

The actor model was designed by Hewitt [23] and examined in the context of distributed
systems by Agha [2]. Agha et al. [3] describe a functional actor calculus based on the
λ-calculus augmented by three core constructs: send sends a message; letactor creates a new

ECOOP 2017



11:26 Mixing Metaphors

actor; and become changes an actor’s behaviour. The operational semantics is defined in
terms of a global actor mapping, a global multiset of messages, a set of receptionists (actors
which are externally visible to other configurations), and a set of external actor names.
Instead of become, we use an explicit receive construct, which more closely resembles Erlang
(referred to by the authors as “essentially an actor language”). Our concurrent semantics,
more in the spirit of process calculi, encodes visibility via name restrictions and structural
congruences. The authors consider a behavioural theory in terms of operational and testing
equivalences—something we have not investigated.

Scala has native support for actor-style concurrency, implemented efficiently without
explicit virtual machine support [20]. The actor model inspires active objects [33]: objects
supporting asynchronous method calls which return responses using futures. De Boer et
al. [10] describe a language for active objects with cooperatively scheduled threads within
each object. Core ABS [32] is a specification language based on active objects. Using futures
for synchronisation sidesteps the type pollution problem inherent in call-response patterns
with actors, although our translations work in the absence of synchronisation. By working in
the functional setting, we obtain more compact calculi.

9 Conclusion

Inspired by languages such as Go which take channels as core constructs for communication,
and languages such as Erlang which are based on the actor model of concurrency, we have
presented translations back and forth between a concurrent λ-calculus λch with channel-based
communication constructs and a concurrent λ-calculus λact with actor-based communication
constructs. We have proved that λact can simulate λch and vice-versa.

The translation from λact to λch is straightforward, whereas the translation from λch to
λact requires considerably more effort. Returning to Figure 2, this is unsurprising!

We have also shown how to extend λact with synchronisation, greatly simplifying the
translation from λch into λact, and have shown how Erlang-style selective receive can be
emulated in λact. Additionally, we have discussed input-guarded choice in λch, and how
behavioural types may fit in with λact.

In future, we firstly plan to strengthen our operational correspondence results by consid-
ering operational completeness. Secondly, we plan to investigate how to emulate λch with
input-guarded choice in λact. Finally, we intend to use the lessons learnt from studying λch
and λact to inform the design of an actor-inspired language with behavioural types.

Acknowledgements. Thanks to Philipp Haller, Daniel Hillerström, Ian Stark, and the
anonymous reviewers for detailed comments.

References
1 Actors and Hopac, 2016. URL: https://www.github.com/Hopac/Hopac/blob/master/

Docs/Actors.md.
2 Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT

Press, Cambridge, MA, USA, 1986.
3 Gul A Agha, Ian A Mason, Scott F Smith, and Carolyn L Talcott. A foundation for actor

computation. Journal of Functional Programming, 7(01):1–72, 1997.
4 Akka Typed, 2016. URL: http://doc.akka.io/docs/akka/current/scala/typed.html.
5 Elvira Albert, Puri Arenas, and Miguel Gómez-Zamalloa. Testing of concurrent and im-

perative software using clp. In PPDP, pages 1–8. ACM, 2016.

https://www.github.com/Hopac/Hopac/blob/master/Docs/Actors.md
https://www.github.com/Hopac/Hopac/blob/master/Docs/Actors.md
http://doc.akka.io/docs/akka/current/scala/typed.html


S. Fowler, S. Lindley, and P. Wadler 11:27

6 Joe Armstrong. Making reliable distributed systems in the presence of sodware errors. PhD
thesis, The Royal Institute of Technology Stockholm, Sweden, 2003.

7 Francesco Cesarini and Steve Vinoski. Designing for Scalability with Erlang/OTP. "
O’Reilly Media, Inc.", 2016.

8 Avik Chaudhuri. A Concurrent ML Library in Concurrent Haskell. In ICFP, pages 269–280,
New York, NY, USA, 2009. ACM.

9 Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web Programming
Without Tiers. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-
Paul de Roever, editors, FMCO, volume 4709, pages 266–296. Springer Berlin Heidelberg,
2007.

10 Frank S De Boer, Dave Clarke, and Einar Broch Johnsen. A complete guide to the future.
In ESOP, pages 316–330. Springer, 2007.

11 Joeri De Koster, Tom Van Cutsem, and Wolfgang De Meuter. 43 Years of Actors: A
Taxonomy of Actor Models and Their Key Properties. In AGERE. ACM, 2016.

12 Matthias Felleisen. On the expressive power of programming languages. Science of Com-
puter Programming, 17(1-3):35–75, 1991.

13 Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of
compiling with continuations. In PLDI, pages 237–247. ACM, 1993.

14 Cédric Fournet and Georges Gonthier. The reflexive CHAM and the join-calculus. In Hans-
Juergen Boehm and Guy L. Steele Jr., editors, POPL, pages 372–385. ACM Press, 1996.
URL: http://dl.acm.org/citation.cfm?id=237721, doi:10.1145/237721.237805.

15 Simon Fowler, Sam Lindley, and Philip Wadler. Mixing Metaphors: Actors as Channels
and Channels as Actors (Extended Version). CoRR, abs/1611.06276, 2017. URL: http:
//arxiv.org/abs/1611.06276.

16 Lars-Åke Fredlund. A framework for reasoning about Erlang code. PhD thesis, The Royal
Institute of Technology Stockholm, Sweden, 2001.

17 Simon J. Gay and Vasco T. Vasconcelos. Linear type theory for asynchronous session types.
Journal of Functional Programming, 20:19–50, January 2010.

18 David K. Gifford and John M. Lucassen. Integrating functional and imperative program-
ming. In LFP, pages 28–38. ACM, 1986.

19 Philipp Haller. On the integration of the actor model in mainstream technologies: the Scala
perspective. In AGERE, pages 1–6. ACM, 2012.

20 Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based and event-based
programming. Theoretical Computer Science, 410(2):202–220, 2009.

21 Paul Harvey. A linguistic approach to concurrent, distributed, and adaptive programming
across heterogeneous platforms. PhD thesis, University of Glasgow, 2015.

22 Jiansen He, Philip Wadler, and Philip Trinder. Typecasting actors: From Akka to TAkka.
In SCALA, pages 23–33. ACM, 2014.

23 Carl Hewitt, Peter Bishop, and Richard Steiger. A Universal Modular ACTOR Formalism
for Artificial Intelligence. In IJCAI, pages 235–245, San Francisco, CA, USA, 1973. Morgan
Kaufmann Publishers Inc.

24 Rich Hickey. Clojure core.async Channels, 2013. URL: http://clojure.com/blog/2013/
06/28/clojure-core-async-channels.html.

25 C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM,
21(8):666–677, August 1978.

26 Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CONCUR’93, volume 715
of Lecture Notes in Computer Science, pages 509–523. Springer Berlin Heidelberg, 1993.

27 Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type dis-
cipline for structured communication-based programming. In Chris Hankin, editor, ESOP,
chapter 9, pages 122–138. Springer Berlin Heidelberg, Berlin/Heidelberg, 1998.

ECOOP 2017

http://dl.acm.org/citation.cfm?id=237721
http://dx.doi.org/10.1145/237721.237805
http://arxiv.org/abs/1611.06276
http://arxiv.org/abs/1611.06276
http://clojure.com/blog/2013/06/28/clojure-core-async-channels.html
http://clojure.com/blog/2013/06/28/clojure-core-async-channels.html


11:28 Mixing Metaphors

28 Hopac, 2016. URL: http://www.github.com/Hopac/hopac.
29 How are Akka actors different from Go channels?, 2013. URL: https://www.quora.com/

How-are-Akka-actors-different-from-Go-channels.
30 Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based distributed programming

in java. In ECOOP, pages 516–541. Springer, 2008.
31 Is Scala’s actors similar to Go’s coroutines?, 2014. URL: http://stackoverflow.com/

questions/22621514/is-scalas-actors-similar-to-gos-coroutines.
32 Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin Steffen.

ABS: A core language for abstract behavioral specification. In FMCO, pages 142–164.
Springer, 2010.

33 R. Greg Lavender and Douglas C. Schmidt. Active object: An object behavioral pattern for
concurrent programming. In John M. Vlissides, James O. Coplien, and Norman L. Kerth,
editors, Pattern Languages of Program Design 2, pages 483–499. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1996. URL: http://dl.acm.org/citation.cfm?
id=231958.232967.

34 Paul B. Levy, John Power, and Hayo Thielecke. Modelling environments in call-by-value
programming languages. Information and Computation, 185(2):182–210, 2003.

35 Sam Lindley and J. Garrett Morris. A Semantics for Propositions as Sessions. In ESOP,
pages 560–584. Springer, 2015.

36 Sam Lindley and J. Garrett Morris. Embedding session types in haskell. In Haskell, pages
133–145. ACM, 2016.

37 Massimo Merro and Davide Sangiorgi. On asynchrony in name-passing calculi.
Mathematical Structures in Computer Science, 14(5):715–767, 2004. doi:10.1017/
S0960129504004323.

38 Robin Milner. Communicating and Mobile Systems: The Pi Calculus. Cambridge University
Press, 1st edition, June 1999.

39 Rumyana Neykova and Nobuko Yoshida. Multiparty session actors. In COORDINATION,
pages 131–146. Springer, 2014.

40 Joachim Niehren, Jan Schwinghammer, and Gert Smolka. A concurrent lambda calculus
with futures. Theoretical Computer Science, 364(3):338–356, 2006.

41 Luca Padovani and Luca Novara. Types for Deadlock-Free Higher-Order Programs. In
Susanne Graf and Mahesh Viswanathan, editors, FORTE, pages 3–18. Springer Interna-
tional Publishing, 2015.

42 Jennifer Paykin, Antal Spector-Zabusky, and Kenneth Foner. choose your own derivative.
In TyDe, pages 58–59. ACM, 2016.

43 Frank Pfenning and Dennis Griffith. Polarized substructural session types. In FoSSaCS,
volume 9034 of Lecture Notes in Computer Science, pages 3–22. Springer, 2015.

44 Proto.Actor, 2016. URL: http://www.proto.actor.
45 John H. Reppy. Concurrent Programming in ML. Cambridge University Press, 2007.
46 Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile Processes. Cam-

bridge University Press, 2003.
47 Typed Actors, 2016. URL: https://github.com/knutwalker/typed-actors.
48 Philip Wadler. Propositions as sessions. Journal of Functional Programming, 24(2-3):384–

418, 2014.

http://www.github.com/Hopac/hopac
https://www.quora.com/How-are-Akka-actors-different-from-Go-channels
https://www.quora.com/How-are-Akka-actors-different-from-Go-channels
http://stackoverflow.com/questions/22621514/is-scalas-actors-similar-to-gos-coroutines
http://stackoverflow.com/questions/22621514/is-scalas-actors-similar-to-gos-coroutines
http://dl.acm.org/citation.cfm?id=231958.232967
http://dl.acm.org/citation.cfm?id=231958.232967
http://dx.doi.org/10.1017/S0960129504004323
http://dx.doi.org/10.1017/S0960129504004323
http://www.proto.actor
https://github.com/knutwalker/typed-actors


µPuppet: A Declarative Subset of the Puppet
Configuration Language∗

Weili Fu1, Roly Perera2, Paul Anderson3, and James Cheney4

1 School of Informatics, University of Edinburgh, Edinburgh, UK
weili.fu@ed.ac.uk

2 School of Informatics, University of Edinburgh, Edinburgh, UK
roly.perera@ed.ac.uk
School of Computing Science, University of Glasgow, Glasgow, UK
roly.perera@glasgow.ac.uk

3 School of Informatics, University of Edinburgh, Edinburgh, UK
dcspaul@ed.ac.uk

4 School of Informatics, University of Edinburgh, Edinburgh, UK
jcheney@inf.ed.ac.uk

Abstract
Puppet is a popular declarative framework for specifying and managing complex system con-
figurations. The Puppet framework includes a domain-specific language with several advanced
features inspired by object-oriented programming, including user-defined resource types, ‘classes’
with a form of inheritance, and dependency management. Like most real-world languages, the
language has evolved in an ad hoc fashion, resulting in a design with numerous features, some of
which are complex, hard to understand, and difficult to use correctly.

We present an operational semantics for µPuppet, a representative subset of the Puppet
language that covers the distinctive features of Puppet, while excluding features that are either
deprecated or work-in-progress. Formalising the semantics sheds light on difficult parts of the
language, identifies opportunities for future improvements, and provides a foundation for future
analysis or debugging techniques, such as static typechecking or provenance tracking. Our se-
mantics leads straightforwardly to a reference implementation in Haskell. We also discuss some
of Puppet’s idiosyncrasies, particularly its handling of classes and scope, and present an initial
corpus of test cases supported by our formal semantics.

1998 ACM Subject Classification D.2.9 [Software Engineering] Management – Software config-
uration management

Keywords and phrases configuration languages; Puppet; operational semantics

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.12

1 Introduction

Managing a large-scale data center consisting of hundreds or thousands of machines is a
major challenge. Manual installation and configuration is simply impractical, given that
each machine hosts numerous software components, such as databases, web servers, and

∗ Fu was supported by a Microsoft Research PhD studentship. Perera and Cheney were supported by
the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number
FA8655-13-1-3006. The U.S. Government and University of Edinburgh are authorised to reproduce and
distribute reprints for their purposes notwithstanding any copyright notation thereon. Perera was also
supported by UK EPSRC project EP/K034413/1.

© Weili Fu, Roly Perera, Paul Anderson, and James Cheney;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 12; pp. 12:1–12:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


12:2 µPuppet: A Declarative Subset of the Puppet Configuration Language

middleware. Hand-coded configuration scripts are difficult to manage and debug when
multiple target configurations are needed. Moreover, misconfigurations can potentially affect
millions of users. Recent empirical studies [22, 11] attribute a significant proportion of
system failures to misconfiguration rather than bugs in the software itself. Thus better
support for specifying, debugging and verifying software configurations is essential to future
improvements in reliability [21].

A variety of configuration frameworks have been developed to increase the level of
automation and reliability. All lie somewhere on the spectrum between “imperative” and
“declarative”. At the imperative end, developers use conventional scripting languages to
automate common tasks. It is left to the developer to make sure that steps are performed
in the right order, and that any unnecessary tasks are not (potentially harmfully) executed
anyway. At the declarative end of the spectrum, the desired system configuration is specified
in some higher-level way and it is up to the configuration framework to determine how to
realise the specification: that is, how to generate a compliant configuration, or adapt an
already-configured system to match a new desired specification.

Most existing frameworks have both imperative and declarative aspects. Chef [13],
CFEngine [23], and Ansible [8] are imperative in relation to dependency management; the
order in which tasks are run must be specified. Chef and CFEngine are declarative in that a
configuration is specified as a desired target state, and only the actions necessary to end up
in a compliant state are executed. (This is called convergence in configuration management
speak.) The Puppet framework [18] lies more towards the declarative end, in that the order
in which configuration tasks are carried out is also left mostly to the framework. Puppet
also provides a self-contained configuration language in which specifications are written,
in contrast to some other systems. (Chef specifications are written in Ruby, for example,
whereas Ansible is YAML-based.)

Configuration languages often have features in common with general-purpose programming
languages, such as variables, expressions, assignment, and conditionals. Some, including
Puppet, also include “object-oriented” features such as classes and inheritance. However,
(declarative) configuration languages differ from regular programming or scripting languages
in that they mainly provide mechanisms for specifying, rather than realising, configurations.
While some “imperative” features that can directly mutate system state are available in
Puppet, their use is generally discouraged.

Like most real-world languages, configuration languages have largely evolved in an ad hoc
fashion, with little attention paid to their semantics. Given their infrastructural significance,
this makes them an important (although challenging) target for formal study: a formal
model can clarify difficult or counterintuitive aspects of the language, identify opportunities
for improvements and bug-fixes, and provide a foundation for static or dynamic analysis
techniques, such as typechecking, provenance tracking and execution monitoring. In this
paper, we investigate the semantics of the configuration language used by the Puppet
framework. Puppet is a natural choice because of its DSL-based approach, and the fact
that it has seen widespread adoption. The 2016 PuppetConf conference attracted over 1700
Puppet users and developers and sponsorship from over 30 companies, including Cisco, Dell,
Microsoft, Google, Amazon, RedHat, VMWare, and Citrix.

An additional challenge for the formalisation of real-world languages is that they tend
to be moving targets. For example, Puppet 4.0, released in March 2015, introduced several
changes that are not backwards-compatible with Puppet 3, along with a number of non-
trivial new features. In this paper, we take Puppet 4.8 (the version included with Puppet
Enterprise 2016.5) as the baseline version of the language, and define a subset called µPuppet



W. Fu, R. Perera, P. Anderson, and J. Cheney 12:3

Server (Puppet Master)

manifest

 catalog

compile

Node (Puppet Agent)

 catalog

compliant
    state

apply

facts

catalog

status report

Figure 1 Puppet overview.

(pronounced “muppet”) that includes the established features of the language that appear
most important and distinctive; in particular, it includes the constructs node, class, and
define. These are used in almost all Puppet programs (called manifests). We chose to
exclude some features that are either deprecated or not yet in widespread use, or whose
formalisation would add complication without being particularly enlightening, such as regular
expressions and string interpolation.

The main contributions of this paper are:

1. a formalisation of µPuppet, a subset of Puppet 4.8;
2. a discussion of simple metatheoretic properties of µPuppet such as determinism, mono-

tonicity and (non-)termination;
3. a reference implementation of µPuppet in Haskell;
4. a corpus of test cases accepted by our implementation;
5. a discussion of the more complex features not handled by µPuppet.

We first give an overview of the language via some examples (Section 2), covering some of
the more counterintuitive and surprising parts of the language. Next we define the abstract
syntax and a small-step operational semantics of µPuppet (Section 3). We believe ours
to be the first formal semantics a representative subset of Puppet; although recent work
by Shambaugh et al. [17] handles some features of Puppet, they focus on analysis of the
“realisation” phase and do not present a semantics for the node or class constructs or for
inheritance (although their implementation does handle some of these features). We use a
small-step operational semantics (as opposed to large-step or denotational semantics) because
it is better suited to modelling some of the idiosyncratic aspects of Puppet, particularly
the sensitivity of scoping to evaluation order. We focus on unusual or novel aspects of the
language in the main body of the paper; the full set of rules are given in the appendix of the
extended paper [7]. Section 4 discusses some properties of µPuppet, such as determinism and
monotonicity, that justify calling it a ‘declarative’ subset of Puppet. Section 5 describes our
implementation and how we validated our rules against the actual behaviour of Puppet, and
discusses some of the omitted features. Sections 6 and 7 discuss related work and present
our conclusions.

2 Overview of Puppet

Puppet uses several terms – especially compile, declare, and class – in ways that differ from
standard usage in programming languages and semantics. We introduce these terms with
their Puppet meanings in this section, and use those meanings for the rest of the paper.

ECOOP 2017



12:4 µPuppet: A Declarative Subset of the Puppet Configuration Language

To aid the reader, we include a glossary of Puppet terms in the appendix of the extended
paper [7].

The basic workflow for configuring a single machine (node) using Puppet is shown in
Figure 1. A Puppet agent running on the node to be configured contacts the Puppet master
running on a server, and sends a check-in request containing local information, technically
called facts, such as the name of the operating system running on the client node. Using this
information, along with a centrally maintained configuration specification called the manifest,
the Puppet master compiles a catalog specific to that node. The manifest is written in a
high-level language, the Puppet programming language (often referred to simply as Puppet),
and consists of declarations of resources, along with other program constructs used to define
resources and specify how they are assigned to nodes. A resource is simply a collection
of key-value pairs, along with a title, of a particular resource type; “declaring” a resource
means specifying that a resource of that type exists in the target configuration. The catalog
resulting from compilation is the set of resources computed for the target node, along with
other metadata such as ordering information among resources. The Puppet master may fail
to compile a manifest due to compilation errors. In this case, it will not produce a compiled
catalog. If compilation succeeds, the agent receives the compiled catalog and applies it to
reconfigure the client machine, ideally producing a compliant state. Puppet separates the
compilation of manifests and the deployment of catalogs. After deploying the catalog, either
the changed configuration meets the desired configuration or there are some errors in it that
cause system failures. Finally, the agent sends a status report back to the master indicating
success or failure.

Figure 1 depicts the interaction between a single agent and master. In a large-scale
system, there may be hundreds or thousands of nodes configured by a single master. The
manifest can describe how to configure all of the machines in the system, and parameters
that need to be coordinated among machines can be specified in one place. A given run of
the Puppet manifest compiler considers only a single node at a time.

2.1 Puppet: key concepts
We now introduce the basic concepts of the Puppet language – manifests, catalogs, resources,
and classes – with reference to various examples. We also discuss some behaviours which
may seem surprising or unintuitive; clarifying such issues is one reason for pursuing a formal
definition of the language. The full Puppet 4.8 language has many more features than
presented here. A complete list of features and the subset supported by µPuppet are given
in the appendix of the extended paper [7].

2.1.1 Manifests and catalogs
Figure 2 shows a typical manifest, consisting of a node definition and various classes declaring
resources, which will be explained in Section 2.1.4 below. Node definitions, such as the one
starting on line 1, specify how a single machine or group of machines should be configured.
Single machines can be specified by giving a single hostname, and groups of machines by
giving a list of hostnames, a regular expression, or default (as in this example). The
default node definition is used if no other definition applies.

In this case the only node definition is default, and so compiling this manifest for any
node results in the catalog on the right of Figure 2. In this case the catalog is a set of
resources of type file with titles config1, config2 and config3, each with a collection of
attribute-value pairs. Puppet supports several persistence formats for catalogs, including



W. Fu, R. Perera, P. Anderson, and J. Cheney 12:5

YAML; here we present the catalog using an abstract syntax which is essentially a sub-
language of the language of manifests. The file resource type is one of Puppet’s many
built-in resource types, which include other common configuration management concepts
such as user, service and package.

2.1.2 Resource declarations
Line 11 of the manifest in Figure 2 shows how the config1 resource in the catalog was
originally declared. The path attribute was specified explicitly as a string literal; the other
attributes were given as variable references of the form $x. Since a resource with a given
title and type is global to the entire catalog, it may be declared only once during a given
compilation. A compilation error results if a given resource is declared more than once. Note
that what Puppet calls a “compilation error” is a purely dynamic condition, and so is really
a runtime error in conventional terms.

The ordering of attributes within a resource is not significant; by default they appear
in the catalog in the order in which they were declared. Optionally they can be sorted (by
specifying ordering constraints) or randomised. Sorting is usually recommended over relying
on declaration order [16].

2.1.3 Variables and strict mode
Puppet lacks variable declarations in the usual sense; instead variables are implicitly declared
when they are assigned to. A compilation error results if a given variable is assigned to more
than once in the same scope. As we saw above, unqualified variables, whether being read or
assigned to, are written in “scripting language” style $x.

Puppet allows variables to be used before they are assigned, in which case their value is a
special “undefined” value undef, analogous to Ruby’s nil or JavaScript’s undefined. By
default, attributes only appear in the compiled output if their values are defined. Consider
the variables $mode and $checksum introduced by the assignments at lines 7 and 20 in the
manifest in Figure 2. The ordering of these variables relative to the file resource config1
is significant, because it affects whether they are in scope. Since $mode is defined before
config1, its value can be read and assigned to the attribute mode. In the compiled catalog,
mode thus appears as an attribute of config1. On the other hand $checksum is assigned after
config1, and is therefore undefined when read by the code which initialises the checksum
attribute. Thus checksum is omitted from the compiled version of config1.

Since relying on the values of undefined variables is often considered poor practice, Puppet
provides a strict mode which treats the use of undefined variables as an error. For similar
reasons, and also to keep the formal model simple, µPuppet always operates in strict mode.
We discuss the possibility of relaxing this in Section 5.3.

2.1.4 Classes and includes
Resource declarations may be grouped into classes. However, Puppet “classes” are quite
different from the usual concept of classes in object-oriented programming – they define
collections of resources which can be declared together by including the class. This is
sometimes called declaring the class, although there is a subtle but important distinction
between “declaring” and “including” which we will return to shortly.

In Figure 2, it is the inclusion into the node definition of class service1 which explains
the appearance of config1 in the catalog, and in turn the inclusion into service1 of class

ECOOP 2017



12:6 µPuppet: A Declarative Subset of the Puppet Configuration Language

1 node default {
2 $source = "/ source "
3 include service1
4 }
5
6 class service1 {
7 $mode = 123
8
9 include service2

10
11 file { " config1 ":
12 path => " path1 ",
13 source => $source ,
14 mode => $mode ,
15 checksum => $checksum ,
16 provider => $provider ,
17 recurse => $recurse
18 }
19
20 $checksum = "md5"
21 }
22
23 class service2 inherits service3 {
24 $recurse = true
25
26 file { " config2 ":
27 path => " path2 ",
28 source => $source ,
29 mode => $mode ,
30 checksum => $checksum ,
31 provider => $provider ,
32 recurse => $recurse
33 }
34 }
35
36 class service3 {
37 $provider = posix
38
39 file { " config3 ":
40 path => " path3 ",
41 mode => $mode ,
42 checksum => $checksum ,
43 recurse => $recurse
44 }
45 }

1 file { " config3 ":
2 path => " path3 "
3 }
4 file { " config2 ":
5 path => " path2 ",
6 source => "/ source ",
7 provider => " posix ",
8 recurse => true
9 }

10 file { " config1 ":
11 path => " path1 ",
12 source => "/ source ",
13 mode => 123
14 }

Figure 2 Example manifest (left); compiled catalog (right).

service2 which explains the appearance of config2. (The fact that config3 also appears
in the output relates to inheritance, and is discussed in Section 2.1.6 below.) Inclusion is
idempotent: the same class may be included multiple times, but doing so only generates a
single copy of the resources in the catalog. This allows a set of resources to be included into
all locations in the manifest which depend on them, without causing errors due to duplicate
declarations of the same resource.

To a first approximation, including a class into another class obeys a lexical scope
discipline, meaning names in the including class are not visible in the included class. However
inclusion into a node definition has a quite different behaviour: it introduces a containment
relation between the node definition and the class, meaning that names scoped to the node
definition are visible in the body of the included class. Thus in Figure 2, although the
variable $mode defined in service1 is not in scope inside the included class service2 (as per
lexical scoping), the $source variable defined in the node definition is in scope in service1,
because service1 is included into the node scope.

This is similar to the situation in Java where a class asserts its membership of a package
using a package declaration, except here the node definition pulls in the classes it requires.



W. Fu, R. Perera, P. Anderson, and J. Cheney 12:7

Top scope

Node scope

Class scope Class scopeinherits Class scopeinherits

Figure 3 Two aspects of scope: parent scopes (shown as containment), and inheritance chains.

The subtlety is that it is actually when a class is declared (included for the first time,
dynamically speaking) that any names in the body of the class are resolved. If the usage of
a class happens to change so that it ends up being declared in so-called top scope (the root
namespace usually determine at check-in time), it may pick up a different set of bindings.
Thus including a class, although idempotent, has a “side effect” – binding the names in the
class – making Puppet programs potentially fragile. More of the details of scoping are given
in the language reference manual [1].

2.1.5 Qualified names
A definition which is not in scope can be accessed using a qualified name, using a syn-
tax reminiscent of C++ and Java, with atomic names separated by the token ::. For
example, in Figure 4 above, $::osfamily refers to a variable in the top scope, while
$::ssh::params::sshd_package is an absolute reference to the $sshd_package variable of
class ssh::params.

Less conventionally, Puppet also allows the name of a class to be a qualified name, such
as ssh::params in Figure 4. Despite the suggestive syntax, which resembles a C++ member
declaration, this is mostly just a convention used to indicate related classes. In particular,
qualified names used in this way do not require any of the qualifying prefixes to denote an
actual namespace. (Although see the discussion in Section 5.3 for an interaction between
this feature and nested classes, which µPuppet does not support.)

2.1.6 Inheritance and class parameters
Classes may inherit from other classes; the inheriting class inherits the variables of the parent
class, including their values. In the earlier example (Figure 2), service2 inherits the value of
$provider from service3. Including a derived class implicitly includes the inherited class,
potentially causing the inherited class to be declared (in the Puppet sense of the word) when
the derived class is declared:

When you declare a derived class whose base class hasn’t already been declared, the base
class is immediately declared in the current scope, and its parent assigned accordingly.
This effectively “inserts” the base class between the derived class and the current scope.
(If the base class has already been declared elsewhere, its existing parent scope is not
changed.)

This explains why config3 appears in the compiled catalog for Figure 2.
Since the scope in which a class is eventually declared determines the meaning of the

names in the class (Section 2.1.4 above), inheritance may have surprising (and non-local)

ECOOP 2017



12:8 µPuppet: A Declarative Subset of the Puppet Configuration Language

1 class ssh :: params {
2 case $:: osfamily {
3 " Debian ": { $sshd_package = "ssh" }
4 " RedHat ": { $sshd_package = "openssh - server " }
5 default : { fail (" SSH class not supported ") }
6 }
7 }
8 class ssh ( $ssh_pkg = $:: ssh :: params :: sshd_package ) inherits ssh :: params {
9 package { $ssh_pkg :

10 ensure => installed
11 }
12 }
13 node "ssh. example .com" {
14 include ssh
15 }

Figure 4 Example manifest showing recommended use of inheritance for setting default paramet-
ers.

consequences. At any rate, the use of inheritance for most use cases is now discouraged.1
The main exception is the use of inheritance to specify default values; this is the scenario
illustrated in Figure 4.

Line 1 of Figure 4 introduces class ssh::params, which assigns to variable $sshd_package
a value conditional on the operating system name $::osfamily (line 2). The class ssh
(line 8) inherits from ssh::params. It also defines a class parameter $ssh_pkg (before the
inherits clause), and uses the value of the $sshd_package variable in the inherited class as
the default value for the parameter. Because an inherited class is processed before a derived
class, the value of $sshd_package is available at this point.

The value of the parameter $ssh_pkg is then used as the title of the package resource
declared in the ssh class (line 9) specifying that the relevant software package exists in the
target configuration. The last construct is a node definition specifying how to configure the
machine with hostname ssh.example.com. If host ssh.example.com is a Debian machine,
the result of compiling this manifest is a catalog containing the following package resource:
1 package { "ssh" : ensure => installed }

2.1.7 Class statements
Figure 5 defines a class c with three parameters. The class statement (line 31) can be used
to include a class and provide values for (some of) the parameters. In the resulting catalog,
the from_class resource has backup set to true (from the explicit argument), mode set to
123 (because no mode argument is specified), and source set to ’/default’ (because the
path variable is undefined at the point where the class is declared (line 31)).

However, the potential for conflicting parameter values means that multiple declarations
with parameters are not permitted, and the class statement must be used instead (which
only allows a single declaration).

2.1.8 Defined resource types
Defined resource types are similarly to classes, but provide a more flexible way of introducing
a user-defined set of resources. Definition d (line 14) in Figure 5 introduces a defined resource

1 https://docs.puppet.com/puppet/latest/style_guide.html, section 11.1.

https://docs .puppet.com/puppet/latest/style_guide.html


W. Fu, R. Perera, P. Anderson, and J. Cheney 12:9

1 class c (
2 $backupArg = false ,
3 $pathArg = "/ default ",
4 $modeArg = 123 ) {
5
6 file { " from_class ":
7 backup => $backupArg ,
8 source => $pathArg ,
9 path => $path ,

10 mode => $modeArg
11 }
12 }
13
14 define d (
15 $backupArg = false ,
16 $pathArg = "/ default ",
17 $modeArg = 123 ) {
18
19 file { " from_define ":
20 backup => $backupArg ,
21 source => $pathArg ,
22 path => $path ,
23 mode => $modeArg
24 }
25 }
26
27 node default {
28
29 $backup = true
30
31 class { c:
32 backupArg => $backup ,
33 pathArg => $path
34 }
35
36 d { " service3 ":
37 backupArg => $backup ,
38 pathArg => $path
39 }
40
41 $path = "/ path"
42 }

1 file { " from_class ":
2 backup => true ,
3 source => "/ default ",
4 mode => 123
5 }
6 file { " from_define ":
7 path => "/ path",
8 backup => true ,
9 source => "/ default ",

10 mode => 123
11 }

Figure 5 Manifest with class parameters and defined resource types (left); catalog (right).

type. The definition looks very similar to a class definition, but the body is a macro which
can be instantiated (line 36) multiple times with different parameters.

Interestingly, the path attribute in the from_class file is undefined in the result, ap-
parently because the assignment $path = ’/path’ follows the declaration of the class —
however, in the from_define file, path is defined as ’/path’! The reason appears to be that
defined resources are added to the catalog and re-processed after other manifest constructs.2

3 µPuppet

We now formalise µPuppet, a language which captures many of the essential features of
Puppet. Our goal is not to model all of Puppet’s idiosyncrasies, but instead to attempt
to capture the ‘declarative’ core of Puppet, as a starting point for future study. As we
discuss later, Puppet also contains several non-declarative features whose behaviour can be
counterintuitive and surprising; their use tends to be discouraged in Puppet’s documentation
and by other authors [16].

2 http://puppet-on-the-edge.blogspot.co.uk/2014/04/getting-your-puppet-ducks-in-row.html

ECOOP 2017

http://puppet-on-the- edge.blogspot.co.uk/2014/04/getting-your-puppet-ducks-in-row.html


12:10 µPuppet: A Declarative Subset of the Puppet Configuration Language

Expression e ::= i | w | true | false | $x | $::x | $::a::x
| e1 + e2 | e1 − e2 | e1/e2 | e1 > e2 | e1 = e2 | e1 and e2 | e1 or e2 | ! e | . . .
| {H} | [e1, . . . , en] | e1[e2] | e ? {M}

Array A ::= ε | e,A
Hash H ::= ε | k ⇒ e,H

Case c ::= e | default
Matches M ::= ε | c⇒ e,M

Statement s ::= e | s1␣s2 | $x = e | unless e {s} | if e {s} else {s} | case e {C} | D
Cases C ::= ε | c : {s}␣C
Declaration D ::= t {e : H} | u {e : H} | class {a : H} | include a

Manifest m ::= s | m1␣m2 | node Q {s} | define u (ρ) {s} | class a {s} | class a (ρ) {s}
| class a inherits b {s} | class a (ρ) inherits b {s}

Node spec Q ::= N | default | (N1, . . . , Nk) | r ∈ RegExp
Parameters ρ ::= ε | x, ρ | x = e, ρ

Figure 6 Abstract syntax of µPuppet.

3.1 Abstract syntax
The syntax of µPuppet manifests m is defined in Figure 6, including expressions e and
statements s. Constant expressions in µPuppet can be integer literals i, string literals
w, or boolean literals true or false. Other expressions include arithmetic and boolean
operations, variable forms $x, $::x and $::a::x. Here, x stands for variable names and a

stands for class names. Selectors e ? {M} are conditional expressions that evaluate e and
then conditionally evaluate the first matching branch in M . Arrays are written [e1, . . . , en]
and hashes (dictionaries) are written {k ⇒ e, . . .} where k is a key (either a constant number
or string). A reference e1[e2] describes an array, a hash or a resource reference where e1 itself
can be a reference. When it is a resource reference, e1 could be a built-in resource type.
Full Puppet includes additional base types (such as floating-point numbers) and many more
built-in functions that we omit here.

Statements s include expressions e (whose value is discarded), composite statements
s1␣s2, assignments $x = e, and conditionals unless, if, case, which are mostly standard.
(Full Puppet includes an elsif construct that we omit from µPuppet.) Statements also
include resource declarations t {e : H} for built-in resource types t, resource declarations
u {e : H} for defined resource types u, and class declarations class {a : H} and include a.

Manifestsm can be statements s; composite manifestsm1␣m2, class definitions class a {s}
with or without parameters ρ and inheritance clauses inherits b; node definitions node Q {s};
or defined resource type definitions define u (ρ) {s}. Node specifications Q include literal
node names N , default, lists of node names, and regular expressions r (which we do not
model explicitly).

Sequences of statements, cases, or manifest items can be written by writing one statement
after the other, separated by whitespace, and we write ␣ when necessary to emphasise that
this whitespace is significant. The symbol ε denotes the empty string.

3.2 Operational Semantics
We now define a small-step operational semantics for µPuppet. This is a considered choice:
although Puppet is advertised as a declarative language, it is not a priori clear that manifest
compilation is a terminating or even deterministic process. Using small-step semantics allows
us to translate the (often) procedural descriptions of Puppet’s constructs directly from the



W. Fu, R. Perera, P. Anderson, and J. Cheney 12:11

Catalog vC ::= ε | vR␣vC

Value v ::= i | w | true | false | {vH} | [v1, . . . , vn] | t[v]
Hash value vH ::= ε | k ⇒ v, vH

Resource value vR ::= t {w : vH}

Scope α ::= :: | ::a | ::nd | α def

Statement s ::= ... | scope α s | skip

Figure 7 Auxiliary constructs: catalogs and scopes.

documentation.
The operational semantics relies on auxiliary notions of catalogs vC, scopes α, variable

environments σ, and definition environments κ explained in more detail below. We employ
three main judgements, for processing expressions, statements, and manifests:

σ, κ, vC, e
α−→ e′ σ, κ, vC, s

α−→s σ
′, κ′, v′

C, s
′ σ, κ, vC,m

N−→m σ′, κ′, v′
C,m

′

Here, σ, κ, and vC are the variable environment, definition environment, and catalog
beforehand, and their primed versions are the corresponding components after one compilation
step. The parameter α for expressions and statements represents the ambient scope; the
parameter N for manifests is the target node name.

The main judgement is −→m, which takes a µPuppet manifest m and a node name
N and compiles it to a catalog vC, that is, a list of resource values vR for that node.
Given initial variable environments σ (representing data provided by the client) and κ

(containing any predefined classes or resource definitions), execution of manifest m begins
with an empty catalog and terminates with catalog vC when the manifest equals skip, i.e.
σ, κ, ε,m

N−→m · · ·
N−→m σ′, κ′, vC, skip.

3.2.1 Auxiliary definitions: catalogs, scopes and environments

Before defining compilation formally, we first define catalogs (Section 3.2.1.1), the result of
compiling manifests; scopes (Section 3.2.1.2), which explicitly represent the ambient scope
used to resolve unqualified variable references; variable environments (Section 3.2.1.3), which
store variable bindings; and definition environments (Section 3.2.1.4), which store class and
resource definitions.

3.2.1.1 Catalogs

The syntax of catalogs is given in Figure 7. A catalog vC is a sequence of resource values,
separated by whitespace; a resource value vR = t {w : vH} is a resource whose title is a string
value and whose content is a hash value; a hash value vH is an attribute-value sequence in
which all expressions are values; and finally a value v is either an integer literal i, string
literal w, boolean literal true or false, hash {vH}, array [v1, . . . , vn] or a reference value
t[v]. In a well-formed catalog, there is at most one resource with a given type and title;
attempting to add a resource with the same type and title as one already in the catalog is an
error.

ECOOP 2017



12:12 µPuppet: A Declarative Subset of the Puppet Configuration Language

3.2.1.2 Scopes

As discussed in Section 2, Puppet variables can be assigned in one scope and referenced in a
different scope. For example, in Figure 4, the parent scope of class scope ssh is class scope
ssh::params. To model this, we model scopes and parent-child relations between scopes
explicitly. Scope :: represents the top scope, ::a is the scope of class a, ::nd is the active node
scope, and α def is the scope of a resource definition that is executed in ambient scope α.

The scope for defined resources takes another scope parameter α in order to model
resource definitions that call other resource definitions. The top-level, class, and node scopes
are persistent, while α def is cleared at the end of the corresponding resource definition;
thus these scopes can be thought of as names for stack frames. The special statement form
scope α s is used internally in the semantics to model scope changes. An additional internal
statement form skip, unrelated to scopes, represents the empty statement. Neither of these
forms are allowed in Puppet manifests.

As discussed earlier, there is an ancestry relation on scopes, which governs the order
in which scopes are checked when dereferencing an unqualified variable reference. We use
mutually recursive auxiliary judgments α parentofκ β to indicate that α is the parent scope
of β in the context of κ and α baseofκ β to indicate that α is the base scope of β. The base
scope is either ::, indicating that the scope is the top scope, or ::nd, indicating that the scope
is being processed inside a node definition. We first discuss the rules for parentofκ:

:: parentofκ ::nd
PNode

β baseofκ α def

:: parentofκ α def
PDefRes

κ(a) = DeclaredClass(α)
α parentofκ ::a

PClass

The PNode rules says that the top-level scope is the parent scope of node scope. The
PDefRes rule says that the parent scope of the defined resource type scope is its base
scope. Thus, a resource definition being declared in the toplevel will have parent ::, while
one being declared inside a node definition will have parent scope ::nd. The PClass rule
defines the scope of the (declared) parent class b to be the scope α that is recorded in the
DeclaredClass(α) entry. The rules for class inclusion and declaration in the next section show
how the DeclaredClass(α) entry is initialised; this also uses the baseofκ relation. The rules
defining baseofκ are as follows:

:: baseofκ ::
BTop

::nd baseofκ ::nd
BNode

α baseofκ β
α baseofκ β def

BDefRes

κ(a) = DeclaredClass(β) α baseofκ β
α baseofκ ::a

BClass

These rules determine whether the ambient scope α in which the class is declared is inside
or outside a node declaration. The base scope of toplevel or node scope is toplevel or node
scope respectively. The base scope of β def is the base scope of β, while the base scope of a
class scope ::a is the base scope of its parent scope as defined in the definition environment
κ. (We will only try to obtain the base scope of a class that has already been declared.)

3.2.1.3 Variable environments

During the compilation of a manifest, the values of variables are recorded in variable
environments σ which are then accessed when these variables are referenced in the manifest.
(We call these variable environments, rather than plain environments, since “environment”



W. Fu, R. Perera, P. Anderson, and J. Cheney 12:13

has a specific technical meaning in Puppet; see the glossary in the appendix of the extended
paper [7].) As discussed in section 2.1.3, Puppet allows variables to be referenced before
being defined, whereas the variable environment is designed in the way not to allow it. A
variable can only be referenced in the environment if its value has been stored. Thus the
undefined variables in the manifest in Figure 2 are not legal in µPuppet.

Formally, a variable environment is defined as a partial function σ : Scope×Var → Value
which maps pairs of scopes and variables to values. The scope component indicates the
scope in which the variable was assigned. We sometimes write σα(x) for σ(α, x). Updating a
variable environment σ with new binding (α, x) to v is written σ[(α, x) : v], and clearing an
environment (removing all bindings in scope α) is written clear(σ, α).

3.2.1.4 Definition environments

Some components in Puppet, like classes and defined resource types, introduce definitions
which can be declared elsewhere. To model this, we record such definitions in definition
environments κ. Formally, a definition environment is a partial function κ : Identifier →
Definition mapping each identifier to a definition D. Evaluation of the definition only begins
when a resource is declared which uses that definition.

Definitions are of the following forms:

D ::= ClassDef(copt, ρ, s) | DeclaredClass(α) | ResourceDef(ρ, s)
copt ::= c | ⊥

The definition form ClassDef(copt, ρ, s) represents the definition of a class (before it has been
declared); copt is the optional name of the class’s parent, ρ is the list of parameters of the
class (with optional default values), and s is the body of the class. The definition form
DeclaredClass(α) represents a class that has been declared; α is the class’s parent scope and
ρ and s are no longer needed. In Puppet, the definition of a class can appear before or after
its declaration, as we saw in the manifest in Figure 2, whereas the definition environment is
designed to require that a class is defined before it is declared. Thus the inclusion of class
service1 in Figure 2 will be not evaluated in µPuppet. Moreover, a class can be declared
only once in Puppet, and when it is declared its definition environment entry is changed to
DeclaredClass(copt). Finally, the definition form ResourceDef(ρ, s) represents the definition of
a new resource type, where ρ and s are as above.

3.2.2 Expression evaluation
Expressions are the basic computational components of µPuppet. The rules for expression
forms such as primitive operations are standard. The rules for selector expressions are also
straightforward. Since variable accessibility depends on scope, the variable evaluation rules
are a little more involved:

x ∈ dom(σα)
σ, κ, vC, $x

α−→ σα(x)
LVar

x /∈ dom(σα) σ, κ, vC, $x
β−→ v β parentofκ α

σ, κ, vC, $x
α−→ v

PVar

x ∈ dom(σ::)
σ, κ, vC, $::x α−→ σ::(x)

TVar
x ∈ dom(σ::a)

σ, κ, vC, $::a :: x α−→ σ::a(x)
QVar

The LVar looks up the value of an unqualified variable in the current scope, if present.
The PVar rule handles the case of an unqualified variable that is not defined in the current

ECOOP 2017



12:14 µPuppet: A Declarative Subset of the Puppet Configuration Language

scope; its value is the value of the variable in the parent scope. The TVar and QVar
rules look up fully-qualified variables in top scope or class scope, respectively. (There is no
qualified syntax for referencing variables in node scope from other scopes.)

µPuppet also includes array and hash expressions. An array is a list of expressions in
brackets and a hash is a list of keys and their expression assignments in braces. When the
expressions are values, an array or a hash is also a value. Each expression in them can
be dereferenced by the array or hash followed by its index or key in brackets. The rules
for constructing and evaluating arrays and hashes are straightforward, and included in the
appendix of the extended paper [7].

Resource references of the form t[v] are allowed as values, where t is a built-in resource
name and v is a (string) value. Such references can be used as parameters in other resources
and to express ordering relationships between resources. Resource references can be used to
extend resources or override inherited resource parameters; we do not model this behaviour.
A resource reference can also (as of Puppet 4) be used to access the values of the resource’s
parameters. This is supported in µPuppet as shown in the following example.

1 file {" foo.txt ":
2 owner => " alice "
3 }
4 $y = "foo.txt"
5 $x = File[$y]
6 file {" bar.txt ":
7 owner => $x [" owner "]
8 }

In this example, we first declare a file resource, with an owner parameter "alice", then
we assign y the filename and $x a resource reference (value) File["foo.txt"]. Then in
defining a second file resource we refer to the "owner" parameter of the already-declared
file resource via the reference File["foo.txt"]. This declaration results in a second file
resource with the same owner as the first.

The rules for dereferencing arrays, hashes, and resource references are as follows:

σ, κ, vC, d
α−→ d′

σ, κ, vC, d[e] α−→ d′[e]
DeRefExp

σ, κ, vC, e
α−→ e′

σ, κ, vC, v[e] α−→ v[e′]
DeRefIndex

σ, κ, vC, [v0, . . . , vn, . . . , vm][n] α−→ vn
DeRefArray

k = kn

σ, κ, vC, {k1 = v1, . . . , kn = vn, . . . , km = vm}[k] α−→ vn
DeRefHash

σ, κ, vC, e
α−→ e′

σ, κ, vC, t[e]
α−→ t[e′]

RefRes
lookupC(vC, t, w, k) = v

σ, κ, vC, t[w][k] α−→ v
DeRefRes

In the rule DeRefExp the expression e is evaluated to an array or a hash value. The
rule DeRefIndex evaluates the index inside the brackets to a value. Rule DeRefArray
accesses the value in an array at the index n while rule DeRefHash accesses the hash value
by searching its key k. There could be a sequence of reference indexes in a reference. As we
can see, such reference is evaluated in the left-to-right order of the index list. Rule ResRef
evaluates the index and in the DeRefRec rule, the function lookupC looks up the catalog
for the value of the attribute k of the resource t[v].



W. Fu, R. Perera, P. Anderson, and J. Cheney 12:15

3.2.3 Statement evaluation
As with expressions, some of the statement forms, such as sequential composition, conditionals
(if, unless), and case statements have a conventional operational semantics, shown in the
appendix of the extended paper [7]. An expression can occur as a statement; its value is
ignored. Assignments, like variable references, are a little more complex. When storing the
value of a variable in an assignment in σ, the compilation rule binds the value to x in the
scope α:

σ, κ, vC, e
α−→ e′

σ, κ, vC, $x = e
α−→s σ, κ, vC, $x = e′ AssignStep

x /∈ dom(σα)
σ, κ, vC, $x = v

α−→s σ[(α, x) : v], κ, vC, skip
Assign

Notice that Puppet does not allow assignment into any other scopes, only the current scope
α.

We now consider scope α s statements, which are internal constructs (not part of the
Puppet source language) we have introduced to track the scope that is in effect in different
parts of the manifest during execution. The following rules handle compilation inside scope
statements and cleanup when execution inside such a statement finally terminates.

α ∈ {::, ::a, ::nd} σ, κ, vC, s
α→s σ

′, κ′, v′
C, s

′

σ, κ, vC, scope α s α′

−→s σ
′, κ′, v′

C, scope α s′
ScopeStep

σ, κ, vC, s
α def−−−→s σ

′, κ′, v′
C, s

′

σ, κ, vC, scope (α def) s α−→s σ
′, κ′, v′

C, scope (α def) s′ DefScopeStep

α ∈ {::, ::a, ::nd}

σ, κ, vC, scope α skip
β−→s σ, κ, vC, skip

ScopeDone

σ, κ, vC, scope (α def) skip α−→s clear(σ, α def), κ, vC, skip
DefScopeDone

The ScopeStep and ScopeDef rules handle compilation inside a scope; the ambient
scope α′ is overridden and the scope parameter α is used instead. The ScopeDone rule
handles the end of compilation inside a “persistent” scope, such as top-level, node or class
scope, whose variables persist throughout execution, and the DefScopeDone rule handles
the temporary scope of defined resources, whose locally-defined variables and parameters
become unbound at the end of the definition. (In contrast, variables defined in toplevel,
node, or class scopes remain visible throughout compilation.)

Resource declarations are compiled in a straightforward way; the title expression is
evaluated, then all the expressions in attribute-value pairs in the hash component are
evaluated. Once a resource is fully evaluated, it is appended to the catalog:

σ, κ, vC, e : H α−→R e
′ : H ′

σ, κ, vC, t {e : H} α−→s σ, κ, vC, t {e′ : H ′}
ResStep

σ, κ, vC, vR
α−→s σ, κ, vC␣vR, skip

ResDecl

ECOOP 2017



12:16 µPuppet: A Declarative Subset of the Puppet Configuration Language

Defined resource declarations look much like built-in resources:
1 apache :: vhost {" homepages ":
2 port => 8081 ,
3 docroot => "/ var/www - testhost ",
4 }

When a defined resource type declaration is fully evaluated, it is expanded (much like a
function call).

σ, κ, vC, {e : H} α−→R {e′ : H ′}
σ, κ, vC, u {e : H} α−→s σ, κ, vC, u {e′ : H ′}

DefStep

κ(u) = ResourceDef(ρ, s) s′ = merge(ρ, vH)
σ, κ, vC, u {w : vH}

α−→s σ, κ, vC, scope (α def) {$title = w␣s′␣s}
Def

The merge function returns a statement s′ assigning the parameters to their default values
in ρ or overridden values from vH. Notice that we also add the special parameter binding
$title = w; this is because in Puppet, the title of a defined resource is made available in the
body of the resource using the parameter $title. The body of the resource definition s is
processed in scope α def. Class declarations take two forms: include-like and resource-like
declarations.

The statement include a is an include-like declaration of a class a. (Puppet includes
some additional include-like declaration forms such as contain and require). Intuitively,
this means that the class body is processed (declaring any ancestors and resources inside
the class), and the class is marked as declared; a class can be declared at most once. The
simplest case is when a class has no parent, covered by the first two rules below:

κ(a) = ClassDef(⊥, ρ, s) s′ = merge(ρ, ε) β baseofκ α
σ, κ, vC, include a α−→s σ, κ[a : DeclaredClass(β)], vC, scope (::a) s′␣s

IncU

κ(a) = DeclaredClass(β)
σ, κ, vC, include a α−→s σ, κ, vC, skip

IncD

κ(a) = ClassDef(b, ρ, s) κ(b) = ClassDef(copt, ρ′, s′)
σ, κ, vC, include a α−→s σ, κ, vC, include b include a

IncPU

κ(a) = ClassDef(b, ρ, s) κ(b) = DeclaredClass(β) s′ = merge(ρ, ε)
σ, κ, vC, include a α−→s σ, κ[a : DeclaredClass(::b)], vC, scope (::a) {s′␣s}

IncPD

In the IncU rule, the class has not been declared yet, so we look up its body and default
parameters and process the body in the appropriate scope. (We use the merge function again
here to obtain a statement initialising all parameters which have default values.) In addition,
we modify the class’s entry in κ to DeclaredClass(β), where β baseofκ α. As described in
Section 2, this aspect of Puppet scoping is dynamic: if a base class is defined outside a node
definition then its parent scope is ::, whereas if it is declared during the processing of a node
definition then its parent scope is ::nd. (As discussed below, if a class inherits from another,
however, the parent scope is the scope of the parent class no matter what). If this sounds
confusing, this is because it is; this is the trickiest aspect of Puppet scope that is correctly
handled by µPuppet. This complexity appears to be one reason that the use of node-scoped
variables is discouraged by some experts [16].



W. Fu, R. Perera, P. Anderson, and J. Cheney 12:17

In the IncD rule, the class a is already declared, so no action needs to be taken. In the
IncPU rule, we include the parent class so that it (and any ancestors) will be processed first.
If there is an inheritance cycle, this process loops; we have confirmed experimentally that
Puppet does not check for such cycles and instead fails with a stack overflow. In the IncPD
rule, the parent class is already declared, so we proceed just as in the case where there is no
parent class.

The rules for resource-like class declarations are similar:

κ(a) = ClassDef(copt, ρ, S) σ, κ, vC, H
α−→H H

′

σ, κ, vC, class {a : H} α−→s σ, κ, vC, class {a : H ′}
CDecStep

κ(a) = ClassDef(⊥, ρ, s) s′ = merge(ρ, vH) β baseofκ α
σ, κ, vC, class {a : vH}

α−→s σ, κ[a : DeclaredClass(β)], vC, scope (::a) s′␣s
CDecU

κ(a) = ClassDef(b, ρ, s) κ(b) = ClassDef(copt, ρ′, s′)
σ, κ, vC, class {a : vH}

α−→s σ, κ, vC, include b class {a : vH}
CDecPU

κ(a) = ClassDef(b, ρ, s) κ(b) = DeclaredClass(β) s′ = merge(ρ, vH)
σ, κ, vC, class {a : vH}

α−→s σ, κ[a : DeclaredClass(::b)], vC, scope (::a) {s′␣s}
CDecPD

There are two differences. First, because resource-like class declarations provide parameters,
the rule CDecStep provides for evaluation of these parameters. Second, there is no rule
analogous to IncD that ignores re-declaration of an already-declared class. Instead, this is
an error. (As with multiple definitions of variables and other constructs, however, we do not
explicitly model errors in our rules.)

3.2.4 Manifest compilation

At the top level, manifests can contain statements, node definitions, resource type definitions,
and class definitions. To compile statements at the top level, we use the following rule:

σ, κ, vC, s
::−→s σ

′, κ′, v′
C, s

′

σ, κ, vC, s
N−→m σ′, κ′, v′

C, s
′

TopScope

The main point of interest here is that we change from the manifest judgement (with the
node name parameter N) to the statement judgement (with toplevel scope parameter ::).
The node name parameter is not needed for processing statements, and we (initially) process
statements in the toplevel scope. Of course, the statement s may well itself be a scope
statement which immediately changes the scope.

A manifest in Puppet can configure all the machines (nodes) in a system. A node
definition describes the configuration of one node (or type of nodes) in the system. The
node declaration includes a specifier Q used to match against the node’s hostname. We
abstract this matching process as a function nodeMatch(N,Q) that checks if the name N of
the requesting computer matches the specifier Q. If so (NodeMatch) we will compile the
statement body of N . Otherwise (NodeNoMatch) we will skip this definition and process
the rest of the manifest.

ECOOP 2017



12:18 µPuppet: A Declarative Subset of the Puppet Configuration Language

nodeMatch(N,Q)

σ, κ, vC, node Q {s} N−→m σ, κ, vC, scope (::nd) s
NodeMatch

¬nodeMatch(N,Q)

σ, κ, vC, node Q {s} N−→m σ, κ, vC, skip
NodeNoMatch

Resource type definitions in Puppet are used to design new, high-level resource types,
possibly by declaring other built-in resource types, defined resource types, or classes. Such a
definition includes Puppet code to be executed when the a resource of the defined type is
declared. Defined resource types can be declared multiple times with different parameters,
so resource type definitions are loosely analogous to procedure calls. The following is an
example of a defined resource type:
1 define apache :: vhost ( Integer $port ) {
2 include apache
3 file { "host ":
4 content => template (’ apache /vhost - default .conf.erb ’),
5 owner => ’www ’
6 }
7 }

The compilation rule for defining a defined resource type is:

u /∈ dom(κ)

σ, κ, vC, define u (ρ) {s} N−→m σ, κ[u : ResourceDef(ρ, s)], vC, skip
RDef

The definition environment is updated to map u to ResourceDef(ρ, s) containing the para-
meters and statements in the definition of u. The manifest then becomes skip.

A class definition is used for specifying a particular service that could include a set of
resources and other statements. Classes are defined at the top level and are declared as part
of statements, as described earlier. Classes can be parameterised; the parameters are passed
in at declaration time using the resource-like declaration syntax. The parameters can be
referenced as variables in the class body. A class can also inherit directly from one other
class. The following rules handle the four possible cases:

a /∈ dom(κ)

σ, κ, vC, class a {s} N−→m σ, κ[a : ClassDef(⊥, ε, s)], vC, skip
CDef

a /∈ dom(κ)

σ, κ, vC, class a inherits b {s} N−→m σ, κ[a : ClassDef(b, ε, s)], vC, skip
CDefI

a /∈ dom(κ)

σ, κ, vC, class a (ρ) {s} N−→m σ, κ[a : ClassDef(⊥, ρ, s)], vC, skip
CDefP

a /∈ dom(κ)

σ, κ, vC, class a (ρ) inherits b {s} N−→m σ, κ[a : ClassDef(b, ρ, s)], vC, skip
CDefPI

In the simples case (CDef) we add the class definition to the definition environment with no
parent and no parameters. The other three rules handle the cases with inheritance, with
parameters, or with both.



W. Fu, R. Perera, P. Anderson, and J. Cheney 12:19

4 Metatheory

Because Puppet has not been designed with formal properties in mind, there is relatively
little we can say formally about the “correctness” of µPuppet. Instead, the main measure of
correctness is the degree to which µPuppet agrees with the behaviour of the main Puppet
implementation, which is the topic of the next section. Here, we summarise two properties of
µPuppet that guided our design of the rules, and provide some justification for the claim that
µPuppet is ‘declarative’. First, evaluation is deterministic: a given manifest can evaluate in
at most one way.

I Theorem 1 (Determinism). All of the evaluation relations of µPuppet are deterministic:
If σ, κ, vC, e

α−→ e′ and σ, κ, vC, e
α−→ e′′ then e′ = e′′.

If σ, κ, vC, s
α−→s σ

′, κ′, v′
C, s

′ and σ, κ, vC, s
α−→s σ

′′, κ′′, v′′
C, s

′′ then σ′ = σ′′, κ′ = κ′′,
v′

C = v′′
C and s′ = s′′.

If σ, κ, vC, s
N−→m σ′, κ′, v′

C,m
′ and σ, κ, vC,m

N−→m σ′′, κ′′, v′′
C,m

′′ then σ′ = σ′′, κ′ = κ′′,
v′

C = v′′
C and m′ = m′′.

Proof. Straightforward by induction on derivations. J

Second, in µPuppet, evaluation is monotonic in the sense that:
Once a variable binding is defined in σ, its value never changes, and it remains bound
until the end of the scope in which it was bound.
Once a class or resource definition is defined in κ, its definition never changes, except
that a class’s definition may change from ClassDef(copt, ρ, s) to DeclaredClass(β).
Once a resource is declared in vC, its title, properties and values never change.

We can formalise this as follows.

I Definition 2. We define orderings v on variable environments, definition environments
and catalogs as follows:

σ v σ′ when x ∈ dom(σα) implies that either σα(x) = σ′
α(x) or α = β def for some β

and x 6∈ dom(σ′
α).

κ v κ′ when a ∈ dom(κ) implies either κ(a) = κ′(a) or κ(a) = ClassDef(copt, ρ, s) and
κ′(a) = DeclaredClass(β).
vC v v′

C when there exists v′′
C such that vC␣v′′

C = v′
C.

(σ, κ, vC) v (σ′, κ′, v′
C) when σ v σ′, κ v κ′ and vC v v′

C.

I Theorem 3 (Monotonicity). The statement and manifest evaluation relations of µPuppet
are monotonic in σ, κ, vC:

If σ, κ, vC, s
α−→s σ

′, κ′, v′
C, s

′ then (σ, κ, vC) v (σ′, κ′, v′
C).

If σ, κ, vC, s
N−→m σ′, κ′, v′

C,m
′ then (σ, κ, vC) v (σ′, κ′, v′

C).

Proof. Straightforward by induction. The only interesting cases are the rules in which σ, κ
or vC change; in each case the conclusion is immediate. J

These properties are not especially surprising or difficult to prove; nevertheless, they
provide some justification for calling µPuppet a ‘declarative’ language. However, µPuppet
does not satisfy some other desirable properties. For example, as we have seen, the order in
which variable definitions or resource or class declarations appear can affect the final result.
Likewise, there is no notion of ‘well-formedness’ that guarantees that a µPuppet program
terminates successfully: compilation may diverge or encounter a run-time error. Furthermore,
full Puppet does not satisfy monotonicity, because of other non-declarative features that we

ECOOP 2017



12:20 µPuppet: A Declarative Subset of the Puppet Configuration Language

have chosen not to model. Further work is needed to identify and prove desirable properties
of the full Puppet language, and identify subsets of (or modifications to) Puppet that make
such properties valid.

5 Implementation and Evaluation

We implemented a prototype parser and evaluator µPuppet in Haskell (GHC 8.0.1). The
parser accepts source syntax for features of µPuppet as described in the Puppet documentation
and produces abstract syntax trees as described in Section 3.2. The evaluator implements
µPuppet compilation based on the rules shown in the appendix of the extended paper [7].
The implementation constitutes roughly 1300 lines of Haskell code. The evaluator itself is
roughly 400 lines of code, most of which are line-by-line translations of the inference rules.

We also implemented a test framework that creates an Ubuntu 16.04.1 (x86_64) virtual
machine with Puppet installed, and scripts which run each example using both µPuppet and
Puppet and compare the resulting messages and catalog output.

5.1 Test cases and results

During our early investigations with Puppet, we constructed a test set of 52 manifests that
illustrate Puppet’s more unusual features, including resources, classes, inheritance, and
resource type definitions. The tests include successful examples (where Puppet produces
a catalog) and failing examples (where Puppet fails with an error); we found both kinds
of tests valuable for understanding what is possible in cases where the documentation was
unspecific.

We used these test cases to guide the design of µPuppet, and developed 16 additional test
cases along the way to test corner cases or clarify behaviour that our rules did not originally
capture correctly. We developed further tests during debugging and to check the behaviour
of Puppet’s (relatively) standard features, such as conditionals and case statements, arrays,
and hashes. We did not encounter any surprises there so we do not present these results in
detail.

We summarise the test cases and their results in Table 1. The “Feature” column describes
the classification of features present in our test set. The “#Tests” and “#Pass” columns
show the number of tests in each category and the number of them that pass. A test that
is intended to succeed passes if both Puppet and µPuppet succeed and produce the same
catalog (up to reordering of resources); a test that is intended to fail passes if both Puppet
and µPuppet fail. The “#Unsupported” column shows the number of test cases that involve
features that µPuppet does not handle. All of the tests either pass or use features that
are not supported by µPuppet. Features that µPuppet (by design) does not support are
italicised.

All of the examples listed in the above table are included in the supplementary material,
together with the resulting catalogs and error messages provided by Puppet.

5.2 Other Puppet examples

A natural source of test cases is Puppet’s own test suite or, more generally, other Puppet
examples in public repositories. Puppet does have a test suite, but it is mostly written in
Ruby to test internal functionality. We could find only 43 Puppet language tests in the



W. Fu, R. Perera, P. Anderson, and J. Cheney 12:21

Table 1 Summary of test cases. Features in italics are not supported in µPuppet.

Feature #Tests #Pass #Unsupported
Statements 11 11 0
Assignment 2 2 0
Case 1 1 0
If 4 4 0
Unless 4 4 0

Resources 18 11 7
Basics 2 2 0
Variables 3 3 0
User defined resource types 5 5 0
Virtual resources 1 0 1
Default values 1 0 1
Resource extension 4 0 4
Ordering Constraints 2 1 1

Classes 32 22 10
Basics 4 4 0
Inheritance 3 3 0
Scope 2 2 0
Variables & classes 6 6 0
Class Parameters 6 6 0
Overriding 5 0 5
Nesting and redefinition 6 1 5

Nodes 8 8 0
Resource Collectors 9 0 9
Basics 1 0 1
Collectors, references & variables 3 0 3
Application order 5 0 5

Puppet repository on GitHub3. These tests appear to be aimed at testing parsing and lexing
functionality; they are not accompanied by descriptions of the desired catalog result. Some
of the tests also appear to be out of date: five fail in Puppet 4.8. Of the remaining test cases
that Puppet 4.8 can run, 20 run correctly in µPuppet (with minor modifications) while 18
use features not yet implemented in µPuppet.

We also considered harvesting realistic Puppet configurations from other public repositor-
ies; however, this is not straightforward since real configurations typically include confidential
or security-critical parameters so are not publicly available. An alternative would be to
harvest Puppet modules from publicly available sources such as PuppetForge, which often
include test manifests to show typical usage. However, these test cases usually do not come
with sample results; they are mainly intended for illustration.

We examined the top 10 Puppet modules (apache, ant, concat, firewall, java, mysql, ntp,
postgresql, puppetdb, and stdlib) on the official PuppetForge module site and searched for
keywords and other symbols in the source code to estimate the number of uses of Puppet
features such as classes, inheritance, definitions, resource collectors/virtual resources, and

3 https://github.com/puppetlabs/puppet/tree/master/spec/fixtures/unit/parser/lexer

ECOOP 2017

https://github.com/puppetlabs/puppet/tree/master/spec/fixtures/unit/parser/lexer


12:22 µPuppet: A Declarative Subset of the Puppet Configuration Language

ordering constraints. Classes occurred in almost all modules, with over 200 uses overall, and
over 50 uses of inheritance. Resource type definitions were less frequent, with only around 40
uses, while uses of resource collectors and virtual resources were rare: there were only 10 uses
overall, distributed among 5 packages. Ordering constraints were widely used, with over 90
occurrences in 8 packages. Due to the widespread use of ordering constraints, as well as other
issues such as the lack of support for general strings and string interpolation in µPuppet,
we were not able to run µPuppet on these Puppet modules. This investigation suggests
that to develop tools or analyses for real Puppet modules based on µPuppet will require
both conceptual steps (modelling ordering constraints and non-declarative features such as
resource collectors) as well as engineering effort (e.g. to handle Puppet’s full, idiosyncratic
string interpolation syntax).

5.3 Unsupported features

Our formalisation handles some but not all of the distinctive features of Puppet. As mentioned
in the introduction, we chose to focus effort on the well-established features of Puppet that
appear closest to its declarative aspirations. In this section we discuss the features we
chose not to support and how they might be supported in the future, in increasing order of
complexity.

String interpolation. Puppet supports a rich set of string operations including string
interpolation (i.e. variables and other expression forms embedded in strings). For example,
writing "Hello ${planet[’earth’]}!" produces "Hello world!" if variable planet is a
hash whose ’earth’ key is bound to ’World’. String interpolation is not conceptually
difficult but it is widely used and desugaring it correctly to plain string append operations is
an engineering challenge.

Dynamic data types. Puppet 4 also supports type annotations, which are checked dy-
namically and can be used for automatic validation of parameters. For example, writing
Integer $x = 5 in a parameter list says that x is required to be an integer and its de-
fault value is 5. Types can also express constraints on the allowed values: for example,
5 =~ Integer[1,10] is a valid expression that evaluates to true because 5 is an integer
between 1 and 10. Data types are themselves values and there is a type Type of data types.

Undefined values and strict mode. By default, Puppet treats an undefined variable as
having a special “undefined value” undef. Puppet provides a “strict” mode that treats an
attempt to dereference an undefined variable as an error. We have focused on modelling
strict semantics, so our rules get stuck if an attempt is made to dereference an undefined
variable; handling explicit undefined values seems straightforward, by changing the definitions
of lookup and related operations to return undef instead of failing.

Functions, iteration and lambdas. As of version 4, Puppet allows function definitions to
be written in Puppet and also includes support for iteration functions (each, slice, filter,
map, reduce, with) which take lambda blocks as arguments. The latter can only be used
as function arguments, and cannot be assigned to variables, so Puppet does not yet have
true first-class functions. We do see no immediate obstacle to handling these features, using
standard techniques.



W. Fu, R. Perera, P. Anderson, and J. Cheney 12:23

Nested constructs and multiple definitions. We chose to consider only top-level definitions
of classes and defined resources, but Puppet allows nesting of these constructs, which also
makes it possible for classes to be defined more than once. For example:
1 class a {
2 $x1 = "a"
3 class b {
4 $y1 = "b"
5 }
6 }
7
8 class a::b {
9 $y2 = "ab"

10 }
11 include a
12 include a::b

Surprisingly, both line 4 and line 9 are executed (in unspecified order) when a::b is declared,
so both $::a::b::y1 and $::a::b::y2 are in scope at the end. Our impression is that
it would be better to simply reject Puppet manifests that employ either nested classes or
multiple definitions, since nesting of class and resource definitions is explicitly discouraged
by the Puppet documentation.

Dynamically-scoped resource defaults. Puppet also allows setting resource defaults. For
example one can write (using the capitalised resource type File):
1 File { owner => " alice " }

to indicate that the default owner of all files is alice. Defaults can be declared in classes, but
unlike variables, resourced defaults are dynamically scoped; for this reason, the documentation
and some authors both recommend using resource defaults sparingly. Puppet 4 provides an
alternative way to specify defaults as part of the resource declaration.

Resource extension and overriding. In Puppet, attributes can be added to a resource
which has been previously defined by using a reference to the resource, or removed by setting
them to undef.
1 class main {
2 file { "file ": owner => " alice " }
3 File [" file "] { mode => "0755" }
4 }

However, it is an error to attempt to change the value of an already-defined resource, unless
the updating operation is performed in a subclass of the class in which the resource was
originally declared. For example:
1 class main :: parent {
2 file { "file ":
3 owner => "bob",
4 source => "the source "
5 }
6 }
7 class main inherits main :: parent {
8 File [" file "] {
9 owner => " alice ",

10 source => undef
11 }
12 }

This illustrates that code in the derived class is given special permission to override any
resource attributes that were set in the base class. Handling this behaviour seems to require
(at least) tracking the classes in which resources are declared.

ECOOP 2017



12:24 µPuppet: A Declarative Subset of the Puppet Configuration Language

Resource collectors and virtual resources. Resource collectors allow for selecting, and also
updating, groups of resources specified via predicates. For example, the following code
declares a resource and then immediately uses the collector File <|title == file"|>" to
modify its parameters.
1 class main {
2 file { "file ": owner => " alice " }
3 File <| title == "file" |> {
4 owner => "bob",
5 group => "the group ",
6 }
7 }

Updates based on resource collectors are unrestricted, and the scope of the modification is
also unrestricted: so for example the resource collector File<|owner=’root’|> will select all
files owned by root, and potentially update their parameters in arbitrary ways. The Puppet
documentation recommends using resource collectors only in idiomatic ways, e.g. using the
title of a known resource as part of the predicate. Puppet also supports virtual resources,
that is, resources with parameter values that are not added to the catalog until declared or
referenced elsewhere. Virtual resources allow a resource to be declared in one place without
the resource being included in the catalog. The resource can then be realised in one or more
other places to include it in the catalog. Notice that you can realise virtual resources before
declaring them:
1 class main {
2 realize User [" alice "]
3 @user { " alice ": uid => 100 }
4 @user { "bob ": uid => 101 }
5 realize User [" alice "]
6 }

As Shambaugh et al. [17] observe, these features can have global side-effects and make
separate compilation impossible; the Puppet documentation also recommends avoiding them
if possible. We have not attempted to model these features formally, and doing so appears
to be a challenging future direction.

Ordering constraints. By default, Puppet does not guarantee to process the resources in
the catalog in a fixed order. To provide finer-grained (and arguably more declarative) control
over ordering, Puppet provides several features: special metaparameters such as ensure,
require, notify, and subscribe, chaining arrows -> and ~> that declare dependencies
among resources, and the require function that includes a class and creates dependencies
on its resources. From the point of view of our semantics, all of these amount to ways
to define dependency edges among resources, making the catalog into a resource graph.
Puppet represents the chaining arrow dependencies using metaparameters, so we believe this
behaviour can be handled using techniques similar to those for resource parameter overrides
or resource collectors. The rules for translating the different ordering constraints to resource
graph edges can be expressed using Datalog rules [17] and this approach may be adaptable
to our semantics too.

6 Related work

Other declarative configuration frameworks include LCFG [2], a configuration management
system for Unix, and SmartFrog [9], a configuration language developed by HP Labs. Of
these, only SmartFrog has been formally specified; Herry and Anderson [4] propose a
formal semantics and identify some complications, including potential termination problems



W. Fu, R. Perera, P. Anderson, and J. Cheney 12:25

exhibited by the SmartFrog interpreter. Their semantics is presented in a denotational style,
in contrast to the small-step operational semantics presented here for Puppet. Other systems,
such as Ponder [5], adopt an operational approach to policies for distributed systems.

Beyond this, there are relatively few formal studies of configuration languages, and we
are aware of only two papers on Puppet specifically. Vanbrabant et al. [20] propose an access
control technique for an early version of Puppet based on checking whether the changes
to the catalog resulting from a change to the manifest are allowed by a policy. Catalogs
are represented as XML files and allowed changes are described using path expressions.
Shambaugh et al. [17] present a configuration verification tool for Puppet called Rehearsal.
Their tool is concerned primarily with the “realisation” stage of a Puppet configuration, and
focuses on the problem of determinacy analysis: that is, determining whether a proposed
reconfiguration leads to a unique result state. Shambaugh et al. consider a subset of Puppet as
a source language, including resources, defined resources, and dependencies. However, some
important subtleties of the semantics were not investigated. Compilation of definitions and
ordering constraints was described at a high level but not formalised; classes and inheritance
were not mentioned, although their implementation handles simple cases of these constructs.
Our work complements Rehearsal: Rehearsal analyses the determinacy of the realisation
stage, while our work improves understanding of the compilation stage.

The present work continues a line of recent efforts to study the semantics of programming
and scripting languages “in the wild”. There have been efforts to define semantics for
JavaScript [12, 10], R [14], PHP [6], and Python [15]. Work on formal techniques for
Ruby [19] may be especially relevant to Puppet: Puppet is implemented in Ruby, and plugins
can be written in Ruby, so modelling the behaviour of Puppet as a whole may require
modelling both the Puppet configuration language and the Ruby code used to implement
plugins, as well as other tools such as Hiera4 that are an increasingly important component
of the Puppet toolchain. However, Puppet itself differs significantly from Ruby, and Puppet
“classes” in particular bear little relation to classes in Ruby or other object-oriented languages.

7 Conclusions

Rigorous foundations for configuration frameworks are needed to improve the reliability of
configurations for critical systems. Puppet is a popular configuration framework, and is
already being used in safety-critical domains such as air traffic control.5

Even if each individual component of such a system is formally verified, misconfiguration
errors can still lead to failures or vulnerabilities, and the use of these tools at scale means
that the consequences of failure are also potentially large-scale. The main contribution of
this paper is an operational semantics for a subset of Puppet, called µPuppet, that covers the
distinctive features of Puppet that are used in most Puppet configurations, including resource,
node, class, and defined resource constructs. Our rules also model Puppet’s idiosyncratic
treatment of classes, scope, and inheritance, including the dynamic treatment of node scope.

We presented some simple metatheoretic properties that justify our characterisation of
µPuppet as a ‘declarative’ subset of Puppet, and we compared µPuppet with the Puppet
4.8 implementation on a number of examples. We also identified idiosyncrasies concerning
evaluation order and scope where our initial approach differed from Puppet’s actual behaviour.
Because Puppet is a work in progress, we hope that these observations will contribute to the

4 https://docs.puppet.com/hiera/.
5 https://archive.fosdem.org/2011/schedule/event/puppetairtraffic.html.

ECOOP 2017

https://docs.puppet.com/hiera/
https://archive.fosdem.org/2011/schedule /event/puppetairtraffic.html


12:26 µPuppet: A Declarative Subset of the Puppet Configuration Language

evolution and improvement of the Puppet language. In future work, we plan to investigate
more advanced features of Puppet and develop semantics-based analysis and debugging
techniques; two natural directions for future work are investigating Puppet’s recently-added
type system, and developing provenance techniques that can help explain where a catalog
value or resource came from, why it was declared, or why manifest compilation failed [3].

Acknowledgments. We also gratefully acknowledge Arjun Guha for comments on an early
version of this paper and Henrik Lindberg for discussions about Puppet’s semantics and
tests.

References
1 Puppet 4.8 reference manual, 2016. https://docs.puppet.com/puppet/4.8/index.html.
2 Paul Anderson. LCFG: a Practical Tool for System Configuration, volume 17 of Short

Topics in System Administration. Usenix Association, 2008.
3 Paul Anderson and James Cheney. Toward provenance-based security for configuration

languages. In Umut A. Acar and Todd J. Green, editors, 4th Workshop on the Theory and
Practice of Provenance, TaPP’12, Boston, MA, USA, June 14-15, 2012. USENIX Asso-
ciation, 2012. URL: https://www.usenix.org/conference/tapp12/workshop-program/
presentation/anderson.

4 Paul Anderson and Herry Herry. A formal semantics for the smartfrog configuration lan-
guage. J. Network Syst. Manage., 24(2):309–345, 2016. doi:10.1007/s10922-015-9351-y.

5 Nicodemos Constantinou Damianou. A policy framework for management of distributed
systems. PhD thesis, Imperial College London, UK, 2002. URL: http://ethos.bl.uk/
OrderDetails.do?uin=uk.bl.ethos.252293.

6 Daniele Filaretti and Sergio Maffeis. An executable formal semantics of PHP. In Richard
Jones, editor, ECOOP 2014 - Object-Oriented Programming - 28th European Conference,
Uppsala, Sweden, July 28 - August 1, 2014. Proceedings, volume 8586 of Lecture Notes in
Computer Science, pages 567–592. Springer, 2014. doi:10.1007/978-3-662-44202-9_23.

7 Weili Fu, Roly Perera, Paul Anderson, and James Cheney. µPuppet: A declarative subset
of the Puppet configuration language. ArXiv e-prints, August 2016. URL: http://adsabs.
harvard.edu/abs/2016arXiv160804999A, arXiv:1608.04999.

8 Jeff Geerling. Ansible for DevOps: Server and configuration management for humans.
Midwestern Mac, LLC, 2015.

9 Patrick Goldsack, Julio Guijarro, Steve Loughran, Alistair N. Coles, Andrew Farrell, Ant-
onio Lain, Paul Murray, and Peter Toft. The smartfrog configuration management frame-
work. Operating Systems Review, 43(1):16–25, 2009. doi:10.1145/1496909.1496915.

10 Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The essence of JavaScript. In
ECOOP, pages 126–150, Berlin, Heidelberg, 2010. Springer-Verlag. URL: http://dl.acm.
org/citation.cfm?id=1883978.1883988.

11 Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat Patana-anake,
Thanh Do, Jeffry Adityatama, Kurnia J. Eliazar, Agung Laksono, Jeffrey F. Lukman,
Vincentius Martin, and Anang D. Satria. What bugs live in the cloud? A study
of 3000+ issues in cloud systems. In Ed Lazowska, Doug Terry, Remzi H. Arpaci-
Dusseau, and Johannes Gehrke, editors, Proceedings of the ACM Symposium on Cloud
Computing, Seattle, WA, USA, November 03 - 05, 2014, pages 7:1–7:14. ACM, 2014.
doi:10.1145/2670979.2670986.

12 Sergio Maffeis, John C. Mitchell, and Ankur Taly. An operational semantics for javas-
cript. In G. Ramalingam, editor, Programming Languages and Systems, 6th Asian Sym-
posium, APLAS 2008, Bangalore, India, December 9-11, 2008. Proceedings, volume 5356

https://docs.puppet.com/puppet/4.8/index.html
https://www.usenix.org/conference/tapp12/workshop-program/presentation/anderson
https://www.usenix.org/conference/tapp12/workshop-program/presentation/anderson
http://dx.doi.org/10.1007/s10922-015-9351-y
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252293
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252293
http://dx.doi.org/10.1007/978-3-662-44202-9_23
http://adsabs.harvard.edu/abs/2016arXiv160804999A
http://adsabs.harvard.edu/abs/2016arXiv160804999A
http://arxiv.org/abs/1608.04999
http://dx.doi.org/10.1145/1496909.1496915
http://dl.acm.org/citation.cfm?id=1883978.1883988
http://dl.acm.org/citation.cfm?id=1883978.1883988
http://dx.doi.org/10.1145/2670979.2670986


W. Fu, R. Perera, P. Anderson, and J. Cheney 12:27

of Lecture Notes in Computer Science, pages 307–325. Springer, 2008. doi:10.1007/
978-3-540-89330-1_22.

13 Matthias Marschall. Chef Infrastructure Automation Cookbook. Packt Publishing, 2013.
14 Floréal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek. Evaluating the design of

the R language - objects and functions for data analysis. In James Noble, editor, ECOOP
2012 - Object-Oriented Programming - 26th European Conference, Beijing, China, June 11-
16, 2012. Proceedings, volume 7313 of Lecture Notes in Computer Science, pages 104–131.
Springer, 2012. doi:10.1007/978-3-642-31057-7_6.

15 Joe Gibbs Politz, Alejandro Martinez, Matthew Milano, Sumner Warren, Daniel Patterson,
Junsong Li, Anand Chitipothu, and Shriram Krishnamurthi. Python: the full monty. In
Antony L. Hosking, Patrick Th. Eugster, and Cristina V. Lopes, editors, Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA,
October 26-31, 2013, pages 217–232. ACM, 2013. doi:10.1145/2509136.2509536.

16 Jo Rhett. Learning Puppet 4: A guide to configuration management and automation.
O’Reilly Media, 2016.

17 Rian Shambaugh, Aaron Weiss, and Arjun Guha. Rehearsal: a configuration verification
tool for puppet. In Chandra Krintz and Emery Berger, editors, Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2016, Santa Barbara, CA, USA, June 13-17, 2016, pages 416–430. ACM, 2016. doi:10.
1145/2908080.2908083.

18 James Turnbull. Pulling Strings with Puppet: Configuration Management Made Easy.
Apress, September 2008.

19 Katsuhiro Ueno, Yutaka Fukasawa, Akimasa Morihata, and Atsushi Ohori. The es-
sence of ruby. In Jacques Garrigue, editor, Programming Languages and Systems -
12th Asian Symposium, APLAS 2014, Singapore, November 17-19, 2014, Proceedings,
volume 8858 of Lecture Notes in Computer Science, pages 78–98. Springer, 2014. doi:
10.1007/978-3-319-12736-1_5.

20 Bart Vanbrabant, Joris Peeraer, and Wouter Joosen. Fine-grained access control for
the Puppet configuration language. In LISA, December 2011. URL: https://lirias.
kuleuven.be/handle/123456789/316070.

21 Tianyin Xu and Yuanyuan Zhou. Systems approaches to tackling configuration errors: A
survey. ACM Comput. Surv., 47(4):70:1–70:41, 2015. doi:10.1145/2791577.

22 Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasundaram, and
Shankar Pasupathy. An empirical study on configuration errors in commercial and open
source systems. In Ted Wobber and Peter Druschel, editors, Proceedings of the 23rd ACM
Symposium on Operating Systems Principles 2011, SOSP 2011, Cascais, Portugal, October
23-26, 2011, pages 159–172. ACM, 2011. doi:10.1145/2043556.2043572.

23 Diego Zamboni. Learning CFEngine 3: Automated system administration for sites of any
size. O’Reilly Media, 2012.

ECOOP 2017

http://dx.doi.org/10.1007/978-3-540-89330-1_22
http://dx.doi.org/10.1007/978-3-540-89330-1_22
http://dx.doi.org/10.1007/978-3-642-31057-7_6
http://dx.doi.org/10.1145/2509136.2509536
http://dx.doi.org/10.1145/2908080.2908083
http://dx.doi.org/10.1145/2908080.2908083
http://dx.doi.org/10.1007/978-3-319-12736-1_5
http://dx.doi.org/10.1007/978-3-319-12736-1_5
https://lirias.kuleuven.be/handle/123456789/316070
https://lirias.kuleuven.be/handle/123456789/316070
http://dx.doi.org/10.1145/2791577
http://dx.doi.org/10.1145/2043556.2043572




A Generic Approach to Flow-Sensitive
Polymorphic Effects
Colin S. Gordon

Drexel University
csgordon@drexel.edu

Abstract
Effect systems are lightweight extensions to type systems that can verify a wide range of important
properties with modest developer burden. But our general understanding of effect systems is
limited primarily to systems where the order of effects is irrelevant. Understanding such systems
in terms of a lattice of effects grounds understanding of the essential issues, and provides guidance
when designing new effect systems. By contrast, sequential effect systems — where the order of
effects is important — lack a clear algebraic characterization.

We derive an algebraic characterization from the shape of prior concrete sequential effect
systems. We present an abstract polymorphic effect system with singleton effects parameterized
by an effect quantale — an algebraic structure with well-defined properties that can model a range
of existing order-sensitive effect systems. We define effect quantales, derive useful properties, and
show how they cleanly model a variety of known sequential effect systems. We show that effect
quantales provide a free, general notion of iterating a sequential effect, and that for systems we
consider the derived iteration agrees with the manually designed iteration operators in prior work.
Identifying and applying the right algebraic structure led us to subtle insights into the design
of order-sensitive effect systems, which provides guidance on non-obvious points of designing
order-sensitive effect systems. Effect quantales have clear relationships to the recent category
theoretic work on order-sensitive effect systems, but are explained without recourse to category
theory. In addition, our derived iteration construct should generalize to these semantic structures,
addressing limitations of that work.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages

Keywords and phrases Type systems, effect systems, quantales, polymorphism

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.13

1 Introduction

Effect systems are a well-known lightweight extension to standard type systems, which are
capable of verifying an array of useful program properties with modest developer effort.
They have proven useful for enforcing error handling [59, 4, 29], ensuring a variety of safety
properties for concurrent programs [18, 19, 17, 10, 9, 20], purity [33, 16], safe arena-based
memory management [41, 55, 57], and more. Effect systems extend type systems to track
not only the shape of and constraints on data, but also a summary of the side effects caused
by an expression’s evaluation. Java’s checked exceptions are the best-known example of an
effect system — the effect of an expression is the set of (checked) exceptions it may throw —
and other effects have a similar flavor, like the set of heap regions accessed by parallel code,
or the set of locks that must be held to run an expression without data races.

However, our understanding of effect systems is concentrated in the space of systems
like Java’s checked exceptions, where the order of effects is irrelevant: the system does not
care that an IllegalArgumentException would be thrown before any possible IOException.

© Colin S. Gordon;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 13; pp. 13:1–13:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


13:2 A Generic Approach to Flow-Sensitive Polymorphic Effects

Effects in such systems are characterized by a join semilattice, which captures exactly systems
where ordering is irrelevant (since the join operation is commutative and associative). This is
an impressively large and useful class of systems, but the assumption that order is irrelevant
leaves some of the more sophisticated effect systems for checking more powerful properties out
of reach. We refer to this class of effect systems — the traditional default — as commutative
effect systems, to contrast against the class we study in this paper. The alternative class of
effect systems, where the order in which effects occur matters — sequential effect systems,
following Tate’s terminology [56]1 — reason directly about the proper ordering of program
events. Examples include non-block-structured reasoning about synchronization for data
races and deadlock freedom [9, 28, 53], atomicity [21, 20], and memory management [11].

Effect system design for the traditional commutative effect systems has been greatly aided
in both theory and practice by the recognition that effects in such systems form a bounded
join semilattice — a lattice with top, bottom, and all binary joins (least-upper-bounds).
On the theory side, this permits general formulations of effect systems to study common
properties [42, 50, 3]. On the practical side, this guides the design and implementation of
working effect systems. If an effect system is not a join semilattice, why not? (Usually
this indicates a mistake.) Effect system frameworks can be implemented generically with
respect to an effect lattice [50, 58], and in the common case where effects are viewed as sets
of required capabilities, simply specifying the capabilities and exploiting the default powerset
lattice makes core design choices straightforward. In the research literature, the ubiquity of
lattice-based (commutative) effect systems simplifies explanations and presentations.

Sequential effect systems so far have no such established common basis in terms of an
algebraic structure to guide design, implementation, and comparison, making all of these
tasks more difficult. Recent work on semantic approaches to modeling sequential effect
systems [56, 36, 45] has produced very general characterizations of the mathematics behind
key necessary constructs (namely, sequencing effects), but with one recent exception [45]
does not produce a description that is sufficient to model a complete sequential effect system
for a real language. Partly this stems from the fact that the accounts of such work proceed
primarily by generalizing categorical structures used to model sequential computation, rather
than implementing complete source-level effect systems. None of this work has directly
considered effect polymorphism (essential for any real use), singleton effects (required for
prominent effect systems both commutative and sequential), or iteration constructs. So there
is currently a gap between this powerful semantic work, and understanding real sequential
effect systems in a systematic way.

We generalize directly from real source-level type-and-effect systems to produce an
algebraic characterization for sequential effect systems, suitable for modeling some well-
known sequential type-and-effect disciplines, and (we hope) useful for guiding the design of
future sequential effect systems. We give important derived constructions (products, and
inducing an iteration operation on effects), and put them to use with an explicit translation
between Flanagan and Qadeer’s early atomicity type system [21] and a (sequential) equivalent
built as an instantiation of our generic sequential type-and-effect system.

Overall, our contributions include:
A new algebraic characterization of sequential effect systems — effect quantales — that
is consistent with existing semantic notions and easily subsumes commutative effects

1 These effect systems have been alternately referred to as flow-sensitive [42], as they are often formalized
using flow-sensitive type judgments (with pre- and post-effect) rather than effects in the traditional sense.
However, this term suggests a greater degree of path sensitivity and awareness of branch conditions
than most such systems have. We use Tate’s terminology as it avoids technical quibbles.



C. S. Gordon 13:3

A syntactic motivation for effect quantales by generalizing from concrete, full-featured
sequential effect systems. As a result, we are the first to investigate interplay between
singleton effects and sequential effect systems in the abstract (not yet addressed by
semantic work). This reveals subtlety in the metatheory of sequential effects that depend
on program values.
Demonstration that effect quantales are not only general, but also sufficient to modularly
define the structure of existing non-trivial effect systems.
A general characterization of effect iteration for any sequential effect system given by
an effect quantale, including demonstration that the resulting iteration for prior systems
(as effect quantales) exactly matches the hand-constructed iteration of the original work.
The form is general enough that it should adapt to semantic characterizations as well.
The first generic sequential effect system with effect polymorphism.
Precise characterization of the relationship between effect quantales and related notions,
ultimately connecting the syntax of established effect systems to semantic work, closing a
gap in our understanding.

2 Background on Commutative and Sequential Effect Systems

Here we derive the basic form of a new algebraic characterization of sequential effects based
on generalizing from the use of effects in current sequential effect systems. The details of this
form are given in Section 3, with a corresponding generic type-and-effect system in Section 6.
We refer to the two together as a framework for sequential effect systems.

By now, the standard mechanisms of commutative effect systems — what is typically
meant by the phrase “type-and-effect system” — are well understood. The type judgment
Γ ` e : τ of a language is augmented with a component χ describing the overall effect of
the term at hand: Γ ` e : τ | χ. Type rules for composite expressions, such as forming a
pair, join the effects of the child expressions by taking the least upper bound of those effects
(with respect to the effect lattice). And the final essential adjustment is to handle the latent
effect of a function — the effect of the function body, which is deferred until the function is
invoked. Function types are extended to include this latent effect, and this latent effect is
included in the effect of function application. Allocating a closure itself has no meaningful
effect, and is typically given the bottom effect in the semilattice:

T-Fun
Γ, x : τ ` e : τ ′ | χ

Γ ` (λ x. e) : τ
χ→ τ ′ | ⊥

T-Call
Γ ` e1 : τ

χ→ τ ′ | χ1 Γ ` e2 : τ | χ2

Γ ` e1 e2 : τ ′ | χ1 t χ2 t χ

Consider the interpretation for concrete effect systems. Java’s checked exceptions are an
effect system [29, 59]: the effects are sets of (checked) exceptions ordered by inclusion, with
set union as the semilattice join. The throws clause of a method states its latent effect —
the effect of actually executing the method (roughly χ in T-Fun above). The exceptions
thrown by a composite expression such as invoking a method is the union of the exceptions
thrown by subexpressions (e.g., the receiver object expression and method arguments) and
the latent effect of the code being executed (as in T-Call above). Most effect systems for
treating data race freedom (for block-structured synchronization like Java’s synchronized
blocks, such as RCC/Java [19, 1]) use sets of locks as effects, where an expression’s effect
is the set of locks guarding data that may be accessed by that expression. The latent
effect there is the set of locks a method requires to be held by its call-site. Other effect
systems follow similar structure: a binary yes/no effects of whether or not code performs
a sensitive class of action like allocating memory in an interrupt handler [33, 34, 16] or

ECOOP 2017



13:4 A Generic Approach to Flow-Sensitive Polymorphic Effects

accessing user interface elements [27]; tracking the sets of memory regions read, written, or
allocated into for safe memory deallocation [55, 57] or parallelizing code safely [41, 25] or
even deterministically [8, 37].

But these and many other examples do not care about ordering. Java does not care which
exception might be thrown first. Race freedom effect systems for block-structured locking do
not care about the order of object access within a synchronized block. Effect systems for
region-based memory management do not care about the order in which regions are accessed,
or the order of operations within a region. Because the order of combining effects in these
systems is irrelevant, we refer to this style of effect system as commutative effect systems,
though due to their prevalence and the fact that they arose first historically, this is the class
of systems typically meant by general references to “effect systems.”

Sequential effect systems tend to have slightly different proof theory. Many of the same
issues arise (latent effects, etc.) but the desire to enforce a sensible ordering among expressions
leads to slightly richer type judgments. Often they take the form Γ; ∆ ` e : τ | χ a ∆′. Here
the ∆ and ∆′ are some kind of pre- and post-state information — for example, the sets of
locks held before and after executing e [53], or abstractions of heap shape before and after
e’s execution [28]. χ as before is an element of some lattice, such as Flanagan and Qadeer’s
atomicity lattice (Figure 1). Some sequential effect systems have both of these features,
and some only one or the other. (These components never affect the type of variables, and
strictly reflect some property of the computation performed by e, making them part of the
effect.) The judgments for something like a variant of Flanagan and Qadeer’s atomicity type
system that tracks lock sets flow-sensitively rather than using synchronized blocks or for an
effect system that tracks partial heap shapes before and after updates [28] might look like
the following, using ∆ or Υ to track locks held, and tracking atomicities with χ:

Γ, x : τ ; Υ ` e : τ ′ | χ a Υ′

Γ; ∆ ` (λ x. e) : τ
Υ,χ,Υ′−−−−→τ ′ | ⊥ a ∆

Γ; ∆ ` e1 : τ
∆′′,χ,∆′′′−−−−−−→τ ′ | χ1 a ∆′

Γ; ∆′ ` e2 : τ | χ2 a ∆′′

Γ∆ ` e1 e2 : τ ′ | χ1; χ2; χ a ∆′′′

The sensitivity to evaluation order is reflected in the threading of ∆s through the type rule
for application, as well as through the switch to the sequencing composition ; of the basic
effects. Confusingly, while χ continues to be referred to as the effect of this judgment, the
real effect is actually a combination of χ, ∆, and ∆′ in the judgment form. This distribution
of the “stateful” aspects of the effect through a separate part of the judgment obscures that
this judgment really tracks a product of two effects — one concerned with the self-contained
χ, and the other a form of effect indexed by pre- and post-computation information.

Rewriting these traditional sequential effect judgments in a form closer to the commutative
form reveals some subtleties of sequential effect systems:

Γ, x : τ ` e : τ ′ | (Υ ; Υ′)⊗ χ

Γ ` (λ x. e) : τ
(Υ;Υ′)⊗χ−−−−−−−→τ ′ | (∆ ; ∆)⊗⊥

Γ ` e1 : τ
(∆′′;∆′′′)⊗χ−−−−−−−−−→τ ′ | (∆ ; ∆′)⊗ χ1 Γ ` e2 : τ | (∆′ ; ∆′′)⊗ χ2

Γ ` e1 e2 : τ ′ | ((∆ ; ∆′); (∆′ ; ∆′′); (∆′′ ; ∆′′′))⊗ (χ1; χ2; χ)

One change that stands out is that the effect of allocating a closure is not simply the bottom
effect (or product of bottom effects) in some lattice. No sensible lattice of pre/post-state
pairs has equal pairs as its bottom. However, it makes sense that some such equal pair
acts as the left and right identity for sequential composition of these “stateful” effects. In



C. S. Gordon 13:5

commutative effect systems, sequential composition is actually least-upper-bound, for which
the identity element happens to be ⊥. We account for this in our framework.

We also assumed, in rewriting these rules, that it was sensible to run two effect systems
“in parallel” in the same type judgment, essentially by building a product of two effect
systems. Some sequential effect systems are in fact built this way, as two “parallel” systems
(e.g., one for tracking locks, one for tracking atomicities, one for tracking heap shapes, etc.)
that together ensure the desired properties. The general framework we propose supports a
straightforward product construction.

Another implicit assumption in the refactoring above is that the effect tracking that is
typically done via flow-sensitive type judgments is equivalent to some algebraic treatment of
effects akin to how χs are managed above. While it is clear we would want a clean algebraic
characterization of such effects, the existence of such an algebra that is adequate for modeling
known sequential effect systems for non-trivial languages is not obvious. Our proposed
algebraic structures (Section 3) are adequate to model such effects (Section 4).

Examining the sequential variant of other rules reveals more subtleties of sequential effect
system design. For example, effect joins are still required in sequential systems:

Γ ` e : B | χ Γ ` e1 : τ | χ1 Γ ` e2 : τ | χ2

Γ ` if e e1 e2 : τ | χ t χ1 t χ2

⇒
Γ ` e : B | χ Γ ` e1 : τ | χ1 Γ ` e2 : τ | χ2

Γ ` if e e1 e2 : τ | χ; (χ1 t χ2)

Nesting conditionals can quickly produce an effect that becomes a mass of alternating effect
sequencing and join operations. For a monomorphic effect system, concrete effects can always
be plugged in and comparisons made. However, for a polymorphic effect system, it is highly
desirable to have a sensible way to simplify such effect expressions — particularly for highly
polymorphic code — to avoid embedding the full structure of code in the effect. Our proposal
codifies natural rules for such simplifications.

3 Effect Quantales

Quantales [43, 44] are an algebraic structure originally proposed to generalize some concepts in
topology to the non-commutative case, which later found use in models for non-commutative
linear logic [61] and reasoning about observations of computational processes [2], among
other uses. Abramsky and Vickers give a thorough historical account [2]. They are almost
what is required for modeling sequential effect systems, but carry a bit too much structure,
so we define here a slightly less constrained variant called effect quantales. We establish one
very useful property of effect quantales, and show how they subsume commutative effect
systems. We defer more involved examples to Section 4.

I Definition 1 (Effect Quantale). An effect quantale Q = (E ,t,�,>, I ) is a join semilattice
(E ,t) with top element > with monoid (E ,�, I ), such that � distributes over joins in both
directions — a � (b t c) = (a � b)t (a � c) and (a t b) � c = (a � c)t (b � c) — and > is
a nilpotent element for the monoid (a � > = > = > � a).

As is standard in lattice theory, we induce the partial order x v y def
= x t y = y from the

join operation, which ensures the properties required of a partial order.
We will use the semilattice to model the standard effect hierarchy, using the partial order

for subeffecting. The (non-commutative) monoid operation � will act as the sequential
composition. The properties of the semilattice and distributivity of the product over joins
will permit us to move common prefixes or suffixes of effect sequences into or out of least-
upper-bounds of effects, permitting more concise specifications. Intuitively, the unit I is an

ECOOP 2017



13:6 A Generic Approach to Flow-Sensitive Polymorphic Effects

“empty” effect, which need not be a bottom element. > is an error (invalid effect, allowing us
to reason about “undefined” effect sequences).

Effect quantales inherit a rich equational theory of semilattices, monoids, and extensive
study of ordered algebraic systems [6, 23, 7, 22] from their several substructures, providing
many ready-to-use properties for simplifying complex effects, and giving rise to other proper-
ties more interesting to our needs. One such example is an important and expected form
of monotonicity property: that sequential composition respects the partial order on effects.
In lattice-ordered monoids, this property is called isotonicity, and its proof for complete
lattices [6, ch. 14.4] carries over directly to effect quantales because it requires only binary
joins:

I Proposition 2 (Isotonicity). In an effect quantale Q, a v b and c v d implies that
a � c v b � d.

I Proof. Because b � d = b � (c t d) = (b � c) t (b � d), we know b � c v b � d by
the definition of v. Repeating the reasoning: b � c = (a t b) � c = (a � c) t (b � c), so
a � c v b � c. The partial order is transitive, thus a � c v b � d �

An important litmus test for a general model of sequential effects is that it should subsume
commutative effects (modeled as a join semilattice). This not only implies consistency of
effect quantales with traditional effect systems, but ensures implementation frameworks for
sequential effects (based on effect quantales) would be adequate for implementing commutative
systems as well.

I Lemma 3 (Subsumption of Commutative Effects). Every commutative effect system modeled
as a bounded join semilattice yields an effect quantale, such that ordering of individual effects
is irrelevant, by using join for the monoid operation.

I Proof. Assume a bounded join semilattice L = (E ,∨,>,⊥) of effects. Define a new effect
quantale Q as (E ,∨,∨,>,⊥) (i.e., reuse the join for the monoid). Q satisfies the distributivity
requirements of the effect quantale definition, and naturally has ⊥ as the monoid unit. �

4 Modeling Prior Sequential Effect Systems with Effect Quantales

Many of the axioms of effect quantales are not particularly surprising given prior work on
sequential effect systems; one of this paper’s contributions is recognizing that these axioms
are sufficiently general to capture many prior instances of sequential effect systems. We show
two prominent examples here in detail, and cite further examples.

4.1 Locking with Effect Quantales
A common class of effect systems is those reasoning about synchronization — which locks
are held at various points in the program. In most systems this is done using scoped
synchronization constructs, for which a bounded join semilattice is adequate. Here, we give
an effect quantale for flow-sensitive tracking of lock sets including recursive acquisition. The
main idea is to use a multiset of locks (modeled byM(S) = S → N, where the multiplicity of
a lock is the number of claims a thread has to holding the lock — the number of times it has
acquired said lock) for the locks held before and after each expression. We use ∅ to denote
the empty multiset (where all multiplicities are 0). We use join on multisets to produce least
upper bounds on multiplicities, union to perform addition of multiplicities, and set difference
for zero-limited subtraction.



C. S. Gordon 13:7

I Definition 4 (Synchronization Effect Quantale L). An effect quantale L for lock-based
synchronization with explicit mutex acquire and release primitives is given by:

E =M(L)×M(L) ] Err for a set L of possible locks.
(a, a′) t (b, b′) = (a ∨ a′, b ∨ b′) when both effects acquire and release the same set of
locks the same number of times: b/b′ = a/a′ and b′/b = a′/a. Otherwise, the join is Err.
(a, a′) � (b, b′) is (c, c′) for the least c and c′ where a ⊆ c, b ⊆ ((c/(a/a′)) ∪ (a′/a))

(b’s holdings are contained in c less lock releases from the first action, plus the lock
acquisitions from the first action), and c′ = (((c/(a/a′)) ∪ (a′/a))/(b/b′)) ∪ (b′/b) when
such a pair exists, and Err otherwise.
> = Err
I = (∅,∅)

Intuitively, the pair represents the sets of lock claims before and after some action, which
models lock acquisition and release. t intuitively requires each “alternative” to acquire/release
the same locks, while the set of locks held for the duration may vary (and the result assumes
enough locks are held on entry — enough times each — to validate either element). This can
be intuitively justified by noticing that most effect systems for synchronization require, for
example, that each branch of a conditional may access different memory locations, but reject
cases where one branch changes the set of locks held while the other does not (otherwise
the lock set tracked “after” the conditional will be inaccurate for one branch, regardless of
other choices). Sequencing two lock actions, roughly, pushes the locks required by the second
action to the precondition of the compound action (unless such locks were released by the
first action, i.e. in a/a′), and pushes locks held after the first action through the second —
roughly a form of bidirectional framing.

With this scheme, lock acquisition for some lock ` would have (at least) effect (∅, {`}),
indicating that it requires no locks to execute safely, and terminates holding lock `. A release
of ` would have swapped components — ({`},∅) — indicating it requires a claim on ` to
execute safely, and gives up that claim. Sequencing the acquisition and release would have
effect (∅, {`}) � ({`},∅) = (∅,∅). Sequencing acquisitions for two locks `1 and `2 would
have effect (∅, {`1}) � (∅, {`2}) = (∅, {`1, `2}), propagating the extra claim on `1 that is
not used by the acquisition of `2. This is true even when `1 = `2 = ` — the overall effect
would represent the recursive acquisition as two outstanding claims to hold `: (∅, {`, `}).

A slightly more subtle example is the acquisition of a lock `2 just prior to releasing
a lock `1, as would occur in the inner loop of hand-over-hand locking on a linked list:
(acquire `2; release `1) has effect (∅, {`2}) � ({`1},∅) = ({`1}, {`2}). The definition of �
propagates the precondition for the release through the actions of the acquire; it essentially
computes the minimal lock multiset required to execute both actions safely, and computes
the final result of both actions’ behavior on that multiset.

While use of sets rather than multisets would be simpler and would form an effect
quantale for a given set of locks (with some use of disjoint union), such a formulation lacks an
important property needed for substitution to behave correctly. We introduce that property
in Section 6.1, and discuss subtle consequences of this in Section 9.3.

4.2 An Effect Quantale for Atomicity
One of the best-known sequential effect systems is Flanagan and Qadeer’s extension of
RCC/Java to reason about atomicity [20], based on Lipton’s theory of reduction [40] (called
movers in the paper). The details of the movers are beyond what space permits us to explain
in detail, but the essential ideas were developed for a simpler language and effect system in
an earlier paper [21], for which we give an effect quantale.

ECOOP 2017



13:8 A Generic Approach to Flow-Sensitive Polymorphic Effects

>

A

RL

B

; B L R A >
B B L R A >
R R A R A >
L L L > > >
A A A > > >
> > > > > >

Figure 1 Atomicity effects [21]: lattice and sequential composition.

The core idea is that in a well-synchronized (i.e., data race free) execution, each action
of one thread can be categorized by how it commutes with actions of other threads: a left
(L) mover commutes left (earlier) with other threads’ actions (e.g., a lock release), a right
R mover commutes later (e.g., lock acquire), a both B mover commutes either direction
(e.g., a well-synchronized field access). A sequence of right movers, then both-movers, then
left-movers reduces to an atomic action (A). Repeating the process wrapping movers around
an atomic action can again reduce to an atomic action, verifying atomicity for even non-trivial
code blocks including multiple lock acquisitions. As a regular expression, any sequence of
movers matching the regular expression (R∗B∗)∗A(B∗L∗)∗ reduces to an atomic action.
Effect trace fragments of this form demarcate expressions that evaluate as if they were
physically atomic.

I Definition 5 (Atomicity Effect Quantale A). The effect quantale for Flanagan and Qadeer’s
simpler system [21] can be given as:

E = {B,L,R,A,>FQ,Err}. Note that >FQ is the top effect in Flanagan and Qadeer’s
work — their use does not itself require an error element.
a t b is defined according to the lattice given by Flanagan and Qadeer [20] (Figure 1)
augmented with the new Err element as top (not shown in Figure 1).
a � b is defined according to Flanagan and Qadeer’s ; operator (Figure 1) plus our added
Err element as an annihilator (Err � a = Err = a � Err).
> = Err
I = B

Flanagan and Qadeer also define an iterator operator on atomicities, used for ascribing
effects to loops whose bodies have a particular atomicity. We defer iteration until Section 5,
but will revisit this operator there.

Of course the atomicity effect quantale alone is insufficient to ensure atomicity, because
atomicity depends on correct synchronization. The choice of effect for each program expression
is not insignificant, but full atomicity checking requires the product of the synchronization
and atomicity effect quantales. Thus, in Section 8 we study an sequential extension to
Flanagan and Qadeer’s work using L ⊗A.

I Definition 6 (Products of Effect Quantales (⊗)). The product Q ⊗R of effect quantales Q
and R is given by the product of the respective carrier lattices, with all pairs containing >
from either constituent lattice merged into one single Err element for the new lattice. Other
operations are lifted pointwise to each half of the product, modified so if the lifting of an
original operation from Q or R produces > in the respective lattice, the operation in the
product produces Err (in the product lattice). Identity is (IQ, IR), and top is Err.

4.3 Other Examples
Our running example of tracking recursive lock ownership and atomicity is one of the better-
known sequential effect systems, but many more exist. We are unaware of a source-level
sequential effect system that does not form an effect quantale.



C. S. Gordon 13:9

A particularly important class of these examples are those that reason specifically about
execution traces. All sequential effect systems reason to some degree about execution history,
but some examples from the literature have very expressive notions of the past. Skalka’s
trace effects [52] are (abstractions of) sets of event traces, with trace concatenation (lifted
to sets) as the monoid, and set union as join — these operations distribute as required by
effect quantales, so adding a synthetic (unused) error element to Skalka’s work produces one.
Setting aside parallel composition (which we do not study), Nielson and Nielson’s earlier
communication effect system for Concurrent ML [46] is similar to Skalka’s. Their behaviors
act as trace set abstractions, with sequencing and non-deterministic choice (union) acting
as an effect quantale’s monoid and join operations. (They also include a separate parallel
composition of behaviors we do not model, discussed in Section 7.3.) Their subtyping rules
for behaviors imply the required distributivity laws (though as with Skalka’s system, we
must add a synthetic error element). Similarly, Koskinen and Terauchi [38] use pairs of trace
sets characterizing the behavior of finite and infinite executions separately. Their effects form
an effect quantale, though they additionally exploit set intersection for intersection effects.

5 Iteration

Many sequential effect systems include a notion of iteration, used for constructs like explicit
loops. The operator for this, usually written as a postfix ∗, gives the overall effect of any
(finite) number of repetitions of an effect.

The iteration construct must follow from some fixed point construction on the semilattice.
However, the most obvious approach — using a least fixed point theorem on effect quantales
with a bottom element — lacks an important property. Instead, we detail an approach based
on closure operators on partially ordered sets in Section 5.2, which applies to any effect
quantale satisfying some mild restrictions and coincides with manual iteration definitions
for prior work. First, in Section 5.1, we motivate a number of required properties for any
derived notion of iterating an effect.

5.1 Properties Required of an Iteration Operator
Iteration operators must satisfy a few simple but important properties to be useful. We first
list, then explain these properties.
P1 : ∀ e. e v e∗ P2 : ∀ e. e � e∗ v e∗ and e∗ � e v e∗ P3 : ∀ e. (e∗)∗ = e∗
P4 : ∀ e, f . (e t f )∗ = e∗ t f ∗ P5 : ∀ e. I v e∗
Property P1 ensures one iteration of a loop body has no greater effect than multiple

iterations. Similarly, the exact number of iterations should be immaterial (P2). Nesting
should not matter, since semantically the nested loop structure is dynamically unrolled
to some number of sequential iterations (P3). And P4 ensures certain equivalent ways of
writing programs (e.g., a loop in each branch of a conditional vs. a conditional inside a
loop) are effect-equivalent. P1 and P2 are essential validity requirements for iteration. P3
and P4 are not strictly necessary, but permit many additional effect simplifications and
figure prominently in prior work that found them important for building manageable effect
systems [21, 20]. P5 is slightly less obvious, but also critical: the least upper bound of the
empty effect and some iterated effect should be the iterated effect. This allows some helpful
simplifications on effects (e.g., for a conditional whose only non-trivial branch contains a
loop), but will play an essential role in the soundness proof later (the effect of not executing
a loop is I ). This is also the property that fails for any straightforward use of least fixed
point constructions — all such constructions work on ascending chains rooted at ⊥ (therefore

ECOOP 2017



13:10 A Generic Approach to Flow-Sensitive Polymorphic Effects

requiring a bottom element), but unless I is constrained to be ⊥, there is no simple way
to ensure with the fixed point equation alone that the resulting fixed point will be ordered
above I . Such a constraint is not unheard of (A satisfies it), but not universal. L has no
natural ⊥, and adding a synthetic ⊥ with identity behavior would mean introducing an effect
usable for acquiring locks or not acquiring locks, which is undesirable.

5.2 Iteration via Closure Operators
For a general notion of iteration, we will use a closure operator on a poset:

I Definition 7 (Closure Operator [6, 7, 51]). A closure operator on a poset (P,v) is a function
f : P → P that is

Extensive: ∀ e, e v f (e)

Idempotent: ∀ e, f (f (e)) = f (e)

Monotone: ∀ e, e′. e v e′ ⇒ f (e) v f (e′)
Closure operators have several particularly useful properties [6, 7, 51]:

Idempotence implies that the range of a closure operator is also the set of fixed points of
the operator.
Closure operators on a poset are equivalent to their ranges. In particular, from the range
of a poset, we can recover the original closure operator by mapping each element of the
poset to the least element of the range that is above that input.
A given subset of a poset is the range of a closure operator — called a closure subset —
if and only if for every element x in the poset, every intersection with the principle up-set
of x (x ↑= {y | x v y}) has a bottom element [7, Theorem 1.8]. (The left direction of the
iff is in fact proven by constructing the closure operator as described above.)

This means that if we can identify the desired range of our iteration operation (the results
of the iteration operator) and show that it meets the criteria to be a closure subset, the
construction above will yield an appropriate closure operator, which we can take directly as
our iteration operation. For this to work, we must identify the desired range, and show it
meets the requirements to induce a closure operator.

The natural choice is the set of elements for which sequential composition is idempotent,
which we refer to as the freely iterable elements:

I Definition 8 (Freely Iterable Elements). The set of freely iterable elements Iter(Q) of an
effect quantale Q is defined as Iter(Q) = {a ∈ Q | a � a = a}.

To induce a closure operator for this set, we must show it exists, and that it is in fact a
closure subset. The first is straightforward since Err and I are freely iterable:

I Proposition 9 (Non-emptiness of Freely Iterable Elements). For any effect quantale Q,
Iter(Q) is non-empty.

In general, the freely iterable elements do not themselves form a closure subset. They could
fail to form a closure subset in the case where some element x is less than two incomparable
freely iterable elements y and z , but x is not itself freely iterable and there is no other freely
iterable element between — there is no freely iterable q such that x v q and q v y and q v z .
Phrased differently the intersection of some element’s principle up-set and the freely iterable
elements lacks a least element.

To derive our final solution, two further restrictions are required. First, the elements
of our chosen closure subset must all reside at or above the identity in the semilattice, to
ensure iteration permits loops to not execute. Second, Iter(Q) must be closed under joins:



C. S. Gordon 13:11

∀ x, y ∈ Iter(Q). (x t y) ∈ Iter(Q). This ensures iteration distributes over joins. We call such
effect quantales — which have well-behaved closure operators — iterable effect quantales.

I Definition 10 (Iterable Effect Quantale). An effect quantale Q is iterable if and only if for
all x the set x ↑ ∩(I ↑ ∩Iter(Q)) contains a least element and Iter(Q) is closed under joins.

Another way to read the first part of the definition is that the closure operator will only exist
for effect quantales for where, for every element x , if x is v two incomparable freely iterable
elements y and z (each greater than I ), then there is some freely iterable element q A I such
that x v q v y and q v z (possibly x itself).

Not all effect quantales are iterable, since the subset of freely iterable elements may not
be closed under joins, and the semilattice may not contain a unique least freely iterable
element greater than I for each possible effect. However, violating these appears uncommon;
we have not observed it for any effect quantales we constructed, and cannot identify any
systems in the literature with such irregular lattices. So in practice these restrictions on the
existence of a closure-operator-based iteration appears unproblematic.
I Proposition 11 (Closure for Iterable Effect Quantales). For any iterable effect quantale Q,
I ↑ ∩Iter(Q) is a closure subset.
I Proof. I ↑ ∩Iter(Q) is always non-empty, because Iter(Q) is non-empty and contains Err
(Proposition 9), and I v Err. So if for every x, x ↑ ∩(I ↑ ∩Iter(Q)) has a least element,
I ↑ ∩Iter(Q) is a closure subset [7, Theorem 1.8]. This requirement is exactly the meaning of
Q being iterable, so this is a closure subset. �

I Proposition 12 (Free Closure Operator on Iterable Effect Quantales). For every iterable
effect quantale Q, the function F(X) 7→ min(X ↑ ∩(I ↑ ∩Iter(Q))) is a closure operator
satisfying properties P1–P5.
Our technical report [26] gives the proof, but note P1–3 follow from closure operator properties,
P4 follows from Iter(Q)’s join-closure, and P5 follows from using only elements of I ↑.

5.3 Iterating Concrete Effects
We briefly compare the results of applying our derived iteration operation to effect quantales
we have discussed to known iteration operations.

I Example 13 (Iteration for Atomicity). The atomicity quantale A is iterable, so the free
closure operator models iteration in that quantale. The result is an operator that is the
identity everywhere except for the atomic effect A, which is lifted to >FQ when repeated
(it is not an error, but no longer atomic). This is precisely the manual definition Flanagan
and Qadeer gave for iteration. In Section 4.2, we claimed any trace fragment matching
a regular expression evaluated as if it were physically atomic — a property proven by
Flanagan and Qadeer. In terms of effect quantales, this is roughly equivalent to the claim
that (R∗ � B∗)∗ � A � (B∗ � L∗)∗ v A. With our induced iteration operator, this has a
straightforward proof:

(R∗ � B∗)∗ � A � (B∗ � L∗)∗ = (R � B)∗ � A � (B � L)∗ since R∗ = R, B∗ = B
= R∗ � A � L∗ B is unit for �
= R � A � L since R∗ = R, B∗ = B
= A by definition of �

I Example 14 (Iteration for Commutative Effect Quantales). For any bounded join semilattice,
we have by Lemma 3 a corresponding effect quantale that reuses join for sequencing (and thus,

ECOOP 2017



13:12 A Generic Approach to Flow-Sensitive Polymorphic Effects

⊥ for unit), making the sequencing operation commutative. For purposes of iteration, this
immediately makes all instances of this free effect quantale iterable, as idempotency of join
(x t x = x) makes all effects freely iterable. The resulting iteration operator is the identity
function, which exactly models the standard type rule for imperative loops in commutative
effect systems, which reuse the effect of the body as the effect of the loop:

Γ ` e1 : bool : χ1 Γ ` e2 : unit | χ2

Γ ` while(e1){e2} : unit | χ1 t χ2

For a quantales where sequencing is merely the join operation on the semilattice, the above
standard rule can be derived from our rule in Section 6 by simplifying the result effect:

χ1 � (χ2 � χ2)∗ = χ1 � (χ2 � χ2) = χ1 t (χ2 t χ2) = χ1 t χ2

I Example 15 (Loop Invariant Locksets). For the lockset effect quantale L, the freely iterable
elements are all actions that do not acquire or release any locks — those of the form (a, a) for
some a, and >. These are isomorphic to the set of all multisets formed over the set of locks
(plus the error element >), and for those elements the join is equivalent to the complete lattice
under multiset inclusion (again, plus the top error element). Since I is (∅,∅) (which has
no elements below it), I ↑ ∩Iter(L) = I ↑ ∩({(a, b) | a = b} ∪ {>}) = {(a, b) | a = b} ∪ {>}.
Because the freely iterable elements above unit form a complete lattice, L is iterable. The
resulting closure operator is the identity on the freely iterable elements, and takes all actions
that acquire or release locks to > (Err). This is exactly what intuition suggests as correct —
the iterable elements are those that hold the same locks before and after each loop iteration,
and attempts to repeat other actions should be errors.

6 Syntactic Type Soundness for Generic Sequential Effects

In this section we give a purely syntactic proof that effect quantales are adequate for syntactic
soundness proofs of sequential type-and-effect systems. For the growing family of algebraic
characterizations of sequential effect systems, this is the first soundness proof we know of that
is (1) purely syntactic, (2) handles the indexed versions of the algebra required for singleton
effects, (3) addresses effect polymorphism, and (4) includes direct iteration constructs. This
development both more closely mirrors common type soundness developments for applied
effect systems than the category theoretic approaches discussed in Section 7, and demonstrates
machinery which would need to be developed in an analogous way for semantic proofs using
those concepts. Thus, for hypothetical future effect systems requiring more flexibility than
effect quantales provide, our techniques provide guidance on those concepts without switching
to category theoretic denotational semantics.

We give this soundness proof for an abstract effect system — primitive operations, the
notion of state, and the overall effect systems are all abstracted by a set of parameters
(operational semantics for primitives that are aware of the state choice). This alone requires
relatively little mechanism at the type level, but we wish to not only demonstrate that
effect quantales are sound, but also that they are adequate for non-trivial existing sequential
effect systems. In order to support such embeddings (see Sections 4 and 8), the type system
includes parametric polymorphism — over types and effects as different kinds — as well as
singleton types (e.g., for reference types with region tags) and effect constructors (such as
effects mentioning particular locks). We consider effects equal according to the equations
induced by effect quantale properties, and for families of effects indexed by values we identify
the families with uses of appropriate effect constructors applied to singleton types. We



C. S. Gordon 13:13

demonstrate embeddings by directly translating equivalent constructs, and building artificial
terms to model other constructs. These artificial terms’ derived type rules directly match
the language we embed, though the dynamic semantics may not be preserved (for example,
we do not model concurrency). While unsuitable for a general framework in the style of a
language workbench, this is adequate to show that our characterization of sequential effect
systems’ structure is flexible.

The language we study includes no built-in means to introduce a non-trivial (non-identity)
effect, relying instead on the supplied primitives. The language also includes only the simplest
form of parametric polymorphism for effects (and types), without bounding, constraints [30],
relative effect declarations [59, 50], qualifier-based effects [27], or any other richer forms
of polymorphism. Our focus is demonstrating compatibility of effect quantales with effect
polymorphism and singleton effects, rather than to build a particularly powerful framework.

We stage the presentation to first focus on core constructs related to effect quantales,
then briefly recap machinery from Systems F and Fω (and small modifications beyond what
is standard), before proving type soundness. Section 8 gives an embedding from Flanagan
and Qadeer’s sequential effect system for atomicity [21] into our core language to establish
that it is not only sound, but expressive.

6.1 Parameters to the Language

We parameterize our core language by a number of external features. First among these, is a
slight extension of an effect quantale — an indexed effect quantale.

I Definition 16 (Indexed Effect Quantale). An indexed effect quantale is a quantale whose
elements (and therefore operations) are parameterized over some set.2

The lock set effect quantale L we described earlier is in fact an indexed effect quantale,
parameterized by the set of lock names to consider.

Because the set of well-typed values changes during program execution, we will need to
transport terms well-typed under one use of the quantale into another use of the quantale,
under certain conditions. The first is the introduction of new well-typed values (e.g., from
allocating a new heap cell), requiring a form of inclusion between indexed quantales. The
second is due to substitution: our language considers variables to be values, but during
substitution some variable may be replaced by another value that was already present in the
set. This essentially collapses what statically appears as two values into a single value, thus
shrinking the set of values distinguished inside the quantale. Each requires a different kind
of homomorphism between effect quantales, with different properties.

I Definition 17 (Effect Quantale Homomorphism). An effect quantale homomorphism between
two effect quantales Q and R is a join semilattice homomorphism (a function between the
carrier sets that preserves joins) that additionally preserves sequencing and >.

I Definition 18 (Monotone Indexed Effect Quantale). An indexed effect quantale Q is called
monotone when for two sets S and T where S ⊆ T , the inclusion function from the carrier
of Q(S) to the carrier set of Q(T ) induces the obvious inclusion homomorphism.

2 For those accustomed to typed meta-logics (e.g., Coq), one could view an indexed quantale as roughly
the type ∀α : Type. {Decidable α} → α→ Quantale. The point is that the details of the set are irrelevant
to the quantale’s definition.

ECOOP 2017



13:14 A Generic Approach to Flow-Sensitive Polymorphic Effects

I Definition 19 (Collapsible Indexed Effect Quantale). An indexed effect quantale Q is called
collapsible when for any non-empty set S and additional element x (not in S), a function f
from S∪{x} to S that is the identity on elements of S induces a corresponding homomorphism
where only sequences and joins that produced > under S ∪ {x} produce > when transported
by the homomorphism (i.e., f (a) � f (b) = > ⇒ a � b = >, similarly for joins).

We parameterize our core language by a monotone, collapsible indexed effect quantale Q.
Monotonicity is a natural requirement, but collapsibility has some subtle consequences we
defer to Section 9. Any constant (i.e., non-indexed) effect quantale trivially lifts to a monotone
collapsible indexed effect quantale that ignores its arguments. The product construction ⊗
lifts in the expected way.

The language parameters also include:

An abstract notion of state, usually noted by σ ∈ State. For a pure calculus State might
be unit, while other languages might instantiate it to a heap, etc.
A set of primitives pi operating on terms and States. This includes modeling additional
values that do not interact directly with general terms, such as references.
A set of type families Ti for describing the types of primitives.
A meta-function K for ascribing appropriate kinds to types in Ti . Thus, reference types
may be modeled this way.
A meta-function δ for ascribing a type to some primitive that is independent of the state
— i.e., source-level primitive operations (but not store references). δ is constrained such
that for values whose types are applicative (i.e., function types and quantified types) only
the very last such type may have non-unit effect.
A partially ordered state type environment Σ ∈ StateEnv, which maps a subset of the
primitives to types. The least element in the partial order is δ (used for source typing of
primitives).
A partial primitive semantics J−K : Term ⇀ State → Term× E × State defined only on
full applications of primitive operations (i.e., fully-applied primitive operations, judged
according to the types from δ).

For type soundness, we will rely on the following:
Types produced by δ must be well-formed in the empty environment, and must not be
closed base types (e.g., the primitives cannot add a third boolean, which would break the
canonical forms lemma).
Effects produced by J−K are valid for the quantale parameterized by the values at the
call site (i.e., the dynamic effects depend only on the values at the call).
There is a relation Q ` σ : Σ for well-typed states.
When the primitive semantics are applied to well-typed primitive applications and a well-
typed state, the resulting term is well-typed (in the empty environment) with argument
substitutions applied, and the resulting state is well-typed under some “larger” state
type:
ε; Σ ` pi v : τ | γ ∧ Q ` σ : Σ ∧ Jpi vK(σ) = (v′, γ′, σ′)

⇒ ∃Σ′.Σ ≤ Σ′ ∧ ε; Σ′ ` v′ : τ [v/args(δ(pi))] | I ∧ Q ` σ′ : Σ′

We call this property primitive preservation.

This setup leads to a delicate dependency order among these parameters and the core
language to avoid circularity. Such circularity is manageable with sophisticated tools in the
ambient logic [12, 5], but we prefer to avoid them for now. The parameters and language
components are stratified as follows:

The syntax of kinds is closed.



C. S. Gordon 13:15

Kinds κ ::= ? | E | κ⇒ κ

Types τ ::= Ti | τ τ | EQ | Πx : τ
τ→ τ | α | bool | ∀α :: κ

τ→ τ | unit | S(v)

Terms e ::= pi | (λ x. e) | e e | x | true | false | if e e e | while e e | (Λα :: κ. e) | e[τ ] | ()
TypeEnv Γ ::= ε | Γ, x : τ | Γ, α :: κ

Values v ::= pi | (λ x. e) | x | true | false

` Γ
` ε

Γ ` τ :: ? x 6∈ Γ

` Γ, x : τ

α 6∈ Γ

Γ ` α :: κ

Γ ` τ :: κ
Γ ` Ti :: K(Ti)

Γ(α) = κ

Γ ` α :: κ

Γ ` τ :: κ⇒ κ′ Γ ` τ ′ :: κ

Γ ` τ τ ′ :: κ′
E ∈ Q(Γ)

Γ ` E :: E
Γ ` τ :: ?

Γ, x : τ ` γ :: E
Γ, x : τ ` τ ′ :: ?

Γ ` (Πx : τ
γ→ τ ′) :: ? Γ ` bool :: ? Γ ` unit :: ?

Γ ` v : τ | I
Γ ` S(v) :: ?

Γ, α :: κ ` γ :: E
Γ, α :: κ ` τ :: ?

Γ ` ∀α :: κ
γ→ τ :: ?

Γ ` e : τ | γ
Γ ` pi : δ(pi) | I

Γ(x) = τ

Γ ` x : τ | I
Γ, x : τ ` e : τ ′ | γe γe v γ
Γ ` (λ x. e) : Πx : τ

γ→ τ ′ | I

Γ ` e1 : Πx : τ
γ→ τ ′ | γ1 Γ ` e2 : τ | γ2 x 6∈ FV(γ, τ ′) ∨ Value(e2)

Γ ` e1 e2 : τ ′[e2/x] | γ1 � γ2 � γ[e2/x]

b ∈ {true, false}
Γ ` b : bool | I

Γ ` c : B | γc Γ ` e1 : τ | γ1 Γ ` e2 : τ | γ2
Γ ` if c e1 e2 : τ | γc � (γ1 t γ2)

Γ ` c : bool | γc Γ ` e : τ | γb

Γ ` while c e : unit | γc � (γb � γc)∗

Γ, α :: κ ` e : τ | γ
Γ ` (Λα :: κ. e) : ∀α :: κ

γ→ τ | I
Γ ` e : ∀α :: κ

γ→ τ | γe Γ ` τ ′ :: κ

Γ ` e[τ ′] : τ [τ ′/α] | γe � γ[τ ′/α] Γ ` () : unit | I

σ, e →γ
Q σ′, e′

σ, (λ x. e) v →I
Q σ, e[v/x] σ, (Λα :: κ. e)[τ ]→I

Q e[τ/α]

Jpi vK(σ) = (e′, γ, σ′)
σ, pi v →γ

Q σ′, e′

σ, if true e1 e2 →I
Q σ, e1 σ, if false e1 e2 →I

Q σ, e2 σ,while e eb →I
Q σ, if e (eb; while e eb) ()

σ, e γ−→
∗
Q σ′, e′

σ, e I−→
∗
Q σ, e

σ, e γ−→
∗
Q σ′, e′ σ′, e′ →γ′

Q σ′′, e′′

σ, e γ�γ′−−−→
∗

Qσ
′′, e′′

Figure 2 A generic core language for sequential effects, omitting straightforward structural rules
from the operational semantics. ; is standard sugar for sequencing with in a CBV lambda calculus.

The core language’s syntax for terms and types is mutually defined (the language contains
explicit type application and singleton types), parameterized by Ti and pi . The latter
parameters are closed sets, so the mutual definition is confined to the core.

The type judgment depends on (beyond terms, types, and kinds) δ, K , and StateEnv.

State may depend on terms, types, and kinds.

The dynamic semantics will depend on terms, types, kinds, State, and J−K (which cannot
refer back to the main dynamic semantics).

Primitive preservation depends on the typing relation and state typing.

The type soundness proof will rely on all core typing relations, state typing (which may
be defined in terms of source typing), and the primitive preservation property.

Ultimately this leads to a well-founded set of dependencies for the soundness proof.

ECOOP 2017



13:16 A Generic Approach to Flow-Sensitive Polymorphic Effects

6.2 The Core Language, Formally
Figure 2 gives the (parameterized) syntax of kinds, types, and terms. Most of the structure
should be familiar from standard effect systems and Systems F and Fω (with multiple kinds,
as in the original polymorphic effect calculus [41]), plus standard while loops and conditionals
with effects sequenced as in Section 2. We focus on the differences.

The language includes a dependent product (function) type, which permits program
values to be used in types and effects. This is used primarily through effects — elements
of an effect quantale may mention elements of the set — and through the singleton type
constructor S(−), which associates a type (classifying no terms) with each program value.
Use of the dependent function space is restricted to syntactic values (which includes variables
in our call-by-value language) — the application rule requires that either the argument is
a syntactic value, or the function type’s named argument does not appear in the effect or
result type. In the latter case, for concrete types we will use the standard τ γ→ τ ′ notation. A
minor item of note is that dependent function types and quantified types bind their argument
in the function’s effect as well as in the result type. This permits uses such as a function
acquiring the lock passed as an argument. One small matter important to the soundness
proof: for any value, the effect of the value itself is the identity effect I .

Every rule carries an implicit side condition that the resulting effect is 6= >. Since > acts
as the error element, this permits effect systems to completely reject certain event orders.

A slightly more subtle point concerns the kinding judgment for effects. The requirement
is that an effect E is valid if it is contained in Q(Γ). This is because the type system is
actually given with respect to an indexed effect quantale, as described above, which accepts
some set to parameterize the system by. Q(Γ) is Q instantiated with the set of well-typed
values under Γ.

It is worth recalling briefly the role of parametric effect polymorphism and singleton
types in our system. Singleton types are used as a way to specify elements of the effect
quantale that depend on program values. They are used in type-level application with the
effect constructors we assume are given for the effect quantale. They are also used for data
types: for example, they are used to associate a reference type with the lock guarding access
to that heap cell. Effect polymorphism is an essential aspect of code reuse in static effect
systems [41, 55, 50, 27]. It permits writing functions whose effects depend on the effect of
higher-order arguments. For example, consider the atomicity of fully applying the annotated
term

T = λ ` : lock.Λγ :: E . λ f : unit γ→ unit. (acquire `; f (); release `)

The atomicity of a full application of term T (i.e., application to a choice of effect and
appropriately typed function term) depends on the (latent) atomicity of f . For the moment,
assume we track only atomicities (not lock ownership). The type of T is

Π` : lock B→ ∀ γ :: E B→ (unit γ→ unit) R�γ�L−−−−−→ unit

If f 1 performs only local computation, its latent effect can have static atomicity B, making
the atomicity of T [B] f 1 atomic (A). If f 2 acquires and releases locks, its static effect must be
>FQ (valid but non-atomic), making the atomicity of T [>FQ] f 2 also valid but non-atomic.

The operational semantics is mostly standard: a labeled transition system over pairs of
states and terms, where the label is the effect of the basic step. We omit the structural
rules that simply reduce a subexpression and propagate state changes and the effect label in
the obvious way. The only other subtlety of the single-step relation is that when reducing



C. S. Gordon 13:17

invocations of primitives, if a primitive’s semantics via J−K are defined only on larger-arity
calls than what has been reduced to values v (which also includes type applications), the
next argument applied is reduced, structurally. Incomplete applications of primitives remain
stuck. We also give a transitive reduction relation γ−→

∗
Q which accumulates the effects of

each individual step.

Runtime Typing

Figure 2 gives the source type system. For the runtime type system, three changes are made.
First, a state type Σ is added to the left side of each judgment in the standard way. Second,
primitive typing is changed to rely on Σ rather than δ (recall that δ is the least element
in the partial order, so all Σ will extend δ). And third, the effect kinding is modified to
check for effects in Q(Γ,Σ) — the effect quantale instantiated for a set of values well-typed
under Γ and Σ, allowing values introduced at runtime (such as dynamically allocated locks
or references) to appear in effects.

6.3 Syntactic Safety
Syntactic type safety proceeds in the normal manner (for a language with mutually-defined
types and terms), with only a few wrinkles due to effect quantales. Here we give the
statements of the major lemmas affected by effect quantales, and give relevant details. For
more details and statements of other lemmas (canonical forms, substitution of types into
types and terms, progress), see the technical report [26].

Substitution lemmas are proven by induction on the expression’s type derivation, exploiting
the fact that all values’ effects before subeffecting are I :

I Lemma 20 (Term Substitution). If Γ, x : τ ` e : τ | γ and Γ ` v : τ | I , then Γ ` e[v/x] :

τ [v/x] | γ[v/x], and simultaneously if Γ, x : τ ` τ ′ :: κ and Γ ` v : τ | I then Γ ` τ ′[v/x] :: κ.

I Proof. By simultaneous induction on the typing and kinding relations. The only subtle
case is substitution of a variable occurring in an effect. In this case, the set of well-typed
values is being reduced in size by one, with uses of the substituted variable being replaced by
the new value. This induces the type of homomorphism relevant for collapsible (indexed)
effect quantales. By assumption Q is collapsible, so applying the appropriate homomorphism
as substitution yields an effect that is well-kinded in the smaller type environment. �

We give type preservation below, assuming an iterable effect quantale. This assumption
is only used in while-related cases, so this proof also shows soundness for programs without
loops under non-iterable quantales.

I Lemma 21 (One Step Type Preservation). For all Q, σ, e, e′, Σ, τ , γ, and γ′, if
ε; Σ ` e : τ | γ, Q ` σ : Σ, δ ≤ Σ, and σ, e →γ′

Q σ′, e′ then there exist Σ′, γ′′ such that
ε; Σ′ ` e′ : τ | γ′′, Q ` σ′ : Σ′, Σ ≤ Σ′, γ′ � γ′′ v γ.

I Proof. By induction on the reduction relation. We show here only the while loop case
because it leans heavily on details of the iteration construct. See the technical report [26] for
other cases.

Case E-While: Here e = while ec eb, γ′ = I , σ = σ′, and e′ = if ec (eb; (while ec eb)) ().
By inversion on typing:

ε; Σ ` ec : bool | γc ε; Σ ` eb : τb | γb γ = γc � (γb � γc)∗ τ = unit

ECOOP 2017



13:18 A Generic Approach to Flow-Sensitive Polymorphic Effects

By T-If, T-Unit, desugaring ; to function application, and weakening,
ε; Σ ` if ec (eb; (while ec eb)) () : unit | γc � (((γb � γc) � (γb � γc)∗) t I ). State remains
unchanged, so the final obligation in this case is to prove the effect just given for e′
(technically, preceded by I �) is a subeffect of γ = γc � (γb � γc)∗, which relies crucially
on iteration properties P2 and P5:

γc � ((γb � γc � (γb � γc)∗) t I ) v γc � (((γb � γc) � (γb � γc)∗) t I )

v γc � (((γb � γc)∗) t I )

v γc � ((γb � γc)∗)

�

I Theorem 22 (Type Preservation). For all Q, σ, e, e′, Σ, τ , γ, and γ′, if ε; Σ ` e : τ | γ,
Q ` σ : Σ, δ ≤ Σ, and σ, e γ′→

∗

Q σ′, e′, then there exist Σ′, γ′′ such that ε; Σ′ ` e′ : τ | γ′′,
Q ` σ′ : Σ′, Σ ≤ Σ′, and γ′ � γ′′ v γ.

7 Relationships to Semantic Notions of Effects

Our notion of an effect quantale is motivated by generalizing directly from the form of
effect-based type judgments. In parallel with our work, there has been a line of semantically-
oriented work to generalize monadic semantics to capture sequential effect systems (indeed,
this is where our use of the term “sequential effect system” originates). Here we compare to
several recent developments: Tate’s productors (and algebraic presentation as effectoids) [56],
Katsumata’s effect-indexed monads [36], and Mycroft, Orchard, and Petricek’s joinads (and
algebraic presentation in terms of joinoids) [45].

All of this work is done primarily in the setting of category theory, by incrementally
considering the categorical semantics of desirable effect combinations (in contrast to our work,
working by generalizing actual effect systems). Fortunately, each piece of work also couples
the semantic development with an algebraic structure that yields an appropriate categorical
structure, and we can compare directly with those without appealing to much category theory.
None of the following systems consider effect polymorphism or give more than a passing
mention of iteration, though given the generality of the technical machinery, we cannot say
any of the following are incompatible with these ideas — only that their use has not been
considered. In contrast, we showed (Section 6) that effect quantales are compatible with
these ideas. Effect domains that depend on program semantics (e.g., singleton effects) have
also not been considered in this semantic work, while we consider indexed effect quantales
whose effects depend on program values. Of the three families of semantic work we compare
to, only Mycroft et al. go so far as to consider conditionals and discuss iteration, which are
ignored (in favor of other important issues) in Tate and Katsumata’s work.

Overall, Tate and Katsumata’s work studies structures which are strict generalizations of
effect quantales (i.e., impose fewer constraints than effect quantales), and any effect quantale
can be translated directly to Tate’s effectoids or Katsumata’s partially ordered effect monoid.
Tate and Katsumata demonstrate that their structures are necessary to capture certain parts
of any sequential effect system — a powerful general claim. By contrast, we demonstrate
that with just a bit more structure than either of these, effect quantales become sufficient to
formalize a range of real sequential effect systems. Mycroft et al.’s work does consider a full
programming language, but studies a different set of structures than we do (block-structured
parallelism rather than iteration).



C. S. Gordon 13:19

7.1 Productors and Effectoids
Tate [56] sought to design the maximally general semantic notion of sequential composition,
proposing a structure called productors, and a corresponding algebraic structure for source-
level effects called an effector. Effectors, however, include models of analyses that are not
strictly modular (e.g., can special-case certain patterns in source code for more precise
effects) [56, Section 5]. To model the strictly compositional cases like syntactic type-and-
effect systems, he also defines a semi-strict variant called an effectoid (using slightly different
notation):

I Definition 23 (Effectoid [56]). An effectoid is a set Eff with a unary relation Base(−), a
binary relation − ≤ −, and a ternary relation − o

9− 7→ −, satisfying
Identity: ∀ ε, ε′. (∃ ε`.Base(ε`) ∧ ε` o

9 ε 7→ ε′)⇔ ε ≤ ε′ ⇔ (∃ εr .Base(εr) ∧ ε o
9 εr 7→ ε′)

Associativity: ∀ ε1, ε2ε3, ε. (∃ ε. ε1
o
9 ε2 7→ ε ∧ εo9ε3 7→ ε)⇔ (∃ ε̂. ε2

o
9 ε3 7→ ε̂ ∧ ε1

o
9 ε̂ 7→ ε)

Reflexive Congruence:
∀ ε. ε ≤ ε
∀ ε, ε′.Base(ε) ∧ ε ≤ ε′ =⇒ Base(ε′)
∀ ε1, ε2, ε, ε

′. ε1
o
9 ε2 7→ ε ∧ ε ≤ ε′ =⇒ ε1

o
9 ε2 7→ ε′

Intuitively, Base identifies effects that are valid for programs with “no” effect — e.g., pure
programs, empty programs. Tate refers to such effects as centric. The binary relation ≤ is
clearly a partial order for subeffecting, and − o

9− 7→ − is (relational) sequential composition.
The required properties imply that the effectoid’s sequential composition can be read as a
non-deterministic function producing the minimal composed effect or any supereffect thereof,
given that the sequential composition relation includes left and right units for any effect, and
that Base and the last position of composition respect the partial order on effects.

Given Tate’s aim at maximal generality (while retaining enough structure for interesting
reasoning about sequential composition), it is perhaps unsurprising that all but the most
degenerate effect quantale yields an effectoid by flattening the monoid and semilattice
structure into the appropriate relations:

I Lemma 24 (Quantale Effectoids). For any nontrivial effect quantale Q (one with more
elements than >), there exists an effectoid E with the following structure:

Eff = E/{>}
Base(a)

def
= I v a ∧ a 6= >

a ≤ b def
= a v b ∧ b 6= >

a o
9 b 7→ c def

= a � b = c′ ∧ c′ v c ∧ c 6= >
I Proof. The laws follow almost directly from the effect quantale laws. In the identity
property, both left and right units are always chosen to be I . Associativity follows directly
from associativity of � and isotonicity. The reflexive congruence laws follow directly from the
definition (and transitivity) of v. Note that we removed the top (error) element, representing
failure by missing entries in the relations. �

A bit more surprising, perhaps, is that many effectoids directly yield quantales:

I Lemma 25. For any effectoid E with a least centric element, and whose underlying partial
order is a join semilattice, and which has a least result for any defined sequential composition,
there exists an effect quantale Q such that:

EQ = EffE ] Err
> = Err (a synthetic error element)
t performs the assumed binary join extended for new top element Err.

ECOOP 2017



13:20 A Generic Approach to Flow-Sensitive Polymorphic Effects

a � b produces the least c such that a o
9 b 7→ c when defined, or Err when there is no such

c such that a o
9 b 7→ c (by assumption, a o

9 b is undefined or has a least element).
I is assumed the least centric element

Tate calls effectoids with a least result for any defined sequential composition principalled,
and notes that they are common.

Essentially, in the case where the effectoid’s partial order corresponds to a join semilattice
with a single unit for sequencing and deterministic (modulo subsumption) sequencing, the
two notions coincide. This strongly suggests that our generalization from the type judgments
of a few specific effect systems, rather than from semantic notions, did not cost much in the
way of generality. It also clarifies exactly when effectoids are more general: when effects form
a partial order but not a join semilattice (no unique least upper bound of any pair), have no
universal unit for sequencing, or have non-deterministic sequencing results. We are unaware
of any complete source-level type-and-effect system with these properties.

7.2 Effect-indexed Monads, a.k.a. Graded Monads
Katsumata [36] pursues an independent notion of general sequential composition, where
effects are formalized semantically as a form of type refining monad: a T e σ is a monadic
computation producing an element of type σ, whose effect is bounded by e (which classifies
a subset of such computations). Based on general observations, Katsumata speculates that
sequential effects form at least a pre-ordered monoid, and goes on to validate this (among other
interesting results related to the notion of effects as refinements of computations). Katsumata
shows categorically that these effect indexed monads (which later came to be known as
graded monads to avoid confusion with other forms of indexing) are also a specialization
of Tate’s productors, exactly when the productor is induced by an effectoid derived from a
partially-ordered monoid. Our notion of effect quantales directly induces a partially ordered
monoid (E ,t,�, I ) satisfying the appropriate laws. However, the effectoid equivalent to this
translation is not quite the same as the direct effectoid described earlier: graded monads
(particularly the po-monoids) do not directly model partiality, while effectoids can. Setting
this minor discrepancy aside (e.g., one could impose type system restrictions on its use, as we
did in our type system) the relaxation between effect quantales and graded monads is due to
relaxing the bounded join semilattice to a partial order, and the change from graded monads
to effectoids (and thus productors) is due primarily to relaxing the rules for sequencing
identity and determinism of sequencing. Katsumata does note briefly that many interesting
effect systems rely on join-semilattices, but does not explore this specific class of graded
monads in depth.

7.3 Joinads and Joinoids
Mycroft, Orchard, and Petricek [45] further extend graded monads to graded conditional
joinads, and similar to Tate, give a class of algebraic structures — joinoids — that give
rise to their semantic structures. As their base, they take graded monads, further assume a
ternary conditional operator ? : (−,−,−) modeling conditionals whose branch approximation
may depend on the conditional expression’s effect, and parallel composition & suitable for
fork-join style concurrency.

Their ternary operator is motivated by considerations of sophisticated effects such as
control effects like backtracking (e.g., continuations). From their ternary operator, they
derive a binary join, and therefore a partial order. However, their required laws for the
ternary operator include only a right distributivity law because effects from the conditional



C. S. Gordon 13:21

expression itself do not in general distribute into the branches. Thus their derived semilattice
structure satisfies only the right distributivity law (a t b) � c = (a � c) t (b � c), and not,
in general, the left-sided equivalent. They also do not require “commutativity” of the branch
arguments. This means that joinoids, in general, do not give rise to effect quantales — some
(small) amount of structure is not necessarily present — and that in general they validate
fewer equivalences between effects. An effect quantale can induce a ternary operator that
ignores its first argument by simply taking the join of its other arguments, in which case
Mycroft et al.’s derived partial order coincides with that derived from the quantale’s join.
As with the relation to graded monads this translates error element concretely rather than
directly modeling partiality.

Joinads originally arose as an extension to monads that captures a class of combinators
typical of composing parallel and concurrent programs in Haskell, in particular a join
(unrelated to lattices) operator of type M A → M B → M (A × B). This is a natural
model of fork-join-style parallel execution, and gives rise to the & operator of joinoids, which
appears appropriate to model the corresponding notion in systems like Nielson and Nielson’s
effect system for CML communication behaviors [46], which is beyond the space of operations
considered for effect quantales. However, & is inadequate for modeling the unstructured
parallelism (i.e., explicit thread creation and termination, or task-based parallelism) found
in most concurrent programming languages, so we did not consider such composition when
deriving effect quantales. We would like to eventually extend effect quantales for unstructured
concurrent programming: this is likely to include adapting ideas from concurrent program
logics that join asynchronously [14], but any adequate solution should be able to induce an
operation satisfying the requirements of joinoids’ parallel composition.

Ultimately, any effect quantale gives rise to a joinoid, by using the effect quantale’s join
for both parallel composition and to induce the ternary operator outlined above.

Fixed Points

Mycroft et al. also give brief consideration to providing iteration operators through the
existence of fixed points, noting the possibility of adding one type of fixed point categorically,
which carried the undesirable side effect of requiring sequential composition to be idempotent:
∀ b. b � b = b. This is clearly too strict, and prohibits equivalents of both the lockset and
atomicity effect quantales we studied. They take this as an indication that every operation
should be explicitly provided by an algebra, rather than attempting to derive operators. By
contrast, our closure operator approach not only imposes semantics that are by construction
compatible with a given sequential composition operator, but critically coincide with manual
definitions for existing systems.

7.4 Limitations of Semantics-Based Work
The semantic work on general models of sequential effect systems has not seriously addressed
iteration. As discussed above, Mycroft et al. note that a general fixed point map could
be added, but this forces a � a = a for all effects a, which is too restrictive to model the
examples we have considered. Our approach to inducing an iteration operation through
closure operators on posets should be generalizable to each of the semantic approaches we
discussed. The semantics of such an approach are, broadly, well-understood, as closure
operators on a poset are equivalent to a certain monad on a poset category; note that
the three properties of closure operators — extensiveness, idemotence, and monotonicity
— correspond directly to the formulation of a monad in terms of return, join (a flattening

ECOOP 2017



13:22 A Generic Approach to Flow-Sensitive Polymorphic Effects

Γ ` e : a
EXP CONST

Γ ` c : B

EXP LOC

Γ ` m : B

EXP FUN
Γ ` e : Γ(f )

Γ ` f (x)e : B

EXP PRIM
Γ ` ei : ai

Γ ` p(e) : (a1; . . . ; an ; Γ(p))

EXP READ

Γ ` xε : B

EXP RRACE

Γ ` x• : A

EXP ASSIGN
Γ ` e : a

Γ ` xε := e : (a; B)

EXP RASSIGN
Γ ` e : a

Γ ` x• := e : (a; A)

EXP LET
Γ ` e1 : a1 Γ ` e2 : a2

Γ ` let x = e1 in e2 : (a1; a2)

EXP IF
Γ ` e : a Γ ` ei : b : i

Γ ` if e e1 e2 : (a; (b1 t b2))

EXP WHILE
Γ ` e1 : a1 Γ ` e2 : a2

Γ ` while e1 e2 : (a1; (a2; a1)
∗
)

EXP INVOKE
Γ ` e : a Γ ` ei : ai

Γ ` eF
(e) : (a1; . . . ; an ; (tf∈FΓ(f )))

EXP FORK
Γ ` e : a

Γ ` fork e : A

EXP ATOMIC
Γ ` e : a a v A

Γ ` atomic e : a

Figure 3 Flanagan and Qadeer’s type and effect system for atomicity of CAT programs.

operation M (M A) → M A unrelated to lattices or joinoids), and fmap. The semantic
work discussed also omits treatment of polymorphism, and singleton or dependent types.
As a result, their claim of adequacy for sequential effect systems is limited, whereas we
have provide in Section 8 a direct implementation of a non-trivial composite sequential
effect system in terms of effect quantales. On the other hand, their claims to generality
are much stronger than ours, not only because the corresponding algebraic structures are
less restrictive, but because they derived these structures by focusing on a few key elements
common to all sequential effect systems (aside from the parallel combination studied for
joinads) rather than directly attempting to generalize from concrete examples of sequential
effect systems. Ultimately we view our work as strictly complementary to this categorical
work — the latter is foundational and deeply general, while ours is driven by practice of
sequential effect systems. Our work fills in a missing connection between these approaches
and the concrete syntactic sequential effect systems most have studied.

The categorical semantics of polymorphism and dependent types (including singleton
indexing as we have) are generally well-understood [47, 15, 35] and have even gained significant
new tools of late [5], so the work discussed here should be compatible with those ideas, even
if it requires adjustment. However, these related approaches would also need to be extended
to account for substitution into effects that may mention program values; the notion of
collapsibility will require an analogue in semantic accounts.

8 Modeling Prior Effect Systems in a Generic Framework

This section demonstrates that we can model significant prior type systems by embedding into
our core language. Embedding here means a type-and-effect-preserving, but not necessarily
semantics-preserving translation. Our language is generic, but clearly lacks concurrency,
exception handling, and other concrete computational effects. Instead, we show how to model
relevant primitives in our core language, giving derived type rules for those constructs, and
translate type judgments to prove we would at least accept the same programs.

8.1 Types for Safe Locking and Atomicity
Here we briefly recall the details of Flanagan and Qadeer’s earlier work on a type system
for atomicity [21] (the full version [20] requires substantially more space and extends Java —
modeling objects would require a more sophisticated type system for embedding). Flanagan
and Qadeer’s CAT language (Figure 3) is minimalist, defined in terms of a family of primitives
(like our core language), with named functions, racing and race-free heap accesses, expected
control constructs, and atomic blocks (which must be atomic). They use semicolons for



C. S. Gordon 13:23

Q(X) = L(X)⊗A
M ∈ LockNames ⇀ Bool
H ∈ Location ⇀ Term
State = M × H
K(lock) = ?
K(ref) = ?⇒ ?⇒ ?

∀ l ∈ dom(m).Σ(l) = lock
∀ r ∈ dom(h). ε; Σ ` h(r) : Σ(r) | I

Q ` (m, h) : Σ

δ(new lock) = unit B→ lock
δ(acquire) = Πx : lock (∅,{x})⊗R−−−−−−−−→ unit
δ(release) = Πx : lock ({x},∅)⊗L−−−−−−−→ unit
δ(alloc) = Πx : lock B→ ∀α :: ?

B→ τ
B→ ref S(x) τ

δ(read•) = Πx : lock B→ ∀α :: ?
B→ ref S(x) τ

(∅,∅)⊗A−−−−−−→τ
δ(readε) = Πx : lock B→ ∀α :: ?

B→ ref S(x) τ
({x},{x})⊗B−−−−−−−−−→τ

δ(write•) = Πx : lock B→ ∀α :: ?
B→ ref S(x) τ

B→ τ
(∅,∅)⊗A−−−−−−→τ

δ(writeε) = Πx : lock B→ ∀α :: ?
B→ ref S(x) τ

B→ τ
({x},{x})⊗B−−−−−−−−−→τ

δ(req atomic) = (bool A→ unit) B→ unit

Jnew lock K((m, h))(Σ) = l, (m[l 7→ false], h),Σ[l 7→ lock] for next l 6∈ dom(m)
Jacquire lK((m[l 7→ false], h))(Σ) = (), (m[l 7→ true], h),Σ
JreleaseK((m[l 7→ true], h))(Σ) = (), (m[l 7→ false], h),Σ
Jalloc l τ vK((m, h))(Σ) = `, (m, h[` 7→ v),Σ[` 7→ ref S(l) τ ] for ` 6∈ dom(h)
Jread• l τ `K((m, h))(Σ) = h(`), (m, h),Σ
Jreadε l τ `K((m, h))(Σ) = h(`), (m, h),Σ
Jwrite• l τ ` vK((m, h))(Σ) = v, (m, h[` 7→ v]),Σ
Jwriteε l τ ` vK((m, h))(Σ) = v, (m, h[` 7→ v]),Σ
Jreq atomic f K((m, h))(Σ) = (), (m, h),Σ

Figure 4 Parameters to model Flanagan and Abadi’s Types for Safe Locking [18] (a sequential
variant) and Flanagan and Qadeer’s Types for Atomicity [21] in our framework. We sometimes omit
the locking component of effects when it is simply (∅,∅) to improve readability.

sequencing of atomicity effects. For maximal minimalism, they assume some other type
system has already analyzed the program and identified which heap accesses are racy and
which are well-synchronized. For completeness, we will embed into an instantiation of our
framework that itself distinguishes well-synchronized and racy reads, and establish conditions
under which their abstract notion of well-synchronized is compatible. Thus this section
develops a hybrid of Flanagan and Abadi’s Types for Safe Locking [18] and Flanagan and
Qadeer’s Types for Atomicity [21], further extended to track locks in a flow-sensitive manner
(the former uses synchronized blocks, the latter does not track locks itself). Recall that
in the former, a concurrent functional language with heap is extended by locks, and the
reference type is indexed by a singleton lock identity. The type system tracks the set of
locks held at each program point (there, scoped by lexically scoped synchronized blocks), and
ensures that any access to a heap location guarded by some lock occurs while that lock is
held. This forms the foundation of the ideas behind the better-known RCC/Java [19], which
extends these ideas to the full Java language. We add additional read and write primitives
that may race, to model the atomicity work.

We define in Figure 4 the parameters to the language framework needed to model
locks, mutable heap locations, and lock-indexed reference types, and the primitives to
manipulate them. We define Ti by giving K (which is defined over Ti), and define pi as
LockNames ] Location ] dom(δ) (locks, heap locations, and primitive operations). The state
consists of a lock heap, mapping locks to a boolean indicating whether each lock is held,
and a standard mutable store. The reference type is indexed by a lock (lifted to a singleton
type). Primitives include lock allocation; lock acquisition and release primitives whose effects
indicate both the change in lock claims and the mover type; allocation of data guarded by a
particular lock; racing (•) and well-synchronized (ε) reads and writes, with effects requiring
(or not) lock ownership as appropriate; and one further primitive for requiring atomicity.
The primitive types are largely similar, so we explain only two in detail. acquire takes one
argument — a lock — that is then bound in the latent effect of the type. That effect is a
product of the locking and atomicity quantales, indicating that the lock acquisition is a right

ECOOP 2017



13:24 A Generic Approach to Flow-Sensitive Polymorphic Effects

mover (R), and that safe execution requires no particular lock claims on entry, but finishes
with the guarantee that the lock passed as an argument is held (we use syntactic sugar for
assumed effect constructors of appropriate arity). The readε primitive for well-synchronized
(non-data-race) reads is akin to a standard dereference operator, but because it works for
any reference — which may be associated with any lock and store values of any type — the
choice of lock and type must be passed as arguments before the reference itself. Given the
lock, cell type, and reference, the final latent effect indicates that the operation requires the
specified lock to be held at invocation, preserves ownership, and is a both mover (B).

We give a stylized definition of the (partial) semantics function for primitives as acting
on not only states but also state types, giving the monotonically increasing state type for
each primitive, as required of the parameters. We also omit restating the dynamic effect in
our J−K; we take it to be the final effect of the corresponding entry in δ with appropriate
value substitutions made — as required by the type system. The definitions easily satisfy the
primitive preservation property assumed by the type system. We take as the partial order
on StateEnv the standard partial order on partial functions, with δ as its least element.

These parameters are adequate to write and type terms like the following atomic function
that reads from a supplied lock-protected reference (permitting syntactic sugar for brevity):

∅ ` λ x. λ r . acquire x; let y = readε x [bool] r in (release x; y)

:

(
Πx : lock (∅,∅)⊗B−−−−−−→ Πr : ref S(x) bool (∅,∅)⊗A−−−−−−→ bool

)
| (∅,∅)⊗ B

CAT is a properly multi-threaded language, while our language is not. As we noted
earlier, our aim is to preserve well-typing, not dynamic semantics, so our translation of fork
will not model concurrent semantics. Blocks of code that do not fork or rely on other threads
should run as expected, though we do not prove this.

CAT’s constants, primitives (new lock, etc.), and mutexes can be translated in almost
the obvious way for our framework, currying their primitives and extending that set with
constants and the mutex names described above. The tricky bit is that CAT presumes some
unspecified race freedom analysis and unspecified type system have already been applied to
distinguish racing and well-synchronized reads, and to rule out basic type errors. Our terms
require lock and type information to be explicitly present in the term, so we assume, beyond
those unspecified analyses, operations LockFor, RefTypeOf, and TypeOf to extract the relevant
local lock names and types. For a term produced using these operations to type-check in our
core language will naturally require a degree of consistency between the unspecified analyses
and the checks of our core language for the lock multiset quantale. However the details are
not necessary to work out, because our relation is conditioned on the assumption that the
translation does type check in our core language.

Conditionals and while loops are translated in the obvious inductive way — note that
aside from CAT’s type system lacking basic types, the handling of atomicity effects is
structured exactly as our rules for those constructs. To handle currying, we adopt the
notations λ x. e ≡ λ x1 . . . λ xn. e for an n-ary closure, and e e′ ≡ (. . . (e e′1) . . . e′n) for n-
ary function application. Note that when typing the expanded forms, the effects of all
but the innermost expanded lambda expression can simply be I , making the overall effect
of the expanded application the left-to-right sequenced effects of the function and each
argument followed by the effect of the inner-most closure. We also use the shorthand
wraplock e ≡ let x = new lock() in (acquire x; e; release x; ()). The atomicity of this
expression is A if and only if e’s atomicity is less than A. Other translations are as follows,
omitting analogous primitive translations:



C. S. Gordon 13:25

J p(e) K =p JeK J eF(e) K =JeK JeK
J f (x)e K =(λ x. JeK) Jatomic eK =req atomic (λ .wraplock JeK); JeK
Jfork eK =let = (λ . JeK) in wraplock () J x• K =read• 〈LockFor(x)〉 〈RefTypeOf(x)〉 x

We assume the translation process produces a mapping from generated subterms back to the
original CAT term (specifically, mapping closures back to CAT’s named functions). atomic
expression are translated to capture the expression in a dynamically-meaningless thunk
passed as a parameter requiring an atomic effect, but run unconditionally. The unconditional
execution allows the actual atomicity of e to be used later, as in CAT. fork operations
are translated in a way that makes the forked thread computationally irrelevant (but, by
induction, preserves typeability and effects) and locally carries an atomic effect as in the
type rule.

The theorem we would like to prove is that translating any well-typed CAT term produces
a term in our core language with the corresponding type and effect. Unfortunately, CAT is
untyped aside from atomicities, so there is no type to translate, and CAT itself cannot check
correct use of well-synchronized vs. racy reads. Instead, we prove an “un-embedding” lemma
by induction on the CAT term:

I Lemma 26 (Unembedding CAT from L ⊗ A). Given a CAT term t, for any Γ, τ , and
effect l ⊗ e ∈ (L⊗A)(Γ) such that Γ ` JtK : τ | l ⊗ e, under the CAT environment Γ̂ mapping
each function name to the final effect of its n-ary closure translation, Γ̂ ` t : e.

9 Related and Future Work

The closely related work is split among three major groups: generic effect systems, algebraic
models of sequential computation, and concrete effect systems.

9.1 Generic Effect Systems
We know of only three generic characterizations of effect systems prior to ours, none of which
handles sequential effects or is extensible with new primitives.

Marino and Millstein give a generic model of a static commutative effect system [42]
for a simple extension of the lambda calculus. Their formulation is motivated explicitly
by the view of effects as capabilities, which pervades their formalism — effects there are
sets of capabilities, values can be tagged with sets of capabilities, and subeffecting follows
from set inclusion. They do not consider polymorphism (beyond the naive exponential-cost
approach of substituting let bindings at type checking). They do however also parameterize
their development by an insightful choice of adjust to change the capabilities available within
some evaluation context and check to check the capabilities required by some redex against
those available, allowing great flexibility in how effects are managed.

Henglein et al. [31] give a simple expository effect system to introduce the technical
machinery added to a standard typing judgment in order to track (commutative) effects.
Like like Marino and Millstein they use qualifiers as a primitive to introduce effects. Because
their goals were instructional rather than technical, the calculus is not used for much (it
precedes a full typed region calculus [55]).

Rytz et al. [50] offer a collection of insights for building manageable effect systems, notably
the relative effect polymorphism mentioned earlier [49] (inspired by anchored exceptions [59])
and an approach for managing the simultaneous use of multiple effect systems with modest
annotation burden. The system was given abstractly, with respect to a lattice of effects.
Toro and Tanter later implemented this as as a polymorphic extension [58] to Schwerter et

ECOOP 2017



13:26 A Generic Approach to Flow-Sensitive Polymorphic Effects

al.’s gradual effect systems [3]. Their implementation is again parameterized with respect to
an effect lattice, supporting only closed effects (i.e., no singletons).

9.2 Algebraic Approaches to Computation
Our effect quantales are an example of an algebraic approach to modeling sequential com-
putation. There are many closely-related approaches beyond those discussed in Section
7, such as action logic [48] and Kleene Algebras (KAs), and Kleene Algebras with Tests
(KATs) [39]. Each of these has some partial order, and an associative binary operation that
distributes over joins (and meets). Some KAs also look very much like effect quantales: one
standard example is a KA of execution traces, similar to the effect systems mentioned in
Section 4.3. However, Kleene Algebras and relatives are intended to model the semantics of
a possibly-failing computation, rather than a classification of “successful” computations, and
thus carries a ring structure unsuitable for effect systems. The requirement that the KA
element 0 of the partial order is nilpotent for sequencing (0 · x = 0 = x · 0) but also least
in the partial order (0 + x = x = x + 0) makes these systems unsuitable for effect systems.
Some effects have no sensible least element: for locking, this would be an effect e that is
considered to both preserve lock sets (e v (∅,∅)) and also change them (e.g., e v (∅, {`})
among others). For those systems where a least element does make sense (atomicity without
locking, or subsuming commutative effects), their least element ⊥ is always the identity for
sequencing — ⊥ � x = x = x � ⊥. The ring requirements would require A � B � A = B for
atomicity, which fails to reflect that such a sequence is not atomic.

9.3 Concrete Effect Systems
We discussed several example sequential effect systems throughout, notably Flanagan and
Abadi’s Types for Safe Locking [18] (the precursor to RCC/Java [19]), and Flanagan and
Qadeer’s Types for Atomicity [21] (again a precursor to a full Java version [20]). This atomicity
work is one of the best-known examples of a sequential effect system. Coupling the atomicity
structures developed there with a sequential version of lockset tracking for unstructured
locking primitives gives rise to interesting effect quantales, which can be separately specified
and then combined to yield a complete effect system.

Suenaga gives a sequential effect system for ensuring deadlock freedom in a language
with unstructured locking primitives [53], which is the closest example we know of to our
lockset effect quantale. However, Suenaga’s lock tracking is structured a bit differently from
ours: he tracks the state of a lock as either explicitly present but unowned (by the current
thread), or owned by the current thread, thus not reasoning about recursive lock acquisition.
This is isomorphic to a set, rather than a multiset, of locks (a subset of a known set of all
locks), and thus checks a different property than our lockset quantale. In fact, most prior
type systems tracking owned locks treat only this binary property. This discrepancy between
prior work and our lockset quantales leads to interesting, and slightly surprising subtleties.

Our first attempt to define the locking effect quantale sought to use only sets of locks,
rather than multisets, and to prohibit recursive lock acquisition. Indeed, such an effect
quantale can be defined, satisfying all required properties, for a fixed set of locks. But once
the set of locks is a parameter, the resulting indexed effect quantale is not collapsible! Viewing
this in terms of the type system, consider the term f = (λ l1. λ l2. acquire l1; acquire l2), which
would have type Πl1 : lock I→ Πl2 : lock (∅,{l1,l2})→ unit (ignoring atomicity). Intuitively,
applying this function to the same lock x twice (f x x) would eventually substitute the same
value for l1 and l2, yielding an expected overall effect of (∅, {x}) — the number of locks



C. S. Gordon 13:27

acquired shrank because the set would collapse, though the underlying term would try to
acquire the same lock twice. Moreover, after reducing the second application, the resulting
term would no longer by type-correct, as (∅, {x}) � (∅, {x}) = Err when holding a lock
twice cannot be represented! This is why the set-based lock tracking is not collapsible. Using
multisets as we do in Section 4 fixes this problem. Suenaga does not encounter this, because
his lack of closures and linear lock ownership do not permit two variables used for locking
to later be unified by substitution. Other work such as RCC/Java [19] avoids the issue
because while the system uses sets, the dynamic semantics permit recursive acquisition and
count recursive claims in the evaluation contexts.

Many other systems that are not typically presented as effect systems can be modeled
as sequential effect systems. Notably this includes systems with flow-sensitive additional
contexts (e.g., sets of capabilities) as alluded to in Section 2, or fragments of type information
in systems that as-presented perform strong updates on the local variable contexts (e.g.,
the state transitions tracked by typestate [60, 24], though richer systems require dynamic
reflection of typestate checks into types [54], which is a richer form of dependent effects than
our framework currently tracks). Other forms of behavioral type systems have at least a close
correspondence to known effect systems, which are likely to be adaptable to our framework
in the future: consider the similarity between session types [32] and Nielson and Nielson’s
effect system for communication in CML [46].

9.4 Limitations and Future Work
There remain a few important aspects of sequential effect systems that neither we, nor related
work on semantic characterizations of sequential effects, have considered. One important
example is the presence of a masking construct [41, 25] that locally suppresses some effect,
such as try-catch blocks or letregion in region calculi. Another is serious consideration of
control effects, which are alluded to in Mycroft et al.’s work [45], but otherwise have not
been directly considered in the algebraic characterizations of sequential effects.

Our generic language carries some additional limitations. It lacks subtyping and “subef-
fecting,” which enhance usability of the system, but these should not present any new
technical difficulties. It also lacks support for adding new evaluation contexts through the
parameters, which is important for modeling constructs like letregion. Allowing this would
require more sophisticated machinery for composing partial semantic definitions [5, 12, 13].

Beyond the effect-flavored variation [41, 55] of parametric polymorphism and the polymor-
phism arising from singleton types as we consider here, the literature contains bounded [30]
(or more generally, constraint-based) effect polymorphism, and unique “lightweight” forms of
effect polymorphism [50, 27] with no direct parallel in traditional approaches to polymorphism.
Extending our approach for these seems sensible and feasible.

Finally, we have not considered concurrency and sequential effects, beyond noting the gap
between joinoids’ fork-join style operator and common source-level concurrency constructs.
As a result we have not directly proven that our multiset-of-locks effect quantale ensures
data race freedom or atomicity for a true concurrent language.

10 Conclusions

We have given a new algebraic characterization — effect quantales — for sequential effect
systems, and shown it sufficient to implement complete effect systems, unlike previous
approaches that focused on a subset of real language features. We used them to model
classic examples from the sequential effect system literature, and gave a syntactic soundness

ECOOP 2017



13:28 A Generic Approach to Flow-Sensitive Polymorphic Effects

proof for the first generic sequential effect system. Moreover, we give the first investigation
of the generic interaction between (singleton) dependent effects and algebraic models of
sequential effects, and a powerful way to derive an appropriate iteration operator on effects
for many effect quantales. We believe this is an important basis for future work designing
complete sequential effect systems, and for generic effect system implementation frameworks
supporting sequential effects.

References
1 Martin Abadi, Cormac Flanagan, and Stephen N. Freund. Types for safe locking: Static

race detection for java. ACM Trans. Program. Lang. Syst., 28(2):207–255, March 2006.
doi:10.1145/1119479.1119480.

2 Samson Abramsky and Steven Vickers. Quantales, observational logic and process se-
mantics. Mathematical Structures in Computer Science, 3(02):161–227, 1993. doi:
10.1017/S0960129500000189.

3 Felipe Bañados Schwerter, Ronald Garcia, and Éric Tanter. A theory of gradual effect sys-
tems. In Proceedings of the 19th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’14, pages 283–295. ACM, 2014. doi:10.1145/2628136.2628149.

4 Nick Benton and Peter Buchlovsky. Semantics of an Effect Analysis for Exceptions. In
TLDI, 2007. doi:10.1145/1190315.1190320.

5 Lars Birkedal and Rasmus Ejlers Møgelberg. Intensional type theory with guarded recursive
types qua fixed points on universes. In Logic in Computer Science (LICS), 2013 28th Annual
IEEE/ACM Symposium on, pages 213–222. IEEE, 2013. doi:10.1109/LICS.2013.27.

6 Garrett Birkhoff. Lattice theory, volume 25 of Colloquium Publications. American Mathe-
matical Soc., 1940. Third edition, eighth printing with corrections, 1995.

7 Thomas Scott Blyth. Lattices and ordered algebraic structures. Springer Science & Business
Media, 2006. doi:10.1007/b139095.

8 Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen Heumann,
Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung, and Mohsen Vakilian.
A Type and Effect System for Deterministic Parallel Java. In OOPSLA, 2009. doi:10.
1145/1640089.1640097.

9 Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership Types for Safe
Programming: Preventing Data Races and Deadlocks. In OOPSLA, 2002. doi:10.1145/
582419.582440.

10 Chandrasekhar Boyapati and Martin Rinard. A Parameterized Type System for Race-Free
Java Programs. In OOPSLA, 2001. doi:10.1145/504282.504287.

11 Karl Crary, David Walker, and Greg Morrisett. Typed memory management in a calculus of
capabilities. In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 262–275. ACM, 1999. doi:10.1145/292540.292564.

12 Benjamin Delaware, Bruno C. d. S. Oliveira, and Tom Schrijvers. Meta-theory à la carte.
In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’13, pages 207–218. ACM, 2013. doi:10.1145/2429069.
2429094.

13 Benjamin Delaware, Steven Keuchel, Tom Schrijvers, and Bruno C.d.S. Oliveira. Modular
monadic meta-theory. In Proceedings of the 18th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’13, pages 319–330. ACM, 2013. doi:10.1145/2500365.
2500587.

14 Mike Dodds, Xinyu Feng, Matthew Parkinson, and Viktor Vafeiadis. Deny-guarantee rea-
soning. In Proceedings of the 18th European Symposium on Programming (ESOP), pages
363–377. Springer Berlin Heidelberg, 2009. doi:10.1007/978-3-642-00590-9_26.

http://dx.doi.org/10.1145/1119479.1119480
http://dx.doi.org/10.1017/S0960129500000189
http://dx.doi.org/10.1017/S0960129500000189
http://dx.doi.org/10.1145/2628136.2628149
http://dx.doi.org/10.1145/1190315.1190320
http://dx.doi.org/10.1109/LICS.2013.27
http://dx.doi.org/10.1007/b139095
http://dx.doi.org/10.1145/1640089.1640097
http://dx.doi.org/10.1145/1640089.1640097
http://dx.doi.org/10.1145/582419.582440
http://dx.doi.org/10.1145/582419.582440
http://dx.doi.org/10.1145/504282.504287
http://dx.doi.org/10.1145/292540.292564
http://dx.doi.org/10.1145/2429069.2429094
http://dx.doi.org/10.1145/2429069.2429094
http://dx.doi.org/10.1145/2500365.2500587
http://dx.doi.org/10.1145/2500365.2500587
http://dx.doi.org/10.1007/978-3-642-00590-9_26


C. S. Gordon 13:29

15 Peter Dybjer. Internal type theory. In International Workshop on Types for Proofs and
Programs, pages 120–134. Springer, 1995. doi:10.1007/3-540-61780-9_66.

16 Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen Hunt, James R.
Larus, and Steven Levi. Language support for fast and reliable message-based com-
munication in singularity os. In Proceedings of the 1st ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems 2006, EuroSys ’06, pages 177–190. ACM, 2006.
doi:10.1145/1217935.1217953.

17 Cormac Flanagan and Martín Abadi. Object Types against Races. In CONCUR, 1999.
doi:10.1007/3-540-48320-9_21.

18 Cormac Flanagan and Martín Abadi. Types for Safe Locking. In ESOP, 1999. doi:
10.1007/3-540-49099-X_7.

19 Cormac Flanagan and Stephen N. Freund. Type-Based Race Detection for Java. In PLDI,
2000. doi:10.1145/349299.349328.

20 Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. In Proceedings
of the ACM SIGPLAN 2003 Conference on Programming Language Design and Implemen-
tation, PLDI ’03, pages 338–349. ACM, 2003. doi:10.1145/781131.781169.

21 Cormac Flanagan and Shaz Qadeer. Types for atomicity. In Proceedings of the 2003 ACM
SIGPLAN International Workshop on Types in Languages Design and Implementation,
TLDI ’03, pages 1–12. ACM, 2003. doi:10.1145/604174.604176.

22 Laszlo Fuchs. Partially ordered algebraic systems, volume 28 of International Series of
Monographs on Pure and Applied Mathematics. Dover Publications, 2011. Reprint of 1963
Pergamon Press version.

23 Nikolaos Galatos, Peter Jipsen, Tomasz Kowalski, and Hiroakira Ono. Residuated lattices:
an algebraic glimpse at substructural logics, volume 151 of Studies in Logic and the Foun-
dations of Mathematics. Elsevier, 2007.

24 Ronald Garcia, Éric Tanter, Roger Wolff, and Jonathan Aldrich. Foundations of typestate-
oriented programming. ACM Trans. Program. Lang. Syst., 36(4):12:1–12:44, October 2014.
doi:10.1145/2629609.

25 David K. Gifford and John M. Lucassen. Integrating Functional and Imperative Program-
ming. In Proceedings of the 1986 ACM Conference on LISP and Functional Programming,
LFP ’86, 1986. doi:10.1145/319838.319848.

26 Colin S. Gordon. A Generic Approach to Flow-Sensitive Polymorphic Effects (Extended Ver-
sion). Technical Report arXiv cs.PL 1705.02264, Computing Research Repository (CoRR),
May 2017. URL: https://arxiv.org/abs/1705.02264.

27 Colin S. Gordon, Werner Dietl, Michael D. Ernst, and Dan Grossman. JavaUI: Effects for
Controlling UI Object Access. In Proceedings of the 27th European Conference on Object-
Oriented Programming (ECOOP’13), 2013. doi:10.1007/978-3-642-39038-8_8.

28 Colin S. Gordon, Michael D. Ernst, and Dan Grossman. Static Lock Capabilities for
Deadlock Freedom. In Proceedings of the 8th ACM SIGPLAN Workshop on Types in
Language Design and Implementation (TLDI’12), 2012. doi:10.1145/2103786.2103796.

29 James Gosling, Bill Joy, Guy L Steele, Gilad Bracha, and Alex Buckley. The Java Language
Specification: Java SE 8 Edition. Pearson Education, 2014.

30 Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Ch-
eney. Region-based memory management in cyclone. In Proceedings of the ACM SIGPLAN
2002 Conference on Programming Language Design and Implementation, PLDI ’02, pages
282–293. ACM, 2002. doi:10.1145/512529.512563.

31 Fritz Henglein, Henning Makholm, and Henning Niss. Effect types and region-based mem-
ory management. In Benjamin C. Pierce, editor, Advanced Topics in Types and Program-
ming Languages, chapter 3, pages 87–136. MIT Press, 2005.

ECOOP 2017

http://dx.doi.org/10.1007/3-540-61780-9_66
http://dx.doi.org/10.1145/1217935.1217953
http://dx.doi.org/10.1007/3-540-48320-9_21
http://dx.doi.org/10.1007/3-540-49099-X_7
http://dx.doi.org/10.1007/3-540-49099-X_7
http://dx.doi.org/10.1145/349299.349328
http://dx.doi.org/10.1145/781131.781169
http://dx.doi.org/10.1145/604174.604176
http://dx.doi.org/10.1145/2629609
http://dx.doi.org/10.1145/319838.319848
https://arxiv.org/abs/1705.02264
http://dx.doi.org/10.1007/978-3-642-39038-8_8
http://dx.doi.org/10.1145/2103786.2103796
http://dx.doi.org/10.1145/512529.512563


13:30 A Generic Approach to Flow-Sensitive Polymorphic Effects

32 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session
Types. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’08, 2008. doi:10.1145/1328438.1328472.

33 Galen Hunt, Mark Aiken, Manuel Fähndrich, Chris Hawblitzel, Orion Hodson, James Larus,
Steven Levi, Bjarne Steensgaard, David Tarditi, and Ted Wobber. Sealing os processes
to improve dependability and safety. In Proceedings of the 2Nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007, EuroSys ’07, pages 341–354. ACM, 2007.
doi:10.1145/1272996.1273032.

34 Galen C. Hunt and James R. Larus. Singularity: Rethinking the software stack. SIGOPS
Oper. Syst. Rev., 41(2):37–49, April 2007. doi:10.1145/1243418.1243424.

35 Bart Jacobs. Categorical logic and type theory, volume 141 of Studies in Logic and the
Foundations of Mathematics. Elsevier, 1999.

36 Shin-ya Katsumata. Parametric effect monads and semantics of effect systems. In Pro-
ceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, pages 633–645. ACM, 2014. doi:10.1145/2535838.2535846.

37 Ming Kawaguchi, Patrick Rondon, Alexander Bakst, and Ranjit Jhala. Deterministic Par-
allelism via Liquid Effects. In PLDI, 2012. doi:10.1145/2254064.2254071.

38 Eric Koskinen and Tachio Terauchi. Local temporal reasoning. In Proceedings of the
Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic
(CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), CSL-LICS ’14, pages 59:1–59:10, New York, NY, USA, 2014. ACM. doi:10.1145/
2603088.2603138.

39 Dexter Kozen. Kleene algebra with tests. ACM Transactions on Programming Languages
and Systems (TOPLAS), 19(3):427–443, 1997. doi:10.1145/256167.256195.

40 Richard J. Lipton. Reduction: A Method of Proving Properties of Parallel Programs. Com-
munications of the ACM, 18(12):717–721, December 1975. doi:10.1145/361227.361234.

41 J. M. Lucassen and D. K. Gifford. Polymorphic Effect Systems. In Proceedings of the 15th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
1988. doi:10.1145/73560.73564.

42 Daniel Marino and Todd Millstein. A Generic Type-and-Effect System. In TLDI, 2009.
doi:10.1145/1481861.1481868.

43 Christopher J. Mulvey. &. Suppl. Rend. Circ. Mat. Palermo (2), 12:99–104, 1986.
44 Christopher J Mulvey and Joan W Pelletier. A quantisation of the calculus of relations. In

Canad. Math. Soc. Conf. Proc. 13, pages 345–360, 1992.
45 Alan Mycroft, Dominic Orchard, and Tomas Petricek. Effect systems revisited—control-

flow algebra and semantics. In Semantics, Logics, and Calculi, pages 1–32. Springer, 2016.
doi:10.1007/978-3-319-27810-0_1.

46 Flemming Nielson and Hanne Riis Nielson. From cml to process algebras. In International
Conference on Concurrency Theory (CONCUR), pages 493–508. Springer, 1993. doi:10.
1007/3-540-57208-2_34.

47 Wesley Phoa. An introduction to fibrations, topos theory, the effective topos and modest
sets. Technical Report ECS-LFCS-92-208, University of Edinburgh, 1992.

48 Vaughan Pratt. Action logic and pure induction. In European Workshop on Logics in
Artificial Intelligence, pages 97–120. Springer, 1990. doi:10.1007/BFb0018436.

49 Lukas Rytz and Martin Odersky. Relative Effect Declarations for Lightweight Effect-
Polymorphism. Technical Report EPFL-REPORT-175546, EPFL, 2012.

50 Lukas Rytz, Martin Odersky, and Philipp Haller. Lightweight Polymorphic Effects. In
European Conference on Object-Oriented Programming (ECOOP 2012), 2012. doi:10.
1007/978-3-642-31057-7_13.

http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1145/1272996.1273032
http://dx.doi.org/10.1145/1243418.1243424
http://dx.doi.org/10.1145/2535838.2535846
http://dx.doi.org/10.1145/2254064.2254071
http://dx.doi.org/10.1145/2603088.2603138
http://dx.doi.org/10.1145/2603088.2603138
http://dx.doi.org/10.1145/256167.256195
http://dx.doi.org/10.1145/361227.361234
http://dx.doi.org/10.1145/73560.73564
http://dx.doi.org/10.1145/1481861.1481868
http://dx.doi.org/10.1007/978-3-319-27810-0_1
http://dx.doi.org/10.1007/3-540-57208-2_34
http://dx.doi.org/10.1007/3-540-57208-2_34
http://dx.doi.org/10.1007/BFb0018436
http://dx.doi.org/10.1007/978-3-642-31057-7_13
http://dx.doi.org/10.1007/978-3-642-31057-7_13


C. S. Gordon 13:31

51 Vijay A. Saraswat, Martin Rinard, and Prakash Panangaden. The Semantic Foundations of
Concurrent Constraint Programming. In Proceedings of the 18th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’91, pages 333–352. ACM,
1991. doi:10.1145/99583.99627.

52 Christian Skalka. Types and trace effects for object orientation. Higher-Order and Symbolic
Computation, 21(3):239–282, 2008. doi:10.1007/s10990-008-9032-6.

53 Kohei Suenaga. Type-based deadlock-freedom verification for non-block-structured lock
primitives and mutable references. In Asian Symposium on Programming Languages and
Systems, pages 155–170. Springer, 2008. doi:10.1007/978-3-540-89330-1_12.

54 Joshua Sunshine, Karl Naden, Sven Stork, Jonathan Aldrich, and Éric Tanter. First-class
state change in plaid. In Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA ’11, pages 713–732,
New York, NY, USA, 2011. ACM. doi:10.1145/2048066.2048122.

55 Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and effect inference. Jour-
nal of functional programming, 2(03):245–271, 1992. doi:10.1017/S0956796800000393.

56 Ross Tate. The sequential semantics of producer effect systems. In POPL ’13: Proceedings
of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of Programming
Languages. ACM, 2013. doi:10.1145/2429069.2429074.

57 Mads Tofte and Jean-Pierre Talpin. Implementation of the Typed Call-by-value λ-calculus
Using a Stack of Regions. In Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’94, pages 188–201, 1994. doi:10.1145/
174675.177855.

58 Matías Toro and Éric Tanter. Customizable gradual polymorphic effects for scala. In
Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2015, pages 935–953. ACM,
2015. doi:10.1145/2814270.2814315.

59 Marko van Dooren and Eric Steegmans. Combining the robustness of checked exceptions
with the flexibility of unchecked exceptions using anchored exception declarations. In
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-oriented Program-
ming, Systems, Languages, and Applications, OOPSLA ’05, pages 455–471. ACM, 2005.
doi:10.1145/1094811.1094847.

60 Roger Wolff, Ronald Garcia, Éric Tanter, and Jonathan Aldrich. Gradual typestate. In
ECOOP 2011 - Object-Oriented Programming - 25th European Conference, Lancaster, UK,
July 25-29, 2011 Proceedings, pages 459–483, 2011. doi:10.1007/978-3-642-22655-7_22.

61 David N Yetter. Quantales and (noncommutative) linear logic. The Journal of Symbolic
Logic, 55(01):41–64, 1990. doi:10.2307/2274953.

ECOOP 2017

http://dx.doi.org/10.1145/99583.99627
http://dx.doi.org/10.1007/s10990-008-9032-6
http://dx.doi.org/10.1007/978-3-540-89330-1_12
http://dx.doi.org/10.1145/2048066.2048122
http://dx.doi.org/10.1017/S0956796800000393
http://dx.doi.org/10.1145/2429069.2429074
http://dx.doi.org/10.1145/174675.177855
http://dx.doi.org/10.1145/174675.177855
http://dx.doi.org/10.1145/2814270.2814315
http://dx.doi.org/10.1145/1094811.1094847
http://dx.doi.org/10.1007/978-3-642-22655-7_22
http://dx.doi.org/10.2307/2274953




IceDust 2: Derived Bidirectional Relations and
Calculation Strategy Composition∗

Daco C. Harkes1 and Eelco Visser2

1 Delft University of Technology, Delft, The Netherlands
d.c.harkes@tudelft.nl

2 Delft University of Technology, Delft, The Netherlands
e.visser@tudelft.nl

Abstract
Derived values are values calculated from base values. They can be expressed with views in
relational databases, or with expressions in incremental or reactive programming. However,
relational views do not provide multiplicity bounds, and incremental and reactive programming
require significant boilerplate code in order to encode bidirectional derived values. Moreover, the
composition of various strategies for calculating derived values is either disallowed, or not checked
for producing derived values which will be consistent with the derived values they depend upon.

In this paper we present IceDust2, an extension of the declarative data modeling language
IceDust with derived bidirectional relations with multiplicity bounds and support for statically
checked composition of calculation strategies. Derived bidirectional relations, multiplicity bounds,
and calculation strategies all influence runtime behavior of changes to data, leading to hundreds
of possible behavior definitions. IceDust2 uses a product-line based code generator to avoid
explicitly defining all possible combinations, making it easier to reason about correctness. The
type system allows only sound composition of strategies and guarantees multiplicity bounds.
Finally, our case studies validate the usability of IceDust2 in applications.

1998 ACM Subject Classification D.3.2 Data-flow languages

Keywords and phrases Incremental Computing, Data Modeling, Domain Specific Language

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.14

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.3.2.1

1 Introduction

Derived values are values computed from base values. Base values are provided by the users
of an application. When base values change, derived values should change accordingly. A
key concern in implementing systems with derived values is minimizing the computational
effort that is spent to re-compute derived values after updates to base values. A key concern
in modeling systems with derived values is minimizing the programming effort to realize
such minimal computations. Ideally, one declaratively specifies how values are derived from
base values; from such a specification an efficient update strategy is generated automatically.
Declarative programming with derived values is an old idea, going back at least to incremental
computation of views in relational databases [12]. More recently it has seen much attention
in new fields. Incremental programming [13, 14, 15, 24, 31] uses previously calculated values

∗ This research was funded by the NWO VICI Language Designer’s Workbench project (639.023.206).

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Daco C. Harkes and Eelco Visser;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 14; pp. 14:1–14:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.14
http://dx.doi.org/10.4230/DARTS.3.2.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


14:2 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

field

directionality

unidirectional
(attribute)

bidirectional
(relation)

inverse
multiplicity ub

1 n

derivation 
type

normal default derived

calculation 
strategy

on-demand incremental eventual

expressionmultiplicity
upper bound

1 n

default implies unidirectional
unidirectional and not normal implies expression
normal implies no expression
normal implies incremental
incremental flow implies incremental
eventual flow implies incremental or eventual

or

mandatory

optional

multiplicity
lower bound

0 1

ordering

ordered unordered

ordering

ordered unordered

inverse 
multiplicity lb

0 1

flows

alternative

calculation 
strategy

on-demand
flow

incremental
flow

eventual
flow

Figure 1 Feature model for configuration of a field in IceDust and IceDust2.

to efficiently compute new ones. In (functional) reactive programming [7, 22, 23, 28] base
values are modeled as time-varying signals, and derived values are modeled as signals that
are automatically updated when the values of dependent signals change.

These techniques vary in expressiveness and in static guarantees for consistency. Derived
bidirectional relations can be expressed directly in the relational paradigm, but the relational
paradigm provides no guarantees on multiplicity bounds for derived values. On the other
hand, multiplicity bounds can be directly expressed with Option and Collection types in
incremental and reactive programming, but only unidirectional relations can be expressed
without encoding. Moreover, the composition of strategies for calculating derived values
is either disallowed [15], or composition is not statically checked to guarantee that derived
values will be consistent with the values they depend upon [23, 28]. For example, the
(accidental) dependency of incremental computations on on-demand computations can lead
to inconsistencies in incrementally computed values.

The IceDust data modeling language [15] supports declarative specification of derived
value attributes through separation of concerns. An IceDust data model definition consists
of entities with attributes and bidirectional relations between entities. Fields of entities
comprise attributes and the ends of bidirectional relations. IceDust fields vary independently
in multiplicity lower-bound and upper-bound, directionality (unidirectional or bidirectional),
derivation type (user value, default value, or calculated value), and calculation strategy. A
bidirectional field also defines a multiplicity bound for its inverse. This variability is captured
by the feature model1 in Figure 1. IceDust is a configuration language for this feature model.
Each field in a data model is a selection of features complying with this feature model.
However, the language does not support full orthogonality of feature selection. First, the
choice of calculation strategy is global, i.e. the chosen calculation strategy applies to all fields
in a data model; choosing different strategies for different fields is not supported. Second,
only attribute values can be derived; derivation of relation values is not supported.

In this paper we present IceDust2, an extension of IceDust with fully orthogonal configu-
ration selection supporting the following features:

1 A feature model is a compact representation of all the products of a software product line (SPL)[18]. A
product configuration is determined by a selection of features satisfying the constraints of the feature
model.



D.C. Harkes and E. Visser 14:3

Student

name : String

Assignment

name
question
deadline
minimum
avgGrade
passPerc

Submission

name
answer
deadline
finished
onTime
grade
pass

parent ?

children *

submissions * assignment 1 student 1 submissions *

children *

parent ?

: String
: String
: Datetime?
: Float?
: Float?
: Float?

: String
: String?
: Datetime?
: Datetime?
: Boolean
: Float?
: Boolean

Figure 2 Running example class diagram. Bidirectional relations are denoted by→←, and dotted
lines express derived relations.

In addition to derived value attributes, IceDust2 supports derived bidirectional relations.
Derived relations are computed incrementally or eventually, which requires incremental
maintenance of bidirectional relations.
Derived relations have multiplicity bounds. The type system statically checks that derived
relation computations are guaranteed to satisfy these bounds.
While IceDust only supports global selection of calculation strategies, IceDust2 sup-
ports local selection or composition of calculation strategies, which allows tuning the
re-calculation behavior of individual fields.
Not all combinations of strategies yield consistent re-calculation of derived values. The
IceDust2 type system checks that selected strategy compositions are sound.
While the selection of features in a data model specification is orthogonal, each combination
of features requires a specialized implementation in order to produce consistent results.
We address the combinatorial explosion of specializations using a product-line approach
to reduce the size of the compiler and make reasoning about its correctness feasible.

The paper is structured as follows. In the next section we examine IceDust and its
limitations and introduce IceDust2 for specifying derived bidirectional relations with mul-
tiplicity bounds and composition of calculation strategies. In Section 3 we analyze the
run-time interaction between derived values, bidirectional relations, multiplicity bounds, and
various calculation strategies. In Section 4 we define the operational semantics covering
all possible feature combinations. In Section 5 we describe the type system guaranteeing
sound composition of calculation strategies. In Section 6 we discuss two implementations of
IceDust2. In Section 7 we evaluate the expressiveness of the language with case studies. In
Section 8 we analyze the limitations entailed by static multiplicity checks on derived relations.
In Section 9 we compare IceDust2 to other approaches to declarative data modeling.

2 Declarative Data Modeling by Feature Selection

In this section we summarize the features of the IceDust data modeling language, analyze
its variability limitations, and introduce IceDust2, an extension of IceDust with orthogonal
feature selection.

2.1 Running Example.
To illustrate data modeling in IceDust and IceDust2, we use a simplified learning management
system as running example (Figures 2-4). Assignments are structured as a tree. For example,
the math assignment consists of an exam and a lab (Figure 3 center). Students submit
Submissions to these assignments. These submissions form trees as well, mirroring the

ECOOP 2017



14:4 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

alice : Student
name = “Alice”

bob : Student
name = “Bob”

math : Assign
name = “Math”
minimum = 6.0
deadline = 13-1-’17
avgGrade = …
passPerc = …

mathAlice : Sub
name = …
deadline = …
grade = …
pass = …

exam : Assign
name = “Exam”
question = “1+1=?”
minimum = 5.0
avgGrade = …
passPerc = …

lab : Assign
name = “Practical”
question = “1/0=?”
minimum = 5.0
avgGrade = …
passPerc = …

mathBob : Sub
name = …
deadline=1-2-’17
grade = …
pass = …

examAlice : Sub
name = …
answer = “Good”
deadline = …
finished = 7-1-’17
onTime = …
grade = 7.0
pass = …

labAlice : Sub
name = …
answer = “Great”
deadline = …
finished = 3-1-’17
onTime = …
grade = 8.0
pass = …

labBob : Sub
name = …
answer = “Perfect”
deadline = …
finished = 28-1-’17
onTime = …
grade = 10.0
pass = …

examBob : Sub
name = …
answer = “Bad”
deadline = …
finished=7-1-’17
onTime = …
grade = 3.0
pass = …

children

children children

submissions submissions

Figure 3 Running example data. References are denoted by →, bidirectional relation values are
denoted by →←, derived references are dotted arrows, and derived attribute values are dots.

module example (incremental)
entity Assignment (eventual) {

name : String
question : String?
deadline : Datetime?
minimum : Float
avgGrade : Float? = avg(submissions.grade)
passPerc : Float? = count(submissions.filter(x=>x.pass)) / count(submissions)

}
entity Student {

name : String
}
entity Submission {

name : String = assignment.name + " " + student.name (on−demand)
answer : String?
deadline : Datetime? = assignment.deadline <+ parent.deadline (default)
finished : Datetime?
onTime : Boolean = finished <= deadline <+ true
grade : Float? = if(conj(children.pass)) avg(children.grade) (default)
pass : Boolean = grade >= assignment.minimum && onTime <+ false

}
relation Submission.student 1 <−> * Student.submissions
relation Submission.assignment 1 <−> * Assignment.submissions
relation Assignment.parent ? <−> * Assignment.children
relation Submission.parent ? =

assignment.parent.submissions.find(x => x.student == student)
<−> * Submission.children

Figure 4 Running example IceDust2 specification.



D.C. Harkes and E. Visser 14:5

assignment tree (see Alice’s and Bob’s submission trees in Figure 3). The tree structure of
submissions is derived in order to avoid redundant data, which can lead to inconsistencies.

Assignments have optional deadlines. Student submissions inherit their deadline from
the assignment or from their parent submission, unless the deadline is overridden by the
instructor to provide a personal deadline for a student. For example, mathBob’s deadline in
Figure 3 is supplied by the instructor, while mathAlice’s deadline is the assignment deadline.
Leaf submissions are graded by assigning a grade to the grade attribute (overriding the
default value), while the grades of non-leaf submissions depend on the grades of their child
submissions. Note that students only receive a grade for a collection-submission if all of
the child submissions are pass, and a submission is only a pass when its grade is above
the minimum assignment grade and all its children pass. Finally, every assignment has an
average grade and pass percentage.

Most derived values in this example are calculated incrementally, providing fast per-
formance for reads. The course statistics are calculated eventually, providing better
performance on writes to grades. Student grades need to be up-to-date, but statistics can
be (temporarily) outdated. The submission name is calculated on-demand as it need not be
cached. This example is interesting as it has a derived bidirectional relation (Submission’s
parent-children) with a multiplicity bound on parent. Moreover, the derived relation is
used in both directions in other derived values: parent is used in inheriting deadlines and
children is used in calculating grades.

2.2 Orthogonality of Field Configurations in IceDust
An IceDust data model definition consists of entities with fields. Instantiations of entities
are objects that assign values to fields. A field declaration specifies the type of values that
can be assigned to the field and several other configuration elements. We analyze IceDust’s
configurability in terms of the feature model of Figure 1.

Multiplicities. A source of boilerplate code in regular programming languages are nullable
values and explicit collections used to encode the cardinality of values. Instead of encoding
cardinalities in (collection) types, IceDust supports the specification of multiplicities as a
separate, orthogonal concern, following the work of Steinmann [29] and Harkes et al. [16].
Multiplicity modifiers on types express that a field has exactly one value (1), zero or one
value (?), zero or more values (*), or one or more values (+). All operators are defined for all
cardinalities of operands. For example, an expression calculating average grades based on
children (implicit collection) and grade (implicitly nullable) is specified as:

mathAlice // : Submission ~ 1
mathAlice.children // : Submission ~ *
mathAlice.children.grade // : Float ~ *
mathAlice.children.grade.avg() // : Float ~ ?

Directionality. There are two kinds of fields. Attributes such as grade refer to a (collection
of) primitive value(s). Reference fields refer to a (collection of) object(s). In object-oriented
languages bidirectional relations between entities are modeled by a reference field on each side
of the relation. Keeping such a relation consistent requires work. That is, when assigning to a
field on one side of the relation, the other side should be made consistent with that assignment
(as we will discuss in more detail in the next section). To avoid the associated boilerplate
code, IceDust provides ‘native’ bidirectional relations between entities. For example, the
following relation defines a tree structure for submissions:

ECOOP 2017



14:6 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

w rcalc

w calc r

w

calc

r

On-demand

Incremental

Eventual

call

return

flag dirty

w write base value

r read derived value

calc calculate derived value

Figure 5 Thread activation diagrams for different calculation strategies.

entity Submission { }
relation Submission.children * <−> ? Submission.parent

IceDust guarantees that the reference fields that implement a relation are kept consistent at
run time. Thus, IceDust supports unidirectional primitive valued attributes and bidirectional
relations between entities. Note that multiplicities apply equally to attributes and the
endpoints of relations.

Derivation Type. The values of normal attributes are directly assigned by (the users of)
an application. Similarly, normal relations are constructed by an application. A derived
value attribute specifies an expression that calculates the attribute’s value from the values of
other attributes and relations. For example, the grade attribute is defined as the average of
the grades of the children’s grades:

entity Submission {
grade : Float? = children.grade.avg()

}
relation Submission.children * <−> ? Submission.parent

Derived and user-defined attributes can be combined in a default-valued attribute. If a
value is explicitly assigned to such an attribute, that value is returned. Otherwise, the
calculated (default) value is returned. For example, a submission grade can be calculated
from its children’s grades, but it can also be set by the instructor:

grade : Float? = children.grade.avg() (default)

Calculation Strategies. In object-oriented languages, calculated values can be specified
with getter methods, encoding an on-demand calculation strategy; the value is calculated
each time it is read. Switching to a cached implementation strategy requires invasive code
changes. Derived value attributes in IceDust can be configured with different calculation
strategies orthogonally to the expression of the calculation. The difference between the
different calculation strategies is the point in time at which derived values are calculated.
Figure 5 shows the differences by means of thread activation diagrams in response to incoming
reads and writes. The on-demand strategy calculates derived values when they are read.
This means that writes to base values, on which derived values can depend, will be fast,
but reads of derived values will be slow. The incremental strategy recalculates all derived
values that transitively depend on base value directly after an update to a base value. Writes
will be slow, but reads will be fast. Finally, the eventual strategy schedules recalculating on
a separate thread. Writes and reads will be fast, but consistency is not guaranteed: possibly
outdated derived values might be read.



D.C. Harkes and E. Visser 14:7

2.3 Generalizing Data Modeling with IceDust
IceDust limits the possible configurations of the feature model. First, only unidirectional
fields (attributes) can be derived, not bidirectional relations. Second, all fields in an IceDust
program are required to have the same calculation strategy. In this paper we relax these
constraints to enable a more general combination of features.

Derived Relations. In the relational model, derived bidirectional relations can be expressed
directly in relational terms. For example, the derived relation in Figure 2 is expressed in
Datalog as follows:

submissionParent(?s1, ?s2) :−
submissionAssignment(?s1, ?a1),
submissionAssignment(?s2, ?a2),
assignmentParent (?a1, ?a2),
submissionStudent (?s1, ?st),
submissionStudent (?s2, ?st).

However, the relational paradigm specifies no multiplicity bounds: a Submission can have
[0, n) parents. (Which is a problem if a submission should inherit its parent deadline, and
there might be multiple parents.) On the other hand, in reactive or incremental programming,
for example with REScala [28], a multiplicity bound of [0, 1] can be specified (the type is
Option[Submission]):

class Submission {
val parent: DependentSignal[Option[Submission]] = Signal {
assignment().flatMap(_.parent()).map(_.submissions()).getOrElse(Nil)

.find(_.student() == student())
}

}

However, this only specifies a unidirectional relation. Making this relation bidirectional
in REScala requires defining a children signal, keeping track of the previous parent, and
updating the children signal on parent change events:

val children : VarSynt[List[Submission]] = Var(Nil)
var oldParent : Option[Submission] = None
val parentChanged: Event[Option[Submission]] = parent.changed
parentChanged += ((newParent: Option[Submission]) => {

oldParent.foreach { o => o.children() = o.children.get.filter(_ != this) }
newParent.foreach { n => n.children() = this :: n.children.get }
oldParent = newParent

})

To avoid such boilerplate and provide multiplicity bounds we generalize IceDust’s derived
values to apply to relations and attributes, rather than just attributes. A derived relation is
expressed in IceDust2 as

relation Entity1.field1 multiplicity = expr <−> multiplicity Entity2.field2

where the expression defines how to compute the left-hand side of the relation. The parent-
child relation of submissions in our example can be expressed as follows:

relation Submission.parent ? =
assignment.parent.submissions.find(x => x.student == student)
<−> * Submission.children

Figures 2-3 show the model and some example data for this derived relation respectively.
The derived relation is specified on the left-hand side, but can be used inversely, from the
right-hand side, as well. For example, using children in calculating the average grade:

ECOOP 2017



14:8 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

entity Submission {
grade : Float? = children.grade.avg()

}

Composition of Calculation Strategies. We extend IceDust with composition of calculation
strategies. Strategy composition enables using different strategies for different parts of the
program. For example, in our running example, student grades are always required to be
consistent, but course statistics may be out of date (temporarily) for better performance.
We can express this by calculating student grades incrementally, while calculating course
statistics eventually:

entity Assignment {
avgGrade : Float? = submissions.grade.avg() (eventual)

}
entity Submission {

grade : Float? = children.grade.avg() (incremental)
}
relation Submission.children * <−> ? Submission.parent
relation Assignment.submissions * <−> 1 Submission.assignment

The calculation strategies can be specified on modules, entities, and individual fields. If a
strategy is not specified, the field inherits it from its entity or module. The default strategy
is incremental, as all other strategies can depend on it (see Section 5 for more details).

Constraints on Feature Composition. IceDust2 allows almost all combinations of features
in Figure 1, but we impose three restrictions. First, we disallow unsound composition of
calculation strategies as we will discuss in Section 5.

Second, derived relations can only be used inversely if they are materialized (incremental
and eventual calculation). Navigating inversely in on-demand would require either materi-
alizing or coming up with an inverse expression. Consider the following derived relation:

relation Submission.root 1 = parent.root<+this <−> * Submission.rootDescendants

It defines the root for each submission in the tree. Reading root in on-demand is trivial:
execute the expression parent.root <+ this (take your parent’s root, or take yourself). The
inverse for this bidirectional relation is rootDescendants: for the root, all its descendants, and
for all non-root nodes, nothing. In incremental and eventual we can use the materialized
rootDescendants for reads. But, in on-demand the compiler would need to come up with
an expression that computes exactly the inverse of root which is non-trivial:

relation Submission.descendants * = this ++ children.descendants
<−> * Submission.ancestors

relation Submission.rootDescendants*= if(count(parent)==0) descendants else null
<−> 1 Submission.root

In this example we need a helper relation to compute the transitive closure.
Third, we disallow default derived relations since their behavior is unexpected. Consider

the following example:
entity Student { }
entity Committee { }
relation Committee.members * <−> * Student.committees
relation Committee.mailingList * = members (default) <−> * Student.subscriptions

We have specified the mailingList of a Committee to be its members by default. Now, if
a member is added, and there is no user-provided value, the member will be added to the
mailing list. But, if some student had also subscribed, the user-provided value will be used,



D.C. Harkes and E. Visser 14:9

which will not be updated with the new member. Better would be to get the desired behavior
by combining the committee members and the mailing list in a new derived value:

relation Committee.members * <−> * Student.committees
relation Committee.mailingList * <−> * Student.subscriptions
relation Committee.fullMailingList * = members ++ mailingList

<−> * Student.allSubscriptions

3 Run-Time Feature Interaction

In the previous section we generalized the configurability of fields in IceDust2 data models.
As a result, features can be combined independently (up to semantic soundness). While
the selection of features in a data model specification is orthogonal, each combination of
multiplicity, directionality, derivation type, and calculation strategy requires a specialized
implementation to produce consistent results. In this section we examine the nature of this
run-time feature interaction before addressing the resulting complexity in the next section.

Incrementality and Bidirectional Updates. Maintaining bidirectionality and updating
incremental derived values happen on writes and are mutually recursive. In Figure 3,
consider executing lab.setParent(exam), moving the lab from math to exam. Bidirectional
maintenance will update math.children and exam.children. This will trigger incremental
updates for Submission.children fields, which will in turn update Submission.parent
fields, which will trigger updates for Submission.deadline fields, etcetera. Thus, it is not
possible to define incrementality behavior orthogonally to the bidirectional maintenance
behavior.

Multiplicities Guide Bidirectional Updates. When maintaining bidirectionality, multi-
plicity bounds have to be respected. Multiplicity upper bounds are respected by implic-
itly removing old values if needed. For example, executing exam.addToChildren(lab)
will implicitly remove math as parent from lab. The behavior is identical to executing
lab.setParent(exam). Figure 6 shows the result of writes to bidirectional relations while
preserving bidirectionality and respecting multiplicity upper bounds. Behavior 7 is executed
on lab.setParent(exam), and behavior 10 on exam.addToChildren(lab). Both will im-
plicitly remove the old parent of lab. The alternative to implicitly removing old values
would be to fail when calling exam.addToChildren(lab). This is what the Booster language
does [5]; it only updates objects referenced explicitly in the update operation. But, it
would be verbose to have to call math.removeFromChildren(lab) first. Multiplicity lower
bounds are respected by failing the operation on a violation, as implicitly adding relations
with arbitrary objects is undesirable. For example, on deleting exam, the multiplicity lower
bounds of examAlice.assignment and examBob.assignment are violated. But, implicitly
setting examAlice.assignment to lab is undesirable. The behavior of bidirectional mainte-
nance varies with multiplicity bounds. Thus, it is not possible to define the bidirectional
maintenance behavior orthogonally to the behavior for respecting multiplicity bounds.

Minimizing Setter Calls for Incrementality. For incrementality it is important to minimize
the (internal) calls to setters, as duplicate setter calls will duplicate dirty flagging of derived
values that depend on it. If we look at Figure 6, behavior 2, then we should not first call
b2.setA(null) and subsequently b2.setA(a1) during bidirectional maintenance. So, rather
than first removing a2-><-b2 and subsequently adding a1-><-b2, the algorithm should

ECOOP 2017



14:10 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

A B1 1
b a

a1.setB(b2)

A B1 *
b as

a1.setB(b2)

A B* 1
bs a

a1.addToBs(b2)

A B* *
bs as

a1.addToBs(b2)

a1 b1

a2 b2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

dynamic
multiplicity

static
multiplicity

entity

object

reference

set / add

remove

Figure 6 Update a bidirectional relation and preserve both bidirectionality and multiplicity upper
bounds. Left column shows class diagram with multiplicity bounds, the top row shows starting
object graph, and 1-16 show the object graph after update.

update a1.b, a2.b, and b2.a directly. The behavior maintaining bidirectionality needs to
trigger the minimal number of incremental updates.

Only Trigger Updates on Observable Changes. An additional way to minimize incremental
update computation is updating only on observable changes. The various derivation types
influence this. If a normal attribute is assigned the same value as it previously had, there
is no need to trigger updates. Default values have various scenarios in which updates are
not observable. Suppose we would ‘override’ the grade of mathAlice with a 7.5 in Figure 3.
This should not trigger any updates, as the default value was 7.5 already (the average of 7.0
and 8.0). If we change the grade of examAlice to a 9.0 after that, we trigger an update for
mathAlice.grade. But we can stop propagating at that point because the new average (8.5)
is not visible; we overrode the grade with 7.5. When writing to a field, an update should
only be triggered when the change is observable. Thus, the incremental update behavior
cannot be defined orthogonally to the derivation type behavior.

Only Trigger Updates for Incremental and Eventual. Finally, updates only need to be
triggered for derived value fields that are updated on writes (incremental and eventual).
Fields only referenced in on-demand derived value fields do not need to send update triggers
(for example Assignment.name in Figure 4). Note that if we would change Submission.name
to incremental, Assignment.name does need to send update triggers. Thus, the calculation
strategy behavior of a field can not be defined orthogonally to the calculation strategy
behaviors of the fields that reference it.

Summary. In summary, derived values, bidirectional relations, multiplicity bounds, and
calculation strategies all interact with each other. These interactions are hidden from the



D.C. Harkes and E. Visser 14:11

setget

val cache dirty

cacheSetflagDirty updateCache

field

method

call / read / write

Figure 7 General overview for the semantics of a single field in IceDust2.

language users in the getters and setters of fields. Because all these features interact, they
cannot be implemented separately. Creating different specialized getters and setters for
all possible feature combinations is also not an option; the feature model has 384 valid
configurations. (The number of configurations, without any restrictions, and ignoring flow
calculation strategies, is 6 ∗ 7 ∗ 3 ∗ 3 ∗ 2 ∗ 2 = 1512. With the implies restrictions it is 384.)
With about 20 to 100 lines of code generated for getters and setters, specifying all specialized
getters and setters would be roughly 20000 lines of code. This amount of code would pose
a serious maintenance problem, and would make it impossible to reason about correctness.
Our solution is to implement this as a compact product-line for each field. We discuss this in
the next section.

4 Operational Semantics

An IceDust2 data model consists of entities with fields, representing attributes and relations.
The public API of such a data model consists of entity instantiation, object deletion, reading
the value of a field (get), and changing the value of a field (set). The previous section showed
that IceDust2’s features are not compositional, leading to over 300 different configurations
for fields with as many getter/setter definitions. In this section we define the operational
semantics for these getters and setters by factoring out variability into mutually dependent
auxiliary methods. Moreover, we argue that all these behaviors maintain bidirectionality,
respect multiplicity bounds, and maintain caches for incrementality.

Figure 7 gives an overview of the semantics of a single field. A field is represented at
runtime by at most three fields: a user value, a derived value cache, and a dirty flag. The
getter is responsible for returning the correct value on a read. The setter is responsible for
maintaining bidirectionality and multiplicity bounds in the userValue. Moreover, it calls
flagDirty on observable changes. The cacheSetter does the same for cacheValues. The
incremental update algorithm (not shown in Figure 7, as it is global) reads the dirtyFlags,
and calls updateCache to maintain derived value caches. How these fields and methods are
implemented varies based on the configurations in the feature model.

We specify the operational semantics of IceDust2 using big-step semantics. The reduction
rules modify a store. The store can contain a user value, a cached value, and a dirty flag for
every field in every object (Figure 8). We omit the store in a rule when it is not directly
used in the rule. When we omit the store, it is implicitly threaded from left to right. Note
that in list comprehensions the store is threaded as well. For conciseness, all rules operate
on lists of values, even if fields have a multiplicity upper bound of 1. In the rules, we use ‘∈’
for testing whether a field has a certain configuration in the feature model. For example,
‘f ∈ incremental’ is true if the field uses the incremental calculation strategy. We use ‘.’ for
accessing related information. For example, ‘f.expr’ denotes the expression of field f , and
‘f.inverse’ denotes the inverse field of a bidirectional relation.

ECOOP 2017



14:12 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

Σ ∈ Store : EntityReference× F ield 7→ (val 7→ [V alue], cache 7→ [V alue], dirty 7→ Boolean)
V alue : EntityRerence | P rimitiveV alue

Figure 8 The store maps combinations of references and field names to tuples of three: user
value, cached value, and dirty flag.

f ∈ normal

o.get(f)/Σ ⇓ Σ[o, f ].val/Σ
[Get1]

f ∈ default Σ[o, f ].val = V 6= [ ]

o.get(f)/Σ ⇓ V/Σ
[Get2]

f ∈default Σ[o, f ].val=[ ] o.getCalc(f)⇓V

o.get(f)/Σ ⇓ V/Σ
[Get3]

f ∈ derived o.getCalc(f) ⇓ V

o.get(f) ⇓ V
[Get4]

V.get*(f) ⇓ [v|v∈V2, o.get(f)⇓V2, o∈V ]
[Get∗]

f ∈ on-demand o.calc(f) ⇓ V

o.getCalc(f) ⇓ V

[GetCalc1]

f ∈ incremental

o.getCalc(f)/Σ ⇓ Σ[o, f ].cache/Σ
[GetCalc2]

o ` (f.expr) ⇓ V

o.calc(f) ⇓ V
[Calc]

Figure 9 Getter evaluation rules.

Getter. Figure 9 defines the evaluation rules for getters. Method get behaves differently
depending on the derivation type. The rule for normal just reads the user value of the field
[Get1]. The rule for default reads the user value [Get2], but if that is not present (empty list
of values), the calculated value is returned [Get3]. (It is not possible to override a calculated
value with an absent user value.) The rule for derived returns the calculated value [Get4].
Method get* maps a getter over a collection of objects, which is used in the compilation of
expressions. The rules for getCalc call calculate for on-demand [GetCalc1], but read the
cached value for incremental [GetCalc2]. Finally, calculate calculates a value using the
expression of the field. Note that in expression evaluation (o ` this ⇓ [o]) the o before the
turnstyle binds this. We omit the rules for expression evaluation as they are standard.

The on-demand and incremental calculation strategies should return the same values
on field reads. (Except for cyclic definitions, which we will discuss later.) When the getter
is called, incremental (default or derived) fields should have a cached value equal to
re-evaluating the expression, and there should be no dirty flags:
I Invariant 1 (Incrementality). ∀ E.f ∈ incremental, ∀o∈E, Σ[o, f,dirty]=false ⇒

∀ E.f ∈ incremental, ∀ o : E, o.calc(f) ⇓ Σ[o, f, cache]
If the cached value contains the exact value that calculate would compute if executed,

then the incremental getter will return the same value as the on-demand getter. The setter
and update algorithm should keep the cached value up-to-date.

Setter. Figure 10 defines the evaluation rules for setters. Method set is responsible for
maintaining bidirectionality and multiplicity upper bounds. For attributes, set does not have
to maintain bidirectionality so it passes the call through to setIncr [Set1]. For relations,
set’s behavior varies depending on multiplicity bounds [Set2]. References on V.(f.inverse)
are removed by addIncr if the multiplicity upper bound is 1 [AddIncr1]. The inverses of
these references are implicitly removed by remInv [RemInv2]. This realizes the behavior
visualized in Figure 6. Method setIncr is responsible for dirty flagging on observable changes
[SetIncr2]. Method cacheSet is identical to the set method, updating cache values rather
than user values.



D.C. Harkes and E. Visser 14:13

f /∈ bidir f ∼ [_, u] |V | ≤ u

o.setIncr(f, V ) ⇓

o.set(f, V ) ⇓
[Set1]

f ∈ bidir f ∼ [_, u] |V | ≤ u

Vold = Σ[o, f ].val
Vadd = V \ Vold

Vrem = Vold \ V

[vadd.remInv(f.inverse) ⇓ | vadd ∈ Vadd]
o.setIncr(f, V ) ⇓
[vrem.remIncr(f, o) ⇓ | vrem ∈ Vrem]
[vadd.addIncr(f, o) ⇓ | vadd ∈ Vadd]

o.set(f, V ) ⇓
[Set2]

f ∼ [_, 1] Σ[o, f ].val = [ ]

o.remInv(f)/Σ ⇓ /Σ
[RemInv1]

f ∼ [_, 1] Σ[o, f ].val = [v]
v.setIncr(f.inverse, [ ])/Σ ⇓ /Σ2

o.remInv(f)/Σ ⇓ /Σ2

[RemInv2]

f ∼ [_, n)

o.remInv(f) ⇓
[RemInv3]

f ∼ [_, 1] o.setIncr(f, [v]) ⇓

o.addIncr(f, v) ⇓
[AddIncr1]

f ∼ [_, n) V =Σ[o, f ].val++[v]
o.setIncr(f, V )/Σ ⇓ /Σ2

o.addIncr(f, v)/Σ ⇓ /Σ2

[AddIncr2]

o.setIncr(f, Σ[o, f ].val\v)/Σ ⇓ /Σ2

o.remIncr(f, v)/Σ ⇓ /Σ2

[RemIncr]

f ∈ incremental o.get(f)/Σ ⇓ V2
Σ2=Σ[o,f,val 7→V ] o.get(f)/Σ2 ⇓ V2

o.setIncr(f, V )/Σ ⇓ /Σ2

[SetIncr1]

f ∈ incremental o.get(f)/Σ ⇓ V2
Σ2=Σ[o,f,val 7→V ] o.get(f)/Σ2 ⇓ V3
V2 6= V3 o.dirtyFlows(f)/Σ2 ⇓ /Σ3

o.setIncr(f, V )/Σ ⇓ /Σ3

[SetIncr2]

Figure 10 Setter evaluation rules.

[v.flagDirty(f2) ⇓ | v∈V, o`expr⇓V,
f2∈ incremental, expr.f2∈f.flows]

o.dirtyFlows(f) ⇓
[DirtyFlows] Σ2 = Σ[o, f, dirty 7→ true]

o.flagDirty(f)/Σ ⇓ /Σ2

[FlagDirty]

Figure 11 Flag dirty evaluation rules.

o.calc(f) ⇓ V o.cacheSet(f, V ) ⇓

o.update(f) ⇓
[Update]

[o.update(f) ⇓ | o ∈ V ]

V.update*(f) ⇓
[Update∗]

V = [o | Σ[o, f, dirty] = true]
V.clean*(f)/Σ ⇓ /Σ2
V.update*(f)/Σ2 ⇓ /Σ3

updateCache*(f)/Σ ⇓ /Σ3

[UpdateCache∗]

Σ2 = Σ[o, f, dirty 7→ false]

v.clean(f)/Σ ⇓ /Σ2

[Clean]

[v.clean(f) ⇓ |v ∈ V ]

V.clean*(f) ⇓
[Clean∗]

[o | Σ[o, f, dirty]=true] 6= [ ]

hasDirty*(f)/Σ ⇓ true/Σ
[HasDirty∗1]

[o | Σ[o, f, dirty]=true] = [ ]

hasDirty*(f)/Σ ⇓ false/Σ
[HasDirty∗2]

Figure 12 Update evaluation rules.

ECOOP 2017



14:14 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

[maintGroup*(g) | g ∈ p.topo]

maintCache*(p) ⇓
[MaintCache∗]

[updateCache*(f) | f ∈ g]
∀f ∈g, ¬hasDirty*(f)

maintGroup*(g) ⇓
[MaintGroup∗1]

[updateCache*(f)| f ∈ g]
∃f ∈g, hasDirty*(f)
maintGroup*(g) ⇓

maintGroup*(g) ⇓
[MaintGroup∗2]

Figure 13 Update algorithm evaluation rules.

For each object, for each field that is bidirectional, it should hold that if the field refers
to another object, the other object also refers back to this object from the inverse field:

I Invariant 2 (Bidirectionality). ∀ E.f ∈ bidir, ∀ o1 :E, o2∈o1.f1 ⇒ o1∈o2.(f.inverse)

Moreover, a read from a field should always return a list of values the size of which is smaller
than or equal to the multiplicity upper bound:

I Invariant 3 (Multiplicity Upper Bound). ∀ E.f ∼ [_, u], ∀ o : E, |o.f | ≤ u

The rules for set satisfy these two properties by construction; they generalize Figure 6 to
work on collections of values. The setter is also partially responsible for Invariant 1. Whenever
get of a field returns a different value, setIncr will call dirtyFlows. If dirtyFlows sets
all dependent values dirty, and all dirty values are updated, Invariant 1 holds.

Flag Dirty. Whenever a value is observably changed, all incremental derived values that
depend on it are flagged dirty. Figure 11 defines the evaluation rules for dirty flagging.
Method dirtyFlows traverses the data-flow expressions, and calls flagDirty to flag the
appropriate field dirty. Note that dirtyFlows only calls flagDirty for flows that end in a
field that is incremental, as on-demand does not require dirty flagging. The data flows are
obtained by path-based abstract interpretation. The basic idea is that all fields referenced in
an expression are dependencies, and that the inversion of these dependencies determines the
data flow. (For more details on data flow, see the IceDust paper [15].)

The flagDirty method is also partially responsible for Invariant 1. Method dirtyFlows
flags all derived values dirty that depend on the changed value. If the incremental update
algorithm updates all cached values that are dirty, Invariant 1 holds.

Update Cache. After changes, the caches have to maintained, so that reads return up-to-
date values. Figure 12 defines the evaluation rules for cache updates. Method update is
responsible for updating the cache of a single field for a single object. Method updateCache*
updates the field in all objects that have this field dirty. Together with updateCache*,
hasDirty is the API for the cache maintenance algorithm.

These methods are partially responsible for Invariant 1 as well. Method cacheUpdate
ensures that Invariant 1 hold for a single field of a single object after its execution. However,
updating the cache of a field might invalidate the cache of another. So, the incremental
update algorithm calls updateCache* until hasDirty* evaluates to false for all fields.

Incremental Update Algorithm. The update algorithm is responsible for cleaning all
caches. The evaluation rules for the update algorithm are defined in Figure 13. The data-flow
analysis provides a topological ordering which can be used for scheduling updates [15].
Method maintCache* invokes maintGroup* for each connected component in topological
order. Method maintGroup* invokes itself recursively as long as the group hasDirty*.



D.C. Harkes and E. Visser 14:15

Invariant 1 is now satisfied by the fact that groups can only dirty flag fields in their own
group or later groups, and each group is updated until no more dirty flags remain.

Note that in this operational semantics, transactions have to be managed manually. First
constructors, set and delete are invoked, then maintainCache* has to be invoked, and
only then get and get* are guaranteed to return values that are up-to-date. Transactions
can be made implicit by invoking maintainCache* directly from set.

Object Creation and Deletion. On object creation all incremental fields of that object
are dirty flagged. Before object deletion, all fields are set to null (or empty collections)
to ensure bidirectionality and incrementality are maintained for the fields of other objects.
Creation and deletion behavior do not vary based on different field features.

Multiplicity Lower Bounds. So far we have ignored multiplicity lower bounds:

I Invariant 4 (Multiplicity Lower Bound). ∀ E.f ∼ [l,_], ∀ o : E, |o.f | ≥ l

These are checked at the end of transactions. (We have omitted transactions from the
evaluation rules for conciseness.) If any of the multiplicity lower bounds is violated, the
whole transaction is reverted.

Eventual Calculation Strategy. We have also omitted the eventual calculation strategy in
the semantics. The eventual calculation strategy is implemented by taking the incremental
update algorithm, but running this in a separate thread, and updating a single field of a single
object at the time. To keep track of the dirty flags for eventual calculation, a fourth element
in the store tuples is required: dirtyEventual. (In the implementation dirtyEventual flags
are shared across all threads while dirty flags are thread-local.) The dirty flags for eventual
calculation do not have to be cleaned before ending a transaction. But, when all dirty flags
are cleaned, then all eventually calculated values are up-to-date:

I Invariant 5 (Eventuality). ∀ E.f ∈ incremental, ∀o∈E, Σ[o, f,dirty]=false ∧
∀ E.f ∈ eventual, ∀o∈E, Σ[o, f,dirtyEventual]=false ⇒
∀ E.f ∈ eventual, ∀ o : E, o ` f.expr ⇓ Σ[o, f, cache]

Discussion: Computation Cycles. The on-demand and incremental calculation strategy
produce the same values locally. But, in cyclic data flow their behavior is different. Consider
the following program:

entity Foo {
a : Int
b : Int = a <+ c // if(count(a) > 0) a else c
c : Int = b

}

If a is not set, and c is read, on-demand will not terminate, but incremental will return
null. If a is set, and c is read, both strategies will return the same value. If after that, a is
set to null and c is read again, incremental will still return the previous value of c as it is
cached in both b and c, while on-demand will not terminate again.

The incremental calculation strategy satisfies Invariant 1, as all derived values are
consistent with each other. Invariant 1 is the same as the property guaranteed by synchronous
reactive programming [22, 28]. In incremental computing with Adapton, a stronger property
is guaranteed: incremental computation returns identical results to from-scratch computation
[13, 14]. Note that in Adapton cyclic programs cannot be expressed, as cyclic computations

ECOOP 2017



14:16 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

cannot be constructed. For acyclic data flows, IceDust2 satisfies the same property as
Adapton: incremental calculation returns the same value as on-demand calculation.

5 Sound Composition of Calculation Strategies

In this section we examine how different calculation strategies can be composed. In com-
position the strategies need to evaluate to the right answers, and do so within their time
constraints. Moreover, we introduce a type system that statically checks the safety of the
composition of calculation strategies in an IceDust2 program.

Some systems for computing derived values allow composing various calculation strategies.
However, the composition is not always checked for correctly calculating derived values.
Derived values should be consistent with the values they depend on. On-demand values
are not aware of changes to their dependencies, and they do not notify the derived values
depending on them of changes. For example, in REScala on-demand values can be accidentally
referenced in reactive values, causing reactive values not to be updated on changes to their
dependencies. Take the following example:

class Student {
val name :VarSynt[String] = Var("") //reactive
val city :VarSynt[String] = Var("") //reactive
val street :VarSynt[String] = Var("") //reactive
def address:String = street.get + " " + city.get //on−demand
val summary:DependentSignal[String]= Signal{name() + " " + address}//reactive

}

A change to name will trigger an update to summary, so summary will be consistent with
name. Accessing address will read the latest values from city and street, so it will be
consistent with its dependencies as well. But, summary is not updated after a change to city
or street, so summary is not consistent with all its dependencies.

In IceDust, letting an incremental field depend on an on-demand field would have the
same problem. Changing the incremental strategy to reevaluate on-demand referenced
fields would make reads of incremental fields slower. (A cache read is O(1), reevaluating
might be expensive.) We designed IceDust2 to have predictable performance, so we chose to
prevent the above situation by a type system.

Type Checking Strategy Composition. IceDust2 features three calculation strategies:
on-demand, incremental, and eventual (Figure 5). The on-demand strategy is pull-based,
while the incremental and eventual strategies are push-based. Push-based derived values
are recalculated on changes to base values, while pull-based derived values are calculated
when they are read. Pull-based derived values can depend on push-based derived values, but
not the other way around, as pull-based values would not notify the push-based values of
changes. Within the push-based strategies, eventual can depend on incremental, but not
the other way around. An incremental derived value depending on an eventual derived
value would be eventually calculated rather than be up-to-date. An on-demand derived
value depending on an eventual derived value is not always up-to-date, so we create a
new strategy, on-demand eventual, to reflect this. Finally, any calculation strategy can
depend on values entered by users, so we also create a new strategy base-value for that.
We combine these five strategies in a lattice such that strategies in the lattice can depend on
strategies below them (Figure 14, right).

This lattice is used to check the composition of calculation strategies in IceDust2 programs.
The general idea is to check what strategy is used for each sub-expression of derived values,



D.C. Harkes and E. Visser 14:17

* ordered  

+ ordered  

null

error

Int Float StringBoolean Datetime Entities

1

?

+

* unordered  

unordered  

on-demand eventual

eventual

incremental

on-demand

base-value

Figure 14 IceDust2’s type lattice (left), multiplicity and ordering lattice (middle), and composition
of calculation strategies lattice (right).

Expression Strategy Composition Γ ` Expr ⇑ S

c is constant

c ⇑ base-value
[Const]

this ⇑ base-value
[This]

¬Γ(m) f.stratComp = s

Γ ` f ⇑ s
[NavStart]

e ⇑ s1 f.stratComp = s2

e . f ⇑ s1 t s2
[Nav]

⊕ ∈ UnOp e ⇑ s

⊕ e ⇑ s
[UnOp]

⊕ ∈ BinOp e1 ⇑ s1 e2 ⇑ s2

e1 ⊕ e2 ⇑ s1 t s2

[BinOp]

e1 ⇑ s1 e2 ⇑ s2 e3 ⇑ s3

e1 ? e2 : e3 ⇑ s1 t s2 t s3

[TenOp]

Γ ` e1 ⇑ s1 Γ[x 7→ s1] ` e2 ⇑ s2

Γ ` e1.filter(x => e2) ⇑ s1 t s2

[Filter]

Γ ` x ⇑ Γ(x)
[Var]

Field and Program Strategy Composition F ield|P rog ⇑

f.stratComp = sdef ∅ ` f.expr ⇑ sexpr sdef w sexpr

f ∈ F ield ⇑
[Field]

∀e∈p.entities, ∀f ∈{f | f.expr, f ∈ e.fields}, f ⇑

p ∈ P rog ⇑
[Prog]

Figure 15 Strategy composition rules.

and whether these are lower in the lattice than the definition of the derived value specifies.
The reduction rules for the strategy composition type system are defined in Figure 15. The
environment (Γ) maps variable names to strategies.

Constants [Const] and this [This] are base values. Field dereference on this has the
strategy of the field definition [NavStart]. If the field has derivation type normal, it is a
base value. The strategy of a field dereference on an object is the least-upper-bound of the
strategy of the sub-expression and strategy of the field definition [Nav]. Unary operators pass
on their strategy [UnOp], and both binary and ternary operators take the least-upper-bound
of their sub-expression strategies [BinOp, TenOp]. The filter stores the strategy of the
variable in the environment [Filter], and variables read their strategy from the enviroment
[Var]. A field is sound if its expression calculation strategy is less than or equal to its defined
calculation strategy [Field], and finally, a program is sound if all entity fields with expressions
are sound [Prog].

ECOOP 2017



14:18 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

Example. Lets apply these rules to an example. Suppose we extend Submission with:
summary : String =

name + (if(pass) " pass" else " fail") + " grade = " + (grade <+ "none") +
" (average = " + (assignment.avgGrade <+ "none") + ")"

Type checking sub-expressions yields the following:
name // on−demand
pass // incremental
" pass" // base−value, idem all literals
(if(pass) " pass" else " fail") // incremental
name + (if(pass) " pass" else " fail") // on−demand
grade // incremental
assignment // incremental
assignment.avgGrade // eventual
assignment.avgGrade <+ "none" // eventual
name + ... + (assignment.avgGrade <+ "none") // on−demand eventual

The sub-expression name is on-demand, and the sub-expression assignment.avgGrade
is eventual. These two strategies are propagated through the operators until they meet
in a + operator. The + operator takes the least-upper-bound of both strategies, which is
on-demand eventual. So the definition of summary needs to be annotated with (on-demand
eventual).

It is possible to perform strategy inference instead of checking consistency of annotations.
However, it is not clear whether that would improve usability or not. In our example, the
programmer might not notice that the inferred strategy is on-demand eventual, and assume
that the summary would always be up-to-date. So, we require annotating derived value fields
with their calculation strategy, or inheriting the strategy from the entity or module.

6 Implementations

We discuss two IceDust2 compilers. The first compiler closely matches the operational
semantics in Section 4. It compiles to single threaded, in-memory, plain old Java objects.
The second compiler serves a more complicated context. It compiles to an object-relational
mapper with transaction semantics.

Compilation to Java. The compilation to Java closely matches the semantics in Section 4.
It does not feature transactions (no multiplicity lower-bound runtime checks), and does not
feature eventual calculation (it is single threaded). The translation from semantics to a code
generator for Java code is straightforward. The store (fields, caches, and dirty flags) are
compiled to fields in classes, and the arrows to methods. However, the compiler is not a
literal translation of the operational semantics: the compiler makes multiplicity, calculation
strategy and derivation-type choices at compile time, and leaves the remaining behavior to
run time. Moreover, the compiler specializes types for various multiplicities.

An example of this compile-time/run-time split is the code generation for get (Figure 16).
The semantics has two rules for the default-value behavior [Get2, Get3], but the compiler
defers this decision to run time by compiling to an if statement. Another example is the
code generator for the set method. The compiler makes bidirectionality and multiplicity
upper bound choices, so it has six implementations. For these six implementations, it inlines
rule [RemInv], or omits it if it has no effect. Figure 17 shows two of the implementations.
The first variation is specialized to multiplicities with an upper bound of 1, so it has to deal
with null values. The second variation is a literal translation of [Set2] without the [RemInv]
calls. (The multiplicity upper-bounds of n never force implicit removals of references.)



D.C. Harkes and E. Visser 14:19

fieldname−to−java−classbodydec: x_name −> get
x_get := $[get[<ucfirst>x_name]];
x_getCalculated := $[getCalculated[<ucfirst>x_name]];
t := <type−and−mult−to−java−type>x_name;
switch id
case is−normal: get := cbd |[

public ~type:t x_get(){ return x_name; }
]|
case is−default: get := cbd |[

public ~type:t x_get(){
if(x_name!=null && !x_name.equals(new HashSet<~type:t>())) return x_name;
return x_getCalculated();

}
]|
case is−derived: get := cbd |[

public ~type:type x_get(){ return x_getCalculated();}
]|

end

Figure 16 Java code generation for get(). The cbd|[ ]| parses a Java class body declaration
with meta-variables for types (∼type:...) and identifiers (x_...). For normal fields, the getter
returns the user value. For default fields, it returns the user value if it is set, and the calculated
value otherwise. For derived fields, it always returns the calculated value.

case is−normal−default; is−bidirectional; is−to−one; inverse−is−to−one: set := |[
public void x_set(x_type other){
if(x_name != null) x_name.x_inverseSetIncr(null);
if(other != null){

x_inverseType v = other.x_inverseName;
if(v != null) v.x_setIncr(null);
other.x_inverseSetIncr(this);

}
this.x_setIncr(other);

}
]|
case is−normal−default; is−bidirectional; is−to−many; inverse−is−to−many: set:= |[

public void x_set(Collection<x_type> others){
Collection<x_type> toAdd = new HashSet<x_type>();
toAdd.addAll(others); toAdd.removeAll(x_name);
Collection<x_type> toRem = new HashSet<x_type>();
toRem.addAll(x_name); toRem.removeAll(others);
for(x_type n : toRem) n.x_inverseRemoveIncr(this);
for(x_type n : toAdd) n.x_inverseAddIncr(this);
x_setIncr(others);

}
]|

Figure 17 Two cases from the set() Java code generation. The case for 1 to 1 relations removes
previous references to both objects (this and other) and sets the references of both objects to each
other. The case for n to n relations removes the references from previously related objects toRem to
this, adds new references from toAdd to this, and updates the references of this.

ECOOP 2017



14:20 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

case (is−left; is−normal−default; is−zeroormore−unordered)
+ (is−left; is−default; is−oneormore−unordered): ebd_field* := ebd* |[
x_name : Set<srt_type> (inverse=x_inverseEntityName.x_inverseName)

]|
case is−left; is−normal; is−oneormore−unordered: ebd_field* := ebd* |[

x_name : Set<srt_type> (inverse=x_inverseEntityName.x_inverseName,
validate(x_get().length != 0, "" + e_name + " is required."))

]|

Figure 18 Two of the twelve cases for userField WebDSL code generation. Types are specialized
for [_, 1] to single values, for [_, n) ordered to Lists, and for [_, n) unordered to Sets. The
left-hand side of relations specify inverses. A validator checks the multiplicity lower-bound of 1 at
runtime for normal-valued (not default-valued) fields.

fieldname−to−webdsl−entitybodydeclarations: x_name −> ebd_setIncr*
x_set := $[set[<ucfirst>x_name]];
x_flagFlows := $[flagFlows[<ucfirst>x_name]];
srt_multType := <type−and−mult−to−webdsl−srt>x_name;
stat_flows* := <flows;filter(where(expr−last;is−incr−even);to−webdsl)>x_name;
switch id

case is−normal−default; where(not([] := stat_flows*)): ebd_setIncr* := ebd* |[
extend function x_set(newValue : srt_multType){

if(x_name != newValue){ x_flagFlows(); }
}

]|
otherwise: ebd_setIncr* := []

end

Figure 19 WebDSL setter-hook code generation. If the field has any data-flow to an incremental
or eventual field, generate a setter-hook that flags the cache dirty if the value changed.

The to-Java compiler supports specifying test data, and expressions for execution. This
enables us to use IceDust2 as a glorified spreadsheet, and to write automated tests for
IceDust2 specifications.

Compilation to WebDSL. The second compiler compiles IceDust2 to WebDSL, a domain-
specific language for building web applications [32]. The to-WebDSL compiler features all
IceDust2 features, including multiplicity lower-bound runtime checks, and the eventual
calculation strategy. WebDSL differs from Java. WebDSL persists its data in a relational
database and maps it to memory with an object relational mapper. The object-relational
mapper provides transaction semantics. WebDSL already has a language feature for bidirec-
tional relations, including the interaction with ‘multiplicities’ (single values or lists). This
means the to-WebDSL compiler need not generate any code for that. However, this built-in
support complicates the interaction with IceDust2 incrementality.

Figure 18 shows two cases of the code generator for fields. The WebDSL field code
generation touches many IceDust2 features. Bidirectionality in WebDSL is defined by
inverse annotations, which should be specified on one field of the relation. For a quality
object-relational mapping, ordered fields are compiled to Lists, unordered fields are compiled
to Sets, and single values to single values. Finally, the checks for multiplicity bounds should
be specified on the field definitions as well. Together, three possible types, an optional inverse,
and an optional validator make twelve possible field definitions.

For incremental updates, the to-WebDSL compiler generates incremental setters. To
escape the bidirectionality abstraction, and get access to updates on both sides of the relation,



D.C. Harkes and E. Visser 14:21

entity Conference {
name : String
rootName : String = root.name
numComittees : Int = count(committees)

}
relation Conference.parent ? <−> * Conference.children
relation Conference.root 1 = parent.root <+ this <−> * Conference.rootDescendants

entity Person {
name : String

}
entity Profile {

name : String = person.name + " in " + conference.name
numComittees : Int = count(committees)

}
relation Profile.conference 1 <−> * Conference.profiles
relation Profile.person 1 <−> * Person.profiles

entity Committee {
name : String
fullName : String = conference.name + " " + name

}
relation Committee.conference 1 <−> * Conference.committees
relation Committee.members * <−> * Person.committees
relation Profile.committees * =

person.committees.filter(x => x.conference == this.conference)
<−> * Committee.profiles

Figure 20 Mini conference management system IceDust2 specification. A Conference can be
a sub-conference of a parent conference. A Person has a separate Profile for each conference
(s)he participates in. A conference is organized by multiple Committees. A person can be member of
committees in various conferences.

WebDSL provides setter hooks, similar to aspect-oriented pointcuts [19]. Figure 19 shows
the implementation of the setter hook. These hooks only intercept calls, they do not update
the fields. Thus, it cannot test for observable changes (by calling get before and after
changing the field [SetIncr]). It approximates this by checking whether the value changes.

The to-WebDSL compiler is used in web applications. It enables specifying the business
logic in derived values, and enables changing the calculation strategy of fields without much
effort to tune the performance of web applications.

7 Case Studies

We discuss the application of IceDust2 to two representative applications, a conference
management system, and an online learning management system (the running example).

Conference Management System. Figure 20 shows a mini version of a conference website
management system. In this system multiple Conferences can be managed. A Person can
be part of multiple conferences, and has a Profile for each. The conference system contains
various derived values. For this paper, the most interesting ones are derived relations.

The mini system contains two derived relations. The first derived relation is the root of
a conference tree (Figure 20, line 7). Conferences can have sub-conferences, and these can
have sub-conferences again. For presentation purposes it is important to display the context
of a sub-conference: the root conference. The inverse of the root field, rootDescendants,

ECOOP 2017



14:22 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

entity Assignment { }
entity Submission {

grade : Float? = groupSubmission.grade <+ children.grade.avg() (default)
}
entity Group { }
entity GroupSubmission {

grade : Float?
}
relation Group.members * <−> * Student.groups
relation Submission.assignment 1 <−> * Assignment.submissions
relation GroupSubmission.assignment 1 <−> * Assignment.groupSubmissions
relation GroupSubmission.group 1 <−> * Group.submissions
relation Submission.groupSubmission ? =

assignment.groupSubmissions.find(x => x.group.members.contains(student))
<−> * GroupSubmission.individualSubmissions

Figure 21 Learning management system specification for group submissions. If a student is part
of a group that has submitted to a certain assignment, his individual grade will be taken from the
group grade by default. The individual grade of a student can still be overridden by the instructor.

relation Submission.children * (ordered) =
assignment.children.submissions.filter(x => x.student == student)

<−> ? Submission.parent
relation Submission.next ? =

parent.children.elemAt(parent.children.indexOf(this) + 1)
<−> ? Submission.previous

Figure 22 Bidirectional relation next and previous is derived from the children’s ordering.

does not have a practical use in the application specification. However, it is used by the
compiler to incrementally maintain rootName on name changes to the root conference. It
is possible to omit the name rootDescendants. The IceDust2 compiler will then invent a
name for the field itself (rootInverse in this case).

The second derived relation is the committees a person is a member of in a specific
conference: Profile.committees (Figure 20, bottom). It is similar in structure to the
submission parent-children relation in Figure 4. Both navigate the object graph to a
collection of objects, and subsequently filter this collection. The committee membership
derived relation is used bidirectionally: a committee page links to the profile pages of its
members.

Learning Management System. Our running example (Figure 4) is a partial model of a
learning management system, which we have specified in IceDust2. The production system
is much more complicated. We will cover some interesting aspects of its specification.

Figure 21 shows a part of the specification that deals with group submissions. In some
courses students get graded in groups. Moreover, in some labs the groups change during the
semester. To calculate correct grades for individual students, their individual submissions are
connected to the group submissions (Submission.groupSubmission). The student grade
for a single assignment (Submission.grade) is the group grade, if it exists, and otherwise
the normal individual student grade.

Figure 22 revisits the submission parent-child relation. We use the ordering of children to
define next and previous for submissions, which are used for navigation in the user interface.
Note that both of the derived bidirectional relations in Figure 22 have a multiplicity bound
[0, 1] on the right-hand side. This is disallowed by the IceDust2 compiler, as these bounds
cannot be statically guaranteed. We will discuss this in the next section.



D.C. Harkes and E. Visser 14:23

In our running example (Figure 4) we have used composition of calculation strategies to
get good performance on changes to data, while always reading up-to-date student grades.
In the full learning management system we have used the same approach: incremental for
individual student data, and eventual for statistics. This approach works great with our
to-WebDSL compiler. Often multiple students send changes to their submissions concurrently.
These changes influence just their own grades. Incrementally updating the grades for single
students is fine, as the cache updates will not overlap. However, course statistics cannot be
updated incrementally in a concurrent setting, as the aggregated values would get update
conflicts when multiple students concurrently get a new grade. In future work it might be
worth investigating whether the calculation strategies can be automatically determined based
on the partitioning of data between application users (students in this case).

In both case studies the orthogonal nature of the features for fields in IceDust2 turned
out to be advantageous. Changing the derivation type, for example from a user value to a
derived value, only requires adding or removing an expression. Changing the calculation
strategy is a matter of changing a single keyword, and if any changes of calculation strategies
in other fields are required for consistency, the type system will tell. Changing a multiplicity,
for example making a field optional (?), rather than required, is a matter of changing a single
character. Here as well, the type system will signal any places where semantic changes are
required (for example the read of that field where a value with multiplicity of 1 is required).
If these changes were to be made to a program expressed in a general purpose language, they
would require all kinds of boilerplate changes, on top of the semantic changes. This has been
argued before for multiplicities [29], bidirectional relation maintenance [16], and calculation
strategy switching [15] individually. But combined, it is certainly true as well.

8 Multiplicity Bounds for the Right-Hand Side of Derived Relations

Derived bidirectional relations in IceDust2 specify multiplicity bounds both for the left-hand
and right-hand side. The multiplicity bound on the left-hand side is checked by checking the
multiplicity of the expression. The multiplicity bound on the right-hand side is only allowed
to be [0, n), as IceDust2 features no static checks for the right-hand side multiplicity bound.

We can view a bidirectional relation as a function, where the left-hand side is the domain
and the right-hand side is the codomain. A derived relation is a total function (the expression
can be executed for all objects in the domain), and each element in the domain maps to zero
or more elements in the codomain (restricted to the multiplicity bound of the expression).
To get guarantees for the right-hand side multiplicity bound, this function needs to satisfy
certain properties. For a multiplicity upper-bound of 1, the function needs to be injective:
at most one element in the domain will refer to to each element in the codomain. For a
multiplicity lower-bound of 1, the function needs to be surjective: at least one element in
the domain will refer to each element in the codomain. IceDust2’s type system does not
include reasoning about this. We can only safely assume the function is not injective and
not surjective, and give the right-hand side a multiplicity bound of [0, n).

However, our case studies revealed two useful derived bidirectional relations that would
benefit from a more strict multiplicity bound on the right-hand side. Figure 22 shows them.
If the inverses are actually within the specified multiplicity bound, the runtime works fine for
these derived relations. Our type system rejects these derived relations, but the programmer
can disable the error if he is confident the inverse is within the multiplicity bound.

Disabling the error is not sound, the programmer might be mistaken. If the programmer
makes an error, IceDust2 cannot statically guarantee one of the following three properties:

ECOOP 2017



14:24 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

n1

object

reference

derived reference

n2

n3 n4

n1 n2

n3 n4

n1 n2

n3 n4

a b cNode

Node

* down

up* parent

children*

?

entity

Figure 23 Contradictory specification solutions: (a) give up multiplicity bounds, (b) give up
bidirectionality, or (3) give up derivation semantics.

multiplicity bounds, bidirectionality, or derivation semantics. Consider the following program:
entity Node { }
relation Node.down * <−> * Node.up
relation Node.children * = down <−> ? Node.parent

If some object refers to two other objects in up, it should have two parents as well, violating
the multiplicity bound (Invariant 3). To satisfy the multiplicity bound, either bidirectionality
(Invariant 2) or derivation semantics (Invariant 1) has to be given up. Figure 23 shows
the three solutions by giving up one of the three invariants. This example implemented in
REScala (in the same way we implemented submission parent-children in Section 2) does
not preserve bidirectionality (Figure 23b). The parents of n3 and n4 would first be set to
one of the objects n1 and n2, and then to the other. The IceDust2 implementation gives
up derivation semantics in this situation (Figure 23c). Either object n1 or n2 will not have
any children, even though evaluating the derivation expression would yield children. We do
not argue one is better than the other, both violate an invariant. In future work we will
investigate creating a type system that rejects the above example, but accepts Figure 22.

In conclusion, in our case studies we only encountered this one example where a non-[0, n)
multiplicity on the right-hand side of a relation was required. The rest of the case studies
could all be specified in a way that guarantees Invariants 1-3. If the programmer correctly
specifies a right-hand side multiplicity, Invariants 1-3 are still guaranteed. Nonetheless, it is
still worth to move the responsibility of checking the right-hand side multiplicities for derived
relations from the programmer to the type system, in future work.

9 Related Work

The related work is organized along the lines of the various language features. We cover
bidirectional relations, incremental and eventual computation, and the use of product lines
in language engineering.

Derived Bidirectional Relations. Various languages feature bidirectional relations as a
language feature. Rumer [3], RelJ [4], Relations [16], and IceDust [15] all feature bidirectional
relations as language feature, but do not support derived bidirectional relations. They vary
in multiplicity bound behavior: Rumer and RelJ enforce multiplicities at runtime, while
Relations and IceDust feature multiplicities in the type system. IceDust2’s behavior for
maintaining multiplicity upper bounds is similar to RelJ’s: it implicitly removes references.

Derived bidirectional relations can be described as views in relational and logic databases.
They can be incrementalized by materializing the views [11]. Traditional algorithms for
materialized views limit recursive aggregation [12]. Some forms of recursive aggregation can
be incrementalized [26, 27], but until now the community has not converged to a recursive



D.C. Harkes and E. Visser 14:25

aggregation technique [10]. LogiQL [9] has rudimentary support for recursive aggregation
(behind a compiler flag). Most databases that feature materialized views also feature non-
materialized views, enabling composition of incremental and on-demand calculation strategies.
Database languages do not allow specification of multiplicity bounds, thus all derived values
have a multiplicity of [0, n). IceDust2 does feature multiplicity constraints, includes an
eventual calculation strategy, and admits recursive aggregation.

i3QL [24], Materialized Object Query Language (OQL) [8], and MOVIE [2] support
materialized views in object-oriented languages. The data is in memory, rather than persisted
on disk. Strategy composition can be done by using the framework for incremental derived
values, and the host language for on-demand derived values. As these systems are relational,
they have the same limitations as databases: no multiplicity bounds, no eventual calculation
strategy, and limited support for recursion (except for i3QL, it features fixpoint recursion).

IncQuery [31] features incremental graph queries. These can be scheduled by a query
planner, but provide no multiplicity bounds. In IceDust2 derived relations are specified as
expressions, which provides a multiplicity bound for the left-hand side of the derived relation.
For derived primitive values IncQuery has an escape hatch to Java. This makes it Turing
complete, but only the dependencies and results are cached, not the internal computation.
On the other hand, IceDust2 is not Turing complete (its memory footprint is bounded by
the total number of fields of all objects), but the full computation is incrementalized.

Alloy [17] (with operational semantics Alchemy [20]) and Booster [5] feature bidirectional
derived relations as well. These systems use constraints for describing derived values and
multiplicity bounds. On changes to fields, other fields are updated to maintain the constraints.
In constraints, all field references can function as inputs and outputs, so for predictability, only
values mentioned in update operations are updated. In contrast, IceDust2 can predictably
update any value, as it uses expressions for derived values, not constrains. The fields
referenced in an expression are input, the field the expression is for, is output.

Incremental Computation without Bidirectional Relations. Various programming styles
and languages that can be used for incremental computation do not support derived bidirec-
tional relations. These can only be used for derived unidirectional relations.

Functional reactive programming (FRP) [7], with for example REScala [28], or Scala.React
[22] can be used for incremental computation. Wrapping expressions in signal macros realizes
incremental behavior, reevaluating the expression when one of its dependencies is changed.
FRP maintains dependencies at runtime, causing memory overhead. In contrast, IceDust2
uses static dependency information. However, FRP frameworks do support any language
feature as long as it is pure, while IceDust2 restricts its expression language to be able to
statically analyze its dependencies. FRP allows strategy composition by modeling incremental
derived values in FRP, and using the host language for on-demand derived values. However,
the safety of compositions is not checked, and can result in inconsistencies.

Self-adjusting computation (SAC) [1] and Adapton [14] also use dependency tracking
for incremental computation. Adapton features a demand-driven incremental calculation
strategy: dirty flag transitively on writes, and recompute transitively on reads if dirty.
IceDust2 features on-demand, incremental, and eventual calculation strategies. We might
add Adapton’s calculation strategy to IceDust2 in future work, it would fit in the general
IceDust2 approach without requiring invasive changes to the architecture. Adapton works
only on algebraic data types, but Nominal Adapton [13] is better suited for object graphs, it
allows identifying caches. In Nominal Adapton’s terms, the derived value caches in IceDust2’s
runtime can be identified ‘objectIdentifier+fieldName’. Adapton allows strategy composition

ECOOP 2017



14:26 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

by modeling incremental derived values in Adapton, and the on-demand derived values in
the host language. The safetey of strategy composition of is checked in Adapton. Adapton
does not feature eventual calculation, bidirectional relations, or data persistence.

Incremental Java Query Language (JQL) [34], and Demand-Driven Incremental Object
Queries (DDIOQ) [21] enable specifying derived values as queries in Java. They transform
imperative code to a relational calculus, and use the relational model to generate code that
incrementally maintains caches. In contrast, IceDust2 uses path-based abstract interpretation
instead of a relational calculus to generate maintenance code.

Attribute grammars (AGs) feature a declarative style of specifying derived primitive
values similar to IceDust. Attribute values can also be incrementally computed [6]. Reference
attribute grammars (RAGs) support derived relations [30]. RAGs only support trees as input
(graphs can only be derived values), while IceDust2 works with graphs. As AGs and RAGs
are designed for use in compilers they do not feature an eventual calculation strategy.

Eventual Calculation without Bidirectional Relations. Reactive programming (RP), with
for example RX [23], features a programming model similar to FRP. However, RP provides an
eventual instead of an incremental calculation strategy by asynchronously processing updates.
RP enables composition with eventual and on-demand calculation strategies by using the
host language for on-demand calculation. Note that on-demand calculation is eventual
on-demand if it depends on eventual calculation, as in our approach (see Figure 14).

Software Product Lines and Language Engineering. Völter and Visser have investigated
the combination of software product lines (SPLs) and domain-specific languages (DSLs)
[33]. In their taxonomy, IceDust2 falls in the category ‘Variations in the Transformation
or Execution’. The IceDust2 operational semantics vary in execution, and the IceDust2
compilers vary in transformation based on the field properties. Behavior is chosen based on
presence conditions. IceDust2 falls in the sub category ‘Negative Variablility via Removal’ by
only retaining the behavior satisfying the presence conditions out of all possible behaviors.

The Dana language [25] enables switching features at run time. In order to be able to
switch at run time, the various options for a feature need to have the same public API,
and they need to share a set of transfer fields. Unfortunately, this is not possible with the
IceDust2 runtime, as the public API varies based on the features selected. We would like to
investigate switching calculation strategies at runtime in future work.

10 Summary and Future Work

In this paper we have presented IceDust2, a declarative data modeling language that supports
composition of derivation calculation strategies and bidirectional derived relations with
multiplicity bounds. Because updating derived values with various strategies, maintaining
bidirectionality, and keeping multiplicity bounds all interact, the IceDust2 semantics for
individual fields is structured as a product line, which can be instantiated in two compilers.
One that compiles to plain old Java objects, and one that compiles to an object-relational
mapper. Finally, our case studies validated the usability of IceDust2 in applications: derived
values can be specified declaratively and concisely, independent of their complex runtime.

This work also raises open research questions. First, is it possible to provide static
guarantees for multiplicity bounds for the right-hand side of derived bidirectional relations?
Second, what calculation strategies can be added to IceDust2, and (more importantly) how
can these strategies be composed in a sound way? Finally, is it possible to automatically assign



D.C. Harkes and E. Visser 14:27

calculation strategies to derived values based on high level directives, such as partitioning
data between application users?

References
1 Umut A. Acar. Self-adjusting computation: (an overview). In Germán Puebla and Germán

Vidal, editors, Proceedings of the 2009 ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-based Program Manipulation, PEPM 2009, Savannah, GA, USA, January
19-20, 2009, pages 1–6. ACM, 2009. doi:10.1145/1480945.1480946.

2 M. Akhtar Ali, Alvaro A. A. Fernandes, and Norman W. Paton. Movie: An incremen-
tal maintenance system for materialized object views. Data & Knowledge Engineering,
47(2):131–166, 2003. doi:10.1016/S0169-023X(03)00048-X.

3 Stephanie Balzer. Rumer: a Programming Language and Modular Verification Technique
Based on Relationships. PhD thesis, ETH, Zürich, 2011. doi:10.3929/ethz-a-007086593.

4 Gavin M. Bierman and Alisdair Wren. First-class relationships in an object-oriented lan-
guage. In Andrew P. Black, editor, ECOOP 2005 - Object-Oriented Programming, 19th
European Conference, Glasgow, UK, July 25-29, 2005, Proceedings, volume 3586 of Lecture
Notes in Computer Science, pages 262–286. Springer, 2005. doi:10.1007/11531142_12.

5 Jim Davies, James Welch, Alessandra Cavarra, and Edward Crichton. On the generation of
object databases using booster. In 11th International Conference on Engineering of Com-
plex Computer Systems (ICECCS 2006), 15-17 August 2006, Stanford, California, USA,
pages 249–258. IEEE Computer Society, 2006. doi:10.1109/ICECCS.2006.1690374.

6 Alan J. Demers, Thomas W. Reps, and Tim Teitelbaum. Incremental evaluation for at-
tribute grammars with application to syntax-directed editors. In Proceedings of the 8th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, Williams-
burg, Virginia, January 26-28, 1981, pages 105–116, 1981. doi:10.1145/567532.567544.

7 Conal M. Elliott. Push-pull functional reactive programming. In Stephanie Weirich, edi-
tor, Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell, Haskell 2009, Edin-
burgh, Scotland, UK, 3 September 2009, pages 25–36. ACM, 2009. doi:10.1145/1596638.
1596643.

8 Dieter Gluche, Torsten Grust, Christof Mainberger, and Marc H. Scholl. Incremental
updates for materialized oql views. In François Bry, Raghu Ramakrishnan, and Ko-
tagiri Ramamohanarao, editors, Deductive and Object-Oriented Databases, 5th Interna-
tional Conference, DOOD 97, Montreux, Switzerland, December 8-12, 1997, Proceed-
ings, volume 1341 of Lecture Notes in Computer Science, pages 52–66. Springer, 1997.
doi:10.1007/3-540-63792-3_8.

9 Todd J. Green. Logiql: A declarative language for enterprise applications. In Tova Milo
and Diego Calvanese, editors, Proceedings of the 34th ACM Symposium on Principles of
Database Systems, PODS 2015, Melbourne, Victoria, Australia, May 31 - June 4, 2015,
pages 59–64. ACM, 2015. doi:10.1145/2745754.2745780.

10 Todd J. Green, Shan Shan Huang, Boon Thau Loo, and Wenchao Zhou. Datalog and
recursive query processing. Foundations and Trends in Databases, 5(2):105–195, 2013. doi:
10.1561/1900000017.

11 Ashish Gupta and Inderpal Singh Mumick. Maintenance of materialized views: Problems,
techniques, and applications. IEEE Data Eng. Bull., 18(2):3–18, 1995.

12 Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining views in-
crementally. In Peter Buneman and Sushil Jajodia, editors, Proceedings of the 1993 ACM
SIGMOD International Conference on Management of Data, Washington, D.C., May 26-
28, 1993, pages 157–166. ACM Press, 1993. doi:10.1145/170035.170066.

13 Matthew A. Hammer, Joshua Dunfield, Kyle Headley, Nicholas Labich, Jeffrey S. Foster,
Michael W. Hicks, and David Van Horn. Incremental computation with names. In Jonathan

ECOOP 2017

http://dx.doi.org/10.1145/1480945.1480946
http://dx.doi.org/10.1016/S0169-023X(03)00048-X
http://dx.doi.org/10.3929/ethz-a-007086593
http://dx.doi.org/10.1007/11531142_12
http://dx.doi.org/10.1109/ICECCS.2006.1690374
http://dx.doi.org/10.1145/567532.567544
http://dx.doi.org/10.1145/1596638.1596643
http://dx.doi.org/10.1145/1596638.1596643
http://dx.doi.org/10.1007/3-540-63792-3_8
http://dx.doi.org/10.1145/2745754.2745780
http://dx.doi.org/10.1561/1900000017
http://dx.doi.org/10.1561/1900000017
http://dx.doi.org/10.1145/170035.170066


14:28 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

Aldrich and Patrick Eugster, editors, Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOP-
SLA 2015, part of SLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, pages 748–766.
ACM, 2015. doi:10.1145/2814270.2814305.

14 Matthew A. Hammer, Yit Phang Khoo, Michael Hicks, and Jeffrey S. Foster. Adapton:
composable, demand-driven incremental computation. In Michael F. P. O’Boyle and Ke-
shav Pingali, editors, ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014, page 18.
ACM, 2014. doi:10.1145/2594291.2594324.

15 Daco Harkes, Danny M. Groenewegen, and Eelco Visser. Icedust: Incremental and eventual
computation of derived values in persistent object graphs. In Shriram Krishnamurthi and
Benjamin S. Lerner, editors, 30th European Conference on Object-Oriented Programming,
ECOOP 2016, July 18-22, 2016, Rome, Italy, volume 56 of LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.ECOOP.2016.11.

16 Daco Harkes and Eelco Visser. Unifying and generalizing relations in role-based data mod-
eling and navigation. In Benoît Combemale, David J. Pearce, Olivier Barais, and Jurgen J.
Vinju, editors, Software Language Engineering - 7th International Conference, SLE 2014,
Västeras, Sweden, September 15-16, 2014. Proceedings, volume 8706 of Lecture Notes in
Computer Science, pages 241–260. Springer, 2014. doi:10.1007/978-3-319-11245-9_14.

17 Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering Methodology, 11(2):256–290, 2002. doi:10.1145/505145.505149.

18 Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer Peter-
son. Feature-oriented domain analysis (foda) feasibility study. Technical report, DTIC
Document, 1990.

19 Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet Aksit
and Satoshi Matsuoka, editors, ECOOP 97 - Object-Oriented Programming, 11th European
Conference, Jyväskylä, Finland, June 9-13, 1997, Proceedings, volume 1241 of Lecture Notes
in Computer Science, pages 220–242. Springer, 1997. doi:10.1007/BFb0053381.

20 Shriram Krishnamurthi, Kathi Fisler, Daniel J. Dougherty, and Daniel Yoo. Alchemy:
transmuting base alloy specifications into implementations. In Mary Jean Harrold and
Gail C. Murphy, editors, Proceedings of the 16th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2008, Atlanta, Georgia, USA, November 9-14,
2008, pages 158–169. ACM, 2008. doi:10.1145/1453101.1453123.

21 Yanhong A. Liu, Jon Brandvein, Scott D. Stoller, and Bo Lin. Demand-driven incre-
mental object queries. In James Cheney and Germán Vidal, editors, Proceedings of
the 18th International Symposium on Principles and Practice of Declarative Program-
ming, Edinburgh, United Kingdom, September 5-7, 2016, pages 228–241. ACM, 2016.
doi:10.1145/2967973.2968610.

22 Ingo Maier and Martin Odersky. Higher-order reactive programming with incremental
lists. In Giuseppe Castagna, editor, ECOOP 2013 - Object-Oriented Programming -
27th European Conference, Montpellier, France, July 1-5, 2013. Proceedings, volume 7920
of Lecture Notes in Computer Science, pages 707–731. Springer, 2013. doi:10.1007/
978-3-642-39038-8_29.

23 Erik Meijer. Reactive extensions (rx): curing your asynchronous programming blues. In
ACM SIGPLAN Commercial Users of Functional Programming, page 11. ACM, 2010. doi:
10.1145/1900160.1900173.

24 Ralf Mitschke, Sebastian Erdweg, Mirko Köhler, Mira Mezini, and Guido Salvaneschi. i3ql:
language-integrated live data views. In Andrew P. Black and Todd D. Millstein, editors,
Proceedings of the 2014 ACM International Conference on Object Oriented Programming

http://dx.doi.org/10.1145/2814270.2814305
http://dx.doi.org/10.1145/2594291.2594324
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.11
http://dx.doi.org/10.1007/978-3-319-11245-9_14
http://dx.doi.org/10.1145/505145.505149
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1145/1453101.1453123
http://dx.doi.org/10.1145/2967973.2968610
http://dx.doi.org/10.1007/978-3-642-39038-8_29
http://dx.doi.org/10.1007/978-3-642-39038-8_29
http://dx.doi.org/10.1145/1900160.1900173
http://dx.doi.org/10.1145/1900160.1900173


D.C. Harkes and E. Visser 14:29

Systems Languages & Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR,
USA, October 20-24, 2014, pages 417–432. ACM, 2014. doi:10.1145/2660193.2660242.

25 Barry Porter, Matthew Grieves, Roberto Vito Rodrigues Filho, and David Leslie. Rex: A
development platform and online learning approach for runtime emergent software systems.
In Kimberly Keeton and Timothy Roscoe, editors, 12th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4,
2016, pages 333–348. USENIX Association, 2016.

26 Raghu Ramakrishnan, Kenneth A. Ross, Divesh Srivastava, and S. Sudarshan. Efficient
incremental evaluation of queries with aggregation. In Workshop on Design and Impl. of
Parallel Logic Programming Systems, pages 204–218, 1994.

27 Kenneth A. Ross and Yehoshua Sagiv. Monotonic aggregation in deductive databases. In
Proceedings of the Eleventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, June 2-4, 1992, San Diego, California, pages 114–126. ACM Press,
1992. doi:10.1145/137097.137852.

28 Guido Salvaneschi, Gerold Hintz, and Mira Mezini. Rescala: bridging between object-
oriented and functional style in reactive applications. In Walter Binder, Erik Ernst, Achille
Peternier, and Robert Hirschfeld, editors, 13th International Conference on Modularity,
MODULARITY ’14, Lugano, Switzerland, April 22-26, 2014, pages 25–36. ACM, 2014.
doi:10.1145/2577080.2577083.

29 Friedrich Steimann. Content over container: object-oriented programming with multiplic-
ities. In Antony L. Hosking, Patrick Th. Eugster, and Robert Hirschfeld, editors, ACM
Symposium on New Ideas in Programming and Reflections on Software, Onward! 2013,
part of SPLASH ’13, Indianapolis, IN, USA, October 26-31, 2013, pages 173–186. ACM,
2013. doi:10.1145/2509578.2509582.

30 Emma Söderberg and Görel Hedin. Incremental evaluation of reference attribute grammars
using dynamic dependency tracking. Technical Report 98, Department of Computer Science,
Lund University, 2012.

31 Zoltán Ujhelyi, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, Benedek Izsó, István Ráth,
Zoltán Szatmári, and Dániel Varró. Emf-incquery: An integrated development environment
for live model queries. Science of Computer Programming, 98:80–99, 2015. doi:10.1016/
j.scico.2014.01.004.

32 Eelco Visser. WebDSL: A case study in domain-specific language engineering. In Ralf
Lämmel, Joost Visser, and João Saraiva, editors, Generative and Transformational Tech-
niques in Software Engineering II, International Summer School, GTTSE 2007, volume
5235 of Lecture Notes in Computer Science, pages 291–373, Braga, Portugal, 2007. Springer.
doi:10.1007/978-3-540-88643-3_7.

33 Markus Völter and Eelco Visser. Product line engineering using domain-specific languages.
In Eduardo Santana de Almeida, Tomoji Kishi, Christa Schwanninger, Isabel John, and
Klaus Schmid, editors, Software Product Lines - 15th International Conference, SPLC
2011, Munich, Germany, August 22-26, 2011, pages 70–79. IEEE, 2011. doi:10.1109/
SPLC.2011.25.

34 Darren Willis, David J. Pearce, and James Noble. Caching and incrementalisation in
the java query language. In Gail E. Harris, editor, Proceedings of the 23rd Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2008, October 19-23, 2008, Nashville, TN, USA, pages 1–18. ACM, 2008.
doi:10.1145/1449764.1449766.

ECOOP 2017

http://dx.doi.org/10.1145/2660193.2660242
http://dx.doi.org/10.1145/137097.137852
http://dx.doi.org/10.1145/2577080.2577083
http://dx.doi.org/10.1145/2509578.2509582
http://dx.doi.org/10.1016/j.scico.2014.01.004
http://dx.doi.org/10.1016/j.scico.2014.01.004
http://dx.doi.org/10.1007/978-3-540-88643-3_7
http://dx.doi.org/10.1109/SPLC.2011.25
http://dx.doi.org/10.1109/SPLC.2011.25
http://dx.doi.org/10.1145/1449764.1449766




What’s the Optimal Performance of Precise
Dynamic Race Detection? – A Redundancy
Perspective∗

Jeff Huang1 and Arun K. Rajagopalan2

1 Texas A&M University, US
jeff@cse.tamu.edu

2 Texas A&M University, US
arunxls@tamu.edu

Abstract
In a precise data race detector, a race is detected only if the execution exhibits a real race.
In such tools, every memory access from each thread is typically checked by a happens-before
algorithm. What’s the optimal runtime performance of such tools? In this paper, we identify
that a significant percentage of memory access checks in real-world program executions are often
redundant: removing these checks affects neither the precision nor the capability of race detection.
We show that if all such redundant checks were eliminated with no cost, the optimal performance
of a state-of-the-art dynamic race detector, FastTrack, could be improved by 90%, reducing its
runtime overhead from 68X to 7X on a collection of CPU intensive benchmarks. We further
develop a purely dynamic technique, ReX, that efficiently filters out redundant checks and apply
it to FastTrack. With ReX, the runtime performance of FastTrack is improved by 31% on average.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Data Race Detection, Dynamic Analysis, Concurrency, Redundancy

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.15

1 Introduction

In recent years, the performance of precise Happens-Before (HB) based dynamic race detectors
has greatly improved thanks to techniques such as FastTrack [12]. For many small-scale
programs their performance is now close to that of the imprecise LockSet-based tools [27].
This is primarily due to the recent epoch-based advancement [12] that greatly cuts down
the size of the vector clocks from O(Nthreads) to almost O(1), where Nthreads is the number
of threads. However, it remains difficult to scale these tools to large software applications
with a large number of threads. The reason is that these tools must still check races and
maintain states for all memory accesses, the complexity of which is in O(Nevents), i.e., the
number of memory accesses. Because Nevents can be as large as the dynamic instruction
count, it essentially dominates the race detection scalability. In our experiments, for instance,
FastTrack incurs 80X runtime slowdown on the Java Grande benchmark suite [1].

What is the optimal performance of precise dynamic race detection? Is the FastTrack
algorithm the best we can do? Due to the significance of race detection, this question is highly
important to answer and in fact has attracted many researchers [6, 20, 34, 10, 30, 14, 17].
One promising way to gain further performance is to reduce the size of Nevents. Along this

∗ This work was supported by a Google Faculty Research Award and NSF award CCF-1552935.

© Jeff Huang and Arun K. Rajagopalan;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 15; pp. 15:1–15:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


15:2 What’s the Optimal Performance of Precise Dynamic Race Detection?

for(i=0;i<10;i++){ 
lock A 
write x 
unlock A 

}

T1

1

for(i=0;i<10;i++){ 
lock B 
write x 
unlock B 

}

T2

2

Figure 1 An example exhibiting redundancy.

direction, previous research has explored two ideas: dynamic sampling [6, 20, 34] and static
analysis [26, 14, 10, 4]. However, none of them is sound or precise. Dynamic sampling
techniques generally reduce the race detection capability because sampling may lead to
missing races. While static analysis can be used to coalesce multiple checks [26, 10, 4] or
prune memory checks that no race will be found [14], it is hard to obtain a sound static
analysis in practice, especially for large complex applications with dynamic features, e.g.,
dynamic code generation and reflection; hence static analysis may lead to both missing races
and imprecise results.

In this paper, we attempt to answer this question from another perspective: redundancy
– which also aims to reduce Nevents, but is both sound and complete. Our key observation
stems from the fact that most dynamic memory accesses in real-world program executions
are typically from the same program location, and they often lead to the same race because
they are caused by repeated executions of the same racy instruction. Therefore, repeated
memory accesses that do not reveal any new races can be skipped by the race detection tool,
since removing them does not affect the capability nor precision of race detection. We term
such memory accesses as redundant events.

Figure 1 shows a motivating example. The two threads T1 and T2 both write to a shared
address x. T1 acquires lock A before writing to x, while T2 acquires lock B.

Because T1 and T2 do not share a common lock while writing to x, there exists a data race
between À and Á. Since the racy statements exist inside the loops that run 10 times, a race
detector will check for races each time the event is generated. However, to detect this race it
suffices to check only one event for each À and Á and skip all the rest events. The rest events
are redundant because they would not lead to any new unique race to be discovered. If we
can remove these redundant events, the performance of race detection may be significantly
improved, because for redundant events the race detection tools do not need to check races
and to track their states. This optimization is tremendous in modern day multithreaded
programs, as this type of redundancy is prevalent due to the single-process-multiple-data
(SPMD) architectural design.

On the surface, this problem seems simple to solve by removing the events from the
same program location. However, a treatment as such may remove important dependency
information and produce incorrect results. For instance, consider another example in Figure 2.
The example is slightly modified from that in Figure 1, but it contains additional wait and
notify statements in the loops. There is still a race between À and Á (starting from the
second loop instance of À). However, if we perform race checks for each lexical location just
once (i.e., check only the first two writes at À and Á and ignore the rest), the race will be
missed, because the first write by T1 happens before the first write by T2 (incurred by the
wait and notify statements).

To precisely and optimally capture such redundant events, we introduce concurrential
equivalence, a new criterion that characterizes redundancy based on purely the dynamic



J. Huang and A.K. Rajagopalan 15:3

for(i=0;i<10;i++){ 
lock A 
write x 
notify g 
unlock A 

}

T1

1

for(i=0;i<10;i++){ 
lock B 
wait g 
write x 
unlock B 

}

T2

2

Figure 2 The race between À and Á would be missed if we only check events from each lexical
location once.

information associated with each event, without any static information of the program such
as the data flow or control flow. Specifically, two events are concurrentially equivalent if they
have the same concurrency context – a history of inter-thread happens-before context of the
thread that performs the event. We prove that concurrential equivalence is sound and, for
precise dynamic race detection, if there are two or more lexically-identical concurrentially
equivalent events that access the same memory location, it is sufficient to keep any one copy
of them for at most two threads and safely drop all the others.

Moreover, we show that such redundant events pervasively exist in both popular bench-
marks and real-world programs, typically accounting for more than 99% of the events in the
execution. If all these redundant events are removed, the (hypothetical) optimal performance
of race detection can be improved by 90% for FastTrack, reducing its runtime overhead
from 68X to 7X on a collection of CPU intensive benchmarks. For most of the Java Grande
benchmarks, the FastTrack runtime overhead could be improved by as much as 95%, reducing
the overhead from 80X to 3X only.

We further develop a dynamic technique, called ReX, to efficiently identify redundant
events. The challenge is how to achieve efficiency while still maintaining both precision and
soundness. We propose a Trie-based synchronization-free algorithm that on average identifies
97% redundant events. By running it as a filter before FastTrack, ReX improves the overall
runtime performance by 31%. To further balance the runtime performance and effectiveness
of redundancy identification, we have also explored a relaxation of ReX for the imprecise
LockSet-based algorithms, which improves the performance of FastTrack by 32%.

In summary, this paper makes the following contributions:

We present the first study of race detection performance from the perspective of redund-
ancy and propose a new criterion that precisely and optimally characterizes redundant
events for precise HB-based dynamic race detection.

We show that redundancy pervasively exists in real-world program executions and
eliminating redundancy has the potential to improve the performance of the state-of-the-
art FastTrack race detector by 90%.

We present a generalized algorithm, ReX, to remove redundant events dynamically
without affecting the soundness or precision of the race detector, nor changing the race
detection algorithm. We also present an optimization of ReX for the LockSet-based race
detection algorithm.

We integrate ReX with FastTrack, resulting in significant performance improvement on
popular benchmarks.

ECOOP 2017



15:4 What’s the Optimal Performance of Precise Dynamic Race Detection?

T0 Ti=1:10

if(i<=5) lock A 
write x 
if(i<=5) unlock A

for(i=1:10) 
read x 

for(i=1:10){ 
lock A 
write x 
unlock A 

}

1

2

3

Figure 3 Intra- and inter-thread event redundancies.

2 Overview

In a precise dynamic race detector, a complete program execution trace, i.e., a comprehensive
sequence of critical events (memory accesses and thread synchronizations) is assumed to be
observed. In general, no critical event should be missing. Otherwise, the detected races may
be imprecise (i.e., false positives) or a real race may be missed. Nevertheless, a critical event
may be redundant because it does not directly reveal any new races nor does it indirectly
affect other new races to be detected. In particular, in a real-world program execution, we
often observe multiple races between the same pair of lexical statements (i.e., same file, same
class, same line and same column). However, just a single unique pair is enough to alert the
user to a race between these two statements; the other warnings are superfluous and can
be ignored. The race detector would need to filter out those superfluous races so that only
unique race reports are sent to the user (to reduce the effort of the user). We note that, in
practice, this functionality could be achieved for any race detector with an offline step that
checks for equivalencies (like the ThreadSanitizer [2] dynamic detector does).

More pressingly, the additional computation required by detecting those superfluous races
negatively impacts the runtime performance of race detection, since additional expensive
operations must be performed, e.g., vector clock comparison and join, and memory operations
for storing and loading the states associated with the memory accesses in a superfluous race.

We refer to an event in a trace as a redundant event if its exclusion from the trace does
not lead to any missed races or false alarms by the same precise HB-based race detector.
In other words, a redundant event does not reveal any additional useful information to the
user of the race detector except negatively impacting the runtime performance. We next
illustrate two kinds of redundant events (intra- and inter-thread redundancy) via an example
in Figure 3. The main thread T0 runs a loop inside which it reads and writes to a shared
address x for 10 times. The shared lock A is used to protect the writes to x at Á, but not
the reads to x at À. Thread Ti (i = 1, 2, . . . , 10) writes to this shared address protected
conditionally through lock A for the first five threads. The remaining five threads write to x
without previously acquiring lock A.

Consider the first iteration of the first loop. The read of x from À by Thread T0 races
with the write from Â (by any thread from T1 to T10). This pair of statements are the only
race involving À in the program. Subsequent iterations of À all serve to expose the same
lexical pair as a race and can be ignored (i.e., intra-thread redundancy). Consider the writes
to x from Á. Among the threads Ti, although all of them are different in their execution,
the traces by T1-T5 are identical, and the traces by T6-T10 are identical. Because T6-T10 do
not acquire the lock before writing to x at Â, it results in two more races: a race with the
write to x from Á by T0, and a race between two instances of Â by any two threads from



J. Huang and A.K. Rajagopalan 15:5

T1-T10. It is easy to see that four of the second five writes from Â by T6-T10 are redundant
(i.e., inter-thread redundancy), because the existence of any one of the five is sufficient for
precisely detecting all the three races: (À,Â), (Á,Â) and (Â,Â).

How about the writes from Á and the first five writes from Â by T1-T5? Is any of them
redundant? For this example, it is tempting to conclude that most of them (except one
write for each Á and Â) are redundant as well. However, they are not redundant from
the perspective of a precise HB-based dynamic race detector, when the future execution
is unknown. More specifically, these writes are protected by a lock; the lock operations
introduce happens-before edges as required by the HB algorithm (albeit lock regions are
commutative). These happens-before edges result in different happens-before relations for
these writes, i.e., between these writes with possible future events, which may or may not
produce new races depending on the specific happens-before relation. Therefore, because the
future is unknown, we cannot remove any one of these writes. Interestingly, for an imprecise
LockSet-based race detection algorithm [27], most of these writes are redundant, because
their locksets are identical. We will elaborate this point more in Section 4.

From the above example, we can see that identical program location is only a necessary
condition, but not the sufficient condition to determine if an event is redundant or not. A
key contribution of this work is a criterion (called concurrential equivalence) that captures
redundant events without any loss of race-detection ability or precision, for both intra-thread
and inter-thread redundancies. Before introducing our criterion, we first need a precise
definition of the HB-based race detection algorithm.

2.1 Happens-Before Race Detection
A happens-before algorithm [12], originated from Lamport’s happens-before definition [18]
for distributed systems, takes a dynamic trace (observed so far of a running program) and
can precisely detect the first race. To detect the second or more races precisely, the algorithm
needs a small extension that adds a happens-before edge between the two events in the
first race. Our discussion in this paper concerns only the happens-before algorithm without
extension.

To formally define the event redundancies, we need a model of a general program execution
trace. Similar to other work [28, 17], we consider an event e in a program trace τ to be one
of the following:

MEM(t, a, m): A memory access event, where t refers to the thread performing the
memory access, a can be one of Read/Write event and m the memory address being
accessed.
ACQ(t, l): A lock acquire event, where t denotes the thread acquiring the lock and l is
the address of the acquired lock.
REL(t, l): A lock release event, where t denotes the thread releasing the lock and l is
the address of the released lock.
SND(t, g): A message sending event, where t denotes the thread sending message with
unique ID g.
RCV(t, g): A message receiving event, where t denotes the thread receiving message
with unique ID g.

For volatile accesses, they can be treated as MEM accesses enclosed by ACQ and REL
events with unique lock addresses. For example, a write access to a volatile variable m
corresponds to three consecutive events ACQ(t,l*)-MEM(t,W,m)-REL(t,l*), in which l* is
unique per dynamic memory location.

ECOOP 2017



15:6 What’s the Optimal Performance of Precise Dynamic Race Detection?

The SND and RCV events may be defined specifically to a language. For example, for
Java, SND(t,g) and RCV (t,g) can be one of the following:

If Thread T1 starts T2, it corresponds to a SND( T1, g) and RCV (T2, g).
If Thread T1 calls T2.join(), SND( T2, g) and RCV (T1, g) are generated once T2 termin-
ates.
If Thread T1 calls o.notify() signaling a o.wait() on Thread T2, this corresponds to a
SND(T1, g) and RCV (T2, g).

For other complex synchronizations such as C11/C++11 atomic accesses, they can be
treated conservatively as REL/SND operations each with a unique ID, such that they are
always happens-before-ordered with the other events.

In addition, we associate each event with a static attribute loc, denoting the program
location that generates the event.

Having defined a standard model of a program trace, we now formally define the happens-
before (HB) relation.

Happens-Before Relation. The HB relation ≺ over events in a trace τ is the smallest
relation such that:

If a and b are events from the same thread and a occurs before b in the trace, then a ≺ b.
If a is a type of SND event and b is the corresponding RCV event, then a ≺ b.
If a is a type of REL event and b is the next ACQ event on the same lock, then a ≺ b.
This condition can be relaxed in a LockSet-based algorithm, which we will explain in
Section 4.
≺ is transitively closed.

We note that the HB relation ≺ is a partial order over the trace. For any two events
in the trace, ei and ej , either ei ≺ ej is true or ¬(ei ≺ ej) is true. Different from other
algorithms [23, 15] that involve may happen-before, for an HB-based race detection algorithm,
there is no may-happen-before relation.

To ease the presentation, we use ei||ej to denote that ei and ej have no happens-before
relation between each other: ¬(ei ≺ ej) ∧ ¬(ei ≺ ej). In other words, ei||ej means ei and
ej can happen concurrently (if not in the observed execution, but can always happen in a
certain execution of the same program).

Happens-Before Algorithm. The HB relation is usually checked by the use of vector
clocks [21] or epoch-based clocks [12]. Two conflicting MEM accesses a and b (i.e., Read/Write
events, at least one is a Write, accessing the same memory address), are determined to be in
a race if they can happen concurrently: a||b.

2.2 Concurrential Redundancy
Having defined the happens-before algorithm, we are ready to define redundant events:

I Definition 1 (Redundant Event). Let HB-RaceDetect(τ) be the result of a precise
dynamic HB-based algorithm running on τ , an input execution trace observed so far. HB-
RaceDetect(τ) is either ε (if there is no race in τ) or (l1,a1,l2,a2), if there exist racing accesses
e1||e2 in τ such that li=loc(ei) and ai = access(ei) and l1 < l2 (the location ordering is for
symmetry breaking). An event e is redundant iff HB-RaceDetect(τ) = HB-RaceDetect(τ\e).



J. Huang and A.K. Rajagopalan 15:7

I Definition 2 (Concurrential Equivalence). The key observation behind concurrential
equivalence is that, for two MEM events ei and ej , their inter-thread happens-before relation
can determine their equivalence. Regardless of which thread(s) they are from, ei and ej are
concurrentially equivalent if they satisfy the following conditions:
1. they share the same program lexical location (i.e., loc(ei)=loc(ej)) and have the same

access type (i.e., both are reads, or both are writes);
2. they access the same dynamic memory location;
3. they have the same inter-thread HB relations with events from any other thread that is

different from ti or tj . More formally, ∀ ek, tek
6= ti ∨ tek

6= tj , such that ek ≺ ei ⇐⇒
ek ≺ ej and ei ≺ ek ⇐⇒ ej ≺ ek.

For Condition 3, we note that there are two possible cases: 1) ti = tj and 2) ti 6= tj . As
long as tek

is different from any of them, the condition must be held. We also note that from
the two ⇐⇒ conditions, we can derive ek||ei ⇐⇒ ek||ej .

With concurrential equivalence, we can formally prove the following theorem:

I Theorem 1 (Concurrential Redundancy). An event e is redundant if there already
exists one concurrential equivalent event from the same thread, or two from different threads.

Proof. The key insight for the proof is that a race involves only two events from two different
threads. Let us assume two concurrentially equivalent events ei and ej , and consider an
arbitrary event ek. If ei and ej are from the same thread, and if ek and ei form a data race,
then ek and ej must be a race too. The reason is that ei and ej have the same inter-thread
HB relation, and ek must be from a different thread. Hence, either ei or ej is redundant. On
the other hand, if ei and ej are from different threads, and if ek and ei form a race, there are
two possibilities. One is that ek is from a third thread different from that of ei and ej . In
that case, either ei or ej is redundant, because ek would race with ej too. The other case is
that ek is from the same thread as ej . In that case, neither ei nor ej is redundant. However,
for any other event ew that is concurrentially equivalent to ei and ej , ew must be redundant.
The reason is that ew would either form a race with ek (if it is from a thread different from
that of ek), or is redundant with ej (if it is from the same thread as ek).

Meanwhile, we can prove that no new races would be reported if such an event e is removed
from the trace. Let us assume a certain new race (ei, ej) is reported in τ\e but not in τ .
Then it must be the case that in τ\e, ei ≺ ej ∨ ej ≺ ei, but in τ , ei||ej . The only possibility
is that ei ≺ e ≺ ej ∨ ej ≺ e ≺ ei. However, because in τ\e, there should exist an event e′

that is concurrentially equivalent to e, then we should also have ei ≺ e′ ≺ ej ∨ ej ≺ e′ ≺ ei.
This contradicts to the assumption that (ei, ej) is a race. J

We can hence use Theorem 1 to identify redundant events. But is it optimal? Can we
safely remove any more events from the trace without affecting the race detection results?
Interestingly, Theorem 1 only defines optimal equivalence between events, but it is not
optimal for defining redundancy. More specifically, we can improve Theorem 1 to capture
more redundant events by relaxing Condition 3 with the “HB-subsume” relation.

I Definition 3 (HB-subsume). An event ei HB-subsumes (2) ej if the HB relation of ej is
a subset of ei for events from any other thread that is different from ti or tj . More formally,
if ei 2 ej then ∀ ek, tek

6= ti ∨ tek
6= tj , such that ek ≺ ei =⇒ ek ≺ ej and ei ≺ ek =⇒ ej

≺ ek.

Comparing the conditions in HB-subsume with that in Condition 3, the difference is that
⇐⇒ is changed to =⇒. That is, the inter-thread HB relations of ei and ej need not to be

ECOOP 2017



15:8 What’s the Optimal Performance of Precise Dynamic Race Detection?

equivalent, but is relaxed to be a subset relation. The key insight is that if ei 2 ej , then ej

only represents a subset of the happens-before information represented by ei; hence ei can
replace ej for race detection. Similarly, we can define concurrential-subsume equivalence and
prove Theorem 2:

I Definition 4 (Concurrential-subsume Equivalence). For two MEM events ei and ej ,
ej is concurrentially-subsumed by ei if:
1. they share the same program lexical location and have the same access type (i.e., both

are reads, or both are writes);
2. they access the same dynamic memory location;
3. ei 2 ej .

I Theorem 2 (Optimal Concurrential Redundancy). An event e is redundant if there
already exists one concurrential-subsuming equivalent event from the same thread, or two
from different threads.

Proof. The proof is similar to that of Theorem 1. The only difference is changing concurrential
equivalence to concurrential-subsume equivalence. Meanwhile, since a race involves at least
and at most two events, it is impossible to further remove any more such events, otherwise
a certain race may be missed. Hence, we can also prove that Theorem 2 is optimal for
characterizing concurrentially-redundant events. J

We can hence use Theorem 2 to precisely and optimally identify concurrentially-redundant
events. To clarify, we note that Theorem 2 only considers those events that may be involved
in data races but cannot introduce new races. We do not consider redundant events that can
never participate in any data race, e.g., events that are always happens-before-ordered before
some event for each thread. It is possible to further remove events beyond our definition
of concurrential equivalency. Nevertheless, that would require checking the happens-before
relation between events, which is as expensive as running a full HB algorithm.

3 The ReX Algorithm

For dynamically generated event streams from a running program, checking the first two
conditions of concurrential-subsume equivalence is easy: lexical equivalence can simply check
the originating program location of the event, access types can be recognized easily during
instrumentation, and dynamic memory location is available at runtime. Checking the third
condition (i.e., 2) however, if done naively, would prove prohibitively expensive, especially
when the algorithm needs to be run online during program execution. To efficiently check
the 2 condition, we introduce a new concept called concurrency context:

I Definition 5 (Concurrency Context). The concurrency context of a thread t, Γt,
encodes the history of SND and REL events observed by t, with the thread attribute t
ignored. The concurrency context of an event e generated by thread t is the value of Γt at
the time e is observed.

It is easy to see that if two events ei and ej have the same concurrency context and ei

appears before ej , then they must satisfy the ei 2 ej condition, because only SND and REL
introduce outgoing inter-thread HB edges; for all the other event types (i.e., RCV, ACQ
andMEM ), they only introduce intra-thread or incoming HB edges.



J. Huang and A.K. Rajagopalan 15:9

Algorithm 1 ReX(e)
1: e← input event
2: t = e.getThread

3: loc = e.getLocation

4: Γt // concurrency context of thread t
5: Θloc // concurrency history at location loc
6: switch e do
7: case MEM:
8: if CheckRedundancy(t, Θloc, Γt) then
9: discard e
10: else
11: advance e
12: end if
13: case REL:
14: Γt.add(e.l)//add the lock l
15: advance e
16: case SND:
17: Γt.add(e.g)//add the message g
18: advance e
19: case Other:
20: advance e

Finally, we introduce the concept of concurrency history for a particular lexical location:

I Definition 6 (Concurrency History). The concurrency history at a static program
location loc, Θloc, stores the union of Γt of all threads t that have accessed this location.

The concurrency history Θloc can be used to filter out redundant events from location
loc. Moreover, since the concurrency contexts of different events from the same location
exhibit strong temporal locality due to stack based computational model of programs, a
prefix sharing data-structure such as trie is ideal for storing Θloc. This results in compact
storage and fast retrieval in our design of ReX.

We design ReX as a filter pass over the event stream generated by the program execution.
It is generic by design and can be applied to any dynamic race detectors and it is sound for
the precise HB-based race detection algorithms such as FastTrack. Algorithm 1 provides a
high-level overview of how ReX applies the redundancy filters. It updates Γt as events stream
by. The calls discard and advance indicate when ReX decides that the event is redundant
and discard it or advance it to the race detector, respectively. The MEM events are handled
separately from the other types of events:

1. MEM: Memory access events, both read and write are checked for redundancy (Al-
gorithm 2). If this call returns true, the event is redundant and it is filtered.

2. SND and REL: These events always append to Γt their unique ID g or l.
3. RCV and ACQ: These events are not processed but just advanced to the race detector.

For each MEM event, the CheckRedundancy function determines its redundancy by
checking the corresponding concurrency history Θloc and the current concurrency context
Γt of the thread. Recall Theorem 2 that an event is redundant if there already exists one
concurrential-subsuming equivalent event from the same thread, or two from different threads.

ECOOP 2017



15:10 What’s the Optimal Performance of Precise Dynamic Race Detection?

Algorithm 2 CheckRedundancy(t, Θloc, Γt)
1: stack ← getStack(Θloc,Γt)//get the stack associated with the concurrency context and

location
2: if stack is empty then
3: Θloc.add(Γt)
4: return false
5: else if stack.contains(t) then
6: return true
7: else if stack.size = 1 then
8: stack.add(t)
9: return false

10: else if stack is full then
11: return true
12: end if

To check this condition, each node in Θloc contains a bounded stack of size 2 that is used to
keep track of the number of concurrential equivalent events seen so far. If the stack is full,
new events having the same Γt are filtered out since they are redundant. The elements of the
stack denote the threads that have contributed to the particular concurrency context. The
first step is to check the stack corresponding to the current thread’s concurrency context.
Based on the contents of this stack, there are four cases to consider:

1. Stack is empty: This implies that this particular concurrency context was not seen in
any of the accesses so far, hence the event is not redundant. We proceed to add Γt into
Θloc for future accesses, where t is the thread ID of the current event e and loc is the
program location of e.

2. Stack contains t: This case falls in the category of intra-thread redundancy, so e and
can be eliminated.

3. Stack does not contain t and is of size 1: Add t to the stack.
4. Stack is full: This case falls in the category of inter-thread redundancy, so e can be

eliminated.

Synchronization-free Implementation. Algorithm 1 is simple and mostly straight-
forward to implement. The only problem is that the algorithm itself is multithreaded and the
trie for storing each concurrency history Θloc is a shared data structure. Multiple threads
may concurrently access Θloc with the same concurrency context Γt and attempt to store
a new stack into the trie for the same entry Γt if a stack is not available for the entry
(at line 2 in Algorithm 2). To correctly implement the algorithm, this operation must be
synchronized. However, a synchronized implementation would slow down ReX significantly,
especially for programs with a large number of threads running on multicore processors and
for this scenario, the synchronization operation is performed for every check.

We develop a synchronization-free implementation that does not use any locks to protect
the new stack store operation. Specifically, for each node in the trie, we maintain a hashmap
from the current concurrency context ID (message g or lock l) to its children nodes. When a
synchronization event with ID x is generated, the corresponding thread checks the hashmap
to return a child node for x and creates a new node if not available. Multiple threads are
allowed to check the hashmap and create new entries in it without synchronization. Because
there is no synchronization, two threads may create two new nodes for the same concurrency
context ID, and one of them would be overwritten by another.



J. Huang and A.K. Rajagopalan 15:11

for(i=1;i<=3;i++) 
fork Ti 

for(i=1;i<=3;i++){ 
read x 
lock Li 
write x 
unlock Li 

}

1

T0

write x 
lock Li 
write x 
unlock Li

3

Ti

4

2

(a)

e1: SND(t0, g1) 
e2: SND(t0, g2) 
e3: SND(t0, g3) 
e4: MEM(t0, R, x) 
e5: ACQ(t0, L1)  
e6: MEM(t0, W, x) 
e7: REL(t0, L1) 
e8: MEM(t0, R, x) 
e9: ACQ(t0, L1)  
e10: MEM(t0, W, x) 
e11: REL(t0, L1) 
e12: MEM(t0, R, x) 
e13: ACQ(t0, L1)  
e14: MEM(t0, W, x) 
e15: REL(t0, L1)

e16: RCV(t1, g1) 
e17: MEM(t1, W, x) 
e18: ACQ(t1, L1) 
e19: MEM(t1, W, x) 
e20: REL(t1, L1) 
e21: RCV(t1, g2) 
e22: MEM(t1, W, x) 
e23: ACQ(t1, L2) 
e24: MEM(t1, W, x) 
e25: REL(t1, L2) 
e26: RCV(t3, g3) 
e27: MEM(t3, W, x)  
e28: ACQ(t3, L3) 
e29: MEM(t3, W, x) 
e30: REL(t3, L3)

1

2

3

4

1

2

1

2

3

4

3

4

(b)

Figure 4 A program exhibiting event redundancies and a serialized execution trace.

The loss of one node causes the corresponding stack associated with the concurrency
context ID x to miss one entry, which means that a redundant event may be missed. However,
since the chance for two threads to check the hashmap with the same concurrency context
ID at the same time is very small, this treatment rarely misses redundant events in practice
(in our extensive experiments we only observed one or two such cases out of every one
million events on average). Moreover, this treatment is sound that it does not miss any
non-redundant events.

3.1 Example
We use the example in Figure 4 to illustrate ReX. This program in (a) contains two loops:
the first spawns three threads, T1,2,3, and the second performs a read at program location
À, followed a lock region on Li protecting a write at Á in each loop for i = 1, 2, 3. Threads
T1,2,3 are all identical except in the lock addresses used to guard the write at Ã. The write at
Â is unguarded. A trace corresponding to a serialized execution of the program that executes
T0 → T1 → T2 → T3 is shown in (b). If this trace is given to a precise HB-based race detector,
a race between e14 and e17 will be detected as the first race: In fact, if all possible thread
schedules are explored, a powerful race detector such as RVPredict [15] can detect 45 races in
total in this program: (e(4,8,12), e(17,19,22,24,27,29)), (e(6,10,14), e(17,22,17)), (e6, e(24,29)), (e10,
e(17,29)), (e14, e(17,24)), (e17,19, e(22,24,27,29)), and (e22,24, e(27,29)). However, only 7 of them
have unique lexical locations: (À,Â), (À, Ã), (Á, Â), (Á, Ã), (Â, Â), (Â, Ã) and (Ã, Ã).
The rest 38 races are superfluous and should be removed from the race reports. We would
like to use ReX to identify those redundant events that lead to these superfluous races.

Figure 5 illustrates how ReX works for this example. There are four program locations of
interest, marked by À-Ã.

Location À: Following Algorithm 1, the three events e1,2,3 first add their unique message
ids into Γt. The read e4 by T0 is then added to the stack associated with the concurrency

ECOOP 2017



15:12 What’s the Optimal Performance of Precise Dynamic Race Detection?

Root

g1

g3

Root

L1 L2 L3

1
T0

g2

L1
2
T0

1
T0

L2
2
T0

1
T0

L3

3
T1
T2

T3
dropped

4
T1

4
T2

4
T3

2
T0

Figure 5 Trie states after applying ReX on the trace in Figure 4b.

context g1− g2− g3. Note that the lock acquire e5 does not add anything to Γt, but the
lock release e7 appends L1 to it. Similarly, the read e8 by T0 is added to the stack associated
with the concurrency context g1− g2− g3− L1. At the end of three iterations, e4,8,12 are
added to the stacks associated with three different concurrency contexts. The stack at each
of these locations contains the single thread T0 and thus, none of the accesses is dropped.

Location Á: Similar to that of À, e6,10,14 are added to three different stacks, because the
lock acquire events extending the concurrency context with L1, L2 and L3.

Location Â: The first two threads T1 and T2 access this location and get added into the
stack. The third thread T3 is however filtered since the stack is already full, exhibiting
inter-thread redundancy.

Location Ã: Similar to how each T0 acquires a lock, the writes this location are each
guarded by a different lock. Thus, the thread ID of each write is added to a different stack.

For the example above, the only redundant event dropped by ReX is the third event from
location Â. Keen readers may wonder why we cannot drop some of the other events (e.g.,
the second and the third read events from location À). The fundamental reason is that these
events are not redundant for a precise HB-based race detection algorithm. For instance, it
may appear that the second read event e8 from À is redundant to its first read event e4; but
according to the HB algorithm, the lock release event e7 introduces an outgoing HB edge,
resulting in a different inter-thread HB relation for e8. Hence, a possible future event, say
e100, may race with e8 but not e4.

We next introduce a relaxation of ReX that is unsound for the precise HB-based algorithm,
but is sound for the LockSet algorithm. It has the power to identify all those seemingly
redundant events in this example. However, in principle, because the LockSet algorithm
is unsound, this relaxation of ReX may result in missing real races. Nevertheless, in our
experiments we rarely observe such cases.



J. Huang and A.K. Rajagopalan 15:13

Root

g1

g3

Root

1
T0

g2

3
T1
T2

e27
dropped

L1 L2 L3

4
T1

4
T2

4
T3

2
T0

L1 L2 L3

2
T0

2
T0

e8,e12
dropped

Figure 6 Trie states with the LockSet optimization for the trace in Figure 4b.

4 The LockSet Optimization

In a pure LockSet-based race detector [27] or hybrid race detectors [24, 16] which combine
HB and LockSet, the contribution by locks is often ignored in the HB relation. Instead, ACQ
and REL events are tracked separately using LockSet.

LockSet Condition: The set of locks currently held by a given thread is referred to as its
LockSet. The LockSet condition states that two conflicting accesses are in a race if there is
no HB relation between them, and the LockSets of the two threads do not overlap, i.e., Li ∩
Lj = ∅, where Li and Lj refer to the LockSet of Ti and Tj , respectively, at the time of event
generation.

The LockSet condition allows us to optimize ReX by filtering redundant events across
synchronization boundaries incurred by both ACQ and REL events, because events with the
same LockSet may be redundant. For example, the second and the third read events from
location À in Figure 4 can now be filtered because according to the LockSet algorithm, these
two events are redundant to the first read event from À.

This optimization can be implemented by slightly modifying the ReX algorithm (Line
13 in Algorithm 1). Specifically, instead of appending the lock l to the thread concurrency
context Γt for REL, upon an ACQ or REL event, we can perform the following:

ACQ: add the lock address into Γt. If a lock previously acquired is acquired again, we
ignore the event.
REL: remove the lock address from Γt. In a well-formed trace, the corresponding lock
acquire event of this address must have already been observed before this event is seen.

To support reentrant locks, we can further add a local counter to each lock address in the
concurrency context Γt. The counter is zero initially, and is incremented (or decremented)
by one upon each ACQ (or REL) of the corresponding lock address. The lock address is
removed from Γt when the counter becomes zero upon a REL.

Figure 6 illustrates how ReX with this optimization works for the same example in
Figure 4b. The main difference is Location À: the three read events e4,8,12 now have the
same concurrent context g1− g2− g3 with an empty lockset. Therefore, e8 and e12 can be
filtered out.

ECOOP 2017



15:14 What’s the Optimal Performance of Precise Dynamic Race Detection?

T1 T2
for(i=0;i<2;i++){ 
   lock A 
   x++ 
   y++ 
   unlock A 
}

  lock A 
  y = b 
  unlock A 
  if(b>=1) 
    z = x

   x=y=0 

3
4

2
1

7

8

6
5

Figure 7 An example illustrating the unsoundness of the LockSet optimization.

We next use an example in Figure 7 to illustrate why this optimization is sound for the
hybrid (or LockSet-based) algorithm only, but unsound for the HB-based algorithm such
as FastTrack. For HB-based race detectors, the location Á and Ç are in a race when the
schedule is À-Á-Â-Ã-Ä-Å-Æ-Ç-À-Á-Â-Ã. However, the LockSet optimization will determine
that the second event from Á is redundant to the first event from Á and hence filter it out
from the trace. Because the first event from Á happens before the event from Ç (introduced
by the lock and unlock events from Ã-Ä), the race will be missed.

5 Evaluation

Our evaluation focuses on answering the following four sets of research questions:
1. Redundancy: How much event redundancy is there in real-world execution traces?
2. Optimal Performance: Hypothetically, what is the optimal runtime performance of a

precise HB-based dynamic race detector if all concurrentially-redundant events were
removed with no cost?

3. ReX Effectiveness and Efficiency: How effective is ReX in removing redundant events?
Can ReX improve runtime performance of dynamic race detectors? How much speedup
or slowdown can ReX bring?

4. ReX Precision and Soundness: Does ReX affect the precision or soundness (i.e., detection
ability) of race detection in practice?

Evaluation Methodology. We use ReX as a preprocessing step in the RoadRunner tool
chain [13], and compare the runtime performance and race detection results between FastTrack
with and without ReX. FastTrack implements the fastest precise dynamic race detection
algorithm, so we focus on integrating FastTrack with ReX. ReX intercepts the full event steam
generated by RoadRunner (without any optimization), and passes an event to FastTrack
when it determines that the specific event is not redundant.

We have evaluated ReX as well as the LockSet optimization on a collection of 13 commonly
studied multithreaded benchmarks including all the eight benchmarks from the Java Grande
suite, four from the DaCapo suite1 [5] (which are all real-world applications), as well as the
popular Tsp (traveling salesman problem) benchmark. Table 1 summarizes the benchmarks
and their trace characteristics. The first eight benchmarks are from Java Grande and all
of them were tested running on 20 threads. The next four benchmarks are from DaCapo

1 DaCapo contains several other multithreaded applications, but we do not include them because the
RoadRunner tool failed to instrument them.



J. Huang and A.K. Rajagopalan 15:15

Table 1 Benchmarks and the trace characteristics. For all benchmarks, 99+% of the events are
memory reads or writes.

#EventsBenchmark #Threads MEM Volatile ACQ/REL SND/RCV
LUFact 20 7.6G 23 12 38
Series 20 6M 0 12 38
Sor 20 2.65G 77.7M 12 38
Sparse 20 7.7G 0 12 38
Crypt 20 2.1G 0 12 76
MonteCarlo 20 492M 0 22 38
Moldyn 20 2.02G 23 22 38
RayTracer 20 3.55G 23 148 38
Avrora 7 1.4G 0 2.9M 580K
Xalan 9 1.1G 0 8.9M 1.7K
Sunflow 17 9.7G 0 1.8K 32
Lusearch 10 1.4G 1.2M 2.7M 136
Tsp 9 1.5G 0 62K 16

and were tested under the default configuration. Columns 3-6 report the number of different
types of events in the execution, For all the benchmarks, the MEM events are the majority
accounting for more than 99% of all the events. Note that volatile memory accesses are
reported separately because they introduce happens-before according to the standard HB
semantics [19], and they are not checked for redundancy since concurrent volatile accesses
are not data races.

To evaluate the trace redundancy, we run ReX without optimization to obtain the number
and the percentage of redundant events. To assess the optimal performance of dynamic race
detection, we assume that all concurrentially-redundant events could be eliminated with no
cost. The optimal overhead can hence be approximated by subtracting the running time of
ReX+FastTrack with that of running ReX alone. An additional performance factor is the
runtime cost of instrumentation, which is used to generate the event stream. In practice,
because the instrumentation in RoadRunner is based on code rewriting, the cost can be high.
Therefore, we also include the instrumentation cost and calculate the optimal performance as
X −Y +Z ∗ (1− redun%), where X is the cost of ReX+FastTrack, Y the cost of ReX alone,
Z the instrumentation cost of all events and redun% the percentage of redundant events. To
measure Z, we run standalone RoadRunner on each benchmark with no race detection.

Hardware Configuration. The hardware used to run these experiments was an eight-core
iMac machine with 4.0GHz Intel Core i7 processor, 32 GB DDR3 memory with Java JDK
1.8 installed.

Summary. The results are reported in Tables 2-5. All experimental data were averaged
over three runs. Overall, ReX and its LockSet optimization identify 97% and 98.2% of the
total events as redundant, respectively, improving the runtime performance of FastTrack by
more than 30% while incurring 1.3X and 1.2X memory overhead, and producing the same
unique data races as reported by FastTrack. If all redundant events were removed with no
runtime cost, the optimal performance of FastTrack can be improved by 90% on average.

We next discuss the results with respect to these research questions.

ECOOP 2017



15:16 What’s the Optimal Performance of Precise Dynamic Race Detection?

Table 2 Results of event redundancy and race detection performance.

Native Instrument FastTrack ReX ReX+FTBenchmark time only time(o.h.) only time(o.h.) #redun(%)

LUFact 1.94s 36.2s(18X) 108s(55X) 51.9s(26X) 55.6s(33X) 7.59G(99%)
Series 78.9s 90.1s(14%) 86.6s(10%) 89s(13%) 86.1s(9%) 5.99M(99%)
Sor 2.82s 15s(4X) 35.3s(12X) 17.7s(5X) 18.5s(6X) 2.53G(95%)
Sparse 0.6s 39.8s(65X) 124s(206X) 60.7s(100X) 61.2s(101X) 7.69G(99%)
Crypt 0.35s 17s(47X) 55.8s(158X) 31.7s(90X) 50.4s(143X) 2.09G(99%)
MonteCarlo 0.59s 2.75s(4X) 9.9s(16X) 5.1s(8X) 7.4s(11X) 488M(99%)
Moldyn 0.42s 10.7s(24X) 30.1s(71X) 19.1s(44X) 18.8s(44X) 2.01G(99%)
RayTracer 0.36s 12.7s(34X) 43.1s(119X) 22.9s(63X) 24s(66X) 3.54G(99%)
Avrora 2.4s 19.4s(7X) 36s(14X) 32.1s(12X) 35s(13X) 1.21G(87%)
Xalan 1.7s 14.2s(7X) 26s(14X) 22.7s(12X) 26s(14X) 1G(93%)
Sunflow 1.8s 47.1s(25X) 157s(86X) 122.7s(67X) 132s(72X) 9.69G(99%)
Lusearch 1.2s 57.5s(47X) 68s(56X) 42.6s(35X) 58s(47X) 1.37G(97%)
Tsp 0.9s 31.9s(34X) 67s(73X) 55.2s(60X) 58s(63X) 1.49G(99%)
Average - 24X 68X 40X 47X (↓31%) 97%

5.1 Redundancy and Optimal Performance
Table 2 Column 2 reports the native execution time of each benchmark, ranging from 0.35s
for Crypt to 78.9s for Series. Column 3 reports the running time of the instrumented
version and the instrumentation slowdown. The instrumentation incurs 24X slowdown on
average, ranging between 14%-65X. Column 4-6 respectively report the time and overhead of
FastTrack, ReX alone and ReX+FastTrack. Column 7 reports the number of the redundant
events identified by ReX and their percentage over the total events.

Overall, redundant events are pervasive in these benchmarks. This is expected because
repeated memory accesses from the same lexical locations via loops are typical in real-world
programs. For most benchmarks (10 out of the 13 benchmarks), more than 99% of the
events are redundant. On average, ReX identifies 97% of the total events as redundant. For
the other three (Sor, Avrora, Xalan), ReX identifies 95%, 87%, and 93% redundant events,
respectively.

Our result indicates that the performance of dynamic race detection has a large improve-
ment space by removing the concurrentially-redundant events. If all concurrentially-redundant
events were removed from the trace (e.g., by compiler analysis or a zero overhead runtime
analysis to identify redundancy), the performance of FastTrack could be improved by 90%
(following the formula X − Y + Z ∗ (1− redun%) described earlier), reducing the runtime
overhead of FastTrack from 68X to 7X for all these benchmarks on average. For most of the
Java Grande benchmarks, the FastTrack runtime overhead could be reduced by 95%, from
80X to 3X only. The only exception is Crypt, for which the overhead of FastTrack can be
reduced by 66%, from 158X to 53X.

5.2 ReX Performance, Precision & Soundness
The number and percentage of redundant events identified by ReX without and with the
LockSet optimization are reported in the last columns in Table 2 and Table 3, respectively.

Overall, ReX improves the runtime overhead of FastTrack by 31% (from 68X to 47X)
on average. The LockSet optimization further improves the performance by 1% (to 46X).
ReX identifies that on average 97% of the events in the trace are redundant. ReX with the
LockSet optimization identifies 98.2% of the total events as redundant. For instance, for
Avrora, while ReX only detects 87% redundant events, the LockSet optimization detects 95%.



J. Huang and A.K. Rajagopalan 15:17

Table 3 Runtime performance of ReX with the LockSet optimization.

ReX-LockSet+FTBenchmark #redun(%) time(o.h.)
LUFact 52.1s(26X) 7.59G(99%)
Series 85s(8%) 5.99M(99%)
Sor 18s(5X) 2.6G(98%)
Sparse 59.7s(99X) 7.69G(99%)
Crypt 50.2s(142X) 2.09G(99%)
MonteCarlo 7s(56X) 488M(99%)
Moldyn 19.1s(44X) 2.01G(99%)
RayTracer 23.1s(63X) 3.54G(99%)
Avrora 26s(10X) 1.33G(95%)
Xalan 25s(14X) 1.08G(98%)
Sunflow 80s(43X) 9.69G(99%)
Lusearch 52s(42X) 1.39G(99%)
Tsp 54s(59X) 1.49G(99%)
Average 46X(↓32%) 98.2%

The reason is that the LockSet optimization can detect redundant events across the lock
ACQ boundaries.

Table 4 reports the memory overhead of ReX. ReX incurs 1.3X memory overhead
compared to FastTrack. The LockSet optimization further reduces the memory overhead to
1.2X, because more redundant events are filtered out.

Table 5 reports the total number of data races and the number of unique races among
them detected by FastTrack, FastTrack with ReX, and FastTrack with ReX and the LockSet
optimization. For all the benchmarks, ReX and the LockSet optimization both result in
the same number of unique data races detected by FastTrack. Even though the LockSet
optimization is unsound in theory for HB-based race detectors, it does not affect the race
detection results in these benchmarks. We also empirically validated that the unique races
detected by FastTrack match with the unique races detected upon using ReX and the
optimization. This confirms that ReX is both theoretically sound and practically useful.

One additional benefit we observed, that was not originally planned, was that error output
verbosity tended to be greatly reduced. Sometimes, we observed that FastTrack reports
races on a particular race pair several hundreds of times, even though a single instance is
sufficient to alert the programmer to the concurrency bug. ReX filters most of the redundant
events before sending them to FastTrack, reducing the total number of the reported races
and saving the user valuable time in parsing the tool output. For instance, FastTrack reports
644 total races in Sor, but only 10 of them are unique. With ReX-LockSet, this number is
reduced to 38, containing the same number of unique races. This also proved very useful in
our evaluation stage when we compared the race output with and without ReX. Of course,
this benefit can also be achieved via an automatic offline analysis that filters out superfluous
race reports.

6 Related Work

Data race detection has attracted a significant research attention in the past few years
motivated by the multicore and manycore hardware architectures. Researchers have proposed

ECOOP 2017



15:18 What’s the Optimal Performance of Precise Dynamic Race Detection?

Table 4 Memory overhead (MB) of ReX.

Benchmark FastTrack ReX+FT ReX-LockSet+FT
LUFact 2194 3137(43%) 3137(43%)
Series 339 290(-14%) 301(-11%)
Sor 1705 5326(2.1X) 2277(34%)
Sparse 902 885(-2%) 1984(1.2X)
Crypt 5905 11896(1X) 9994(68%)
MonteCarlo 1637 4494(1.75X) 4456(1.72X)
Moldyn 233 1267(4.4X) 1267(4.4X)
RayTracer 68 331(3.9X) 411(5X)
Avrora 347 1501(3.3X) 636(83%)
Xalan 3183 3212(1%) 2885(-9%)
Sunflow 1974 3254(65%) 2665(35%)
Lusearch 24985 22837(-9%) 26570(6%)
Tsp 848 879(4%) 2727(2.2X)
Average - 1.3X 1.2X

a wide spectrum of race detection techniques, both static [23, 31] and dynamic [4, 10, 12].
targeting different application domains [3, 22] and different types of software [9, 11, 25].

To improve runtime performance, there are two areas where recent research has focused
on: 1) improved underlying race-detection algorithms such as FastTrack [12], and 2) reduced
static instrumentation or runtime checking of races. Reducing the number of instrumented
or checked events by finding redundancies is orthogonal to the race-detection algorithm and
works across different algorithms. There are three families of techniques that help in finding
these redundancies, discussed below.

Static analysis based tools: Tools such as [8, 14, 34, 10, 30] target statically identifying
redundant events that will never or less likely lead to races. They eliminate those accesses that
are guaranteed to be race-free or would not result in generation of any new races. For example,
IFRit [10] identifies interference free regions of the program and reduces instrumentation in
them. RaceTrack [34] adds more instrumentation to those regions that are more susceptible
of races and lesser instrumentation to regions that are not. However, precisely analyzing the
source code and determining such regions is hard. These tools struggle to properly analyze
external library features and program constructs such as reflections, which may result in loss
of precision or soundness.

The static analysis closest to our work is RedCard [14], which proposes Span redundancy,
a static release-free region from the same thread bounded by two outgoing HB edges. Span
redundancy captures a subset of redundant events characterized by concurrential-subsume
redundancy. For example, it does not capture redundant events across different threads.
In addition, detecting redundant events at runtime has a number of benefits: 1) it greatly
simplifies the algorithm design because the address and thread of memory accesses is available
at runtime; 2) it handles dynamic program features automatically without expensive or
undecidable static analysis; 3) it may detect more redundant events (those are input-specific).

BigFoot [26] is a recent technique that combines sophisticated static analysis with dynamic
analysis to coalesce checks and compress metadata for checks. It significantly improves the
performance of FastTrack by 60% because multiple accesses to an object or array may be
converted to a single check that manipulates a single piece of compressed metadata, e.g., it
may move a check out of a loop. Compared to BigFoot, ReX does not require static analysis.



J. Huang and A.K. Rajagopalan 15:19

Table 5 Number of detected total and unique races by different approaches.

Benchmark FastTrack ReX+FT ReX-LockSet+FT
LUFact 0(0) 0(0) 0(0)
Series 0(0) 0(0) 0(0)
Sor 644(10) 44(10) 38(10)
Sparse 0(0) 0(0) 0(0)
Crypt 0(0) 0(0) 0(0)
MonteCarlo 100(1) 8(1) 38(1)
Moldyn 0(0) 0(0) 0(0)
RayTracer 100(1) 100(1) 100(1)
Avrora 200(2) 200(2) 200(2)
Xalan 168(8) 16(8) 16(8)
Sunflow 63(8) 13(8) 12(8)
Lusearch 205(11) 30(11) 28(11)
Tsp 100(1) 81(1) 63(1)

Online tools: To improve runtime performance, several online sampling techniques [6,
20, 34] have been proposed to scale dynamic race detection to long running programs.
LiteRace [20], Pacer [6], and RaceTrack [34] all use sampling to reduce the tracing overhead
and may achieve negligible runtime slowdown, at the cost of reduced race detection ratio.
SlimState [33] introduces an online algorithm to optimize array shadow state representations.
RoadRunner [13] has an inbuilt thread-local pass that is supposed to speed up dynamic
analysis tools by filtering memory addresses that are solely accessed by a single thread.
However, we found that the design of this filter is unsound and can result in missing races.

Post-processing on trace: Huang et al. [17] propose an offline trace analysis, TraceFilter,
to remove redundant events in the context of predictive concurrency analysis for detecting
concurrency analysis anomalies such as data races and atomicity violations. Our work is
inspired by this analysis. However, TraceFilter only captures a subset of redundant events
characterized by our concurrential redundancy criterion. Specifically, TraceFilter captures
intra-thread redundant events with respect to the hybrid HB and LockSet algorithm, as
well as entirely redundant threads. It does not capture inter-thread redundant events, and
because of LockSet it is unsound for the precise HB algorithm.

Improved detection. Another area of much development is the design of tools that try
to improve the race detection ability. Predictive trace analysis [15, 16, 7, 29, 32] records a
single execution of the program and then generates other permutation of the trace events
under different scheduling constraints allowing it to detect concurrency bugs not exposed in
the original trace. We plan to investigate the applicability of ReX for this type of analyses
dynamically in future work.

7 Conclusion

We have shown that for dynamic race detection there exists a significant percentage of
redundant events that do not reveal any new races and we propose a criterion, concurrential
redundancy, that precisely and optimally characterizes them. We have also shown that if such
redundant events were all removed, the performance of the state-of-the-art precise dynamic

ECOOP 2017



15:20 What’s the Optimal Performance of Precise Dynamic Race Detection?

race detector FastTrack could be significantly improved by 90% on popular benchmarks and
real-world programs. We have also presented a technique, ReX, that efficiently identifies
redundant events and filters them out from the trace. The key enhancement over previous
techniques is that ReX is sound, optimal, and purely dynamic. This gives us the ability to
be completely unaware of complicated program semantics and perform filtering at runtime
without changing the race detection algorithm, and without affecting the soundness and
precision of the race detection result. Our evaluation results show that ReX improves the
runtime performance of FastTrack by 31% on average.

Acknowledgements. We thank our shepherd, Sebastian Burckhardt, and the anonymous
reviewers for their valuable feedback.

References
1 Java Grande benchmark suite. https://www2.epcc.ed.ac.uk/computing/research_

activities/jomp/grande.html.
2 ThreadSanitizer. http://clang.llvm.org/docs/ThreadSanitizer.html.
3 Pavol Bielik, Veselin Raychev, and Martin Vechev. Scalable race detection for android ap-

plications. In ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages and Applications, 2015.

4 Swarnendu Biswas, Minjia Zhang, Michael D. Bond, and Brandon Lucia. Valor: Efficient,
software-only region conflict exceptions. In ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages, and Applications, 2015.

5 Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z.
Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish
Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wie-
dermann. The DaCapo benchmarks: Java benchmarking development and analysis. In
ACM SIGPLAN Conference on Object Oriented Programming, Systems, Languages, and
Applications, 2006.

6 Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley. Pacer: proportional
detection of data races. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 255–268, 2010.

7 Feng Chen, Traian Florin Serbanuta, and Grigore Rosu. jPredictor: a predictive runtime
analysis tool for Java. In International Conference on Software Engineering, pages 211–230,
2008.

8 Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek Sarkar, and
Manu Sridharan. Efficient and precise datarace detection for multithreaded object-oriented
programs. In ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, 2002.

9 Dimitar Dimitrov, Veselin Raychev, Martin Vechev, and Eric Koskinen. Commutativity
race detection. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 305–315, 2014.

10 Laura Effinger-Dean, Brandon Lucia, Luis Ceze, Dan Grossman, and Hans-J. Boehm. IFRit:
Interference-free regions for dynamic data-race detection. In ACM SIGPLAN Conference
on Object Oriented Programming, Systems, Languages, and Applications, pages 467–484,
2012.

11 Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: a race and transaction-
aware Java runtime. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2007.

https://www2.epcc.ed.ac.uk/computing/research_activities/jomp/grande.html
https://www2.epcc.ed.ac.uk/computing/research_activities/jomp/grande.html
http://clang.llvm.org/docs/ThreadSanitizer.html


J. Huang and A.K. Rajagopalan 15:21

12 Cormac Flanagan and Stephen N. Freund. FastTrack: efficient and precise dynamic race
detection. In ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 121–133, 2009.

13 Cormac Flanagan and Stephen N Freund. The roadrunner dynamic analysis framework for
concurrent programs. In Proceedings of the 9th ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering, pages 1–8, 2010.

14 Cormac Flanagan and Stephen N. Freund. Redcard: Redundant check elimination for
dynamic race detectors. In European Conference on Object-Oriented Programming, 2013.

15 Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. Maximal sound predictive race
detection with control flow abstraction. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 337–348, 2014.

16 Jeff Huang and Charles Zhang. PECAN: Persuasive Prediction of Concurrency Access
Anomalies. In ACM International Symposium on Software Testing and Analysis, pages
144–154, 2011.

17 Jeff Huang, Jinguo Zhou, and Charles Zhang. Scaling predictive analysis of concurrent
programs by removing trace redundancy. ACM Transactions on Software Engineering and
Methodology, 22(1):8:1–8:21, 2013.

18 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commu-
nications of the ACM, 21(7):558–565, 1978.

19 Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory model. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2005.

20 Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. LiteRace: effective
sampling for lightweight data-race detection. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 134–143, 2009.

21 Friedemann Mattern. Virtual time and global states of distributed systems. In PARALLEL
AND DISTRIBUTED ALGORITHMS, pages 215–226. North-Holland, 1988.

22 Jeremie Miserez, Pavol Bielik, Ahmed El-Hassany, Laurent Vanbever, and Martin Vechev.
Sdnracer: Detecting concurrency violations in software-defined networks. In Proceedings
of the 1st ACM SIGCOMM Symposium on Software Defined Networking Research, pages
22:1–22:7, 2015.

23 Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for Java. In
ACM SIGPLAN Conference on Programming Language Design and Implementation, pages
308–319, 2006.

24 Robert O’Callahan and Jong-Deok Choi. Hybrid dynamic data race detection. In ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2003.

25 Veselin Raychev, Martin Vechev, and Manu Sridharan. Effective race detection for event-
driven programs. In ACM SIGPLAN International Conference on Object Oriented Pro-
gramming Systems Languages and Applications, pages 151–166, 2013.

26 Dustin Rhodes, Cormac Flanagan, and Stephen N. Freund. BigFoot: Static check placement
for dynamic race detection. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2017.

27 Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson.
Eraser: A dynamic data race detector for multi-threaded programs. In ACM Symposium
on Operating Systems Principles, pages 27–37, 1997.

28 Koushik Sen. Race directed random testing of concurrent programs. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 11–21, 2008.

29 Ohad Shacham, Mooly Sagiv, and Assaf Schuster. Scaling model checking of dataraces
using dynamic information. In ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 2005.

ECOOP 2017



15:22 What’s the Optimal Performance of Precise Dynamic Race Detection?

30 Christoph von Praun and Thomas R. Gross. Object race detection. In ACM SIGPLAN
Conference on Object Oriented Programming, Systems, Languages, and Applications, 2001.

31 Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. Relay: static race detection on millions of
lines of code. ESEC-Joint European Software Engineering Conference and ACM SIGSOFT
Symposium on Foundations of Software Engineering, 2007.

32 Chao Wang, Sudipta Kundu, Malay K. Ganai, and Aarti Gupta. Symbolic predictive
analysis for concurrent programs. In FM, 2009.

33 James R. Wilcox, Parker Finch, Cormac Flanagan, and Stephen N. Freund. Array shadow
state compression for precise dynamic race detection (t). In Proceedings of the 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE), pages
155–165, 2015.

34 Yuan Yu, Tom Rodeheffer, and Wei Chen. Racetrack: efficient detection of data race
conditions via adaptive tracking. In ACM Symposium on Operating Systems Principles,
2005.



Speeding Up Maximal Causality Reduction with
Static Dependency Analysis∗

Shiyou Huang1 and Jeff Huang2

1 Texas A&M University, College Station, USA
huangsy@tamu.edu

2 Texas A&M University, College Station, USA
jeff@cse.tamu.edu

Abstract
Stateless Model Checking (SMC) offers a powerful approach to verifying multithreaded programs
but suffers from the state-space explosion problem caused by the huge thread interleaving space.
The pioneering reduction technique Partial Order Reduction (POR) mitigates this problem by
pruning equivalent interleavings from the state space. However, limited by the happens-before
relation, POR still explores redundant executions. The recent advance, Maximal Causality Reduc-
tion (MCR), shows a promising performance improvement over the existing reduction techniques,
but it has to construct complicated constraints to ensure the feasibility of the derived execution
due to the lack of dependency information.

In this work, we present a new technique, which extends MCR with static analysis to reduce
the size of the constraints, thus speeding up the exploration of the state space. We also address
the redundancy problem caused by the use of static analysis. We capture the dependency between
a read and a later event e in the trace from the system dependency graph and identify those reads
that e is not control dependent on. Our approach then ignores the constraints over such reads
to reduce the complexity of the constraints. The experimental results show that compared to
MCR, the number of the constraints and the solving time by our approach are averagely reduced
by 31.6% and 27.8%, respectively.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Model Checking, Dynamic Analysis, Program Dependency Analysis

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.16

1 Introduction

Concurrent programs are error prone. Moreover, it is notoriously difficult for developers to
find and reproduce those concurrency bugs because they only manifest in specific interleavings.
Stateless Model checking [11] (which we refer to as SMC in this paper) offers a promising
solution to combat this challenge by systematically exploring all the possible interleavings of
the program. Since the pioneering work of VeriSoft [11, 12] and CHESS [24], SMC has been
successfully applied in real-world programs and has found many deep bugs. To mitigate the
state explosion problem in SMC, a great effort has been dedicated to reduction techniques
such as partial order reduction (POR) [3, 10, 13] which prunes redundant executions from
the state-space and search strategies such as context (or preemption) bounding [24] which
prioritizes executions with fewer context switches in a given state-space.

∗ This work was supported by NSF award CCF-1552935.

© Shiyou Huang and Jeff Huang;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 16; pp. 16:1–16:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


16:2 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

However, POR is limited by the happens-before relation and may explore redundant
executions. To maximally reduce redundancy, Huang [16] recently develops a new reduction
technique called Maximal Causality Reduction (MCR), which gains a promising performance
improvement over prior reduction techniques. To explore the maximal causality between
redundant executions that lead to equivalent states, MCR takes the values of the reads and
writes into consideration and constructs first-order constraints over the events in the trace to
generate schedules. As the new schedule contains at least one read that returns a different
value from that in the prior trace, the program reaches a new state if it is executed following
the derived schedule.

However, MCR is purely dynamic and it only collects information (values and addresses,
etc.) from the trace, which does not reflect the dependency relation of two events. As a
result, MCR has to conservatively enforce all the reads that happen before a considered event
e to return the same value (Section 2) as that in the current trace so that e is reachable in
the derived schedule. Consider the following code snippet.

i n t counter = 0 ;
// thread t1 : // thread t2 :
whi l e ( i++ < Max) whi l e ( i++ < Max)

counter += 1 ; counter −= 1 ;

This program contains two threads with one global variable counter, one thread increasing
the counter but the other decreasing it. The loop iteration in the program is decided by
Max. For ease of presentation, we extend the while loop with Max = 2 and execute the
program in the program order. The execution by each thread is an alternation of reads and
writes to the shared variable counter, e.g., r1-w1-r2-w2. MCR enumerates all the reads in the
trace and considers all the possible values that each read can return (more details are given
in Section 2). To ensure the reachability of the considered read r, MCR enforces the reads
that happen before r to return the same value (Section 3.1). For example, if MCR considers
the second read r2 in the trace, it will enforce the first read r1 to return the same value to
ensure the reachability of r2. This is because MCR does not know whether or not the value
returned by r1 can influence the evaluation of a predicate (e.g., a if statement), thus affecting
the execution of a later event, such as r2. With the number of reads and writes increasing in
the trace, MCR needs to construct expensive constraints to ensure the reachability of an
event, which on the one hand consumes more memory and on the other more time for the
solver to solve the constraints.

In light of the limitation, the main question we consider is the following: Can we skip
those reads (e.g. r1) that happen before a target event (e.g. r2) in the exploration, thus
reducing the constraints? Combining with the program’s information, we can figure out
whether a read (e.g. r1) affects the reachability of another (e.g. r2). The key contribution
of this work is to integrate the static dependency analysis into the dynamic exploration to
reduce the complexity of the first-order constraints. Although the dependency information
provided by the static analysis may be imprecise due to the limitations of all classic static
analysis, we discuss that the soundness of the dynamic exploration is not impacted by the
imprecision in Section 4.3. We use the system dependency graph (SDG) of the program to
identify whether a read has a control or data dependency on an event in the trace. Then in
the exploration of new schedules from a given trace, we rely on such dependency information
to construct constraints to only make the dependency-related reads return the same value.

Different from program slicing [28, 6] which computes a set of the statements that can
influence the value of a given point, our approach aims to locate the reads that can impact
the evaluation of a predicate that determines the execution of a given point. By our approach,
the number of the constraints and the solving time of the above example (when the value of



S. Huang and J. Huang 16:3

Figure 1 Workflow of MCR. The engine part of MCR constructs SMT constraints over the trace
to explore new program schedules, and the new trace is generated by re-executing the program
under the dynamic scheduler.

Max is 5) are reduced by 35.1% and 44.6%, respectively.
We have implemented our technique based on JOANA [1, 14] and WALA and evaluated it

with a collection of multithreaded Java programs, including two large real-world applications,
Derby and Weblech. On average, our approach reduces the number of the constraints and
the solving time by 31.6% and 27.8%, respectively, compared to MCR. We also evaluate the
total time used to search the state space by our approach. Because it takes time to check the
dependency relation of two events in the exploration, the total time used to search the state
space is not reduced significantly on small benchmarks, although the size of constraints for
these programs is significantly reduced. But for Derby and Weblech, our approach reduces
the total time by 14.1% and 43.1%, respectively, compared to MCR.

In summary, this paper makes the following contributions:
We extend MCR with static dependency analysis to reduce the size of the SMT constraints
and hence speed up the state space exploration of MCR (Section 4).
We analyze the redundancy caused by static analysis and present a modified algorithm
to avoid the redundancy (Section 5).
We validate the effectiveness of our technique on real-world Java programs and the
experimental results show promising performance improvement over MCR with respect
to the size of the constraints and the solving time as well as the total time of state space
exploration (Section 6).

The rest of the paper is organized as follows: Section 2 reviews the key insight of MCR;
Section 3 introduces the background of SDG and our motivation of this work; Section 4
presents our approach to reducing constraints; Section 5 discusses the redundant exploration
by our approach; Section 6 reports our experimental results; Section 7 discusses related work
and Section 8 concludes this paper.

2 Maximal Causality Reduction

This section reviews the key insight of MCR [16]. As Figure 1 illustrated, given a program
with a fixed input, MCR systematically explores all unique interleavings of the program in a
closed loop, with each explored interleaving covering a unique program state. At first, the
instrumented program is executed in a random order to generate the initial trace that is
taken as the input by the engine. Then given an executed trace τ , the engine encodes τ into
an SMT constraints formula (Φmc = Φmhb ∧ Φlock ∧ Φvalidity) to compute a proved maximal
set of traces, denoted as MaxCausal(τ), which contains all the feasible schedules that can
be derived from τ [17]. To prune the redundant executions in MaxCausal(τ), Φmc is then

ECOOP 2017



16:4 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

conjoined with a new state constraint Φstate to generate a final formula Φ = Φmc∧Φstate that
is used to generate a seed interleaving. A seed interleaving is a feasible thread schedule
that drives the program to reach a new state that is not explored before. The essential
insight of Φstate is to enforce the reads in the trace τ to return different values from that in
τ allowed by the SMT constraints formula. By re-executing the program under the scheduler
following the seed interleaving, the program will reach a new state and the trace generated
will be the input of the engine.

In MCR, the following common types of events are considered:
begin(t)/end(t): the first/last event of thread t;
read(t, x, v)/write(t, x, v): read/write x with value v;
lock(t,l)/unlock(t,l): acquire/release a lock l;
fork(t,t′): fork a new thread t′;
join(t,t′): block until thread t′ terminates.

To encode Φ, for each event in the given trace τ , MCR uses an integer variable O to denote
its order in a certain feasible trace in MaxCausal(τ) and encodes the following constraints
over the variables O:
1. must-happen-before constraints (Φmhb);
2. lock-mutual-exclusion constraints (Φlock);
3. data-validity constraints (Φvalidity);
4. New state constraints (Φstate).

Must-happen-before (MHB) constraints (Φmhb)

The Φmhb constraint ensures a minimal set of happens-before relations that events in any
feasible interleaving must obey. It requires that (1) All events by the same thread should
happen in the program order (assuming sequential consistency); (2) The begin event of a
thread should happen after the fork event that starts the thread; (3) A join event for a
thread should happen after the last event of the thread.

Lock-mutual-exclusion constraints (Φlock)

The Φlock constraint ensures that events guarded by the same lock are mutually exclusive. It
is constructed over the ordering of the lock and unlock events. More specifically, for each lock,
MCR extracts all the lock/unlock pairs of events and constructs the following constraints for
each two pairs (l1, u1) and (l2, u2): Ou1 < Ol2 ∨Ou2 < Ol1 .

Data-validity constraints (Φvalidity)

The Φvalidity constraint ensures that all events in any trace in MaxCausal(τ) are reachable.
For an event e to be reachable, all events that must-happen-before e must be feasible, and
every read event that e depends on (excluding e itself) should read the same value as it reads
in τ . A concrete example will be given to illustrate this in Section 3.1.

New state constraints (Φstate)

To eliminate redundant executions, MCR enforces at least one read event in each explored
execution to read a new value, so that no two executions reach the same state. MCR
enumerates each read event in τ on the set of all values by the writes on the same memory
address. For each value that is different from what it reads in τ , a new state constraint is
generated to force the read to read the new value. Consider a read r=read(t,x,v) on x with



S. Huang and J. Huang 16:5

value v, and a value v′ 6= v written by any write on x, Φstate is written as Φvalue(r, v′). Since
all such state constraints are generated, MCR ensures that no non-equivalent interleaving is
missed. Hence the entire state-space will be covered systematically by MCR.

Example

We use the upcoming example to illustrate how MCR works, and we assume all the examples
in this paper are executed under sequential consistent (SC) memory [21]. For ease of
presentation, we use ei to denote the event at line i and Oi (an integer variable) to represent
the order of ei in the trace. For example, if Oi < Oj , then ei will be executed before ej in
the generated interleaving. We keep the notations in the rest of the paper.

i n i t i a l l y x = y = 0 ;
thread 1 : thread 2 :
1 : x = 1 ; /∗w(x ) ∗/ 3 : y = 1 ; /∗w(y ) ∗/
2 : a = y ; /∗ r ( y ) ∗/ 4 : b = x ; /∗ r ( x ) ∗/

Listing 1 An example illustrating how MCR works.

The program has 6 different executions, 3 of which are redundant. MCR is able to explore
all the state-space via only 3 executions.

Suppose in the initial execution, MCR obtains the trace τ0 = 〈e1, e2, e3, e4〉 under SC,
and the program reaches the state (a=0,b=1). MCR constructs the MHB constraints
Φmhb = O1 < O2 ∧O3 < O4. As the trace contains two reads, r(y) and r(x), to generate new
seed interleavings, MCR enforces each of the two reads to read a different value in future
executions. For example, it adds the new state constraint Φstate = O3 < O2 to enforce r(y)
to read from w(y) and return the value 1. By solving this constraint conjoined with Φmhb,
the SMT solver will return a solution: {O1 = 1, O2 = 3, O3 = 2}. From this solution, MCR
generates a new seed interleaving e1-e3-e2, because O1 < O3 < O2. By re-executing the
program following this seed interleaving, MCR will obtain a new execution τ1 = 〈e1, e3, e2, e4〉,
and reach a new state (a=1,b=1). In the new trace, the order of the event that occurs in
the seed interleaving is fixed and MCR only considers the rest of the events, e4 (r(x)) in
this example. Because there is no new value that r(x) can return, the exploration along this
seed interleaving is finished. Likewise, to consider the second read event r(x) in τ0, MCR
generates a new seed interleaving e3-e4, which produces a new execution τ2 = 〈e3, e4, e1, e2〉
that reaches a new state (a=1,b=0). As there is no new state that can be generated from
e1− e2, the exploration is finished. MCR successfully explores all the three different program
states – (a=0,b=1), (a=1,b=1) and (a=1,b=0) – through only three different executions.

3 Motivation and Technical Background

In this section, we discuss the importance and the complexity of Φvalidity constraints via a
simple example. We then introduce the background of the system dependency graph (SDG),
which we rely on to simplify Φvalidity (Section 4).

3.1 Motivation
The motivation of this work stems from the observation that when running MCR on real-
world large programs, it can take a long time to solve the constraints formula even with a
powerful SMT solver, like Z3 [9]. The reason for this is that when MCR encodes long traces,
especially those with lots of reads and writes, it generates extremely huge constraints and
a large part of them are data-validity constraints (Φvalidity). As illustrated in Section 2,

ECOOP 2017



16:6 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

the constraints Φmhb and Φlock ensure that the computed interleaving obeys the semantics
of the given memory model. However, to make the generated interleaving feasible, MCR
also considers the reachability of an event that might be control dependent on a prior read.
Consider the following program.

i n i t i a l l y x = y = 0 ;
thread 1 : thread 2 :
1 : i f ( x==0) /∗ r1 ( x ) ∗/ 3 : x = 1 ; /∗w(x ) ∗/
2 : r = x ; /∗ r2 ( x ) ∗/

Suppose initially the program is executed in the order, e1− e2− e3, and the program reaches
the state r1(x) = 0 and r2(x) = 0. To make r2(x) return the value 1 written by w(x), MCR
enforces Φstate = O3 < O2 so that e3 happens before e2. By conjoining with Φmhb = O1 < O2,
the solver reports a possible solution O3 = 0, O1 = 1, O2 = 2, corresponding to a concrete
schedule e3 − e1 − e2. However, this schedule is infeasible because the if predicate is not
satisfied under this schedule, and hence e2 cannot be executed. To ensure the reachability of
an event, MCR encodes the data-validity constraints into the formula. In a word, all the
reads that happen before the considered event should hold the same value as that in the
prior execution. In this example, when we consider the value of r2(x), we need to guarantee
that r1(x) = 0. Then a correct schedule that makes r2(x) = 1 is e1 − e3 − e2. Let ≺e denote
the set of events that must-happen-before an event e and r = read(t,x,v) denote a read
event in ≺e on a memory location x with value v by thread t. Let W x denote the set of all
writes to x, and W x

v the set of writes to x with value v, the data-validity constraint for e is
encoded as

Φvalidity =
∧

r∈≺e

Φvalue(r, v),

where Φvalue(r, v) is the state constraint that ensures r to read a value v:

Φvalue(r, v) ≡
∨

w∈Wx
v

(Φvalidity(w) ∧Ow < Or∧
w 6=w′∈Wx

(Ow′ < Ow ∨Or < Ow′))

This constraint is complex because it is recursive. As we can see, to match a read r with a
write w, MCR also needs to ensure the reachability of w, which requires all the reads that
must-happen-before w should return the same value. It means we also need to construct
constraints to match those reads with specific writes. Unfortunately, as most events in a
trace are read or write, it can be very expensive to make all the reads in ≺e return the
same value. The second observation of this work is that some reads in ≺e actually do not
influence the reachability of e so that we can remove them from ≺e to reduce the size of
the constraints. For example, for two reads r1-r2 executed by the same thread, there is
no need to consider the value returned by r1 when constructing Φvalidity(e) because there
is no dependency between the two reads. Our idea for reducing the size of Φvalidity is to
only enforce the reads in ≺e, which the event e is control dependent on, to return the same
value. To achieve this idea, we use static analysis on the source code of the program – system
dependency graph, to compute the dependencies between two events. Next we first introduce
the knowledge of system dependency graph in Section 3.2 and then present the details of our
approach in Section 4.

3.2 System Dependency Graph
The system dependency graph (SDG) for a program P, denoted by Gp = (N,E), is a directed
graph, where the nodes in N represent the statements or predicates in P and the edges in E



S. Huang and J. Huang 16:7

Figure 2 The System Dependency Graph of a concrete program, where the dependencies are
distinguished by different edges.

represent the dependencies between the nodes [15]. Figure 2 presents an SDG of a concrete
program, which includes a procedure call add in the main procedure. An SDG is made of
the procedure dependency graphs (PDGs), which model the system’s procedures. In a PDG,
all the nodes are connected by either control dependency edges or data dependency edges.
A node m is control dependent on the node n if the evaluation of n controls the execution
of m. The source of a control dependency edge is either an enter node or a predicate node.
A data-dependency between two nodes indicates that the program’s computation might be
changed if the relative order of the two events represented by the two nodes are reversed. In
the SDG, all the PDGs are connected by the edges between the call sites nodes and the enter
nodes of the called procedures. For example, in Figure 2, there exists a procedure call add in
the main procedure. The two PDGs are connected by a call edge from call add node to the
entry node Enter add of the procedure add. In SDG, for each parameter passing, there exists
an actual-in node and formal-in node, which are connected by a parameter-in edge. For
instance, when passing parameter x to the procedure add, the actual-in node x_in=sum is
connected to the formal-in node x=x_in by a parameter-in edge (the dashed arrow). For each
modified parameter and returned value, there also exists a parameter-out edge connecting the
formal-out node and the actual-out node. Formal-in and -out nodes are control dependent
on the entry node and the Actual-in and -out nodes are control dependent on the call node.
The SDG permits us to analyze the dependency between two events presented by nodes in
the graph by traversing the graph.

4 Our Approach

This section introduces how our approach leverages the SDG to reduce the data-validity
constraints (Φvalidity). We first present the overall algorithm and then the detailed dependency
analysis.

ECOOP 2017



16:8 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

4.1 Constraints Reduction

The essential idea for reducing Φvalidity is to reduce the number of the reads that are required
to return the same value by MCR. We begin with the definition of the set of reads that an
event is control dependent on to help illustrate the algorithm.

I Definition 1. Given an event e in a trace τ , ≺τ (e) denotes the set of the reads that
must-happen-before e, and ≺Dτ (e) ⊆ ≺τ (e) denotes the set of reads that e is dependent on.

The main algorithm of our approach is presented as follows.

Algorithm 1: Φvalidity(e) Reduction
Input : τ - a trace and e - a given event in τ
Output : Φvalidity(e) - data-validity constraints related to e

1 Φvalidity = ∅
2 ≺τ (e)← Happens-before(τ , e)
3 ≺Dτ (e)← DependencyComputation(≺τ (e), e)
4 foreach read r ∈≺Dτ (e) with value v do

// Φvalue(r, v) recursively call DataValidityConstraints ()

5 Φvalidity ∧ = Φvalue(r, v)
6 end
7 return Φvalidity

Algorithm 1 shows how to compute data-validity constraints of a given event e. It takes
as input the current executed trace τ and the considered event e. It first computes the
set of reads that must-happen-before e (line 2) based on the constraints Φmhb in Section
2. Then our algorithm computes a subset of reads ≺Dτ (e) ⊆≺τ (e), and all the reads
in ≺Dτ (e) have a dependency on e (line 3). We will give the details of the function
DependencyComputation() in Section 4.2.3. The algorithm finally enforces that all
the reads return the same value as that in the current trace τ according the encoding of
Φvalue(r, v). The detailed expression of Φvalue(r, v) is presented in Section 3.1.

Because the number of the reads in ≺τ (e) that e is dependent on takes a small
portion of the total number of the reads in ≺τ (e), our algorithm reduces the size
of Φvalidity greatly. Meanwhile, the reduction will not lead to the missing of any
executions explored by MCR.

Proof. To prove the correctness of this approach, it only needs to prove that our new
constraints model Φ′validity is equivalent to Φvalidity presented in Section 2 and 3.1 because
all the rest part of Φmc remain the same. Consider a trace τ = e1, e2, · · · , en. To guarantee
the reachability of an event ei ∈ τ in a new schedule, we only need to make a read event
e ∈ τ to return the same value and e is the last read that ei is control dependent on. Since e
is forced to return the same value, it guarantees that e is reachable and the path containing
ei is evaluated. Then no matter what values returned by the read between e and ei, ei is
always executed. Therefore, our algorithm will not cause any infeasible executions or miss
any executions. J



S. Huang and J. Huang 16:9

Figure 3 Four different cases where a read is control dependent on another marked by the blue
edges.

4.2 Dependency Analysis
In this subsection, we present how we compute ≺Dτ (e) based on the program’s SDG from
two parts, control dependency and data dependency. The insight for identifying that an event
is dependent on another is to check if it exists a path in the SDG between the two events
and the path satisfies a specific pattern. For the rest of the paper, we will abbreviate control
dependency CD, data dependency DD, call CL and parameter in/out PI/PO. The reason
why we distinguish PI/PO and DD is that the SDG that we construct via an existing tool
JOANA [1, 14] contains these edges, and we use the type of the edge labeled by the graph
to find the dependency relation. We use n1 e∗−→ n2 to denote that there is a path p = e∗ in
SDG from node n1 to node n2, and each edge e in p belongs to one of CD, DD, PI, PO and
CALL.

4.2.1 Control Dependency
We first discuss several situations where a read can influence the execution of a later event
and then derive a rule of how to decide that an event is control dependent on a prior read
from the general cases. In SDG, an event is control dependent on a predicate event that is
either a if condition or procedure call related events. But the evaluation of the predicate is
determined by the values returned by some reads. Our goal is to find those reads. We give
the definition of a read that an event is control dependent on as following.

I Definition 2. An event e is control dependent on a read r if r is a read access to a shared
variable, and r has data dependency on the predicate that decides the reachability of e.

We present four different cases in Figure 3 to help understand the definition and then
summarize the rules to help identify the dependency between two events. The variables x
and y in the figure are shared and all the others are local.

Case 1. Figure 3(a) shows the most direct control dependency between two events. The
read r = y is control dependent on the if predicate, which is data dependent on x == 1. As

ECOOP 2017



16:10 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

		"1	$%	"2		Û		"1	 '
∗)* "2,	

				+	 ∶= 	e	
|./	 //	 01	|03	|.4	

	
Figure 4 Rule 1: the condition that a node has control dependency on another in SDG.

a result, the read r = y is control dependent on the read x == 1 and the path between the
two events is x == 1 DD·CD−−−−−→ r = y.

Case 2. Besides direct control dependency, the evaluation of a predicate may depend on a
prior read. As Figure 3(b) shows, although the evaluation of the if predicate is determined
by the value of a, the read access to local variable a is data dependent on a prior read
a = x. Therefore, according to Definition 2, a = x is control dependent on r = y and x == 1
DD·DD·CD−−−−−−−−→ r = y

Case 3. Figure 3(c) illustrates the propagation of the control dependency between different
procedures. The computation of the if predicate depends on the return value of the procedure
func(). It implies that the reachability of a read operation might be decided by a read in
another procedure. In this case, r = y is control dependent on the read return x in func()
and return x PO·DD·DD·CD−−−−−−−−−−−→ r = y. Likewise, the dependency can also be transmitted by a
PI edge in the graph. We omit the discussion of this case in the paper.

Case 4. In this case, the event func() has a special control dependency on r=y. As a
procedure may crash (program exits abnormally) during the execution, all the executions
that occur after the procedure call are not executed if the crash happens. SDG adds a control
dependency edge, also denoted as CD, from the node func() to the node r=y. Through this
edge, we derive r = y is control dependent on x == 1 and x == 1 CD·CD·CD·CD−−−−−−−−−−→ r = y

As all the other cases are either the combination of the four basic cases above or can
be derived using the same way, we only analyze the four basic cases in this paper. From
the analyses on the four basic situations, now we summarize the rule to decide if an event
is control dependent on a prior read in the program. We denote the control dependency
between two events as δc: given two nodes n1 and n2 in an SDG, we use n1 δc n2 to denote
that n2 is control dependent on n1. By analyzing the patterns of the paths in the four cases
above, we derive that given any event e and a read r, to check r δc e is equivalent to check
that if there is a path p ending with a control dependency edge from r to e, and each edge
e in p belongs to one of CD, DD, PI, PO and CALL. We present the rule in Figure 4 to
formalize this process.

4.2.2 Data Dependency

So far we have only considered the control dependency of the nodes. In this Section, we will
point out that under some cases, the reads on which an event is data dependent on should
also be added to the read set ≺Dτ (e) . Recall that when MCR maps a read to a certain write
w, the data validity constraints in Section 2 also need to guarantee the reachability of w. We
have illustrated in Section 4.2.1 that to ensure the reachability of an event e in the trace
τ , we only need to ensure the reads in ≺Dτ (e) to return the same value. However, we also



S. Huang and J. Huang 16:11

		"1	$%	"2		Û		"1	 '
∗)) "2,	

				*	 ∶= 	e	|	..		
	

	Figure 5 Rule 2: the condition that a node has data dependency on another in SDG.

need to guarantee that the value written by w matches with the one expected by the read in
≺Dτ (e). Take the following program as an example.

i n t x = y = 0 ;
// thread 1 : // thread 2 : // thread 3 :
1 : r = y ; /∗ r1 ( y ) ∗/ 2 : x = 1 ; /∗w1(x ) ∗/ 4 : x = 2 ; /∗w2(x ) ∗/

3 : y = x ; /∗w(y ) , r2 ( x ) ∗/

Suppose initially the program is executed along the program order: 1-2-3-4. The state
of the program is r1(y) = 0 and r2(x) = 1. Next, to make r(y) = 1 (return the value of
w(y)), we encode O3 < O1. Because there is no event that is control dependent on a read
in this program, we do not consider the data-validity constraints. Then a feasible schedule
generated by our constraints can be 2-4-3-1, making r1(y) = 2 and r2(x) = 2 instead of
r1(y) = 1. This is because our constraints only ensure the reachability of w(y) and does not
constrain the value returned by r2(x), which has a data dependency on w(y). Hence the
value written to w(y) can be any one returned by r2(x).

When considering the reachability of a write w, we also need to ensure that w writes the
same value to the shared address as it does in the original trace. To guarantee this, we force
a read r to return the same value if r is a read access to the same address accessed by w and
has a data dependency on w. Similar to δc, we denote the data dependency between two
events as δd: given two nodes n1 and n2 in an SDG, we use n1 δd n2 to denote that n2 is
data dependent on n1. Then we can derive the data dependency rule following the spirit of
Rule 1. Given a write w and a read r, to check r δd w is equivalent to check that if there is
a path p ending with a data dependency edge from r to w. We present the rule in Figure 4.

The reason why the path may contain several DD edges is that the dependency can be
transmitted via the operations on local variables, similar to Case 2 presented in Section
4.2.1.

4.2.3 Dependency Reads Computation
After the discussion about the control and data dependency, we now present the algorithm of
the function DependencyComputation() in Algorithm 1 to give the details about how to
compute the set of reads that an event is dependent on in the program.

Algorithm 2 takes as input a given event e and the set of the reads ≺τ (e), containing all
the reads in τ that must-happen-before e. The algorithm analyzes two situations. If event
e is a read, it only chooses the reads from ≺τ (e) that e is control dependent on and adds
them to the set ≺Dτ (e). If e is a write, the algorithm adds the reads from ≺τ (e) that e is
control or data dependent on to ≺Dτ (e).

4.3 Discussion
Challenges of static analysis for object-oriented languages, such as Java, stem from object-
and filed- sensitivity, dynamic dispatch and objects as parameters problems and so on. These
statically undecided problems are usually approximated relying on points-to analysis, or
pointer analysis. However, it is difficult to make precise points-to analysis, and even the

ECOOP 2017



16:12 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

Algorithm 2: Computation of ≺Dτ (e)
1 Function DependencyComputation(≺τ (e), e):
2 ≺Dτ (e) = ∅ ;
3 foreach read r in ≺τ (e) do
4 if e is a read then
5 if r δc e then
6 add r to ≺Dτ (e) ;

7 else
8 if r δc e or r δd e then
9 add r to ≺Dτ (e) ;

10 return ≺Dτ (e) ;

precise points-to analysis has to approximate certain undecidable situations which lead to
may-alias. Due to the limitations of all static analysis, it is difficult for us to build fully
precise SDGs so that an SDG may contain false or approximated dependency information.
However, the soundness of our approach is not threatened by the unsound dependency. In
this section, we use two cases to explain why our approach is not affected by imprecise static
analysis.

Case 1: Problem with may-alias

Imprecise points-to analysis may lead to the may-alias problem between two pointers of the
same type. In the construction of the SDG, the may-alias problem may lead to that a later
read is data dependent on several writes to the same memory location. Let us consider the
following example:

1 : p . o = 1 ; //w1
2 : q . o = 2 ; //w2
3 : i f (p . o == 1) ; // r

where p and q are pointers of the same type and o is the field that p and q can access. When
we construct the SDG for the program above, both w1 and w2 have a data dependency on r
(i.e., (w1, w2) δd r) because p and q may alias. However, this does not affect our algorithm to
decide which write that r is exactly data dependent on. This is because when the program is
executed and generates the trace e1 − e2 − e3, our algorithm is aware of the field information
accessed by each event. From the trace, we can identify exactly what event has a dependency
on e3.

Case 2: Problem with path-insensitivity

Because the generated SDG considers all the possible paths of the program, the dependency
read set ≺D computed from the SDG contains reads in all the paths, which leads to imprecise
dependency. Consider the following program as an example.

1 : i f ( exp ) r = x ; // r1
2 : e l s e r = x ; // r2
3 : y = r ; //w

If we use the SDG to compute the read set that write y = r is data dependent on, both
of the reads r1 and r2 have a data dependency on y = r (i.e., (r1, r2) δd w) because the



S. Huang and J. Huang 16:13

SDG is path-insensitive. But this can be avoided by our approach because we combine static
analysis with the dynamic information. Our algorithm for computing ≺Dτ (e) is based on a
concrete executed trace, i.e., only e1 − e3 or e2 − e3 can be generated. As a result, only one
read, either r1 or r2 has data dependency on w in an concrete execution.

5 Redundant Executions

Extending MCR with static dependency analysis reduces the size of the constraints for
exploring new program’s states, and it will not miss any executions. However, our approach
may explore redundant executions. In this section, we use a simple example to illustrate
how the redundant executions are introduced and explain the root reason that causes the
redundancy. We also propose a solution to the redundancy problem.

i n i t i a l l y x = 0 ;
thread 1 : thread 2 :
1 : x = 1 ; /∗w(x ) ∗/ 2 : r1 = x ; /∗ r1 ( x ) ∗/

3 : r2 = x ; /∗ r2 ( x ) ∗/

Listing 2 An example that shows redundant explorations by our approach.

Consider the example above. Following the procedure in Section 2, MCR generates only
three different executions to explore the state space of this program.

τ0 =< e1, e2, e3 >, (r1 = 1, r2 = 1);
τ1 =< e2, e1, e3 >, (r1 = 0, r2 = 1);
τ2 =< e2, e3, e1 >, (r1 = 0, r2 = 0).

However, using static dependency analysis, our approach generates one more execution
τ ′1 =< e2, e3, e1 > (r1 = 0, r2 = 0), which is equivalent to τ2. We explain how the same state
is explored twice as follows.

First, the program is executed in the program order and the execution τ0 =< e1, e2, e3 >

(r1 = 1, r2 = 1) is generated. Then the two read events in the trace, r1(x) and r2(x), will be
considered to return a different value. To make r1(x) return a different value 0, r1(x) should
read from the initial write. Then e2 is required to happen before the write e1 and thus we
generate a new execution τ1 =< e2, e1, e3 > (r1 = 0, r2 = 1). Then the analysis on τ0 is
done because r2(x) cannot read from the initial write if we use MCR to model check the
program. The reason is that when considering the second read r2(x) in τ0, MCR enforces
that r1(x) = 1 because r1(x) happens before r2(x) according to the data validity constraints.
This implies that r1(x) should read from w(x) so that e1 should happen before e2. As e2
happens before e3 by the program order, then e1 happens before e3 because of the transitive
relation. Therefore r2(x) is only able to read from w(x) from the analysis on τ0. But by our
approach, we assume that r(1) does not affect the reachability of r2(x). As a consequence,
we do not enforce r1(x) = 1 when considering different values that r2(x) can return. Then a
new execution is allowed by our approach,

τ ′1 =< e2, e3, e1 > (r1 = 0, r2 = 0).
This execution is equivalent to the state of τ2. And τ2 can be derived from τ1. The root
reason why MCR does not generate such a redundant execution is that enforcing the read
to hold a value implicitly causes a happens-before order between the write and the read
(e.g. w(x) and r1(x)), thus indirectly affecting the value by a later reader (e.g. r2(x)). Now
that we do not require those reads to hold the same value, the implicit happens before order
imposed on some writes and reads that access the same memory locations and reside in
different threads is removed.

ECOOP 2017



16:14 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

x	=	1

r1	=	x

r2	=	x

hb

enforce	
r1	=	1

hb

(a)	Order	relation	by	MCR

x	=	1

r1	=	x

r2	=	x

hb
any	
order

(b)	Order	relation	by	our	approach

Figure 6 Removed happens-before between x = 1 and r2 = x by our approach.

Figure 6 shows the difference of the order relation by MCR and our approach on the
example above. The dashed arrow represents the implicit happens-before relation and the
shadowed box represents the read we consider. As we can see in Figure 6(b), x = 1 and
r2 = x can be in any order by our approach, while x = 1 happens before r2 = x in MCR.

5.1 Redundancy Elimination
According to the analysis on the example presented in Listing 2, we observe that when MCR
explores the new values that a considered read r can return, enforcing all the reads that
happen before r, on the one hand, guarantees the reachability of r and on the other hand,
restricts the writes that r can read from. But for the rest of the reads and writes, we are
only concerned about the reachability of them. We address the redundancy problem by
adding constraints to make all the reads that happen before r return the same value. This is
a trade-off between the original MCR and Algorithm 1. We present our algorithm as follows.

Algorithm 3: DataValidityConstraints′(τ, e)
Input : τ - a trace and e - a given event in τ
Output : Φvalidity(e) - data-validity constraints related to e

1 Φvalidity = ∅
2 ≺τ (e)← Happens-before(τ , e)

// target read: read considered to return new values

3 if e is not a target read then
4 ≺Dτ (e)← DependencyComputation(≺τ (e), e)
5 end
6 foreach read r ∈≺Dτ (e) with value v do

// Φvalue(r, v) recursively call DataValidityConstraints ()

7 Φvalidity ∧ = Φvalue(r, v)
8 end
9 return Φvalidity
The only difference between Algorithm 3 and Algorithm 1 lies in line 3. In our new

algorithm, we decide whether to add the reads that happen before e to ≺Dτ (e) based on the
type of e. If e is a read expected to return a new value, we put all the reads that happen
before e into ≺Dτ (e) to avoid the redundant behavior. For the example, in Listing 2, as we
want to explore what values r2(x) can read, we also put r1(x) into ≺Dτ (e) to make r1(x)
return the same value as that in τ0 so that τ ′1 will not be generated by our approach. If e is
an event that we only care about if it will be reached in the next schedule, we handle e in the
way of Algorithm 1. Although this expands ≺Dτ (e) and increases the size of the constraints,
it still generates less constraints than MCR does but with no redundancy. Moreover, if the
solving of the constraints takes much more time than what the execution of the program
needs, we can keep the redundant executions to reduce the overall checking time. We will
have more discussions about this in Section 6.



S. Huang and J. Huang 16:15

Algorithm 3 can remove all the redundancies caused by Algorithm 1, and it will not
miss any executions.

Proof. The proof on the latter part follows the same analysis on Algorithm 1 in Section 4.1.
To prove that Algorithm 3 reduces all the redundancies, we show that by using Algorithm 3,
our approach explores the same executions as MCR does. Given a trace τ , MCR considers
only one read r ∈ τ each time when exploring new schedules. Consequently, the number of
the new executions derived from r depends on the number of the writes that r can read from
in τ . Because we force all the reads that happen before r to return the same value as that in
τ , which remains completely the same as how MCR handles such a read, r reads from the
same writes as that it can read from in MCR. Therefore, our approach explores the same
executions as MCR does. J

6 Implementation and Evaluation

This section presents the implementation of integrating static dependency analysis into MCR
and evaluates the performance improved by using static analysis.

6.1 Implementation
SDG construction

The SDG of the program has been well studied for a long time and there are many framework
that can compute SDG, such as WALA [2] and Soot [27] for Java programs. In this work,
we build the SDG of Java programs based on two existing framework, JOANA [1, 14] and
WALA. JOANA is a information flow tool based on WALA for Java programs. JOANA
implements flow-sensitive, context-sensitive and object-sensitive analysis and it minimizes
false alarms. Considering that JOANA supports full Java bytecode and refines the SDG by
WALA, we choose JOANA as our framework to construct the SDG.

Path Finding

Before the dynamic analysis on the executed trace, we first generates the SDG of the program
and use a map structure to store the information of the graph. Because the SDG of a large
system contains thousands of nodes, we use a distinct integer ID to represent each node to
save the memory space of the map. During the dynamic exploration, we match the event in
the trace with its corresponding node in SDG, and decide the dependency relation of two
events by checking whether the path (if it exists) between the two nodes matches the rule
defined in Figure 4 or 5.

6.2 Methodology
In the rest of this section, we refer to as MCR-S and MCR-S+ the approach that implements
Algorithm 1 and 3, respectively. We evaluate the effectiveness of MCR-S and MCR-S+ by
testing the three approaches on various benchmarks, including two large Java programs. Our
evaluation aims to answer the following three research questions:
RQ1: How many reads and constraints can be reduced by our approach, compared to MCR?
RQ2: To what extent can the solving time be improved after the constraints are reduced,
compared to MCR?
RQ3: How does the redundancy by MCR-S affect the total time spent on the state-space
exploration?

ECOOP 2017



16:16 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

Table 1 Benchmarks.

Program time(s) memory(M) #nodes #edges
Counter 2.00 69 289 1,440
Airline 2.10 79 809 4,902

Pingpong 2.52 83 914 5,244
BubbleSort 2.14 81 911 5,710

Pool 3.67 75 2,848 17,586
StringBuf 2.96 111 2,129 12,310
Weblech 8.01 219 22,094 167,492
Derby 69.67 1,385 115,658 2,409,784

In Section 6.3, we address RQ1 by comparing MCR-S and MCR-S+ with MCR, with respect
to the number of the reads, constraints and the solving time. In Section 6.4, we consider
RQ3 via evaluating the total time spent in exploring the state space of the program by the
three approaches. We expect to see how the overall performance is improved by the static
analysis and meanwhile the influence by the redundant executions. The comparison between
MCR-S and MCR-S+ reveals which improves the performance more, the maximal constraints
reduction with redundant executions or the partial constraints reduction with no redundancy.

The experiments were run on a MacBook with 2.6 GHz Intel Core i5 processor, 8 GB
DDR3 memory and JDK 1.7. All results were averaged over three runs.

Benchmarks

To show the effectiveness improved by our hybrid analysis, we run our approach on the same
benchmark set used by prior work [16] so that we can make a direct comparison. Table 1
summarizes the benchmarks evaluated in this work. Counter is the example introduced in
Section 1, and we take Max = 5 during the evaluation. Airline is a program that can sell
more tickets than the capacity. Pingpong can arouse an NPE error on the shared variable
player. BubbleSort is a small but read-write intense program with more than 10 million
interleavings. Pool contains a concurrency bug in Apache Commons Pool causing more
instances than allowed in the pool. StringBuf contains an atomicity violation. Weblech
and Derby are two large real-world programs with long trace and complicated constraints.
We present the time and memory used to construct the program’s SDG in the second and
third column, respectively. The last two columns show the number of the nodes and edges in
the graph generated.

6.3 Reduction Analysis
Table 2 reports the results by MCR, MCR-S and MCR-S+ on the benchmarks. Column
#reads lists the number of the reads the three approaches considered totally when constructing
constraints to explore new interleavings. Column #constraints gives the total number of
data-validity (Φvalidity) constraints that map a read to a certain write. The number is the
sum of the constraints generated by each exploration in the whole state-space search. As the
other constraints remain the same for MCR and the new approaches, we just discuss the
read-write constraints in the evaluation. Column time shows the time used by the solver to
solve the constraints.

Figure 7 presents the reduction results by MCR-S and MCR-S+ compared to MCR on
the number of the reads and constraints as well as the solving time. The figure is best viewed
in color. The blue bar represents the results by MCR, green for MCR-S and yellow for



S. Huang and J. Huang 16:17

Table 2 Results of the number of the reads and constraints as well as solving time generated by
MCR, MCR-S and MCR-S+ to explore the state-space of the benchmarks, respectively. one hour.

Program MCR MCR-S MCR-S
#reads #consts time(sec) #reads #consts time(sec) #reads #consts time(sec)

Counter 55,886 202,039 22.11 37,515 108,270 7.41 45,972 131,053 12.25
Airline 15,632 24,643 2.43 15,328 24,475 2.39 15,599 24,625 2.38

Pingpong 1,905 5,225 1.42 1,376 3,684 1.38 1,906 5,227 1.32
BubbleSort 5,583,561 3,487,802 679.27 3,574,528 2,158,422 546.75 5,087,528 3,046,852 586.42

Pool∗ 143 68 < 1 94 12 < 1 117 36 < 1
StringBuf∗ 102 30 < 1 102 30 < 1 102 30 < 1
Weblech 120,161 5,676 13.75 103,155 3,920 6.39 90,096 4,217 5.24
Derby 46,222,858 22,008,512 477.13 22,530,501 12,184,850 347.98 36,461,542 17,412,201 300.58
Avg. 8,666,667 4,288,982 199.35 4,377,067 2,413,936 151.03 6,950,440 3,437,362 151.26

* The exploration time on these two benchmarks is far less than 1 second and we ignore them when we compute the average results.

MCR-S+, respectively. For comparison, we normalize MCR’s results to 1 as the baseline
and length of the green and yellow bars represents the ratio of the results of MCR-S and
MCR-S+ to that of MCR.

Number of reads reduced.

Figure 7(a) summarizes the comparison on the number of the reads reduced by MCR and
our approaches. Averagely, MCR-S reduces the number of the reads by 27.1% and MCR-S+
by 12.1% compared to MCR. And the reduction percentage by MCR-S ranges from 14.2%
to 51.3%, and MCR-S makes the greatest reduction on the Derby benchmark. Comparing
to MCR-S, MCR-S+ makes less reduction because it needs to constrain more reads into
the formula to avoid the redundant executions (Section 5). But MCR-S+ still makes a
reduction that ranges from 8.9% to 25.0% compared to MCR. Among the 6 benchmarks,
neither MCR-S or MCR-S+ makes a reduction on Airline. The reason is that in the routine
run() of Airline, all the reads and writes are control dependent on a read in the if predicate.
As introduced in Section 4, we can’t reduce any reads for this benchmark. In addition to
Airline, the other benchmark that MCR-S+ fails to reduce the reads is Pingpong, while
MCR-S reduces the reads by 28.2%. Note that for benchmark Weblech, MCR-S considers
more reads than MCR-S+ does. This is because that MCR-S explores more executions than
MCR-S+ does due to the redundancy, and we take as the final result the total number of
reads the approaches have considered in the whole state-space exploration.

Number of constraints reduced.

Figure 7(b) reports the reduction of the data validity constraints by MCR-S and MCR-S+.
As the reads are reduced by our approaches, we do not need to constrain those reads to
return the same value, and thus reduce the size of the constraints. Given a read r that
returns the value by the write w, we count the constraint as one, and the constraint enforces
another write that writes a different value from that by w to the same location to either occur
before w or after r. On average, MCR-S reduces the number of constraints by 31.6%, while
MCR-S+ by 15.7%. As Figure 7(b) shows, the reduction on the constraints is consistent
with that on the reads in Figure 7(a).

Solving time reduced.

Figure 7(c) presents the results of the solving time by each method. From Figure 7(b) and (c),
we can see that though MCR-S approximately makes two times as much constraints reduction

ECOOP 2017



16:18 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

Figure 7 Reduction on the number of the reads and constraints as well as the solving time
achieved by MCR-S and MCR-S+ comparing to MCR. The results generated by MCR are normalized
to one as the baseline.

0

0.2

0.4

0.6

0.8

1
(a) number of reads reduced

Co
un
ter
Air
line

Pin
gp
on
g

Bu
bb
leS
ort

We
ble
ch
De
rby Av

g.
0

0.2

0.4

0.6

0.8

1
(b) number of constraints reduced

Co
un
ter
Air
line

Pin
gp
on
g

Bu
bb
leS
ort

We
ble
ch
De
rby Av

g.
0

0.2

0.4

0.6

0.8

1
(c) solving time reduced

Co
un
ter
Air
line

Pin
gp
on
g

Bu
bb
leS
ort

We
ble
ch
De
rby Av

g.

MCR
MCR-S
MCR-S+

Table 3 The total number of executions and time taken by the three methods to explore the
state-space of the benchmarks.

Program MCR MCR-S MCR-S+
#executions time(sec) #executions time(sec) #executions time(sec)

Counter 4,523 181 6,550 247 3,485 133
Airline 14 4 14 5 14 5

Pingpong 394 13 535 16 394 15
BubbleSort 5,823 OOT 1,828 OOT 6,885 OOT
Weblech 967 677 756 511 668 385
Derby 15 787 16 797 15 676

as MCR-S+ does, the solving time taken by the two approaches is quite close to each other.
Among the 6 benchmarks, MCR-S reduces the solving time by 27.8% compared to MCR,
on average, while 26.2% by MCR-S+. Moreover, for benchmarks Weblech and Derby, it
takes more time for MCR-S to solve the constraints than MCR-S+. This is because MCR-S
explores more executions than MCR-S+ does, and thus the size of the total constraints
generated by MCR-S actually is greater than that by MCR-S+. Likewise, though MCR-S
reduces the size of constraints by 29.5% on the benchmark Airline, it takes almost the same
time for MCR-S to solve the constraints as that for MCR.

6.4 Overall Checking Performance Comparison
Table 3 summarizes the state-space exploration results by the three approaches, in terms of
the number of executions explored and time (seconds) taken to finish the exploration. Note
that we do not report the results of Pool and StringBuf because the execution time for
these two benchmarks is too small to be tracked. We run BubbleSort with an input which
contains four integers. Because BubbleSort is a read and write intensive benchmark, none
of three methods can finish the exploration in a reasonable time. Therefore, we set one hour
as an upper bound for the exploration and use OOT to represent that the exploration runs
out of time. As discussed in Section 5, MCR-S may introduce some redundant executions
into the exploration. Consider the Counter and Pingpong benchmarks. It takes 6, 550 and
535 executions for MCR-S to explore the state-space, respectively. But it only takes 4, 553
and 394 executions for MCR and 3, 485 and 394 for MCR-S+. Although MCR-S reduces



S. Huang and J. Huang 16:19

more reads and constraints than MCR-S+ does, it also introduces redundant executions.
As a result, it takes more time for MCR-S to check the two benchmarks. But MCR-S+
reduces the total time of the exploration of Counter by 48 seconds, compared to MCR. For
the BubbleSort benchmark, all of the three methods fail to finish the exploration in one
hour. MCR-S+ explores the most executions while MCR-S explores the least among the
three methods in the bounded time, meaning that the average time of MCR-S+ spent on
each execution is the least. MCR-S+ fails to reduce the total exploration time on Pingpong
and Airline for two reasons: (1)First, the two benchmarks generates light constraints and
the solving time of the constraints only takes a small portion of the total time. (2) Second,
it takes time for MCR-S+ to check the dependency between two events in the dynamic
exploration.

For the benchmark Weblech, both MCR-S and MCR-S+ reduce the exploration time by
about 3 and 5 minutes, respectively. Although MCR-S and MCR-S+ explores less executions
on Weblech, interestingly, all of the three methods expose the null pointer exception in the
benchmark. For Derby, MCR-S+ reduces the checking time by about 2 minutes, compared
to MCR and MCR-S, and MCR-S spent 10 more seconds than MCR does. Among the six
benchmarks, MCR-S+ achieves the best effect. This is because MCR-S+ reduces the size of
the constraints, and meanwhile it does not introduce any redundant executions.

7 Related Work

Stateless Model Checking

SMC is a powerful systematic testing technique that can verify the correctness of concurrent
programs by automatically exploring all the possible interleavings by the program. SMC
prevails since the pioneering work of VeriSoft [11]. To mitigate the state explosion problem,
a great effort has been dedicated to reduction techniques to prune the equivalent executions
from the state space. The most popular techniques known are Partial Order Reduction (POR)
[7, 10] and context bounding [24, 23], while context bounding does not reduce redundancy
but limits the search space to polynomial. A number of techniques [8, 23, 4] based on
POR or combining them have been proposed to improve and optimize the performance of
POR. However, as pointed out in the MCR work [16], the effectiveness of POR is limited by
happens-before: it can not reduce the redundant interleavings that have different happens-
before relations.

MCR [16] is new reduction technique to explore new program states by using SMT
or SAT solvers to search new interleavings. The new interleaving is produced by solving
the constrains over the order variables of the events. As discussed before, the size of the
constraints can be arbitrarily large and complicated, in general cubic in the size of the trace.
Huang et al. [20] recently extended MCR from SC [21] to TSO and PSO [5, 26]. Our work
can also be applied to optimize the constraints in this technique.

Program Slicing

Our work is closely related to program slicing technique, originally defined in [28], which aims
to compute a slice consisting of all statements and predicates that can influence the value of
a certain point in the program. Ottenstein et al. [25] brought program dependence graph
(PDG) into slicing and pointed out that PDG is well-suited for representing the procedures
in software development environment. Horwitz et al. [15] addressed interprocedural-slicing
problem by introducing the system dependence graph (SDG) to represent the whole program.

ECOOP 2017



16:20 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

To find the statements that influence the value of a point under specific input instead of
all inputs, Agrawal and Horgan [6] proposed the notion of the dynamic slicing based on a
dynamic dependence graph to narrow the slice.

Different from the above techniques, our work is only interested in the reads which
influence the evaluation of a predicate, and thus influencing the reachability of a certain point.
Moreover, our slice is based on the executed trace. As a result, although the dependence
graph is statically computed, we only include the statements that do affect the occurrence of
a specific event because all the statements are from the executed trace.

Other Works

Another work that our approach shares partial similarities with is TAME [18] by Huang
and Rauchwerger. TAME tries to find what branches in the given trace have the chance to
explore a different path due to the program’s schedule. It is feasible to combine our work
with TAME. We can first run TAME on the trace to exclude those branches that will not
take a different path no matter how the program schedules and then only consider reads that
relate to schedule-sensitive branches.

Cortex [22] is an extension on CLAP [19] that helps expose and understand schedule-
and path-dependent concurrency bugs. Cortex is able to synthesize failure executions from
correct production runs by flipping branches and alternating the order of concurrent events.
It leverages symbolic execution to identify the path conditions and inverts the path condition
to synthesize a different control flow. Our approach can also first instrument those reads
related to path conditions and record them in the trace. Then we can directly identify those
reads when we construct constraints over the trace.

8 Conclusion

In this work, we present a new technique to reduce the size of the constraints formula to
speed up MCR via static dependency analysis. We use system dependency graph to capture
the dependency between a read and an event e in the trace and exclude those reads that e is
not control dependent on. We then can ignore the constraints over such reads to make them
return the same value and thus reducing the complexity of the formula. The experimental
results show that comparing to MCR, the number of the constraints and the solving time by
our approach are averagely reduced by 31.6% and 27.8%, respectively.

Acknowledgements. We would like to thank our shepherd, Anders Møller, and the an-
onymous reviewers for their valuable feedback.

References
1 Joana: Information flow control framework for java. http://pp.ipd.kit.edu/projects/

joana/.
2 Wala. https://github.com/wala/WALA.
3 Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. Optimal dy-

namic partial order reduction. In Proceedings of the 41st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL, 2014.

4 Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. Optimal dy-
namic partial order reduction. In Proceedings of the 41st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, 2014.

http://pp.ipd.kit.edu/projects/joana/
http://pp.ipd.kit.edu/projects/joana/
https://github.com/wala/WALA


S. Huang and J. Huang 16:21

5 Sarita V Adve and Kourosh Gharachorloo. Shared memory consistency models: A tutorial.
computer, 29(12):66–76, 1996.

6 Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. In Proceedings of the
ACM SIGPLAN 1990 Conference on Programming Language Design and Implementation,
PLDI, 1990.

7 Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT press, 1999.
8 Katherine E. Coons, Madanlal Musuvathi, and Kathryn S. Mckinley. Bounded partial-

order reduction. In In Proceedings of the 2013 Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 833–848, 2013.

9 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Tools and Al-
gorithms for the Construction and Analysis of Systems, pages 337–340. Springer, 2008.

10 Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for model check-
ing software. In Proceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, 2005.

11 Patrice Godefroid. Model checking for programming languages using verisoft. In Proceedings
of the 24th ACM SIGPLAN-SIGACT symposium on Principles of programming languages.
ACM, 1997.

12 Patrice Godefroid. Software model checking: The verisoft approach. Formal Methods in
System Design, 2005.

13 Patrice Godefroid, J van Leeuwen, J Hartmanis, G Goos, and Pierre Wolper. Partial-
order methods for the verification of concurrent systems: an approach to the state-explosion
problem, volume 1032. Springer Heidelberg, 1996.

14 Jurgen Graf. Speeding up context-, object- and field-sensitive sdg generation. In Proceedings
of the 2010 10th IEEE Working Conference on Source Code Analysis and Manipulation,
SCAM, 2010.

15 S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. In
Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language Design and
Implementation, PLDI, 1988.

16 Jeff Huang. Stateless model checking concurrent programs with maximal causality reduc-
tion. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’15, 2015.

17 Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. Maximal sound predictive race
detection with control flow abstraction. In Proceedings of the 35th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, 2014.

18 Jeff Huang and Lawrence Rauchwerger. Finding schedule-sensitive branches. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE, 2015.

19 Jeff Huang, Charles Zhang, and Julian Dolby. Clap: Recording local executions to re-
produce concurrency failures. In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI, 2013.

20 Shiyou Huang and Jeff Huang. Maximal causality reduction for tso and pso. In Proceedings
of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA, 2016.

21 Leslie Lamport. How to make a multiprocessor computer that correctly executes multipro-
cess programs. Computers, IEEE Transactions on, 100(9):690–691, 1979.

22 Nuno Machado, Brandon Lucia, and Luís Rodrigues. Production-guided concurrency de-
bugging. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’16, 2016.

23 Madanlal Musuvathi and Shaz Qadeer. Partial-order reduction for context-bounded state
exploration. Technical report, Tech. Rep. MSR-TR-2007-12, Microsoft Research, 2007.

ECOOP 2017



16:22 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

24 Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Piramanayagam Arumuga
Nainar, and Iulian Neamtiu. Finding and reproducing heisenbugs in concurrent programs.
In OSDI, volume 8, pages 267–280, 2008.

25 Karl J. Ottenstein and Linda M. Ottenstein. The program dependence graph in a software
development environment. In Proceedings of the First ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments, SDE 1, 1984.

26 Scott Owens, Susmit Sarkar, Peter Sewell, and A Better. x86 memory model: x86-tso.
In Proceedings of the 22nd International Conference on Theorem Proving in Higher Order
Logics, 2009.

27 Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot - a java bytecode optimization framework. In Proceedings of the 1999
Conference of the Centre for Advanced Studies on Collaborative Research, CASCON, 1999.

28 Mark Weiser. Program slicing. In Proceedings of the 5th International Conference on
Software Engineering, ICSE, 1981.



Strong Logic for Weak Memory: Reasoning About
Release-Acquire Consistency in Iris∗†

Jan-Oliver Kaiser1, Hoang-Hai Dang2, Derek Dreyer3, Ori Lahav4,
and Viktor Vafeiadis5

1 MPI-SWS, Saarbrücken and Kaiserslautern, Germany‡

janno@mpi-sws.org
2 MPI-SWS, Saarbrücken and Kaiserslautern, Germany†

haidang@mpi-sws.org
3 MPI-SWS, Saarbrücken and Kaiserslautern, Germany†

dreyer@mpi-sws.org
4 MPI-SWS, Saarbrücken and Kaiserslautern, Germany†

orilahav@mpi-sws.org
5 MPI-SWS, Saarbrücken and Kaiserslautern, Germany†

viktor@mpi-sws.org

Abstract

The field of concurrent separation logics (CSLs) has recently undergone two exciting develop-
ments: (1) the Iris framework for encoding and unifying advanced higher-order CSLs and formal-
izing them in Coq, and (2) the adaptation of CSLs to account for weak memory models, notably
C11’s release-acquire (RA) consistency. Unfortunately, these developments are seemingly incom-
patible, since Iris only applies to languages with an operational interleaving semantics, while C11
is defined by a declarative (axiomatic) semantics. In this paper, we show that, on the contrary, it
is not only feasible but useful to marry these developments together. Our first step is to provide
a novel operational characterization of RA+NA, the fragment of C11 containing RA accesses
and “non-atomic” (normal data) accesses. Instantiating Iris with this semantics, we then derive
higher-order variants of two prominent RA+NA logics, GPS and RSL. Finally, we deploy these
derived logics in order to perform the first mechanical verifications (in Coq) of several interesting
case studies of RA+NA programming. In a nutshell, we provide the first foundationally verified
framework for proving programs correct under C11’s weak-memory semantics.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Pro-
grams; F.3.2 Semantics of Programming Languages

Keywords and phrases Weak memory models, release-acquire, concurrency, separation logic

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.17

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.3.2.15

∗ An extended version of this paper with a technical appendix can be found at [1].
† This research was supported in part by a European Research Council (ERC) Consolidator Grant for the

project “RustBelt”, funded under the European Union’s Horizon 2020 Framework Programme (grant
agreement no. 683289).

‡ Saarland Informatics Campus.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 17; pp. 17:1–17:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.17
http://dx.doi.org/10.4230/DARTS.3.2.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


17:2 Strong Logic for Weak Memory

1 Introduction

Separation logic [25] is a refinement of Hoare logic with an intrinsic notion of ownership:
whereas an assertion in Hoare logic denotes a fact about the global machine state, an
assertion in separation logic denotes ownership of (and knowledge about) a piece of that
state, and the separating conjunction P ∗Q denotes that the assertions P and Q own disjoint
pieces of state. This ownership reading of assertions is useful for giving “local” (or “small-
footprint”) specifications for primitive commands, which are much easier to compose soundly
into specifications for larger programs. Moreover, as O’Hearn was the first to observe [24],
separation logic is also eminently suitable for concurrent programs. In particular, ownership
provides a direct and convenient way of explaining how synchronization mechanisms serve to
transfer control of shared state between threads. Although O’Hearn’s original concurrent
version of separation logic was geared toward reasoning about coarse-grained synchronization
via semaphores, the subsequent decade of research into concurrent separation logics (CSLs) has
shown that ownership and separation are just as useful for reasoning about more fine-grained
and low-level synchronization mechanisms, such as those employed in the implementations of
non-blocking data structures [35, 11, 7, 32, 30, 23, 6].

In this paper, we consider two of the most recent, boundary-pushing developments in
concurrent separation logics: (1) the Iris framework for encoding and unifying advanced
higher-order CSLs and formalizing them in Coq [14, 13, 16, 17], and (2) the adaptation of
CSLs to account for weak memory models, notably C11’s release-acquire (RA) consistency [34,
33, 8, 20]. Although these developments have thus far (for reasons explained below) appeared
to be incompatible, we show that in fact they are not! Quite the contrary: we demonstrate
that it is not only feasible but useful to marry them together, and in so doing, provide
the first foundationally verified framework for proving programs correct under C11’s weak
memory semantics.

1.1 Iris: A Unifying Framework for Concurrent Separation Logics
After O’Hearn’s original CSL, there came a steady stream of “new and improved” CSLs
appearing on at least a yearly basis. Unfortunately, as these new CSLs grew ever more
expressive, they also grew increasingly complex, baking in increasingly sophisticated proof
rules as primitive, with the relationships and compatibility between different proof rules (e.g.,
whether they could be soundly combined in one logic) remaining unclear.

The central source of complexity in most existing CSLs lies in their mechanisms for
controlling interference between threads accessing shared state, which have evolved from
Jones’s rely-guarantee [12] to the much more sophisticated and elaborate protocol mechanisms
appearing in logics like CaReSL [32], iCAP [30], and TaDA [6]. In an attempt to consolidate
the field, Jung et al. developed Iris [14, 13, 16], a logic with the express goal of showing that
even the fanciest of these interference-control mechanisms could be encoded via a combination
of two orthogonal “off-the-shelf” ingredients: (1) partial commutative monoids (PCMs) for
formalizing protocols on shared state, and (2) invariants for enforcing them. Invariants are an
old and ubiquitous concept in program verification, and PCMs have been used in a number of
prior logics to represent different kinds of ghost (or auxiliary) state i.e., logical state that is
manipulated as part of the proof of a program but is not manipulated directly by the program
itself. Jung et al.’s observation was that in fact these two simple mechanisms are all you need:
using just PCMs and invariants, one can derive a variety of powerful forms of protocol-based
reasoning from prior CSLs within Iris, and by virtue of working in a unified framework,
these derived mechanisms are automatically compatible (different mechanisms can be used



J.-O. Kaiser, H.-H. Dang, D. Dreyer, O. Lahav, and V. Vafeiadis 17:3

soundly to verify different modules in a program). Iris also goes beyond most prior CSLs by
supporting higher-order quantification and impredicative invariants—invariants that can talk
recursively about the existence of (other) invariants—which are crucial for reasoning about
languages with higher-order state (e.g., Rust).

In the past, the complexity of CSLs was further exacerbated by the fact that (until very
recently [27]) they only supported manual and error-prone “pencil-and-paper” proofs. The
initial version of Iris [14] was no exception: the soundness of the core logic was verified in
Coq, but the Coq development provided no support for using the logic (either to encode other
logics or to verify programs interactively). However, in the past year, Krebbers et al. [17] have
developed IPM, an interactive proof mode geared toward using Iris as a proof development
environment for verifying concurrent programs within Coq. With IPM, Iris has begun the
transition to a more practically useful proof tool, and is already being deployed effectively
for larger verification efforts, e.g., in the RustBelt project [10].

1.2 Separation Logics for Release-Acquire Consistency
Iris is a “generic” logical framework in that it is parameterized over the programming language
in question—it merely requires, like the vast majority of prior work on concurrent program
verification, that the language have an operational, interleaving semantics, typically known
as a sequentially consistent (SC) semantics [21]. Under SC, threads take turns accessing the
shared memory, and updates to memory are immediately visible to all other threads.

SC semantics has the benefit that it is easy to define and manipulate formally, but it is
also woefully unrealistic: no serious language guarantees a fully SC semantics, because of
the significant performance costs associated with maintaining the fiction of a single, globally
consistent view of memory on modern multi-core architectures. One of the reasons for this
discrepancy between the theory and the reality of concurrent programming is that, until
relatively recently, formal accounts of more realistic—so-called weak (or relaxed)—memory
models for concurrent programming languages were not available. However, in the past
decade, great progress has been made on formalizing weak memory models, with a notable
high point being the formalization of the C/C++11 memory model (hereafter, C11) [4].

In response to this development, a number of verification researchers have followed suit
by building new verification tools—program logics, model checkers, testing frameworks,
etc.—that account for these more realistic memory models. In particular, Vafeiadis and
collaborators have thus far developed several different separation logics for C11, including
RSL [34] and GPS [33]. The main focus of these logics is on RA+NA, an important fragment
of C11 consisting of release-acquire (RA) accesses and non-atomic (NA) accesses. RA accesses
are useful because they support a common idiom of message-passing synchronization at low
cost compared to SC. NA accesses are intended for “normal” data accesses and are even more
efficiently implementable than RA accesses, with the proviso that they are not permitted to
race (i.e., races on non-atomics cause the entire program to have undefined behavior).

A major challenge that Vafeiadis et al. had to overcome was the fact that C11 is defined
using a radically different semantics than SC. Specifically, it is defined by a declarative
(or axiomatic) semantics, in which the allowed behaviors of a program are defined by
enumerating candidate executions (represented as “event graphs”) and then restricting
attention to the executions that obey various coherence axioms. In building separation logics
for C11, Vafeiadis et al. were thus not able to use the standard model of Hoare-style program
specifications from prior separation logics because notions like “the machine states before and
after executing a command C” do not have a clear meaning in C11’s declarative semantics.

To account for this radically different type of semantics, they were instead forced to
essentially throw away the “separation-logic textbook” and come up with an entirely new,

ECOOP 2017



17:4 Strong Logic for Weak Memory

non-standard model of separation logic in terms of predicates on event graphs. While ground-
breaking, this approach has had several downsides. Firstly, certain essential mechanisms
of SC-based separation logic (such as ghost state), which are easy to justify in standard
models, became very difficult to justify in the new event-graph-based models of RA+NA
logics. Secondly, the complexity of these new models has made them challenging to adapt and
extend, and their non-standard nature has posed a major accessibility hurdle for researchers
accustomed to traditional models of separation logic. Last but not least, although the
soundness of these logics has been verified formally in Coq, there has thus far been no tool
support for using the logics to prove programs correct under RA+NA semantics.

1.3 Our Contributions
Given our above description, it may seem that the Iris framework’s reliance on interleaving
semantics renders it fundamentally inapplicable to reasoning about C11’s weak-memory
semantics. In this paper, we show that this is not the case at all—not only is it possible to
derive RA+NA logics like GPS and RSL within Iris, but there are several tangible benefits
to doing so. Deriving such logics within Iris:

Lets us take advantage of the rich features of the Iris host logic (e.g., separation, invariants)
when proving soundness of the derived logics, thereby significantly lifting the abstraction
level at which those soundness proofs are carried out (compared to prior work).
Allows us to support some very useful features in our derived logics by directly importing
them from Iris. Such features include PCM-based ghost state, higher-order impredicative
quantification, and Iris’s interactive proof mode in Coq. By virtue of being encoded in
Iris, our derived logics inherit these features for free.
Makes it easy to experiment with the derived logics and quickly develop new and useful
extensions (e.g., single-writer protocols, see below).
Makes it possible to soundly compose proofs from different derived logics, since they are
all carried out in the uniform framework of Iris.

Our first step (Section 2) is to avoid the essential complicating factor—C11’s declarative
account of RA+NA—and instead work with an operational account. Building closely on
Lahav et al.’s recently proposed “strong release-acquire” (SRA) semantics [19], we define a
novel, operational, interleaving semantics for RA+NA. Our operational account of the RA
fragment of the language is very similar to Lahav et al.’s operational account of SRA in
that it models writing and reading of memory via the sending and receiving of timestamped
messages; the main difference is that the RA rule for assigning timestamps is slightly more
liberal. Our account of NA is new, though; it uses timestamps to model races on non-atomics
as stuck (unsafe) machine states. We have proven that, under the reasonable restriction that
programs do not mix RMWs (atomic updates) and non-atomic reads at the same location,
our semantics is equivalent to the standard declarative semantics of the RA+NA fragment of
C11.

Next, since our new semantics for RA+NA is an interleaving semantics, we can instantiate
Iris with it. In Section 3, we review the basic reasoning mechanisms of Iris, and show how to
use them to derive small-footprint proof rules for reasoning about RA+NA programs. We
apply these rules to verify a simple message-passing example of RA+NA programming in
Iris. However, as will become clear, reasoning directly with the Iris primitive mechanisms is
rather too low-level and a more abstract logic is needed.

In Section 4, we present iGPS, a higher-order variant of Turon et al.’s GPS logic [33],
which supports much higher-level reasoning about RA+NA programs. Unlike the original



J.-O. Kaiser, H.-H. Dang, D. Dreyer, O. Lahav, and V. Vafeiadis 17:5

GPS, iGPS is derived within Iris on top of the small-footprint proof rules from Section 3. It
also extends GPS with single-writer protocols, an extremely useful feature that simplifies
proofs of RA+NA programs in the common case where there are no write-write races on
atomic accesses.

In Section 5, we briefly describe some other contributions, including iRSL, a higher-order
variant of RSL [34] derived within Iris, and several case studies that we have verified using
iGPS and iRSL in Coq. These examples showcase one of the major advantages of working
in the Iris framework: our ability to verify weak-memory programs, foundationally and
mechanically, with the same degree of ease that was previously only possible for SC programs.

Finally, in Section 6, we conclude with related work.

2 Release-Acquire and Non-Atomics

In this section, we introduce our operational semantics for RA+NA, which we then use as
the machine for our working language λRN. Subsequent sections will show how to build a
logic for λRN using Iris.

C11 provides several memory access modes, each ensuring a different degree of consistency.
In this paper we focus on RA+NA, the fragment of C11 consisting only of release-acquire
(RA) and non-atomic (NA) accesses. Non-atomic accesses (which we denote with “[na]”) are
the default type of memory accesses, intended to be used for normal data rather than for
synchronization. Thus, C11 forbids any data races on non-atomic accesses, and programs
that may have such races are considered buggy (they have undefined semantics). In contrast,
RA accesses (which we denote with “[at]” for atomic) are permitted to race, but provide just
enough consistency guarantees to enable the well-known message passing (MP) idiom:

x[na] := 0; y[na] := 0;
x[na] := 37;
y[at] := 1

repeat y[at];
x[na]

Initially, both variables x and y are set to 0. The first thread will initialize x to 37 (non-
atomically) and then set the variable y to 1 (via a release write) as a way of sending a message
to the second thread that x has been properly initialized and is ready for consumption.
The second thread will repeatedly read y (via an acquire read) until it observes y 6= 0, at
which point—thanks to release-acquire semantics—it will know that it can safely access
x. Summing up, the use of RA here ensures that the non-atomic write to x in the first
thread “happens before” the non-atomic read of x in the second thread—i.e., that they do
not race—and furthermore that the read of x will return 37.

The formal semantics of RA+NA is “declarative”, formulated as a set of constraints
on execution graphs. We will instead now present an alternative operational semantics of
RA+NA. Our operational semantics is not completely coherent with C11’s for programs that
mix atomic and non-atomic accesses to the same location (although the semantics of such
programs is already known to be problematic [3]—see Section 6 for further discussion of this
point). However, for the large class of programs that do not mix atomic updates (like CAS)
and non-atomic reads at the same location, our semantics is provably equivalent to C11’s
declarative semantics. This class of programs includes all C11 programs considered (and
verified) in this paper. (For formal details of the correspondence between our semantics and
C11’s, see our technical appendix [1].) We will first start with the pure RA fragment, and
then add a “race detector” for non-atomic accesses.

ECOOP 2017



17:6 Strong Logic for Weak Memory

2.1 Release-Acquire

Our operational semantics for RA starts from the observation that in RA—in contrast
to a standard heap language—different threads have a different view of what the state is.
Accordingly, we need to keep track of past write events as they might still be relevant for
some subset of threads. Moreover, we need to keep writes to the same location in a total
order enforced in C11 under the name modification order (mo for short). Finally, we also
need to keep track of each thread’s “progress” in terms of which writes are visible to it, as
this determines what a thread may read and where its writes may end up.

For the mo order, the RA machine manages for each location a totally ordered set of
timestamps t ∈ Time , N. Each write of some value v to a location ` gets assigned a
timestamp (that is unique for `), resulting in a write event ω ∈ Event , Loc×Val× Time,
where v ∈ Val , Z.1 Using timestamps, the thread’s “progress” is represented by a view,
V ∈ View , Loc fin

⇀ Time, which records the timestamp of the most recent write event
observed by the thread for every location. To enable communication between threads, every
write event is augmented with the writing thread’s view, yielding a message m ∈ Msg ,
Event×View. The machine state σ comprises a message pool (called memory) and a view
for every thread.

I Definition 1 (Simplified Physical State). Let σ ∈ Σ ,
(
P(Msg)× (ThreadId fin

⇀ View)
)
]

{⊥uninit} represent physical machine states, where ⊥uninit represents an error state. We write
M and T to denote the two components of a non-error state.

The λRN language’s reductions are factored into expression reductions, concerned with
the evaluation of the language’s expressions, and machine reductions, concerned with how the
execution of an expression affects the machine state. We will define the expression reductions
later when we formally define λRN. Here we focus on the machine reductions.

We define event labels ε ∈ E , {〈Read, `, v〉, 〈Write, `, v〉, 〈Update, `, vo, vn〉, 〈Fork, ρ〉},
representing reads, writes, atomic updates (RMW’s), and forks (with ρ being the newly
created thread id), respectively. The reductions are defined by a set of local, per-thread
reductions ε−→π⊆ Σ× Σ given in Figure 1, where π represents the current thread’s id.

A write (Thread-Write) picks an unused timestamp t for location ` that is greater than
the thread’s view of `, updates the thread’s view to the new view V ′ that includes t, and
adds a corresponding message to the memory. A read (Thread-Read) incorporates the view
V of the message that it reads into the thread’s own view.2 Note that the message being read
is required to have a timestamp that is not smaller than the thread’s view of the relevant
location. Updates (Thread-Update) combine reading and writing in one step. In addition,
updates must “pick” t+ 1 as a timestamp for the new message, where t is the timestamp of
the read message. This implies, in particular, that two different updates cannot read the
same message, and corresponds to C11’s atomicity condition, which requires every update
to read from its mo-immediate predecessor. Thread-Fork adds a new thread whose view
is copied from its parent. Finally, Thread-Uninitialized detects reads from uninitialized
locations, and moves to the error state ⊥uninit.

1 The full semantics also supports allocation, which induces an allocation value A. We do not mention it
here for the sake of simplicity.

2 Here, we use the join operator t on views: (V1 t V2)(`) = max{V1(`), V2(`)} if ` ∈ dom(V1) ∩ dom(V2);
(V1 t V2)(`) = Vi(`) if ` ∈ dom(Vi) \ dom(Vj); and (V1 t V2)(`) is undefined if ` 6∈ dom(V1) ∪ dom(V2).



J.-O. Kaiser, H.-H. Dang, D. Dreyer, O. Lahav, and V. Vafeiadis 17:7

Thread-Read
(`, v, t, V ) ∈ M T(π)(`) ≤ t

(M,T) 〈Read,`,v〉−−−−−−→π (M,T[π 7→ T(π) t V ])

Thread-Write
¬∃v′, V. (`, v′, t, V ) ∈ M T(π)(`) < t V ′ = T(π)[` 7→ t]

(M,T) 〈Write,`,v〉−−−−−−−→π (M ∪ {(`, v, t, V ′)},T
[
π 7→ V ′])

Thread-Update
(`, vo, t, V ) ∈ M T(π)(`) ≤ t

¬∃v, V. (`, v, t+ 1, V ) ∈ M V ′ = T(π)[` 7→ t+ 1] t V

(M,T) 〈Update,`,vo,vn〉−−−−−−−−−−−→π (M ∪ {(`, vn, t+ 1, V ′)},T
[
π 7→ V ′])

Thread-Fork
ρ /∈ dom(T)

(M,T) 〈Fork,ρ〉−−−−−→π (M,T[ρ 7→ T(π)])

Thread-Uninitialized
ε ∈ {〈Read, `, v〉, 〈Update, `, vo, vn〉}

T(π)(`) = ⊥
(M,T) ε−→π ⊥uninit

Figure 1 Per-thread reductions for RA without NA.

Functional correctness of MP

With the operational semantics of RA, we can now sketch why MP (assuming for now that
all its accesses are RA) is functionally correct, i.e., why the read of x by the second thread
will return 37 when the program terminates. The write of 37 to x is recorded at a view V37,
which is then included in the view V1 of the write of 1 to y by the first thread. When the
second thread reads 1 from y, its local view is updated to incorporate V1 (and thus also V37).
A read from x is now guaranteed to read from the message setting x to 37 or from a more
recent one, but no more recent one exists. Consequently, the return value will be 37.

2.2 Non-Atomics

Formally, C11 defines a data race as two memory accesses to the same location—of which at
least one is a write and at least one is non-atomic—that are not ordered by “happens-before.”
A program that exhibits data races in some of its execution graphs is called racy, and its
behavior is considered undefined. We now show how to account for non-atomics and data
races in the context of our operational semantics.

Let us first extend the set of physical states by another error state ⊥race, whose intent is
captured by the following correspondence: a program is racy if and only if at least one of its
machine executions can reach ⊥race (stated and proved formally in our appendix [1]).

To detect data races during the execution of a program, we add an additional component
to the physical state: the non-atomic view N, which tracks the timestamp of the most recent
non-atomic write to every location. Then, we place the following restrictions on all atomic
and non-atomic operations (if violated, the program will enter the ⊥race state):

To perform any access (atomic or non-atomic) to a location `, a thread π must have
observed the most recent non-atomic write to `, i.e., N(`) ≤ T(π)(`).
A thread π can only perform a non-atomic read from a location ` if it has observed the
most recent (atomic or non-atomic) write to `, i.e., @t, (`, , t, ) ∈ M. T(π)(`) < t.

ECOOP 2017



17:8 Strong Logic for Weak Memory

Read
(`, v, t, V ) ∈ M T(π)(`) ≤ t

α = na⇒∀v′, t′, V ′.(`, v′, t′, V ′) ∈ M⇒ t′ ≤ T(π)(`)

(M,T,N) 〈Readα,`,v〉−−−−−−−→π (M,T[π 7→ T(π) t V ] ,N)

Write-at
¬∃v′, V. (`, v′, t, V ) ∈ M N(`) ≤ T(π)(`) < t V ′ = T(π)[` 7→ t]

(M,T,N) 〈Writeat,`,v〉−−−−−−−−→π (M ∪ {(`, v, t, V ′)},T
[
π 7→ V ′] ,N)

Write-na
¬∃v′, V. (`, v′, t, V ) ∈ M N(`) ≤ T(π)(`) V ′ = T(π)[` 7→ t]

∀v′, t′, V. (`, v′, t′, V ) ∈ M⇒ t′ < t

(M,T,N) 〈Writena,`,v〉−−−−−−−−→π (M ∪ {(`, v, t, V ′)},T
[
π 7→ V ′] ,N[` 7→ t])

Update
(`, vo, t, V ) ∈ M N(`) ≤ T(π)(`) ≤ t

¬∃v, V. (`, v, t+ 1, V ) ∈ M V ′ = T(π)[` 7→ t+ 1] t V

(M,T,N) 〈Update,`,vo,vn〉−−−−−−−−−−−→π (M ∪ {(`, vn, t+ 1, V ′)},T
[
π 7→ V ′] ,N)

Fork
ρ /∈ dom(T)

(M,T,N) 〈Fork,ρ〉−−−−−→π (M,T[ρ 7→ T(π)] ,N)

Race-I
ε ∈ {〈Readα, `, v〉, 〈Writeα, `, v〉, 〈Update, `, vo, vn〉}

T(π)(`) < N(`)
(M,T,N) ε−→π ⊥race

Race-II
∃v′, t′, V ′.(`, v′, t′, V ′) ∈ M ∧ T(π)(`) < t′

(M,T,N) 〈Readna,`,v〉−−−−−−−−→π ⊥race

Uninitialized
ε ∈ {〈Readα, `, v〉, 〈Update, `, vo, vn〉} T(π)(`) = ⊥

(M,T,N) ε−→π ⊥uninit

Figure 2 Per-thread reductions for the RA+NA machine.

In addition to these restrictions, we require non-atomic writes to pick timestamps greater
than all existing timestamps of messages of the same location. Intuitively, these restrictions
enforce that each non-atomic write to ` starts a new “era” in `’s timestamps, after which any
attempt to access writes from a previous era (or to write with a timestamp from a previous
era) constitutes a race. Note that there is an asymmetry between non-atomic reads and
writes: non-atomic writes to ` are allowed even when the thread has not observed the most
recent write to `, as it is only required to observe the most recent non-atomic write to `.
One might fear that this fails to detect the case when a non-atomic write is racing with
a concurrent atomic write (and the atomic write happens first); but in this case the race
will be detected in a different execution where the non-atomic write happens first (and the
atomic write enters the ⊥race state), so the program will nevertheless be declared racy.

Revisiting MP, we note that it is safe to have non-atomic accesses to x: the write is
performed while the left thread is necessarily aware of the most recent non-atomic write to x
(the initialization); and the read is performed while the right thread is necessarily aware of
the most recent write to x, whose timestamp was incorporated into the right thread’s view
when it read y = 1.

Figure 2 presents the full operational semantics. It is based on the following definition of
a physical state.



J.-O. Kaiser, H.-H. Dang, D. Dreyer, O. Lahav, and V. Vafeiadis 17:9

v ∈ Val ::= () | z ∈ Z | ` ∈ Loc | fix (f, x). e
α ∈ Access ::= at | na
e ∈ Expr ::= v | e1 e2 | if z then e1 else e2 | fork e | `[α] | `[α] := v | cas(`, v, v) | ...

`[α]
〈Readα,`,v〉−−−−−−−→ v, nil

`[α] := v
〈Writeα,`,v〉−−−−−−−−→ (), nil

cas(`, vo, vn) 〈Update,`,vo,vn〉−−−−−−−−−−−→ 1, nil
cas(`, vo, vn) 〈Readat,`,v〉−−−−−−−−→ 0, nil if v 6= vo

fork e 〈Fork,ρ〉−−−−−→ (), [e]
(fix (f, x). e) v −→ e[(fix (f, x). e)/f ][v/x], nil

ifz then e1 else e2 −→ e1, nil if z 6= 0
ifz then e1 else e2 −→ e2, nil if z = 0

...

Figure 3 Main λRN expressions and expression reductions.

I Definition 2 (Physical State).
Let σ ∈ Σ ,

(
P(Msg)× (ThreadId fin

⇀ View)×View
)
] {⊥race,⊥uninit} represent physical

machine states. We write M, T, and N to denote the components of a non-error state. The
initial physical state, denoted σinit, is given by (∅, [0 7→ ∅], ∅).

2.3 The λRN language
λRN is a standard lambda calculus with recursive functions, forks, and references with atomic
and non-atomic accesses. The repeat construct that we have used in MP can be defined
in terms of recursive functions. The interesting part of the language and its expression
reductions is given in Figure 3. The expression reduction relation (e ε−→ e′, ef ) has four
components: the original expression e, an (optional) machine memory event ε, the resulting
expression e′, and a list of newly created threads ef . Only the rule for fork e creates a new
thread (i.e., a singleton list [e]), while all other reductions produce an empty list (i.e., nil).

The per-thread language reductions (σ; e ε−→π σ′; e′, ef ) are then the combination of the
expression reductions and the machine reductions, given by the Combined-* rules in Figure 4.
Non-stateful reductions (Combined-Pure) simply defer to the expression reductions, while
stateful reductions (Combined-Mem and Combined-Fork) use the event label ε and the thread
id π to tie the expression and machine reductions together correctly. These per-thread
reductions then are lifted in a straightforward manner to the full (threadpool) reductions.

3 Iris

Iris is a generic framework for constructing concurrent separation logics. One can instantiate
the framework with any language that has an operational interleaving semantics, and then
easily derive time-tested reasoning principles for one’s target logic, including various “protocol”
mechanisms for controlling interference. Figure 5 provides an excerpt of Iris syntax.

Iris supports the common connectives (False,True,⇒,∧,∨, ∗, —∗ ,∃,∀, µ) and proof rules
standard in higher-order separation logics. Iris’s extended set of constructs includes physical
state ownership Phys(σ), ghost state ownership a

γ , the later . and always � modalities,

ECOOP 2017



17:10 Strong Logic for Weak Memory

Combined-Pure
e −→ e′, nil

σ; e −→π σ; e′, nil

Combined-Mem
ε 6= 〈Fork, 〉

e
ε−→ e′, nil σ

ε−→π σ′

σ; e ε−→π σ′; e′, nil

Combined-Fork

e
〈Fork,ρ〉−−−−−→ e′, [ef ] σ

〈Fork,ρ〉−−−−−→π σ′

σ; e 〈Fork,ρ〉−−−−−→π σ′; e′, [ef ]

Threadpool-Red-Pure
σ; T S(π) −→π σ′; e′, nil

σ; T S −→π σ′; T S
[
π 7→ e′]

Threadpool-Red-Mem
σ; T S(π) ε−→π σ′; e′, nil

σ; T S ε−→π σ′; T S
[
π 7→ e′]

Threadpool-Red-Fork

σ; T S(π) 〈Fork,ρ〉−−−−−→π σ′; e′, [ef ]

σ; T S 〈Fork,ρ〉−−−−−→π σ′; T S
[
π 7→ e′] ] [ρ 7→ ef ]

Figure 4 Threadpool reductions.

P ::= False | True | P ⇒Q | P ∧Q | P ∨Q | P ∗Q | P —∗ Q | ∃x. P | ∀x. P | µx. P

| Phys(σ) | a γ | .P | �P | P N | P N1VN2 Q | {P } e {x. Q}N | ...

Figure 5 An excerpt of Iris syntax.

invariants P N , view shifts P N1VN2 Q, and Hoare triples {P } e {x. Q}N . We will first
explain these constructs via a running example, in which we use Iris to verify the MP example
in a simple, sequentially consistent language called λSC. This will not only illustrate how
one can derive within Iris a target logic for a language defined by an operational semantics,
but will also serve as a warm-up for our subsequent explanation of how we can instantiate
Iris to reason about weak memory.

Road map

The process of instantiating Iris to derive new logics follows a simple pattern, which is worth
articulating up front:
1. When we first instantiate Iris, the only primitive assertion we get about the state of the

program is the physical state ownership assertion Phys(σ), which asserts that σ is the
current global state of the machine. Together with this assertion we also get for free a
bunch of large-footprint specifications for the primitive commands of the language, based
directly on their operational semantics. For example, the primitive specification we get
for updating a location in λSC will be {Phys(σ)} ` := v {Phys(σ[` 7→ v])}.

2. Of course, one of the main points of separation logic is to be able to reason modularly
using local assertions about the machine state, such as the points-to assertion, ` ↪→ v,
and correspondingly give small-footprint specifications of the primitive commands, such
as {` ↪→ w} ` := v {` ↪→ v}. In Iris, such local assertions are not baked into the logic, but
rather are encodable using ghost state ownership assertions, and the user of the logic has
a great deal of flexibility concerning how these assertions are defined. In the case of the
points-to assertion, ` ↪→ v, we will define this assertion so as to represent the knowledge
that ` currently points to v and the rights to read and write `.

3. On its own, a local, user-defined ghost state assertion like the points-to assertion is merely
a representation of knowledge and rights. In order to give meaning to such a ghost state
assertion—i.e., to make sure it is in sync with the primitive physical state assertion—we



J.-O. Kaiser, H.-H. Dang, D. Dreyer, O. Lahav, and V. Vafeiadis 17:11

(!`, σ) → (v, σ) if σ(`) = v

(` := v, σ) → ((), σ[` 7→ v]) if ` ∈ dom(σ)
...

Figure 6 Main heap-related reductions of the λSC language.

establish an invariant tying the assertions together. In the case of the points-to assertion,
this invariant will enforce that when a thread owns the ghost state assertion ` ↪→ v, its
“knowledge” that ` currently points to v in the physical machine state is actually correct.

In short, ghost state assertions represent local knowledge and rights concerning the
machine state, and invariants enforce that ghost state assertions mean what they say they
mean.

3.1 Iris by Example
Our example programming language λSC is a standard lambda calculus with references. It
is basically the same as λRN, except that all accesses are sequentially consistent, and races
are permitted (they do not induce stuckness). The language’s physical state is a heap σ,
which is a finite map from allocated locations to values. The main heap-related reductions
of λSC are given in Figure 6. When we instantiate Iris with λSC’s operational semantics,
(as explained in the above road map) what we get automatically from Iris are the following
large-footprint Hoare triples concerning the physical state ownership assertion Phys(σ):

Phys-Heap-Read
{Phys(σ) ∗ σ(`) = v} !` {z. z = v ∗ Phys(σ)}

Phys-Heap-Write
{Phys(σ)} ` := v {Phys(σ[` 7→ v])}

Note that z in the first triple binds the return value of the expression !`. In the second triple,
the expression returns the unit value, so we elide the binder.

3.1.1 Encoding Separation Logic for λSC

We would now like to encode these small-footprint Hoare triples for λSC:

Heap-Read
{` ↪→ v} !` {z. z = v ∗ ` ↪→ v}

Heap-Write
{` ↪→ w} ` := v {` ↪→ v}

The first step is to define the points-to assertion, ` ↪→ v, using Iris’s ghost state.

Ghost state and partial commutative monoids

Ghost state is non-physical state that is only used as part of a program verification but is not
itself part of the machine state. In Iris, ghost state is formalized using partial commutative
monoids (PCMs).3 The assertion a : M γ asserts the ownership of the ghost resource a for
an instance γ of the PCM M . Separating conjunction for ghost state assertions simply lifts
the PCM composition operation to the assertion level: a : M γ ∗ b : M γ ⇐⇒ a ·M b : M γ .
If two PCM fragments are not compatible (i.e. their composition is not defined), then it is

3 Actually, ghost state in Iris is based on the more general mechanism of “cameras” (aka step-indexed
resource algebras), which can support a more general form of higher-order ghost state [13].

ECOOP 2017



17:12 Strong Logic for Weak Memory

not possible to own both of them at the same time, i.e., if a · b = ⊥ then a
γ ∗ b γ ⇒ False.4

In order to maintain consistency of the logic, therefore, changes to ghost state are restricted
to frame-preserving updates, in which a PCM fragment a can only be updated to b if b
preserves compatibility with any other fragments in the environment (the frame):

Ghost-Update
∀af . a · af 6= ⊥⇒ b · af 6= ⊥

a
γ
V b

γ

Ghost updates belong to the set of logical computations, or in Iris terminology, view shifts.
A view shift P V Q represents the capability of transforming a resource satisfying P into a
resource satisfying Q without changing the physical state.

A PCM for heaps

As a step towards defining ` ↪→ v, let us now construct a PCM called Heap that has the
same basic structure as the physical heap, but allows splitting and recomposition. (We will
ultimately need a slightly more sophisticated PCM to define ` ↪→ v, but Heap is an important
part of the construction.) Heap is a finite partial map from locations to values, with the
empty heap as its unit element, and the composition on heaps is defined as disjoint union (i.e.,
union if the heaps have disjoint domain, and undefined otherwise). The composition implies
that the singleton heap [` := v] does not combine with itself, so it can only be uniquely
owned, and it also represents the permission required to update `:

Ghost-Heap-Exclusive
[` := v] γ ∗ [` := w] γ ` False

Ghost-Heap-Update
[` := w] γ V [` := v] γ

The singleton heap [` := v] therefore has the desired properties for defining the local assertion
` ↪→ v, but unfortunately it is still not quite enough: we also need some way to tie this ghost
state assertion to the underlying physical state of the program. Toward this end, we employ
Iris’s invariants.

Invariants

Invariants in Iris can be thought of as assertions that hold of some shared resource at all
times, although the choice of which shared resource satisfies them is allowed to vary over time.
The Iris invariant assertion P

N stipulates that P is an invariant. The resource that satisfies
it is shared with all threads, and thus any thread can access it freely in a single physical
step5: it can open the invariant and gain local ownership of the resource for the duration
of the operation, so long as it can close the invariant by relinquishing ownership of some
(potentially different) resource satisfying P at the end of the operation. For bookkeeping
purposes—specifically, to ensure that we do not unsoundly open the same invariant more
than once in a nested fashion—invariants in Iris are named, and the N in the above invariant
assertion is a namespace (set of names) from which the name of the invariant must come.

Invariants belong to the set of persistent assertions, denoted with the always modality
�. The assertion �P establishes the knowledge that P holds without any ownership, and

4 In the rest of the paper we also suppress the PCM M in a : M γ when it can be inferred in context.
5 In Iris terminology, a resource in an invariant can be accessed within an atomic operation, which is an
operation that takes only a single physical step of execution. We do not use the term here to avoid
confusion with C11 atomics.



J.-O. Kaiser, H.-H. Dang, D. Dreyer, O. Lahav, and V. Vafeiadis 17:13

therefore holds forever after. Putting resources into an invariant is thus a common way to
share or transfer ownership through the use of freely distributable knowledge.

Meanwhile, the actions of opening and closing invariants belong to the set of logical
computations, or view shifts. To account for invariants, view shifts are extended with
namespaces as well: P N1VN2 Q asserts that, assuming the invariants named in N1 hold
before the view shift, then the invariants named in N2 hold after the view shift. Opening
and closing of invariants are then formalized as follows:

Inv-Open
P
N ` True NV∅ P

Inv-Close
P
N ` P ∅VN True

Inv-Open allows a thread to open the invariant P N and gain ownership of P but prevents
it from doing so more than once. Only after applying Inv-Close and re-establishing the
invariant will the thread be able to open it again.

Note: The Inv-Open rule as stated here is only sound if P talks about ownership (of
physical or ghost state) and not about the existence of other invariants. In general, however,
Iris makes no such restriction; rather, it supports impredicative invariants, meaning that
P can be an arbitrary assertion. In order to avoid paradoxes caused by impredicative
circularities (like the one described in [16]), the fully general version of this rule in Iris
requires that P be guarded by the step-indexed later modality (.). Fortunately, in most cases
the .’s can be stripped away automatically (the Iris proof mode in Coq provides support for
doing this) and do not play an interesting role in proofs. To focus the presentation of this
paper, we will therefore suppress further discussion of the . modality.

Hoare triples in Iris are also annotated with invariant namespaces, since Hoare triples
combine both physical and logical computations. A Hoare triple {P } e {x. Q}N with a
namespace N implies that if the invariants in N hold before the expression’s execution, then
they will be preserved between every step and also after its execution. Consequently, when
verifying any single physical step of computation, we are free to open the invariants in N so
long as we immediately close them. This reasoning is encapsulated in the following “atomic
rule of consequence”:

AConsq
P N]N

′
VN P ′ {P ′} e {v. Q′}N ∀v. Q′ NVN]N

′
Q e takes 1 physical step

{P } e {v. Q}N]N ′

Since bookkeeping of namespaces is largely a tedious detail (and one which Coq will force us
to get right), we will for the remainder of the paper suppress namespaces from definitions and
proofs. We will always use disjoint namespaces to ensure correctness in opening invariants.

Linking physical and ghost state using invariants and the “authoritative” PCM

Now, returning to our example, the key idea is to use an invariant to tie the physical state
assertion together with local ghost state assertions, thereby giving them meaning. To achieve
this, we will employ an extremely useful construction called the authoritative PCM [14].

Given a base PCM M, the authoritative PCM Auth(M) has two types of elements:
authoritative • a and non-authoritative ◦ a (for a ∈M). For any instance γ, • a γ is exclusive
(i.e., • a γ ∗ • a γ ` False), and is the main point of reference for all the non-authoritative
fragments, in the sense that any ownable fragment ◦ b γ must have b included in a, that is
∃c. a = b · c. The PCM’s update therefore requires more: if one wants to update b to b′, it

ECOOP 2017



17:14 Strong Logic for Weak Memory

has not only to ensure b′ is compatible with c, but also has to update a to a′ = b′ · c. These
properties are summarized in the following two rules:

Auth-Agree
• a γ ∗ ◦ b γ ` ∃c. a = b · c

Auth-Update
b′ · c 6= ⊥

• b · c γ ∗ ◦ b γ V • b′ · c
γ
∗ ◦ b′

γ

With these two rules in hand, we can derive the following rules for operations on Auth(Heap):

AGhost-Heap-Exclusive
◦ [` := v] γ ∗ ◦ [` := w] γ ` False

AGhost-Heap-Agree
•σ γ ∗ ◦ [` := v] γ ` σ(`) = v

AGhost-Heap-Update
•σ γ ∗ ◦ [` := w] γ V •σ[` 7→ v] γ ∗ ◦ [` := v] γ

We are now ready to establish the invariant ∃σ. Phys(σ) ∗ •σ γ , which binds together
the physical state ownership and the authoritative ghost heap ownership. With the invariant
in place, AGhost-Heap-Agree implies that if a thread owns the singleton ghost heap ◦ [` := v]
locally, then, in combination with the invariant, it is guaranteed that ` currently has value v
in the physical heap. AGhost-Heap-Exclusive and AGhost-Heap-Update ensure that only the
one thread who owns ◦ [` := v] γ can make updates to the contents of `.

The points-to assertion is then defined as ` ↪→ v , ◦ [` := v] γ , and we can easily prove
the small-footprint triples from the beginning of this section by combining the above rules
for authoritative ghost heaps with those for opening and closing invariants.

3.1.2 Verifying MP in λSC

Using the small-footprint triples, we are ready to verify MP in λSC. We discuss the proof in
a bit of detail here, since later on we will show how to adapt this proof to verify MP under
weak-memory semantics.

The proof of MP is given in Figure 7. As a proof convention, we only mention persistent
assertions (like invariants) once and use them freely later, since they are always true after
being established. The proof works essentially as follows.

First of all, both threads want to operate on y simultaneously, so we need to put ownership
of y into an invariant Invy . This invariant says that y is in one of two states—0 or 1. We
can establish the invariant right after the initialization of y (the write of 0 to y), because y is
in state 0 at that moment. The first thread is responsible for setting y to state 1. When
the second thread observes that y is in state 1, it will expect to be able to gain ownership
of x ↪→ 37. To achieve this, in state 1, Invy asserts the existence of another invariant Invx
concerning x, and it is this latter invariant that we use to transfer ownership of location x
from the first thread to the second thread.

To understand Invx, it helps to have seen the film Raiders of the Lost Ark, or at least the
first few minutes of it, in which Indiana Jones (played by Harrison Ford) attempts to steal a
precious golden idol from an ancient Peruvian temple—without setting off booby traps—by
swapping it for a similarly weighted bag of sand. Unfortunately for him, the temple detects
his ruse and tries to kill him. But we can play a similar trick, and Iris will be perfectly happy!
In our case, the “golden idol” is x ↪→ 37, which is transferred into the invariant Invx when
it is established by the first thread. The “bag of sand” is a “token” � (a uniquely ownable
piece of ghost state) that is given to the second thread at the beginning of its execution.
Invx simply asserts that it owns either the golden idol or the bag of sand. Thus, when the



J.-O. Kaiser, H.-H. Dang, D. Dreyer, O. Lahav, and V. Vafeiadis 17:15

Invariants:
Invy , y ↪→ 0 ∨ y ↪→ 1 ∗ Invx
Invx , � ∨ x ↪→ 37

{x ↪→ 0 ∗ Invy }
x := 37
{x ↪→ 37}
{ Invx }

op
en

In
v y {y ↪→ }

y := 1
{y ↪→ 1 ∗ Invx }

{True}

{ Invy ∗ �}
repeat y;
{ Invx ∗ �}
{x ↪→ 37}
!x
{z. z = 37 ∗ x ↪→ 37}

Figure 7 Verification of MP in λSC.

second thread learns of the existence of Invx, it can safely use the invariant opening and
closing rules to swap the bag of sand in its possession for the golden idol owned by Invx, and
thereafter claim local ownership of x ↪→ 37.

3.2 Instantiating Iris with λRN

We now consider an instantiation of Iris with our λRN language from Section 2.3. A key
difference between λRN and λSC is that the expression reductions of λSC do not depend on
which thread is executing the expression, since every thread has the same global view of the
memory, whereas the reductions of λRN depend on the current thread’s subjective view of the
memory. Thus, we need to be able to talk about thread ids in our logic as well. To this end,
we pair up expressions from λRN with thread ids, making them visible in our specifications.
Eventually, in Section 4, we will see how we can reason about λRN without talking explicitly
about thread ids.

3.2.1 Encoding Separation Logic for λRN

After instantiating Iris with λRN, as in the case of λSC, Iris provides us with large-footprint
specifications of the primitive commands for free, which concern the physical state assertion
and mirror the rules of λRN’s operational semantics. Recall that in λRN the physical state
is a tuple (M,T,N) of the message pool M, the current view map T, and the non-atomic
timestamp map N. As before, we aim to develop “local” assertions using ghost state, establish
an invariant that connects those local assertions to the physical state assertion, and then
derive small-footprint specifications of the primitive commands for use in modular verification.
But what kind of “local” assertions do we want?

For λSC, we had the points-to assertion ` ↪→ v, but in λRN we no longer have a simple
mapping from locations to values. Rather, associated with each location ` is a set of messages
corresponding to writes to `. We will represent that associated information as a history h,
consisting of a set of triples (v, t, V ), where v is a value written to `, t is the timestamp
at which that value was written, and V is the view of the writing thread at the time the
write occurred. Note that V incorporates the new timestamp, i.e., V (`) = t. To reflect
the per-location history, we define our first local assertion: The history ownership assertion
Hist(`, h) asserts ownership of ` and knowledge of its write history h.

Since the ability to read or write values in λRN depends on threads’ local views of memory,
we would also like to support an assertion of thread-view ownership, Seen(π, V ), which asserts
ownership of the current view V of the thread π and is required to update π’s view. Since any
operation by a thread π on a location ` relies on both π’s current view and `’s history, the

ECOOP 2017



17:16 Strong Logic for Weak Memory

Hist(`, h) , ◦ [` := h] γ1

Seen(π, V ) , ◦ [π := V ] γ2

PSInv , ∃σ. ∃H ∈ Loc fin
⇀ P(Val× Time×View). Phys(σ) ∗ •H γ1∗ •σ.T γ2∗ HInv(σ,H)

HInv(σ,H) , dom(H) = {m.` | m ∈ σ.M} ∧ (∀m ∈ σ.M. m.t = m.V (m.`))
∧ ∀` ∈ dom(H). H(`) = {(m.v,m.t,m.V ) | m ∈ σ.M ∧m.` = ` ∧m.t ≥ σ.N(`)}

Figure 8 Ghost state and invariant setup for λRN.

Base-NA-Read
PSInv ` {Seen(π, V ) ∗Hist(`, h) ∗ init(h, V ) ∗ na(h, V )}

`[na], π

{v. Seen(π, V ) ∗Hist(`, h) ∗ na(h, V ) ∗max(h).v = v}

Base-NA-Write
PSInv ` {Seen(π, V ) ∗Hist(`, h) ∗ alloc(h, V )}

`[na] := v, π

{∃V ′ w V, t, h′ = {(v, t, V ′)}. Seen(π, V ′) ∗Hist(`, h′) ∗ na(h′, V ′) ∗ init(h′, V ′)}

Base-AT-Read
PSInv ` {Seen(π, V ) ∗Hist(`, h) ∗ init(h, V )}

`[at], π

{v. ∃t1, V1, V
′ w V t V1. Seen(π, V ′) ∗Hist(`, h) ∗ (v, t1, V1) ∈ h ∗ t1 ≥ V (`)}

Base-AT-Write
PSInv ` {Seen(π, V ) ∗Hist(`, h) ∗ alloc(h, V )}

`[at] := v, π

{∃V ′ w V, t, h′ = h ] {(v, t, V ′)}. Seen(π, V ′) ∗Hist(`, h′) ∗ init(h′, V ′)}

Figure 9 Selected Hoare triples of λRN base logic.

pair of history and thread-view ownership assertions comprise the general ghost ownership
required for accessing the location.

To tie these local assertions to the global physical state, we use a construction very similar
to the one for λSC. The local assertions are defined as before by wrapping finite-map PCMs
with the authoritative PCM construction, and the invariant enforces that these ghost maps
are coherent with the physical state. The definitions of the invariant PSInv and the two local
assertions are given in Figure 8. The Hist(`, h) and Seen(π, V ) assertions also have the exact
same rules for exclusiveness, agreement, and updating as the ` ↪→ v assertion of λSC.

It is important to note that the history ownership assertion Hist(`, h) does not record the
full history of `, but only write events of the current era (see Section 2.2), i.e., only events
as recent as or more recent than the last non-atomic write to `. This is reflected in the last
condition of HInv: m.t ≥ σ.N(`). Defining Hist(`, h) this way helps to simplify the job of the
user of the logic in establishing the absence of races: by construction, it is impossible to even
attempt to read (racily) from write events before the current era. In order to preserve this
property of Hist(`, h), a non-atomic write (vna, tna, Vna) must completely remove all write
events currently in h (which would be racy to access now), and replace it with a new history
h′ that contains only the newly created non-atomic write event: h′ = {(vna, tna, Vna)}.



J.-O. Kaiser, H.-H. Dang, D. Dreyer, O. Lahav, and V. Vafeiadis 17:17

With the physical state shared and its ghost counterpart splittable, we are ready to derive
the small-footprint Hoare triples, which constitute a base logic that is powerful enough to
verify programs in λRN. A selected set of these triples is given in Figure 9. The general
pattern of these rules is that a thread π needs to own the history h of a location ` and its
own thread view V in order to operate on `. Additionally, π needs to show certain relations
between h and V in order to guarantee the safety of its operations. These relations are
represented by the alloc, init, and na predicates. The alloc(h, V ) predicate (resp. init(h, V ))
asserts that V has observed an event in h which ensures that ` is allocated (resp. initialized).
The na(h, V ) predicate asserts that V has observed the mo-latest write event of h, which is
needed to do a non-atomic read. Note that all of these predicates require that V has seen
some event from h—i.e., an event from the current era of `—which, as discussed above, is a
prerequisite for non-raciness.

These base logic rules provide a very concise explanation of λRN’s operational semantics.
Base-AT-Read, for example, requires the current view’s knowledge of ` being initialized and
ensures that the new updated view V ′ is at least the join of the local view V and the view V1
of the write event that the thread reads from. This event must be from h and not mo-earlier
than the write event observed by the thread previously. Base-NA-Read is similar, except
that it requires that the current view must have observed the mo-latest write event to `, and
therefore reads from that write event, which we denote by max(h). Base-NA-Write preserves
the HInv invariant by proactively dropping from the history all the old write events, which
are mo-before this non-atomic write. Notice that, unlike Base-NA-Read, Base-NA-Write
does not require na(h, V ), as explained in Section 2.2.

3.2.2 MP in λRN

We show that the base logic is enough to verify MP in λRN. The invariants and the proof,
given in Figure 10, follow closely those used for MP in λSC. The singleton heap ownership
in λSC is replaced with the history ownership, and extra conditions on view extension are
added to reflect the view updates inherent in λRN. More specifically, in Invy, we enforce that
any write of a non-zero value6 to y be at a view V1 that extends V37, which is the view at
which the write of 37 to x is made by the first thread. Consequently, when the second thread
observes V1 (by reading y to be non-zero), it must have also observed V37, and thus can read
x = 37, using the Indiana Jones invariant Invx. The extra conditions on V0 ensure that y is
initialized with 0 at V0, so that the second thread (having observed V0) can safely read y.

We have shown that the base logic is powerful enough to verify MP in λRN, and in
principle it is powerful enough to verify many other realistic weak memory programs that
are expressible in λRN as well. However, it is also clear that the base logic is not abstract
enough: one has to burden oneself with keeping track of the low-level details of changes to
locations’ histories and threads’ views. What we really want is a way of abstracting away
from those low-level details and finding simple high-level reasoning principles for λRN, the
type of reasoning principles supported by RA+NA logics like GPS and RSL. We will now
see how such high-level principles can in fact be derived on top of our low-level base logic.

6 In the MP example this value is always 1.

ECOOP 2017



17:18 Strong Logic for Weak Memory

Invariants:

Invy(V0) , ∃h. Hist(y, h) ∗ (0, , V0) ∈ h ∗ ∀V1, v1 6= 0. (v1, , V1) ∈ h⇒∃V37 v V1. Invx(V37)

Invx(V37) , � ∨Hist(x, [(37, , V37)])

Thread 1 proof outline:

{Seen(π, V0) ∗Hist(x, [(0, , Vx)]) ∗ Vx v V0 ∗ Invy(V0) }
x[na] := 37
{∃V37 w V0. Seen(π, V37) ∗Hist(x, [(37, , V37)])}
{Seen(π, V37) ∗ Invx(V37) }

op
en

In
v y {Seen(π, V37) ∗ ∃h. Hist(y, h) ∗ ...}

y[at] := 1

{∃V1 w V37. Seen(π, V1) ∗Hist(y, h ] [(1, , V1)]) ∗ Invx(V37) }
{Seen(π, V1) ∗ Invy(V0) }

Thread 2 proof outline:

{Seen(π, V0) ∗ Invy(V0) ∗ �}
repeat y[at];
{∃V1, V37, V2. V2 w V1 w V37 ∗ Seen(π, V2) ∗ Invx(V37) ∗ �}
{Seen(π, V2) ∗ V37 v V2 ∗Hist(x, [(37, , V37)])}
x[na]
{z. Seen(π, V2) ∗ z = 37 ∗Hist(x, [(37, , V37)])}

Figure 10 Verification of MP in λRN base logic.

4 iGPS

Vafeiadis et al. have introduced several logics for C11, and two in particular that were focused
on RA+NA: GPS [33] and RSL [34]. The key difference between these logics and the RA+NA
base logic presented in Section 3.2.1 is that, in GPS and RSL, the user does not reason
explicitly about views—instead, the assertions of these logics are implicitly predicated over
the view of the thread asserting them. This helps to hide much tedious reasoning about
views, and leads naturally to a model of assertions as predicates over views (Section 4.3).

We have encoded iGPS and iRSL, variants of both GPS and RSL, in Iris, and we will
focus here on iGPS, since it is the more sophisticated of the two logics. (We briefly describe
iRSL in Section 5.) GPS introduced several useful abstractions that were not present in RSL:
PCM-based ghost state, single-location protocols, and escrows. In encoding GPS in Iris, as
noted in the introduction, we get PCM-based ghost state completely for free, just by working
in Iris. Below, we will describe the other features, and how we account for them in Iris.

Note that our goal with iGPS is not to slavishly imitate all details of GPS, but to provide
proof rules very similar to GPS’s that are both strong enough to support all the examples
from the GPS papers [33, 31] and significantly easier to prove sound within Iris. To this
end, we slightly restrict select rules, but only in a way that does not impact their utility on
known case studies. We discuss the differences from the original rules in detail in Section 6.
Furthermore, in Section 4.2, we show how iGPS supports an additional feature—single-writer
protocols—that was not supported by the original GPS and that significantly simplifies
proofs.



J.-O. Kaiser, H.-H. Dang, D. Dreyer, O. Lahav, and V. Vafeiadis 17:19

iGPS-NA-Read
{` ↪→ v} `[na] {w. w = v ∗ ` ↪→ v}

iGPS-NA-Write
{` ↪→ } `[na] := v {` ↪→ v}

iGPS-NA-Exclusive
` ↪→ v ∗ ` ↪→ w⇒⊥

iGPS-Read
∀s′ w s, v. P ∗ τread(s′, v)V Q

{ ` : s τ ∗ P } `[at] {v. ∃s′ w s. ` : s′ τ ∗Q}

iGPS-Write
(∀s′′. s′ w s′′) P V τfull(s′, v) ∗Q

{ ` : s τ ∗ P } `[at] := v { ` : s′ τ ∗Q}
iGPS-CAS
∀s′ w s. P ∗ τfull(s′, vo)V ∃s′′ w s′. τfull(s′′, vn) ∗Q ∀s′ w s. P ∗ τread(s′, vo)V R

{ ` : s τ ∗ P } cas(`, vo, vn) {v. ∃s′′ w s. ` : s′′ τ ∗ ((v = 1 ∧Q) ∨ (v = 0 ∧R))}
iGPS-Persistent
` : s τ ⇒� ` : s τ

iGPS-Agree
` : s1 τ ∗ ` : s2 τ V s1 v s2 ∨ s2 v s1

iGPS-Escrow-Intro
QV [P  Q]

iGPS-Escrow-Elim
P ∧ [P  Q]V Q

iGPS-Escrow-Persistent
[P  Q]⇒� [P  Q]

Figure 11 iGPS proof rules for non-atomics, protocols, and escrows.

4.1 Key Features of GPS
In this section, we explain the key features of GPS and how they are formalized in iGPS
(besides PCM-based ghost state, which is directly imported into iGPS from Iris). A selected
set of iGPS proof rules is given in Figure 11.

Non-atomics

Since non-atomic locations may not be raced on, GPS (and iGPS) reason about them much
in the same way that locations are reasoned about in standard separation logic: using the
points-to assertion, ` ↪→ v. Note that the proof rules for reading (iGPS-NA-Read) and writing
(iGPS-NA-Write) and the exclusivity property (iGPS-NA-Exclusive) are equivalent to those
from the logic for λSC (Section 3.1.1). Additionally, GPS (and iGPS) support fractional
ownership of non-atomics to allow such locations to be read (but not written) by multiple
threads at once. We omit the rules of fractional ownership for brevity.

Protocols

To reason about RA atomics, we need a mechanism for controlling interference on such accesses.
Toward this end, CSLs for SC have supported a variety of protocol mechanisms, which control
how shared state may evolve over time, and several of the more recent logics [32, 30, 23]
employ state transition systems (STSs) to formalize such protocols. Crucially, protocols
enforce irreversibility: the state of an STS protocol can only make forward progress over the
course of a proof. For example, in Section 3.1.2, a protocol could enforce that the variable
y could only progress from 0 to 1 but not back again. (We did not need to enforce that
property to verify the MP example, but it is useful to be able to in general.) In Iris, protocols
are encoded using a combination of invariants and ghost state.

Under weak memory, invariants and protocols are unsound in general because they require
a single coherent history of updates to all locations. GPS showed how to partially restore
protocol reasoning for weak memory with single-location protocols: protocols which restrict
the evolution of a single shared location. Intuitively, single-location protocols are sound due

ECOOP 2017



17:20 Strong Logic for Weak Memory

to the per-location coherence property of C11 (often called “SC per location”): the writes to
any single location are totally ordered (by mo). In particular, they maintain the invariant
that the order of protocol states associated with writes is consistent with their timestamp
(mo) order. If write event x to location ` with associated protocol state sx is mo-before write
event y (to the same location) with protocol state sy, then sx will be before sy in protocol
order. Thus, once a thread has observed that the protocol on ` has reached state sx, it can
from that point on only observe the protocol on ` to be in states that are accessible from sx.
This fulfills the expectation that protocol transitions are irreversible.

GPS protocols come equipped with an interpretation predicate which specifies the resources
held by the protocol depending on the protocol’s state and the location’s value. The primitive
operations on an atomic location serve to transfer resources in and out of its protocol:

Writes may transfer resources into the protocol, but may not transfer anything out.
Reads may not transfer any resources into the protocol, but they may transfer “knowledge”
(i.e., duplicable resources) out of it. They are restricted to transferring out duplicable
resources because there may be many reads of the same write event.
Updates (RMWs), by virtue of the physical synchronization they provide, may transfer
resources both in and out of the protocol.

In iGPS, we represent protocols in a slightly different way, using two interpretations:
a “full” interpretation, and a duplicable “read” interpretation that is implied by the full
interpretation. The intuition is that the read interpretation is used for reads (since they may
only transfer duplicable resources out of the protocol) and the full interpretation is used for
the other operations.

We will now present the formal definition of protocols and the corresponding proof rules.

I Definition 3 (Protocols). A protocol τ comprises a non-empty state set S, a reflexive, transi-
tive transition relation v ⊆ S×S, and two interpretation predicates τm(·, ·) ∈ S×Val→ Prop
with m ∈ {read, full} representing read and full interpretations, respectively. The interpreta-
tion predicate has to fulfill the following two laws:

τfull(s, v)V τfull(s, v) ∗ τread(s, v) τread(s, v)V τread(s, v) ∗ τread(s, v)

We write ` : s τ (as in GPS) to denote the persistent assertion that ` is governed by protocol
τ and that the protocol has been observed in state s.

The first rule, iGPS-Agree, represents the guarantee that every protocol is always in a
state consistent with all observations, i.e., that all observed states can be linearly ordered
w.r.t. to the transition relation v.

iGPS-Read enables reading from a location governed by protocol τ—allowing the user to
observe a future state s′ of whatever state s it has previously observed, and providing the
associated read interpretation τread.

Writes to the location are subject to iGPS-Write, which allows the user to move the
protocol to a “final state” s′—i.e., a state accessible from every state in the protocol—so long
as they can provide τfull for s′. This rule may seem very weak, since it forces the protocol into
a final state, but this weakness derives from the need to handle the general case where there
can be write-write races. Write-write races allow only very limited reasoning: both writes
have to prove that their protocol state is later in protocol order to the other one. The write
rule presented here solves this problem in a very simple way (see Section 6 for a comparison
with the original GPS rule). In Section 4.2, we present a much stronger write rule that is
optimized for the common case where there are no write-write races on the location.



J.-O. Kaiser, H.-H. Dang, D. Dreyer, O. Lahav, and V. Vafeiadis 17:21

Finally, iGPS-CAS governs updates. Its two premises represent the success and failure
case, respectively. If the operation succeeds, the value read, vo, is guaranteed to belong to a
future state s′. The user picks the new state s′′ depending on s′ and establishes τfull(s′′, vn),
making use of τfull(s′, vo). In case of a failure, the rule degenerates to iGPS-Read.

Escrows

A limitation of GPS protocols is that they offer no way to transfer ownership of (non-
duplicable) resources from one thread to another unless the receiving thread performs
physical synchronization via an update operation. For example, in our MP example, there
is no update operation, and yet we want to transfer ownership of the non-atomic location
x from the first thread to the second. For such an example, an additional mechanism for
ownership transfer is required.

This motivates escrows, a mechanism for logical synchronization which, unlike protocols,
is not tied to physical locations.

I Definition 4 (Escrows). An escrow [P  Q] consists of a guard resource P and a payload
resource Q to be transferred. The guard resource P must be exclusive, i.e. P ∗ P ⇒⊥. The
escrow assertion itself is persistent knowledge (freely duplicable).

The idea of escrows is really just a slight generalization of the “Indiana Jones invariant”
Invx that we used in the proof of the MP example from Section 3.1.2. Following the
explanation there, the payload resource Q is the “golden idol”, the guard resource P is the
“bag of sand”, and the escrow allows one to swap P for Q. The restriction on exclusivity of
P ensures that this swap can only be performed once.

The proof rules for escrows follow the above intuition. iGPS-Escrow-Intro places the
payload resource Q in escrow. Any thread that learns of the existence of this escrow can
then use iGPS-Escrow-Elim to trade ownership of the guard resource P for Q.7

Message passing in iGPS

The verification of MP using iGPS is given in Figure 12. Although the verification is sound
for λRN, it is much simpler than the proof we carried out in the base logic of Iris, and is in
fact very close in structure to the SC verification of MP in λSC. In particular, the Indiana
Jones invariant Invx has now become an escrow XE, and the invariant Invy has now become
a (2-state) iGPS protocol YP, but otherwise the steps are almost the same. The abstraction
of iGPS has relieved us from the burden of reasoning with history and view updates explicitly.

4.2 Single-Writer Protocols
As we observed above, the iGPS protocol write rule suffers from a restriction: the user has to
transition to a final state. This restriction is not present in CSLs for SC, which let the user
pick the future state depending on the current one, much as iGPS-CAS does. Fortunately, in
the common case when there are no write-write races to the location, this restriction can be
lifted by single-writer protocols, a novel invention of iGPS.

A single-writer protocol splits the protocol assertion into two parts: an exclusive writer
assertion ` : s τ

W
and a persistent reader assertion ` : s τ

R
. Owning the writer assertion

7 The rule given for elimination is only sound if Q is “timeless”, meaning that it only describes ownership
of (ghost) state, not knowledge about protocols or escrows, as is the case in our message passing example.
A more general rule, which returns Q under the later modality, is given in the appendix [1].

ECOOP 2017



17:22 Strong Logic for Weak Memory

XE(x) ,
[
�  x ↪→ 37

]
YP(x)(0, v) , v = 0

YP(x)(1, v) , v = 1 ∗XE(x)

{x ↪→ 0 ∗ y : 0 YP(x) }
x[na] := 37
{x ↪→ 37}
{XE(x) ∗ y : 0 YP(x) }
y[at] := 1

{ y : 1 YP(x) }

{ y : 0 YP(x) ∗ �}
repeat y[at];

{ y : 1 YP(x) ∗XE(x) ∗ �}
{x ↪→ 37}
x[na]
{z. z = 37 ∗ x ↪→ 37}

Figure 12 Verification of MP with iGPS.

iGPS-SW-Exclusive-Writer
` : s1 τ

W
∗ ` : s2 τ

W
⇒⊥

iGPS-SW-Agree
` : s1 τ

R
∗ ` : s2 τ

R
V s1 v s2 ∨ s2 v s1

iGPS-SW-Max
` : s1 τ

W
∗ ` : s2 τ

R
V s1 w s2

iGPS-SW-Read-Exclusive

{ ` : s τ
W
} `[at] {v. ` : s τ

W
∗ τread(s, v)}

iGPS-SW-Read
∀s′ w s, v. P ∗ τread(s′, v)V Q

{ ` : s τ
R
∗ P } `[at] {v. ∃s′ w s. ` : s′ τ

R
∗Q}

iGPS-SW-Write
P ∗ ` : s′′ τ

W
∗ τfull(s, )V τfull(s′′, v) ∗Q s′′ w s

{ ` : s τ
W
∗ P } `[at] := v { ` : s′′ τ

R
∗Q}

Figure 13 A selection of single-writer proof rules.

provides both the permission to change the state as well as the guarantee that no one else
can change it. Owning the reader assertion only allows reads. Thus, the reader assertion
represents a lower bound on the protocol state whereas the state contained in the writer
assertion is exactly the most recent state of the protocol. The full proof rules for single-writer
protocols are given in Figure 13, and of these, the write rule iGPS-SW-Write is the most
important. The writer knows exactly what the current state is, and is free to pick the next
state accordingly.

Applications of single-writer protocols

Single-writer protocols provide more explicitly intuitive and concise proofs over normal
protocols when there are no write-write races, i.e., only one thread is writing to the location.
This may mean that there is exactly one writer in the whole program, or (perhaps more
typically) that the programmer is using sufficient synchronization to ensure that there is
exactly one active writer at a time. Such is the case for several headlining examples verified
in GPS, including circular buffer, bounded ticket lock, and read-copy update [33, 31].

In the original GPS proofs for these examples, the lack of single-writer protocols meant
that the proofs had to employ a significant amount of tedious ghost state (mostly in the form
of so-called “protocol tokens”) to formalize the fact that the writing thread knew exactly which
state the protocol had to be in at any given time. Using single-writer protocols, this reasoning
is immediate from the iGPS-SW-Write rule. By removing the need for such boilerplate ghost
state, single-writer protocols simplify and clarify the proofs of these examples.



J.-O. Kaiser, H.-H. Dang, D. Dreyer, O. Lahav, and V. Vafeiadis 17:23

a
γ
, λ . a

γ

J�P K , λV. �JP K(V )
JP ∗QK , λV. JP K(V ) ∗ JQK(V )

JP ⇒QK , λV. ∀V ′ w V. JP K(V ′)⇒ JQK(V ′)
J` ↪→ vK , λV. ∃Vna v V. Hist(`, {(v, , Vna)})

J[P  Q]K , λV. ∃V0 v V. JP K(V0) ∨ JQK(V0)

J{P } e {v. Q}K , λV. ∀V ′ w V, π.
{PSInv ∗ Seen(π, V ′) ∗ JP K(V ′)}

(e, π)
{v. ∃V ′′ w V ′. Seen(π, V ′′) ∗ JQK(V ′′)}

Figure 14 Definition of iGPS assertions.

An intriguing feature of the iGPS-SW-Write rule is that it is possible for the writer to
relinquish ownership of the exclusive writer permission while doing the write itself. (This is
why the writer permission appears in the precondition of the premise.) This extra flexibility is
particularly useful when reasoning about RA implementations of locks (such as the bounded
ticket lock). When the lock holder releases the lock (typically with a release write), this
feature allows them to also give up their permission to do further release writes to the lock,
so that it can be transferred to the next thread that acquires the lock.

4.3 The Model of iGPS
We now briefly describe the model of iGPS assertions. Figure 14 contains an excerpt of
the encoding of the standard assertions and connectives of CSL as well as non-atomics and
escrows. The somewhat more involved model of protocols is detailed in the appendix [1].

We model iGPS assertions as monotone predicates over views. The view parameter
represents the current view of the thread making the assertion. The monotonicity requirement
is motivated by the observation that the view of a thread only grows over the execution of a
program. To ensure properties like the frame rule, it is therefore crucial that simply adding
information to a view does not invalidate previously held (e.g., framed) assertions. As a
consequence of this requirement, we explicitly monotonize the encoding when necessary.

We benefit greatly from the support offered by the surrounding logic. As a result, the
model is extremely simple, with the lion’s share of connectives being translated in a purely
structural way and the remaining ones making direct use of ambient Iris connectives. The
most interesting encodings are those of Hoare triples, non-atomics, escrows, and protocols.
We now discuss these in more detail.

The model of Hoare triples embodies the intuition behind our encoding of iGPS assertions
as view predicates: the view at which we operate is that of the local thread. In the encoding,
we achieve this by quantifying over a view V ′ and tying V ′ to the physical view of the thread
π via the Seen(π, V ′) assertion and to the original pre-condition P , which is required to hold
at V ′. As the thread’s physical view may evolve during the execution of the expression e,
the triple returns an extended view V ′′ w V ′ and the corresponding Seen(π, V ′′) assertion,
together with the post-condition Q, which is guaranteed to be valid at V ′′.

The encoding of non-atomics is particularly simple due to the properties of the Hist
assertion. As all writes in the history have to be mo-after the most recent non-atomic write,
the history becomes a singleton when the location is used non-atomically. To tie the local
view V to the view of the non-atomic write Vna, we simply demand that V extend Vna.

We encode escrows with a single, simple invariant, which holds either the guard resource
P or the payload resource Q. The view V0 at which the invariant owns one of these resources
is the view used to initialize the escrow. Knowing an escrow at a local view V thus reduces
to knowing that V0 v V .

ECOOP 2017



17:24 Strong Logic for Weak Memory

Protocols

The model of iGPS protocols consists of two parts: a protocol invariant, and local protocol
assertions given out to clients. The protocol invariant owns the location’s history as well as
the logical history ∆, which tracks the transition history of protocol states and is always kept
in agreement with the location’s history. Additionally, the invariant owns τread for all writes in
the history and τfull for select ones, depending on the protocol’s type. For example, in normal
protocols, τfull is only stored for CAS-able write events, justifying that only an update can
access the full interpretation of the write event that it reads from (see iGPS-CAS). Meanwhile,
local protocol assertions hold knowledge about the logical history, which gives effectively
lower bounds on the current state of the protocol, and by the protocol invariant, indirectly
implies knowledge about the location’s history. In the case of single-writer protocols, the
writer assertion also owns the exclusive right to change the state. This construction also relies
on the authoritative PCM (see Section 3.1.1). More details are given in the appendix [1].

Soundness of iGPS

The soundness of iGPS is expressed by the following theorem.

I Theorem 1 (Adequacy). For any expression e, physical state σ′, and meta-level predicate
on values Φ, we have

(` {>} e {v. Φ(v)})⇒∀T S. σinit; [0 7→ e] −→∗ σ′; T S ⇒
(T S(0) ∈ Val⇒ Φ(T S(0)))
∧ ∀ρ ∈ dom(T S). T S(ρ) ∈ Val ∨ ∃σ′′, e′′, e′′f . T S(ρ) −→ρ σ′′, e′′, e′′f

The theorem connects iGPS program specifications (` {>} e {v. Φ(v)}) and the program’s
possible executions, and provides two guarantees:
1. If the original thread with id 0 terminates with a value v, we know that Φ(v) holds.
2. For any pair of a state σ′ and a threadpool T S reachable from the initial state σinit (see

Definition 2) and the initial threadpool [0 7→ e], we know that any thread ρ in T S either
has terminated with a value or can still be reduced in the state σ′.

The proof follows from the adequacy theorem of Iris.

5 Other Contributions

In our Coq development accompanying this paper, we make several additional contributions
that we briefly summarize here.

An RSL encoding

Using the same base logic from Section 3.2.1, we have mechanized iRSL, a higher-order
variant of RSL [34]. RSL focuses on the message-passing style transferring of resources
through release-write/acquire-read pairs. The two main assertions of RSL are Rel(`,Q) and
Acq(`,Q), representing the permission to write to and read from `, respectively. The resource
Q(v) is released by writing v to `, and then acquired by reading v from `. Consequently, to
support this MP-like mechanism, the encoding’s model shares a great deal with the model of
iGPS, namely the full vs. read interpretation construction for protocols.

One particular feature of RSL, however, demands special attention. Although simpler
than GPS, RSL has the extra ability to split the receiver predicate Q into smaller predicates,



J.-O. Kaiser, H.-H. Dang, D. Dreyer, O. Lahav, and V. Vafeiadis 17:25

so that different acquire reads of the same value v can acquire different parts of the transferred
resource: Acq(`, λv. Q1(v)∗Q2(v))V Acq(`,Q1)∗Acq(`,Q2). It is not obvious how to prove
this sound when the splitting is completely arbitrary. Fortunately, a similar pattern, called
the barrier pattern, has been addressed by Jung et al. [13], who propose the mechanism
of “higher-order ghost state” to support such splitting. Our iRSL model basically extends
Jung et al.’s barrier proof with a more complex (Iris) protocol to carefully manage resource
splitting.

The encoding in Iris also provides us with useful extensions to the logic. Without extra
work, iRSL naturally supports PCM-based ghost state and higher-order assertions, which
were not available in the original RSL. The encoding shows that our approach has the right,
reusable foundations to construct different logics for RA+NA.

In our RSL encoding, assertions are encoded as view predicates and proof rules are proven
sound with respect to the base logic—in the same way as our GPS encoding. This allows us
to soundly combine RSL and GPS reasoning principles in the same proof at no additional
cost. It is even possible to design iGPS protocols whose state interpretation mentions iRSL
assertions and vice versa. Of course, at a single point in time a location can only be governed
by either iGPS or iRSL, as they represent incompatible modes of ownership transfer.

Allocation and deallocation

We have also incorporated support for memory allocation and deallocation into our RA+NA
operational semantics. Since C11 is not clear about the semantics of allocation and dealloca-
tion, we take the liberty of defining them as reasonably as possible: in short, allocation and
deallocation behave as non-atomic writes with special values A and D, respectively.

Fractional protocols

So far, all protocols presented are permanent: once the protocols are established, they govern
their locations forever. This poses two interesting questions: 1) Can we change the protocol
which governs a location? and 2) How can we deallocate a location governed by a protocol?
To support these features, we derive, with little modification to the iGPS model, fractional
protocols, whose protocol assertions also assert the permission to even use the protocol.
Initially, a protocol τ for a location ` will be established with the full fraction, and then it
will be distributed to those who want to use τ . Later, when the full fraction is recollected,
one can disable the protocol (since no one else can use it), regain the raw ownership of `, and
then deallocate `—or more interestingly, establish a new protocol for `! These recollectable
protocols open up possibilities for verifying programs that do custom memory reclamation,
e.g., RCU (see below). In the current Coq development, we have created fractional versions
of both normal and single-writer protocols.

Mechanization and Case Studies

Our Coq mechanization employs a shallow embedding of iGPS (and iRSL), making critical
use of the Iris Proof Mode [17]. In its current form, the proof mode is specific to the algebra of
Iris and offers no additional support for embedded logics like our encoding of iGPS assertions.
There are two consequences to this: 1) Unlike in the paper presentation of iGPS, where
thread views are completely hidden in the (Iris) model of the logic, in our Coq proofs thread
views are visible. However, they are also unobtrusive: all assertions in a given proof context
always hold at the current thread’s local view, and the view only changes when the thread
takes a step. Thus, while the views are visible, they are always manipulated and kept in

ECOOP 2017



17:26 Strong Logic for Weak Memory

sync in a very straightforward way, which we mostly automate with a set of simple tactics.
2) iGPS assertions cannot always be manipulated directly by the proof mode. We sometimes
have to unfold our embedding of iGPS assertions—but not in the statements of our lemmas
and theorems—to make explicit the underlying Iris assertions so that the proof mode can
operate on them. As our embedding is very simple, this has little additional overhead. In
particular, all lemmas and theorems stated at the iGPS level remain easily applicable even
to the unfolded definitions at the Iris level.

We have verified all of the standard examples that have been proven in previous work.
The simplest of these is the spin-lock example, proven in iRSL. More interestingly, using
iGPS, we have also mechanized the message passing, circular buffer, bounded ticket lock, and
Michael-Scott lock-free queue examples, which were only verified by hand in the original
GPS paper. We have also verified a variant of the read-copy update (RCU) technique
employed in the Linux kernel, following the proof of Tassarotti et al. [31]. The RCU proof
is the most substantial example in iGPS, which simplifies the original proof in GPS by
using fractional single-writer protocols that allow garbage collection. To our knowledge, our
development provides the very first mechanized proofs of the circular buffer, bounded ticket
lock, Michael-Scott queue, and RCU examples in a weak-memory setting.

6 Related Work

This paper demonstrates one of the first major applications of the Iris framework. Other
recent applications include Krebbers et al. [17], who developed the interactive Coq proof
mode for Iris that we rely on heavily in this paper, and Krogh-Jespersen et al. [18], who use
Iris to encode a logical-relations model of a relational model of a type-and-effect system for
a higher-order, concurrent programming language. Neither of those papers considers weak
memory.

There are a number of program logics for weak memory models [28, 5, 2, 20], some of
which have mechanized soundness proofs [34, 8, 26], but none of which provide real support
for mechanized proofs of weak-memory programs in the way that we do.

FSL++ [9], an extension of FSL [8] (with ghost state) and RSL (with relaxed accesses),
was used to mechanize a proof of an implementation of atomic reference counters based on
the one in Rust’s Arc library. The proof is done by applying the basic laws of separation
logic, resulting in painful manual work. Our approach alleviates a great deal of such tedium
using the Iris proof mode. As of now, however, iGPS cannot reason about relaxed accesses.

More recently, RSL, FSL, and FSL++ have been encoded in Viper [22] to provide an
automated verification approach to weak memory programs [29]. The encodings, however,
axiomatize all proof rules without providing soundness guarantees, and are specific to the
style of RSL and its FSL descendants. Our base logic, in contrast, is not tied to any specific
surface logic and can be used to develop and prove sound different surface logics. It remains
to be seen if the more expressive GPS protocols can be encoded in Viper.

iGPS is based on the GPS logic [33] and supports all reasoning mechanisms of GPS.
However, the exact rules of iGPS differ in various small ways from the original ones in GPS.
These differences stem from pragmatic choices made to simplify the soundness proof of iGPS.
A particularly noteworthy difference from GPS appears in the premises of the iGPS-Read
and iGPS-Write rules: the split of the protocol interpretations τ into τread and τfull. We
show the original GPS rules below for comparison.



J.-O. Kaiser, H.-H. Dang, D. Dreyer, O. Lahav, and V. Vafeiadis 17:27

GPS-Read
∀s′ w s. P ∗ τ(s′, v)⇒�Q

{ ` : s τ ∗ P } `[at] {v. ` : s′ τ ∗Q}

GPS-Write
∀s′ w s. P ∗ τ(s′, v)⇒ s′ v s′′ P V τ(s′′, w) ∗Q

{ ` : s τ ∗ P } `[at] := w { ` : s′′ τ ∗Q}
The interpretation τ(s, v) in these two GPS rules is equivalent to τfull(s, v) in iGPS. In
GPS, the user can gain access to the full interpretation of the “current” protocol state (s′),
but only to obtain some knowledge, not to consume (i.e., transfer out of the protocol) any
non-duplicable resources owned by that interpretation. This is enforced in GPS-Read by
guarding Q with an always modality �, and in GPS-Write by requiring the user to establish
the interpretation of the new write using only the local resource P . In contrast, iGPS does
not provide the user with the full interpretation, but only the read interpretation τread. This
weakens, for example, the iGPS-Write rule in comparison with GPS-Write, because the user
cannot use τfull to show s′ v s′′.

The reason for this discrepancy between GPS and iGPS is that the soundness proof of
GPS reasons about an entire program execution graph at once. With its bird’s-eye view of
the entire execution, GPS can, for the duration of a step, assemble resources that have been
transferred elsewhere in the graph to re-construct τfull for the user. The soundness of iGPS,
on the other hand, is established in a simpler and more local manner, without involving
reasoning about the full execution of the program. We avoid the global soundness argument
of GPS and instead provide a pragmatic solution which—judging from our success in porting
GPS examples—is effectively as strong as GPS and, at the same time, makes for a very
simple soundness proof: we maintain the duplicable τread for all (past) events and can thus
easily provide it to the client of iGPS-Read.

Essentially, the reason our rules are as effective (if not more so) than those of GPS is that
GPS provides one-size-fits-all rules, which are applicable to both programs with write-write
races and those without, whereas we provide special support for the common case where
there are no write-write races. For programs without those races, the rules provided by GPS
are quite cumbersome to use and often require additional ghost state for bookkeeping. iGPS
instead supports an optimized write rule for the common case in which there are no such
races, via single-writer protocols. For the remaining cases, the rather simple-minded rule
iGPS-Write appears to suffice in all the examples we have considered thus far.

Our operational semantics for RA draws heavily on Lahav et al.’s semantics for SRA [19]—
a stronger variant of RA, which is equivalent to it in the absence of write-write races. SRA
was developed to provide an intuitive operational characterization which is as efficiently
implementable as RA. However, as we observe here, moving to an operational characterization
does not in fact require any strengthening of the RA semantics (even the slight strengthening
of SRA). The main difference between the operational semantics of SRA and the one we give
for RA is that writes in SRA always take a globally maximal timestamp, whereas in RA they
need not do so. The canonical example demonstrating this difference is the 2+2W example
(see Lahav et al. [19] for more details).

Going beyond Lahav et al., we offer the first operational account of the interaction of
RA and non-atomic accesses. Our semantics corresponds to C11’s for programs that do not
mix atomic RMW operations and non-atomic reads at the same location. We feel this is a
reasonable restriction, given that C11’s treatment of programs mixing atomic and non-atomic
accesses is already known to be problematic [3]. Our semantics does not correspond to C11’s
for arbitrary programs, as evidenced by the following example:

ECOOP 2017



17:28 Strong Logic for Weak Memory

cas(x, 0, 1)
x[at] := 2;
a := x[na]

C11 considers this program racy because, if the CAS succeeds, the first thread’s update of x
to 1 and the second thread’s non-atomic read of x are not in a happens-before relation. In
contrast, our semantics does not consider this a race because the non-atomic read is always
guaranteed to read from the previous write with value 2. We find the C11 semantics for this
program to be rather unintuitive, but leave a more thorough investigation of the issue to
future work.

Our RA semantics may also be considered a close derivative of Kang et al.’s “promising”
semantics [15], which is geared toward solving a broader problem with the full C11 model
(the so-called “out-of-thin-air” problem). We look forward to using Iris to construct program
logics for this promising semantics.

Acknowledgements. We would like to thank Mohit Vyas for spotting a mistake in our
original proof of correspondence to C11, and Mark Batty for helpful conversations.

References
1 Technical appendix and Coq development accompanying this paper, available at the follow-

ing URL: http://plv.mpi-sws.org/igps/.
2 Tatsuya Abe and Toshiyuki Maeda. Observation-based concurrent program logic for relaxed

memory consistency models. In APLAS, pages 63–84, 2016.
3 Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and Peter

Sewell. The problem of programming language concurrency semantics. In ESOP, 2015.
4 Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. Mathematizing

C++ concurrency. In POPL, pages 55–66, 2011.
5 Richard Bornat, Jade Alglave, and Matthew J. Parkinson. New lace and arsenic: adventures

in weak memory with a program logic. CoRR, abs/1512.01416, 2015.
6 Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. TaDA: A logic for

time and data abstraction. In ECOOP, 2014.
7 T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and V. Vafeiadis. Concurrent

abstract predicates. In ECOOP 2010, volume 6183 of LNCS, pages 504–528. Springer,
2010.

8 Marko Doko and Viktor Vafeiadis. A program logic for C11 memory fences. In VMCAI,
volume 9583 of Lecture Notes in Computer Science, pages 413–430. Springer, 2016.

9 Marko Doko and Viktor Vafeiadis. Tackling real-life relaxed concurrency with FSL++. In
ESOP, 2017.

10 Derek Dreyer. The RustBelt project. http://plv.mpi-sws.org/rustbelt/.
11 Xinyu Feng. Local rely-guarantee reasoning. In POPL, pages 315–327, 2009.
12 C. B. Jones. Tentative steps toward a development method for interfering programs.

TOPLAS, 5(4):596–619, 1983.
13 Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. Higher-order ghost state.

In ICFP, pages 256–269, 2016.
14 Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,

and Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent
reasoning. In POPL, pages 637–650, 2015.

15 Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. A promising
semantics for relaxed-memory concurrency. In POPL, pages 175–189, 2017.

http://plv.mpi-sws.org/igps/
http://plv.mpi-sws.org/rustbelt/


J.-O. Kaiser, H.-H. Dang, D. Dreyer, O. Lahav, and V. Vafeiadis 17:29

16 Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars
Birkedal. The essence of higher-order concurrent separation logic. In ESOP, 2017.

17 Robbert Krebbers, Amin Timany, and Lars Birkedal. Interactive proofs in higher-order
concurrent separation logic. In POPL, pages 205–217, 2017.

18 Morten Krogh-Jespersen, Kasper Svendsen, and Lars Birkedal. A relational model of types-
and-effects in higher-order concurrent separation logic. In POPL, pages 218–231, 2017.

19 Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. Taming release-acquire consistency. In
POPL, POPL 2016, pages 649–662. ACM, 2016.

20 Ori Lahav and Viktor Vafeiadis. Owicki-Gries reasoning for weak memory models. In
Automata, Languages, and Programming, ICALP 2015, volume 9135 of LNCS, pages 311–
323. Springer, 2015.

21 Leslie Lamport. How to make a multiprocessor computer that correctly executes multipro-
cess programs. IEEE Trans. Computers, 28(9):690–691, 1979.

22 Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A verification infras-
tructure for permission-based reasoning. In VMCAI, pages 41–62, 2016.

23 Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco. Commu-
nicating state transition systems for fine-grained concurrent resources. In ESOP, 2014.

24 Peter W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci.,
375(1-3):271–307, 2007.

25 John C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS,
2002.

26 Tom Ridge. A rely-guarantee proof system for x86-TSO. In VSTTE 2010, volume 6217 of
LNCS, pages 55–70. Springer, 2010.

27 Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. Mechanized verification of fine-
grained concurrent programs. In PLDI, pages 77–87, 2015.

28 Filip Sieczkowski, Kasper Svendsen, Lars Birkedal, and Jean Pichon-Pharabod. A separa-
tion logic for fictional sequential consistency. In ESOP 2015, volume 9032 of LNCS, pages
736–761. Springer, 2015.

29 Alexander Summers. Personal communication, 2017.
30 Kasper Svendsen and Lars Birkedal. Impredicative concurrent abstract predicates. In

ESOP, 2014.
31 Joseph Tassarotti, Derek Dreyer, and Viktor Vafeiadis. Verifying read-copy-update in a

logic for weak memory. In 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2015, pages 110–120. ACM, 2015.

32 Aaron Turon, Derek Dreyer, and Lars Birkedal. Unifying refinement and Hoare-style rea-
soning in a logic for higher-order concurrency. In ICFP. ACM, 2013.

33 Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. GPS: Navigating weak memory with
ghosts, protocols, and separation. In OOPSLA, OOPSLA 2014, pages 691–707. ACM, 2014.

34 Viktor Vafeiadis and Chinmay Narayan. Relaxed separation logic: A program logic for C11
concurrency. In OOPSLA 2013, pages 867–884. ACM, 2013.

35 Viktor Vafeiadis and Matthew Parkinson. A marriage of rely/guarantee and separation
logic. In CONCUR 2007, volume 4703 of LNCS, pages 256–271. Springer, 2007.

ECOOP 2017





A Co-contextual Type Checker
for Featherweight Java
Edlira Kuci1, Sebastian Erdweg2, Oliver Bračevac3, Andi Bejleri4,
and Mira Mezini5

1 Technische Universität Darmstadt, Germany
2 TU Delft, The Netherlands
3 Technische Universität Darmstadt, Germany
4 Technische Universität Darmstadt, Germany
5 Technische Universität Darmstadt, Germany and

Lancaster University, UK

Abstract
This paper addresses compositional and incremental type checking for object-oriented program-
ming languages. Recent work achieved incremental type checking for structurally typed functional
languages through co-contextual typing rules, a constraint-based formulation that removes any
context dependency for expression typings. However, that work does not cover key features of
object-oriented languages: Subtype polymorphism, nominal typing, and implementation inher-
itance. Type checkers encode these features in the form of class tables, an additional form of
typing context inhibiting incrementalization.

In the present work, we demonstrate that an appropriate co-contextual notion to class tables
exists, paving the way to efficient incremental type checkers for object-oriented languages. This
yields a novel formulation of Igarashi et al.’s Featherweight Java (FJ) type system, where we
replace class tables by the dual concept of class table requirements and class table operations
by dual operations on class table requirements. We prove the equivalence of FJ’s type system
and our co-contextual formulation. Based on our formulation, we implemented an incremental
FJ type checker and compared its performance against javac on a number of realistic example
programs.

1998 ACM Subject Classification D.3.3 Language Constructs and Features, F.3.1 Specifying
and Verifying and Reasoning about Programs, F.3.2 Semantics of Programming Languages

Keywords and phrases type checking; co-contextual; constraints; class table; Featherweight Java

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.18

1 Introduction

Previous work [6] presented a co-contextual formulation of the PCF type system with records,
parametric polymorphism, and subtyping by duality of the traditional contextual formulation.
The contextual formulation is based on a typing context and operations for looking up,
splitting, and extending the context. The co-contextual formulation replaces the typing
context and its operations with the dual concepts of context requirements and operations for
generating, merging, and satisfying requirements. This enables bottom-up type checking that
starts at the leaves of an expression tree. Whenever a traditional type checker would look up
variable types in the typing context, the bottom-up co-contextual type checker generates
fresh type variables and generates context requirements stating that these type variables need
to be bound to actual types; it merges and satisfies these requirements as it visits the syntax

© Edlira Kuci, Sebastian Erdweg, Oliver Bračevac, Andi Bejleri, and Mira Mezini;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming(ECOOP 2017).
Editor: Peter Müller; Article No. 18; pp. 18:1–18:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


18:2 A Co-contextual Type Checker for Featherweight Java

+new List().add(1).size() new LinkedList().add(2).size();

(R1) List.init() (R4) LinkedList.init()
(R2) List.add : Int→ U1 (R5) LinkedList.add : Int→ U2

(R3) U1.size : ()→ U3 (R6) U2.size : ()→ U4

Figure 1 Requirements generated from co-contextually type checking the + expression.

tree upwards to the root. The co-contextual type formulation of PCF enables incremental
type checking giving rise to order-of-magnitude speedups [6].

These results motivated us to investigate co-contextual formulation of the type systems for
statically typed object-oriented (OO) languages, the state-of-the-art programming technology
for large-scale systems. We use Featherweight Java [8] (FJ) as a representative calculus for
these languages. Specifically, we consider two research questions: (a) Can we formulate an
equivalent co-contextual type system for FJ by duality to the traditional formulation, and
(b) if yes, how to define an incremental type checker based on it with significant speedups?
Addressing these questions is an important step towards a general theory of incremental type
checkers for statically typed OO languages, such as Java, C], or Eiffel.

We observe that the general principle of replacing the typing context and its operations
with co-contextual duals carries over to the class table. The latter is propagated top-down and
completely specifies the available classes in the program, e.g., member signatures and super
classes. Dually, a co-contextual type checker propagates class table requirements bottom-
up. This data structure specifies requirements on classes and members and accompanying
operations for generating, merging, and removing these requirements.

However, defining appropriate merge and remove operations on co-contextual class table
requirements poses significant challenges, as they substantially differ from the equivalent
operations on context requirements. Unlike the global namespace and structural typing of
PCF, FJ features context dependent member signatures (subtype polymorphism), a declared
type hierarchy (nominal typing), and inherited definitions (implementation inheritance).

For an intuition of class table requirements and the specific challenges concerning their
operations, consider the example in Figure 1. Type checking the operands of + yields the
class table requirements R1 to R6. Here and throughout the paper we use metavariable U to
denote unification variables as placeholders for actual types. For example, the invocation of
method add on new List() yields a class table requirement R2. The goal of co-contextual type
checking is to avoid using any context information, hence we cannot look up the signature of
List.add in the class table. Instead, we use a placeholder U1 until we discover the definition
of List.add later on. As consequence, we lack knowledge about the receiver type of any
subsequent method call, such as size in our example. This leads to requirement R3, which
states that (yet unknown) class U1 should exist that has a method size with no arguments
and (yet unknown) return type U3. Assuming + operates on integers, type checking the
+ operator later unifies U3 and U4 with Int, thus refining the class table requirements.

To illustrate issues with merging requirements, consider the requirements R3 and R6
regarding size. Due to nominal typing, the signature of this method depends on U1 and U2,
where it is yet unknown how these classes are related to each other. It might be that U1
and U2 refer to the same class, which implies that these two requirements overlap and the
corresponding types of size in R3 and R6 are unified. Alternatively, it might be the case
that U1 and U2 are distinct classes, individually declaring a method size. Unifying the types
of size from R3 and R6 would be wrong. Therefore, it is locally indeterminate whether a
merge should unify or keep the requirements separate.



E. Kuci, S. Erdweg, O. Bračevac, A. Bejleri, and M. Mezini 18:3

To illustrate issues with removing class requirements, consider the requirement R5.
Suppose that we encounter a declaration of add in LinkedList. Just removing R5 is not
sufficient because we do not know whether LinkedList overrides add of a yet unknown
superclasss U , or not. Again, the situation is locally indeterminate. In case of overriding,
FJ requires that the signatures of overriding and overridden methods be identical. Hence,
it would necessary add constraints equating the two signatures. However, it is equally
possible that LinkedList.add overrides nothing, so that no additional constraints are necessary.
If, however, LinkedList inherits add from List without overriding it, we need to record the
inheritance relation between these two classes, in order to be able to replace U2 with the
actual return type of size.

The example illustrates that a co-contextual formulation for nominal typing with subtype
polymorphism and implementation inheritance poses new research questions that the work
on co-contextual PCF did not address. A key contribution of the work presented in this
paper is to answer these questions. The other key contribution is an incremental type checker
for FJ based on the co-contextual FJ formulation. We evaluate the initial and incremental
performance of the co-contextual FJ type checker on synthesized FJ programs and realistic
java programs by comparison to javac and a context-based implementation of FJ.

To summarize, the paper makes the following contributions:
We present a co-contextual formulation of FJ’s type system by duality to the traditional
type system formulation by Igarashi et al. [8]. Our formulation replaces the class table by
its dual concept of class table requirements and it replaces field/method lookup, class table
duplication, and class table extension by the dual operations of requirement generation,
merging, and removing. In particular, defining the semantics of merging and removing
class table requirements in the presence of nominal types, OO subtype polymorphism,
and implementation inheritance constitute a key contribution of this work.
We present a method to derive co-contextual typing rules for FJ from traditional ones
and provide a proof of equivalence between contextual and co-contextual FJ.
We provide a description of type checker optimizations for co-contextual FJ with incre-
mentalization and a performance evaluation.

2 Background and Motivation

In this section, we present the FJ typing rules from [8] and give an example to illustrate how
contextual and co-contextual FJ type checkers work.

2.1 Featherweight Java: Syntax and Typing Rules
Featherweight Java [8] is a minimal core language for modeling Java’s type system. Fig-
ure 2 shows the syntax of classes, constructors, methods, expressions, and typing contexts.
Metavariables C, D, and E denote class names and types; f denotes fields; m denotes method
names; this denotes the reference to the current object. As is customary, an overline denotes
a sequence in the metalanguage. Γ is a set of bindings from variables and this to types.

The type system (Figure 3) ensures that variables, field access, method invocation,
constructor calls, casting, and method and class declarations are well-typed. The typing
judgment for expressions has the form Γ;CT ` e : C, where Γ denotes the typing context, CT
the class table, e the expression under analysis, and C the type of e. The typing judgment
for methods has the form C;CT `M OK and for classes CT ` L OK.

In contrast to the FJ paper [8], we added some cosmetic changes to the presentation. For
example, the class table CT is an implicit global definition in FJ. Our presentation explicitly

ECOOP 2017



18:4 A Co-contextual Type Checker for Featherweight Java

L ::= class C extends D {C f ; K M} class declaration
K ::= C(C f){super(f); this.f = f} constructor
M ::= C m(C x){ return e; } method declaration
e ::= x | this | e.f | e.m(e) | new C(e) | (C)e expression

Γ ::= ∅ | Γ;x : C | Γ; this : C typing contexts

Figure 2 Featherweight Java syntax and typing context.

propagates CT top-down along with the typing context. Another difference to Igarashi et
al. is in the rule T-New: Looking up all fields of a class returns a constructor signature, i.e.,
fields(C,CT ) = C.init(D) instead of returning a list of fields with their corresponding types.
We made this subtle change because it clearer communicates the intention of checking the
constructor arguments against the declared parameter types. Later on, these changes pay off,
because they enable a systematic translation of typing rules to co-contextual FJ (Sections 3
and 4) and give a strong and rigorous equivalence result for the two type systems (Section 5).

Furthermore, we explicitly include a typing rule T-Program for programs, which is implicit
in Igarashi et al.’s presentation. The typing judgment for programs has the form L OK:
A program is well-typed if all class declarations are well-typed. The auxiliary functions
addExt, addCtor, addFs, and addMs extract the supertype, constructor, field and method
declarations from a class declaration into entries for the class table. Initially, the class table
is empty, then it is gradually extended with information from every class declaration by using
the above-mentioned auxiliary functions. This is to emphasize that we view the class table as
an additional form of typing context, having its own set of extension operations. We describe
the class table extension operations and their co-contextual duals formally in Section 3.

2.2 Contextual and Co-Contextual Featherweight Java by Example

class List extends Object {
Int size() {. . .}
List add(Int a){. . .}

}
class LinkedList extends List { }

We revisit the example from the introduction to illus-
trate that, in absence of context information, maintaining
requirements on class members is non-trivial:

new List().add(1).size() + new LinkedList().add(2).size().

Here we assume the class declarations on the right-hand
side: List with methods add() and size() and LinkedList inheriting from List. As before, we
assume there are typing rules for numeric Int literals and the + operator over Int values. We
use LList instead of LinkedList in Figure 4 for space reasons.

Figure 4 (a) depicts standard type checking with typing contexts in FJ. The type checker in
FJ visits the syntax tree “down-up”, starting at the root. Its inputs (propagated downwards)
are the context Γ, class table CT , and the current subexpression e. Its output (propagated
upwards) is the type C of the current subexpression. The output is computed according
to the currently applicable typing rule, which is determined by the shape of the current
subexpression. The class table used by the standard type checker contains classes List and
LinkedList shown above. The type checker retrieves the signatures for the method invocations
of add and size from the class table CT .

To recap, while type checking constructor calls, method invocations, and field accesses
the context and the class table flow top-down; types of fields/methods are looked up in the
class table.



E. Kuci, S. Erdweg, O. Bračevac, A. Bejleri, and M. Mezini 18:5

T-Var
Γ(x) = C

Γ;CT ` x : C T-Field
Γ;CT ` e : Ce field(fi, Ce, CT ) = Ci

Γ;CT ` e.fi : Ci

T-Invk
Γ;CT ` e : Ce Γ;CT ` e : C mtype(m,Ce, CT ) = D → C C <: D

Γ;CT ` e.m(e) : C

T-New
Γ;CT ` e : C fields(C,CT ) = C.init(D) C <: D

Γ;CT ` new C(e) : C

T-UCast
Γ;CT ` e : D D <: C

Γ;CT ` (C)e : C
T-DCast

Γ;CT ` e : D C <: D C 6= D

Γ;CT ` (C)e : C

T-SCast
Γ;CT ` e : D C ≮: D D ≮: C

Γ;CT ` (C)e : C

T-Method

x : C; this : C;CT ` e : E0 E0 <: C0
extends(C,CT ) = D

if mtype(m,D,CT ) = D → D0, then C = D; C0 = D0

C;CT ` C m(C x){return e} OK

T-Class

K = C(D′
g, C

′
f){super(g); this.f = f} fields(D,CT ) = D.init(D′)

C;CT `M OK
CT ` class C extends D {C f ;K M} OK

T-Program

CT =
⋃

L
′∈L(addExt(L′) ∪ addCtor(L′) ∪ addFs(L′) ∪ addMs(L′))

(CT ` L′ OK)L
′∈L

L OK

Figure 3 Typing rules of Featherweight Java.

Figure 4 (b) depicts type checking of the same expression in co-contextual FJ. Here, the
type checker starts at the leaves of the tree with no information about the context or the
class table. The expression type T , the context requirements R, and class table requirements
CR all are outputs and only the current expression e is input to the type checker, making
the type checker context-independent. At the leaves, we do not know the signature of the
constructors of List and LinkedList. Therefore, we generate requirements for the constructor
calls List.init() and LinkedList.init() and propagate them as class table requirements. For
each method invocation of add and size in the tree, we generate requirements on the receiver
type and propagate them together with the requirements of the subexpressions.

In addition to generating requirements and propagating them upwards as shown in
Figure 4 (b), a co-contextual type checker also merges requirements when they have com-
patible receiver types. In our example, we have two requirements for method add and
two requirements for method size. The requirements for method add have incompatible
ground receiver types and therefore cannot be merged. The requirements for method size
both have placeholder receivers and therefore cannot be merged just yet. However, for the
size requirements, we can already extract a conditional constraint that must hold if the
requirements become mergeable, namely (U2 = U4 if U1 = U3). This constraint ensures the

ECOOP 2017



18:6 A Co-contextual Type Checker for Featherweight Java

new List().add(1).size() + new LList().add(2).size()

.size() .size()

.add() .add()

new List() 1 new LList() 2

Γ; CT ` : Int

Γ; CT ` : Int Γ; CT ` : Int

Γ; CT ` : List Γ; CT ` : List

Γ; CT ` : List Γ; CT ` : LListΓ; CT ` : Int Γ; CT ` : Int

contexts,
class table flow

top-down
types flow
bottom-up

(a) Contextual type checking propagates contexts and class tables top-down.

new List().add(1).size() + new LList().add(2).size()

.size() .size()

.add() .add()

new List() 1 new LList() 2

: Int | ∅ |List.init(), LList.init(),
List.add : Int → U1,
LList.add : Int → U3,
U1.size :() → U2,
U3.size :() → U4

: U2 | ∅ | U1.size :() → U2 : U4 | ∅ | U3.size :() → U4

: U1 List | ∅ |List.init(),
List.add : Int → U1

: U3 LList | ∅ | LList.init(),
LList.add : Int → U3

: List | ∅ | List.init() : LList | ∅ | LList.init(): Int | ∅ | ∅ : Int | ∅ | ∅

types,
context reqs.,

class table reqs.,
flow bottom-up

(b) Co-contextual type checking propagates context and class table requirements bottom-up.

Figure 4 Contextual and co-contextual type checking.

signatures of both size invocations are equal in case their receiver types U1 and U3 are equal.
This way, we enable early error detection and incremental solving of constraints. Constraints
can be solved continuously as soon as they have been generated in order to not wait for the
whole program to be type checked. We discuss incremental type checking in more detail in
Section 6.

After type checking the + operator, the type checker encounters the class declarations of
List and LinkedList. When type checking the class header LinkedList extends List, we have
to record the inheritance relation between the two classes because methods can be invoked
by LinkedList, but declared in List. For example, if List is not known to be a superclass of
LinkedList and given the declaration List.add, then we cannot just yet satisfy the requirement
LinkedList.add : Num→ U3. Therefore, we duplicate the requirement regarding add having
as receiver List, i.e., List.add : Num→ U3. By doing so, we can deduce the actual type of
U3 for the given declaration of add in List. Also, requirements regarding size are duplicated.

In the next step, the method declaration of size in List is type checked. Hence, we consider
all requirements regarding size, i.e, U1.size : ()→ U2 and U3.size : ()→ U4. The receivers of
mathitsize in both requirements are unknown. We cannot yet satisfy these requirements
because we do not know whether U1 and U3 are equal to List, or not. To solve this, we
introduce conditions as part of the requirements, to keep track of the relations between the
unknown required classes and the declared ones. By doing so, we can deduce the actual types
of U2 and U4, and satisfy the requirements later, when we have more information about U1
and U3.

Next, we encounter the method declaration add and satisfy the corresponding requirements.
After satisfying the requirements regarding add, the type checker can infer the actual types
of U1 and U3. Therefore, we can also satisfy the requirements regarding size.



E. Kuci, S. Erdweg, O. Bračevac, A. Bejleri, and M. Mezini 18:7

To summarize, during the co-contextual type checking of constructor calls, method
invocations, and field accesses, the requirements flow bottom-up. Instead of looking up
types of fields/methods in the class table, we introduce new class table requirements. These
requirements are satisfied when the actual types of fields/methods become available.

3 Co-Contextual Structures for Featherweight Java

In this section, we present the dual structures and operations for the co-contextual formulation
of FJ’s type system. Specifically, we introduce bottom-up propagated context and class table
requirements, replacing top-down propagated typing contexts and class tables.

3.1 Class Variables and Constraints

For co-contextual FJ, we reuse the syntax of FJ in Figure 2, but extend the type language
to class types:
U, V, . . . Class Variable
T ::= C | U Class Type

We use constraints for refining class types, i.e., co-contextual FJ is a constraint-based type
system. That is, next to class names, the type system may assign class variables, designating
unknowns in constraints. We further assume that there are countably many class variables,
equality of class variables is decidable and that class variables and class names are disjoint.

During bottom-up checking, we propagate sets S of constraints:
s ::= T = T | T 6= T | T <: T | T ≮ T | T = T if cond constraint
S ::= ∅ | S; s constraint set

A constraint s either states that two class types must be equal, non-equal, in a subtype
relation, non-subtype, or equal if some condition holds, which we leave underspecified for the
moment.

3.2 Context Requirements

A typing context is a set of bindings from variables to types, while a context requirement is a
set of bindings from variables to class variables U . Below we show the operations on typing
contexts and their co-contextual correspondences, reproduced from [6]. Operations on typing
context are lookup, extension, and duplication; their respective requirement context duals
are: generating, removing, and merging. Co-contextual FJ adopts context requirements and
operations for method parameters and this unchanged.

Contextual Co-contextual

Context syntax Γ ::= ∅ | Γ; x : T Requirements R ⊂ x× T map variables to their types
Context lookup Γ(x) = T Requirement introduction R = {x : U} with

fresh unification variable U

Context extension Γ; x : T Requirement satisfaction R− x if (R(x) = T ) holds
Context duplication Γ→ (Γ, Γ) Requirement merging mergeR(R1, R2) = R|S

if all constraints (T1 = T2) ∈ S hold
Context is empty Γ = ∅ No unsatisfied requirements R

!= ∅

ECOOP 2017



18:8 A Co-contextual Type Checker for Featherweight Java

Contextual

CT ::= ∅ class table
| CTcls ∪ CT

CTcls ::= def. clause
| C extends D extends clause
| C.init(C) ctor clause
| C.f : C ′ field clause
| C.m : C → C ′ method clause

Co-Contextual

CR ::= ∅ class table req.
| (CReq, cond) ∪ CR

CReq ::= class req.
| T .extends: T ′ inheritance req.
| T.init(T ) ctor req.
| T.f : T ′ field req.
| T.m : T → T ′ method req.
| (T.m : T → T ′)opt optional method req.

cond ::= ∅ | T = T ′; cond condition
| T 6= T ′; cond

Figure 5 Class Table and Class Table Requirements Syntax.

3.3 Structure of Class Tables and Class Table Requirements
In the following, we describe the dual notion of a class table, called class table requirements
and their operations. We first recapitulate the structure of FJ class tables [8], then stipulate
the structure of class table requirements. Figure 5 shows the syntax of both. A class table
is a collection of class definition clauses CTcls defining the available classes.1 A clause is a
class name C followed by either the superclass, the signature of the constructor, a field type,
or a method signature of C’s definition.

As Figure 5 suggests, class tables and definition clauses in FJ have a counterpart in
co-contextual FJ. Class tables become class table requirements CR, which are collections of
pairs (CReq, cond), where CReq is a class requirement and cond is its condition. Each class
definition clause has a corresponding class requirement CReq, which is one of the following:

A inheritance requirement T .extends: T ′, i.e., class type T must inherit from T ′.
A constructor requirement T.init(T ′), i.e., class type T ’s constructor signature must
match T ′.
A field requirement T.f : T ′, i.e., class T (or one of its supertypes) must declare field f
with class type T ′.
A method requirement T.m : T ′→T ′′, i.e., class T (or one of its supertypes) must declare
method m matching signature T ′→T ′′.
An optional method requirement (T.m : T ′ → T ′′)opt, i.e., if the class type T declares
the method m, then its signature must match T ′ → T ′′. While type checking method
declarations, this requirement is used to ensure that method overrides in subclasses
are well-defined. An optional method requirement is used as a counterpart of the
conditional method lookup in rule T-Method of standard FJ, i.e., if mtype(m,D,CT ) =
D̄ → D0, then C̄ = D̄; C0 = D0, where D is the superclass of the class C, in which the
method declaration m under scrutiny is type checked, and C̄, C0 are the parameter and
returned types of m as part of C.

A condition cond is a conjunction of equality and nonequality constraints on class types.
Intuitively, (CReq, cond) states that if the condition cond is satisfied, then the requirement

1 To make the correspondence to class table requirements more obvious, we show a decomposed form of
class tables. The original FJ formulation [8] groups clauses by the containing class declaration.



E. Kuci, S. Erdweg, O. Bračevac, A. Bejleri, and M. Mezini 18:9

Contextual Co-contextual

Field name lookup field(fi, C, CT ) = Ci Class requirement for field
(C.fi : U, ∅)

Fields lookup fields(C, CT ) = C.init(C) Class requirement for constructor
(C.init(U), ∅)

Method lookup mtype(m, C, CT ) = C → C Class requirement for method
(C.m : U → U, ∅)

Conditional method override Optional class requirement for method
if mtype(m, C, CT ) = C → C (C.m : U → U, ∅)opt

Super class lookup extends(C, CT ) = D Class requirement for super class
(C .extends: U, ∅)

Class table duplication CT → (CT, CT ) Class requirement merging
mergeCR(CR1, CR2) = CR|S
if all constraints in S hold

Figure 6 Operations on class table and their co-contextual correspondence.

CReq must be satisfied, too. Otherwise, we have unsolvable constraints, indicating a typing
error. With conditional requirements and constraints, we address the feature of nominal
typing and inheritance for co-contextual FJ. In the following, we will describe their usage.

3.4 Operations on Class Tables and Requirements

In this section, we describe the co-contextual dual to FJ’s class table operations as outlined in
Figure 6. We first consider FJ’s lookup operations on class tables, which appear in premises
of typing rules shown in Figure 3 to look up (1) fields, (2) field lists, (3) methods and (4)
superclass lookup. The dual operation is to introduce a corresponding class requirement for
the field, list of fields, method, or superclass.

Let us consider closely field lookup, i.e., field(fi, C, CT ) = Ci, meaning that class C in
the class table CT has as member a field fi of type Ci. We translate it to the dual operation
of introducing a new class requirement (C.fi : U, ∅). Since we do not have any information
about the type of the field, we choose a fresh class variable U as type of field fi. At the time
of introducing a new requirement, its condition is empty.

Consider the next operation fields(C,CT ), which looks up all field members of a class.
This lookup is used in the constructor call rule T-New; the intention is to retrieve the
constructor signature in order to type check the subtyping relation between this signature
and the types of expressions as parameters of the constructor call, i.e., C̄ <: D̄ (rule T-New).
As we can observe, the field names are not needed in this rule, only their types. Hence, in
contrast to the original FJ rule [8], we deduce the constructor signature from fields lookup,
rather than field names and their corresponding types, i.e., fields(C,CT ) = C.init(D̄). The
dual operation on class requirements is to add a new class requirement for the constructor,
i.e., (C.init(Ū), ∅). Analogously, the class table operations for method signature lookup and
super class lookup map to corresponding class table requirements.

Finally, standard FJ uses class table duplication to forward the class table to all parts
of an FJ program, thus ensuring all parts are checked against the same context. The dual
co-contextual operation, mergeCR, merges class table requirements originating from different
parts of the program. Importantly, requirements merging needs to assure all parts of the
program require compatible inheritance, constructors, fields, and methods for any given

ECOOP 2017



18:10 A Co-contextual Type Checker for Featherweight Java

CRm = {(T1.m : T1 → T ′
1, cond1 ∪ (T1 6= T2))

∪ (T2.m : T2 → T ′
2, cond2 ∪ (T1 6= T2))

∪ (T1.m : T1 → T ′
1, cond1 ∪ cond2 ∪ (T1 = T2))

| (T1.m : T1 → T ′
1, cond1) ∈ CR1 ∧ (T2.m : T2 → T ′

2, cond2) ∈ CR2}

Sm = {(T ′
1 = T ′

2 if T1 = T2) ∪ (T1 = T2 if T1 = T2)
| (T1.m : T1 → T ′

1, cond1) ∈ CR1 ∧ (T2.m : T2 → T ′
2, cond2) ∈ CR2}

Figure 7 Merge operation of method requirements CR1 and CR2.

class. To merge two sets of requirements, we first identify the field and method names
used in both sets and then compare the classes they belong to. The result of merging
two sets of class requirements CR1 and CR2 is a new set CR of class requirements and a
set of constraints, which ensure compatibility between the two original sets of overlapping
requirements. Non-overlapping requirements get propagated unchanged to CR whereas
potentially overlapping requirements receive special treatment depending on the requirement
kind.

The full merge definition appears in our technical report [10]. Figure 7 shows the merge
operation for overlapping method requirements, which results in a new set of requirements
CRm and constraints Sm. To compute CRm, we identify method requirements on the
equally-named methods m in both sets and distinguish two cases. First, if the receivers are
different T1 6= T2, then the requirements are not actually overlapping. We retain the two
requirements unchanged, except that we remember the failed condition for future reference.
Second, if the receivers are equal T1 = T2, then the requirements are actually overlapping.
We merge them into a single requirement and produce corresponding constraints in Sm.
One of the key benefits of keeping track of conditions in class table requirements is that
often these conditions allow us to discharge requirements early on when their conditions are
unsatisfiable. In particular, in Section 6 we describe a compact representation of conditional
requirements that facilitates early pruning and is paramount for good performance. However,
the main reason for conditional class table requirements is their removal, which we discuss
subsequently.

3.5 Class Table Construction and Requirements Removal

Our formulation of the contextual FJ type system differs in the presentation of the class
table compared to the original paper [8]. Whereas Igarashi et al. assume that the class table
is a pre-defined static structure, we explicitly consider its formation through a sequence of
operations. The class table is initially empty and gradually extended with class table clauses
CTcls for each class declaration L of a program. Dual to that, class table requirements are
initially unsatisfied and gradually removed. We define an operation for adding clauses to the
class table and a corresponding co-contextual dual operation on class table requirements for
removing requirements. Figure 8 shows a collection of adding and removing operations for
every possible kind of class table clause CTcls.

In general, clauses are added to the class table starting from superclass to subclass
declarations. For a given class, the class header with extends is added before the other



E. Kuci, S. Erdweg, O. Bračevac, A. Bejleri, and M. Mezini 18:11

Contextual Co-contextual

Class table empty CT = ∅ Unsatisfied class requirements CR

Adding extend addExt(L, CT ) Remove extend removeExt(L, CR)
Adding constructor addCtor(L, CT ) Remove constructor removeCtor(L, CR)
Adding fields addFs(L, CT ) Remove fields removeFs(L, CR)
Adding methods addMs(L, CT ) Remove methods removeMs(L, CR)

Figure 8 Constructing class table and their co-contextual correspondence.

clauses. Dually, we start removing requirements that correspond to clauses of a subclass,
followed by those corresponding to clauses of superclass declarations. For a given class, we
first remove requirements corresponding to method, fields, or constructor clauses, then those
corresponding to the class header extends clause. Note that our sequencing still allows for
mutual class dependencies. For example, the following is a valid sequence of clauses where A
depends on B and vice versa:

class A extends Object; class B extends Object; A.m: ()→ B; B.m: ()→ A.

The full definition of the addition and removal operations for all cases of clause definition
appears in our technical report [10]; Figure 9 presents the definitions of adding and removing
method and extends clauses.

Remove operations for method clauses. The function removeMs removes a list of methods
by applying the function removeM to each of them. removeM removes a single method
declaration defined in class C. To this end, removeM identifies requirements on the same
method name m and refines their receiver to be different from the removed declaration’s
defining class. That is, the refined requirement (T.m : . . . , cond ∪ (T 6= C)) only requires
method m if the receiver T is different from the defining class C. If the receiver T is, in
fact, equal to C, then the condition of the refined requirement is unsatisfiable and can
be discharged. To ensure the required type also matches the declared type, removeM also
generates conditional constraints in case T = C. Note that whether T = C can often not be
determined immediately because T may be a placeholder type U .

We illustrate the removal of methods using the class declaration of List shown in Section 2.2.
Consider the class requirement set CR = (U1.size()→ U2, ∅). Encountering the declaration
of method add has no effect on this set because there is no requirement on add. However,
when encountering the declaration of method size, we refine the set as follows:

removeM(List, Int size() {. . .}, CR) = {(U1.size : ()→ U2,U1 6= List)}|S

with a new constraint S = {U2 = Int if U1 = List}. Thus, we have satisfied the requirement
in CR for U1 = List, only leaving the requirement in case U1 represents another type. In
particular, if we learn at some point that U1 indeed represents List, we can discharge the
requirement because its condition is unsatisfiable. This is important because a program is
only closed and well-typed if its requirement set is empty.

Remove operations for extends clauses. The function removeExt removes the class header
clauses (C. extends D). This function, in addition to identifying the requirements regarding
extends and following the same steps as above for removeM, duplicates all requirements for
fields and methods. The duplicate introduces a requirement the same as the existing one, but

ECOOP 2017



18:12 A Co-contextual Type Checker for Featherweight Java

addMs(C,M,CT ) = C.m : C → C ′ ∪ CT
removeM(C,C ′ m(C x) {return e}, CR) = CR′|S
where CR′ = {(T.m : T → T ′, cond ∪ (T 6= C)) | (T.m : T → T ′, cond) ∈ CR}

∪ (CR \ (T.m : T → T ′, cond))
S = {(T ′ = C ′ if T = C) ∪ (T = C if T = C) | (T.m : T → T ′, cond) ∈ CR}

removeMs(C,M,CR) = CR′|S
where CR′ = {CRm | (C

′ m(C x) {return e}) ∈M
∧ removeM(C,C ′ m(C e) {return e}, CR) = CRm|Sm

}
S = {Sm | (C

′ m(C x) {return e}) ∈M
∧ removeM(C,C ′ m(C x) {return e}, CR) = CRm|Sm

}

addExt(class C extends D,CT ) = (C extends D) ∪ CT
removeExt(class C extends D,CR) = CR′|S
where CR′ = {(T.extends : T ′, cond ∪ (T 6= C)) | (T.extends : T ′, cond) ∈ CR}

∪ {(T.m : T → T ′, cond ∪ (T 6= C))
∪ (D.m : T → T ′, cond ∪ (T = C)) | (T.m : T → T ′, cond) ∈ CR}
∪ {(T.m : T → T ′, cond ∪ (T 6= C))opt

∪ (D.m : T → T ′, cond ∪ (T = C))opt

| (T.m : T → T ′, cond)opt ∈ CR}
∪ {(T.f : T ′, cond ∪ (T 6= C)) ∪ (D.f : T ′, cond ∪ (T = C))
| (T.f : T ′, cond) ∈ CR}

S = {(T ′ = D if T = C) | (T.extends : T ′, cond) ∈ CR}

Figure 9 Add and remove operations of method and extends clauses.

with a different receiver, which is the superclass D that potentially declares the required fields
and methods. The conditions also change. We add to the existing requirements an inequality
condition (T 6= C), to encounter the case when the receiver T is actually replaced by C, but
it is required to have a certain field or method, which is declared in D, the superclass of T .
This requirement should be discharged because we know the actual type of the required field
or method, which is inherited from the given declaration in D. Also, we add an equality
condition to the duplicate requirement T = C, because this requirement will be discharged
when we encounter the actual declarations of fields or methods in the superclass.

We illustrate the removal of extends using the class declaration LinkedList extends List.
Consider the requirement set CR = (U3.size : ()→ U4, ∅). We encounter the declaration for
LinkedList and the requirement set changes as follows:

removeExt(class LinkedList extends List, CR) =
{(U3.size : ()→ U4, U3 6= LinkedList), (List.size : ()→ U4, U3 = LinkedList)}|S ,

where S = ∅. S is empty, because there are no requirements on extends. If we learn at
some point that U3 = LinkedList, then the requirement (U3.size : ()→ U4, U3 6= LinkedList)



E. Kuci, S. Erdweg, O. Bračevac, A. Bejleri, and M. Mezini 18:13

is discharged because its condition is unsatisfiable. Also, if we learn that size is declared in
List, then (List.size : () → U4, U3 = LinkedList) is discharged applying removeM, as shown
above, and U4 can be replaced by its actual type.

Usage and necessity of conditions. As shown throughout this section, conditions play an
important role to enable merging and removal of requirements over nominal receiver types
and to support inheritance. Because of nominal typing, field and method lookup depends on
the name of the defining context and we do not know the actual type of the receiver class
when encountering a field or method reference. Thus, it is impossible to deduce their types
until more information is known. Moreover, if a class is required to have fields/methods,
which are actually declared in a superclass of the required class, then we need to deduce
their actual type/signature and meanwhile fulfill the respective requirements. For example,
considering the requirement U3.size : () → U4, if U3 = LinkedList, LinkedList extends List,
and size is declared in List, then we have to deduce the actual type of U4 and satisfy this
requirement. To overcome these obstacles we need additional structure to maintain the
relations between the required classes and the declared ones, and also to reason about the
partial fulfillment of requirements. Conditions come to place as the needed structure to
maintain these relations and indicate the fulfillment of requirements.

4 Co-Contextual Featherweight Java Typing Rules

In this section we derive co-contextual FJ’s typing rules systematically from FJ’s typing rules.
The main idea is to transform the rules into a form that eliminates any context dependencies
that require top-down propagation of information.

Concretely, context and class table requirements (Section 3) in output positions to the
right replace typing contexts and class tables in input positions to the left. Additionally,
co-contextual FJ propagates constraint sets S in output positions. Note that the program
typing judgment does not change, because programs are closed, requiring neither typing
context nor class table inputs. Correspondingly, neither context nor class table requirements
need to be propagated as outputs.

Figure 10 shows the co-contextual FJ typing rules (the reader may want to compare
against contextual FJ in Figure 3). In what follows, we will discuss the rules for each kind of
judgment.

4.1 Expression Typing
Typing rule TC-Var is dual to the standard variable lookup rule T-Var. It marks a distinct
occurrence of x (or the self reference this) by assigning a fresh class variable U . Furthermore,
it introduces a new context requirement {x : U}, as the dual operation of context lookup
for variables x (Γ(x) = C) in T-Var. Since the latter does not access the class table, dually,
TC-Var outputs empty class table requirements.

Typing rule TC-Field is dual to T-Field for field accesses. The latter requires a field name
lookup (field), which, dually, translates to a new class requirement for the field fi, i.e.,
(Te.fi : U, ∅) (cf. Section 3). Here, Te is the class type of the receiver e. U is a fresh
class variable, marking a distinct occurrence of field name fi, which is the class type of the
entire expression. Furthermore, we merge the new field requirement with the class table
requirements CRe propagated from e. The result of merging is a new set of requirements
CR and a new set of constraints Scr. Just as the context Γ is passed into the subexpression
e in T-Field, we propagate the context requirements for e for the entire expression. Finally,

ECOOP 2017



18:14 A Co-contextual Type Checker for Featherweight Java

TC-Var U is fresh
x : U | ∅ | x : U | ∅

TC-Field

e : Te | Se | Re | CRe CR|Sf
= mergeCR(CRe, (Te.fi : U, ∅))

U is fresh
e.fi : U | Se ∪ Sf | Re | CR

TC-Invk

e : Te | Se | Re | CRe e : T | S | R | CR
CRm = (Te.m : U → U ′, ∅) Ss = {T <: U} U ′, U are fresh
R′|Sr

= mergeR(Re, R) CR′|Scr
= mergeCR(CRe, CRm, CR)

e.m(e) : U ′ | S ∪ Se ∪ Ss ∪ Sr ∪ Scr | R
′ | CR′

TC-New

e : T | S | R | CR CRf = (C.init(U), ∅) Ss = {T <: U}
U is fresh R′|Sr

= mergeR(R) CR′|Scr
= mergeCR(CRf , CR)

new C(e) : C | S ∪ Ss ∪ Sr ∪ Scr | R
′ | CR′

TC-UCast
e : Te | Se | Re | CRe Ss = {Te <: C}

(C)e : C | Se ∪ Ss | Re | CRe

TC-DCast
e : Te | Se | Re | CRe Ss = {C <: Te} Sn = {C 6= Te}

(C)e : C | Se ∪ Ss ∪ Sn | Re | CRe

TC-SCast
e : Te | Se | Re | CRe Ss = {C ≮: Te} S′

s = {Te ≮: C}
(C)e : C | Se ∪ Ss ∪ S

′
s | Re | CRe

TC-Method

e : Te | Se | Re | CRe Sx = {C = Re(x) | x ∈ dom(Re)}
Sc = {Uc = Re(this) | this ∈ dom(Re)} Ss = {Te <: C0}

Re − this− x = ∅ Uc, Ud are fresh
CR|Scr

= mergeCR(CRe, (Uc .extends: Ud, ∅), (Ud.m : C → C0, ∅)opt)
C0 m(C x) {return e} OK | Se ∪ Ss ∪ Sc ∪ Scr ∪ Sx | Uc | CR

TC-Class

K = C(D′
g, C

′
f){super(g); this.f = f} M OK | S | U | CR

CR′|Scr
= mergeCR((D.init(D′), ∅), CR) Seq = {U = C}

class C extends D{C f ; K M} OK | S ∪ Seq ∪ Scr | CR
′

TC-Program

L OK | S | CR mergeCR(CR) = CR′|S′⊎
L

′∈L(removeMs(CR′, L′) ] removeFs(CR′, L′) ] removeCtor(CR′, L′)
] removeExt(CR′, L′)) = ∅|S

L OK | S ∪ S′ ∪ S

Figure 10 A co-contextual formulation of the type system of Featherweight Java.

we propagate both the constraints Se for e and the merge constraints Sf as the resulting
output constraints.

Typing rule TC-Invk is dual to T-Invk for method invocations. Similarly to field access,
the dual of method lookup is introducing a requirement for the method m and merge it



E. Kuci, S. Erdweg, O. Bračevac, A. Bejleri, and M. Mezini 18:15

with the requirements from the premises. Again, we choose fresh class variables for the
method signature U → U ′, marking a distinct occurrence of m. We type check the list e
of parameters, adding a subtype constraint T <: U , corresponding to the subtype check
in T-Invk. Finally, we merge all context and class table requirements propagated from the
receiver e and the parameters e, and all the constraints.

Typing rule TC-New is dual to T-New for object creation. We add a new class requirement
C.init(U) for the constructor of class C, corresponding to the fields operation in FJ. We
cannot look up the fields of C in the class table, therefore we assign fresh class variables U
for the constructor signature. We add the subtyping constraint T <: U for the parameters,
analogous to the subtype check in T-New. As in the other rules, we propagate a collective
merge of the propagated requirement structures/constraints from the subexpressions with
the newly created requirements/constraints.

Typing rules for casts, i.e., TC-UCast, TC-DCast and TC-SCast are straightforward adaptions
of their contextual counterparts following the same principles. These three type rules do
overlap. We do not distinguish them in the formalization, but to have an algorithmic
formulation, we implement different node names for each of them. That is, typing rules for
casts are syntactically distinguished.

4.2 Method Typing

The typing rule TC-Method is dual to T-Method for checking method declarations. For checking
the method body, the contextual version extends the empty typing context with entries for
the method parameters x and the self-reference this, which is implicitly in scope. Dually,
we remove the requirements on the parameters and self-reference in Re propagated from
the method body. Corresponding to extending an empty context, the removal should leave
no remaining requirements on the method body. Furthermore, the equality constraints Sx

ensure that the annotated class types for the parameters agree with the class types in Re.
2

This corresponds to binding the parameters to the annotated classes in a typing context.
Analogously, the constraints Sc deal with the self-reference. For the latter, we need to know
the associated class type, which in the absence of the class table is at this point unknown.
Hence, we assign a fresh class variable Uc for the yet to be determined class containing the
method declaration. The contextual rule T-Method further checks if the method declaration
correctly overrides another method declaration in the superclass, that is, if it exists in the
superclass must have the same type. We choose another fresh class variable Ud for the yet to
be determined superclass of Uc and add appropriate supertype and optional method override
requirements. We assign to the optional method requirement Ud.m the type of m declared
in Uc. If later is known that there exists a declaration for m in the actual type of Ud, the
optional requirement is considered and equality constraints are generated. These constraints
ensure that the required type of m in the optional requirement is the same as the provided
type of m in the actual superclass of Uc. Otherwise this optional method requirement is
invalidated and not considered. By doing so, we enable the feature of subtype polymorphism
for co-contextual FJ. Finally, we add the subtype constraint ensuring that the method body’s
type is conforming to the annotated return type.

2 Note that a parameter x occurs in the method body if and only if there is a requirement for x in Re (i.e.,
x ∈ dom(Re)), which is due to the bottom-up propagation. The same holds for the self-reference this.

ECOOP 2017



18:16 A Co-contextual Type Checker for Featherweight Java

4.3 Class Typing
Typing rule TC-Class is used for checking class declarations. A declaration of a given class
C provides definite information on the identity of its superclass D, constructor, fields,
and methods signatures. Dual to the fields lookup for superclass D in T-Class, we add
the constructor requirement D.init(D′). We merge this requirement with all requirements
generated from type checking C’s method declarations M . Recall that typing of method m
yields a distinct class variable U for the enclosing class type, because we type check each
method declaration independently. Therefore, we add the constraints {U = C}, effectively
completing the method declarations with their enclosing class C.

4.4 Program Typing
Type rule TC-Program checks a list of class declarations L. Class declarations of all classes
provide a definite information on the identity of their super classes, constructor, fields,
methods signatures. Dual to adding clauses in the class table by constructing it, we remove
requirements with respect to the provided information from the declarations. Hence, dually
to class table being fully extended with clauses from all class declarations, requirements
are empty. The result of removing different clauses is a new set of requirement and a
set of constraints. Hence, we use notation ] to express the union of the returned tuples
(requirements and constraints), i.e., CR|S ]CR

′|S′ = CR ∪CR′|S∪S
′ After applying remove

to the set of requirements, the set should be empty at this point. A class requirement is
discharged from the set, either when performing remove operation (Section 3), or when it is
satisfied (all conditions hold).

As shown, we can systematically derive co-contextual typing rules for Featherweight Java
through duality.

5 Typing Equivalence

In this section, we prove the typing equivalence of expressions, methods, classes, and programs
between FJ and co-contextual FJ. That is, (1) we want to convey that an expression, method,
class and program is type checked in FJ if and only if it is type checked in co-contextual FJ,
and (2) that there is a correspondence relation between typing constructs for each typing
judgment.

We use σ to represent substitution, which is a set of bindings from class variables to class
types ({U 7→C}). projExt(CT) is a function that given a class table CT returns the immediate
subclass relation Σ of classes in CT . That is, Σ := {(C1,C2) | (C1 extends C2) ∈ CT}.
Given a set of constraints S and a relation between class types Σ, where projExt(CT ) = Σ,
then the solution to that set of constraints is a substitution, i.e., solve(S,Σ) = σ. Also
we assume that every element of the class table, i.e., super types, constructors, fields and
methods types are class type, namely ground types. Ground types are types that cannot be
substituted.

Initially, we prove equivalence for expressions. Let us first delineate the correspondence
relation. Correspondence states that a) the types of expressions are the same in both
formulations, b) provided variables in context are more than required ones in context
requirements and c) provided class members are more than required ones. Intuitively, an
expression to be well-typed in co-contextual FJ should have all requirements satisfied. Context
requirements are satisfied when for all required variables, we find the corresponding bindings
in context. Class table requirements are satisfied, when for all valid requirements, i.e., all



E. Kuci, S. Erdweg, O. Bračevac, A. Bejleri, and M. Mezini 18:17

conditions of a requirement hold, we can find a corresponding declaration in a class of the
same type as the required one, or in its superclasses. The relation between the class table
and class requirements is formally defined in our technical report [10].

I Definition 1 (Correspondence relation for expressions). Given judgments Γ;CT ` e : C,
e : T | S | R | CR, and solve(Σ, S) = σ, where projExt(CT ) = Σ. The correspondence
relation between Γ and R, CT and CR, written (C,Γ, CT ) B σ(T,R,CR), is defined as:
(a) C = σ(T )
(b) Γ ⊇ σ(R)
(c) CT satisfies σ(CR)

We stipulate two different theorems to state both directions of equivalence for expressions.

I Theorem 2 (Equivalence of expressions: ⇒). Given e, C, Γ, CT, if Γ;CT ` e : C, then
there exists T, S, R, CR, Σ, σ, where projExt(CT ) = Σ and solve(Σ, S) = σ, such that
e : T | S | R | CR holds, σ is a ground solution and (C,Γ, CT ) B σ(T,R,CR) holds.

I Theorem 3 (Equivalence of expressions: ⇐). Given e, T, S, R, CR, Σ, if e : T | S | R |
CR, solve(Σ, S) = σ, and σ is a ground solution, then there exists C, Γ, CT , such that
Γ;CT ` e : C, (C,Γ, CT ) B σ(T,R,CR) and projExt(CT ) = Σ.

Theorems 2 and 3 are proved by induction on the typing judgment of expressions. The
most challenging aspect consists in proving the relation between the class table and class
table requirements. In Theorem 2, the class table is given and the requirements are a
collective merge of the propagated requirement from the subexpressions with the newly
created requirements. In Theorem 3, the class table is not given,therefore we construct it
through the information retrieved from ground class requirements. We ensure class table
correctness and completeness with respect to the given requirements. First, we ensure that
the class table we construct is correct, i.e., types of extends, fields, and methods clauses we
add in the class table are equal to the types of the same extends, fields, and methods if
they already exist in the class table. Second, we ensure that the class table we construct is
complete, i.e., the constructed class table satisfies all given requirements.

Next, we present the theorem of equivalence for methods. The difference from expressions
is that there is no context, therefore no relation between context and context requirements is
required. Instead, the fresh class variable introduced in co-contextual FJ as a placeholder
for the actual class, where the method under scrutiny is type checked in, after substitution
should be the same as the class where the method is type checked in FJ.

I Theorem 4 (Equivalence of methods: ⇒).
Given m, C, CT, if C;CT ` C0 m(C x){return e}
OK, then there exists S, T, CR, Σ, σ, where projExt(CT ) = Σ and solve(Σ, S) = σ, such
that
C0 m(C x) {return e0} OK | S | T | CR holds, σ is a ground solution and
(C,CT ) Bm σ(T,CR) holds.

I Theorem 5 (Equivalence of methods: ⇐).
Given m, T, S, CR, Σ, if C0 m(C x) {return e0}
OK | S | T | CR, solve(Σ, S) = σ, and σ is a ground solution, then there exists C, CT , such
that C;CT ` C0 m(C x){return e} OK holds, (C,CT ) Bm σ(T,CR) and projExt(CT ) = Σ.

Theorems 5 and 6 are proved by induction on the typing judgment. The difficulty increases
in proving equivalence for methods because we have to consider the optional requirement,

ECOOP 2017



18:18 A Co-contextual Type Checker for Featherweight Java

as introduced in the previous sections. It requires a different strategy to prove the relation
between the class table and optional requirements; we accomplish the proof by using case
distinction. We have a detailed proof for method declaration, and also how this affects class
table construction, and we prove a correct and complete construction of it.

Lastly, we present the theorem of equivalence for classes and programs.

I Theorem 6 (Equivalence of classes: ⇒). Given C, CT, if CT ` class C extends D {C f ;K
M} OK, then there exists S, CR, Σ, σ, where projExt(CT ) = Σ and solve(Σ, S) = σ,
such that class C extends D{C f ; K M} OK | S | CR holds, σ is a ground solution and
(CT ) Bc σ(CR) holds.

I Theorem 7 (Equivalence of classes: ⇐). Given C, CR, Σ, if class C extends D{C f ; K M}
OK | S | CR, solve(Σ, S) = σ, and σ is a ground solution, then there exists CT , such that
CT ` class C extends D {C f ;K M} OK holds, (CT ) Bc σ(CR) holds and projExt(CT ) =
Σ.

Theorems 8 and 9 are proved by induction on the typing judgment. Class declaration requires
to prove only the relation between the class table and class table requirements since there is
no context.

Typing rule for programs does not have as inputs context and class table, therefore
there is no relation between context, class table and requirements. The equivalence theorem
describes that a program in FJ and co-contextual FJ is well-typed.

I Theorem 8 (Equivalence for programs: ⇒). Given L, if L OK, then there exists S, Σ, σ,
where projExt(L) = Σ and solve(Σ, S) = σ, such that L OK | S holds and σ ground solution.

I Theorem 9 (Equivalence for programs: ⇐). Given L, if L OK | S, solve(Σ, S) = σ, where
projExt(L) = Σ, and σ is a ground solution, then L OK holds.

Theorems 10 and 11 are proved by induction on the typing judgment. In here, we prove
that a class table containing all clauses provided from the given class declarations is dual to
empty class table requirements in the inductive step.
We refer to our technical report [10] for omitted definitions, lemmas, and proofs.

6 Efficient Incremental FJ Type Checking

The co-contextual FJ model from Section 3 and 4 was designed such that it closely resembles
the formulation of the original FJ type system, where all differences are motivated by dually
replacing contextual operations with co-contextual ones. As such, this model served as a
good basis for the equivalence proof from the previous section. However, to obtain a type
checker implementation for co-contextual FJ that is amenable to efficient incrementalization,
we have to employ a number of behavior-preserving optimizations. In the present section,
we describe these optimization and the resulting incremental type checker implementation
for co-contextual FJ. The source code is available online at https://github.com/seba--/
incremental.

Condition normalization. In our formal model from Section 3 and 4, we represent context
requirements as a set of conditional class requirements CR ⊂ Creq × cond. Throughout type
checking, we add new class requirements using function merge, but we only discharge class
requirements in rule TC-Program at the very end of type checking. Since merge generates

https://github.com/seba--/incremental
https://github.com/seba--/incremental


E. Kuci, S. Erdweg, O. Bračevac, A. Bejleri, and M. Mezini 18:19

3 ∗ m ∗ n conditional requirements for inputs with m and n requirements respectively,
requirements quickly become intractable even for small programs.

The first optimization we conduct is to eagerly normalize conditions of class requirements.
Instead of representing conditions as a list of type equations and inequations, we map receiver
types to the following condition representation (shown as Scala code):

case class Condition(notGround: Set[CName], notVar: Set[UCName],
sameVar: Set[UCName], sameGroundAlternatives: Set[CName]).

A condition is true if the receiver type is different from all ground types (CName) and
unification variables (UCName) in notGround and notVar, if the receiver type is equal to all
unification variables in sameVar, and if sameGroundAlternatives is either empty or the receiver
type occurs in it. That is, if sameGroundAlternatives is non-empty, then it stores a set of
alternative ground types, one of which the receiver type must be equal to.

When adding an equation or inequation to the condition over a receiver type, we check
whether the condition becomes unsatisfiable. For example, when equating the receiver
type to the ground type C and notGround.contains(C), we mark the resulting condition to be
unsatisfiable. Recognizing unsatisfiable conditions has the immediate benefit of allowing us
to discard the corresponding class requirements right away. Unsatisfiable conditions occur
quite frequently because merge generates both equations and inequations for all receiver
types that occur in the two merged requirement sets.

If a condition is not unsatisfiable, we normalize it such that the following assertions are sat-
isfied: (i) the receiver type does not occur in any of the sets, (ii) sameGroundAlternatives.isEmpty
|| notGround.isEmpty, and (iii) notVar.intersect(sameVar).isEmpty. Since normalized conditions
are more compact, this optimization saves memory and time required for memory man-
agement. Moreover, it makes it easy to identify irrefutable conditions, which is the case
exactly when all four sets are empty, meaning that there are no further requisites on the
receiver type. Such knowledge is useful when merge generates conditional constraints, because
irrefutable conditions can be ignored. Finally, condition normalization is a prerequisite for
the subsequent optimization.

In-depth merging of conditional class requirements. In the work on co-contextual PCF [6],
the number of requirements of an expression was bound by the number of free variables
that occur in that expression. To this end, the merge operation used for co-contextual PCF
identifies subexpression requirements on the same free variable and merges them into a single
requirement. For example, the expression x+ x has only one requirement {x : U1}|{U1=U2},
even though the two subexpressions propagate two requirements {x : U1} and {x : U2},
respectively.

Unfortunately, the merge operation of co-contextual FJ given in Section 3.2 does not
enjoy this property. Instead of merging requirements, it merely collects them and updates
their conditions. A more in-depth merge of requirements is possible whenever two code
fragments require the same member from the same receiver type. For example, the expression
this.x + this.x needs only one requirement {U1.x() : U2}|{U1=U3,U2=U4}, even though the
two subexpressions propagate two requirements {U1.x() : U2} and {U3.x() : U4}, respectively.
Note that U1 = U3 because of the use of this in both subexpressions, but U2 = U4 because
of the in-depth merge.

However, conditions complicate the in-depth merging of class requirements: We may only
merge two requirements if we can also merge their conditions. That is, for conditional require-
ments (creq1, cond1) and (creq2, cond2) with the same receiver type, the merged requirement

ECOOP 2017



18:20 A Co-contextual Type Checker for Featherweight Java

must have the condition cond1∨cond2. In general, we cannot express cond1∨cond2 using our
Condition representation from above because all fields except sameGroundAlternatives represent
conjunctive prerequisites, whereas sameGroundAlternatives represents disjunctive prerequi-
sites. Therefore, we only support in-depth merging when the conditions are identical up to
sameGroundAlternatives and we use the union operator to combine their sameGroundAlternatives
fields.

This optimization may seem a bit overly specific to certain use cases, but it turns out it is
generally applicable. The reason is that function removeExt creates requirements of the form
(D.f : T ′, cond ∪ (T = Ci)) transitively for all subclasses Ci of D where no class between
Ci and D defines field f . Our optimization combines these requirements into a single one,
roughly of the form (D.f : T ′, cond ∪ (T =

∨
i Ci)). Basically, this requirement concisely

states that D must provide a field f of type T ′ if the original receiver type T corresponds to
any of the subclasses Ci of D.

Incrementalization and continuous constraint solving. We adopt the general incremental-
ization strategy from co-contextual PCF [6]: Initially, type check the full program bottom-up
and memoize the typing output for each node (including class requirements and constraint
system). Then, upon a change to the program, recheck each node from the change to the
root of the program, reusing the memoized results from unchanged subtrees. This way,
incremental type checking asymptotically requires only logn steps for a program with n

nodes.
In our formal model of co-contextual FJ, we collect constraints during type checking and

solve them at the end to yield a substitution for the unification variables. As was discussed
by Erdweg et al. for co-contextual PCF [6], this strategy is inadequate for incremental
type checking, because we would memoize unsolved constraints and thus only obtain an
incremental constraint generator, but even a small change would entail that all constraints
had to be solved from scratch. In our implementation, we follow Erdweg et al.’s strategy of
continuously solving constraints as soon as they are generated, memoizing the resulting partial
constraint solutions. In particular, equality constraints that result from merge and remove
operations can be solved immediately to yield a substitution, while subtype constraints often
have to be deferred until more information about the inheritance hierarchy is available. In
the context of FJ with its nominal types, continuous constraint solving has the added benefit
of enabling additional requirement merging, for example, because two method requirements
share the same receiver type after substitution.

Tree balancing. Even with continuous constraint solving, co-contextual FJ as defined in
Section 4 still does not yield satisfactory incremental performance. The reason is that the
syntax tree is deformed due to the root node, which consists of a sequence of all class
declarations in the program. Thus, the root node has a branching factor only bound by the
number of classes in the program, whereas the rest of the tree has a relative small branching
factor bound by the number of arguments to a method. Since incremental type checking
recomputes each step from the changed node to the root node, the type checker would have
to repeat discharging class requirements at the root node after every code change, which
would seriously impair incremental performance.

To counter this effect, we apply tree balancing as our final optimization. Specifically,
instead of storing the class declarations as a sequence in the root node, we allow sequences
of class declarations to occur as inner nodes of the syntax tree:

L ::= L | class C extends D {C f ; K M}



E. Kuci, S. Erdweg, O. Bračevac, A. Bejleri, and M. Mezini 18:21

This allows us to layout a program’s class declarations structurally as in
((((C1 C2) C3) (C4 C5)) (C6 C7)), thus reducing the costs for rechecking any path from
a changed node to the root node. As part of this optimization, to satisfy requirements of
classes that occur in different tree nodes such as C1 and C6, we also neeed to propagate class
facts such as actual method signatures upwards. As consequence, we can now link classes in
any order without changing the type checking result.

We have implemented an incremental co-contextual FJ type checker in Scala using the
optimizations described here. In the following section, we present our run-time performance
evaluation.

7 Performance Evaluation

We have benchmarked the initial and incremental run-time performance of co-contextual
FJ implementation. However, this evaluation makes no claim to be complete, but rather is
intended to confirm the feasibility and potential of co-contextual FJ for incremental type
checking.

7.1 Evaluation on synthesized FJ programs

Input data. We synthesized FJ programs with 40 root classes that inherit from Object.
Each root class starts a binary tree in the inheritance hierarchy of height 5. Thus, each
root-class hierarchy contains 31 FJ class declarations. In total, our synthesized programs
have 31∗ 40 + 3 = 1243 class declarations, since we always require classes for natural numbers
Nat, Zero, and Succ.

Each class has at least a field of type Nat and each class has a single method that takes
no arguments and returns a Nat. We generated the method body according to one of three
schemes:

AccumSuper : The method adds the field’s value of this class to the result of calling the
method of the super class.
AccumPrev: Each class in root hierarchy k > 1 has an additional field that has the type
of the class at the same position in the previous root hierarchy k − 1. The method adds
the field’s value of this class to the result of calling the method of the class at the same
position in the previous root hierarchy k − 1, using the additional field as receiver object.
AccumPrevSuper : Combines the other two schemes; the method adds all three numbers.

We also varied the names used for the generated fields and methods:
Unique: Every name is unique.
Mirrored: Root hierarchies use the same names in the same classes, but names within a
single root hierarchy are unique.
Override: Root hierarchies use different names, but all classes within a single root
hierarchy use the same names for the same members.
Mir+Over : Combines the previous two schemes, that is, all classes in all root hierarchies
use the same names for the same members.

For evaluating the incremental performance, we invalidate the memoized results for the
three Nat classes. This is a critical case because all other classes depend on the Nat classes
and a change is traditionally hard to incrementalize.

ECOOP 2017



18:22 A Co-contextual Type Checker for Featherweight Java

Table 1 Performance measurement results with k = 40 root classes in Milliseconds. Numbers
in parentheses indicate speedup relative to (javac/contextual) base lines.

Super javac / contextual co-contextual init co-contextual inc
unique 70.00 / 93.99 3117.73 (0.02x / 0.03x) 23.44 (2.9x / 4x)
mirrored 68.03 / 88.73 1860.18 (0.04x / 0.05x) 15.17 (4.5x / 6x)
override 73.18 / 107.83 513.44 (0.14x / 0.21x) 16.92 (4.3x / 6x)
mir+over 72.64 / 132.09 481.07 (0.15x / 0.27x) 16.60 (4.4x / 8x)

Prev javac / contextual co-contextual init co-contextual inc
unique 82.16 / 87.66 3402.28 (0.02x / 0.02x) 23.43 (3.5x / 4x)
mirrored 81.19 / 84.94 2136.42 (0.04x / 0.04x) 15.46 (5.3x / 5x)
override 81.51 / 120.60 840.14 (0.09x / 0.14x) 17.37 (4.7x / 7x)
mir+over 79.71 / 120.46 816.16 (0.09x / 0.15x) 16.61 (4.8x / 7x)

PrevSuper javac / contextual co-contextual init co-contextual inc
unique 93.12 / 104.03 6318.69 (0.01x / 0.02x) 26.26 (3.5x / 4x)
mirrored 95.41 / 100.00 5014.12 (0.02x / 0.02x) 15.71 (6.1x / 6x)
override 92.88 / 130.01 3601.44 (0.03x / 0.04x) 17.35 (5.4x / 7x)
mir+over 93.37 / 126.57 3579.90 (0.03x / 0.04x) 16.61 (5.6x / 8x)

Experimental setup. First, we measured the wall-clock time for the initial check of each
program using our co-contextual FJ implementation. Second, we measured the wall-clock
time for the incremental reanalysis after invalidating the memoized results of the three Nat
classes. Third, we measured the wall-clock time of checking the synthesized programs on
javac and on a straightforward implementation of contextual FJ for comparison. Contextual
FJ is the standard FJ described in Section 2, that uses contexts and class tables during type
checking. Our implementation of contextual FJ is up to 2-times slower than javac, because
it is not production quality. We used ScalaMeter3 to take care of JIT warm-up, garbage-
collection noise, etc. All measurements were conducted on a 3.1GHz duo-core MacBook Pro
with 16GB memory running the Java HotSpot 64-Bit Server VM build 25.111-b14 with 4GB
maximum heap space. We confirmed that confidence intervals were small.

Results. We show the measurement results in table 1. All numbers are in milliseconds. We
also show the speedups of initial and incremental run of co-contextual type checking relative
to both javac and contextual type checking.

As this data shows, the initial performance of co-contextual FJ is subpar: The initial type
check takes up to 68-times and 61-times longer than using javac and a standard contextual
checker respectively.

However, co-contextual FJ consistently yields high speedups for incremental checks. In
fact, it only takes between 3 and 21 code changes until co-contextual type checking is faster
overall. In an interactive code editing session where every keystroke or word could be
considered a code change, incremental co-contextual type checking will quickly break even
and outperform a contextual type checker or javac.

The reason that the initial run of co-contextual FJ induces such high slowdowns is
because the occurrence of class requirements is far removed from the occurrence of the

3 https://scalameter.github.io/

https://scalameter.github.io/


E. Kuci, S. Erdweg, O. Bračevac, A. Bejleri, and M. Mezini 18:23

corresponding class facts. This is true for the Nat classes that we merge with the synthesized
code at the top-most node as well as for dependencies from one root hierarchy to another
one. Therefore, the type checker has to propagate and merge class requirements for a long
time until finally discovering class facts that discharge them. We conducted an informal
exploratory experiment that revealed that the performance of the initial run can be greatly
reduced by bringing requirements and corresponding class facts closer together. On the other
hand, incremental performance is best when the changed code occurs as close to the root
node as possible, such that a change entails fewer rechecks. In future work, when scaling our
approach to full Java, we will explore different layouts for class declarations (e.g., following
the inheritance hierarchy or the package structure) and for reshuffling the layout of class
declarations during incremental type checking in order to keep frequently changing classes as
close to the root as possible.

7.2 Evaluation on real Java program
Input data. We conduct an evaluation for our co-contextual type checking on realistic
FJ programs. We wrote about 500 SLOCs in Java, implementing purely functional data
structures for binary search trees and red black trees. In the Java code, we only used
features supported by FJ and mechanically translated the Java code to FJ. For evaluating
the incremental performance, we invalidate the memoized results for the three Nat classes as
in the experiment above.

Experimental setup. Same as above.

Results. We show the measurements in milliseconds for the 500 lines of Java code.

javac / contextual co-contextual init co-contextual inc
14.88 / 3.74 48.07 (0.31x / 0.08x) 9.41 (1.6x / 0.39x)

Our own non-incremental contextual type checker is surprisingly fast compared to javac,
and not even our incremental co-contextual checker gets close to that performance. When
comparing javac and the co-contextual type checker, we observe that the initial performance
of the co-contextual type checker improved compared to the previous experiment, whereas
the incremental performance degraded. While the exact cause of this effect is unclear,
one explanation might be that the small input size in this experiment reduces the relative
performance loss of the initial co-contextual check, but also reduces the relative performance
gain of the incremental co-contextual check.

8 Related work

The work presented in this paper on co-contextual type checking for OO programming
languages, specifically for Featherweight Java, is inspired by the work on co-contextual type
checking for PCF [6]. OO languages and FJ impose features like nominal typing, subtype
polymorphism, and inheritance that are not covered in the work for co-contextual PCF [6]. In
particular, here we developed a solution for merging and removing requirements in presence
of nominal typing.

Introducing type variables as placeholders for the actual types of variables, classes, fields,
methods is a known technique in type inference [11, 12]. The difference is that we introduce
a fresh class variable for each occurrence of a method m or fields in different branches of the

ECOOP 2017



18:24 A Co-contextual Type Checker for Featherweight Java

typing derivation. Since fresh class variables are generated independently, no coordination is
required while moving up the derivation tree, ensuring context and class table independence.
Type inference uses the context to coordinate type checking of m in different branches,
by using the same type variable. In contrast to type inference where context and class
table are available, we remove them (no actual context and class table). Hence, in type
inference inheritance relation between classes and members of the classes are given, whereas
in co-contextual FJ we establish these relations through requirements. That is, classes are
required to have certain members with unknown types and unknown inheritance relation,
dictated from the surrounding program.
Also, in contrast to bidirectional type checking [4, 5] that uses two sets of typing rules one for
inference and one for checking, we use one set of co-contextual type rules, and the direction of
type checking is all oriented bottom-up; types and requirements flow up. As in type inference,
bidirectional type checking uses context to look up variables. Whereas co-contextual FJ
has no context or class table, it uses requirements as a structure to record the required
information on fields, methods, such that it enables resolving class variables of the required
fields, methods to their actual types.

Co-contextual formulation of type rules for FJ is related to the work on principal
typing [9, 17], and especially to principal typing for Java-like languages [2]. A principal
typing [2] of each fragment (e.g., modules, packages, or classes) is associated with a set of
type constraints on classes, which represents all other possible typings and can be used to
check compatibility in all possible contexts. That is, principle typing finds the strongest
type of a source fragment in the weakest context. This is used for type inference and
separate compilation in FJ. They can deduce exact type constraints using a type inference
algorithm. We generalize this and do not only infer requirements on classes but also on method
parameters and the current class. Moreover, we developed a duality relation between the
class table and class requirements that enables the systematic development of co-contextual
type systems for OO languages beyond FJ.

Related to our co-contextual FJ is the formulations used in the context of compositional
compilation [1] (continuation of the work on principal typing [2]) and the compositional
explanation of type errors [3]. This type system [1] partially eliminate the class table,
namely only inside a fragment, and does not eliminate the context. Hence, type checking of
parameters and this is coordinated and subexpressions are coupled through dependencies on
the usage of context. In our work, we eliminate both class table (not only partially) and
context, therefore all dependencies are removed. By doing so we can enable compositional
compilation for individual methods. To resolve the type constraints on classes, compositional
compilation [2] needs a linker in addition to an inference algorithm (to deduce exact type
constraints), whereas, we use a constraint system and requirements. We use duality to derive
a co-contextual type system for FJ and we also ensure that both formulations are equivalent
(5). That is, we ensure that an expression, method, class, or program is well-typed in FJ if
and only if it is well-typed in co-contextual FJ, and that all requirements are fulfilled. In
contrast, compositional compilation rules do not check whether the inferred collection of
constraints on classes is satisfiable; they actually allow to derive judgments for any fragment,
even for those that are not statically correct.

Refactoring for generalization using type constraints [16, 15] is a technique Tip et al. used
to manipulate types and class hierarchies to enable refactoring. That work uses variable
type constraints as placeholders for changeable declarations. They use the constraints to
restrict when a refactoring can be performed. Tip et al. are interested to find a way to
represent the actual class hierarchy and to use constraints to have a safe refactoring and a



E. Kuci, S. Erdweg, O. Bračevac, A. Bejleri, and M. Mezini 18:25

well-typed program after refactoring. The constraint system used by Tip et al. is specialized
to refactoring, because different variable constraints and solving techniques are needed In
contrast, in our work, we use class variables as placeholders for the actual type of required
extends, constructors, fields, and methods of a class, in the lack of the class table. We want
to gradually learn the information about the class hierarchy. We are interested in the type
checking technique and how to co-contextualize it and use constraints for type refinement.

Adapton [7] is a programming language where the runtime system traces memory reads
and writes and selectively replays dependent computations when a memory change occurs.
In principle, this can be used to define an “incremental” contextual type checker. However,
due to the top-down threading of the context, most of the computation will be sensitive
to context changes and will have to be replayed, thus yielding unsatisfactory incremental
performance. Given a co-contextual formulation as developed in our paper, it might be
possible to define an efficient implementation in Adapton.

The works on smart/est recompilation [13, 14] have a different purpose from ours, namely
to achieve separate compilation they need algorithms for the inference and also the linking
phase specific to SML. In contrast, we use duality as a guiding principle to enable the
translation from FJ to co-contextual FJ. This technique allows us to do perform a systematic
(but yet not mechanical) translation from a given type system to the co-contextual one. Our
type system facilitates incremental type checking because we decouple the dependencies
between subexpressions and the smallest unit of compilation is any node in the syntax tree.
Moreover, we have investigated optimizations for facilitating the early solving of requirements
and constraints.

9 Conclusion and Future Work

In this paper, we presented a co-contextual type system for FJ by transforming the typing
rules in the traditional formulation into a form that replaces top-down propagated contexts
and class tables with bottom-up propagated context and class table requirements. We used
duality as a technique to derive co-contextual FJ’s typing rules from FJ’s typing rules. To
make the correspondence between class table and requirements, we presented class tables
that are gradually extended with information from the class declarations, and how to map
operations on contexts and class tables to their dual operations on context and class table
requirements. To cover the OO features of nominal typing, subtype polymorphism, and
implementation inheritance, co-contextual FJ uses conditional requirements, inequality
conditions, and conditional constraints. Also, it changes the set of requirements by adding
requirements with the different receiver from the ones defined by the surrounding program,
in the process of merging and removing requirements as the type checker moves upwards
and discovers class declarations. We proved the typing equivalence of expressions, methods,
classes, and programs between FJ and co-contextual FJ.

The co-contextual formulation of FJ typing rules enables incremental type checking
because it removes dependencies between subexpressions. We implemented an incremental
co-contextual FJ type checker. Also, we evaluated its performance on synthesized programs
up to 1243 FJ classes and 500 SLOCs of java programs.

There are several interesting directions for future work. In short term, we want to explore
parallel co-contextual type checking for FJ. A next step would be to develop a co-contextual
type system for full Java. Another interesting direction is to investigate co-contextual
formulation for gradual type systems.

ECOOP 2017



18:26 A Co-contextual Type Checker for Featherweight Java

References
1 Davide Ancona, Ferruccio Damiani, Sophia Drossopoulou, and Elena Zucca. Polymorphic

bytecode: Compositional compilation for Java-like languages. In Proceedings of Symposium
on Principles of Programming Languages (POPL), 2005. doi:10.1145/1040305.1040308.

2 Davide Ancona and Elena Zucca. Principal typings for Java-like languages. In Proceedings
of Symposium on Principles of Programming Languages (POPL), 2004. doi:10.1145/
964001.964027.

3 Olaf Chitil. Compositional explanation of types and algorithmic debugging of type errors.
In Proceedings of International Conference on Functional Programming (ICFP), 2001. doi:
10.1145/507635.507659.

4 David Raymond Christiansen. Bidirectional typing rules: A tutorial, 2013.
5 Joshua Dunfield and Neelakantan R. Krishnaswami. Complete and easy bidirectional type-

checking for higher-rank polymorphism. In Proceedings of International Conference on
Functional Programming (ICFP), 2013. doi:10.1145/2500365.2500582.

6 Sebastian Erdweg, Oliver Bračevac, Edlira Kuci, Matthias Krebs, and Mira Mezini. A
co-contextual formulation of type rules and its application to incremental type checking.
In Proceedings of Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2015. doi:10.1145/2814270.2814277.

7 Matthew A. Hammer, Khoo Yit Phang, Michael Hicks, and Jeffrey S. Foster. Adapton:
Composable, demand-driven incremental computation. In Proceedings of Conference on
Programming Language Design and Implementation (PLDI), 2014. doi:10.1145/2666356.
2594324.

8 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: A minimal
core calculus for Java and GJ. Transactions on Programming Languages and Systems
(TOPLAS), 2001. doi:10.1145/503502.503505.

9 Trevor Jim. What are principal typings and what are they good for? In Proceedings of
Symposium on Principles of Programming Languages (POPL), 1996. doi:10.1145/237721.
237728.

10 Edlira Kuci, Sebastian Erdweg, Oliver Bračevac, Andi Bejleri, and Mira Mezini. A co-
contextual type checker for Featherweight Java (incl. proofs). CoRR, abs/1705.05828, 2017.

11 Benjamin C. Pierce. Types and programming languages. MIT press, 2002.
12 Benjamin C. Pierce and David N. Turner. Local type inference. In Proceedings of Sym-

posium on Principles of Programming Languages (POPL), 1998. doi:10.1145/268946.
268967.

13 Zhong Shao and Andrew W. Appel. Smartest recompilation. In Proceedings of Symposium
on Principles of Programming Languages (POPL), 1993. doi:10.1145/158511.158702.

14 Walter F. Tichy. Smart recompilation. Transactions on Programming Languages and
Systems (TOPLAS), 1986. doi:10.1145/5956.5959.

15 Frank Tip, Robert M. Fuhrer, Adam Kieżun, Michael D. Ernst, Ittai Balaban, and Bjorn
De Sutter. Refactoring using type constraints. Transactions on Programming Languages
and Systems (TOPLAS), 2011. doi:10.1145/1961204.1961205.

16 Frank Tip, Adam Kiezun, and Dirk Bäumer. Refactoring for generalization using type
constraints. In Proceedings of Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), 2003. doi:10.1145/949305.949308.

17 J. B. Wells. The essence of principal typings. In Proceedings of International Colloquium on
Automata, Languages and Programming (ICALP), 2002. doi:10.1007/3-540-45465-9_
78.

http://dx.doi.org/10.1145/1040305.1040308
http://dx.doi.org/10.1145/964001.964027
http://dx.doi.org/10.1145/964001.964027
http://dx.doi.org/10.1145/507635.507659
http://dx.doi.org/10.1145/507635.507659
http://dx.doi.org/10.1145/2500365.2500582
http://dx.doi.org/10.1145/2814270.2814277
http://dx.doi.org/10.1145/2666356.2594324
http://dx.doi.org/10.1145/2666356.2594324
http://dx.doi.org/10.1145/503502.503505
http://dx.doi.org/10.1145/237721.237728
http://dx.doi.org/10.1145/237721.237728
http://dx.doi.org/10.1145/268946.268967
http://dx.doi.org/10.1145/268946.268967
http://dx.doi.org/10.1145/158511.158702
http://dx.doi.org/10.1145/5956.5959
http://dx.doi.org/10.1145/1961204.1961205
http://dx.doi.org/10.1145/949305.949308
http://dx.doi.org/10.1007/3-540-45465-9_78
http://dx.doi.org/10.1007/3-540-45465-9_78


Proactive Synthesis of Recursive Tree-to-String
Functions from Examples∗†

Mikaël Mayer1, Jad Hamza2, and Viktor Kunčak3

1 EPFL IC IINFCOM LARA, INR 318, Station 14, CH-1015 Lausanne
Mikael.Mayer@epfl.ch

2 EPFL IC IINFCOM LARA, INR 318, Station 14, CH-1015 Lausanne
Jad.Hamza@epfl.ch

3 EPFL IC IINFCOM LARA, INR 318, Station 14, CH-1015 Lausanne
Viktor.Kuncak@epfl.ch

Abstract
Synthesis from examples enables non-expert users to generate programs by specifying ex-

amples of their behavior. A domain-specific form of such synthesis has been recently deployed in
a widely used spreadsheet software product. In this paper we contribute to foundations of such
techniques and present a complete algorithm for synthesis of a class of recursive functions defined
by structural recursion over a given algebraic data type definition. The functions we consider
map an algebraic data type to a string; they are useful for, e.g., pretty printing and serialization
of programs and data. We formalize our problem as learning deterministic sequential top-down
tree-to-string transducers with a single state (1STS).

The first problem we consider is learning a tree-to-string transducer from any set of input/out-
put examples provided by the user. We show that, given a set of input/output examples, checking
whether there exists a 1STS consistent with these examples is NP-complete in general. In contrast,
the problem can be solved in polynomial time under a (practically useful) closure condition that
each subtree of a tree in the input/output example set is also part of the input/output examples.

Because coming up with relevant input/output examples may be difficult for the user while
creating hard constraint problems for the synthesizer, we also study a more automated active
learning scenario in which the algorithm chooses the inputs for which the user provides the
outputs. Our algorithm asks a worst-case linear number of queries as a function of the size of
the algebraic data type definition to determine a unique transducer.

To construct our algorithms we present two new results on formal languages.
First, we define a class of word equations, called sequential word equations, for which we

prove that satisfiability can be solved in deterministic polynomial time. This is in contrast to
the general word equations for which the best known complexity upper bound is in linear space.

Second, we close a long-standing open problem about the asymptotic size of test sets for
context-free languages. A test set of a language of words L is a subset T of L such that any
two word homomorphisms equivalent on T are also equivalent on L. We prove that it is possible
to build test sets of cubic size for context-free languages, matching for the first time the lower
bound found 20 years ago.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs
– D.3.4 Processors

Keywords and phrases programming by example, active learning, program synthesis

∗ This work was partially supported by European Research Council (ERC) Project Implicit Programming
and an EPFL-Inria Post-Doctoral grant.

† The full version of this paper including detailed proofs is available at [33].

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Mikaël Mayer, Jad Hamza and Viktor Kunčak;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 19; pp. 19:1–19:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


19:2 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.19

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.3.2.16

1 Introduction

Synthesis by example has been very successful to help users deal with the tedious task of
writing a program. This technique allows the user to specify input/output examples to
describe the intended behavior of a desired program. Synthesis will then inspect the examples
given by the user, and generalize them into a program that respects these examples, and
that is also able to handle other inputs.

Therefore, synthesis by example allows non-programmers to write programs without
programming experience, and gives experienced users one more way of programming that
could fit their needs. Current synthesis techniques usually rely on domain-specific heuristics
to try and infer the desired program from the user. When there are multiple (non-equivalent)
programs which are compatible with input/output examples provided by the user, these
heuristics may fail to choose the program that the user had in mind when writing the
examples.

We believe it is important to have algorithms that provide formal guarantees based on
strong theoretical foundations. Algorithms we aim for ensure that the solution is found
whenever it exists in a class of functions of interest. Furthermore, the algorithms ensure that
the generated program is indeed the program the user wants by detecting once the solution
is unique and otherwise identifying a differentiating example whose output reduces the space
of possible solutions.

In this paper, we focus on synthesizing printing functions for objects or algebraic data types
(ADT), which are at the core of many programming languages. Converting such structured
values to strings is very common, including uses such as pretty printing, debugging, and
serialization. Writing methods to convert objects to strings is repetitive and usually requires
the user to code himself mutually recursive toString functions. Although some languages
have default printing functions, these functions are often not adequate. For example, the
object Person(“Joe”, 31) might have to be printed “Joe is 31 years old” for better readability,
or “<td>Joe</td><td>31</td>” if printed as part of an HTML table. How feasible is it
for the computer to learn these “printing” functions from examples?

The state of the art in this context [27, 26] requires the user to provide enough examples.
If the user gives too few examples, the synthesis algorithm is not guaranteed to return a valid
printing function, and there is no simple way for the user to know which examples should be
added so that the synthesis algorithm finishes properly.

Our contribution is to provide an algorithm that is able to determine exactly which
questions to ask the user so that the desired function can be derived. Moreover, in order to
learn a function, our algorithm (Algorithm 3) only needs to ask a linear number of questions
(as a function of the size of the ADT declaration).

Our results hold for recursive functions that take ADT as input, and output strings. We
model these functions by tree-to-string transducers, called single-state sequential top-down
tree-to-string transducers [9, 14, 19, 27, 44], or 1STS for short. In this formalism, objects are
represented as labelled trees, and a transducer goes through the tree top down in order to
display it as a string. Single-state means the transducer keeps no memory as it traverses the
tree. Sequential is a shorthand for linear and order-preserving, meaning that each subtree is

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.19
http://dx.doi.org/10.4230/DARTS.3.2.16


Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:3

printed only once (linear), and the subtrees of a node are displayed in order (order-preserving).
In particular, such transducers cannot directly represent recursive functions that have extra
parameters alongside the tree to print. Our work on 1STSs establishes a foundation that
may be used for larger classes of transducers.

Our goal is to learn a 1STS from a set of positive input/output examples, called a sample.
We prove the problem of checking whether there exists a 1STS consistent with a given sample
is NP-complete in general. Yet, we prove that when the given sample is closed under subtree,
i.e., every tree in the sample has all of its subtrees in the sample, the problem of finding
a compatible 1STS can be solved in polynomial time. For this, we reduce the problem of
checking whether there exists an 1STS consistent with a sample to the problem of solving
word equations. The best known algorithm to solve word equations takes linear space, and
exponential time [40, 22]. However, we prove that the word equations we build are of a
particular form, which we call sequential, and our first algorithm learns 1STSs by solving
sequential equations in polynomial time.

We then tackle the problem of ambiguities that come from underspecified samples. More
precisely, it is possible that, given a sample, there exist two 1STSs that are consistent with
the sample, but that are not equivalent on a domain D of trees. We thus define the notion
of tree test set of a domain D, which guarantees that, any two 1STSs which are equivalent
on the tree test set are also equivalent on the whole domain D. We give a method to build
tree test sets of size O(|D|3) from a domain of trees given as a non-deterministic top-down
automaton. Our second learning algorithm takes as input a domain D, builds the tree test set
of D, and asks for the user the output to all trees in the tree test set. Our second algorithm
then invokes our first algorithm on the given sample.

This construction relies on fundamental results on a known relation between sequential
top-down tree-to-string transducers and morphisms (a morphism is a function that maps
the concatenation of two words to the concatenation of their images), and on the notion of
test set [44]. Informally, a test set of a language of words L is a subset T ⊆ L such that any
two morphisms which are equivalent on T are also equivalent on L. In the context of 1STSs,
the language L is a context-free language, intuitively representing the yield of the domain
D mentioned above. Prior to our work announced in [32], the best known construction for
a test set of a context-free grammar G produced test sets of size O(|G|6), while the best
known lower bound was O(|G|3) [38, 39]. We show the O(|G|3) is in fact tight, and give a
construction that, given any grammar G, produces a test set for G of size O(|G|3).

Finally, our third and, from a practical point of view, the main algorithm, improves
the second one by analyzing the previous outputs entered by the user, in order to infer the
next output. More specifically, the outputs previously entered by the user give constraints
on the transducer being learned, and therefore restrict the possible outputs for the next
questions. Our algorithm computes these possible outputs and, when there is only one,
skips the question. Our algorithm only asks the user a question when there are at least
two possible outputs for a particular input. The crucial part of this algorithm is to prove
that such ambiguities happen at most O(|D|) times. Therefore, our third algorithm asks the
user only O(|D|) questions, greatly improving our second one that asks O(|D|3) questions.
Our result relies on carefully inspecting the word equations produced by the input/output
examples.

We implemented our algorithms in an open-source tool available at https://github.com/
epfl-lara/prosy. In sections 9 and 10, we describe how to extend our algorithms and tool
to ADTs which contain String (or Int) as a primitive type. We call the implementation of our
algorithms proactive synthesis, because it produces a complete set of questions ahead-of-time

ECOOP 2017

https://github.com/epfl-lara/prosy
https://github.com/epfl-lara/prosy


19:4 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

whose answers will help to synthesize a unique tree-to-string function, filters out future
questions whose answer could be actively inferred after each user’s answer, and produces
suggestions as multiple choice or pre-filled answers to minimize the answering effort.

Contributions
Our paper makes the following contributions:
1. A new efficient algorithm to synthesize recursive functions from examples. We give a

polynomial-time algorithm to obtain a 1STS from a sample closed under subtree. When
the sample is not necessarily closed under subtree, we prove that the problem of checking
whether there exists a 1STS consistent with the sample is NP-complete (Section 6). This
result is based on a fundamental contribution:

A polynomial-time algorithm for solving a class of word equations that come from a
synthesis problem (sequential word equations, Section 6).

2. An algorithm that synthesize recursive functions without ambiguity by generating an
exhaustive set of questions to ask to the user, in the sense that any two recursive functions
that agree on these inputs, are equal on their entire domain (Section 7). This is based on
the following fundamental contribution:

A constructive upper bound of O(|G|3) on the size of a test set for a context-free
grammar G, improving on the previous known bound of O(|G|6) [38, 39] (Section 7).

3. A proactive and efficient algorithm that synthesizes recursive functions, which only
requires the user to enter outputs for the inputs determined by the algorithm. Formally,
we present an interactive algorithm to learn a 1STS for a domain of trees, with the
guarantee that the obtained 1STS is functionally unique. Our algorithm asks the user
only a linear number of questions (Section 8).

4. A construction of a linear tree test set for data types with Strings, which enables
constructing a small set of inputs that distinguish between two recursive functions
(Section 9).

5. An implementation of our algorithms as an interactive command-line tool (Section 10)
We note that the fundamental contributions of (1) and (2) are new general results about
formal languages and may be of interest on their own.

For space purposes, we only show proof sketches and intuition; detailed proofs can be
found in the extended version of this paper [33].

2 Example Run of Our Synthesis Algorithm

To motivate our problem domain, we present a run of our algorithm on an example. The
example is an ADT representing a context-free grammar. It defines its custom alphabet
(Char), words (CharList), and non-terminals indexed by words (NonTerminal). A rule (Rule)
is a pair made of a non-terminal and a sequence of symbols (ListSymbol), which can be
non-terminals or terminals (Terminal). Finally, a grammar is a pair made of a (starting)
non-terminal and a sequence of rules.

The input of our algorithm is the following file (written in Scala syntax):

abstract class Char
case class a() extends Char
case class b() extends Char

abstract class CharList
case class NilChar() extends CharList



Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:5

case class ConsChar(c: Char, l: CharList) extends CharList

abstract class Symbol
case class Terminal(t: Char) extends Symbol
case class NonTerminal(s: CharList) extends Symbol

case class Rule(lhs: NonTerminal, rhs: ListSymbol)

abstract class ListRule
case class ConsRule(r: Rule, tail: ListRule) extends ListRule
case class NilRule() extends ListRule

abstract class ListSymbol
case class ConsSymbol(s: Symbol, tail: ListSymbol) extends ListSymbol
case class NilSymbol() extends ListSymbol

case class Grammar(s: NonTerminal, r: ListRule)

We would like to synthesize a recursive tree-to-string function print, such that if we
compute, for example:

print(Grammar(NonTerminal(NilChar()),
ConsRule(Rule(NonTerminal(NilChar()),

ConsSymbol(Terminal(a()),
ConsSymbol(NonTerminal(NilChar()),

ConsSymbol(Terminal(b()), NilSymbol())))),
ConsRule(Rule(NonTerminal(NilChar()),

NilSymbol())), NilRule())))

the result should be:

Start: N
N −> a N b
N −>

We would like the print function to handle any valid Grammar tree.
When given these class definitions above, our algorithm precomputes a set of terms from

the ADT, so that any two single-state recursive functions which output the same Strings for
these terms also output the same Strings for any term from this ADT. (This is related to the
notion of tree test set defined in Section 7.2.) Our algorithm will determine the outputs for
these terms by interacting with the user and asking questions. Overall, for this example, our
algorithm asks the output for 14 terms.

For readability, question lines provided by the synthesizer are indented. Lines entered by
the user finish by the symbol ←↩ , meaning that she pressed the ENTER key. Everything
after ←↩ on the same line is our comment on the interaction. “It” usually refers to the
synthesizer. After few interactions, the questions themselves are shortened for conciseness.
The interaction is the following:

Proactive Synthesis.
If you ever want to enter a new line, terminate your line by \ and press Enter.
What should be the function output for the following input tree?
a

a←↩
What should be the function output for the following input tree?
b

ECOOP 2017



19:6 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

b←↩
NilChar ?
←↩ indeed, NilChar is an empty string.

NilSymbol ?
←↩ No symbol at the right-hand-side of a rule

NilRule ?
←↩ No rule left describing the grammar

What should be the function output for the following input tree?
Terminal(a)
Something of the form: [...]a[...]

a←↩ Terminals contain only one char. Note the hint provided by the synthesizer.
NonTerminal(NilChar) ?

N←↩
ConsChar(b,NilChar) ? Something of the form: [...]b[...]

b←↩ A ConsChar is a concatenation of a char and a string
What should be the function output for the following input tree?
NonTerminal(ConsChar(b,NilChar))
1) Nb
2) bN
Please enter a number between 1 and 2, or 0 if you really want to enter your answer manually

1←↩ Note that it was able to infer only two possibilities, thus the closed question.
Grammar(NonTerminal(NilChar),NilRule) ? Something of the form: [...]N[...]

Start: N←↩
ConsSymbol(Terminal(a),NilSymbol) ? Something of the form: [...]‘a‘[...]

a←↩ Symbols on the right-hand-side of a Rule are prefixed with a space
Rule(NonTerminal(NilChar),NilSymbol) ? Something of the form: [...]N[...]
N −>←↩ A rule with no symbols on the right-hand-side

ConsRule(Rule(NonTerminal(NilChar),NilSymbol),NilRule) ?
Something of the form: [...]N −>[...]

\←↩ A newline
N −>←↩

What should be the function output for the following input tree?
Rule(NonTerminal(NilChar),ConsSymbol(Terminal(‘a‘),NilSymbol))
1) N ‘a‘−>
2) N − ‘a‘>
3) N −> ‘a‘
4) N ‘a‘ −>
Please enter a number between 1 and 4, or 0 if you really want to enter your answer manually

3←↩

The synthesizer then emits the desired recursive tree-to-string function, along with a complete
set of the tests that determine it:

def print(t: Any): String = t match {
case a() ⇒ "a"
case b() ⇒ "b"
case NilChar() ⇒ ""
case ConsChar(t1,t2) ⇒ print(t1) + print(t2)
case Terminal(t1) ⇒ "‘" + print(t1) + "‘"
case NonTerminal(t1) ⇒ "N" + print(t1)
case Rule(t1,t2) ⇒ print(t1) + " −>" + print(t2)
case ConsRule(t1,t2) ⇒ "\n" + print(t1) + print(t2)
case NilRule() ⇒ ""
case ConsSymbol(t1,t2) ⇒ " " + print(t1) + print(t2)
case NilSymbol() ⇒ ""



Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:7

case Grammar(t1,t2) ⇒ "Start: " + print(t1) + print(t2)
} // the part below is a contract, not needed to execute the recursive function
ensuring { (res: string) => res == (t match {
case a() => "a"
case b() => "b"
case NilChar() => ""
case NilSymbol() => ""
case NilRule() => ""
case Terminal(a()) => "a"
case NonTerminal(NilChar()) => "N"
case ConsChar(b(),NilChar()) => "b"
case NonTerminal(ConsChar(b(),NilChar())) => "Nb"
case Grammar(NonTerminal(NilChar()),NilRule()) => "Start: N"
case ConsSymbol(Terminal(a()),NilSymbol()) => " a"
case Rule(NonTerminal(NilChar()),NilSymbol()) => "N −>"
case ConsRule(Rule(NonTerminal(NilChar()),NilSymbol()),NilRule()) => "\nN −>"
case Rule(NonTerminal(NilChar()),ConsSymbol(Terminal(a()),NilSymbol())) => "N −> a"
case _ => res})

}

Observe that, in addition to the program, the synthesis system emits as a postcondition
(after the ensuring construct) the recorded input/output examples (tests). Our work
enables the construction of an IDE that would automatically maintain the bidirectional
correspondence between the body of the recursive function and the postcondition that
specifies its input/output tests. If the user modifies an example in the postcondition, the
system could re-synthesize the function, asking for clarification in cases where the tests
become ambiguous. If the user modifies the program, such system can regenerate the tests.

Depending on user’s answers, the total number of questions that the synthesizers asks
varies (see section 11). Nonetheless, the properties that we proved for our algorithm guarantee
that the number of questions remains at most linear as a function of the size of the algebraic
data type declaration.

When the user enters outputs which are not consistent, i.e., for which there exists no print-
ing function in the class of functions that we consider, our tool directly detects it and warns
the user. For instance, for the tree ConsRule(Rule(NonTerminal(NilChar),NilSymbol),NilRule), if
the user enters N- > with the space and the dash inverted, the system detects that this output
is not consistent with the output provided for tree Rule(NonTerminal(NilChar),NilSymbol),
and asks the question again.

We cannot have the transducer convert ConsRule(Rule(NonTerminal(NilChar),NilSymbol),NilRule)
to N− >.
Please enter something consistent with what you previously entered (e.g. ’N −>’,’N −>bar’,...)?

3 Discussion

3.1 Advantages of Synthesis Approach
It is important to emphasize that in the approach we outline, the developer not only enters
less text in terms of the number of characters than in the above source code, but that
the input from the user is entirely in terms of concrete input-output values, which can be
easier to reason about for non-expert users than recursive programs with variable names and
control-flow.

ECOOP 2017



19:8 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

It is notable that the synthesizer in many cases offered suggestions, which means that
the user often simply needed to check whether one of the candidate outputs is acceptable.
Even in cases where the user needed to provide new parts of the string, the synthesizer
in many cases guided the user towards a form of the output consistent with the outputs
provided so far. Because of this knowledge, the synthesizer could also be stopped early by, for
example, guessing the unknown information according to some preference (e.g. replacing all
unknown string constants by empty strings), so the user can in many cases obtain a program
by providing a very small amount of information.

Such easy-to-use interactions could be implemented as a pretty printing wizard in an
IDE, for example triggered when the user starts to write a function to convert an ADT to a
String.

Our experience in writing pretty printers manually suggests that they often require testing
to ensure that the generated output corresponds to the desired intuition of the developer,
suggesting that input-output tests may be a better form of specification even if in cases where
they are more verbose. We therefore believe that it is valuable to make available to users
and developers sucn an alternative method of specifying recursive functions, a method that
can co-exist with the conventional explicitly written recursive functions and the functions
derived automatically (but generically) by the compiler (such as default printing of algebraic
data type values in Scala), or using polytypic programming approaches [21] and serialization
libraries [35]. (Note that the generic approaches can reduce the boilerplate, but do not
address the problem of unambiguously generalizing examples to recursive functions.)

3.2 Challenges in Obtaining Efficient Algorithms

The problem of inferring a program from examples requires recovering the constants embedded
in the program from the results of concatenating these constants according to the structure
of the given input tree examples. This presents two main challenges. The first one is
that the algorithm needs to split the output string and identify which parts correspond to
constants and which to recursive calls. This process becomes particularly ambiguous if the
alphabet used is small or if some constants are empty strings. A natural way to solve such
problems is to formulate them as a conjunction of word equations. Unfortunately, the best
known deterministic algorithms for solving word equations run in exponential time (the best
complexity upper bound for the problem takes linear space [40, 22]). Our paper shows that,
under an assumption that, when specifying printing of a tree, we also specify printing of its
subtrees, we obtain word equations solvable in polynomial time.

The next challenge is the number of examples that need to be solved. Here, a previous
upper bound derived from the theory of test sets of context-free languages was Ω(n6), which,
even if polynomial, results in impractical number of user interactions. In this paper we
improve this theoretical result and show that tests sets are in fact in O(n3), asymptotically
matching the known lower bound.

Furthermore, if we allow the learning algorithm to choose the inputs one by one after
obtaining outputs, the overall learning algorithm has a linear number of queries to user and
to equation solving subroutine, as a function of the size of tree data type definition. Our
contributions therefore lead to tools that have completeness guarantees with much less user
input and a shorter running time than the algorithms based on prior techniques.

We next present our algorithms as well as the results that justify their correctness and
completeness.



Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:9

4 Notation

We start by introducing our notation and terminology for some standard concepts. Given
a (partial) function from f : A → B, and a set C, f|C denotes the (partial) function
g : A ∩ C → B such that g(a) = f(a) for all a ∈ A ∩ C.

A word (string) is a finite sequence of elements of a finite set Σ, which we call an alphabet.
A morphism f : Σ∗ → Γ∗ is a function such that f(ε) = ε and for every u, v ∈ Σ∗,

f(u · v) = f(u) · f(v), where the symbol ‘·’ denotes the concatenation of words (strings).
A non-deterministic finite automaton (NFA) is a tuple (Γ, Q, qi, F, δ) where Γ is the

alphabet, Q is the set of states, qi ∈ Q is the initial state, F is the set of final states,
δ ⊆ Q× Γ×Q is the transition relation. When the transition relation is deterministic, that
is for all q, p1, p2 ∈ Q, a ∈ Γ, if (q, a, p1) ∈ δ and (q, a, p2) ∈ δ, then p1 = p2, we say that A is
a deterministic finite automaton (DFA).

A context-free grammar G is a tuple (N,Σ, R, S) where:
N is a set of non-terminals,
Σ is a set of terminals, disjoint from N ,
R ⊆ N × (N ∪ Σ)∗ is a set of production rules,
S ∈ N is the starting non-terminal symbol.

A production (A, rhs) ∈ R is denoted A→ rhs. The size of G, denoted |G|, is the sum of sizes
of each production in R:

∑
A→rhs∈R 1 + |rhs|. A grammar is linear if for every production

A→ rhs ∈ R, the rhs string contains at most one occurrence of N . By an abuse of notation,
we denote by G the set of words produced by G.

4.1 Trees and Domains
A ranked alphabet Σ is a set of pairs (f, k) where f is a symbol from a finite alphabet, and
k ∈ N. A pair (f, k) of a ranked alphabet is also denoted f (k). We say that symbol f has
a rank (or arity) equal to k. We define by TΣ the set of trees defined over alphabet Σ.
Formally, TΣ is the smallest set such that, if t1, . . . , tk ∈ TΣ, and f (k) ∈ Σ for some k ∈ N,
then f(t1, . . . , tk) ∈ TΣ. A set of trees T is closed under subtree if for all f(t1, . . . , tk) ∈ T ,
for all i ∈ {1, . . . , k}, ti ∈ T .

A top-down tree automaton T is a tuple (Σ, Q, I, δ) where Σ is a ranked alphabet, I ⊆ Q
is the set of initial states, and δ ⊆ Σ ×Q ×Q∗. The set of trees L(T ) recognized by T is
defined recursively as follows. For f (k) ∈ Σ, q ∈ Q, and t = f(t1, . . . , tk) ∈ TΣ, we have
t ∈ L(T )q iff there exists (f, q, q1 · · · qk) ∈ δ such that for 1 ≤ i ≤ k, ti ∈ L(T )qi

. The set
L(T ) is then defined as

⋃
q∈I L(T )q.

Algebraic data types are described by the notion of domain, which is a set of trees
recognized by a top-down tree automaton T = (Σ, Q, I, δ). The size of the domain is the
sum of sizes of each transition in δ, that is

∑
(f(k),q,q1···qk)∈δ 1 + k.

I Example 1. In this example and the following ones, we illustrate our notions using an
encoding of HTML-like data structures. Consider the following algebraic data type definitions
in Scala:

abstract class Node
case class node(t: Tag, l: List) extends Node

abstract class Tag
case class div() extends Tag
case class pre() extends Tag
case class span() extends Tag

ECOOP 2017



19:10 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

abstract class List
case class cons(n: Node, l: List) extends List
case class nil() extends List

The corresponding domain Dhtml is described by the following:

Σ = {nil(0), cons(2), node(2), div(0), pre(0), span(0)}
Q = {Node,Tag,List}
I = {Node,Tag,List}
δ = {(node,Node, (Tag,List)),

(div,Tag, ()), (pre,Tag, ()), (span,Tag, ()),
(cons,List, (Node,List)),
(nil,List, ())}

4.2 Transducers
A deterministic, sequential, single-state, top-down tree-to-string transducer τ (1STS for short)
is a tuple (Σ,Γ, δ) where:

Σ is a ranked alphabet (of trees),
Γ is an alphabet (of words),
δ is a function over Σ such that ∀f (k) ∈ Σ. δ(f) ∈ (Γ∗)k+1.

Note that the transducer does not depend on a particular domain for Σ, but instead can
map any tree from TΣ to a word. Later, when we present our learning algorithms for 1STSs,
we restrict ourselves to particular domains provided by the user of the algorithm.

We denote by JτK the function from trees to words associated with the 1STS τ . Formally,
for every f (k) ∈ Σ, we have JτK(f(t1, . . . , tk)) = u0 · JτK(t1) · u1 · · · JτK(tk) · uk if δ(f) =
(u0, u1, . . . , uk). When clear from context, we abuse notation and use τ as a shorthand for
the function JτK.

I Example 2. A transducer τ = (Σ,Γ, δ) converting HTML trees into a convenient syntax
for some programmatic templating engines1 may be described by:

Σ ={nil(0), cons(2), node(2), div(0), pre(0), span(0)}}
Γ =[All symbols]

δ(node) =(“<.”, ε, ε)
δ(div) =(“div”) δ(pre) =(“pre”) δ(span) = (“span”),
δ(cons) =(“(”, “)”, ε) δ(nil) =(ε)

In Scala, this is written as follows:

def tau(input: Tree) = input match {
case node(t, l) ⇒ "<." + tau(t) + "" + tau(l) + ""
case div() ⇒ "div"
case pre() ⇒ "pre"
case span() ⇒ "span"

1 https://github.com/lihaoyi/scalatags

https://github.com/lihaoyi/scalatags


Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:11

def tree(w: List[Σ]): Tree =
if w is empty or does not start with some (f, 0):
throw error

let (f, 0) = w.head
w ← w.tail
for i from 1 to arity(f)
ti = tree(w)
assert(w starts with (f, i))
w ← w.tail

return f(t1, . . ., tk)

Figure 1 Parsing algorithm to obtain tree(w) from a word w ∈ Σ∗. When the algorithm fails,
because of a pattern matching error or because of the thrown exception, it means there exists no t
such that τΣ(t) = w.

case cons(n, l) ⇒ "(" + tau(n) + ")" + tau(l) + ""
case nil() ⇒ ""

}

For example, tau(node(div,cons(node(span,nil,cons(node(pre,nil)))))) = "<.div(<.span())(<.pre())"

5 Transducers as Morphisms

For a given alphabet Σ, a 1STS (Σ,Γ, δ) is completely determined by the constants that
appear in δ. This allows us to define a one-to-one correspondence between transducers and
morphisms. This correspondence is made through what we call the default transducer. More
specifically, Γ is the set Σ = {(f, i) | f (k) ∈ Σ ∧ 0 ≤ i ≤ k} and for all f (k) ∈ Σ, we have
δ(f) = ((f, 0), (f, 1), . . . , (f, k)). The default transducer produces sequences of pairs from Σ.

I Example 3. For Σ = {nil(0), cons(2),node(2),div(0), pre(0), span(0)}, τΣ is:

Γ ={ (node, 0), (node, 1), (node, 2), (div, 0), (pre, 0), (span, 0)
(cons, 0), (cons, 1), (cons, 2), (nil, 0)}

δ(node) = ((node, 0), (node, 1), (node, 2))
δ(div) = (div, 0) δ(pre) = (pre, 0) δ(span) = (span, 0)
δ(cons) = ((cons, 0), (cons, 1), (cons, 2)) δ(nil) = (nil, 0))

In Scala, τΣ can be written as follows (+ is used to concatenate elements and lists):

def tauSigma(input: Tree): List[Σ] = input match {
case node(t, l) ⇒ (node,0) + tauSigma(t) + (node,1) + tauSigma(l) + (node,2)
case div() ⇒ (div,0)
case pre() ⇒ (pre,0)
case span() ⇒ (span,0)
case cons(n, l) ⇒ (cons,0) + tauSigma(n) + (cons,1) + tauSigma(l) + (cons,2)
case nil(n, l) ⇒ (nil,0)

}

I Lemma 1. For any ranked alphabet Σ, the function JτΣK is injective.

ECOOP 2017



19:12 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

Following Lemma 1, for a word w ∈ Σ∗, we define tree(w) to be the unique tree (when it
exists) such that τΣ(tree(w)) = w. We show in Figure 1 how to obtain tree(w) in linear time
from w.

For a 1STS τ = (Σ,Γ, δ), we define the morphism morph[τ ] from Σ to Γ∗, and such that,
for all f (k) ∈ Σ, i ∈ {0, . . . , k}, morph[τ ](f, i) = ui where δ(f) = (u0, u1, . . . , uk). Conversely,
given a morphism µ : Σ→ Γ∗, we define sts(µ) as τΣ where each output l ∈ Σ is replaced
by µ(l).

I Example 4. For Example 2, morph[τ ] is defined by:

morph[τ ](node, 0) = “<.” morph[τ ](cons, 0) = “(”
morph[τ ](node, 1) = ε morph[τ ](cons, 1) = “)”
morph[τ ](node, 2) = ε morph[τ ](cons, 2) = ε

morph[τ ](div, 0) = “div” morph[τ ](nil, 0) = ε

morph[τ ](pre, 0) = “pre” morph[τ ](span, 0) = “span”

Note that for any morphism: µ : Σ → Γ∗, morph[sts(µ)] = µ and for any 1STS τ ,
sts(morph[τ ]) = τ . Moreover, we have the following result, which expresses the output of a
1STS τ using the morphism morph[τ ].
I Lemma 2. For a 1STS τ , and for all t ∈ TΣ, morph[τ ](τΣ(t)) = τ(t).

Proof. Follows directly from the definitions of morph[τ ] and τΣ. J

I Example 5. Let t = cons(node(div, nil), nil). For morph[] defined as in Example 4 and the
transducer τ as in Example 2, the left-hand-side of the equation of Lemma 2 translates to:

morph[τ ](τΣ(t))
= morph[τ ](τΣ(cons(node(div,nil), nil)))
= morph[τ ]((cons, 0)(node, 0)(div, 0)(node, 1)(nil, 0)(node, 2)(cons, 1)(nil, 0)(cons, 2))
= “(” · “<.” · “div” · ε · ε · ε · “)” · ε · ε
= “(<.div)”

Similarly, the right-hand-side of the equation can be computed as follows:

τ(t)
= τ(cons(node(div, nil), nil))
= “(” · τ(node(div, nil)) · “)” · τ(nil) · ε
= “(” · “<.” · τ(div) · ε · τ(nil) · ε · “)” · ε · ε
= “(<.div)”

We thus obtain that checking equivalence of 1STSs can be reduced to checking equivalence
of morphisms on a context-free language.
I Lemma 3 (See [44]). Let τ1 and τ2 be two 1STSs, and D = (Σ, Q, I, δ) a domain. Then
Jτ1K|D = Jτ2K|D if and only if morph[τ1]|G = morph[τ2]|G where G is the context-free language
{τΣ(t) | t ∈ D}.

Proof. Follows from Lemma 2. G is context-free, as it can be recognized by the grammar
(NG,Σ, RG, SG) where:



Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:13

NG = {SG} ∪ {Aq | q ∈ Q}, where SG is a fresh symbol used as the starting non-terminal,
The productions are:
RG = {Aq → (f, 0) ·Aq1 · (f, 1) · · ·Aqk

· (f, k) | f (k) ∈ Σ ∧ (q, f, (q1, . . . , qk)) ∈ δ}
∪ {SG → Aq | q ∈ I}

Note that the size of G is linear in the size of |D| (as long as there are no unused states
in D). J

6 Learning 1STS from a Sample

We now present a learning algorithm for learning 1STSs from sets of input/output examples,
or a sample. Formally, a sample S : TΣ 7→ Γ∗ is a partial function from trees to words, or
alternatively, a set of pairs (t, w) with t ∈ TΣ and w ∈ Γ∗ such that each t is paired with at
most one w.

6.1 NP-completeness of the general case

In general, we prove that finding whether there exists a 1STS consistent with a given a sample
is an NP-complete problem. To prove NP-hardness, we reduce the one-in-three positive
SAT problem. This problem asks, given a formula ϕ with no negated variables, whether
there exists an assignment such that for each clause of ϕ, exactly one variable (out of three)
evaluates to true.

I Theorem 1. Given a sample S, checking whether there exists a 1STS τ such that for all
(t, w) ∈ S, τ(t) = w is an NP-complete problem.

Proof. (Sketch) We can check for the existence of τ in NP using the following idea. Every
input/output example from the sample gives constraints on the constants of τ . Therefore, to
check for the existence of τ , it is sufficient to non-deterministically guess constants which are
subwords of the given output examples. We can then verify in polynomial-time whether the
guessed constants form a 1STS τ which is consistent with the sample S.

To prove NP-hardness, we consider a formula ϕ, instance of the one-in-three positive
SAT. The formula ϕ has no negated variables, and is satisfiable if there exists an assignment
to the boolean variables such that for each clause of ϕ, exactly one variable (out of three)
evaluates to true.

We construct a sample S such that there exists a 1STS τ such that for all (t, w) ∈ S,
τ(t) = w if and only if ϕ is satisfiable. For each clause (x, y, z) ∈ ϕ, we construct an
input/output example of the form S(x(y(z(nil)))) = a# where x, y and z are symbols of
arity 1 corresponding to the variables of the same name in ϕ, nil is a symbol of arity 0, and
a and # are two special characters. Moreover, we add an input/output example stating that
S(nil) = #.

This construction forces the fact that a 1STS τ consistent with S will have a non-empty
output (a) for exactly one symbol out of x, y, and z (therefore matching the requirements of
one-in-three positive SAT formulas). J

In the sequel, we prove that if the domain of the given sample is closed under subtree,
this problem can be solved in polynomial time.

ECOOP 2017



19:14 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

6.2 Word Equations
Our learning algorithm relies on reducing the problem of learning a 1STS from a sample to
the problem of solving word equations. In general, the best known algorithm for solving word
equations is in linear space [40, 22], and takes exponential time to run. When the domain of
the sample S is closed under subtree, the equations we construct have a particular form, and
we call them sequential formulas. We show there is a polynomial-time algorithm for checking
whether a sequential word formula is satisfiable.

I Definition 6. Let X be a finite set of variables, and Γ a finite alphabet. A word equation
e is a pair y1 = y2 where y1, y2 ∈ (X ∪ Γ)∗. A word formula ϕ is a conjunction of word
equations. An assignment is a function from X to Γ∗, and can be seen as a morphism
µ : (X ∪ Γ)→ Γ∗ such that µ(a) = a for all a ∈ Γ.

A word formula is satisfiable if there exists an assignment µ : (X ∪ Γ)→ Γ∗ such that for
all equations y1 = y2 in ϕ, µ(y1) = µ(y2).

A word formula ϕ is called sequential if: 1) for each equation y1 = y2 ∈ ϕ, y2 ∈ Γ∗
contains no variable, and y1 ∈ (Γ ∪ X)∗ contains at most one occurrence of each variable, 2)
for all equations y = _ and y′ = _ in ϕ, either y and y′ do not have variables in common, or
y|X = y′|X, that is y and y′ have the same sequence of variables. We used the name sequential
due to this last fact.

I Example 7. For X1, X2, X3, X4, X5 ∈ X and p, q ∈ Γ∗, each of the four formulas below is
sequential:

X1 = pq X1X3 = qpqpqqpqpq ∧X1qX3 = qpqpqqqpqpq

X1pX2qX3 = qppq X1pqX2X3 = pqpqpp ∧X1X2qpX3 = pqppqp ∧X5pX4 = qpq

The following formulas (and any formula containing them) are not sequential:

X1pqX2X3 = pX3pq (rhs is not in Γ∗)
X1pqX2pX3X2 = ppqqpp (X2 appears twice in lhs)

X1pqX2X3 = pqpqpp ∧X2pX5 = qpq (X2 is shared)
X1pqX2X3 = pqpqpp ∧X1pX3X2 = pqppp (different orderings of X1 X2 X3)

We prove that any sequential word formula ϕ can be solved in polynomial time.
I Lemma 4. Let ϕ be a sequential word formula. Let n be the number of equations in ϕ,
V the number of variables, and C be the size of the largest constant appearing in ϕ. We
can determine in polynomial time O(nV C) whether ϕ is satisfiable. When it is, we can also
produce a satisfying assignment for ϕ.

Proof. (Sketch) We construct for each equation in ϕ a DFA which represents succinctly
all the possible assignments for this equation. Then, we take the intersection of all these
DFAs, and obtain the possible assignments that satisfy all equations (i.e. the assignments
that satisfy formula ϕ). The crucial part of the proof is to prove that this intersection can
be computed in polynomial time, and does not produce an exponential blow-up as can be
the case with arbitrary DFAs. We prove this by carefully inspecting the DFAs representing
the assignments, and using the special form they have. We show the intersection of two
such DFAs A and B is a DFA whose size is smaller than both the sizes of A and B (instead
of being the product of the sizes of A and B, as can be the case for arbitrary DFAs). See
Figure 2 for an illustration of this intersection. J



Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:15

p

q

p

q

p

p

q

p

p

#

#

#

#

#

#

#

X0 X1 X2

X0 p X1 X2 = pqpp

q

p

p

q

p

p p

p

#

#

#

#

#

#

#

X0 X1 X2

X0 X1 p X2 = qppp

q

p

p p

p

#

#

#

#

X0 X1 X2

X0X1pX2 = qppp∧
X0pX1X2 = pqpp

Figure 2 On the left, two automata representing the solutions of equations X0 p X1 X2 = pqpp
and X0 X1 p X2 = qppp respectively. On the right, their intersection represents the solutions of
the conjunction of equations. Note that the third automaton can be obtained from the first (and
the second) by removing states and transitions.

6.3 Algorithm for Learning from a Sample

Algorithm 1 Learning 1STSs from a sample.
Input: A sample S whose domain is closed under subtree.
Output: If there exists a 1STS τ such that τ(t) = w for all (t, w) ∈ S, output Yes and τ ,
otherwise, output No.
1. Build the sequential formula ϕ ≡

∧
(t,w)∈S regEquation(t, w,S)

2. Check whether ϕ has a satisfying assignment µ as follows: (see Lemma 4):
For every word equation regEquation(t, w,S) where t has root f , build a DFA that
represents all possible solutions for the words µ(f, 0),. . . ,µ(f, k).
Check whether the intersection of all DFAs contains some word w.

If no, exit the algorithm and return No.
If yes, define the words µ(f, 0),. . . ,µ(f, k) following w.

3. Return (Yes and) sts(µ).

Consider a sample S such that dom(S) is closed under subtree. Given (t, w) ∈ S, we
define the word equation equation(t, w) as:

τΣ(t) = w

where the left hand side τΣ(t) is a concatenation of elements from Σ, considered as word
variables, and the right hand side w ∈ Γ∗ is considered to be a word constant.

Assume all equations corresponding to a set of input/output examples are simultaneously
satisfiable, with an assignment µ : Σ→ Γ∗. Our algorithm then returns the 1STS τ = sts(µ),
thus guarantying that τ(t) = w for all (t, w) ∈ Σ.

If the equations are not simultaneously satisfiable, our algorithm returns No.

ECOOP 2017



19:16 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

I Example 8. For Σ = {nil(0), cons(2), node(2),div(0),pre(0), span(0)}, given the examples:

τΣ(node(div, nil)) = “<.div”
τΣ(div) = “div” τΣ(span) = “span” τΣ(pre) = “pre”

τΣ(cons(node(div, nil), nil) = “(<.div)” τΣ(nil) = “”

we obtain the following equations:

(node, 0) · (div, 0) · (node, 1) · (nil, 0) · (node, 2) = “<.div”
(div, 0) = “div”

(span, 0) = “span”
(pre, 0) = “pre”

(cons, 0) · (node, 0) · (div, 0) · (node, 1) · (nil, 0)·
(node, 2) · (cons, 1) · (nil, 0) · (cons, 2) = “(<.div)”

(nil, 0) = “”

A satisfying assignment for these equations is the morphism morph[τ ] given in Example 4.
Note that this assignment is not unique (see Example 9). We resolve ambiguities in Section 7.

To check for satisfiability of
∧

(t,w)∈S equation(t, w), we slightly transform the equations
in order to obtain a sequential formula. For (t, w) ∈ S, with t = f(t1, . . . , tk), we define the
word equation regEquation(t, w,S) as:

(f, 0)w1 (f, 1) · · ·wk (f, k) = w

where for all i ∈ {1, . . . , k}, wi = S(ti). Note that S(ti) must be defined, since t is in the
domain of S, which is closed under subtree. Moreover, the formula

ϕ ≡
∧

(t,w)∈S

regEquation(t, w,S)

is satisfiable iff
∧

(t,w)∈S equation(t, w) is satisfiable.
Finally, ϕ is a sequential formula. Indeed, two equations corresponding to trees having

the same root f (k) ∈ Σ have the same sequence of variables (f, 0) . . . (f, k) in their left hand
sides. And two equations corresponding to trees not having the same root have disjoint
variables. Thus, using Lemma 4, we can check satisfiability of ϕ in polynomial time (and
obtain a satisfying assignment for ϕ if there exists one).

I Theorem 2 (Correctness and running time of Algorithm 1). Let S be a sample whose domain
is closed under subtree. If there exists a 1STS τ such that τ(t) = w for all (t, w) ∈ S,
Algorithm 1 returns one such 1STS. Otherwise, Algorithm 1 returns No. Algorithm 1
terminates in time polynomial in the size of S.

Proof. Assume ϕ has a satisfying assignment µ : Σ → Γ∗, in step (2) of Algorithm 1. In
that case, Algorithm 1 returns τ = sts(µ). By definition of ϕ, we know, for all (t, w) ∈ S,
µ(τΣ(t)) = w. Moreover, since morph[τ ] = µ, we have by Lemma 2 that τ(t) = µ(τΣ(t)), so
τ(t) = w.

Conversely, if there exists τ such that τ(t) = w for all (t, w) ∈ S. Then, again by Lemma 2,
morph[τ ] is a satisfying assignment for ϕ, and Algorithm 1 must return Yes.

The polynomial running time follows from Lemma 4.



Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:17

I Remark. For samples whose domains are not closed under subtree, we may modify
Algorithm 1 to check for satisfiability of word equations which are not necessarily sequential.
In that case, we are not guaranteed that the running time is polynomial.

J

7 Learning 1STSs Without Ambiguity

The issue with Algorithm 1 is that the 1STS expected by the user may be different than the
one returned by the algorithm (see Example 9 below). To circumvent this issue, we use the
notion of tree test set. Formally, a set of trees T ⊆ D is a tree test set for the domain D if
for all 1STSs τ1 and τ2, Jτ1K|T = Jτ2K|T implies Jτ1K|D = Jτ2K|D.

I Example 9. The transducer τ2 defined below satisfies the requirements of Example 8
but is different than the transducer in Example 2. Namely, the values in the box have been
switched.

δ2(node) =(“<.”, ε, ε)
δ2(div) =(“div”) δ2(pre) =(“pre”) δ2(span) = (“span”)

δ2(cons) =(“(”, ε, “)” ) δ2(nil) =(ε)

We can verify that the two transducers are not equal on the domain Dhtml:

τ(cons(node(div, nil), cons(node(div, nil), nil))) = “(<.div)(<.div)”
τ2(cons(node(div, nil), cons(node(div, nil), nil))) = “(<.div(<.div))”

Therefore, if a user had the 1STS τ in mind when giving the sample of Example 8, it
is still possible that Algorithm 1 returns τ2. However, by definition of tree test set, if the
sample given to Algorithm 1 contains a tree test set for Dhtml, we are guaranteed that the
resulting transducer is equivalent to the transducer that the user has in mind, for all trees
on Dhtml.

Our goal in this section is to compute from a given domain D a tree test set for D. The
notion of tree test set is derived from the well-known notion of test set in formal languages.
The test set of a language L (a set of words) is a subset T ⊆ L such that for any two
morphisms f, g : Σ∗ → Γ∗, f|T = g|T implies f|L = g|L.

To compute a tree test set T for D, we first compute a test set TG for the context-free
language G = {τΣ(t) | t ∈ D} (built in Lemma 3), and then define T = {tree(w) | w ∈ TG}.
We prove in Lemma 7 that T is indeed a tree test set for D.

We introduce in Section 7.1 a new construction, asymptotically optimal, for building test
sets of context-free languages. We show in Section 7.2 how this translates to a construction of
a tree test set for a domain D. We also give a sufficient condition of D so that the obtained
tree test set is closed under subtree. This allows us to present, in Section 7.3, an algorithm
that learns 1STSs from a domain D in polynomial-time (by building the tree test set T of D,
and asking to the user the outputs corresponding to the trees of T ).

7.1 Test Sets for Context-Free Languages
We show in this section how to build, from a context-free grammar G, a test set of size of
O(|G|3). Our construction is asymptotically optimal. We reuse lemmas from [38, 39], which
were originally used to give a O(|G|6) construction.

ECOOP 2017



19:18 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

7.1.1 Plandowski’s Test Set
The following lemma was originally used in [38, 39] to show that any linear context-free
grammar has a test set containing at most O(|R|6) elements. We show in Section 7.1.2 how
this lemma can be used to show a 2|R|3 bound.

Let Σ4 = {ai, ai, bi, bi | i ∈ {1, 2, 3, 4}} be an alphabet. We define:

L4 = {x4 x3 x2 x1 x1 x2 x3 x4 | ∀i ∈ {1, 2, 3, 4}. (xi, xi) = (ai, ai) ∨ (xi, xi) = (bi, bi)}

and T4 = L4 \ {b4 b3 b2 b1 b1 b2 b3 b4}.
The sets L4, T4 ⊆ Σ4 have 16 and 15 elements respectively.

I Lemma 5 ([38, 39]). T4 is a test set for L4.

7.1.2 Linear Context-Free Grammars
We now prove that for any linear context-free grammar G, there exists a test set whose size is
2|R|3. Like the original proof of [38, 39] that gave a O(|R|6) upper bound, our proof relies on
Lemma 5. However, our proof uses a different construction to obtain the new, tight, bound.

I Theorem 3. Let G = (N,Σ, R, S) be a linear context-free grammar. There exists a test set
T ⊆ G for G containing at most 2|R|3 elements.

Proof. (Sketch) Our proof relies on the fact that a linear grammar G can be seen as a
labelled graph whose nodes are non-terminals and whose transitions are rules of the grammar.
A special node labelled ⊥ is used for rules whose right-hand-sides are constant. We define
the notion of optimal path in this graph. We use optimal paths to define paths which are
piecewise optimal. More precisely, for k ∈ N, a word belongs to the set Φk(G) if it can be
derived in G by a path that can be split into k+ 1 optimal paths. We then prove that Φ3(G)
forms a test set for G (by using Lemma 5), which ends our proof as Φ3(G) contains O(|R|3)
elements.

J

We make use of this theorem in the next section to obtain test sets for context-free
grammars which are not necessarily linear.

7.1.3 Context-Free Grammars
To obtain a test set for a context-free grammar G which is not necessarily linear, [38]
constructs from G a linear context-free grammar, Lin(G), which produces a subset of G, and
which is a test set for G.

Formally, Lin(G) is derived from G as follows:
For every productive non-terminal symbol A in G, choose a word xA produced by A.
Every rule r : A → x0A1x1 . . . Anxn in G, where for every i, xi ∈ Σ∗ and Ai ∈ N is
productive, is replaced by n different rules, each one obtained from r by replacing all Ai
with xAi

, except one.

Note that the definition of Lin(G) is not unique, and depends on the choice of the words
xA. The following result holds for any choice of the words xA.

I Lemma 6 ([38, 39]). Lin(G) is a test set for G.

Using Theorem 3, we improve the O(|G|6) bound of [38, 39] for the test set of G to 2|G|3.



Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:19

I Theorem 4. Let G = (N,Σ, R, S) be a context-free grammar. There exists a test set T ⊆ G
for G containing at most 2|G|3 elements.

Proof. Follows from Theorem 3, Lemma 6, and from the fact that Lin(G) has at most
|G| =

∑
A→rhs∈R(|rhs| + 1) rules. (When constructing Lin(G), each rule A → rhs of G is

duplicated at most |rhs| times.) J

7.2 Tree Test Sets for Transducers
We use the results of the previous section to construct a tree test set for a domain D.

I Lemma 7. Any domain D = (Σ, Q, I, δ) has a tree test set T of size at most O(|D|)3.
Moreover, if I = Q, then we can build T such that T is closed under subtree.

Proof. Intuitively, we build the tree test set for D by taking the set of trees corresponding
to the test set of G, where G is the grammar built in Lemma 3.

Let τ1 and τ2 be two 1STSs. Let TG be a test set for G. Define T = {tree(w) | w ∈ TG}.
By Theorem 4, we can assume TG has size at most |G|3, and hence, T has size at most |D|3.
Let µ1 and µ2 be morph[τ1] and morph[τ2], respectively. We have:

Jτ1K|T = Jτ2K|T ⇐⇒

∀t ∈ T. τ1(t) = τ2(t) ⇐⇒
∀w ∈ TG. τ1(tree(w)) = τ2(tree(w)) ⇐⇒ (by Lemma 2)
∀w ∈ TG. µ1(τΣ(tree(w))) = µ2(τΣ(tree(w))) ⇐⇒ (by definition of tree)
∀w ∈ TG. µ1(w) = µ2(w) ⇐⇒ (since TG is a test set for G)
∀w ∈ G. µ1(w) = µ2(w) ⇐⇒ (see Lemma 3)
Jτ1K|D = Jτ2K|D

This ends the proof that T is a tree test set for D.
We now show how to construct T such that it is closed under subtree. For every non-

terminal A of G, we define the minimal word wA. These words are built inductively, starting
from the non-terminals which have a rule whose right-hand-side is only made of terminals. In
the definition of Lin(G), we use these words when modifying the rules of G into linear rules.

When then define TG as the test set of Lin(G) (which is also a test set of G), and
T = {tree(w) | w ∈ TG} ∪ {tree(wA) | A ∈ G}. As shown previously, T is a tree test set
for D. We can now prove that T is closed under subtree. Let t = f(t1, . . . , tk) ∈ T . Let
i ∈ {1, . . . , k}. We want to prove that ti ∈ T .

We consider two cases. Either there exists w ∈ TG such that t = f(t1, . . . , tk) = tree(w),
or there exists A ∈ G, t = f(t1, . . . , tk) = tree(wA).

First, if there exists w ∈ TG such that t = f(t1, . . . , tk) = tree(w). Consider a derivation
p for w in the Lin(G). By construction of Lin(G), the first rule is an ε-transition of the
form S → N while the second rule is of the form:

N → (f, 0) · w1 · (f, 1) · · ·wj−1 · (f, j − 1) ·Nj · (f, j) · wj+1 · · ·wk · (f, k).

This second rule corresponds to a rule in G, of the form:

N → (f, 0) ·N1 · (f, 1) · · ·Nj−1 · (f, j − 1) ·Nj · (f, j) ·Nj+1 · · ·Nk · (f, k).

ECOOP 2017



19:20 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

We then have two subcases to consider. Either i 6= j, and in that case ti = tree(wi). By
construction of Lin(G), wi must be equal to wA for some A ∈ G. Thus, we have ti ∈ T
by definition of T .
Or i = j, in that case ti = tree(w′), where w′ is derived by the derivation p where the
first two derivation rules, outlined above, are replaced with the ε-rule S → Ni. This
production rule is ensured to exist in Lin(G), as all states of D are initial, so there exists a
rule S → Nq for all q ∈ Q. (see definition of G in Lemma 3). Then, since w ∈ Φ3(Lin(G)),
and by construction of Φ3(Lin(G)), we conclude that w′ ∈ Φ3(Lin(G)). This ensures that
w′ ∈ TG, and ti ∈ T .
Otherwise, there exists A ∈ G such that t = f(t1, . . . , tk) = tree(wA). Using the fact that
wA was build inductively in the grammar G, using other minimal words wA′ for A′ ∈ G,
we deduce there exists A′ ∈ G such that ti = tree(wA′), and ti ∈ T .

J

Lemma 8 shows the bound given in Lemma 7 is tight, in the sense that there exists an
infinite class of growing domains D for which the smallest tree test set has size |D|3.
I Lemma 8. There exists a sequence of domains D1, D2, . . . such that for every n ≥ 1,
the smallest tree test set of Dn has at least n3 elements, and the size of Dn is linear in n.
Furthermore, this lower bound holds even with the extra assumption that all states of the
domain are initial.

Proof. (Sketch) Our proof is inspired by the lower bound proof for test sets of context-free
languages [38, 39]. For n ≥ 1, we build a particular domain Dn (whose states are all initial),
and we assume by contradiction that it has a test set T of size less than n3. From this
assumption, we expose a tree t ∈ Dn, as well as two 1STSs τ1 and τ2 such that τ1|T = τ2|T
but τ1(t) 6= τ2(t). J

7.3 Learning 1STSs Without Ambiguity

Algorithm 2 Learning 1STSs from a domain.
Input: A domain D, and an oracle 1STS τu.
Output: A 1STS τ functionally equivalent to τu.
1. Build a tree test set {t1 . . . tn} of D, following Lemma 7.
2. For every ti ∈ {t1 . . . tn}, ask the oracle for wi = τu(ti).
3. Run Algorithm 1 on the sample {(ti, wi) | 1 ≤ i ≤ n}.

Our second algorithm (see Algorithm 2) takes as input a domain D, and computes a tree
test set T ⊆ D. It then asks the user the expected output for each tree t ∈ T . The user is
modelled by a 1STS τu that can be used as an oracle in the algorithm. Algorithm 2 then
runs Algorithm 1 on the obtained sample. The 1STS τu expected by the user may still be
syntactically different the 1STS τ returned by our algorithm, but we are guaranteed that
JτK|D = JτuK|D (by definition of tree test set).
I Theorem 5 (Correctness and running time of Algorithm 2). Let τu be a 1STS (used as an
oracle), and D = (Σ, Q, I, δ) a domain such that I = Q. The output τ of Algorithm 2 is a
1STS τ such that JτK|D = JτuK|D.

Furthermore, Algorithm 2 invokes the oracle O(|D|3) times, and terminates in time
polynomial in |D|.



Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:21

Proof. The correctness of Algorithm 2 follows from the correctness of Algorithm 1 and from
the fact that T is a tree test set for D. The fact that Algorithm 2 invokes the algorithm
O(|D|3) times follows from the size of the tree test set (see Lemma 7).

Moreover, since all states of D are initial, the tree test set of D that we build is closed
under subtree. The polynomial running time then follows from the fact that Algorithm 1
ends in polynomial time for samples whose domains are closed under subtree.
I Remark. Similarly to Algorithm 1, Algorithm 2 also applies for domains such that I 6= Q,
but the running time is not guaranteed to be polynomial.

J

8 Learning 1STS Interactively

Algorithm 3 Interactive learning of 1STSs.
Input: A domain D, and an oracle 1STS τu whose output alphabet is Γ.
Output: A 1STS τ functionally equivalent to τu.
1. Initialize a map sol from Σ to Automata, such that for f (k) ∈ Σ, sol(f) recognizes
{x0# · · ·#xk | xi ∈ Γ∗},

2. Build a tree test set T of D, following Lemma 7.
3. Initialize a partial function S : TΣ 7→ Γ∗, initially undefined everywhere.
4. While dom(S) 6= T :

Choose a tree f(t1, . . . , tk) /∈ dom(S) such that all subtrees of t belong to dom(S)
(possible since T is closed under subtree).
Build the automatonA recognizing {x0 S(t1)x1 · · · S(tk)xk | x0#x1 · · ·#xk ∈ sol(f)},
representing all possibles values of τu(t) that do not contradict previous outputs.

If A recognizes only 1 word w, define S(t) = w.
Otherwise (A recognizes at least 2 words), define S(t) = τu(t) using the oracle.

Update sol(f) = sol(f) ∩ automaton(t,S(t)).
5. Run Algorithm 1 on S.

Our third algorithm (see Algorithm 3) takes as input a domain D, and computes a tree
test set T ⊆ D. For this algorithm, we require from the beginning that all states of D are
initial, so that T is closed under subtree. For a sample S such that dom(S) is closed under
subtree, and for (t, w) ∈ S, we denote by automaton(t, w) the automaton automaton(y, w)
where y = w is the equation regEquation(t, w,S).

Instead of building the sample S and the intersection
⋂

(t,w)∈S automaton(t, w) all at once,
like algorithms 1 and 2 do, Algorithm 3 builds S and the intersection incrementally. It then
uses the intermediary results to infer outputs, in order to avoid calling the oracle τu too
many times. Overall, we prove that Algorithm 3 invokes the oracle τu at most O(|D|) times,
while Algorithm 2 invokes it O(|D|3) times.

To infer outputs, Algorithm 3 maintains the following invariant for the while loop. First S
is such that dom(S) ⊆ T , and its domain increases at each iteration. Then, for any f (k) ∈ Σ,
sol(f) is equal to

⋂
(t,w)∈S automaton(t, w), and thus recognizes the set

{µ(f, 0)#µ(f, 1)# . . .#µ(f, k) | µ : Σ→ Γ satisfies
∧

(t,w)∈S

regEquation(t, w,S)}.

Intuitively, sol(f) represents the possible values for the output of f in the transducer τu,
based on the constraints given so far.

ECOOP 2017



19:22 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

To infer the output of a tree t = f(t1, . . . , tk), for some f (k) ∈ Σ, Algorithm 3 uses
the fact that τu(f(t1, . . . , tk)) must be of the form µ(f, 0)S(t1)µ(f, 1) · · · S(tk)µ(f, k) for
some morphism µ : Σ→ Γ satisfying

∧
(t,w)∈S equation(t, w). By construction, the NFA A,

that recognizes the set {x0 S(t1)x1 · · · S(tk)xk | x0#x1 · · ·#xk ∈ sol(f)}, recognizes exactly
these words of the form µ(f, 0)S(t1)µ(f, 1) · · · S(tk)µ(f, k).

We then check whether A recognizes exactly one word w, in which case, we know τu(t) = w,
and we do not need to invoke the oracle. Otherwise, there are several alternatives which are
consistent with the previous outputs provided by the user, and we cannot infer τu(t). We
thus invoke the oracle (the user) to obtain τu(t).

Before proving the theorem corresponding to Algorithm 3, we give a lemma on words
which we use extensively in the theorem.
I Lemma 9. Let u, v, w ∈ Γ∗. If uv = vu and uw = wu and u 6= ε, then vw = wv.

Proof. A word p ∈ Γ∗ is primitive if there does not exist r ∈ Γ∗, i > 1 such that p = ri.
Proposition 1.3.2 of [30] states that the set of words commuting with a non-empty word u is
a monoid generated by a single primitive word p. Since v and w both commute with u, there
exist i and j such that v = pi and w = pj , thus vw = wv = pi+j . J

The difficult part of Theorem 6 is to show the number of times the oracle τu is invoked is
O(|D|). We prove this by assuming by contradiction that the number of times τu is invoked
is strictly greater than 3|D| + |Q| times. We prove this entails there are four trees which
are nearly identical and for which our algorithm invokes the oracle (the four trees have the
same root, and differ only for one child). Then, by a close analysis of the word equations
corresponding to these four terms, we obtain a contradiction by proving our algorithm must
have been able to infer the output for at least one of those terms.
I Theorem 6 (Correctness and running time of Algorithm 3). Let τu be a 1STS (used as an
oracle), and D = (Σ, Q, I, δ) a domain such that I = Q. The output τ of Algorithm 3 is a
1STS τ such that JτK|D = JτuK|D.

Algorithm 3 ends in time polynomial in |D| and the number of times it invokes the oracle
τu is in O(|D|).

Proof. (Sketch) The correctness and the polynomial running time of Algorithm 3 can be
proved similarly to Algorithm 2. Note that we can check whether the NFA A recognizes
exactly one word. For that, we obtain a word w that A recognizes, and we intersect A with
the complement of an automaton recognizing w.

The crucial part of Algorithm 3 is that it invokes the oracle τu at most O(|D|) times.
More precisely, we show that Algorithm 3 invokes τu at most |Q|+ 3

∑
(q,f(k),(q1,...,qk)∈δ 1 + k

times, which is |Q|+ 3|D|, and in O(|D|).
The main goal is to prove that for any trees four trees of the same root (ta, tb, tc, td)

differing from only one their ith subtree (respectively tai , tbi , tci , tdi ), if we know the output
of τu on all subtrees of ta, tb, tc, td, then we can infer the output for at least one of ta, tb,
tc, td based on the previous outputs. Let xli = τu(tli) be the already known outputs of the
sub-trees and wl = τu(tl) the outputs to ask to the user, for l ∈ {a, b, c, d}. We obtain the
following equations where u, v represent the parts which do not change:

wa = uxai v wb = uxbiv wc = uxciv wd = uxdi v

We prove by contradiction that we could not have asked the user for all wl for l ∈ {a, b, c, d},
because at least one of the answer can be inferred from the previous ones. Here we illustrate
two representative cases of the proof.



Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:23

(1) One case is when xai and xbi are neither prefix nor suffix of each other. By observing
where wa and wb differ, we can recover u and v, and the algorithm could have inferred wc
and wd.

(2) Another case is when xai , xbi , and xci are respectively of the form x1, x1x2 and x1x2x3
for some x1, x2, x3 ∈ Γ∗ with x2x3 = x3x2, and x2 6= ε, x3 6= ε. Since we asked the output wa,
wb and wc, then after the first two questions, the values of u and v could not be determined.
In particular, this means that there are some u, v and u′, v′ such that: ux1v = u′x1v

′ and
ux1x2v = u′x1x2v

′ but ux1x2x3v 6= u′x1x2x3v
′.

By assuming without loss of generality that u = u′u′′ and v′ = v′′v, we obtain that
u′′x1 = x1v

′′ and u′′x1x2 = x1x2v
′′, thus v′′x2 = x2v

′′, and then x2 commutes with v′′. Since
x2 also commutes with x3, we deduce v′′ commutes with x3, and then u′′x1x2x3 = x1x2x3v

′′,
which is a contradiction. J

9 Tree with Values

Until now, we have considered a set of trees TΣ which contained only other trees as subtrees,
and with a test set of size O(n3), although we have a linear learning time if we have
interactivity. However, in practice, data structures such as XML are usually trees containing
values. Values are typically of type stringor int, and may be used instead of subtrees. For
convenience, we will suppose that we only have string elements, and that string elements are
rendered raw. We will demonstrate how we can directly obtain a test set of size O(n).

Formally, let us add a special symbol v ∈ Σ, of arity 0, which has another version which
can have a parameter. For each string s ∈ Γ∗ we can thus define the symbol vs and extend
the notion of trees and domains as follows.

For a set of trees T, we define the extended set T ′ by:

T ′ = {t′ | ∃t ∈ T, t′ is obtained from t by replacing each v by a vs for some s ∈ Γ∗}

Note that given a domain D and a height h, there is an infinite number of trees of
height h in D′, while only a finite number in D. Fortunately, thanks to the semantics of the
transducers on vs we define below, finding the tree test sets is easier in this setting.

For any transducer τ we extend the definition of JτK to T ′Σ by defining JτK(vs) = s. We
naturally extend the definition of tree test set of an extended domain D′ to be a set T ′ ⊂ D′
such that for all 1STSs τ1 and τ2, Jτ1K|T ′ = Jτ2K|T ′ implies Jτ1K|D′ = Jτ2K|D′ . After proving
the following lemma, we will state and prove the theorem on linear test sets.
I Lemma 10. For a, b, x, y ∈ Γ∗, c 6= d in Γ, if acx = bcy and adx = bdy, then a = b.

Proof. Either a or b is a prefix of the other. Let us suppose that a = bk for some suffix
k ∈ Γ∗. It follows that kcx = cy and kdx = dy. If k is not empty, then k starts with c and
with d, which is not possible. Hence k is empty and a = b. J

I Theorem 7. If the domain D = (Σ, Q, I, δ) is such that for every f ∈ Σ of arity k > 0,
there exist trees in t1, . . . , tk ∈ D such that f(t1, . . . , tk) ∈ D and each ti contains at least
one v, then there exists a tree test set of D′ of linear size O(|Σ| ·A) where A is the maximal
arity of a symbol of Σ.

Proof. (Intuition) Using the trees provided in the theorem’s hypothesis, we build a linear
set of trees of D′ where the v nodes are replaced successively by two different symbols v“#”
and v“?”. Then, we prove that any two 1STSs which are equal on this set of trees, are
syntactically equal. J

ECOOP 2017



19:24 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

10 Implementation

Our tool (walkthrough in Section 2) is open-source and available at https://github.com/
epfl-lara/prosy. It takes as input an ADT represented by case class definitions written
in a Scala-like syntax, and outputs a recursive printer for this ADT. For the automata
constructions of Algorithm 3, we used the brics Java library2.

In the walkthrough, notice that our tool gives propositions to the user so that the user
does not have to enter the answers manually. The user may choose how many propositions are
to be displayed (default is 9). To obtain these propositions, we use the following procedure.
Remember that for each tree t for which we need to obtain the output, Algorithm 3 builds
an NFA A that recognizes the set of all possible outputs for t (see Section 8). We check for
the existence of an accepted word w0 in A, and compute the intersection A1 between A and
an automaton recognizing all words except w0. We then have two cases. Either A1 is empty,
and therefore we know the output for tree t is w0. In that case, we do not need to interact
with the user, and can continue on to the next tree. Otherwise, A1 recognizes some word
w1 6= w0, which we display as a proposition to the user (alongside w0). We then obtain A2 as
the intersection between A and an automaton recognizing all words except w0 and w1. We
continue this procedure until we have 9 propositions (or whichever number the user entered),
or when the intersected automaton becomes empty.

Concerning support for the String data type, we use ideas from Section 9 and reused
our code from Algorithm 3 to infer outputs. Technically, we replace the String data type
with an abstract class with two case classes, foo, and bar, that must be printed as “foo”
and “bar” respectively. We then obtain an ADT without Strings, on which we apply the
implementation of Algorithm 3 described above. We handle the Int and Boolean data types
similarly, each with two different values which are not prefix of each other (we refer to the
proof of Theorem 6).

11 Evaluation

Although this work is mostly theoretical, we now depict through some benchmarks how many
and which kind of questions our system is able to ask (Figure 3).

The first column is the name of the benchmark. The first two appear in Section 2 and
in the examples. The third is a variation of the second where we add attributes as well,
rendered “ˆ.foo := "bar"”. The fourth is the same but rendered in XML instead of tags. Note
that because we do not support duplication, we need to have a finite number of tags for
XML.

The four rows “binary” illustrate how the number and type of questions may vary only
depending on the user’s answers. We represent binary numbers as either Empty or Zero(x)
or One(x) where x is a binary number. We put in parenthesis what a user willing to print
Zero(One(Zero(Zero(One(Empty))))) would have in mind. The second and the third
“discard” Zero when printing. The fourth one prints Empty as empty, Zero(x) as {x}ab and
One(x) as a{x}b, which result in an ambiguity not resolved until asking a 3-digit number.

The last five rows of Figure 3 also illustrate how the number of asked questions grows
linearly, whereas the number of elements in the test set grows cubically. These five rows
represent a set of classes of type A taking as argument a class of type B, which themselves

2 http://www.brics.dk/automaton/

https://github.com/epfl-lara/prosy
https://github.com/epfl-lara/prosy


Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:25

Test set The output was
size inferred asked asked with. . .

Name Total total total nothing a hint suggestions

Grammar (Sec. 2) 116 102 14 6 6 2
Html tags (Ex. 2, 8, 9) 35 28 7 4 2 1
Html tags+attributes 60 52 8 2 4 2
Html xml+attributes 193 179 14 5 3 6
Binary (01001x) 15 12 3 1 2 0
Binary (11x) 15 12 3 3 0 0
Binary (ababx) 15 11 4 3 0 1
Binary (01001) 15 10 5 3 0 2
Binary (aabababbab) 15 9 6 3 0 3
Ax(By(Fz)) 1 3 0 3 1 2 0
Ax(By(Fz)) 2 14 8 6 3 3 0
Ax(By(Fz)) 4 84 67 17 8 4 5
Ax(By(Fz)) 8 584 552 32 19 5 8
Ax(By(Fz)) 16 4368 4305 63 32 16 15

Figure 3 Comparison of the number of questions asked for different benchmarks.

take as argument a class of type F. We report on the statistics by varying the number of
concrete classes between 1, 2, 4, 8 and 16 (see proof of Lemma 8)

The second column is the size of the test set. For the last five rows, the test set contains
a cubic number of elements. The third column is the number of answers our tool was able to
“infer” based on previously “asked” questions, whose total number is in the fourth column.
The fourth column plus the third one thus equal the second one.

Columns five, six and seven decompose the fourth column into the questions which
were either asked without any indication, or with a hint of type “[...]foo[...]” (because the
arguments were known), or with explicit suggestions where the user just had to enter a
number for the choice (see Section 10).

12 Related Work

Our approach of proactively learning transducers by example, or tree-to-string programs, can
be viewed as a particular case of Programming-by-Example. Programming-by-example, also
named inductive programming [42] or test-driven synthesis [37], is gaining more and more
attention, notably thanks to Flash Fill in Excel 2013 [16]. Subsequent work demonstrated
that these techniques could widely be applicable not only to strings, but when extracting
documents [28], normalizing text [24] and number transformations [43]. However, most
state-of-the-art programming-by-example techniques rely on the fact that examples are
unambiguous and/or that the example provider can check the validity of the final pro-
gram [6] [45] [12]. The scope of their algorithms may be larger but they do not guarantee
formal result such as polynomial time or non-ambiguity, and often require the user to come up
with the examples by himself. More generally, synthesizing recursive functions has recently
gained an interest among computer scientists from repairing fragments [25] to very precise
types [41], even by formalizing programming-by-example [13].

Recently, research has pointed out that solving ambiguities is a key to make programming
by example accessible, trustful and reduce the number of errors [34][20]. The power of

ECOOP 2017



19:26 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

interaction is already well known in more statistical approaches, e.g. machine learning [46],
although recent machine-learning based formatting techniques could benefit from more
interaction, because they acknowledge some anomalies [36]. In [18] and even [17], the
authors solve ambiguities by presenting different code snippets, obtained from synthesizing
expressions of an expected type and from other sources of information. Nonetheless, the
user has to choose between hard-to-read code snippets. Instead of asking which transducer
is correct, we ask for what is the right output. Asking sub-examples at run-time proved to
be a successful strategy when synthesizing recursive functions [1]. To deal with ambiguous
samples, they developed a Saturate rule to ask for inputs covering the inferred program.
In our case, however, such coverage rule still yield the ambiguity raised in example 9, leaving
the chance of finding the right program to heuristics.

Researchers have investigated fundamental properties of tree-to-string or tree-to-word
transducers [5], including expressiveness of even more complex classes than we consider [4],
but none of them proposed a practical learning algorithm for such transducers. The situation
is analogous for Macro Tree Transducers [7] [11]. Lemay [29] explores the synthesis of
top-down tree-to-tree transducers using an algorithm similar to L∗ for automata [6] and
tree automata [8]. These learning algorithms require the user to be in possession of a set
of examples that uniquely defines the top-down tree transducer. We instead are able to
incrementally ask for examples which resolve ambiguities, although our transducers are
single-state. There are also probabilistic tree-to-string transducers [14], but they require
the use of a corpus and are not adapted to synthesizing small-size code portions with a few
examples.

A Gold-style learning algorithm [27, 26, 29] was created for sequential tree-to-string
transducers. It runs in polynomial-time, but has a drawback: it requires the input/output
examples to form a characteristic sample for the transducer which is being learned. The
transducer which is being learned is however not known in advance. As such, it is not clear
in practice how to construct such a characteristic sample. When the input/output examples
do not form a characteristic sample, the algorithm might fail, and the user of the algorithm
has no indication on which input/output examples should be added to obtain a characteristic
sample.

In the case when trees to be printed are programming abstract syntax trees, our work is
the dual of the mixfix parsing problem [23]. Mixfix parsing takes strings to parse and the
wrapping constants to print the trees, and produces the shape of the tree for each string.
Our approach requires the shape of the trees and strings of some trees, and produces the
wrapping constants to print the trees.

12.1 Equivalence of top-down tree-to-string transducers

Since tree test sets uniquely define the behavior of tree-to-string transducers, they can be used
for checking tree-to-word transducers equivalence. Checking equivalence of sequential (order-
preserving, non-duplicating) tree-to-string transducers can already be solved in polynomial
time [44], even when they are duplicating, and not necessarily order-preserving [31].

It was also shown [19] that checking equivalence of deterministic top-down macro tree-
to-string transducers (duplication is allowed, storing strings in registers to output them
later is allowed) is decidable. Complexity-wise, this result gives a co-randomized polynomial
time algorithm for linear (non-duplicating) tree-to-string transducers. This complexity
result was recently improved in [10], where it was proved that checking equivalence of linear
tree-to-string transducers can be done in polynomial time.



Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:27

12.2 Test sets

The polynomial time algorithms of [44, 10] exploit a connection between the problem of
checking equivalence of sequential top-down tree-to-string transducers and the problem of
checking equivalence of morphisms over context-free languages [44].

This latter problem was shown to be solvable in polynomial time [38, 39] using test sets.
More specifically, this work shows that each context-free language L has a (finite) test set
whose size is O(n6) (originally “finite” in [3, 15] and then “exponential” in [2]), where n is
the size of the grammar. They also provide a lower bound on the sizes of the test sets of
context-free languages, by exposing a family of grammars for which the size of the smallest
test is O(n3).

As a result, when checking the equivalence of two morphisms f and g over a context-
free language L, it is enough to check the equivalence on the test set of L whose size is
polynomial. This result translates (as described in [44]) to checking equivalence between
sequential top-down tree-to-string transducers in the following sense. When checking the
equivalence of two such transducers P1 and P2, it is enough to do so for a finite number of
trees, which correspond to the test set of a particular context-free language. This language
can be constructed from P1 and P2 in time |P1||P2|.

I Remark. Theorem 3 also helps improve the bound for checking equivalence of 1STS
with states, using the known reduction from equivalence of 1STS with states to morphisms
equivalence over a context-free language (reduction similar to Lemma 3, see [44, 26]).

13 Conclusion

We have presented a synthesis algorithms that can learn from examples tree-to-string functions
with the input tree as the only argument. This includes functions such as pretty printers.
Crucially, our algorithm can automatically construct a sufficient finite set of input trees,
resulting in an interactive synthesis approach that in which the user needs to answer only
a linear number of questions in the grammar size. Furthermore, the interaction process
driven by our algorithm guarantees that there is no ambiguity: the recursive function of
the expected form is unique for a given set of input-output examples. Moreover, we have
analyzed the structure of word equations that the algorithm needs to solve and shown that
they have a special structure allowing them to be solved in deterministic polynomial time,
which results in overall polynomial running time of our synthesizer. Our results make a case
that providing tests for tree-to-string functions is a viable alternative to writing the recursive
programs directly, an alternative that is particularly appealing for non-expert users.

References

1 Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. Recursive program synthesis. In
International Conference on Computer Aided Verification, 2013.

2 Jürgen Albert, Karel Culik, and Juhani Karhumäki. Test sets for context free languages and
algebraic systems of equations over a free monoid. Information and Control, 52(2):172–186,
1982.

3 Michael H Albert and J Lawrence. A proof of Ehrenfeucht’s conjecture. Theoretical Com-
puter Science, 41:121–123, 1985.

4 Rajeev Alur and Loris D’Antoni. Streaming tree transducers. In Automata, Languages,
and Programming, pages 42–53. Springer, 2012.

ECOOP 2017



19:28 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

5 Rajeev Alur and Pavol Černý. Expressiveness of streaming string transducers. In Kamal
Lodaya and Meena Mahajan, editors, IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, FSTTCS 2010, December 15-18, 2010,
Chennai, India, volume 8 of LIPIcs, pages 1–12. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2010.

6 Dana Angluin. Learning regular sets from queries and counterexamples. Information and
computation, pages 87–106, 1987.

7 Patrick Bahr and Laurence E. Day. Programming macro tree transducers. In Proceedings
of the 9th ACM SIGPLAN workshop on Generic programming, pages 61–72. ACM, 2013.

8 Jérôme Besombes and Jean-Yves Marion. Learning tree languages from positive examples
and membership queries. In Shai Ben-David, John Case, and Akira Maruoka, editors,
Algorithmic Learning Theory, 15th International Conference, ALT 2004, Padova, Italy,
October 2-5, 2004, Proceedings, volume 3244 of Lecture Notes in Computer Science, pages
440–453. Springer, 2004. doi:10.1007/978-3-540-30215-5_33.

9 Adrien Boiret. Normal Form on Linear Tree-to-word Transducers. In 10th International
Conference on Language and Automata Theory and Applications, 2016.

10 Adrien Boiret and Raphaela Palenta. Deciding equivalence of linear tree-to-word trans-
ducers in polynomial time. CoRR, abs/1606.03758, 2016.

11 Joost Engelfriet and Sebastian Maneth. Output string languages of compositions of determ-
inistic macro tree transducers. Journal of Computer and System Sciences, 64(2):350–395,
2002.

12 John K. Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing Data Structure Transforma-
tions from Input-output Examples. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2015, pages 229–239, New
York, NY, USA, 2015. ACM.

13 Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. Example-
directed synthesis: a type-theoretic interpretation. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St.
Petersburg, FL, USA, January 20 - 22, 2016, 2016.

14 Jonathan Graehl and Kevin Knight. Training tree transducers. Technical report, DTIC
Document, 2004.

15 Victor Sergeevich Guba. Equivalence of infinite systems of equations in free groups and
semigroups to finite subsystems. Mathematical Notes, 40(3):688–690, 1986.

16 Sumit Gulwani. Synthesis from Examples. In WAMBSE Special Issue, Infosys Labs Brief-
ings, volume 10(2), 2012.

17 Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Complete completion using
types and weights. In Hans-Juergen Boehm and Cormac Flanagan, editors, ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, Seattle, WA,
USA, June 16-19, 2013, pages 27–38. ACM, 2013. doi:10.1145/2462156.2462192.

18 Tihomir Gvero, Viktor Kuncak, and Ruzica Piskac. Interactive Synthesis of Code Snip-
pets. In Proceedings of the 23rd International Conference on Computer Aided Verification,
CAV’11, pages 418–423, Berlin, Heidelberg, 2011. Springer-Verlag.

19 Helmut Seidl, Sebastian Maneth, and Gregor Kemper. Equivalence of deterministic top-
down tree-to-string transducers is decidable. In Foundations of Computer Science (FOCS),
2015 IEEE 56th Annual Symposium on, pages 943–962. IEEE, 2015.

20 Thibaud Hottelier, Ras Bodik, and Kimiko Ryokai. Programming by manipulation for
layout. In Proceedings of the 27th annual ACM symposium on User interface software and
technology, 2014.

21 Patrik Jansson. Functional Polytypic Programming. PhD thesis, Institutionen för
datavetenska, Göteborg : Chalmers University of Technology, 2000.

http://dx.doi.org/10.1007/978-3-540-30215-5_33
http://dx.doi.org/10.1145/2462156.2462192


Mikaël Mayer, Jad Hamza and Viktor Kunčak 19:29

22 Artur Jeż. Word equations in linear space. arXiv preprint arXiv:1702.00736, 2017.
23 Jean-Pierre Jouannaud, Claude Kirchner, Hélène Kirchner, and Aristide Megrelis. Program-

ming with equalities, subsorts, overloading, and parametrization in OBJ. The Journal of
Logic Programming, 12(3):257–279, 1992.

24 Dileep Kini and Sumit Gulwani. Flashnormalize: Programming by examples for text nor-
malization. In Qiang Yang and Michael Wooldridge, editors, Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos
Aires, Argentina, July 25-31, 2015, pages 776–783. AAAI Press, 2015. URL: http:
//ijcai.org/Abstract/15/115.

25 Manos Koukoutos, Etienne Kneuss, and Viktor Kuncak. An update on deductive synthesis
and repair in the leon tool. In Ruzica Piskac and Rayna Dimitrova, editors, Proceedings
Fifth Workshop on Synthesis, SYNT@CAV 2016, Toronto, Canada, July 17-18, 2016.,
volume 229 of EPTCS, pages 100–111, 2016. doi:10.4204/EPTCS.229.9.

26 Grégoire Laurence. Normalisation et Apprentissage de Transductions d’Arbres en Mots.
PhD thesis, Université des Sciences et Technologie de Lille-Lille I, 2014.

27 Grégoire Laurence, Aurélien Lemay, Joachim Niehren, Sławek Staworko, and Marc Tom-
masi. Learning sequential tree-to-word transducers. In International Conference on Lan-
guage and Automata Theory and Applications, pages 490–502. Springer, 2014.

28 Vu Le and Sumit Gulwani. FlashExtract: A framework for data extraction by examples.
In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, page 55. ACM, 2014.

29 Aurélien Lemay, Sebastian Maneth, and Joachim Niehren. A learning algorithm for top-
down XML transformations. In Jan Paredaens and Dirk Van Gucht, editors, Proceedings of
the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS 2010, June 6-11, 2010, Indianapolis, Indiana, USA, pages 285–296. ACM,
2010. doi:10.1145/1807085.1807122.

30 M Lothaire. Combinatorics on words, volume 17. Cambridge University Press, 1997.
31 Sebastian Maneth and Helmut Seidl. Deciding equivalence of top-down XML transforma-

tions in polynomial time. In PLAN-X, pages 73–79, 2007.
32 Mikaël Mayer and Jad Hamza. Optimal test sets for context-free languages. CoRR,

abs/1611.06703, 2016. URL: http://arxiv.org/abs/1611.06703.
33 Mikaël Mayer, Jad Hamza, and Viktor Kuncak. Polynomial-time proactive synthesis of

tree-to-string functions from examples. CoRR, abs/1701.04288, 2017. URL: http://arxiv.
org/abs/1701.04288.

34 Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Alex Polozov,
Rishabh Singh, Ben Zorn, and Sumit Gulwani. User interaction models for disambigu-
ation in programming by example. In 28th ACM User Interface Software and Technology
Symposium, 2015.

35 Heather Miller, Philipp Haller, Eugene Burmako, and Martin Odersky. Instant pickles:
generating object-oriented pickler combinators for fast and extensible serialization. In Pro-
ceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Pro-
gramming Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013, In-
dianapolis, IN, USA, October 26-31, 2013, pages 183–202, 2013.

36 Terence Parr and Jurgen Vinju. Towards a universal code formatter through machine
learning. In Proceedings of the 2016 ACM SIGPLAN International Conference on Software
Language Engineering, pages 137–151. ACM, 2016.

37 Daniel Perelman, Sumit Gulwani, Dan Grossman, and Peter Provost. Test-driven synthesis.
In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, page 43. ACM, 2014.

ECOOP 2017

http://ijcai.org/Abstract/15/115
http://ijcai.org/Abstract/15/115
http://dx.doi.org/10.4204/EPTCS.229.9
http://dx.doi.org/10.1145/1807085.1807122
http://arxiv.org/abs/1611.06703
http://arxiv.org/abs/1701.04288
http://arxiv.org/abs/1701.04288


19:30 Proactive Synthesis of Recursive Tree-to-String Functions from Examples

38 Wojciech Plandowski. Testing equivalence of morphisms on context-free languages. In
European Symposium on Algorithms, pages 460–470. Springer, 1994.

39 Wojciech Plandowski. The complexity of the morphism equivalence problem for context-free
languages. PhD thesis, Department of Mathematics, Informatics, and Mechanics, Warsaw
University, 1995.

40 Wojciech Plandowski. Satisfiability of word equations with constants is in PSPACE. In
Foundations of Computer Science, 1999. 40th Annual Symposium on, pages 495–500. IEEE,
1999.

41 Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. Program synthesis from
polymorphic refinement types. In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA,
USA, June 13-17, 2016, 2016.

42 Oleksandr Polozov and Sumit Gulwani. Flashmeta: a framework for inductive program
synthesis. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015, part of
SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, pages 107–126, 2015. doi:
10.1145/2814270.2814310.

43 Rishabh Singh and Sumit Gulwani. Synthesizing number transformations from input-
output examples. In Proc. of the 24th CAV conference, pages 634–651, Berlin, Heidelberg,
2012. Springer-Verlag.

44 Sławomir Staworko, Grégoire Laurence, Aurélien Lemay, and Joachim Niehren. Equival-
ence of deterministic nested word to word transducers. In International Symposium on
Fundamentals of Computation Theory, pages 310–322. Springer, 2009.

45 Kuat Yessenov, Shubham Tulsiani, Aditya Krishna Menon, Robert C. Miller, Sumit Gul-
wani, Butler W. Lampson, and Adam Kalai. A colorful approach to text processing
by example. In Shahram Izadi, Aaron J. Quigley, Ivan Poupyrev, and Takeo Igarashi,
editors, The 26th Annual ACM Symposium on User Interface Software and Technology,
UIST’13, St. Andrews, United Kingdom, October 8-11, 2013, pages 495–504. ACM, 2013.
doi:10.1145/2501988.2502040.

46 Chicheng Zhang and Kamalika Chaudhuri. Active learning from weak and strong labelers.
In Advances in Neural Information Processing Systems, 2015.

http://dx.doi.org/10.1145/2814270.2814310
http://dx.doi.org/10.1145/2814270.2814310
http://dx.doi.org/10.1145/2501988.2502040


A Capability-Based Module System
for Authority Control∗†

Darya Melicher1, Yangqingwei Shi2, Alex Potanin3, and
Jonathan Aldrich4

1 Carnegie Mellon University, Pittsburgh, PA, USA
2 Carnegie Mellon University, Pittsburgh, PA, USA
3 Victoria University of Wellington, Wellington, New Zealand
4 Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
The principle of least authority states that each component of the system should be given author-
ity to access only the information and resources that it needs for its operation. This principle is
fundamental to the secure design of software systems, as it helps to limit an application’s attack
surface and to isolate vulnerabilities and faults. Unfortunately, current programming languages
do not provide adequate help in controlling the authority of application modules, an issue that
is particularly acute in the case of untrusted third-party extensions.

In this paper, we present a language design that facilitates controlling the authority granted
to each application module. The key technical novelty of our approach is that modules are first-
class, statically typed capabilities. First-class modules are essentially objects, and so we formalize
our module system by translation into an object calculus and prove that the core calculus is type-
safe and authority-safe. Unlike prior formalizations, our work defines authority non-transitively,
allowing engineers to reason about software designs that use wrappers to provide an attenuated
version of a more powerful capability.

Our approach allows developers to determine a module’s authority by examining the capab-
ilities passed as module arguments when the module is created, or delegated to the module later
during execution. The type system facilitates this by identifying which objects provide capabil-
ities to sensitive resources, and by enabling security architects to examine the capabilities passed
into and out of a module based only on the module’s interface, without needing to examine the
module’s implementation code. An implementation of the module system and illustrative ex-
amples in the Wyvern programming language suggest that our approach can be a practical way
to control module authority.

1998 ACM Subject Classification D.3.3 Language Constructs and Features

Keywords and phrases Language-based security, capabilities, authority, modules

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.20

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.3.2.2

∗ This work was supported in part by NSA lablet contract #H98230-14-C-0140 and by Oracle Labs
Australia.

† A technical report containing a complete version of the formalism is also available [21].

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Darya Melicher, Yangqingwei Shi, Alex Potanin, and Jonathan Aldrich;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 20; pp. 20:1–20:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.20
http://dx.doi.org/10.4230/DARTS.3.2.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


20:2 A Capability-Based Module System for Authority Control

1 Introduction

The principle of least authority [34] is a fundamental technique for designing secure soft-
ware systems. It states that each component of a system must be able to access only the
information and resources that it needs for operation and nothing more. For example, if an
application module needs to append an entry to an application log, the module should not
also be able to access the whole file system. This is important for any software system that
divides its code into a trusted code base [33] and untrusted peripheral code, as in it, trusted
code could run directly alongside untrusted code. Common examples of such software sys-
tems are extensible applications, which allow enriching their functionality with third-party
extensions (also called plug-ins, add-ins, and add-ons), and large software systems, in which
some developers may lack the expertise to write secure- or privacy-compliant code and thus
should have a limited ability to access system resources in their code. Enforcing the principle
of least authority helps to limit the attack surface of a software system and to isolate vul-
nerabilities and faults. However, current programming languages do not provide adequate
control over the authority of untrusted modules [3, 38], and non-linguistic approaches also
fall short in controlling authority [4, 18, 35, 42].

Application security becomes even more challenging if an application uses code-loading
facilities or advanced module systems, which allow modules to be dynamically loaded and
manipulated at runtime. In such cases, an application has extra implementation flexibility
and may decide what modules to use at runtime, e.g., responding to user configuration or
the environment in which the application is run. On the other hand, untrusted modules
may get access to crucial application modules that they do not explicitly import via global
variables or method calls. For example, although a third-party extension may import only
the logging module and not the file I/O module, the extension could receive an instance of
the file I/O module via a method call as an argument or as a return value. Dynamic module
loading can be modeled as first-class modules, i.e., modules that are treated like objects and
can be instantiated, stored, passed as an argument, returned from a function, etc. However,
in a conventional programming language featuring first-class modules (e.g., Newspeak [2],
Scala [31], and Grace [15]), it is difficult to track and control modules accesses.

In this paper,1 we present a module system that helps software developers to control
the authority of code by treating modules as first-class, statically typed capabilities [5]—
i.e., communicable but unforgeable references allowing to access a resource—and making
access to security- and privacy-related modules capability-protected, in the style of the E
programming language [25]. Specifically, if module A wants to access module B, A may do
so only if A possesses an appropriate capability. Leveraging capabilities allows us to support
first-class modules (e.g., representing dynamic module loading, linking, and instantiation)
while still providing a strong model for reasoning about application security and module
isolation.

The design of the module system and the accompanying type system of the language
simplify reasoning about module authority. To determine the authority of a module via
capability-based reasoning, a security expert or a system architect must understand what
capabilities the module can access. Since our module system is statically typed (in contrast
to Newspeak [2], which provides a capability-safe but dynamically typed module system),
the architect needs to examine only the module’s interface and the interfaces of its imports
and does not need to examine the code of any module. For example, suppose an application

1 A one-paragraph poster abstract for this work appeared elsewhere [16].



D. Melicher, Y. Shi, A. Potanin, and J. Aldrich 20:3

has a trusted logger module that legitimately imports a module for file I/O, and the logger
module is the only module imported by an extension. To ensure that the extension does not
have access to the file I/O module, except as mediated (i.e., attenuated [25]) by the logger
module, it is sufficient to verify that the extension does not import the file I/O module
directly and that the extension cannot get direct access to a file I/O capability by calling the
logger’s methods. The first condition is a syntactic check, and the second condition requires
inspecting only the logger’s interface, e.g., to ensure that none of the methods in the interface
return a file object (or indeed the file I/O module itself, since modules are first-class). Our
module system enjoys an authority safety property that statically guarantees that the above
two possibilities are all a developer has to consider. This is in contrast to conventional
languages and module systems, in which global variables, unrestricted reflection, arbitrary
downcasts, and other “back doors” make capability-based reasoning infeasible.

Our work has four central contributions. The first contribution is the design of a module
system that supports first-class modules (cf. Newspeak, Scala, and Grace) and is capability-
safe [22, 25]. Our approach forbids global state, instead requiring each module to take
the resources it needs as parameters, which ensures that modules do not carry ambient
authority [40] (similar to Newspeak, but in contrast to Scala and Grace). For practical
purposes, our module system supports module-local state and does not restrict the imports
of non-state-bearing modules (in contrast to Newspeak).

The second contribution is a type system that distinguishes modules and objects that
act as capabilities to access sensitive resources, from modules and objects that are purely
functional computation or store immutable data. This design makes it easy for an architect
to focus on the parts of an interface that are relevant to the authority of a module. Overall,
the type system allows developers to determine the authority of a module at compile time
by examining only the interfaces of the module and the modules it imports, without having
to look at the implementation of the involved modules.

The third contribution of our work is the formalization of authority control in the de-
signed module system, in which we introduce a novel, non-transitive definition of authority
that explicitly accounts for attenuated authority (e.g., as in the logger example above).
We also introduce a definition of authority safety and formally prove the designed system
authority-safe. Our result contrasts prior, transitive definitions of authority safety that
cannot account for authority attenuation [7, 20].

The final contribution is the implementation of the designed module system in Wyvern, a
statically typed, capability-safe, object-oriented programming language [29], demonstrating
the feasibility and practicality of the proposed approach.

We start the paper by describing the Wyvern module system from the perspective of
a software developer in Section 2 and present the formalization of the designed module
system in Section 3. We continue by introducing the definition of authority safety, state
authority-related properties of Wyvern’s module system, and prove Wyvern authority-safe
in Section 4. Then, we report on the implementation of the Wyvern module system and on
the limitations of our approach in Sections 5 and 6 respectively. Finally, we compare our
approach to other language-based approaches in Section 7 and conclude in Section 8.

2 Wyvern Module System

In Wyvern, modules have several features distinguishing its module system from others:
Modules are first-class, i.e., they are treated as objects and can be instantiated, stored,
passed as arguments into methods, and returned from methods.

ECOOP 2017



20:4 A Capability-Based Module System for Authority Control

Wyvern Libraries Word Processor

Collections

System
Resources

Extensions

listFactory

logger
wordCloud
prettyChartnetwork

...

...

queueFactory

fileIO
Platforms

python
...

java

...

wordProcessor

Figure 1 A module import diagram of a word processor application used in code examples. The
boxes represent modules, and the arrows represent module imports. If an arrow goes from module
A to module B, A imports B. The arrows with black arrowheads correspond to importing resource
modules; the arrow with an unfilled arrowhead corresponds to importing a pure module. The dark
background delineates the trusted code base.

Modules are treated as capabilities in the style of [1], i.e., we unify the notion of having
a reference to a module with the notion of having a capability to access that module. If
a module can access another module, we say that the former module has a capability to
use the latter module. (The same is true for objects.)
Modules are divided into two categories: resource modules, i.e., security- or privacy-
related modules (system resources, modules containing application data, or state-bearing
modules), and pure modules, i.e., non-state-bearing utility modules.

To illustrate our approach, let us consider a sample application that allows third-party
extensions. Figure 1 shows a module import diagram of a word processor application, similar
to OpenOffice or MS Word, that extends its feature set by allowing third-party extensions.
The vertical dotted line represents a virtual border between standard language-provided
libraries and the word processor code. The boxes represent modules, which are clustered
according to their conceptual type. The arrows represent module imports. If an arrow
goes from module A to module B, module A imports module B. The arrows with black
arrowheads correspond to importing resource modules, while the arrow with an unfilled
arrowhead corresponds to importing a pure module. Being able to import a resource module,
which corresponds to arrows with black arrowheads on the diagram, is equivalent to having
unconditional control and thus authority over the imported module.

Wyvern provides a number of standard libraries: Collections refer to a set of pure mod-
ules that provide implementations of basic functionality, e.g., list and queue factories. Sys-
tem Resources refers to a set of language-provided modules that implement system-level
functionality, e.g., file and network access. Platforms refer to the modules that implement
the Wyvern back end. Platforms and system resources may be used to subvert the word
processor, and thus access to them requires the possession of special capabilities.

The word processor system consists of core modules, which are considered trusted, and
extension modules (marked so on the diagram), which are provided by third parties and
considered untrusted. The diagram presents only a subset of modules of the word processor’s
core that are used in our examples: the wordProcessor module is the main module of the word
processor, and the logger module provides a logging service and can be used by multiple
word processor’s modules.

We use the word processor example to introduce Wyvern’s two types of modules—
resource modules and pure modules—and to show how one can determine a module’s au-
thority. For brevity, all module definitions and their types in code examples are put together;
however, in reality, each module definition and type resides in a separate file.



D. Melicher, Y. Shi, A. Potanin, and J. Aldrich 20:5

2.1 Threat Model
Our approach focuses on ensuring the principle of least authority and assumes a software
system that is divided into a trusted code base [33] and untrusted peripheral code. All
the code in the trusted code base is vetted by security or privacy experts. The untrusted
code may be modules within the same code base or third-party extensions. Our module
system aims at giving the untrusted modules the least possible authority over security- and
privacy-related modules of the trusted code base, thus minimizing the possible damage if
the untrusted code is malicious or vulnerable. The authority given to untrusted modules is
scrutinized, but their code is not examined, except for their interfaces.

The following two common scenarios fit our threat model:
Malicious third-party code. In an extensible software system, an attacker writes a malicious

extension and tricks the user into loading it into the system. We wish to limit the damage
that such an extension can do.

Fallible in-house code. In a large software system, a trusted core is written by security
experts, who have the knowledge to securely access sensitive resources, e.g., the network
and file system, while the rest of the system is written by non-security experts, who may
introduce vulnerabilities that could be exploited by an attacker. We wish to limit the
damage that may result from exploits to the non-core parts of the system.

In both scenarios, modules written by less trusted parties can access security- and
privacy-related modules, e.g., system resources, only via safe interfaces written by experts.
We leverage module system capabilities to ensure that attackers cannot do anything to
security- or privacy-critical resources beyond what is permitted by the safe interfaces. Vul-
nerabilities inside the trusted code base are explicitly outside of our security model. We
discuss the limitations of this model more in Section 6.

The word processor example is presented as the first scenario, but it can be adapted
to the second scenario as well. In Figure 1, the trusted code base is marked by the dark
background.

2.2 Resource Modules
Resource modules are defined as modules that:
1. encapsulate system resources (e.g., java and fileIO),
2. use other resource modules (e.g., wordProcessor and logger), or
3. contain mutable state (e.g., wordProcessor).
A module is a resource if it has one or more of these characteristics. For example, the
wordProcessor module is a resource module because it imports the system resource fileIO

and has state (details upcoming). It is important for state-bearing modules to be resources,
as they may contain private application data and also may facilitate communication between
modules that import them, potentially allowing illegal sharing of capabilities.

Figure 2 presents a code example with several resource modules and types. By con-
vention, module names start with lowercase letters, while type names are capitalized. The
code snippet starts with the definition of the main module of the word processor applic-
ation, wordProcessor, which is a resource module. The module imports a module instance
of a resource type FileIO (defined on lines 5–7) via the argument passing mechanism. In
Wyvern, each resource module is an ML-style functor [19], i.e., it is a function that accepts
one or more arguments, each of which is a module instance of a required type, and produces
a module instance as a result. In the case of wordProcessor, the module functor accepts a
module instance of type FileIO and returns an instance of the wordProcessor module.

ECOOP 2017



20:6 A Capability-Based Module System for Authority Control

1 module def wordProcessor(io : FileIO) : WordProcessor
2 import logger
3 var log : Logger = logger(io)
4 ...
5 resource type FileIO
6 def read(file : File) : String
7 ...
8 resource type Logger
9 def appendToLog(entry : String) : Unit

10 module def logger(io : FileIO) : Logger
11 def appendToLog(entry : String) : Boolean
12 io.open("~/log.txt").append(entry)

Figure 2 A Wyvern code example demonstrating resource modules, their imports, and instanti-
ations.

FileIO is a resource type that gives access to the file system, and since wordProcessor

imports an instance of this type, wordProcessor is a resource module too. To access a resource
module of the FileIO type, wordProcessor needs to have an appropriate capability. The
capability must be passed into the wordProcessor module on its instantiation by either another
module or top-level code.

The wordProcessor module instantiates the logger module (defined on lines 8–12) by, first,
importing the definition of the logger module using the import keyword and then calling
the imported logger functor definition with appropriate arguments to get an instance of
the logger module. (Technically, logger(io) is syntactic sugar for logger.apply(io), where
apply() is a default method called on a resource module to instantiate it.) The argument that
logger requires is a module instance of the FileIO type, and by passing in io, wordProcessor

gives logger the capability to use the module instance of the FileIO type it received on
instantiation. The created instance of logger is immediately assigned to a local variable
log, which may be used later in the wordProcessor’s code. Note that wordProcessor imports a
module instance of the FileIO type, but it instantiates, i.e., creates a local instance of, the
logger module. Generally, any resource module can instantiate other resource modules from
its initialization block and even provide them with access to resource modules to which it
itself has access. Since logger is a resource module, instantiating it creates a capability for
it, which, in this case, belongs to the wordProcessor module.

Alternatively, if wordProcessor did not want to provide logger access to the file system,
wordProcessor could create and pass in a dummy module of type FileIO as follows:

module def wordProcessor(io : FileIO) : WordProcessor
import logger
var dio : FileIO = dummyIO
var log : Logger = logger(dio)
...

This would disallow the logger module from having any access to the file system.
To run the program, the top-level code is as follows:

platform java
import fileIO
import wordProcessor
let io = fileIO(java) in

let wp = wordProcessor(io) in ...

First, the back end to be used is specified using the platform keyword. This keyword can
appear only on the top level and is used to create a resource module instance representing



D. Melicher, Y. Shi, A. Potanin, and J. Aldrich 20:7

the back-end implementation. Then, the definitions of the fileIO and wordProcessor module
functors are imported, and the two modules are instantiated receiving the arguments they
require. The two newly created module instances are assigned to two variables in two nested
let constructs and can be used in the rest of the code contained in the inner let’s body.

The top-level code exercises high-level control over accesses to resource modules, per-
forming two important functions. First, it instantiates resource modules, implicitly creating
capabilities that allow using the instantiated modules. Second, it grants module access per-
missions (conceptually, in the Newspeak style [2]; syntactically, in the ML-functor style [19]):
the instantiated modules (and implicit capabilities to use them) are passed as arguments to
authorized modules.

For brevity, the top level code can be shortened as follows:
require fileIO : FileIO
import wordProcessor
let wp = wordProcessor(fileIO) in ...

Here we use syntactic sugar (the keyword require) for specifying the platform (the default
platform is chosen), and importing the functor definition of and instantiating the fileIO

module. This syntactic sugar can be used for resource modules that import only the resource
module representing the back-end implementation, and is usually used for short programs,
e.g., “Hello, World!”

Notably, two modules may share a module instance and potentially use it for commu-
nication. For example, if both extensions prettyChart and wordCloud would like to append to
the word processor’s log, they may share one instance of the logger module:

require fileIO
import wordCloud
import prettyChart
let log = logger(fileIO) in

let wCloud = wordCloud(log) in
let pChart = prettyChart(log) in ...

This makes the language more flexible and simplifies certain implementation tasks.

2.3 Pure Modules
The definition of a pure module is the opposite from the definition of a resource module.
Pure modules are those modules that:
1. do not encompass system resources,
2. do not import any resource module instances,
3. do not contain or transitively reference any mutable state,
4. have no side effects.

For a module to be pure, all of these conditions must be satisfied. The third condition
has a caveat: The prohibition is on whether a module and its functions capture state, not
whether they affect it. Functions defined in a pure module may have side effects on state,
but only if the state in question is passed in as an argument or created within the function
itself.

Thus pure modules are harmless from the security perspective, and for more convenience,
in Wyvern, any module can import any pure module.

Figure 3 shows an example of a pure module and how it can be imported. The listFactory

module is the implementation of a list factory and belongs to the standard Wyvern library.
It does not contain mutable state, but only creates new lists, and therefore is a pure module.

ECOOP 2017



20:8 A Capability-Based Module System for Authority Control

1 module listFactory : ListFactory
2 def create() : List
3 ...
4 module def wordCloud(log : Logger) : WordCloud
5 import wyvern : listFactory as list
6 var words : List = list.create()
7 ...

Figure 3 A Wyvern code example demonstrating a pure module and its import.

1 module def wordCloud(log : Logger, list : ListFactory) : WordCloud
2 var words : List = list.create()
3 ...
4 // top level
5 require fileIO
6 import wordCloud
7 import listFactory as list
8 let log = logger(fileIO) in
9 let wCloud = wordCloud(log, list) in ...

Figure 4 A Wyvern code example demonstrating how a pure module can be passed to a module
as an argument.

In Wyvern, pure modules are not functors, and a module that imports a pure module receives
an instance of the pure module.

The wordCloud module is a third-party extension module that creates a word cloud—an
image composed of words used in a text passage, in which the size of each word indicates its
frequency—and pastes it into a word processor document. The wordCloud module uses a list
to store the words it operates on and therefore imports the listFactory module using the
import keyword. Since, for pure modules, the import statement produces a module instance,
it can be immediately assigned to a local variable using the as keyword. The import of
listFactory by wordCloud is invisible to the module or top-level code that instantiates the
wordCloud module.

Wyvern’s module system includes additional features that are not essential to the cap-
ability model, but are useful for software engineering purposes. For example, pure modules
can be assigned a resource module type, allowing them to be treated as resource modules,
e.g., for testing purposes. Furthermore, we could make the wordCloud module generic in the
particular implementation of lists that it uses by adding a pure module parameter of type
ListFactory, as shown in Figure 4. We do not discuss these features further as they do not
impact capability-based reasoning.

2.4 Authority Analysis

As stated in our threat model, we are concerned with the authority granted to third-party
extensions, as well as minimizing access to system resources by all application modules. In
this section, we demonstrate how an architect can verify that the authority of the modules
in the word processor application matches the authority shown in Figure 5. (In Section 4,
we will generalize authority to arbitrary objects and provide a formal definition.)

Since access to resources is mediated by modules, we can represent the authority of
a given module as the set of resource modules it can access. In Figure 5, if an arrow
goes from module A to module B, A imports B and has authority over B. If an arrow



D. Melicher, Y. Shi, A. Potanin, and J. Aldrich 20:9

logger wordCloudfileIOjava

x x

x

Figure 5 Authority distribution between fileIO, logger, and wordCloud. If an arrow goes from
module A to module B, A has authority over B. Crosses on arrows mean that such authority is not
granted. In Wyvern, authority is non-transitive.

is crossed, it means that such authority is not granted. Thus, wordCloud has authority to
access logger, which in turn has authority to access fileIO, which ultimately has access to
the java foreign function interface module. We want to verify that the transitive extension of
these authority relationships does not hold, e.g., the wordCloud module does not have direct
authority to do the file I/O operations supported by the fileIO module. In effect, we are
verifying that wordCloud gets only an attenuated capability to do file I/O: it can perform
the logging operations supported by the logger module, but nothing more. This facilitates
a defense in depth strategy: if an attacker controls the wordCloud module and somehow
subverts the logger module to get a fileIO capability, since fileIO itself attenuates the java

foreign function interface capability, the attacker can do file I/O but cannot make arbitrary
system calls supported by the Java standard library.

To verify that authority is property attenuated (thereby mitigating the attack mentioned
above by ensuring that wordCloud cannot get a fileIO capability), we need to check that the
fileIO module is properly encapsulated by the logger module, and that the logger module
provides operations that are restricted appropriately to the intended semantics of logging
and cannot be used to do arbitrary file I/O.

We can check encapsulation by inspecting the interface of wordCloud as well as the inter-
faces of the modules it imports: Logger and ListFactory. Since ListFactory is not a resource
module, we do not have to look any further at its interface. (Note that, in contrast to
dynamically typed, capability-safe languages such as E or Newspeak, Wyvern’s type system
aids our inspection here.) We inspect the interface of logger (lines 8–9 in Figure 2) and im-
mediately observe that none of the types in logger’s interface are resource types. Thus, we
verify that logger cannot leak a reference to the fileIO module that it uses internally—again,
using only the type of the logger module, not its implementation.

Of course, encapsulation by itself is not enough: if logger provided the same operations
as fileIO, it would essentially provide the same authority despite the actual fileIO being
encapsulated. To this end, we check that logger attenuates the authority of fileIO and
that logger can only do logging, instead of arbitrary file operations, by looking at the
implementation of logger. Notably, this inspection is localized: we can use interfaces to
reason about where capabilities can reach and then check the code that uses those capabilities
to ensure it enforces the proper invariants. We do not have to inspect any code if we can
show that the capability we are reasoning about does not reach that code. In this case, if
we do inspect logger it is easy to see that it invokes open() and append() on a specific file,
which is characteristic of the intended logging functionality.

This process would be more complicated in a language that is not capability-safe or even
in a language that is capability-safe but does not have Wyvern’s static typing support. In a
language that is not statically typed, we could not so quickly exclude the possibility that a
capability of interest is hidden in ListFactory, nor could we be sure that we know all of the
operations available on an object unless we enforce that dynamically by imposing a wrapper.
In a language that is not capability-safe, there is much more to worry about: wordCloud could

ECOOP 2017



20:10 A Capability-Based Module System for Authority Control

p ::= md platform x i e

md ::= h i d

h ::= module x : τ
| module def x(y : τ) : τ

i ::= import x [as y]
d ::= def m(x : τ) : τ = e

| var f : τ = x

e ::= x

| news(x⇒ d)
| e.m(e)
| e.f

| e.f = e

| let x = e in e
| bind x = e in e

s ::= resource | pure

Figure 6 Wyvern’s abstract grammar.

get access to fileIO by reading a global variable, a reference to a file object could be smuggled
in an apparently innocent variable of type Object and then downcast to type File, or reflection
could be used to extract a fileIO reference from within the logger object. However, these
are not possible in Wyvern: Wyvern does not support arbitrary downcasts but only pattern
matching in a hierarchy where the possible child types are known. In addition, Wyvern’s
capability-safe reflection mechanism respects type restrictions [41], so that reflection cannot
be used to do anything other than invoke the public methods of logger. Thus, Wyvern’s
capability-safe module system along with its static types greatly simplify reasoning about
the authority of modules.

3 Wyvern Syntax and Semantics

Although modules are at the heart of our work, they are not central to Wyvern’s formal
system. Inspired by the Wyvern core work [29], our modules are syntactic sugar on top of
an object-oriented core language and are available for developers’ convenience. We present
the Wyvern formal system in the following order: first, we describe the abstract grammar
for writing modules in Wyvern, then the object-oriented core language syntax and module
translation into it, and finally, Wyvern’s static and dynamic semantics. This precisely defines
our design and lays the groundwork for the definition and proof of authority safety in
Section 4.

3.1 Module Syntax
Wyvern’s abstract grammar is shown in Figure 6. A Wyvern program consists of zero or
more modules followed by the top-level code that includes specifying the back end used
to run the program using the platform keyword, zero or more module imports, and an
expression e. Each module consists of a module header h, a list of imports i, and a list of
declarations d. Module headers can be one of two types depending on whether the module
is a resource module or a pure module. If a module is pure, its header consists of the module

keyword, a name x that uniquely identifies the module, and a module type τ . If a module is
a resource module, its header consists of the module keyword, followed by the def keyword,
which signifies that it is a functor, a name x, which uniquely identifies the module functor,
a list of functor parameters and their types, and a functor return type τ .

The module-import syntax is used for importing instances of pure modules or module
functors for resource modules, and consists of the import keyword followed by the module
or functor name x. In the case of importing an instance of a pure module, for convenience,
the instance can be renamed using the as keyword.



D. Melicher, Y. Shi, A. Potanin, and J. Aldrich 20:11

e ::= x

| news(x⇒ d)
| e.m(e)
| e.f

| e.f = e

| bind x = e in e
| l

| l.m(l) B e

s ::= resource | pure

d ::= def m(x : τ) : τ = e

| var f : τ = x

| var f : τ = l

τ ::= {σ}s

σ ::= def m(x : τ) : τ
| var f : τ

Γ ::= ∅ | Γ, x : τ
µ ::= ∅ | µ, l 7→ {x⇒ d}s

Σ ::= ∅ | Σ, l : τ

E ::= [ ]
| E.m(e)
| l.m(E)
| E.f

| E.f = e

| l.f = E

| bind x = E in e
| l.m(l) B E

Figure 7 Syntax of Wyvern’s object-oriented core.

A module can contain declarations of two kinds: method declarations and variable de-
clarations. Method declarations are specified using the def keyword followed by the method
name m, a list of method parameters and their types, the method’s return type τ , and
the method body e. Variable declarations are specified using the keyword var followed by
the variable name f , the variable type τ , and the value x. We restrict the form of the
initialization expression to simplify translation into the core, but this is relaxed in our im-
plementation.

Wyvern expressions are common for an object-oriented programming language and in-
clude: a variable, the new construct, a method call, a field access, a field assignment, and
the let and bind constructs. The new construct carries a tag s that indicates whether the
object being created is pure or is a resource, which is at the core of our formalization of
authority control. It also contains a self reference x that is similar to a this, but provides
more flexible naming, and is used for tracking the receiver (discussed in more detail later).
Finally, the new construct accepts a list of declarations d. The bind construct is similar to
a let with the difference that expressions in its body can access only the variables defined
in it and nothing outside it (one can think of it as a Scala’s spore [23] or an AmbientTalk’s
isolate [39]). The types of variables defined in a let or bind are inferred.

3.2 Core Language Syntax

For the sake of uniformity and to simplify reasoning about authority safety, Wyvern modules
are translated into objects. The abstract grammar that has modules (Figure 6) is translated
into the object-oriented core of Wyvern that does not have modules (Figure 7). Furthermore,
in Wyvern’s object-oriented core:

Methods may have only one parameter.
Expressions do not include the let construct.
The bind construct may have only one variable.
Expressions and declarations are extended with runtime forms that cannot appear in the
source code of a Wyvern program.

To represent multiparameter methods, the let construct, and multivariable bind in the
object-oriented core, we use a standard encoding (presented in the next section).

Expressions have two runtime forms: a location and a method-call stack frame. The
location l refers to a location in the store µ (on the heap) that holds an object definition
added at object creation. The method-call stack frame models the call stack and method
calls on it, while preserving information about the receiver of the executing method. The

ECOOP 2017



20:12 A Capability-Based Module System for Authority Control

trans(md platform z i e) =


let x = trans(md) if md = md md′

in trans(md′ platform z i e)

bind z = 〈constResObj〉 trans(i) if md = ∅
in e

trans(module x : τ i d) = bind trans(i) in newpure(x⇒ d)
trans(module def x(y : τ) : τ i d) = newresource(x⇒ def apply(y : τ) : τ

bind y = y trans(i)
in newresource(_⇒ d))

trans(i) =

{
y = x trans(i′) if i = import x as y i′

∅ if i = ∅

let x = e in e′ ≡ news(_⇒ def f(x : τ) : τ ′ = e′).f(e)
bind x = e in e ≡ bind x = (e1, e2, ..., en) in [x.n/xn]e

def m(x : τ) : τ = e ≡ def m(x : (τ1 × τ2 × ...× τn)) : τ = [x.n/xn]e

Figure 8 Modules-to-objects translation rules, and encodings for let, multivariable bind and
multiparameter methods.

expression l.m(l1)Be means that we are currently executing the method body e of a method
m of the receiver l, and object l1 was passed as an argument.

Since method bodies are evaluated lazily, i.e., only when an object calls the method,
declarations have only one runtime form for object fields. Method bodies can never contain
method-call stack frames. An object field in the source code can contain only a variable,
which at runtime becomes a location in the store. Thus, the runtime form for an object field
represents that a field f is referring to a location l.

A set of types of object fields and methods forms an object type, which is tagged as
either pure or resource. We use standard typing contexts Γ for variables and Σ for the store,
and to simplify Wyvern dynamic semantics, an evaluation context E.

3.3 Translation of Modules into Objects
Figure 8 presents modules-to-objects translation rules and encodings that are used in the
translation but not expanded for brevity. A Wyvern program is translated into a sequence
of let statements, where every variable in a let represents a module (the variable name x
is the name of a module) and the body of the last let in the sequence is a bind expression
containing the top-level code. The variables in this bind are a special constant resource
object, representing the back-end implementation, and the translation of top-level imports.
The body of the bind is the top-level expression.

In essence, modules are translated into objects: pure modules are translated into pure
objects and resource modules and translated into resource objects. The exact translation of
a Wyvern module depends on whether the module is a pure module or a resource module. If
the module is pure, it translates into a bind construct, in which the module’s imports become
the bind’s variables, and the module’s declarations are wrapped into a pure object of type τ
in the bind’s body. If the module is a resource module, it is a functor, and it translates into
a new resource object with a single method apply(). The apply() method takes as arguments
the functor’s arguments and, when called, returns a bind expression. The variables in the
returned bind consist of variables that shadow the functor’s arguments (since a bind’s body
can access only the variables defined in the bind and no other, outside variables) and the
imports of the resource module under translation. The body of the bind contains a resource
object that encompasses the declarations of the translated resource module. The module’s



D. Melicher, Y. Shi, A. Potanin, and J. Aldrich 20:13

1 module listFactory : ListFactory
2 def create() : List
3 ...
4 module def wordProcessor(io : FileIO)
5 : WordProcessor
6 import wyvern : listFactory as list
7 import logger
8 var log : Logger = logger(io)
9 var exts : List = list.create()

10 ...
11 // top level
12 platform java
13 import fileIO
14 import wordProcessor
15 let io = fileIO(java) in
16 let wp = wordProcessor(io) in ...

1 let listFactory = bind in newpure(x⇒
2 def create() : List = ...) in
3 let wordProcessor = newresource(x⇒
4 def apply(io : FileIO) : WordProcessor
5 bind
6 io = io
7 list = listFactory
8 logger = logger
9 in newresource(_⇒

10 var log : Logger = logger .apply(io)
11 var exts : List = list.create()
12 ...)) in
13 // top level
14 bind
15 java = 〈constResObj〉
16 fileIO = fileIO
17 wordProcessor = wordProcessor
18 in
19 let io = fileIO.apply(java) in
20 let wp = wordProcessor .apply(io) in ...

Figure 9 A sample modules-to-objects translation.

declarations are prohibited from referring to the resource object itself (as it does not exist
in the original code), and therefore we generate a fresh name for the self variable (in the
translation, it is marked with an underscore). The apply() method of a functor’s translation
is invoked whenever the functor is invoked.

Importantly, the bind construct plays a significant role in Wyvern’s module access control.
Module imports are translated into variables in a bind construct. Since the body of a bind is
disallowed to access anything outside the variables defined in the bind, a module can receive
a capability to access a resource only via the import mechanism, as an argument to one
of its methods, or as the return value from a method call on an imported module. This
substantially limits the number of possible paths for acquiring module access.

The let construct, a multivariable bind construct, and multiparameter methods are
provided only for developer convenience and are absent from Wyvern’s core syntax; they
are encoded instead. The let construct is encoded as a method call, and the multiplicity of
variables in the bind construct and parameters in methods is achieved by bundling variables
and parameters together in a tuple and then accessing them by their indices in the bind and
methods’ bodies.

Figure 9 shows an example of applying the translation rules from Figure 8. On the left
is a code snippet as a developer would write it, and on the right is the same code written
in Wyvern’s core syntax without modules (the encodings are not expanded for conciseness,
and we use the type abbreviations supported by our implementation rather than the less-
readable structural types in our formalism). The snippet is a partial program; the logger

and fileIO modules are assumed to be defined elsewhere.
The listFactory and wordProcessor modules are translated into variables defined in two

nested lets. The outer let defines the listFactory module, which is translated into a bind

expression. Since listFactory does not import any modules, the bind has no variables, and
the bind’s body is a new pure object encompassing the listFactory’s create() method.

The inner let defines the wordProcessor module, which is translated into a resource object
containing an apply() method. Similarly to the wordProcessor functor, the apply() method

ECOOP 2017



20:14 A Capability-Based Module System for Authority Control

takes an object of the FileIO type and returns an object of the WordProcessor type. The
body of the apply() method is a bind expression, the variables of which are the apply()’s
argument io as well as the two wordProcessor’s imports, listFactory and logger. The body
of the bind expression has a resource object encompassing wordProcessor’s declarations. To
get an instance of the logger module, the logger’s apply() method is called on it with an
appropriate argument. Since the body of the bind is limited to access only the variables
defined in the bind, wordProcessor has access to only three modules, fileIO, listFactory, and
logger, and no other modules.

The top-level code is translated in the body of the inner let and is represented by a
bind expression. The bind expression has all top-level imports as variable definitions and the
top-level nested let expression in the body.

3.4 Static Semantics

The Wyvern static semantics are presented in Figure 10. The annotation underneath the
turnstile—in the premise of T-New and declaration typing rules—is the same as the tag on
the new construct in the syntax and serves to identify objects and their declarations as pure
or resource. The annotation on top of the turnstile represents the current or future (in case
of object creation) receiver of the enclosing method.

Tracking the receiver is used in lieu of making object fields private. Both mechanisms
enforce non-transitivity of authority, but receiver tracking is simpler and is already imple-
mented for authority safety. In the T-New rule, the receiver for the new object’s declarations
is the new object itself. In T-Field and T-Assign, the receiver is the object whose field is
being accessed, which makes object field accesses private to the object to which they belong.
For all declaration typing rules, the receiver is the object to which the declarations belong.

The T-Decls rule enforces that each declaration of an object is well-typed. DT-
DefPure and DT-DefResource typecheck pure and resource object methods respect-
ively. A pure method should be able to typecheck in a typing environment without any
resource variables, except for the passed argument. The argument may be a resource, but
because all other variables in the context are pure, it cannot be stored (e.g., be assigned
to a variable) inside the method body. If all methods in an object are pure and the object
does not have any fields, the object is pure. DT-DefResource has a standard, much less
restrictive premise than DT-DefPure. If an object has a field, it is automatically declared
a resource, and its typechecking proceeds as expected depending only on whether the field’s
value is a variable (DT-Varx) or a location (DT-Varl). The T-Store rule ensures that
the store is well-formed and allocates new objects according to their types.

To summarize, an object is a resource if at least one of the following conditions is true:
1. The object contains a field (e.g., the object representing the wordProcessor module).
2. An object’s method definition needs a resource variable to typecheck (e.g., the object

representing logger needs an object of type FileIO to typecheck).
These conditions are checked statically. If neither of them are true, then the object is pure
(e.g., the object representing the listFactory module).

The subtyping rules are standard, except for the S-State rule, which is used for the
conversion between resource objects and pure objects:

{σe}pure <: {σe}resource
(S-State)



D. Melicher, Y. Shi, A. Potanin, and J. Aldrich 20:15

Γ | Σ `e e : τ

x : τ ∈ Γ
Γ | Σ `e x : τ

(T-Var)
Γ, x : {σ}s | Σ `x

s d : σ
Γ | Σ `e news(x⇒ d) : {σ}s

(T-New)
Γ | Σ `e′

e : τ1 τ1 <: τ2

Γ | Σ `e′
e : τ2

(T-Sub)

Γ | Σ `e e1 : {σ}s def m(x : τ2) : τ1 ∈ σ Γ | Σ `e e2 : τ2

Γ | Σ `e e1.m(e2) : τ1
(T-Method)

Γ | Σ `e e : {σ}s var f : τ ∈ σ
Γ | Σ `e e.f : τ

(T-Field)

Γ | Σ `e1 e1 : {σ}s var f : τ ∈ σ Γ | Σ `e1 e2 : τ
Γ | Σ `e1 e1.f = e2 : τ

(T-Assign)

Γ | Σ `e e1 : τ1 x : τ1 | Σ `e e2 : τ2

Γ | Σ `e bind x = e1 in e2 : τ2
(T-Bind) l : τ ∈ Σ

Γ | Σ `e l : τ
(T-Loc)

Γ | Σ `e′
l1 : {σ}s def m(x : τ2) : τ1 ∈ σ Γ | Σ `e′

l2 : τ2 Γ | Σ `l1 e : τ1

Γ | Σ `e′
l1.m(l2) B e : τ1

(T-StackFrame)

Γ | Σ `z
s d : σ Γ | Σ `z

s d : σ

∀j, dj ∈ d, σj ∈ σ, Γ | Σ `z
s dj : σj

Γ | Σ `z
s d : σ

(T-Decls)

Γresource = {x : {σ}resource | x : {σ}resource ∈ Γ}
Γpure = Γ \ Γresource Γpure, y : τ1 | Σ `z e : τ2

Γ | Σ `z
pure def m(y : τ1) : τ2 = e : def m(y : τ1) : τ2

(DT-DefPure)

Γ, x : τ1 | Σ `z e : τ2

Γ | Σ `z
resource def m(x : τ1) : τ2 = e : def m(x : τ1) : τ2

(DT-DefResource)

Γ | Σ `z x : τ
Γ | Σ `z

resource var f : τ = x : var f : τ
(DT-Varx)

Γ | Σ `z l : τ
Γ | Σ `z

resource var f : τ = l : var f : τ
(DT-Varl)

µ : Σ

∅ : ∅ (T-StoreEmpty)
µ : Σ x : {σ}s | Σ `x

s d : σ
µ, l 7→ {x⇒ d}s : Σ, l : {σ}s

(T-Store)

Figure 10 Wyvern static semantics.

A pure object is a subtype of a resource object and, thus, can be used in place of a
resource object, but not the other way around. Subtyping rules are presented in full in the
technical report [21].

3.5 Dynamic Semantics

Figure 11 shows Wyvern’s dynamic semantics. The E-Congruence rule subsumes all
evaluation rules with non-terminal forms; the rest of the reduction rules deal with terminal
forms. The E-New rule requires that the definition of the new object is closed, which
is enforced in the progress theorem (below) and guarantees that the authority of the new

ECOOP 2017



20:16 A Capability-Based Module System for Authority Control

〈e | µ〉 −→ 〈e′ | µ′〉
〈e | µ〉 −→ 〈e′ | µ′〉

〈E[e] | µ〉 −→ 〈E[e′] | µ′〉
(E-Congruence)

l 6∈ dom(µ) news(x⇒ d) is closed
〈news(x⇒ d) | µ〉 −→ 〈l | µ, l 7→ {x⇒ d}s〉

(E-New)

l1 7→ {x⇒ d}s ∈ µ def m(y : τ1) : τ2 = e ∈ d
〈l1.m(l2) | µ〉 −→ 〈l1.m(l2) B [l2/y][l1/x]e | µ〉

(E-Method)

l 7→ {x⇒ d}s ∈ µ var f : τ = l1 ∈ d
〈l.f | µ〉 −→ 〈l1 | µ〉

(E-Field)

l1 7→ {x⇒ d}s ∈ µ var f : τ = l ∈ d
d

′ = [var f : τ = l2/var f : τ = l]d µ′ = [l1 7→ {x⇒ d
′}s/l1 7→ {x⇒ d}s]µ

〈l1.f = l2 | µ〉 −→ 〈l2 | µ′〉
(E-Assign)

〈bind x = l in e | µ〉 −→ 〈[l/x]e | µ〉
(E-Bind)

〈l.m(l1) B l2 | µ〉 −→ 〈l2 | µ〉
(E-StackFrame)

Figure 11 Wyvern dynamic semantics.

object can be fully determined at its creation and onwards. To create a new object, a fresh
store location is chosen, and the object definition is assigned to it. In E-Method, when the
method argument is reduced to a location, a method-call stack frame is put onto the stack,
the caller and the argument are substituted with corresponding locations in the method body,
and the method body starts to execute. An object field is evaluated to the location that it
holds (E-Field), and when an object field’s value is reassigned, the necessary substitutions
are made in the store (E-Assign). Similarly to methods, when the bind’s variable value is
fully evaluated, variables in its body are substituted with their corresponding locations, and
the bind’s body starts to execute (E-Bind). Finally, in the E-StackFrame rule, when a
method body is fully executed, the method-call stack frame is popped from the stack and
the resulting location is returned.

Notably, pure objects always remain pure, i.e., if a location l maps to a pure object in
the store µ, then it always maps to a pure object in the store µ′. This can be proven by a
simple induction on the reduction rules.

3.6 Type Soundness

The preservation and progress theorems are stated as follows. The proofs for both the
theorems are fairly standard and are available in the technical report [21].

I Theorem (Preservation). If Γ | Σ `e′′
e : τ , µ : Σ, and 〈e | µ〉 −→ 〈e′ | µ′〉, then

∃Σ′ ⊇ Σ, µ′ : Σ′, and Γ | Σ′ `e′′
e′ : τ .

I Theorem (Progress). If ∅ | Σ `e′′
e : τ (i.e., e is a closed, well-typed expression), then

either e is a value (i.e., a location), or ∀µ such that µ : Σ, ∃e′, µ′ such that
〈e | µ〉 −→ 〈e′ | µ′〉.



D. Melicher, Y. Shi, A. Potanin, and J. Aldrich 20:17

4 Authority Safety

We use the object-oriented core to prove our language authority-safe. Once modules are
translated into objects, objects become the unit of reasoning, and thus our authority-related
formalism is formulated in terms of objects.

In our system, a principal [5] is a resource object. An object—a principal or a pure
object—can directly access a principal if the object has a reference to the principal, either
by capturing it on object creation or acquiring it via a method call or return. The authority
of an entity (an object or an expression) is the set of principals the entity can directly access,
and we say that it has authority over those principals.

The authority safety property states that the authority of an object can only increase
due to the creation of a new object, a method call, or a method return. More precisely, the
situations in which authority can increase are:
1. Object creation: If a resource object A creates a new resource object B, then A gains

authority over B.
2. Method call: If a resource object A does not have authority over a resource object B

and receives B as an argument to one of A’s methods, then A gains authority over B
(perhaps only temporarily, while A’s method is being executed).

3. Method return: If a resource object A does not have authority over a resource object
B and B is returned from a method call that A invoked, then A gains authority over B
(perhaps only temporarily, while A’s method is being executed).
It is important to note that these must be the only situations when authority of an object

increases (e.g., authority cannot increase due to side effects). The authority safety property
is what assures us that all we need to reason about the authority of an object is to examine
actions at its interface: method calls and returns; the case of object creation is usually not
very interesting because the newly created object is born with no more authority than its
creator had.

Note that the third case of authority safety is unique to our non-transitive definition
of authority. In the transitive definitions of authority used in prior work, the caller of a
method always already has the same authority as its callee, or more. This also means that if
an object such as the logger is careful not to return a reference to the underlying file being
used, then objects that use the logger will not have authority over that file, which matches
our intuition about the role of the logger object as a gatekeeper.

For a pure object, an authority increase is inconsequential because a pure object cannot
store mutable state. Thus the definition of authority safety focuses on principals—i.e.,
resource objects. On a technical level—as discussed in more detail below—we treat a pure
object as being part of whatever resource object uses it.

4.1 Significance of Authority Safety
If a Wyvern program typechecks, it is authority-safe, i.e., authority gains are possible only
in the three cases specified by the authority safety theorem. The type system automatically,
at compile time enforces that a module cannot gain authority over and access to another
module by any other means (e.g., via side effects). This property allows developers to reason
effectively about the authority of program modules.

Consider reasoning about the authority of the wordCloud module. wordCloud is born with
only the authority to access its required resources: due to the typechecking rule for bind and
the way that modules are translated, these are the only resources in scope when wordCloud

is instantiated. To see whether wordCloud gains any authority, the authority safety theorem

ECOOP 2017



20:18 A Capability-Based Module System for Authority Control

tells us we need only inspect its type (WordCloud) and that of its required resources (Logger).
Together the types show over what resources wordCloud can gain authority via method calls
and returns (cases 2 and 3 of the authority safety theorem). For example, it is easy to
verify that no object representing fileIO can go across this interface and thus ensure that all
file access done by wordCloud must go through the logger. Case 1 of authority safety allows
wordCloud to create objects of its own that act as principals, but it cannot thereby gain access
to system resources it did not already have. Notice that we can conclude all of this without
even looking at the code in the wordCloud module—which is a useful property if this module
is provided by a third party in compiled form and the source code is not available.

Authority safety also allows developers to reason about global invariants about the use of
resources, while only needing to inspect part of the program. For example, to verify that the
entire program only accesses the file system to write to log files, we first inspect the top-level
code and observe that the fileIO resource is only passed to the wordProcessor module. We
then inspect wordProcessor and observe that it passes the fileIO module exclusively into the
logger module. Examining the logger’s code, we see that it enforces the desired invariant
of writing only to log files, and does not provide clients with any means of accessing fileIO

functionality. Since authority is non-transitive and neither wordProcessor nor logger expose
fileIO via their methods, it is guaranteed that, besides wordProcessor and logger, no other
program module has authority over fileIO module. It is unnecessary to inspect any other
modules, which could make up an arbitrarily large fraction of the program, because we can
rely on the authority safety property to ensure that those parts of the program can never
acquire authority to fileIO.

Thus, our approach enables reasoning that is impossible in conventional languages, such
as Java, without a global analysis that requires access to all code in the program, or use of the
Java security manager (which is difficult to use correctly due to its excessive complexity [4]).

4.2 Formal Definition of Authority Safety

To formalize authority safety, we must first present a formal notion of authority. Our
authority definition is given by two sets of rules—the auth() and pointsto() rules. Intuitively,
pointsto() captures references between objects, while auth() is a higher-level relation that
builds on pointsto() to define authority. We describe the rules, give an example of how the
rules are applied, state the authority safety theorem, and finally prove Wyvern authority-
safe.

4.2.1 auth() Rules

The authority of an object is determined according to the functions and rules in Figure 12.
Intuitively, our definition of authority has two parts. The first part, authstore, captures the
principals that an object has a reference to in the heap, either as one of its fields, or as a
location captured in one of its methods (which act as closures in Wyvern). The second part,
authstack , is more subtle: it captures the principals that an object has a reference to in an
on-the-fly execution of one of the object’s methods. More formally:

auth(l, e, µ) takes a location l, an expression e, and a store µ, and returns a set of
locations identifying principals that constitute the total authority of an object identified
by l when an expression e is being executed in the context of memory µ.
authstore(l, µ) takes a location l and a store µ and returns a set of locations identifying
principals to which an object identified by l has direct access by virtue of the object’s



D. Melicher, Y. Shi, A. Potanin, and J. Aldrich 20:19

auth(l, e, µ) authstore(l, µ) authstack(l, e, µ)

auth(l, e, µ) = authstore(l, µ) ∪ authstack(l, e, µ)
(auth-config)

l 7→ {x⇒ d}s ∈ µ
authstore(l, µ) = pointsto(l, µ) ∪ pointsto(d, µ)

(auth-store)

l.m(l′) B e′ 6∈ e
authstack(l, e, µ) = ∅

(auth-stack-nocall)

l.m′(l′′) B E′ 6∈ E
authstack(l, E[l.m(l′) B e′], µ) = pointsto(e′, µ) ∪ authstack(l, e′, µ)

(auth-stack)

Figure 12 Authority rules.

static state in the store µ. In other words, the function determines the object’s authority
that can be statically deduced by examining the code stored in the object.
authstack(l, e, µ) takes a location l, an expression e, and a store µ, and returns a set of
locations identifying principals to which an object identified by l has direct access by
virtue of the execution state of methods of l executing in e in the context of memory µ.
That is, the function determines the object’s authority gained on the stack.

Since, in the process of evaluation, methods may have received new principals as ar-
guments and method bodies may have been re-written to include new principals, the sets
returned by authstore(l, µ) and authstack(l, e, µ) may differ.

The auth-config rule defines the relation between the three functions: the total author-
ity of an object consists of authority it has statically from the code it stores and authority
it gained on execution. The auth-store rule defines authstore(l, µ). It requires the object
identified by l to be in the store µ and returns two sets of locations identifying principals to
which an object identified by l has direct access via itself and its declarations.

The auth-stack-nocall and auth-stack rules define authstack(l, e, µ). The auth-
stack-nocall rule is used when there are no method-call stack frames with the receiver l
on the stack (l.m(l′) B e′ 6∈ e) and returns an empty set, as in such cases, l gains no authority
from executing e. If the stack contains method-call stack frames where the receiver is l, the
auth-stack rule is used, and the authority is “collected” from the outermost such method-
call stack frame (i.e., the furthest method-call stack frame from the expression that is being
evaluated) up to the expression being evaluated. The condition l.m′(l′′) B E′ 6∈ E means
that there must be no method-call stack frames with l as the receiver preceding the method
call in consideration, which assures that, as we go down the stack, we do not miss any
method calls with l as a receiver. The authstack(l, e, µ) returns a set of locations identifying
the principals that the method body contains and the principals that l can access on the
rest of the stack.

4.2.2 pointsto() Rules

Authority functions use pointsto() functions (Figure 13). The pointsto() functions take an
expression e, a declaration d, or a list of declarations d and a store µ, and return a set
of locations identifying principals to which the expression, the declaration, or the list of
declarations point (i.e., have direct access) in the context of memory µ.

ECOOP 2017



20:20 A Capability-Based Module System for Authority Control

pointsto(e, µ) pointsto(d, µ) pointsto(d, µ)

pointsto(x, µ) = ∅
(pointsto-var)

pointsto(news(x⇒ d), µ) = pointsto(d, µ)
(pointsto-new)

pointsto(e.m(e′), µ) = pointsto(e, µ) ∪ pointsto(e′, µ)
(pointsto-method)

pointsto(e.f, µ) = pointsto(e, µ)
(pointsto-field)

pointsto(e.f = e′, µ) = pointsto(e, µ) ∪ pointsto(e′, µ)
(pointsto-assign)

pointsto(bind x = e in e′, µ) = pointsto(e, µ) ∪ pointsto(e′, µ)
(pointsto-bind)

l 7→ {x⇒ d}resource ∈ µ
pointsto(l, µ) = {l}

(pointsto-principal)
l 7→ {x⇒ d}pure ∈ µ
pointsto(l, µ) = ∅

(pointsto-pure)

l 7→ {x⇒ d}resource ∈ µ
pointsto(l.m(l′) B e, µ) = {l}

(pointsto-call-principal)

l 7→ {x⇒ d}pure ∈ µ
pointsto(l.m(l′) B e, µ) = pointsto(e, µ)

(pointsto-call-pure)

pointsto(d, µ) = ∪
⋃

d∈d
pointsto(d, µ)

(pointsto-decls)

pointsto(def m(x : τ1) : τ2 = e, µ) = pointsto(e, µ)
(pointsto-def)

pointsto(var f : τ = x, µ) = ∅
(pointsto-varx)

pointsto(var f : τ = l, µ) = pointsto(l, µ)
(pointsto-varl)

Figure 13 pointsto() rules.

A variable does not point to any location (pointsto-var). A new expression points to
locations to which the new object’s declarations points (pointsto-new). A method, an
object field and its assignment, as well as a bind construct (pointsto-method, pointsto-
field, pointsto-assign, and pointsto-bind respectively) point to locations in their
subexpressions. Depending on whether a location is identifying a principal or a pure object,
it points to either itself (pointsto-principal) or nothing (pointsto-pure) respectively.
Depending on whether the method caller is a principal or a pure object, a method-call stack
frame points to either itself (pointsto-call-principal) or a set of locations pointed to by
the method body (pointsto-call-pure) respectively.

pointsto-principal and pointsto-pure look similar to authstore(l, µ), but differ se-
mantically: in these pointsto() rules, l is treated as an expression, not as a location identi-
fying a principal, and so the only location l can access is itself.

A list of declarations points to a union of sets of locations to which each declaration in
the list points (pointsto-decls). A method declaration points to the locations to which
the method body points (pointsto-def). A field declaration points to locations to which



D. Melicher, Y. Shi, A. Potanin, and J. Aldrich 20:21

the field’s value points: if the field’s value is a variable, the field declaration does not point
to any location (pointsto-varx), and if the field’s value is a location, the field declaration
points to the same location as the value location (pointsto-varl).

In our system, authority is non-transitive for principal objects and transitive for pure
objects to which a principal points. As pure objects do not have fields, they cannot point
to any resources and their methods cannot capture resources. Thus, pointsto-principal
and pointsto-pure do not involve declarations of the object identified by the location
(cf. pointsto-new). However, an executing method of a pure object can have resources
in it if they were passed as arguments. Since the pure object cannot own the resource
arguments, in this case, the authority is transitive, and the resource arguments are owned
by the resource caller down the stack. Therefore, pointsto-call-principal considers only
the principal caller, whereas pointsto-call-pure allows a principal caller down the stack
to have authority over principals in a pure callee’s method.

4.2.3 Determining Authority of an Object
To demonstrate how authority of an object is determined, consider the following definition
of the prettyChart module:

module def prettyChart(logger : Logger) : WordCloud
def updateLog(entry : String) : Unit

logger.appendToLog(entry)

Assume that the definition of the logger module is as in Figure 2 and that the last line in
the above code snippet is currently being executed, i.e., the method appendToLog() is called
on the logger object. The logger object in the store µ looks like:
llogger 7→ { x⇒ def appendToLog(entry : String) : Unit

lio.open(“∼/log.txt”).append(entry) }resource

To find the authority llogger has statically, i.e., from the code it contains, we apply auth-
store, pointsto-principal, pointsto-def, pointsto-method, pointsto-principal,
and pointsto-var as follows:
authstore(llogger , µ)

= pointsto(llogger , µ) ∪ pointsto(def appendToLog(...) ..., µ)
= {llogger} ∪ pointsto(def appendToLog(entry : String) : Unit

lio.open(“∼/log.txt”).append(entry), µ)
= {llogger} ∪ pointsto(lio.open(“∼/log.txt”).append(entry), µ)
= {llogger , lio}

To find the authority llogger gained on the stack, we use auth-stack, auth-stack-nocall,
pointsto-method, pointsto-principal, and pointsto-var as follows:
authstack(llogger , E[llogger .appendToLog(lentry) B lio.open(“∼/log.txt”).append(entry)], µ)

= pointsto(lio.open(“∼/log.txt”).append(entry), µ)
∪ authstack(llogger , lio.open(“∼/log.txt”).append(entry), µ)
= pointsto(lio.open(“∼/log.txt”).append(entry), µ)
= {lio}

Finally, by auth-config, the total authority of llogger when executing the appendToLog()
method is
auth(llogger , E[llogger .appendToLog(lentry) B lio.open(“∼/log.txt”).append(entry)], µ)

= authstore(llogger , µ)
∪ authstack(llogger , E[llogger .appendToLog(lentry) B lio.open(“∼/log.txt”).append(entry)], µ)
= {llogger , lio}

ECOOP 2017



20:22 A Capability-Based Module System for Authority Control

As expected, llogger has authority over lio and no other resource object.
This way, the auth() and pointsto() rules allow us to determine authority of every object

on every step of execution, which serves as a basis for our formal system and the authority
safety proof.

4.2.4 Authority Safety Theorem
We now state the authority safety theorem formally.

I Theorem (Authority Safety). If
1. Γ | Σ `e′′

e : τ ,
2. 〈e | µ〉 −→ 〈e′ | µ′〉,
3. l0 7→ {x⇒ d0}resource ∈ µ′,
4. l 7→ {x⇒ d}resource ∈ µ, and
5. auth(l, e′, µ′) \ auth(l, e, µ) ⊇ {l0},
then one of the following must be true:
1. Object creation:

a. e = E[l.m(l′) B E′[newresource(x⇒ d0)]] and
b. e′ = E[l.m(l′) B E′[l0]], where
c. ∀la.ma(l′a) B E′′ ∈ E′, la 7→ {x⇒ da}pure ∈ µ

2. Method call:
a. e = E[l.m(l0)],
b. e′ = E[l.m(l0) B [l0/y][l/x]e′′], and
c. y ∈ e′′

3. Method return:
a. e = E[l.m(l′) B E′[la.ma(l′a) B l0]] and
b. e′ = E[l.m(l′) B E′[l0]], where
c. ∀lb.mb(l′b) B E′′ ∈ E′, lb 7→ {x⇒ db}pure ∈ µ

The formal statement of authority safety makes the informal statement above more
precise, in that:
1. The principal gaining authority in the given evaluation step must be a receiver of a

method-call stack frame on the stack, but not necessarily the immediate receiver for the
expression under evaluation.

2. Receivers of all method-call stack frames between the principal receiver and the expres-
sion under evaluation must be pure.

These points allow us to define authority safety comprehensively, while treating pure
objects as essentially a part of the principal that uses them. Below is a sketch of the proof
of the authority safety theorem; the full proof is presented in the technical report [21].

Proof Sketch. The proof is by induction on a derivation of 〈e | µ〉 −→ 〈e′ | µ′〉. We start
by considering E-Congruence and rely on the following fact (formally stated and proven
in Lemma 8 in the technical report [21]):

If there are only pure principals after the last method-call stack frame where l is the
caller, i.e., l was the last principal caller on the stack, then
auth(l, E[e′], µ′) \ auth(l, E[e], µ)

= authstore(l, µ′) ∪ pointsto(e′, µ′) ∪ authstack(l, e′, µ′)
\ authstore(l, µ) ∪ pointsto(e, µ) ∪ authstack(l, e, µ)



D. Melicher, Y. Shi, A. Potanin, and J. Aldrich 20:23

Otherwise, if the last method-call stack frame where l is the caller is followed by a
method-call stack frame with a principal caller that is not l, or if the stack has no
method-call stack frames with principal callers, then
auth(l, E[e′], µ′) \ auth(l, E[e], µ)

= authstore(l, µ′) ∪ authstack(l, e′, µ′) \ authstore(l, µ) ∪ authstack(l, e, µ)

This implies that the changes in authority when 〈E[e] | µ〉 −→ 〈E[e′] | µ′〉 depend on
expressions in 〈e | µ〉 −→ 〈e′ | µ′〉. Next, we consider all possible terminal-form reduction
steps and, using the auth() and pointsto() rules, calculate the difference in authority of the
principals before and after the reduction step.

The subcases of E-New, E-Method, and E-StackFrame produce the three situations
states in the theorem. The rest of the reduction rules do not cause any authority gains. J

5 Implementation

We have implemented the module system and core theory described in this paper as part of
the open source Wyvern compiler and interpreter, available on GitHub: https://github.
com/wyvernlang/wyvern. Although some features of a full-fledged language are missing,
we have implemented examples from Figures 2, 3, and 4. The example code runs as part of
the wyvern.tools.tests.Figures test suite and can be found in the tools/src/wyvern/
tools/tests/figs subdirectory of the project. In ongoing development work, we are con-
tinuing to add features and improve the state of the implementation.

6 Limitations

Our threat model makes an important assumption that the code in the trusted code base
of a software system is trustworthy. We assume that the security and privacy experts who
are in charge of the trusted code base are honest and do not make mistakes. This may
not be true in practice, and thus our approach is susceptible to insider attacks, which are
common to systems that reason about trusted code bases and involve vulnerabilities inside
the trusted code base.

For example, an expert responsible for the trusted code base may have a malicious
intent and subvert the software system by exporting the functionality of system resources
via wrapper functions. A wrapper function is a function of a module (e.g., logger) that
“wraps” the functionality of a function of another module (e.g., a module of type FileIO),
performing the same operations as the original function, e.g.:

module def logger(io : FileIO) : Logger
def write(fileName : String, text : String)

io.write(fileName, text)

By calling logger.write(), an extension importing logger could write to any file in the file
system, and this would not be exposed in the logger’s type or interface. In a similar fashion,
the malicious logger module may export functionality of an entire file I/O module, poten-
tially changing function names to obfuscate the exposure. In such a case, an extension that
is allowed to import logger would, in essence, have authority over a module of type FileIO.

Although insider attacks directed at the trusted parts of a system are beyond our reach,
our approach allows developers to formally reason about the isolation of security- and
privacy-related resources in a software system and gives developers a tool to enforce certain
isolation properties. Also, the described limitations can be mitigated either by using more
rigorous software development practices, e.g., code reviews, for critical parts of the system,

ECOOP 2017

https://github.com/wyvernlang/wyvern
https://github.com/wyvernlang/wyvern
wyvern.tools.tests.Figures
tools/src/wyvern/tools/tests/figs
tools/src/wyvern/tools/tests/figs


20:24 A Capability-Based Module System for Authority Control

or by complementing our approach with more complex analyses, e.g., by using an effects
system or an information flow analysis.

7 Related Work

Introduced to secure operating system resources [5], capabilities were later generalized to
protect arbitrary services and resources [43], including programming language resources [28].
The object-capability model, in which capabilities guard more fine-grained programming lan-
guage resources—objects—has recently been advocated by Miller [25]. The two pioneering
languages that used object capabilities are E [24] and W7 [32]. Wyvern carries forward this
line of work by exploring a statically typed, capability-safe language and providing support
for modules as capabilities.

Our approach to modules was primarily inspired by the capability-passing modules design
in Newspeak [2] and its predecessors, such as MzScheme’s Units [13]. As in Newspeak,
Wyvern modules are first-class. However, Wyvern’s static types support reasoning about
capabilities based on module interfaces (Newspeak is dynamically typed), and Wyvern re-
duces the overhead of ubiquitous module parameterization by allowing pure modules to be
directly imported, rather than passed in as arguments (in Newspeak, all module dependen-
cies must be passed in as arguments).

Several research efforts limited mainstream, non-capability programming languages to
turn them into capability languages. Typically the imposed restrictions disallow mutable
global state (e.g., static fields), tame the original language’s APIs (e.g., reflection API),
and prohibit ambient authority [40]. Sometimes sandboxing is used to facilitate isolation of
program components (e.g., add-ons). Programming languages in this category include Joe-
E [22] (a restricted subset of Java), Emily [37] (a performant subset of OCaml), CaPerl [17]
(a subset of modified Perl), Oz-E [36] (a proposed variation of Oz), and Google’s Caja [14, 26]
(an enforced subset of JavaScript). In contrast, our work explores a module system with
explicit support for capabilities without the constraint of adapting an existing language,
enabling a cleaner design.

Shill [27] is a secure shell scripting programming language that takes a declarative
approach to access control. In Shill, capabilities are used to control access to system
resources, contracts are used to specify what capabilities each script requires, and capability-
based sandboxes are used to enforce contracts at runtime. Shill supports compositional
reasoning by tracing authority through program invocations and, if necessary, attenuating
authority on every transition. The authority of the program’s entry point is ambient, but
its transition to other parts of the program is limited via contracts and sandboxes. Shill
does not include mutable state (e.g., variables), which are part of Wyvern’s model and make
Wyvern’s notion of authority safety more interesting; nor does Shill include a module
system.

Maffeis et al. [20] formalized the notions of capability and authority safety and proved
that capability safety implies authority safety, which in turn implies resource isolation. They
showed that these semantic guarantees hold in a Caja-based subset of JavaScript and other
object-capability languages. Maffeis et al.’s formal system defines authority topologically
(objects are represented as nodes in a graph, and a path between two nodes implies that the
source node can access the destination node) and thus transitive. In contrast, our formal
definition of authority is non-transitive, enabling the important forms of reasoning discussed
in Section 4.1.

Devriese et al. [6] presented an alternative formalization of capability safety that is based
on logical relations. They argue that formalizations like Maffeis et al.’s [20] are too syntactic



D. Melicher, Y. Shi, A. Potanin, and J. Aldrich 20:25

and the topological definition of authority is insufficient to characterize capability safety as
it leads to over-approximation of authority. Our non-transitive definition of authority is
similarly more precise than prior, transitive topological definitions. However, our focus is
on a relatively simple (compared to logical relations) type system that provides authority
safety with respect to this more refined notion of authority, along with support for modules
as capabilities.

Another line of related work assumes a capability-safe base language and develops logics
or advanced type systems to state and prove properties that are built on capabilities. Dros-
sopoulou et al. analyzed Miller’s mint and purse example [25], rewrote it in Joe-E [8] and
Grace [30], and based on their experience, proposed and refined a specification language to
define policies required in the mint and purse example [9, 10, 11, 12]. Also, Dimoulas et
al. [7] proposed a way to extend an underlying capability-safe language with declarative ac-
cess control and integrity policies for capabilities, and proved that their system can soundly
enforce the declarative policies. Dimoulas et al.’s formalization, like that of Maffeis et al.
but unlike ours, formalizes authority transitively.

8 Conclusion

We presented a module system design that allows software developers to limit and control
the authority granted to each module in a software system. Our module system supports
first-class modules and uses capabilities to protect access to security- and privacy-related
resource modules. It simplifies the reasoning for determining the authority of a module
down to examining the module’s interface, the module’s imports, and the interfaces of the
modules it imports, making security auditing more practical. Furthermore, unlike previous
module systems (cf. Newspeak) that put significant overhead on developers by requiring
all modules to be fully parameterized, in the Wyvern module system, parameterization is
necessary only for resource modules, and the number of non-resource-module imports is
unlimited. Our work also advances theoretical models of capabilities by modeling authority
in a non-transitive way, which allows for attenuating a module’s authority, such as when
a powerful capability (e.g., file I/O) is encapsulated inside an attenuated capability (e.g.,
logging). We formally defined what it means for a module system to be authority-safe and
proved that our module system possesses this property.

References
1 John Boyland, James Noble, andWilliam Retert. Capabilities for Sharing: A Generalisation

of Uniqueness and Read-Only. In European Conference on Object-Oriented Programming,
2001.

2 Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai, William Maddox, and Eliot
Miranda. Modules as Objects in Newspeak. In European Conference on Object-Oriented
Programming, 2010.

3 Shuo Chen, David Ross, and Yi-Min Wang. An Analysis of Browser Domain-isolation
Bugs and a Light-weight Transparent Defense Mechanism. In Conference on Computer
and Communications Security, 2007.

4 Zack Coker, Michael Maass, Tianyuan Ding, Claire Le Goues, and Joshua Sunshine. Eval-
uating the Flexibility of the Java Sandbox. In Annual Computer Security Applications
Conference, 2015.

5 Jack B. Dennis and Earl C. Van Horn. Programming Semantics for Multiprogrammed
Computations. Communications of the ACM, 9(3):143–155, 1966.

ECOOP 2017



20:26 A Capability-Based Module System for Authority Control

6 Dominique Devriese, Frank Piessens, and Lars Birkedal. Reasoning about Object Capabil-
ities with Logical Relations and Effect Parametricity. In European Symposium on Security
and Privacy, 2016.

7 Christos Dimoulas, Scott Moore, Aslan Askarov, and Stephen Chong. Declarative Policies
for Capability Control. In Computer Security Foundations Symposium, 2014.

8 Sophia Drossopoulou and James Noble. The Need for Capability Policies. In Workshop on
Formal Techniques for Java-like Programs, 2013.

9 Sophia Drossopoulou and James Noble. How to Break the Bank: Semantics of Capability
Policies. In Integrated Formal Methods, 2014.

10 Sophia Drossopoulou and James Noble. Towards Capability Policy Specification and Veri-
fication. Technical report, Victoria University of Wellington, 2014.

11 Sophia Drossopoulou, James Noble, and Mark S. Miller. Swapsies on the Internet: First
Steps Towards Reasoning About Risk and Trust in an Open World. In Workshop on
Programming Languages and Analysis for Security, 2015.

12 Sophia Drossopoulou, James Noble, Toby Murray, and Mark S. Miller. Reasoning about
Risk and Trust in an Open World. Technical report, Victoria University of Wellington,
2015.

13 Matthew Flatt and Matthias Felleisen. Units: Cool Modules for HOT Languages. In
Programming Language Design and Implementation, 1998.

14 Google, Inc. Caja. https://code.google.com/p/google-caja/.
15 Michael Homer, Kim B. Bruce, James Noble, and Andrew P. Black. Modules As Gradually-

typed Objects. In Workshop on Dynamic Languages and Applications, 2013.
16 Darya Kurilova, Alex Potanin, and Jonathan Aldrich. Modules in Wyvern: Advanced

Control over Security and Privacy. In Symposium and Bootcamp on the Science of Security,
2016.

17 Ben Laurie. Safer Scripting Through Precompilation. In Security Protocols, 2007.
18 Michael Maass. A Theory and Tools for Applying Sandboxes Effectively. PhD thesis,

Carnegie Mellon University, 2016.
19 David MacQueen. Modules for Standard ML. In ACM Symposium on LISP and Functional

Programming, 1984.
20 Sergio Maffeis, John C. Mitchell, and Ankur Taly. Object Capabilities and Isolation of

Untrusted Web Applications. In IEEE Symposium on Security and Privacy, 2010.
21 Darya Melicher, Yangqingwei Shi, Alex Potanin, and Jonathan Aldrich. A Capability-Based

Module System for Authority Control. Technical Report CMU-ISR-17-106, Carnegie Mel-
lon University, 2017. URL: http://reports-archive.adm.cs.cmu.edu/anon/isr2017/
abstracts/17-106.html.

22 Adrian Mettler, David Wagner, and Tyler Close. Joe-E: A Security-Oriented Subset of
Java. In Network and Distributed System Security Symposium, 2010.

23 Heather Miller, Philipp Haller, and Martin Odersky. Spores: A Type-Based Foundation
for Closures in the Age of Concurrency and Distribution. In European Conference on
Object-Oriented Programming, 2014.

24 Mark S. Miller. The E Language. http://erights.org/elang/.
25 Mark S. Miller. Robust Composition: Towards a Unified Approach to Access Control and

Concurrency Control. PhD thesis, Johns Hopkins University, 2006.
26 Mark S. Miller, Mike Samuel, Ben Laurie, Ihab Awad, and Mike Stay. Caja: Safe Active

Content in Sanitized JavaScript. Technical report, Google, Inc., 2008.
27 Scott Moore, Christos Dimoulas, Dan King, and Stephen Chong. SHILL: A Secure Shell

Scripting Language. In USENIX Symposium on Operating Systems Design and Implement-
ation, 2014.

https://code.google.com/p/google-caja/
http://reports-archive.adm.cs.cmu.edu/anon/isr2017/abstracts/17-106.html
http://reports-archive.adm.cs.cmu.edu/anon/isr2017/abstracts/17-106.html
http://erights.org/elang/


D. Melicher, Y. Shi, A. Potanin, and J. Aldrich 20:27

28 James H. Morris, Jr. Protection in Programming Languages. Communications of the ACM,
16(1):15–21, 1973.

29 Ligia Nistor, Darya Kurilova, Stephanie Balzer, Benjamin Chung, Alex Potanin, and
Jonathan Aldrich. Wyvern: A Simple, Typed, and Pure Object-Oriented Language. In
Workshop on Mechanisms for Specialization, Generalization and Inheritance, 2013.

30 James Noble and Sophia Drossopoulou. Rationally Reconstructing the Escrow Example.
In Workshop on Formal Techniques for Java-like Programs, 2014.

31 Martin Odersky, Philippe Altherr, Vincent Cremet, Gilles Dubochet, Burak Emir, Philipp
Haller, Stéphane Micheloud, Nikolay Mihaylov, Adriaan Moors, Lukas Rytz, Michel Schinz,
Erik Stenman, and Matthias Zenger. Scala Language Specification. http://scala-lang.
org/files/archive/spec/2.11/. Last accessed: May 2017.

32 Jonathan A. Rees. A Security Kernel Based on the Lambda-Calculus. Technical report,
Massachusetts Institute of Technology, 1996.

33 John M. Rushby. Design and Verification of Secure Systems. In Symposium on Operating
Systems Principles, 1981.

34 Jerome H. Saltzer. Protection and the Control of Information Sharing in Multics. Com-
munications of the ACM, 17(7):388–402, 1974.

35 Z. Cliffe Schreuders, Tanya Mcgill, and Christian Payne. The State of the Art of Application
Restrictions and Sandboxes: A Survey of Application-oriented Access Controls and Their
Shortfalls. Computers and Security, 32:219–241, 2013.

36 Fred Spiessens and Peter Van Roy. The Oz-E Project: Design Guidelines for a Secure
Multiparadigm Programming Language. In Multiparadigm Programming in Mozart/Oz,
2005.

37 Marc Stiegler. Emily: A High Performance Language for Enabling Secure Cooperation. In
International Conference on Creating, Connecting and Collaborating through Computing,
2007.

38 Mike Ter Louw, Prithvi Bisht, and V Venkatakrishnan. Analysis of Hypertext Isolation
Techniques for XSS Prevention. Web 2.0 Security and Privacy, 2008.

39 Tom Van Cutsem, Elisa Gonzalez Boix, Christophe Scholliers, Andoni Lombide Carreton,
Dries Harnie, Kevin Pinte, and Wolfgang De Meuter. AmbientTalk: Programming Re-
sponsive Mobile Peer-to-peer Applications with Actors. Computer Languages, Systems and
Structures, 40(3–4):112–136, 2014.

40 David Wagner and Dean Tribble. A Security Analysis of the Combex DarpaBrowser
Architecture. http://combex.com/papers/darpa-review/security-review.pdf, March
2002.

41 Esther Wang and Jonathan Aldrich. Capability Safe Reflection for the Wyvern Language.
In Workshop on Meta-Programming Techniques and Reflection, 2016.

42 Robert N. M. Watson. Exploiting Concurrency Vulnerabilities in System Call Wrappers.
In USENIX Workshop on Offensive Technologies, 2007.

43 William A. Wulf, Ellis S. Cohen, William M. Corwin, Anita K. Jones, Roy Levin, C. Pier-
son, and Fred J. Pollack. HYDRA: The Kernel of a Multiprocessor Operating System.
Communications of the ACM, 17(6):337–345, 1974.

ECOOP 2017

http://scala-lang.org/files/archive/spec/2.11/
http://scala-lang.org/files/archive/spec/2.11/
http://combex.com/papers/darpa-review/security-review.pdf




Data Exploration through Dot-driven
Development∗

Tomas Petricek

The Alan Turing Institute, London, UK
and Microsoft Research, Cambridge, UK
tomas@tomasp.net

Abstract
Data literacy is becoming increasingly important in the modern world. While spreadsheets make
simple data analytics accessible to a large number of people, creating transparent scripts that
can be checked, modified, reproduced and formally analyzed requires expert programming skills.
In this paper, we describe the design of a data exploration language that makes the task more
accessible by embedding advanced programming concepts into a simple core language.

The core language uses type providers, but we employ them in a novel way – rather than
providing types with members for accessing data, we provide types with members that allow the
user to also compose rich and correct queries using just member access (“dot”). This way, we
recreate functionality that usually requires complex type systems (row polymorphism, type state
and dependent typing) in an extremely simple object-based language.

We formalize our approach using an object-based calculus and prove that programs construc-
ted using the provided types represent valid data transformations. We discuss a case study
developed using the language, together with additional editor tooling that bridges some of the
gaps between programming and spreadsheets. We believe that this work provides a pathway to-
wards democratizing data science – our use of type providers significantly reduce the complexity
of languages that one needs to understand in order to write scripts for exploring data.

1998 ACM Subject Classification D.3.2 Very high-level languages

Keywords and phrases Data science, type providers, pivot tables, aggregation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.21

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.3.2.12

1 Introduction

The rise of big data and open data initiatives means that there is an increasing amount of
raw data available. At the same time, the fact that “post-truth” was chosen as the word of
2016 [11] suggests that there has never been a greater need for increasing data literacy and
tools that let anyone explore such data and use it to make transparent factual claims.

Spreadsheets made data exploration accessible to a large number of people, but operations
performed on spreadsheets cannot be reproduced or replicated with different input parameters.
The manual mode of interaction is not repeatable and it breaks the link with the original
data source, making spreadsheets error-prone [17, 25]. One solution is to explore data
programmatically, as programs can be run repeatedly and their parameters can be modified.

∗ This work was supported by The Alan Turing Institute under the EPSRC grant EP/N510129/1 and by
the Google Digital News Initiative.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Tomas Petricek;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 21; pp. 21:1–21:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.21
http://dx.doi.org/10.4230/DARTS.3.2.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


21:2 Data Exploration through Dot-driven Development

However, even with the programming tools generally accepted as simple, exploring data is
surprisingly difficult. For example, consider the following Python program (using the pandas
library), which reads a list of all Olympic medals awarded (see Appendix A) and finds top 8
athletes by the number of gold medals they won in Rio 2016:

olympics = pd.read_csv("olympics.csv")

olympics[olympics["Games"] == "Rio (2016)"]
.groupby("Athlete")
.agg({"Gold" : sum})
.sort_values(by = "Gold", ascending = False)
.head(8)

The code is short and easy to understand, but writing or modifying it requires the user
to understand intricate details of Python and be well aware of the structure of the data
source. The short example specifies operation parameters in three different ways – indexing
[. . .] is used for filtering; aggregation takes a dictionary {. . .} and sorting uses optional
parameters. The dynamic nature of Python makes the code simple, but it also means that
auto-completion on member names (after typing dot) is not commonplace and so finding
the operation names (groupby, sort_values, head, ...) often requires using internet search.
Furthermore, column names are specified as strings and so the user often needs to refer back
to the structure of the data source and be careful to avoid typos.

The language presented in this paper reduces the number of language features by making
member access the primary programming mechanism. Finding top 8 athletes by the number
of gold medals from Rio 2016 can be written as:

olympics
.«filter data».«Games is».«Rio (2016)».then
.«group data».«by Athlete».«sum Gold».then
.«sort data».«by Gold descending».then
.«paging».take(8)

The language is object-based with nominal typing. This enables auto-completion that
provides a list of available members when writing and modifying code. The members (such
as «by Gold descending») are generated by the pivot type provider based on the knowledge of
the data source and transformations applied so far – only valid and meaningful operations
are offered. The rest of the paper gives a detailed analysis and description of the mechanism.

Contributions. This paper explores an interesting new area of the programming language
design space. We support our design by a detailed analysis (Section 3), formal treatment (Sec-
tion 6) and an implementation with a case study (Section 7). Our contributions are:

We use type providers in a new way (Section 2). Previous work focused on providing
members for direct data access. In contrast, our pivot type provider (Section 6) lazily
provides types with members that can be used for composing queries, making it possible
to perform entire date exploration through single programming mechanism (Section 3.2).
Our mechanism illustrates how to embed “fancy types” [37] into a simple nominally-typed
programming language (Section 4). We track names and types of available columns of
the manipulated data set (using a mechanism akin to row types), but our mechanism can
be used for embedding other advanced typing schemes into any Java-like language.
We formalize the language (Section 5) and the pivot type provider (Section 6) and show
that queries for exploring data constructed using the type provider are correct (Section 6.2).



T. Petricek 21:3

Our formalization also covers the laziness of type providers, which is an important aspect
not covered in the existing literature.
We implement the language (github.com/the-gamma), make it available as a JavaScript
component (thegamma.net) that can be used to build transparent data-driven visualiza-
tions and discuss a case study visualizing facts about Olympic medalists (Section 7).

2 Using type providers in a novel way

The work presented in this paper consists of a simple nominally-typed host language and
the pivot type provider, which generates types with members that can be used to construct
and execute queries against an external data source. This section briefly reviews the existing
work on type providers and explains what is new about the pivot type provider.

Information-rich programming. Type providers were first presented as a mechanism for
providing type-safe access to rich information sources. A type provider is a compile-time
component that imports external information source into a programming language [34].
It provides two things to the compiler or editor hosting it: a type signature that models
the external source using structures understood by the host language (e.g. types) and an
implementation for the signatures which accesses data from the external source.

For example, the World Bank type provider [27] provides a fine-grained access to develop-
ment indicators about countries. The following accesses CO2 emissions by country in 2010:

world.byYear.«2010».«Climate Change».«CO2 emissions (kt)»

The provided schema consists of types with members such as «CO2 emissions (kt)» and
«2010». The members are generated by the type provider based on the meta-data obtained
from the World Bank. The second part provided by the type provider is code that is executed
when the above code is run. For the example above, the code looks as follows:

series.create("CO2 emissions (kt)", "Year", "Value",
world.getByYear(2010, "EN.ATM.CO2E.KT"))

Here, a runtime library consists of a data series type (mapping from keys to values)
and the getByYear function that downloads data for a specified indicator represented by an
ID. The indicators exist only as strings in compiled code, but the type provider provides a
type-safe access to known indicators, increasing safety and making data access easier thanks
to auto-completion (which offers a list of available indicators).

Types from data. Recent work on the F# Data library [26] uses type providers for accessing
data in structured formats such as XML, CSV and JSON. This is done by inferring the
structure of the data from a sample document, provided as a static parameter to a type
provider. In the following example, adapted from [26], a sample URL is passed to JsonProvider:

type Weather = JsonProvider "http://api.owm.org/?q=London"

let ldn = Weather.GetSample()
printfn "The temperature in London is %f" ldn.Main.Temp

As in the World Bank example, the JSON type provider generates types with members
that let us access data in the external data source – here, we access the temperature using
ldn.Main.Temp. The provided code attempts to access the corresponding nested field and
converts it to a number. The relative safety property of the type provider guarantees that
this will not fail if the sample is representative of the actual data loaded at runtime.

ECOOP 2017

github.com/the-gamma
thegamma.net


21:4 Data Exploration through Dot-driven Development

Pivot type provider. The pivot type provider presented in this paper follows the same
general mechanism as the F# type providers discussed above, although it is embedded in a
simple host language that runs in a web browser.

The main difference between our work and the type providers discussed above is that
we do not use type providers for importing external data sources (by providing members
that correspond to parts of the data). Instead, we use type providers to lazily generate types
with members that let users compose type-safe queries over the data source.

This means that our use of type providers is more akin to meta-programming or code
generation with one important difference – the schema provided by the pivot type provider
is potentially infinite (as there are always more operations that can be applied). The
implementation relies on the fact that type providers are integrated into the type system
and types can be provided lazily. This is also a new aspect of our formalization in Section 5.

3 Simplifying data scripting languages

In Section 1, we contrasted a data exploration script written using the popular Python
library pandas [21] with a script written using the pivot type provider. In this section, we
analyze what makes the Python code complex (Section 3.1) and how our design simplifies it.

3.1 What makes data exploration scripts complex
We consider the Python example from Section 1 for concreteness, but the following four
points are shared with other commonly used libraries and languages. We use the four points
to inform our alternative design as discussed in the rest of this section.

The filtering operation is written using indexing [. . .] while all other operations are written
using member invocation with (optionally named) parameters. In the first case, we write
an expression olympics["Games"] == "Rio (2016)" returning a vector of Booleans while in
the other, we specify a column name using by = "Gold". In other languages, a parameter
can also be a lambda function specifying a predicate or a transformation.
The aggregation operation takes a dictionary {. . .}, which is yet another concept the user
needs to understand. Here, it lets us specify one or more aggregations to be applied over
a group. A similar way of specifying multiple operations or results is common in other
languages. For example, anonymous types in LINQ [22] play the same role.
The editor tooling available for Python is limited – editors that provide auto-completion
rely on a mix of advanced static analysis and simple (not always correct) hints and often
fail for chained operations such as the one in our example1. Statically-typed languages
provide better tooling, but at the cost of higher complexity2.
In the Python example (as well as in most other data manipulation libraries), column
names are specified as strings3. This makes static checking of column names and auto-
completion difficult. For example, "Gold" is a valid column name when calling sort_values,
but we only know that because it is a key of the dictionary passed to agg before.

1 For an anecdotal evidence, see for example: stackoverflow.com/questions/25801246
2 A detailed evaluation is out of the scope of this paper, but the reader can compare the Python example
with F# code using Deedle (fslab.org/Deedle), Haskell Frames library (acowley.github.io/Frames)
and similar C# project (extremeoptimization.com/Documentation/Data_Frame)

3 This is the case for Deedle and the aforementioned C# library. Haskell Frames [9] tracks column names
statically, arguably at the cost of higher code complexity when compared with Python.

stackoverflow.com/questions/25801246
fslab.org/Deedle
acowley.github.io/Frames
extremeoptimization.com/Documentation/Data_Frame


T. Petricek 21:5

Figure 1 Auto-completion offering the available values of the athlete name column.

In our design, we unify many distinct languages constructs by making member access the
primary operation (Section 3.2); we use simple nominal typing to enable auto-completion
(Section 3.3); we use operation-chaining via member access for constructing dictionaries
(Section 3.4) and we track column names statically in the pivot type provider (Section 4).

3.2 Unifying language constructs with member access
LISP is perhaps the best example of a language that unifies many distinct constructs using
a single form. In LISP, everything is an s-expression, that is, either a list or a symbol. In
contrast, a typical data processing language uses a number of distinct constructs including
indexers (for range selection and filtering), method calls (for transformations) and named
parameters (for further configuration). Consider filtering and sorting:

data[data["Games"] == "Rio (2016)"] Ê

data.filter(fun row→ row.Games = "Rio (2016)") Ë

data.sort_values(by = "Gold", ascending = False) Ì

Pandas uses indexers for filtering Ê which can alternatively be written (e.g. in LINQ)
using a method taking a predicate as a lambda function Ë. Operations that are parameterized
only by column name, such as sorting in pandas Ì are often methods with named parameters.

We aim to unify the above examples using a single language construct that offers a
high-level programming model and can be supported by modern tooling (as discussed in
Section 3.3). Member access provides an extremely simple programming construct that is,
in conjunction with the type provider mechanism, capable of expressing the above data
transformations in a uniform way:

data.«sort data».«by Gold descending».then Ê

data.«filter data».«Games is».«Rio (2016)».then Ë

The member names tend to be longer and descriptive. Quoted names appear as '. . .' in
code, but we typeset them using «...» for readability. The names are not usually typed by
the user (see Section 3.3) and so the length is not an issue when writing code. The above
two examples illustrate two interesting aspects of our approach.

Members, type providers, discoverability. When sorting Ê the member that specifies how
sorting is done includes the name of the column. This is possible because the pivot type
provider tracks the column names (see Section 4) and provides members based on the
available columns suitable for use as sort keys. When filtering Ë, the member «Rio (2016)»
is provided based on the values in the data source (we discuss this further in Section 6.3).

These two examples illustrate that member access can be expressive, but it requires huge
number of types with huge number of members. Type providers address this by integration

ECOOP 2017



21:6 Data Exploration through Dot-driven Development

«drop columns»
→ «drop Athlete»
→ «drop Discipline»
→ «drop Year»

«sort data»
→ «by Athlete»
→ «by Athlete descending»
→ «by Discipline»
→ «by Discipline descending»

«group data»
→ «by Athlete»
→ «average Year»
→ «sum Year»

→ «by Year»
→ «distinct Athlete»
→ «concat Athlete»
→ «distinct Discipline»
→ «concat Discipline»

Figure 2 Subset of members provided by the pivot type provider.

with the type system (formalized in Section 5) that discovers members lazily. This is why
approaches based on code generation or pre-processors would not be viable.

Using descriptive member names is only possible when the names are discoverable. The
above code could be executed in a dynamically-typed language that allows custom message-
not-understood handlers, but it would be impossible to get the name right when writing it.
Our approach relies on discovering names through auto-completion as discussed in Section 3.3.

Expressivity of members. Using member access as the primary mechanism for programming
reduces the expressivity of the language – our aim is to create a domain-specific language for
data exploration, rather than a general purpose language4. For this purpose, the sequential
nature of member accesses matches well with the sequential nature of data transformations.

The members provided, for example, for filtering limit the number of conditions that
can be written, because the user is restricted to choosing one of the provided members. As
illustrated by the case study based on our implementation (Section 7), this appears sufficient
for many common data exploration tasks. The mechanism could be made more expressive,
but we leave this for future work – for example, the type provider could accept or reject
member names written by the user (as in internet search) rather than providing names from
which the user can choose (as in web directories).

3.3 Tooling and dot-driven development
Source code editors for object-based languages with nominal type systems often provide
auto-completion for members of objects. This combination works extremely well in practice;
the member list is a complete list of what might follow after typing “dot” and it can be
easily obtained for an instance of known type. The fact that developers can often rely on just
typing “dot” and choosing an appropriate member led to a semi-serious phrase dot-driven
development, that we (equally semi-seriously) adopt in this paper.

Type providers in F# rely on dot-driven development when navigating through data.
When writing code to access current temperature ldn.Main.Temp in Section 2, the auto-
completion offers various available properties, such as Wind and Clouds once “dot” is typed
after ldn.Main. Other type providers [34] follow a similar pattern. It is worth noting that
despite the use of nominal typing, the names of types rarely explicitly appear in code – we

4 Designing a general purpose language based on member access is a separate interesting problem.



T. Petricek 21:7

do not need to know the name of the type of ldn.Main, but we need to know its members.
Thus the type name can be arbitrary [26] and is used merely as a lookup key.

The pivot type provider presented in this paper uses dot-driven development for suggesting
transformations as well as possible values of parameters. This is illustrated in Figure 1 where
the user wants to obtain medals of a specific athlete and is offered a list of possible names.
The editor filters the list as the user starts typing the required name.

Figure 2 lists a subset of the members from the example in Section 1. After choosing «sort
data», the user is offered the possible sorting keys. After choosing «group data», the user first
selects the grouping key and then can choose one or more aggregations that can be applied
on other columns of the group. Thus an entire data transformation (such as choosing top 8
athletes by the number of gold medals) can be constructed using dot-driven development.

Values vs. types. As Figure 1 illustrates, the pivot type provider sometimes blurs the
distinction between values and types. In the example in Section 1, "Rio (2016)" is a string
value in Python, but a statically-typed member «Rio (2016)» when using the pivot type
provider. This is a recurring theme in type provider development5.

Our language supports method calls and so some of the opertaions that are currently
exposed as member access could equally be provided as methods. For example, filtering
could be written as «Games is»("Rio (2016)"). However, the fact that we can offer possible
values when filtering largely simplifies writing of the script for the most common case when
the user is interested in one of the known values.

Unlike in traditional development, a data scientist doing data exploration often has the
entire data set available. The pivot type provider uses this when offering possible values
for filtering (Section 6.3), but all other operations (Section 6.1) require only meta-data
(names and types of columns). Following the example of type providers for structured data
formats [26], the schema could be inferred from a representative sample.

3.4 Expressing structured logic using members
In the motivating example, the agg method takes a dictionary that specifies one or more
aggregates to be calculated over a group. We sum the number of gold medals, but we
could also sum the number of silver and bronze medals, concatenate names of teams for the
athlete and perform other aggregations. In this case, we provide a nested structure (list of
aggregations) as a parameter of a single operation (grouping).

This is an interesting case, because when encoding program as a sequence of member
accesses, there is no built-in support for nesting. In the pivot type provider, we use the “then”
design pattern to provide operations that require nesting. The following example specifies
multiple aggregations and then sorts data by multiple keys:

olympics.
«group data».«by Athlete».
.«sum Gold».«sum Silver».«concat Team».then Ê

.«sort data».
.«by Gold descending».«and Silver descending».then Ë

When grouping, we sum the number of gold and silver medals and concatenates distinct
team names Ê. Then we sort the grouped data using two sorting keys Ë – first by the number
of gold medals and then silver medals (within a group with the same number of gold medals).

5 The Individuals property in the Freebase type provider [34] imports values into types in a similar way.

ECOOP 2017



21:8 Data Exploration through Dot-driven Development

The “then” pattern. Nesting is an essential programming construct and it may be desirable
to support it directly in the language, but the “then” pattern lets us express nesting without
language support. In both of the cases above, the nested structure is specified by selecting
one or more members and then ending the nested structure using the then member.

In case of grouping, we choose aggregations («sum Gold», «concat Team», etc.) after we
specify grouping key using «by Athlete». In case of sorting, we specify the first key using «by
Gold descending» and then add more nested keys using «and Silver descending». Thanks to
the dot-driven development and the “then” pattern, the user is offered possible parameter
values (aggregations or sorting keys) even when creating a nested structure. We also use the
simple structure of the “then” pattern to automatically generate interactive user interfaces
for specifying aggregation and sorting parameters (Section 7).

Renaming columns. The pivot type provider automatically chooses names for the columns
obtained as the result of aggregation. In the above example Ê, the resulting data set will
have columns Athlete (the grouping key) together with Gold, Silver and Team (based on the
aggregated columns). The user cannot currently rename the columns.

In type providers for F#, renaming of columns could be encoded using methods with
static parameters [33] by writing, for example, g.«sum Gold as» "Total Gold" (). In F#, the
value of the static parameter (here, "Total Gold") is passed to the type provider, which can
use it to generate the type signature of the method and the return type with member name
according to the value of the static parameter.

4 Tracking column names

The last difficulty with data scripting discussed in Section 3.1 is that pandas (and most
other data exploration libraries, even for statically-typed languages) track column names as
strings at runtime, making code error-prone and auto-complete on column names difficult to
support. Proponents of static typing would correctly point out that column names and their
types can be tracked by a more sophisticated type system.

In this section, we discuss our approach – we track column names statically using a
mechanism that is inspired by row types and type state (Section 4.1), however we embed
the mechanism using type providers into a simple nominal type system (Section 4.2). This
way, the host language for the pivot type provider can be extremely simple – and indeed, the
mechanism could be added to languages such as Java or TypeScript with minimal effort.

4.1 Using row types and type state
There are several common data transformations that modify the structure of the data set and
affect what columns (and of what types) are available. When grouping and aggregating data,
the resulting data set has columns depending on the aggregates calculated. For simplicity,
we consider another operation – removing column from the data set. For example, given the
Olympic medals data set, we can drop Games and Year columns as follows:

olympics.«drop columns».«drop Games».«drop Year».then

Operations that change the type of rows in the data set can be captured using row
types [35]. Row types make it possible to statically track operations on records that add or
remove fields and so they can be used for the typing of operations such as «drop Year». In
addition, we need to annotate type with a form of typestate [32] to restrict what operations



T. Petricek 21:9

(drop-start)
Γ ` e : [f1 :τ1, . . . , fn :τn]

Γ ` e.«drop columns» : [f1 :τ1, . . . , fn :τn]drop

(drop-col)
Γ ` e : [f1 :τ1, . . . , fn :τn]drop

Γ ` e.«drop fi» : [f1 :τ1, . . . , fi−1 :τi−1, fi+1 :τi+1, . . . , fn :τn]drop

(drop-then)
Γ ` e : [f1 :τ1, . . . , fn :τn]drop

Γ ` e.«then» : [f1 :τ1, . . . , fn :τn]

Figure 3 Tracking available column names with row types and type state.

are available. When dropping columns, we first access the «drop columns» member, which
sets the state to a state where we can drop individual columns using «drop f». The then
member can then be used to complete the operation and choose another transformation.

To illustrate tracking of columns using row types and type state, consider a simple
language with variables (representing external data sources) and member access. Types can
be either primitive types α, types annotated with a type state lbl or row type with fields f :

e = v | e.N
τ = α | τlbl | [f1 :τ1, . . . , fn :τn]

Typing rules for members that are used to drop columns are shown in Figure 3. When
«drop columns» is invoked on a record, the type is annotated with a state drop (drop-start)
indicating that individual columns may be dropped. The then operation (drop-then) removes
the state label. Individual members can be removed using «drop fi» and the (drop-col) rule
ensures the dropped column is available in the input row type and removes it.

Other data transformations could be type checked in a similar way, but there are two
drawbacks. First, row types and typestate (although relatively straightforward) make the
host language more complex. Second, rules such as (drop-col) make auto-completion more
difficult, because the editor needs to understand the rules and calculate what members may
be invoked. This is a distinct operation from type checking and type inference (which operate
on complete programs) that needs to be formalized and implemented.

4.2 Using the pivot type provider
In our approach, the information about available fields is used by the pivot type provider to
provide types with appropriate members. This is hidden from the host language, which only
sees class types. Provided class definitions consist of a constructor and members:

l = type C(x : τ) = m

m = member N : τ = e

During type checking, the type system keeps track of a lookup of provided class definitions
L. Checking member access is then just a matter of finding the corresponding class definition
and finding the member type:

(member)
L; Γ ` e : C L(C) = type C(x : τ) = .. member Ni : τi = ei ..

L; Γ ` e.Ni : τi

ECOOP 2017



21:10 Data Exploration through Dot-driven Development

D = {f1 7→ v1,1, . . . , v1,r , . . . , fn 7→ vn,1, . . . , vn,r }

e = Πf1,...,fn
(e) Projection – select specified column names

| σϕ(e) Selection – filter rows by given predicate
| τf1 7→ω1,...,fn 7→ωn

(e) Sorting – sort by specified columns
| Φf,ρ1/f1,...,ρn/fn

(e) Grouping – group by and calculate aggregates

ω = desc | asc Sort order – descending or ascending
ρ = count Count number of rows in the group

| sum f Sum numerical values of the column f
| dist f Count number of distinct values of the column f
| conc f Concatenate string values of the column f

Figure 4 Relational algebra with values, sorting and aggregation.

The rule, adapted from [26], does not capture laziness of type providers that is important
for the pivot type provider (where the number of provided classes is potentially infinite). We
discuss this aspect in Section 5.

Using type providers and nominal type system hides knowledge about fields available in
the data set. However, for types constructed by the pivot type provider, we can define a
mapping fields that returns the fields available in the data set represented by the class. The
type provider encodes the logic expressed in Section 4.1 in the following sense:

I Remark 1 (Encoding of fancy types). If Γ ` e : [f1 : τ1, . . . , fn : τn] using a type system
defined in Figure 3 and Γ ` e : C using nominal typing and C is a type provided by the pivot
type provider then fields(C) = {f1 7→ τ1, . . . , fn 7→ τn}.

In the following two sections, we focus on formalizing the pivot type provider and the
nominally typed host language. We define the fields predicate in Section 6.2 and use it to
prove properties of the pivot type provider.

We do not fully develop the type system based on fancy types sketched in Section 4.1.
However, the remark illustrates one interesting aspect of our work – the type provider
mechanism makes it possible to express safety guarantees that would normally require row
types and typestate in a simple nominally typed language. In a similar way, type providers
have been used to encode session types [2], suggesting that this is a generally useful approach.

5 Formalising the host language and runtime

Type providers often provide a thin type-safe layer over richer untyped runtime components.
In case of providers for data access (Section 2), the untyped runtime component performs
lookups into external data sources. In case of the pivot type provider, the untyped runtime
component is a relational algebra modelling data transformations. We formalize the relational
algebra in Section 5.1, followed by the object-based host language in Section 5.2.

5.1 Relational algebra with vector semantics
The focus of our work is on data aggregation and so we use a form of relational algebra with
extensions for grouping and sorting [8, 24]. The syntax is defined in Figure 4. We write f for
column (field) names and we include definition of a data value D, which maps column names



T. Petricek 21:11

Πfp(1),...,fp(m){f1 7→ v1,1, . . . , v1,r , . . . , fn 7→ vn,1, . . . , vn,r } 
{fp(1) 7→ vp(1),1, . . . , vp(1),r , . . . , fp(m) 7→ vp(m),1, . . . , vp(m),r }

σϕ{f1 7→ v1,1, . . . , v1,r , . . . , fn 7→ vn,1, . . . , vn,r } 
{f1 7→ . . . , v1,j , . . . , . . . , fn 7→ . . . , vn,j , . . . } (∀j. ϕ {f1 7→ v1,j , . . . , fn 7→ vn,j})

τfp(1) 7→ω1,...,fp(m) 7→ωm{f1 7→ v1,1, . . . , v1,r , . . . , fn 7→ vn,1, . . . , vn,r } 
{f1 7→ v1,q(1), . . . , v1,q(r) , . . . , fn 7→ vn,q(1), . . . , vn,q(r) } where q permutation
such that ∀i, j. i ≤ j =⇒ (u1,i, . . . , vm,i) ≤ (v1,j , . . . , vm,j) where
uk,l = vp(k),q(l) (when ωk = asc)
uk,l = −vp(k),q(l) (when ωk = desc)

Φfi,ρ1/f ′
1,...,ρm/f ′

m
{f1 7→ v1,1, . . . , v1,r , . . . , fn 7→ vn,1, . . . , vn,r } 

{f ′1 7→ a1, . . . , f
′
m 7→ am, fi 7→ b} where

{g1, . . . , gs} = {{l | k ∈ 1 . . . r, vi,l = vi,k}, l ∈ 1 . . . r}
b = vi,k1 , . . . , vi,ks where kj ∈ gj
ai = |g1|, . . . , |gs| when ρi = count
ai = Σk∈g1vj,k, . . . ,Σk∈gs

vj,k when ρi = sum fj
ai = Πk∈g1vj,k, . . . ,Πk∈gsvj,k when ρi = conc fj
ai = |{vj,k | k ∈ g1}|, . . . , |{vj,k | k ∈ gs}| when ρi = dist fj

Figure 5 Vector-based semantics for operations of the extended relational algebra.

to vectors of length r storing the data (values v are defined below). Aside from standard
projection Π and selection σ, our algebra includes sorting τ which takes one or more columns
forming the sort key (with sort order ω) and aggregation Φ, which requires a single grouping
key and several aggregations together with names of the new columns to be returned.

The semantics of the algebra is given in Figure 5. We use vector-based semantics to
support sorting and duplicate entries, but otherwise the formalization captures the usual
behaviour. In projection and sorting, we write fp(1), . . . , fp(m) to refer to a selection of fields
from f1, . . . , fn. Assuming m ≤ n, p can be seen as a mapping from {1 . . .m} to a subset of
{1 . . . n}. In selection, ϕ is a predicate applied to a mapping from column names to values. In
sorting, we assume that there is a permutation on row indices q such that the tuples obtained
by selecting values according to the given sort key are ordered. The auxiliary definition uk,l
negates the number to reverse the sort order when descending order is required.

The most complex operation is grouping. We need to group data by the value of the
column fi and then apply aggregations ρ1, . . . , ρm. To do this, we first obtain a set of groups
g1, . . . , gs where each group represents a set of indices of rows belonging to each group. For a
given group gi we can then obtain values of column j for rows in the group as {vj,k | k ∈ gi}.
This is used to calculate the resulting data set – the field fi becomes a new column formed by
the group keys (obtained by picking one of the indices from gj for each group); other fields
are calculated by aggregating data in various ways – |gi| gives the number of rows in the
group, Σ sums numerical values and Π (a slight notation abuse) concatenates string values.

ECOOP 2017



21:12 Data Exploration through Dot-driven Development

v = C(v) | series τ1, τ2 (v) | n | s | D
e = C(e) | series τ1, τ2 (e) | x | v | e.N | . . .
E = C(E) | series τ1, τ2 (E) | E.N

| Πf1,...,fn
(E) | σϕ(E) | τf1,...,fn

(E) | Φf,ρ1/f1,...,ρm/fm
(E)

τ = C | num | string | series τ1, τ2 | Query
l = type C(x : τ) = m

m = member N : τ = e

(member)
L(C) = (type C(x : τ) = . . . member Ni : τi = ei . . .), L′

(C(v)).Ni  L ei[x← v]

(context)
e L e

′

E[e] L E[e′]

Figure 6 Syntax and remaining reduction rules of the Foo calculus.

5.2 Foo calculus with lazy context
We model the host language using a variant of the Foo calculus [26]. The core of the calculus
models a simple object-based language with objects and members. The syntax of the language
is shown in Figure 6. The relational algebra defined in Figure 4 is included in the Foo calculus
as a model of the runtime components of the pivot type provider – the values include the
data value D and the expressions include all the operations of the relational algebra.

The Foo calculus includes two special types. Query is a type of data and queries constructed
using the relational algebra. The type series τ1, τ2 models a type-safe data series mapping
keys of type τ1 to values of type τ2 that can be used, for example, as input for a charting
library. A series is a typed wrapper over a Query value and the proofs in Section 6.2 show that
a series obtained from the pivot type provider contains keys and values of matching types.

Reduction rules. The reduction relation  L is parameterized by a function L that maps
class names to class definitions, together with nested classes associated with the class definition
(used during type checking as discussed below). The map is not used in the reduction rules
for the relational algebra, given in Figure 5 and so it was omitted there.

The remaining reduction rules are given in Figure 6. The (member) rule performs lookup
using L(C) to find the definition of the member that is being accessed and then it reduces
member access by substituting the evaluated constructor argument v for a variable x. We
assume standard capture-avoiding substitution [x← v]. The rule ignores the nested class
definitions L′. The (context) rule performs reduction in an evaluation context E.

Type checking. One interesting aspect of type checking with type providers is that type
providers can provide potentially infinite number of types. The types are provided lazily as
the type checker explores parts of the type space used by the program [34]. Consider:

olympics.«group data».«by Athlete».«sum Gold».then

The type checker initially knows the type of olympics is a class C1 with member «group data»
and it knows that the type of this member is C2. However, it only needs to obtain full



T. Petricek 21:13

definition of C2 when checking the member «by Athlete». Types of other members of C1
remain unevaluated. This aspect of type providers have been omitted in previous work
[26, 19], but it is necessary for the pivot type provider. The typing rules given are written as:

L1; Γ ` e : τ ;L2

The judgement states that given class definitions L1 and a variable context Γ, the type
of expression e is τ and the type checking evaluated class definitions that are now included
in L2. The resulting context obtained by type checking contains all definitions that may be
needed when running the program and is passed to the reduction operation  L.

The structure of class definitions L is a function mapping a class name C to a pair
consisting of the definition and a function that provides definitions of delayed classes:

L(C) = type C(x : τ) = m,L′

The class C may use classes defined in L, but also delayed classes from L′. This models
laziness as L′ is a function that may never be evaluated. Since L is potentially infinite, we
cannot check class definitions upfront as in typical object calculi [1]. Instead, we check that
that members are well typed as they appear in the source code, which matches the behaviour
of F# type providers. In general, this means that L may contain classes with incorrectly
typed members. We prove that this is not the case for the pivot type provider (Section 6.2).

The rules that define type checking are shown in Figure 7. The two rules that force the
discovery of new classes are (new) and (member). In (new), we find the class definition and
delayed classes using L2(C). We treat functions as sets and join L2 with delayed classes
defined by L using L2 ∪ L. In (member), we obtain the class definition and discover delayed
classes in the same way, but we also check that the body of the member is well-typed.

The rules for primitive types and variables are standard. Input data (data) is of type Query
and all the operations of relational algebra take Query input and produce Query results. An
untyped Query value can be converted into a series (series) of any type, akin to the boundary
between static and dynamic typing in gradually typed languages [31]. When provided by the
pivot type provider, the operation produces series with values of correct types.

6 Formalising the pivot type provider

A type provider is an executable component called by the compiler and the editor to provide
information about types on demand. In our formalization, we follow the style of Petricek
et al. [26], but we add laziness as discussed in Section 5.2. We model the core operations
(dropping columns, grouping and sorting) in Section 6.1 and refine the model to include
filtering Section 6.3. For simplicity we omit paging, which does not affect the shape of data.

6.1 Pivot type provider
A type provider is a function that takes static parameters, such as schema of the input data
set, and returns a class name C together with a mapping that defines the body of the class
and definitions of delayed classes L that may be used by the members of the class C. In our
case, the schema F is a mapping from field names to field types:

pivot(F ) = C, {C 7→ (type C(x : Query) = . . . , L)} where F = {f1 7→ τ1, . . . , fn 7→ τn}

The class C provided by the pivot type provider has a constructor taking Query, which
represents the, possibly already partly transformed, input data set. It generates members

ECOOP 2017



21:14 Data Exploration through Dot-driven Development

(num)
L; Γ ` n : num;L (string)

L; Γ ` s : string;L (var)
L; Γ, x : τ ` x : τ ;L

(data)
L; Γ ` vi,j : τ ;L τ ∈ {num, string}

L; Γ ` {f1 7→ v1,1, . . . , v1,r , . . . , fn 7→ vn,1, . . . , vn,r } : Query;L

(proj)
L1; Γ ` e : Query;L2

L1; Γ ` Πf1,...,fn
(e) : Query;L2

(sort)
L1; Γ ` e : Query;L2

L1; Γ ` τf1,...,fn
(e) : Query;L2

(sel)
L1; Γ ` e : Query;L2

L1; Γ ` σϕ(e) : Query;L2
(group)

L1; Γ ` e : Query;L2

L1; Γ ` Φf,ρ1/f1,...,ρn/fn
(e) : Query;L2

(series)
L1; Γ ` e : Query;L2

L1; Γ ` series τ1, τ2 (e) : series τ1, τ2 ;L2

(new)
L1; Γ ` e : τ, L2 L2(C) = (type C(x : τ) = . . .), L

L1; Γ ` C(e) : C;L2 ∪ L

(member)

L1; Γ ` e : C;L2 L2 ∪ L; Γ, x : τ ` ei : τi;L3
L2(C) = (type C(x : τ) = .. member Ni : τi = ei ..), L

L1; Γ ` e.Ni : τi;L3

Figure 7 Type-checking of Foo expressions with lazy context.

that allow the user to refine the query and access the data. The type provider is defined
using several helper functions discussed in the rest of this section.

Entry-point and data access. Figure 8 shows three of the functions defining the pivot type
provider. The pivot function Ê defines the entry-point type, which lets the user choose which
operation to perform before specifying parameters of the operation. This is the type of
olympics in the examples throughout this paper. The definition generates a new class C with
members that wrap the input data in delayed classes generated by other parts of the type
provider. The result of pivot is the class name C together with definition of the class and
delayed generated types. The definition is a function that only needs to be evaluated when
a program accesses a member of the class C, modelling the laziness of the type provider.
In the implementation, we return the name C together with a function that computes the
definition of the class when the type checker needs to inspect the body.

The get-key Ë and get-val Ì functions provide members that can be used to choose two
columns from the data set as keys and values and obtain the resulting data set as a value of
type series τ1, τ2 . For example, the following expression has a type series string, num :

olympics.«get series».«with key Athlete».«and value Year»

The get-key function generates a class with one member for each field in the data set. The
returned class Cf is generated by get-val and lets the user choose any of the remaining fields
as the value. The key and value columns are then selected using Πfk,f Í. The series is then



T. Petricek 21:15

pivot(F ) = C, {C 7→ (l, L1 ∪ . . . ∪ L4)} Ê

l = type C(x : Query) =
member «drop columns» : C1 = C1(x) where C1, L1 = drop(F )
member «sort data» : C2 = C2(x) where C2, L2 = sort(F )
member «group data» : C3 = C3(x) where C3, L3 = group(F )
member «get series» : C4 = C4(x) where C4, L4 = get-key(F )

get-key(F ) = C, {C 7→ (l,
⋃
Lf )} Ë

l = type C(x : Query) = ∀f ∈ dom(F ) where
member «with key f» : Cf = Cf (x) Cf , Lf = get-val(F, f)

get-val(F, fk) = C, {C 7→ (l, {})} Ì

l = type C(x : Query) = ∀f ∈ dom(F ) \ {fk} where
member «and value f» : series τk, τv = τk = F (fk), τv = F (f)
series τk, τv (Πfk,f (x)) Í

Figure 8 Pivot type provider – entry-point type and accessing transformed data

created with a data set containing only the key and value columns (we assume the order of
columns is preserved). Creating a series does not statically enforce that the data set has the
right structure, but the properties discussed in Section 6.2 show that series obtained from
the pivot type provider is constructed correctly.

Dropping columns and sorting. Functions that provide types for the «drop columns» and
«sort data» members are defined in Figure 9. The drop function Ê builds a new type that lets
the user drop any of the available columns. The resulting type Cf is recursively generated by
drop so that multiple columns can be dropped before completing the transformation using
the then operation Ë, whose return type is generated using the main pivot function. Note
that columns removed from the schema F ′ match the columns removed from the data set at
runtime using Πdom(F ′).

Types for defining the sorting transformation are split between two functions; sort Ì

generates type for choosing the first sorting key and sort-and Í lets the user add more keys.
For space reasons, we abbreviate ascending and descending as asc and desc in the generated
member names and we omit and in name of further keys such as «and Gold descending».

The members are restricted to numerical columns (by checking F (f) = num). The sort
keys are kept as a vector. The sort operation creates a singleton vector; sort-and appends a
new key to the end and the then member Î generates code that passes the collected sort keys
to the τ operation of the relational algebra. When generating members for adding further
sort keys, we exclude the columns that are used already (by checking that the column f does
not match column name of any of the existing keys @i. si = f ′ 7→ ω).

Grouping and aggregation. The final part of the pivot type provider is defined in Figure 10.
The group function Ê generates a class that lets the user select a column to use as the
grouping key and agg is used to provide aggregates that can be calculated over grouped
data. The agg function Ì takes the schema of the input data set F , column f to be used as
the group key, a schema of the data set that will be produced as the result G and a set of

ECOOP 2017



21:16 Data Exploration through Dot-driven Development

drop(F ) = C, {C 7→ (l, L′ ∪
⋃
Lf )} Ê

l = type C(x : Query) = ∀f ∈ dom(F ) where Cf , Lf = drop(F ′)
member «drop f» : Cf = Cf (Πdom(F ′)(x)) and F ′ = {f ′ 7→ τ ′ ∈ F, f ′ 6= f}
member then : C ′ = C ′(x) Ë where C ′, L′ = pivot(F )

sort(F ) = C, {C 7→ (l,
⋃
Lf ∪

⋃
L′f )} Ì

l = type C(x : Query) = ∀f ∈ {f | F (f) = num}, where
member «by f desc» : Cf = Cf (x) Cf , Lf = sort-and(F, f 7→ desc )
member «by f asc» : C ′f = C ′f (x) C ′f , L

′
f = sort-and(F, f 7→ asc )

sort-and(F, s1, . . . , sn ) = C, {C 7→ (l,
⋃
Lf ∪

⋃
L′f ∪ L′)} Í

l = type C(x : Query) = ∀f ∈ {f | F (f) = num, @i.si = f ′ 7→ ω ∧ f ′ = f}
member «f desc» : Cf = Cf (x) Cf , Lf = sort-and(F, s1, .., sn, f 7→ desc )
member «f asc» : C ′f = C ′f (x) C ′f , L

′
f = sort-and(F, s1, .., sn, f 7→ asc )

member then : C ′ = C ′(τs1,...,sn(x)) where C ′, L′ = pivot(F ) Î

Figure 9 Pivot type provider – dropping columns and sorting data

group(F ) = C, {C 7→ (l,
⋃
Lf )} Ê

l = type C(x : Query) = ∀f ∈ dom(F ) where
member «by f» : Cf = Cf (x) Cf , Lf = agg(F, f, {f 7→ F (f)}, ∅) Ë

agg(F, f,G, S) = C, {C 7→ (l,
⋃
Lf ∪

⋃
L′f ∪

⋃
L′′f ∪ L′ ∪ L′′)} Ì

l = type C(x : Query) = ∀f ∈ dom(F ) \ dom(S)
member «sum f» : C ′f = C ′f (x) when F (f) = num Í

member «concat f» : C ′′f = C ′′f (x) when F (f) = string Î

member «count all» : C ′ = C ′(x) when Count /∈ G Ï

member «distinct f» : Cf = Cf (x)
member then : C ′′ = C ′′(Φf,ρ1/f1,...,ρn/fn

(x)) where {ρ1/f1, . . . , ρn/fn} = S Ð

where

Cf , Lf = agg(F, f,G ∪ {f 7→ num}, S ∪ {dist f/f})
C ′f , L

′
f = agg(F, f,G ∪ {f 7→ num}, S ∪ {sum f/f})

C ′′f , L
′′
f = agg(F, f,G ∪ {f 7→ string}, S ∪ {conc f/f})

C ′, L′ = agg(F, f,G ∪ {Count 7→ int}, S ∪ count/Count)
C ′′, L′′ = pivot(G)

Figure 10 Pivot type provider – grouping and aggregation.



T. Petricek 21:17

aggregation operations collected so far S. Initially Ë, the resulting schema contains only the
column used as the key with its original type (which is always implicitly added by Φ) and
the set of aggregations to be calculated is empty.

The agg function is invoked recursively (similarly to drop and sort-and) to add further
aggregation operations, or until the user selects the then member Ð, which applies the
grouping using Φ and returns a class generated by the entry-point pivot function.

When calculating an aggregate over a specific column, the type provider reuses the column
name from the input data set in the resulting data set. Consequently, the agg function offers
aggregation operations only using columns that have not been already used. This somewhat
limits the expressivity, but it simplifies the programming model. Furthermore, «sum f» Í is
only provided for columns of type num and «concat f» Î is only provided for strings. Finally,
the «count all» aggregation Ï is not related to a specific field and is exposed once, adding a
column Count to the schema of the resulting data set.

6.2 Properties of the pivot type provider
If we were using the relational algebra formalized in Section 5.1 to construct queries, we can
write an invalid program, e.g. by attempting to select a column f using Πf from a data set
that does not contain the column. This is not an issue when using the pivot type provider,
because the provided types allow the user to construct only correct data transformations.

To formalize this, we prove partial soundness of the Foo calculus (Theorem 1), which
characterizes the invalid programs that can be written using the Query-typed expressions
and then prove safety of the pivot type provider (Theorem 7), which shows that such errors
do not occur when using the provided types.

Foo calculus. The Foo calculus consists of the relational algebra and simple object calculus
where objects can be constructed and their members accessed. It permits recursion as a
member can invoke itself on a new object instance. To accommodate this, we formalize
soundness using progress (Lemma 2) and preservation (Lemma 3).

The soundness is partial because the evaluation can get stuck when an operation of the
relational algebra on a given data set is undefined.

I Theorem 1 (Partial soundness). For all L0, e, e
′, if L0, ∅ ` e : τ, L1 and e  L1 e

′ then
either e′ is a value, or there exists e′′ such that e′  L1 e

′′, or e′ has one of the following
forms: E[Πf1,...,fn(D)], E[σϕ(D)], τf1,...,fn(D)] or E[Φf,ρ1/f1,...,ρm/fm

(D)] for some E,D.

Proof. Direct consequence of Lemma 2 and Lemma 3. J

I Lemma 2 (Partial progress). For all L0, e such that L0, ∅ ` e : τ, L1 then either, e is a
value, there exists e′ such that e L1 e

′ or e has one of the following forms: E[Πf1,...,fn(D)],
E[σϕ(D)], τf1,...,fn

(D)] or E[Φf,ρ1/f1,...,ρm/fm
(D)] for some E and D.

Proof. By induction over `. For data, strings and numbers, the expression is always a value.
For relational algebra operations, the expression can either be reduced or has one of the
required forms. For (member) typing guarantees reduction is possible. J

I Lemma 3 (Type preservation). For all L0, e, e
′ such that L0, ∅ ` e : τ, L1 and e  L1 e

′

then L1, ∅ ` e′ : τ, L2 for some L2.

Proof. By induction over  L1 . Cases for relational algebra operations and for (context) are
straightforward. The (member) case follows from a standard substitution lemma and the
fact that type checking of member access also type checks the body of the member. J

ECOOP 2017



21:18 Data Exploration through Dot-driven Development

Correctness of the pivot provider. The pivot type provider defined by pivot defines an
entry-point class and a context L containing delayed classes. Our type system does not check
type definitions in L upfront (although this is possible in dependently-typed languages [7]),
but we prove that the body of all provided members is well-typed.

Type checking can also fail if a delayed class was not discovered before it is needed in
the (new) and (member) typing rules (Figure 7). We show that this cannot happen for
the context constructed by the pivot function. To avoid operating over potentially infinite
contexts, we first define an expansion operation ↓n L that evaluates the first n levels of the
nested context L and flattens it.

I Definition 4 (Expansion). Given a context L, we define nth expansion of L, written ↓n L
such that ↓n+1 L =↓n L ∪

⋃
Ln where ↓n L = {C0 7→ (l0, L0), . . . , Cn 7→ (ln, Ln)} and

↓0 L = L.

I Theorem 5 (Correctness of lazy contexts). Given C,L = pivot(F ) then for any e if there
exists i, τ such that ↓i L; ∅ ` e : τ ;L′ then also L; ∅ ` e : τ ;L′′.

Proof. Assume there exists F, e, i such that ↓i L; ∅ ` e : τ ;L′ but not L; ∅ ` e : τ ;L′′. This
is a contradiction as (new) and (member) typing rules expand L defined by pivot sufficiently
to discover all types that may have been used in the type-checking of e using ↓i L. J

I Theorem 6 (Correctness of provided types). For all F, n let C0, L0 = pivot(F ) and assume
that C ∈ dom(↓n L) where ↓n L(C) = (type C(x : τ) = .. member Ni : τi = ei ..), L′. It holds
that for all i the body of Ni is well-typed, i.e. L ∪ L′;x : τ ` ei : τi;L′′.

Proof. By examination of the functions defining the type provider; the expressions ei are
well-typed and use only types defined in L ∪ L′. J

Safety of provided transformations. The two properties discussed above ensure that the
types provided by the pivot type provider can be used to type check expressions constructed
by the users of the type provider in the expected way. An expression will not fail to type
check because of an error in the provided types.

Now we can turn to the key theorem of the paper, which states that any expression
constructed using (just) the provided types can be evaluated to a value of correct type. For
simplicity, we only assume expressions that access a series using the «get series» member.
However, this covers all data transformations that can be constructed using the type provider.

I Theorem 7 (Safety of pivot type provider). Given a schema F = {f1 7→ τ1, . . . , fn 7→ τn},
let C,L = pivot(F ) then for any expression e that does not contain relational algebra
operations or Query-typed values as sub-expression, if L;x : C ` e : series τ1, τ2 ;L′ then
for all D = {f1 7→ v1,1, . . . , v1,m , . . . , fn 7→ vn,1, . . . , vn,m } such that ` vi,j : τi it holds
that e[x ← C(D)]  ∗L′ series τk, τv ({fk 7→ k1, . . . , kr, fv 7→ v1, . . . , vr}) such that for all j
` kj : τk and ` vj : τv.

Proof. Define a mapping fields(C) that returns the fields expected in the data set passed to
a class C provided by the pivot type provider. Let fields(C) = F for C provided using:

pivot(F ) = C,L get-key(F ) = C,L

drop(F ) = C,L get-val(F, fk) = C,L

sort(F ) = C,L

sort-and(F, s1, . . . , sn ) = C,L
group(F ) = C,L agg(F, f,G, S) = C,L

By induction over  L′ , show that when C(v).Ni is reduced using (member) then v is a
value {f1 7→ v1,1, . . . , v1,m , . . . , fn 7→ vn,1, . . . , vn,m } s.t. fields(C) = {f1 7→ τ1, . . . , fn 7→



T. Petricek 21:19

pivot(F,D) = C, {C 7→ (l, L1 ∪ L2 ∪ . . .} Ê

l = type C(x : Query) =
member «drop columns» : C1 = C1(x) where C1, L1 = drop(F,D)
member «filter data» : C2 = C2(x) where C2, L2 = filter(F,D)
(. . .)

drop(F,D) = C, {C 7→ (l, L′ ∪
⋃
Lf )} Ë

l = type C(x : Query) = ∀f ∈ dom(F )
member «drop f» : Cf = where F ′ = {f ′ 7→ τ ′ ∈ F, f ′ 6= f}
Cf (Πdom(F ′)(x)) and Cf , Lf = drop(F ′,Πdom(F ′)(D)) Ì

member then : C ′ = C ′(x) where C ′, L′ = pivot(F,D)

filter(F,D) = C, {C 7→ (l, L′ ∪
⋃
Lf )}

l = type C(x : Query) = ∀f ∈ dom(F )
member «f is» : Cf = Cf (x) where Cf , Lf = filter-val(F, f,D) Í

member then : C ′ = C ′(x) where C ′, L′ = pivot(F,D)

filter-val(F, f,D) = C, {C 7→ (l,∪
⋃
Lv)} where D = {f 7→ v1, . . . , vn , . . .} Î

l = type C(x : Query) = ∀v ∈ {v1, . . . , vn}
member « v » : Cv = where Cv, Lv = filter(F, σϕv

(D))
Cv(σϕv (x)) and ϕv(r) = r(f) = v Ï

Figure 11 Pivot type provider – grouping and aggregation.

τn} and ` vi,j : τi. Thus the class provided by get-val is constructed with a data set containing
the required columns of corresponding types. J

6.3 Adding the filtering operation
The example given in Section 1 obtained top 8 athletes based on the number of gold medals
from Rio 2016. It used two operations that were omitted in the formalization in Section 6.1.
We omitted paging to keep the host language simple, but we also omitted filtering, which lets
us write «filter data».«Games is».«Rio (2016)». This operation is worth further discussion.
To support it, the type provider needs not only the schema of the data set, but also sample
data set that is used to offer the available values such as «Rio (2016)».

In the revised formalization, the pivot function which models the type provider takes the
schema F together with sample data D and provides the type with class context:

pivot(F,D) = C,L where
F = {f1 7→ τ1, . . . , fn 7→ τn}
D = {f1 7→ v1,1, . . . , v1,r , . . . , fn 7→ vn,1, . . . , vn,r }

In prior work [26], the input value is not available when writing the code and so the
schema is inferred from a representative sample. In exploratory data analysis, the data set is
often available at the time of writing the code and so D can be the actual data set.

ECOOP 2017



21:20 Data Exploration through Dot-driven Development

olympics.«filter data».«Medal is».Gold.«Team is»
→ «Czech Republic».«Athlete is»

→ «Barbora Spotakova»
→ «David Kostelecky»
→ «David Svoboda»

→ Mongolia.«Athlete is»
→ «Badar-Uugan Enkhbat»
→ «Tuvshinbayar Naidan»

Figure 12 Subset of members provided by the filtering operation.

Figure 13 Athletes by the number of medals over the entire history of Olympic games.

The Figure 11 shows a revised version of the pivot function Ê together with one of the
operations discussed before and the newly added filter function. As members members
performing data transformations are generated, the provider applies the same transformation
on the sample data. For example, the revised drop function Ë takes the sample data set D;
when calling drop recursively to generate nested class after dropping a column Ì, it removes
the column from the schema (as before), but it also removes the column from the sample
dataset. This means that as nested types are provided, the sample data used is always
representative of data what will be passed to the class at runtime.

After choosing the «filter data» member, the class provided by filter lets the user select
one of the columns Í based on the schema; filter-val then generates a class with members
based on the available values for the specified column in the data D Î. The predicate that
filters data based on the value Ï is used both in the runtime code and when restricting the
sample data set using σϕv

(D) in the type provider when recursively calling filter.
The fact that we transform the sample data when providing types is important for two

reasons. It makes it possible to apply filtering after aggregation (which changes the format of
data) and it means that more appropriate values are provided for faceted data. For example,
Figure 12 shows some of the provided members when filtering data by medal, team and
individual athlete. Once we refine the team using «Team is».Mongolia and attempt to filter
by athlete using «Athlete is», the type provider offers only the names of Mongolian athletes.

7 Case study: Visualizing Olympic medalists

We used The Gamma script with the pivot type provider to build an interactive web site
(rio2016.thegamma.net) that visualizes a number of facts about Olympic medalists using

rio2016.thegamma.net


T. Petricek 21:21

Figure 14 User interface with automatically provided grouping and sorting options

the data set discussed in Appendix A and used throughout this paper. The web site lets
the readers view and modify the source code and we also developed a number of tools that
make working with the source code easier, going beyond the basic auto-completion tooling
to enable dot-driven development as discussed in Section 3.3. In this section, we review our
experience and outline some of the additional tools (available at github.com/the-gamma).

Building tables and charts. As part of the case study, we implement functions for building
basic visualizations (table, column chart, pie chart and timeline) and we extended the host
language with more advanced features that can be used to customize the displays. Building
rich visualizations with the simplicity of the pivot type provider is an interesting future work.
Figure 13 shows a sample table, listing top athletes over the entire history of Olympic games.

The data transformation used to construct the table include the operations discussed in
this paper together with paging functionality and «get the data» which returns the entire
data set of type Query, as opposed to extracting a series with keys and values:

let data = olympics
.«group data».«by Athlete»
.«sum Gold».«sum Silver».«sum Bronze».«concat Team».then

.«sort data».«by Gold descending»
.«and by Silver descending».«and by Bronze descending».then

.paging.take(10).«get the data»

table.create(data)

The table.create operation on the last line generates a table based on the columns available
in the data set. We omit the additional customization which specifies that medals should be
rendered as images. For most visualizations we built, the pivot type provider was expressive
enough to capture the core logic of the operation, but further joining of data was sometimes
needed. Possible extensions that would allow capturing those are discussed in Section 8.1.

Generating interactive user interfaces. Although the pivot type provider simplifies code
needed for data exploration, not everyone will be able to write or modify source code. The
simplicity of the host language makes it possible to automatically generate user interface

ECOOP 2017

github.com/the-gamma


21:22 Data Exploration through Dot-driven Development

that allows changing of some of the parameters of the program. Figure 14 shows an example
for the above code snippet that we implemented as part of the visualization.

The user interface lets the user choose aggregations to be calculated over a group and
select columns used for sorting. It is generated automatically by looking for a specific pattern
in the chain of member accesses – we annotate members with annotations denoting whether
a member is start of a list, list item or an end of a list. The editor then looks for parts of the
chain of the form «list start».«list item 1».«list item 2».«list end» and generates a component
that lets the user remove or add list items. An item cannot be removed if the operation
would break the code (e.g. when it adds a member that is needed later) and items to be
added are chosen using available members (as in the standard auto-complete). The headers
shown in Figure 14 are provided as additional annotations attached to «list start».

Spreadsheet-inspired live editor. The third editor extension that we developed for the pivot
type provider aims to bridge the gap between code and user interfaces. This is done through
a direct manipulation editor [28] inspired by spreadsheet applications. When exploring data
in a spreadsheet, the user can always see the data they work with and the results of an action
will be immediately visible. This is not usually the case when writing code in text editor.
However, when exploring data using the pivot type provider, the intermediate results can be
calculated immediately using the sample data set provided when instantiating the refined
version of the type provider with filtering support (Section 6.3).

The Figure 15 shows the sample expression (discussed above) in the live editor6. Note
that the selected part of code is the «by Gold descending» identifier and so the preview shows
results as computed at that point of the query evaluation. Athletes with largest number of
gold medals appear first, but silver or bronze medals are not yet used as secondary sorting
keys and so the secondary ordering is arbitrary. As the user moves through the code, or
writes the code, the live preview is updated accordingly.

Finally, the editor also makes it possible to modify the code through the user interface.
The “x” buttons can be used to remove sort keys or transformations and “+” buttons (on the
right) can be used to add more transformations or to specify additional parameters within
the “then” pattern. In case of sorting, this allows adding further sorting keys.

Unlike the user interface for modifying lists, the live editor works specifically with the
pivot type provider. However, it still relies on the simple structure provided by the fact that
entire transformation can be written as a single chain of member accesses. In particular,
we identify individual transformations («group by», «sort by», etc.) and generate different
user interface for specifying parameters of each transformation. For sorting, as shown in
Figure 15, the user can add or remove sort keys. For grouping or paging, the user interface
lets the user choose the grouping key and the number of elements to take, respectively.

8 Related and further work

The technical focus of this paper is on the programming language theory behind the pivot
type provider (Section 6), but the paper also outlines interesting human-computer interaction
aspects (Section 7). We discuss further related directions in this section before concluding.

6 The live editor can be tested live as part of the documentation for the JavaScript package at thegamma.net

thegamma.net


T. Petricek 21:23

Figure 15 Spreadsheet-inspired live editor for the pivot type provider.

8.1 Further work
The pivot type provider shows the feasibility of using dot-driven development as a mechanism
behind simple programming tools for data exploration. Extending the mechanism to handle
large and dirty datasets poses a number of interesting challenges.

Scalability. A benefit of our approach based on relational algebra, is that the query construc-
ted by the pivot type provider can be translated to SQL and executed by a database engine.
This means that evaluating the query over large data sets does not pose a problem. However,
the completion lists generated from data when filtering may require further consideration.

We plan to explore a number of possibilities such as grouping the values by a prefix (e.g.
«starting with LO».London and «starting with CA».Cambridge) or grouping the values by their
frequency (for example, «occurring less than 100 times».Grantchester and «occurring more than
10000 times».London). Such encoding makes it possible to scale to an arbitrary data size,
provided that the backing data storage is equipped with an appropriate index.

Expressivity. The case studies presented in the paper show that the pivot type provider
is practically useful in its current form, but we acknowledge that its expressivity is limited
to simple queries. Making the tool more expressive to allow tasks such as denormalisation,
handling of missing values and dirty data is an important problem. Unlike data querying
(which is captured by the relational algebra), there is no generally accepted “algebra of data
cleaning” and so more foundational work is needed, possibly building on from tools such as
Wrangler [16] and PADS [12]. We believe that the “dot-driven development” methodology
can support richer languages and we intend to explore this direction in the future.

8.2 Related work
Our work builds on type providers, which have been pioneered in F# [34]. The technical
contributions are related to several works on type systems. This section also gives an overview
of related work on human-computer interaction and commercial tools for data visualization.

ECOOP 2017



21:24 Data Exploration through Dot-driven Development

Type providers. Type providers first appeared in F# [34] and can also be seen as a form of
dependent typing [7]; we take the opposite perspective and use type providers as a mechanism
for implementing other type system features. Our focus on using type providers for describing
computations is different from other type provider work [26, 19, 27], which focuses on mapping
of external data into types. To our best knowledge, the Azure type provider [3] is the first
type provider that provides members for specifying a restricted form of queries.

Fancy types. The pivot type provider makes data exploration safer as it does not allow
construction of invalid queries. Alternative approach would be to use fancy types, such
as those available in Haskell [9, 37]. The approach sketched in Section 4.1 used row types
and typestate or phantom types [35, 32, 18]. The idea of using type providers to encode
fancy types has also been explored for session types [13, 2] and it would be interesting to see
whether our approach can be applied in other areas such as web development [6].

Human-computer interaction. We discussed how the pivot type provider simplifies the
programming model (Section 3), but it would be interesting to explore this aspect empirically
through the perspective of HCI. The live editor shown in Section 7 offers a form of direct
manipulation [28, 29, 30]. Unlike spreadsheets, we construct a transformation rather than
actually transforming data, which makes it more related to systems for query construction
[20, 5]. Our approach is somewhat different in that we see code as equally important to the
direct manipulation interface.

Relational algebra. Our operational semantics used to model data transformations (Sec-
tion 5) was based on relational algebra [8, 24], although our focus was on aggregation, which
has been added to the core algebra in a number of different ways [23, 14, 4, 10]. The pivot
type provider does not provide operations for joining data sets, which is an interesting
problem for further work as it requires extensions to the type provider mechanism – the join
operation is parameterized by two data sets that are being combined.

Commercial tools. There is a wide range of commercial tools for building dashboards
and data visualizations such as Microsoft Power BI [36], Tableau [38] and Qlik [15]. Those
allow users to build data visualizations through a user interface and embedded scripting
capabilities. The main difference from the pivot type provider is that none of these tools
treats source code as primary and so they do not provide the same level of reproducibility as
scripts written using the pivot type provider.

9 Conclusions

In this paper, we presented a simple programming language for data exploration. The
language addresses two problems with the current tooling for data science. On one hand,
spreadsheets are easy to use, but are error-prone and do not lead to reproducible scripts
that could be modified or checked for correctness. On the other hand, even simple data
exploration libraries require the user to understand non-trivial programming concepts and
offer only little help when writing data exploration code.

We reduce the number of concepts in the language by making member access (“dot”)
the primary programming mechanism and we implement type provider for data exploration,
which offers available transformations and their parameters as members of a provided type.
This leads to a simple language that can be well supported by standard tooling such as



T. Petricek 21:25

auto-completion. We also explore other possibilities for tooling enabled by this model ranging
from simple interactive user interfaces to direct manipulation tools.

The pivot type provider offers a safe and easy to use layer over an underlying relational
algebra that we use to model data transformations. As a key technical contribution of this
paper, we formalize the type provider and prove that queries constructed using the types it
provides are correct. Achieving this property by other means would require a language with
complex type system features such as typestate and row types.

We believe that the simple programming model for data exploration presented in this
paper can contribute to democratization of data exploration – you should not need to be an
experienced programmer to build a transparent visualization using facts that matter to you!

Acknowledgements. The author is grateful to Don Syme for numerous discussions about
type providers, James Geddes and Kenji Takeda for suggestions and useful references and to
Mariana Marasoiu and Alan Blackwell for ideas on human-computer interaction aspects of
the work. Finally, thanks to the anonymous reviewers for useful suggestions and corrections.

References
1 Martin Abadi and Luca Cardelli. A theory of objects. Springer Science & Business, 2012.
2 Fahd Abdeljallal. Session types with Fahd Abdeljallal. F#unctional Londoners meetup

group, 2016. URL: https://skillsmatter.com/meetups/8459.
3 Isaac Abraham. Azure storage type provider. Available online., 2016. URL: http://

fsprojects.github.io/AzureStorageTypeProvider/.
4 Rakesh Agrawal. Alpha: An extension of relational algebra to express a class of recursive

queries. IEEE Transactions on Software Engineering, 14(7):879–885, 1988.
5 Eirik Bakke and David R. Karger. Expressive query construction through direct manipula-

tion of nested relational results. In Proceedings of International Conference on Management
of Data, SIGMOD ’16, pages 1377–1392. ACM, 2016. doi:10.1145/2882903.2915210.

6 Adam Chlipala. Ur: Statically-typed metaprogramming with type-level record computation.
SIGPLAN Not., 45(6):122–133, June 2010. doi:10.1145/1809028.1806612.

7 David Raymond Christiansen. Dependent type providers. In Proceedings of Workshop
on Generic Programming, WGP ’13, pages 25–34. ACM, 2013. doi:10.1145/2502488.
2502495.

8 E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,
13(6):377–387, June 1970. doi:10.1145/362384.362685.

9 Anthony Cowley. Frames: Data frames for tabular data. Available on GitHub, 2017. URL:
https://github.com/acowley/Frames.

10 Richard Cyganiak. A relational algebra for sparql. Digital Media Systems Laboratory HP
Laboratories Bristol. HPL-2005-170, page 35, 2005.

11 Oxford Dictionaries. Word of the year 2016 is... Oxford University Press, 2016. URL:
https://en.oxforddictionaries.com/word-of-the-year/word-of-the-year-2016.

12 Kathleen Fisher and Robert Gruber. PADS: a domain-specific language for processing ad
hoc data. In Vivek Sarkar and Mary W. Hall, editors, Proceedings of the ACM SIGPLAN
2005 Conference on Programming Language Design and Implementation, Chicago, IL, USA,
June 12-15, 2005, pages 295–304. ACM, 2005. doi:10.1145/1065010.1065046.

13 Simon Gay and Malcolm Hole. Types and subtypes for client-server interactions. In
European Symposium on Programming, pages 74–90. Springer, 1999.

14 Jim Gray, Adam Bosworth, Andrew Layman, and Hamid Pirahesh. Data cube: A relational
aggregation operator generalizing group-by, cross-tab, and sub-total. In Proceedings of

ECOOP 2017

https://skillsmatter.com/meetups/8459
http://fsprojects.github.io/AzureStorageTypeProvider/
http://fsprojects.github.io/AzureStorageTypeProvider/
http://dx.doi.org/10.1145/2882903.2915210
http://dx.doi.org/10.1145/1809028.1806612
http://dx.doi.org/10.1145/2502488.2502495
http://dx.doi.org/10.1145/2502488.2502495
http://dx.doi.org/10.1145/362384.362685
https://github.com/acowley/Frames
https://en.oxforddictionaries.com/word-of-the-year/word-of-the-year-2016
http://dx.doi.org/10.1145/1065010.1065046


21:26 Data Exploration through Dot-driven Development

International Conference on Data Engineering, ICDE ’96, pages 152–159. IEEE Computer
Society, 1996.

15 Christopher Ilacqua, Henric Cronstrom, and James Richardson. Learning Qlik Sense®:
The Official Guide. Packt Publishing Ltd, 2015.

16 Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. Wrangler: Interactive
visual specification of data transformation scripts. In ACM Human Factors in Computing
Systems (CHI), 2011. URL: http://vis.stanford.edu/papers/wrangler.

17 Paul Krugman. The Excel depression. New York Times, 18, 2013.
18 Daan Leijen and Erik Meijer. Domain specific embedded compilers. SIGPLAN Not.,

35(1):109–122, December 1999. doi:10.1145/331963.331977.
19 Martin Leinberger, Stefan Scheglmann, Ralf Lämmel, Steffen Staab, Matthias Thimm,

and Evelyne Viegas. Semantic web application development with LITEQ. In International
Semantic Web Conference, pages 212–227. Springer, 2014.

20 Bin Liu and H. V. Jagadish. A spreadsheet algebra for a direct data manipulation query
interface. In Proceedings of International Conference on Data Engineering, ICDE ’09, pages
417–428. IEEE Computer Society, 2009. doi:10.1109/ICDE.2009.34.

21 Wes McKinney. Python for data analysis: Data wrangling with Pandas, NumPy, and
IPython. O’Reilly Media, Inc., 2012.

22 Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ: Reconciling object, relations and
XML in the .net framework. In Proceedings of the International Conference on Management
of Data, pages 706–706. ACM, 2006.

23 Z. Meral Özsoyoglu and Gultekin Özsoyoglu. An extension of relational algebra for summary
tables. In Proceedings of International Workshop on Statistical Database Management,
SSDBM’83, pages 202–211. Lawrence Berkeley Laboratory, 1983.

24 M. Tamer Ozsu. Principles of Distributed Database Systems. Prentice Hall Press, 3rd
edition, 2007.

25 Raymond R Panko. What we know about spreadsheet errors. Journal of Organizational
and End User Computing (JOEUC), 10(2):15–21, 1998.

26 Tomas Petricek, Gustavo Guerra, and Don Syme. Types from data: Making structured
data first-class citizens in F#. In Proceedings of Conference on Programming Language
Design and Implementation, PLDI ’16, pages 477–490. ACM, 2016. doi:10.1145/2908080.
2908115.

27 Tomas Petricek, Don Syme, and Zach Bray. In the age of web: Typed functional-first
programming revisited. In Proceedings ML Family/OCaml Users and Developers workshops,
ML ’15. ACM, 2015.

28 Ben Shneiderman. The future of interactive systems and the emergence of direct manipu-
lation. In Proceedings of the NYU Symposium on User Interfaces on Human Factors and
Interactive Computer Systems, pages 1–28. Ablex Publishing Corp., 1984.

29 Ben Shneiderman. Direct manipulation for comprehensible, predictable and controllable
user interfaces. In Proceedings of International Conference on Intelligent User Interfaces,
pages 33–39. ACM, 1997.

30 Ben Shneiderman, Christopher Williamson, and Christopher Ahlberg. Dynamic queries:
database searching by direct manipulation. In Proceedings of Conference on Human Factors
in Computing Systems, pages 669–670. ACM, 1992.

31 Jeremy G Siek and Walid Taha. Gradual typing for functional languages. In Scheme and
Functional Programming Workshop, volume 6, pages 81–92, 2006.

32 Robert E. Strom and Shaula Yemini. Typestate: A programming language concept for
enhancing software reliability. IEEE Trans. Software Eng., 12(1):157–171, 1986. doi:
10.1109/TSE.1986.6312929.

http://vis.stanford.edu/papers/wrangler
http://dx.doi.org/10.1145/331963.331977
http://dx.doi.org/10.1109/ICDE.2009.34
http://dx.doi.org/10.1145/2908080.2908115
http://dx.doi.org/10.1145/2908080.2908115
http://dx.doi.org/10.1109/TSE.1986.6312929
http://dx.doi.org/10.1109/TSE.1986.6312929


T. Petricek 21:27

33 Don Syme. F# 4.0 speclet - extending the F# type provider mechanism
to allow methods to have static parameters. F# Language Design Proposal,
2016. URL: https://github.com/fsharp/fslang-design/blob/master/FSharp-4.0/
StaticMethodArgumentsDesignAndSpec.md.

34 Don Syme, Keith Battocchi, Kenji Takeda, Donna Malayeri, and Tomas Petricek. Themes
in information-rich functional programming for internet-scale data sources. In Proceedings
of Workshop on Data Driven Functional Programming, DDFP ’13, pages 1–4. ACM, 2013.
doi:10.1145/2429376.2429378.

35 Mitchell Wand. Type inference for record concatenation and multiple inheritance. Inf.
Comput., 93(1):1–15, July 1991. doi:10.1016/0890-5401(91)90050-C.

36 Christopher Webb et al. Power Query for Power BI and Excel. Apress, 2014.
37 Stephanie Weirich. Depending on types. SIGPLAN Not., 49(9):241–241, August 2014.

doi:10.1145/2692915.2631168.
38 Richard Wesley, Matthew Eldridge, and Pawel T Terlecki. An analytic data engine for

visualization in tableau. In Proceedings of International Conference on Management of
Data, pages 1185–1194. ACM, 2011.

A Sample of the Olympic medals data set

The data set used as an example in the case study discussed in Section 7 as well as
in the examples discussed throughout the paper is a single CSV file listing the entire
history of Olympic medals awarded since 1896. The data set can be found at https:
//github.com/the-gamma/workyard together with scripts used to obtain it. The following
is a representative example listing the first 5 rows:

Games,Year,Discipline,Athlete,Team,Gender,Event,Medal,Gold,Silver,Bronze
Athens (1896), 1896, Swimming, Alfred Hajos, HUN, Men, 100m freestyle, Gold, 1, 0, 0
Athens (1896), 1896, Swimming, Otto Herschmann, AUT, Men, 100m freestyle, Silver, 0, 1, 0
Athens (1896), 1896, Swimming, Dimitrios Drivas, GRE, Men, 100m freestyle for sailors, Bronze, 0, 0, 1
Athens (1896), 1896, Swimming, Ioannis Malokinis, GRE, Men, 100m freestyle for sailors, Gold, 1, 0, 0
Athens (1896), 1896, Swimming, Spiridon Chasapis, GRE, Men, 100m freestyle for sailors, Silver, 0, 1, 0

The column names are the same as the column names used to generate the olympics
value using the pivot type provider. The script to generate the file de-normalizes the Medal
column and adds Gold, Silver and Bronze columns which are numerical and can thus be
easily summed. When loading the data, we also transform country codes such as GRE to full
country names.

ECOOP 2017

https://github.com/fsharp/fslang-design/blob/master/FSharp-4.0/StaticMethodArgumentsDesignAndSpec.md
https://github.com/fsharp/fslang-design/blob/master/FSharp-4.0/StaticMethodArgumentsDesignAndSpec.md
http://dx.doi.org/10.1145/2429376.2429378
http://dx.doi.org/10.1016/0890-5401(91)90050-C
http://dx.doi.org/10.1145/2692915.2631168
https://github.com/the-gamma/workyard
https://github.com/the-gamma/workyard




Promising Compilation to ARMv8 POP∗

Anton Podkopaev1, Ori Lahav2, and Viktor Vafeiadis3

1 SPbU, JetBrains Research, St. Petersburg, Russia
a.podkopaev@2009.spbu.ru

2 MPI-SWS, Kaiserslautern, Germany
orilahav@mpi-sws.org

3 MPI-SWS, Kaiserslautern, Germany
viktor@mpi-sws.org

Abstract
We prove the correctness of compilation of relaxed memory accesses and release-acquire fences
from the “promising” semantics of Kang et al. [12] to the ARMv8 POP machine of Flur et al. [9].
The proof is highly non-trivial because both the ARMv8 POP and the promising semantics
provide some extremely weak consistency guarantees for normal memory accesses; however, they
do so in rather different ways. Our proof of compilation correctness to ARMv8 POP strengthens
the results of the Kang et al., who only proved the correctness of compilation to x86-TSO and
Power, which are much simpler in comparison to ARMv8 POP.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases ARM, Compilation Correctness, Weak Memory Model

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.22

1 Introduction

One of the major unresolved topics in the semantics of programming languages has to do
with giving semantics to concurrent shared-memory programs. While it is well understood
that such programs cannot follow the naive paradigm of sequential consistency (SC) [15], it
is not completely clear what the right semantics of such concurrent programs should be.

At the level of machine code, the semantics varies a lot depending on the hardware
architecture, which is only loosely specified by the vendor manuals. In the last decade,
academic researchers have produced formal models for the mainstream hardware architectures
(e.g., x86-TSO [23], Power [22, 5], ARMv8 POP [9]) by engaging in discussions with hardware
architects and subjecting existing hardware implementations to extensive tests.

In this paper, we will focus on the ARMv8 POP model due to Flur et al. [9], which
is arguably the most advanced such hardware memory model.1 Operational in nature, it
models many low-level hardware features that affect the execution of concurrent programs.
These include the hardware topology, the non-uniform propagation of messages to other
processors, the reordering of messages, processor-level out-of-order instruction execution,
branch prediction, local decisions on the coherence of overwritten writes, and so on. The

∗ An extended version of this paper with a technical appendix can be found in [20].
1 We would like to point out that the ARMv8 POP model is not the latest model for ARM. In March 2017,
version 8.2 of the ARM reference manual [1] introduced a substantially stronger “multi-copy-atomic”
model, whose formal axiomatic definition became available on 27 April 2017 [3]. The new model
disallows the weak behaviors of the ARM-weak and WRC+data+addr examples discussed in this paper.

© Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 22; pp. 22:1–22:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


22:2 Promising Compilation to ARMv8 POP

ARMv8 POP model is in certain ways substantially weaker than other hardware memory
models. For example, it allows the outcome a = 1 of the following program (see [13]):

a := [x]; //1 b := [x]; c := [y];
[x] := 1; [y] := b; [x] := c; (ARM-weak)

where all variables are initially 0. In essence, as we will explain in Section 2, the hardware
may propagate the [x] := 1 store to the second thread, then write [y] := 1 and propagate
it to the third thread, execute the third thread, and propagate its store to the first thread
before the a := [x] load returns. In contrast, Power and x86-TSO both forbid this outcome.

At the level of programming languages, the main problem is to design a memory model
that enables efficient compilation across a wide range of hardware platforms and yet provides
suitable high-level guarantees, such as reduction to SC in the absence of data races and
type safety even in the presence of racy code. While many attempts to solve this problem
have been made in the past [8, 19, 25, 11, 21], including the Java [18] and C/C++11 [7]
memory models, almost all have been found to be lacking in one way or another, either not
supporting certain compiler optimizations or allowing “out of thin air” behaviors.

Recently, however, Kang et al. [12] made a breakthrough and introduced a memory
model that claims to satisfy both desiderata. Their model is also operational, but includes a
rather non-standard step, according to which a thread can promise to perform a write in
the future. While such promise steps are suitably restricted, once a promise is made, other
threads can read from the promised write, even before the promise is fulfilled. Promises
allow the weak behavior of the ARM-weak program: intuitively, the first thread may promise
to write [x] := 1, the second and third threads may then execute writing 1 to y and x

respectively, and the first thread can then execute reading a = 1 from the third thread and
finally fulfilling its promise to write [x] := 1.

While the Promise machine allows this surprisingly weak behavior of the ARM-weak
example, compilation from the promise semantics to the ARMv8 POP machine has not yet
been shown to be sound. In their paper, Kang et al. mention the ARM-weak program, but
do not verify compilation to ARMv8 POP; they only prove compilation correctness to the
substantially simpler x86-TSO and Power models.

In this paper, we fill this gap and prove the correctness of compilation from a subset of the
promise model to the ARMv8 POP model. The subset of promise model we handle is quite
minimal—it contains relaxed loads and stores, as well as release and acquire fences—but
exposes the following three main challenges we had to overcome in the compilation proof.

Firstly, the two machines are very different. The ARM machine executes instructions
possibly out of program order and in multiple steps: it issues the instruction, propagates
it to one thread at a time, satisfies read instructions—all in different steps. In contrast,
the Promise machine executes instructions in a single step and according to program
order (except for promised writes).
Secondly, the key technical device used in the compilation proof to the Power model is not
applicable to the ARMv8 POP model because it can execute anti-dependent instructions
out of order as in the ARM-weak program (see discussion in Section 10).
Thirdly, although both memory models are operational, compilation correctness cannot
be shown by a standard forward simulation. The reason is that in the ARM machine
writes to a specific location are not necessarily totally ordered during the execution;
they only become totally ordered once they are all propagated to the memory, which
may happen at the very end of the execution. In the Promise machine, however, writes
are totally ordered by timestamps from the point they are issued (or promised); so a
simulation proof would have to “guess” the correct ordering of the writes.



A. Podkopaev, O. Lahav, and V. Vafeiadis 22:3

To overcome this final challenge, we introduce an intermediate machine, which extends the
ARM machine recording timestamps for each write, and views for each threads and message.
We show that this intermediate machine has the same behaviors as the ARM machine, and
that the Promise machine can simulate the intermediate machine’s behaviors.

A secondary contribution of this paper is to provide a number of results about the ARMv8
POP model, which may be of general interest, e.g., in compiling from other language-level
memory models to ARMv8 POP.

In the remainder of this paper, we first introduce the ARMv8 POP and Promise models
informally (Section 2), and present the high-level structure of the proof (Section 3). Then, in
Sections 4 to 9 we present the ARMv8 POP, intermediate, and Promise machines formally,
and relate them to one another. We conclude with a discussion of related and future work.

2 Models through Examples

We start by discussing the ARM [9] and the Promise [12] machines on a couple of small
programs, litmus tests, like this:

[x] := 1; a := [y]; //1
[y] := 1; b := [x]; //0 (MP)

Here a, b stand for local variables (registers) and x, y are distinct memory locations shared
between threads. The program syntax of the ARM machine programs slightly differs from
the syntax of the Promise machine programs. We apply the following compilation scheme:

Promise: [x]rlx := a a := [x]rlx fence(acquire) fence(release)
ARM: [x] := a a := [x] dmb LD dmb SY

As the compilation scheme is a bijection, we present programs in the ARM syntax only. For
every program we suppose that locations are initialized with 0. To refer to a specific behavior
of the program, we annotate read instructions with values expected to be read (e.g., //1).

The ARM Machine. The ARM machine [9] consists of two components, a thread subsystem
and a storage subsystem. Roughly speaking, the former corresponds to processors’ per-thread
control units [10], which fetch and execute instructions, and send store/load memory requests
to the storage subsystem. The latter represents the memory hierarchy including caches,
store/load buffers, and the main memory. A state of the storage subsystem can be represented
graphically as a hierarchy of buffers, which are lists of memory requests.

Let’s execute the MP program in the ARM machine and get a = 1 and b = 0. One way
of getting this behavior is for the thread subsystem to issue the write (or read) requests
out-of-order to the storage subsystem. However, there is another way in which the outcome
a = 1, b = 0 is possible. First, the thread subsystem issues all requests in program order.

Thread 1 Thread 2

The main memory
[x] := 0; [y] := 0

[x] := 1
[y] := 1

a := [y]
b := [x]

Thread 1 Thread 2

The main memory
[x] := 0; [y] := 0

[x] := 1

[y] := 1
a := [y]
b := [x]

Thread 1 Thread 2

The main memory
[x] := 0; [y] := 0

[x] := 1

[y] := 1
b := [x]

ECOOP 2017



22:4 Promising Compilation to ARMv8 POP

After that, the storage subsystem reorders the independent requests [x] := 1 and [y] := 1,
and flows the requests [y] := 1, a := [y], and b := [x] from the bottom of the corresponding
buffers to the common buffer. Once the read request a := [y] follows [y] := 1 directly in
a buffer, the storage subsystem is able to satisfy the read from the write and send a read
response, a = 1, to the thread subsystem. Finally, the storage subsystem flows [y] := 1 and
b := [x] to the main memory, satisfying the latter from the initial write [x] := 0.

Suppose that the outcome a = 1, b = 0 is undesirable. To outlaw it, one can put dmb SY,
a full fence, between the writes2 in the first thread and dmb LD, a load fence, between the
reads in the second thread:

[x] := 1; a := [y]; //1
dmb SY; dmb LD;
[y] := 1; b := [x]; //0 – impossible

(MP-SY-LD)

The fence in the first thread forces the thread to issue [x] := 1, dmb SY, and [y] := 1
to the storage subsystem in order. Reordering of [x] := 1 and [y] := 1 in the storage
subsystem is also impossible, as the request dmb SY is not reorderable with any request and
stays between them. It guarantees that once [y] := 1 is propagated to the common buffer,
[x] := 1 is propagated there as well. The fence dmb LD forbids to issue b := [x] until
a := [y] is satisfied. So if a := [y] is satisfied from [y] := 1, [x] := 1 is propagated to the
common buffer or to the main memory, and b := [x] can be satisfied only from it. So, if
a = 1 then b = 1.

In the discussed executions, it is very important that the storage subsystem is able to
reorder some requests but not others. The definition of the reordering relation ↪→ is following:

I Definition. A request eold and a request enew are reorderable, denoted eold ↪→ enew, if
neither of them is an SY fence and they operate on different locations.

In this paper, we consider a slightly weakened version of Flur et al.’s model [9], which
issues dmb SY requests to the storage subsystem but not dmb LD requests. This allows more
behaviors than the original model.3 As we managed to prove compilation correctness to a
weaker model, the result is also applicable to the original model.

The Promise Machine. The Promise machine [12] is very different from the ARM machine.
There is no sophisticated storage subsystem. The memory, M , is simply a set of annotated
writes, so-called messages, issued by all threads up to the moment. Each message has a
timestamp, an element of a totally ordered set, which is unique among messages to the same
location in the memory. Except for promises, which we discuss later in the section, the Promise
machine executes instructions in program order. However, reads have a nondeterministic
semantics: when a thread performs a read, it chooses any message from the memory subject
to some conditions. The message has to be to the corresponding location and not to be too
“old”: if a thread has observed (i.e., read from) a message to location x with timestamp τ , it
cannot subsequently read from a message to x with timestamp τ ′ < τ .

To enforce this restriction, as well as similar restrictions on timestamps of read messages
that arise from the use of fences, the Promise machine uses so-called views—maps from

2 One could equivalently put a store fence, dmb ST, but that does not correspond to anything in the
promise model, as well as in the C/C++ model.

3 To show this, consider that dmb LD requests are issued, but are reorderable with any request. That
would weaken the original semantics. But this is the same as not issuing the dmb LD requests at all.



A. Podkopaev, O. Lahav, and V. Vafeiadis 22:5

locations to timestamps. Each message in the memory is annotated with a message view,
and each thread maintains three views: viewcur, viewacq, and viewrel. The main thread view,
viewcur, maps each location to the greatest timestamp of all messages of this location that
were observed by the thread. For example, if a thread’s viewcur equals to [z@2, w@4], it
means the thread has observed the write to the location w with the timestamp 4. The other
views— those included in messages, as well as the thread views viewacq and viewrel— are
used in combination with fences.

The weak behavior of MP is observable on the Promise machine quite easily. At the
beginning of the execution, the memory contains only initial writes:

M = {〈x : 0@0, [x@0]〉, 〈y : 0@0, [y@0]〉}
T1.viewcur = [x@0, y@0]; T2.viewcur = [x@0, y@0]

The first thread T1 may perform the writes:

M = {〈x : 0@0, [x@0]〉, 〈y : 0@0, [x@0]〉,
〈x : 1@1, [x@1, y@0]〉 , 〈y : 1@1, [x@0, y@1]〉}

T1.viewcur = [x@ 1 , y@ 1 ]; T2.viewcur = [x@0, y@0]

Now the second thread T2 can read from the newly added message 〈y : 1@1, [x@0, y@1]〉
and the initial write 〈x : 0@0, [x@0]〉.

The Promise machine counterparts of the SY and LD fences, release and acquire fences
correspondingly, are sufficient to outlaw a = 1, b = 0 as in the case of the ARM machine.
The fence(release) in the first thread T1 enforces the message view of [y] := 1 to include
the timestamp of [x] := 1, and if the second thread T2 reads from the message, then the
fence(acquire) updates the second thread’s viewcur with the message view. Let’s see how it
works.

In the beginning, all views are the same. When the first thread T1 performs the first
write, it updates viewcur, but viewrel remains the same. The message view of the newly
added write equals to the pointwise maximum of viewrel and the timestamp of the write
itself, [x@1] = (λ`. if ` = x then 1 else 0) (the latter is called a singleton view).

M = {〈x : 0@0, [x@0]〉, 〈y : 0@0, [y@0]〉, 〈x : 1@1, [x@1, y@0]〉}
T1.viewcur = [x@ 1 , y@0]; T1.viewacq = [x@ 1 , y@0]; T1.viewrel = [x@0, y@0];
T2.viewcur = [x@0, y@0]; T2.viewacq = [x@0, y@0]; T2.viewrel = [x@0, y@0];

After that the first thread T1 executes the release fence, which makes its viewrel to be equal
to viewcur:

M = {〈x : 0@0, [x@0]〉, 〈y : 0@0, [y@0]〉, 〈x : 1@1, [x@1, y@0]〉}
T1.viewcur = [x@1, y@0]; T1.viewacq = [x@1, y@0]; T1.viewrel = [x@ 1 , y@0];
T2.viewcur = [x@0, y@0]; T2.viewacq = [x@0, y@0]; T2.viewrel = [x@0, y@0]

Then, the first thread T1 performs the second write, again attaching to it a view which is
the pointwise maximum of T1.viewrel and the timestamp of the write itself:

M = {〈x : 0@0, [x@0]〉, 〈y : 0@0, [y@0]〉,
〈x : 1@1, [x@1, y@0]〉, 〈y : 1@1, [x@1, y@1]〉}

T1.viewcur = [x@1, y@ 1 ]; T1.viewacq = [x@1, y@ 1 ]; T1.viewrel = [x@1, y@0];
T2.viewcur = [x@0, y@0]; T2.viewacq = [x@0, y@0]; T2.viewrel = [x@0, y@0];

ECOOP 2017



22:6 Promising Compilation to ARMv8 POP

When the second thread T2 reads from the newly added write, it updates its viewacq with
the message view:

M = {〈x : 0@0, [x@0]〉, 〈y : 0@0, [y@0]〉,
〈x : 1@1, [x@1, y@0]〉, 〈y : 1@1, [x@1, y@1]〉}

T1.viewcur = [x@1, y@1]; T1.viewacq = [x@1, y@1]; T1.viewrel = [x@1, y@0];
T2.viewcur = [x@0, y@0]; T2.viewacq = [x@ 1 , y@ 1 ]; T2.viewrel = [x@0, y@0];

The execution of the acquire fence makes the second thread’s viewcur to be equal to its
viewacq:

M = {〈x : 0@0, [x@0]〉, 〈y : 0@0, [y@0]〉,
〈x : 1@1, [x@1, y@0]〉, 〈y : 1@1, [x@1, y@1]〉}

T1.viewcur = [x@1, y@1]; T1.viewacq = [x@1, y@1]; T1.viewrel = [x@1, y@0];
T2.viewcur = [x@ 1 , y@ 1 ] T2.viewacq = [x@1, y@1] T2.viewrel = [x@0, y@0]

And now thread T2 is not able to read from 〈x : 0@0, [x@0]〉, as T2.viewcur(x) = 1 > 0,
which rules out the outcome a = 1, b = 0.

2.1 A More Complex Behavior

Both machines guarantee that a read instruction cannot be satisfied from a same thread’s
write which follows the read in program order. They do, however, allow to get a = 1 during
an execution of the program presented in Section 1:

a := [x]; //1 b := [x]; c := [y];
[x] := 1; [y] := b; [x] := c; (ARM-weak)

The ARM Machine. The behavior may be reproduced by the ARM machine if the first
and the second threads share a common buffer, which is not observable by the third thread.
The machine issues the two requests of the first thread and the read request of the second
thread, and propagates them to the common buffer. Then, the storage subsystem satisfies
read b := [x] from [x] := 1, and the second thread issues [y] := 1. The storage
subsystem propagates it to the common buffer, reorders it with the first thread’s requests,
and propagates it to the lowest buffer and to the memory.

Thread 1 Thread 2 Thread 3

The main memory

b := [x]
[x] := 1
a := [x]

[x] := 0; [y] := 0

Thread 1 Thread 2 Thread 3

The main memory

[x] := 1
a := [x]

[x] := 0; [y] := 1

Next, the third thread issues c := [y], and the storage propagates it to the memory, where
it is satisfied with response c = 1. Now the storage sends response c = 1 to the third thread,
it issues [x] := 1, and the storage subsystem propagates it to the lowest buffer.



A. Podkopaev, O. Lahav, and V. Vafeiadis 22:7

Thread 1 Thread 2 Thread 3

The main memory

[x] := 1
a := [x]

c := [y]

[x] := 0; [y] := 1

Thread 1 Thread 2 Thread 3

The main memory

[x] := 1
a := [x]

[x] := 1

[x] := 0; [y] := 1

The storage subsystem propagates a := [x] to the lowest buffer and satisfies it from [x] := 1.

The Promise Machine. Conforming to its name, the Promise machine uses promises to
achieve the same behavior: a thread T may nondeterministically promise to write a value
val to a location ` at some point in the future. When a thread T makes a promise, it adds
〈` : val@τ,_〉, where τ has not been used as a timestamp yet and is greater than T.viewcur(`),
to the memory, making the promise available to read from for other threads. The promise
transition also adds the promise to a thread’s set of promises, T.promises, but it does not
update the thread’s views. After each transition of the machine, the thread which makes
a step has to certify that it is able to fulfill all promises it made in the current state of
the memory running in isolation. The certification is used to outlaw self-satisfaction and
causality cycles [8] in an execution.

To get a = 1 in the program ARM-weak, the first thread has to promise, e.g., 〈x :
1@2, [x@2]〉. The thread can certify the promise—to read from the initial write to x with
timestamp 0 and then fulfill the promise by the second instruction. After the first thread
promised a write to x, the second thread reads from the promise, and adds 〈y : 1@1, [y@1]〉
to the memory. The third thread reads from it, and adds 〈x : 1@1, [x@1]〉. Now the first
thread can read from 〈x : 1@1, [x@1]〉 getting a = 1 and fulfill the promise 〈x : 1@2, [x@2]〉.

2.2 More Abstract Storage Subsystem: POP
Flur et al. [9] present two versions of the storage subsystem for the ARM machine: Flowing
and POP (partial order propagation). We used the Flowing model to describe the previous
examples because it is more intuitive and easier to understand. However, the Flowing model
has a couple of features that make it hard to reason about the model. First, it is much easier
to have a partial order on requests inside of a buffer than to keep track of reorderings inside
it. Second, if we want to show that for every execution of a program in the ARM machine
some invariant holds, we have to consider every possible topology of buffers.

The POP model solves the aforementioned obstacles. There are no linear buffers and
fixed topologies. The state of the POP storage consists of three components: Evt—a set of
requests observed by the storage, Ord—a partial order on requests from Evt, and Prop—a
function mapping each thread identifier to a subset of Evt requests propagated to the thread.
If two requests e and e′ are ordered by Ord, Ord(e, e′), we write e <Ord e

′.
To understand how the POP model works and its connection to the Flowing model,

consider an execution of the following program:

[x] := 1; a := [x]; //1 b := [y]; //1
[y] := a; c := [x+ b ∗ 0]; //0 (WRC+data+addr)

Here is a fake address dependency between reads in the third thread, so the thread does not
know the target address of the second read until b := [y] is satisfied. For this reason, the

ECOOP 2017



22:8 Promising Compilation to ARMv8 POP

third thread cannot issue the second read request before the first one is satisfied. Nevertheless,
the behavior a = 1, b = 1, c = 0 is allowed due to the storage subsystem.

To reproduce the intended behavior in the Flowing model we have to choose the same
topology as in the previous example, which has a buffer observable to the first and the second
threads, but non-observable for the third one. Suppose that each thread issued a request
corresponding to its first instruction. Then we get the following Flowing state (on the left)
and the following POP state (on the right):4

Thread 1 Thread 2 Thread 3

m : [x] := 1 n : a := [x] o : b := [y]

k : [x] := 0; l : [y] := 0

Evt = {k, l,m, n, o}
Ord = {(k,m), (k, n), (l, o)}

Prop(T1) = {k, l,m}
Prop(T2) = {k, l, n}
Prop(T3) = {k, l, o}

When a request e is issued to the storage by a thread T , we add an Ord-edge (e′, e) for each
e′, which is propagated to T and is not reorderable with e, e′ 6↪→ e. That is why there are
entries in Ord.

At this point the request m : [x] := 1 might be propagated to the (T1, T2) common
buffer. In terms of the POP model, this step corresponds to propagation of m : [x] := 1 to
T2:

Thread 1 Thread 2 Thread 3

m : [x] := 1

n : a := [x] o : b := [y]

k : [x] := 0; l : [y] := 0

Evt = {k, l,m, n, o}
Ord = {(k,m), (k, n), (l, o), (m,n)}

Prop(T1) = {k, l,m}
Prop(T2) = {k, l, n, m}
Prop(T3) = {k, l, o}

The propagation step adds m to Prop(T2) and the (m,n) edge to Ord.
In general, when a request e issued by a thread T is propagated to a thread T ′, we add

(e, e′) to Ord for every request e′, which is propagated to T ′ but not to T , if e and e′ are not
reorderable (i.e., e 6↪→ e′) and there is no backward edge (e′, e) in Ord. In the execution, the
m and n requests are not reorderable because they operate on the same location x.

The storage subsystem may propagate n : a := [x] to the common buffer (in the Flowing
model) or, correspondingly, to thread T1 in the POP model:

Thread 1 Thread 2 Thread 3

m : [x] := 1
n : a := [x]

o : b := [y]

k : [x] := 0; l : [y] := 0

Evt = {k, l,m, n, o}
Ord = {(k,m), (k, n), (l, o), (m,n)}

Prop(T1) = {k, l,m, n}
Prop(T2) = {k, l, n,m}
Prop(T3) = {k, l, o}

Now n : a := [x] can be satisfied from m : [x] := 1, as the former request follows the latter
directly in the common buffer (the Flowing model), they are propagated to the same set of

4 For the sake of brevity we annotate the requests with labels and use the labels in the POP components.



A. Podkopaev, O. Lahav, and V. Vafeiadis 22:9

threads (T1, T2) and there is no request in between them according to the Ord relation (the
POP model). After the read is satisfied, the second thread T2 issues the write p : [y] := 1:

Thread 1 Thread 2 Thread 3

m : [x] := 1

p : [y] := 1 o : b := [y]

k : [x] := 0; l : [y] := 0

Evt = {k, l,m, o, p}
Ord = {(k,m), (l, o), (l, p)}

Prop(T1) = {k, l,m}
Prop(T2) = {k, l,m, p}
Prop(T3) = {k, l, o}

The storage propagates p : [y] := 1 to the common buffer and then to the lowest buffer and
to the main memory in the Flowing model, and to T1 and T3 in the POP model: 5

Thread 1 Thread 2 Thread 3

m : [x] := 1

o : b := [y]

k : [x] := 0; p : [y] := 1

Evt = {k, l,m, o, p}
Ord = {(k,m), (l, o), (l, p), (p, o)}

Prop(T1) = {k, l,m, p}
Prop(T2) = {k, l,m, p}
Prop(T3) = {k, l, o, p}

Then, o : b := [y] is propagated to the lowest buffer in the Flowing model, and to T1 and
T2 in the POP model:

Thread 1 Thread 2 Thread 3

m : [x] := 1

o : b := [y]

k : [x] := 0; p : [y] := 1

Evt = {k, l,m, o, p}
Ord = {(k,m), (l, o), (l, p), (p, o)}

Prop(T1) = {k, l,m, p, o}
Prop(T2) = {k, l,m, p, o}
Prop(T3) = {k, l, o, p}

After o : b := [y] is satisfied from p : [y] := 1, the machine may issue q : c := [x],
propagate it to the main memory before m : [x] := 1 and satisfy it from k : [x] := 0.

At the end of the POP execution, all write and fence requests are propagated to all
threads. As a result, every pair of write requests to the same location is ordered by Ord,
which induces a total order on writes to one location. We use this observation in our proof.

As the POP model is a sound relaxation of the Flowing model and it is more abstract
and easier to reason about, we use the POP model in our proof.

3 Main Challenges and High-Level Proof Structure

A compilation scheme from one machine AM to another machine AM ′ is correct, if for any
program P and its compiled version P ′ each execution of P ′ on AM ′ corresponds to some
execution of P on AM . The standard way to prove it is to exhibit a simulation between the
machines. This may be done by introducing execution invariants and mapping transitions of
AM ′ to transitions of AM .

There are three main problems one has to cope with to prove that the Promise machine
simulates the ARM machine:

5 As there is no fixed topology in the POP model, p : [y] := 1 can even be propagated to T3 before T1.

ECOOP 2017



22:10 Promising Compilation to ARMv8 POP

1. Although all writes to a specific location are totally ordered in the end of an ARM
execution, they aren’t ordered during the execution. In the Promise machine, however,
timestamps induce a total order on writes, which is decided much earlier—at the point
writes are issued (or promised).

2. In the ARM machine, while reading from a write request imposes restrictions on following
reads, there is no explicit counterpart of message views of the Promise machine.

3. The ARM machine allows out-of-order execution of instructions, whereas the Promise
machine, except for promises themselves, supports only in-order execution.

To address the first two challenges, we introduce an instrumented version of the ARM
machine, the ARM+τ machine. In this machine, each write request is annotated with (i) a
timestamp, (ii) a set of writes and fences which are guaranteed to be observed by a thread
once it reads from the write request, and (iii) a view corresponding to the aforementioned
set. The timestamps of writes to a specific location have to reflect a total order in which
the writes are propagated to the main memory (in terms of the Flowing model) or to all
threads (in terms of the POP model). However, at the moment when the thread subsystem
issues a store request, the ARM machine cannot guarantee that the request will take any
specific position in the total order. It is, therefore, impossible to assign a timestamp to the
request at that moment. To solve this problem, the ARM+τ machine’s steps have additional
preconditions which guarantee acyclicity of the union of the partial order on requests in the
storage (the relation Ord) and the per-location timestamp order. These restrictions mean
that the ARM+τ machine may have potentially less behaviors than the ARM machine for a
given program. So we have to prove that the ARM+τ machine simulates the ARM machine
to be able to use it in the compilation correctness proof.

The third challenge makes it impossible to define a simple one-to-one or one-to-many
correspondence between steps of the ARM and the Promise machines. To address this
problem, we allow the Promise machine to “lag behind” the ARM machine. Consider the
following program fragment:

[x] := 1;
dmb LD;
a := [y];
[z] := 1;

The ARM machine may first commit the fence dmb LD (step 1 ), then issue (propagate if
needed and satisfy) the read a := [y] (step 2 ), commit the write [z] := 1 (step 3 ), and
only after that commit the write [x] := 1 (step 4 ). The Promise machine cannot perform
the corresponding steps in the same order. According to the simulation we propose for the
compilation correctness proof, the Promise machine does nothing when the ARM machine
performs the steps 1 and 2, so it starts to lag behind the ARM machine at this point. Then
it promises [z] := 1 at step 3. Finally, at step 4, it promises and fulfills the write [x] := 1
and does everything left, as it is no longer blocked by the instruction [x] := 1.

To represent the lagging of the Promise machine, we have two simulation relations in
our proof, I and Ipre. The former relation forbids the Promise machine to lag behind too
much: if states of the ARM and the Promise machines are connected by I, then each thread
of the Promise machine has executed all instructions from the maximal committed prefix
of the corresponding ARM thread execution and is waiting for the next instruction to be
committed by the ARM thread. The latter relation states that there is one thread which is
able to (and has to) execute the next instruction, as it is committed by the ARM thread.



A. Podkopaev, O. Lahav, and V. Vafeiadis 22:11

cmds : List S
S ::= reg := [expr ]

| [expr0] := expr1
| dmb ftypeARM
| if expr goto k
| reg := expr | nop

ftypeARM ::= SY | LD
expr ::= reg | ` | uop expr

| bop expr0 expr1
: Expr

reg : Reg − a, b, c, ... (local variables)
` : Loc − x, y, z, ... (locations)
uop, bop − arithmetic operations
k ∈ Z

Figure 1 Syntax of ARM programs.

We show that once states of the machines are related by Ipre, there is a finite number of
steps, which the Promise machine has to make, to get to a state which satisfies I.

In our proof, we consider only terminating executions of the ARM machine, because
otherwise we would have to introduce “fairness” conditions on its speculative execution. For
instance, there is an execution of the following program, which infinitely issues read requests
to the storage without satisfying them:

a := [x];
if a 6= 0 goto −1;

As we said in Section 2, the considered compilation scheme is bijection, so we assume
that programs for both machines are the same. Our compilation correctness theorem states
that for every program and every terminating execution of the ARM machine there is a
terminating execution of the Promise machine which ends with the same memory, i.e., the
last writes to each location are the same for both machines.

I Theorem 3.1. For all Prog and s, if Prog ` sinit −−−→
ARM

∗ s and FinalARM(s,Prog),

then there exists p such that Prog ` pinit −−−−−→
Promise

∗ p where FinalPromise(p,Prog) and
same-memory(s,p).

4 The ARM Machine

In this section, we formalize the semantics of ARM POP machine of Flur et al. [9]. The
syntax of ARM machine programs is presented in Fig. 1. A program for the machine,
Prog : Tid → List S, consists of a list of instructions for each thread. Instructions are
reads (reg := [expr ]), writes ([expr0] := expr1), fences (dmb ftypeARM), conditional
relative jumps (if expr goto k), local variable assignments (reg := expr), and no-operation
instructions (nop).

The thread subsystem of the ARM machine allows out-of-order and speculative execution
of instructions. Moreover, it executes instructions non-atomically, i.e., many instructions
might be in the middle of their execution at the same moment. We represent a state of an
instruction instance via tapecell (see Fig. 2). Its syntax reflects the instruction syntax.

ECOOP 2017



22:12 Promising Compilation to ARMv8 POP

tapecell ::= R stread |W stwrite
| F stfence ftypeARM
| If st ifgoto k | Assign | Nop
: TapeCell

sat-state ::= pln | inflight | com
stread ::= none | requested `

| sat sat-state 〈tid, path,wr ` : val〉
stwrite ::= none

| pending ` val
| com bool ` val

stfence ::= none | com
st ifgoto ::= none | taken | ignored
val : Val = Loc ∪ Z

Figure 2 ARM instruction state.

A read instance, stread, might be in one of the three following states: (i) none, the read is
fetched or restarted; (ii) requested `, the read has a load request from the location ` in the
storage subsystem; (iii) sat sat-state 〈tid, path,wr ` : val〉, the read has been satisfied from a
write instance (tid, path) with a value val. The sat-state field denotes if the read is satisfied
by an in-flight, i.e., not yet committed to the storage, write (inflight), the read is satisfied
from the committed write (pln), or the read is satisfied from the committed write and is
committed itself (com).

A write instance, stwrite, might be (i) none, similarly to the read state; (ii) pending ` val,
the address and the value of the write is determined and a read from the same thread may
read from it; (iii) com bool ` val, the write is committed and, if bool = true, issued to the
storage subsystem (otherwise, it is observable only by same thread read instructions).

A fence instance, stfence, might be either committed (com) or not (none). A conditional
branch instance, st ifgoto, signifies that the control flow either jumps to k positions ahead
(taken), proceeds to the next instruction (ignored), or is still undecided (none). Assignments
and nops instances are just fetched, but not executed.

Similarly to earlier work on the Power memory model [22], we may represent the instruction
state of a specific thread as a labeled direct acyclic graph (DAG), e.g.:

a : W (com true x 1) b : If none 7
c : If none (−2)

d : Assign

e : R (requested z)
f : Nop

g : R (sat pln 〈5tid , [0, 1],wr y : 6〉)

where vertices denote instruction instances, arrows represent the program order relation
between the instances, and vertices with two outgoing arrows signify branch instruction
instances, where the execution path has not yet been determined.

We identify an instruction instance by its thread identifier, tid, and a path : Path , List N
from the root of the thread’s instruction DAG. It is encoded as a list of instruction positions
corresponding to the instruction instances on the path. For example, in the DAG above the
instruction instance a has a path [0], b—[0, 1], and f—[0, 1, 8, 9].

The instruction DAG of the thread is represented by a tape : Tape , Path ⇀ TapeCell,
a map from paths to tapecells. As a tape represents an instruction DAG, it is prefix-closed:



A. Podkopaev, O. Lahav, and V. Vafeiadis 22:13

if a tape is defined for path, then it is defined for every (non-empty) prefix of path.
As multiple instructions may be in flight at any given moment, it is not possible to define

one per-thread state of local variables for a given moment of an execution. Consider the
following execution fragment:

i cmds[i] path tape(path)
0 a := [x]; 0 R none
1 [y] := a; 0, 1 W none
2 a := [z]; 0, 1, 2 R (sat pln 〈8tid , [0, 1, 2, 3],wr z : 9〉)
3 [w] := a; 0, 1, 2, 3 W none

Here the read a := [z] is satisfied with a value 9, but a := [x] isn’t even issued to the
storage. It means that a is defined for the fourth instruction, but not for the second one.

To cope with these subtleties, we introduce two state functions regf, regfcom : (List S ×
Tape × Path) → (Reg ⇀ Val), where regf(cmds, tape, path) and regfcom(cmds, tape, path)
represent the state of the local variables just before the instruction instance indexed by path.
Their only difference is in the way they process satisfied but not yet committed reads (where
path : i denotes the extension of path with the instruction index i):6

∀i, j. cmds[i] = “reg := [expr ]”∧
tape(path) = R (sat sat-state 〈_,_,wr _ : val〉) ∧ sat-state 6= com⇒

regf (cmds, tape, path : i : j) = regf (cmds, tape, path : i)[reg 7→ val] ∧
regfcom(cmds, tape, path : i : j) = regfcom(cmds, tape, path : i)[reg 7→ ⊥].

For the previous example, the functions have the following values:

path regf(cmds, tape, path) regfcom(cmds, tape, path)
0 ⊥ ⊥
0, 1 ⊥ ⊥
0, 1, 2 ⊥ ⊥
0, 1, 2, 3 [a 7→ val] ⊥

The variable maps is naturally extended to expression evaluators of type Expr ⇀ Val. For
the sake of brevity, we write [[−]]path and [[−]]path

com (or [[−]] and [[−]]com) for the evaluators
when values of the cmds, tape (and path) parameters are clear from the context.

The state of the storage subsystem, MPOP = 〈Evt,Ord,Prop〉, contains three components:
Evt ⊆ ReqSet—a set of memory requests in the storage; Ord ⊆ Evt × Evt—a partial order
on memory requests; and Prop ⊆ Tid × Evt—the set of requests that have been propagated
to each thread. A request, req, itself contains the thread, tid, and the instruction instance,
path, that issued the request, as well as some information, reqinfo, about the request:

reqinfo ::= rd ` | wr ` : val | dmb.

Specifically, read requests record the location to be read, while write requests record the
location and the value to be written.

The full state of the ARM machine StateARM is a tuple 〈MPOP, iordf , tapef 〉, where MPOP
is the memory state, iordf : Tid → List ReqSet is a per-thread issuing order of read requests,
and tapef : Tid → Tape records the tape of each thread. The ARM machine allows to

6 The full inductive definition of the regf and regfcom functions is given in the extended version of the
paper [20].

ECOOP 2017



22:14 Promising Compilation to ARMv8 POP

issue read requests to the same location out-of-order, so it uses the issuing order to preserve
coherence among the reads (discussed in the Read satisfy description).

The initial state of the ARM machine contains initial writes to all locations, Evt init ,
{〈0tid , [],wr ` : 0〉 | ` ∈ Loc}, the writes are not ordered and propagated to all threads:

sinit , 〈MPOP = 〈Evt init, ∅,Tid × Evt init〉, iordf = λtid. [], tapef = λtid. ⊥〉.

Our version of the ARM machine has twelve possible transitions, which are shown in the
extended version of the paper [20]. For simplicity, we present the transitions informally and
do not separate them into storage and thread transitions.
Fetch instruction tid path adds a new instruction instance with a none state to the tape of

the thread tid.
Propagate e tid adds e to a set of requests propagated to tid. It has to check that all

requests e′ which are ordered before e by Ord, i.e., e′ <Ord e, are propagated to tid
as well. It also adds Ord-edges (e, e′′) for every e′′, which isn’t reorderable with e and
propagated to e.tid but not to tid, to acknowledge that e is Ord-before e′′.

Branch commit tid path processes an if − goto instruction instance and chooses which
execution branch to drop, i.e., deletes instruction instances and storage requests belonging
to the branch.

Fence commit LD tid path checks if previous reads are committed.
Fence commit SY tid path checks if previous instruction instances in general are commit-

ted, and issues a fence request to the storage.
Write pending tid path ` val sets the write instruction instance to pending ` val, where `

and val are an address and a value calculated by the corresponding evaluator.
Write commit tid path ` val sets the write instruction instance to com _ ` val. It issues a

write request to the storage in case there is no following committed writes to the same
location in thread’s tape. It restarts some satisfied load instances, which read from the
same location, and their dataflow dependents to preserve coherence. Previous branch
operators and fences have to be committed. All previous instructions must have fully
determined addresses, i.e., each address in a previous instruction instance has to be
determined by the corresponding com-evaluator.

Read issue tid path ` sends a read request to the storage, and adds it to the list of issued
read requests (the iordf (tid) component). It requires that previous fences are committed.

Read satisfy tid path tid′ path′ ` val and Read satisfy (fail) tid path tid′ path′ ` val
get the read request 〈tid, path, rd `〉 satisfied from the write request 〈tid ′, path′,wr ` : val〉,
if there are no requests between them in the storage. The transitions delete the read
request from the storage. If there are no previous read instances, which issued a read
request to the same location after the (tid, path) instance (according to iordf (tid)) and
have been satisfied from a different write, the former transition might be applied. It assigns
the instruction instance to sat pln 〈tid ′, path′,wr ` : val〉 and restarts some path-following
reads from the same location (and their dataflow dependents) to preserve coherence.
Otherwise, the latter transition might be applied, which restarts the (tid, path) instruction
instance.

Read satisfy from in-flight write tid path path′ ` val assigns the corresponding instruc-
tion instance to sat inflight 〈tid, path′,wr ` : val〉, if there is a previous pending write
(tid, path′) and there are no writes to the same location in between the write and the
read, as well as there are no same location reads satisfied from another write. It restarts
some path-following reads as in the case of the transition Read satisfy.



A. Podkopaev, O. Lahav, and V. Vafeiadis 22:15

Read commit tid path checks that previous branches and fences are committed, all previous
instruction instances have a fully determined addresses, and assigns the instruction
instance to sat com _.

5 The Promise Machine

As mentioned in Section 2, the compilation scheme from Promise to ARM is a bijection; so
we may skip the definition of the Promise program syntax and use the ARM syntax.

The state of the Promise machine StatePromise is a tuple 〈MPromise, tsf 〉. The memory,
MPromise ⊂ Msg, is a set of write messages, 〈` : val@τ, view〉 : Msg, which records the
write’s location, ` : Loc, value, val : Val, timestamp, τ : Time = Q, and message view,
view : View = Loc → Time. The memory includes writes which are promised but not yet
fulfilled. In turn, tsf : Tid → TS is a per-thread state. A thread state, ts : TS, is a tuple
〈path, st,V , promises〉, where path is a pointer to the next instruction to be executed; st :
Reg ⇀ Val is a variable state function; V = 〈viewcur, viewacq, viewrel〉 : View ×View ×View
is a current, an acquire, and a release views of the thread; and promises ⊂ Msg is a set of
promises which the thread made but has not fulfilled yet.

The initial memory of the Promise machine contains initial writes to all locations,
M init

Promise , {〈` : 0@0, viewinit〉 | ` ∈ Loc}, where viewinit , λ`. 0. The initial thread state’s
path points to the first instruction, variables are not defined, and the set of promises is
empty:

pinit , 〈M init
Promise, λtid. 〈path = [0], st = ⊥,V = 〈viewinit, viewinit, viewinit〉, promises = ∅〉〉.

The main transition of the Promise machine is global:

Prog(tid) ` 〈MPromise, ts〉
label−−−−−−−→

Promise tid
〈M ′Promise, ts′〉

Prog(tid) ` 〈M ′Promise, ts′〉 −−−−−−−→Promise tid
∗ 〈M ′′Promise, ts′′〉

ts′′.promises = ∅

Prog ` 〈MPromise, tsf [tid 7→ ts]〉 label tid−−−−−→
Promise

〈M ′Promise, tsf [tid 7→ ts′]〉

Other transitions (−−−−−−−→
Promise tid

) are defined for a specific thread. The main transition requires
a thread tid, which makes a transition, to certify that it is able to fulfill its promises, i.e.,
there is an isolated execution of the thread with the current memory, which fulfills all thread’s
promises.7

The exact definitions of thread transitions might be found in the extended version of
the paper [20]. Here we present the transitions informally. All of them, except for Promise
write, execute the instruction pointed by the thread’s path component, and update path to
point to the next instruction.
Acquire fence commit makes the current view, viewcur, of the thread to be equal to its

acquire view, viewacq, which accumulates message views of writes read by the thread up
to the current point.

Release fence commit updates the release view, viewrel, of the thread to match its current
view. Consequently, the message view of writes issued after executing the fence will
incorporate information about writes observed by the thread before the fence. In the

7 In the original model, certification has to be made for all possible “future” memories. In the absence
of Read-Modify-Write operations, however, we can simplify that condition and perform certifications
starting only from the current memory.

ECOOP 2017



22:16 Promising Compilation to ARMv8 POP

original version of the Promise machine [12] the Release fence commit transition has a
precondition that all unfulfilled promises of the thread must have empty message views.
In our version, the machine is even more restrictive: the thread cannot have any unfulfilled
promises. This restriction is easier to work with, and it is not too restrictive for the
compilation proof—the release fence is compiled to the full fence in the ARM machine,
which forbids to commit following writes before the fence itself is committed.

Read from memory ` chooses a message, 〈` : val@τ, view〉, from memory with a timestamp,
τ , greater than or equal to the current view value, viewcur(`). The transition updates
thread’s viewcur by [`@τ ], and viewacq by view. It follows that such a message cannot be
in the thread’s set of unfulfilled promises as it would make it impossible for the thread to
fulfill the corresponding promise. Also, the transition updates the thread’s local variable
map, st.

Promise write 〈` : val@τ, view〉 adds the message to the memory and to the thread’s set
of promises. The target location, `, and the value, val, can be chosen arbitrarily. The
timestamp, τ , has to be unique among writes to the location. The message view equals
to a composition of the release view, viewrel, and a singleton view [`@τ ].8 The transition
does not update the thread’s views. As we see, this transition is very non-deterministic.
However, it is restricted by certification.

Fulfill promise 〈` : val@τ, view〉 removes the message from the thread’s promises, if (i)
the current instruction is a write, (ii) its target location and value are ` and val, (iii) τ
is less than viewcur(`), and (iv) view equals to viewrel updated by [`@τ ]. The transition
updates viewcur and viewacq by [`@τ ].

The other rules (Branch commit, Local variable assignment, and Execution of nop) have
standard semantics.

6 Basic Properties of the ARM Storage

In this section we prove some properties of the ARM storage subsystem, which we use to
introduce timestamps to the ARM machine in the following section. In all lemmas we assume
some program Prog implicitly.

I Lemma 6.1. ∀s. sinit −−−→
ARM

∗ s⇒ s.Ord = (s.Ord \ ↪→)+ ∧ s.Ord is acyclic.

Proof. The statement holds for the initial state, sinit. Consider possible mutations of the
storage. There are three types of storage operations. We assume that operations make a
transition 〈Evt,Ord,Prop〉 → 〈Evt′,Ord ′,Prop′〉. Let’s check them:
Delete a read request e :

Evt′ = Evt\{e},Prop′ = Prop\{(tid, e) | tid},Ord ′ = (Ord\({e}×Evt)\(Evt×{e})\↪→)+

Accept a request e from tid :

Evt′ = Evt∪{e},Prop′ = Prop∪{(tid, e)},Ord ′ = (Ord∪{(e′, e) | Prop(tid, e′), e′ 6↪→ e})+

Propagate a request e to tid :

Evt′ = Evt,Prop′ = Prop ∪ {(tid, e)},
Ord ′ = (Ord ∪ {(e, e′) | Prop(tid, e′),¬Prop(e.tid, e′), e 6↪→ e′,¬(e′ <Ord e)})+

8 This is more restrictive than in the original presentation [12], which allows to promise a write with an
arbitrary message view.



A. Podkopaev, O. Lahav, and V. Vafeiadis 22:17

Obviously, Ord ′ = (Ord ′\↪→)+. As Ord ′ ⊆ Ord for the delete transition, the accept transition
adds edges only to a new request, and the propagate transitions checks if there is an edge
(e, e′) in transitively closed Ord before adding (e′, e), Ord ′ is acyclic. J

The next two lemmas are proved in the similar way.

I Lemma 6.2. ∀s, e, e′, tid. sinit −−−→
ARM

∗ s ∧ e 6↪→ e′ ∧ s.Prop(tid, e) ∧ s.Prop(tid, e′)⇒
e = e′ ∨ s.Ord(e, e′) ∨ s.Ord(e′, e).

I Lemma 6.3. ∀s, s′. s −−−→
ARM

∗ s′ ⇒ s.Evt \ {e | e is a read request} ⊆ s′.Evt.

I Lemma 6.4. ∀s, s′. s −−−→
ARM

∗ s′ ⇒ s.Ord ∩ (s′.Evt × s′.Evt) ⊆ s′.Ord.

Proof. The following weaker version of the lemma holds as there is no storage transition
which deletes an Ord-edge between non-reorderable requests:

∀s, s′. s −−−→
ARM

∗ s′ ⇒ (s.Ord ∩ (s′.Evt × s′.Evt)) \ ↪→ ⊆ s′.Ord

Now let’s prove the original statement. Fix e, e′ such that s.Ord(e, e′). If e 6↪→ e′, then the
statement holds as we have just shown. Otherwise, e and e′ are read or write requests to
different locations. As s.Ord(e, e′) holds, by Lemma 6.1, there is a finite path in s.Ord from
e to e′ such that each edge along the path connects non-reorderable requests.

Suppose that there is a fence request e′′ in the path. Then, by transitivity of s.Ord,
{(e, e′′), (e′′, e′)} ⊆ s.Ord. By the weaker version of the lemma and transitivity of s′.Ord,
{(e, e′′), (e′′, e′), (e, e′)} ⊆ s′.Ord.

Consider that there is no fence request in the path. Then, by definition of ↪→, the path
comprises only requests to the same location. It contradicts that e 6↪→ e′. J

7 Introduction of Timestamps to the ARM Machine

In this section, we show how to assign timestamps (τ) represented by rational numbers to all
write requests in a terminating execution of the ARM machine. Let us fix some program
Prog, and consider a terminating execution:

Prog ` s0 −−−→
ARM

s1 −−−→
ARM

. . . −−−→
ARM

sn

where s0 = sinit, an initial state of the ARM machine, and sn = s is a final state, i.e., there
are no read requests in the storage, all requests are propagated to all threads, all instruction
instances are committed, and it is impossible to fetch any new instruction instance.

For a location ` and a set of memory requests Evt, we define Evt` to be the set of all
write requests to the location ` in Evt. Formally,

Evt` , {〈tid, path,wr ` : val〉 ∈ Evt | tid, path, val}.

There is no transition which deletes write requests from the storage, so s.Evt` is the set of all
writes to a location ` which have been issued to the storage subsystem during the execution.

Fix a location `. We know that each request e from s.Evt` is propagated to all threads,
as s is a final state. We also know that two different writes to the same location are not
reorderable. As a consequence of it and Lemma 6.2, we have that

mo` , s.Ord�s.Evt`
where R�S , R ∩ (S × S)

ECOOP 2017



22:18 Promising Compilation to ARMv8 POP

is a total order on the writes to the location `. We define mo ,
⋃
`mo` to be the union of

mo` for all locations mentioned in the execution. Using request indexes in the corresponding
mo` sets, we define a timestamp mapping function:

mapτ (e) ,
{

index(mo`, e) if e = 〈tid, path,wr ` : val〉 ∈ s.Evt;
⊥ otherwise.

Finally, we show that for every state si of the execution mo�si.Evt ∪ si.Ord is acyclic.

I Theorem 7.1. ∀i ≤ n,mo�si.Evt ∪ si.Ord is acyclic.

Proof. The statement obviously holds for s0. Suppose that there exists j such that for all
i < j the relation mo�si.Evt ∪ si.Ord is acyclic, but mo�sj .Evt ∪ sj .Ord has a cycle. We know
that mo�sn.Evt ∪ sn.Ord = sn.Ord has no cycles. So if there is a cycle in mo�sj .Evt ∪ sj .Ord,
it has to be “destructed” on the subexecution Prog ` sj −−−→

ARM
∗ sn.

From this point on, we’ll distinguish Ord- and mo-edges. We call an edge an Ord-edge, if
it is in sj .Ord, and we call it an mo-edge, if it is in mo�sj .Evt \ sj .Ord.

Consider a shortest cycle in mo�sj .Evt ∪ sj .Ord. It has to contain an mo-edge, because
sj .Ord is acyclic. The mo-edge (e, e′) connects two writes to some location ` and mapτ (e) <
mapτ (e′). This edge is a part of the cycle, so there is a path from e′ to e by Ord- and
mo-edges. We can break the path into mo-subpaths and Ord-subpaths. Let’s check that
each aforementioned Ord-subpath contains only one edge.

We pick an Ord-subpath, {e′′i }i∈[0..k]. e′′0 and e′′k are write requests, as they are connected
to other subpaths via mo-edges. By transitivity of sj .Ord (Lemma 6.1), sj .Ord(e′′0 , e′′k) holds,
so the subpath can be reduced to these two requests.

Thus, the shortest path from e′ to e in mo�sj .Evt ∪ sj .Ord contains only write requests.
sn.Ord contains allmo-edges from the path by definition ofmo, and it contains each Ord-edge
from the path by Lemma 6.3 and Lemma 6.4. It contradicts acyclicity of sn.Ord. J

8 The ARM+τ Machine

In the previous section, we showed that one may assign timestamps for every write or fence
request in a terminating execution of the ARM machine. Here, we introduce an instrumented
version of the ARM machine, the ARM+τ machine, which assigns timestamps to the requests
when it issues them to the storage.

8.1 Definition of the ARM+τ Machine
The ARM+τ machine state has one additional component H : Tid × Path ⇀ Time ×
2ReqSet ×View. The H component is defined for committed write instruction instances. For
each committed write, it assigns (i) a timestamp, (ii) a set of write and fence requests in
the storage, which are guaranteed to be Ord-before the committed write request, if there is
one, and (iii) a Promise-style message view representation of the write and fence request
set—it maps a location to the greatest timestamp among write requests to the location in
the set. For the sake of brevity, we define projections for H—Hτ : Tid × Path ⇀ Time,
H≤ : Tid × Path ⇀ 2ReqSet, and Hview : Tid × Path ⇀ View. The H map component of
the ARM+τ initial state, ainit , 〈sinit,H init〉, assigns zero timestamps to all initial writes:
H init , [(0tid , []) 7→ 〈0, λ`. 0, ∅〉].

Transitions of the ARM+τ machine match the transitions of the plain ARM machine (see
Fig. 3). There is a generic rule, which lifts all of the ARM transitions, except for Propagate



A. Podkopaev, O. Lahav, and V. Vafeiadis 22:19

Prog ` s label−−−→
ARM

s′

label 6∈ {Propagate _ _,Write commit _ _ _ _}

Prog ` 〈s,H 〉 label−−−−−→
ARM+τ

〈s′,H 〉

Prog ` s Propagate e tid−−−−−−−−−→
ARM

s′

s′.Ord ∪ tedges(s′.Evt,Hτ ) is acyclic

Prog ` 〈s,H 〉 Propagate e tid−−−−−−−−−→
ARM+τ

〈s′,H 〉

Prog ` s Write commit tid path ` val−−−−−−−−−−−−−−−−−→
ARM

〈M ′POP, iordf ′, tapef ′〉
tapef ′(tid, path) = W (com im ` val) tape , s.tapef (tid)
time-range(im, `, τ, tid, path, tape,H ) coherent-thread(`, τ, path, tape,H )

uniq-time-loc(`, τ, s.tapef ,H ) pathSY , lastSY(tape, path)
S , if pathSY 6= [] then {〈tid, pathSY, dmb〉} ∪ prev-Ord-req(tid, pathSY, tape,H ) else ∅
S′ , if im then S ∪ {〈tid, path,wr ` : val〉} else S

view , [`@τ ] t viewf(tid, pathSY, pathSY, tape,H )
H ′ , H [(tid, path) 7→ (τ, S′, view)] M ′POP.Ord ∪ tedges(M ′POP.Evt,H ′τ ) is acyclic

Prog ` 〈s,H 〉 Write commit tid path ` val τ−−−−−−−−−−−−−−−−−−→
ARM+τ

〈〈M ′POP, iordf ′, tapef ′〉,H ′〉

Figure 3 Transitions of the ARM+τ machine.

and Write commit, to ARM+τ ones, leaving the timestamp component unchanged. The
Write commit transition of ARM+τ mutates the timestamp component; and both Propagate
and Write commit transitions have a common additional precondition: the union of the Ord
relation and the order induced by timestamps, tedges, has to remain acyclic.

I Definition. tedges(Evt,Hτ ) =
{(e, e′) ∈ Evt × Evt | e, e′ are writes, e.loc = e′.loc,Hτ (e.tid, e.path) < Hτ (e′.tid, e′.path)}

The other rules cannot introduce cycles in the union, so we do not have to insert the additional
precondition to them.

Let’s take a closer look to the Write commit transition. It chooses a timestamp τ , which
has to be unique among writes to the same location (the predicate uniq-time-loc). Also, the
timestamp has to be consistent with timestamps of thread’s committed writes to the location
(the predicate coherent-thread): it has to be bigger than timestamps of the preceding writes
and smaller than timestamps of the following writes. The Write commit transition of the
original machine does not issue a write request to the storage in case there is a following
committed write to the location (im = false). Nevertheless, the ARM+τ machine assigns a
timestamp to it. To distinguish write instances that have write requests in the storage from
those that do not, timestamps of instances with requests in the storage are integers, while
timestamps of instances without requests are in a range (τ ′ − 1, τ ′), where τ ′ is a timestamp
of the closest following write to the same location, which has a write request in the storage
(the predicate time-range).

If the write request is issued (im = true) and there is a preceding SY fence (pathSY 6= []),
then requests guaranteed to be Ord-before the issued write request (its H≤ entry) are the
last preceding fence request, 〈tid, pathSY, dmb〉, and prev-Ord-req(tid, pathSY, tape,H )—the
write requests issued by the thread before pathSY, and elements of H≤(e.tid, e.path), for every
write request e which is read by the thread before pathSY.

prev-Ord-req(tid, pathSY, tape,H ) ,
{〈tid : path′@`′, val ′〉 | path′ < pathSY, tape(path′) = W (com _ `′ val ′)} ∪⋃
{H≤(e.tid, e.path) | path′′ < pathSY, tape(path′′) = R (sat com e)}.

ECOOP 2017



22:20 Promising Compilation to ARMv8 POP

Why are these requests Ord-before the added write request?
First, all these requests, except for the fence request itself, are Ord-before the fence

request 〈tid, pathSY, dmb〉, because when the storage accepts a fence request e, it adds (e′, e)
edges to the Ord relation for all requests e′ propagated to the thread, since no requests are
reorderable with a fence request. Each write e′, which was issued by the thread before the
fence, was propagated to that thread, so the corresponding edge to 〈tid, pathSY, dmb〉 is added
to Ord. Each write e′′, which was read by the thread before the fence, was propagated to
that thread as well, so edges from e′′ itself and elements of its H≤-entry to 〈tid, pathSY, dmb〉
are added to Ord. Second, when the storage subsystem accepts the write request, it adds an
edge from the fence request to it, as the latter is issued by the same thread (i.e., propagated
to the thread). The others are Ord-before the write request by transitivity of Ord.

The Hview entry is equal to a pointwise maximum (the t operation) of a write timestamp
map [`@τ ] and viewf(tid, pathSY, pathSY, tape,H ), where

viewf(tid, pathwrite, pathread, tape,H ) ,⊔
com-writes-time(tid, pathwrite, tape,H ) t

⊔
sat-reads-view(pathread, tape,H )

which captures a composition of views corresponding to the elements of the H≤ entry:

com-writes-time(tid, path, tape,H ) ,
{[`@τ ] | path′ < path, tape(path′) = W (com _ ` _), τ = Hτ (tid, path′)} ∪
{[`@τ ] | tid ′, path′, path′′ < path, τ = Hτ (tid ′, path′) 6= ⊥,

tape(path′′) = R (sat sat-state 〈tid ′, path′,wr ` : _〉), sat-state 6= inflight}.

sat-reads-view(path, tape,H ) ,
{Hview(tid ′, path′) 6= ⊥ | ∃`, tid ′, path′, path′′ < path,

tape(path′′) = R (sat sat-state 〈tid ′, path′,wr ` : _〉), sat-state 6= inflight}.

8.2 Simulation of the ARM Machine
As we have just seen, the transitions of the ARM+τ machine are more restrictive than the
ARM transitions, which may potentially lead to fewer possible behaviors of the instrumented
machine. So, if we want to use the instrumented machine in the compilation proof, we have
to show that it is possible to simulate the original machine.

I Theorem 8.1. ∀Prog, {si}i∈[0..n]. s0 = sinit ∧ FinalARM(sn,Prog) ∧
Prog ` s0 −−−→

ARM
. . . −−−→

ARM
sn ⇒ ∃{H i}i∈[0..n]. H 0 = ainit.H ∧

Prog ` 〈s0,H 0〉 −−−−−→
ARM+τ

. . . −−−−−→
ARM+τ

〈sn,Hn〉.

Proof. In Section 7, we constructed the relation mo and the function mapτ : req⇀ τ from
the final state of an execution. Here, we do the same for sn, with a minor change: we suppose
that the domain of mapτ is instruction instance identifiers tid × path instead of req. It is a
stylistic change, as each req in the storage is uniquely identified (except for initial writes) by
the instruction instance that issued it.

We construct {H i}i∈[0..n] inductively. The initial map H 0 is equal to ainit.H . We
introduce an invariant for the ARM+τ execution we are constructing:

inv(s,H ) , ∀tid, path.
(s.tapef (tid, path) = W (com true _ _)⇒ Hτ (tid, path) = mapτ (tid, path)) ∨
(s.tapef (tid, path) 6= W (com _ _ _)⇒ Hτ (tid, path) = ⊥).



A. Podkopaev, O. Lahav, and V. Vafeiadis 22:21

The invariant says that the timestamps introduced during the instrumented execution are
given by the mapτ function. We will prove that the invariant is maintained while constructing
{H i}i∈[0..n]. Suppose that we made the first i transitions and the invariant holds for the
corresponding states. Let’s perform a case analysis of the Prog ` si −−−→

ARM
si+1 step.

Propagate: We choose H i+1 to be equal to H i. Then, inv(si+1,H i+1) holds as si+1.tapef =
si.tapef . In Section 7, we proved that for all j ∈ [0..n], mo�sj .Evt ∪ sj .Ord is acyclic.
inv(si+1,H i+1) guarantees that mo�si+1.Evt is equal to tedges(si+1.Evt,H i+1

τ ). Then
si+1.Ord∪tedges(si+1.Evt,H i+1

τ ) is acyclic. The additional precondition of the Propagate
transition holds, and the ARM+τ machine can make the same step.

Write commit tid path: There are two subcases to consider.
If the write request is issued to the storage, then we choose τ , a parameter of the
ARM+τ transition, to be equal to mapτ (tid, path). We choose H i+1 as it is defined
in the Write commit transition of ARM+τ . The invariant is obviously preserved. By
definition of mapτ , τ is unique among writes to the same location. The acyclicity of
si+1.Ord ∪ tedges(si+1.Evt,H i+1

τ ) holds by the same reason as in the previous case. By
the acyclicity, τ is greater than timestamps of all writes to the same location, which
are issued by tid to the storage. It is also greater than timestamps of previous writes,
which do not have requests in the storage, as for each such write, there is a committed
write with a larger timestamp. There are no following committed writes to the same
location by the same thread, as the transition issues the request to the storage. Thus the
timestamp is coherent with other thread writes.
If there is no write request issued to the storage, then mapτ (tid, path) = ⊥. We know that
there is a following write by the same thread to the same location with some timestamp τ ′.
We may choose the timestamp τ to be in (τ ′ − 1, τ ′) in a way that it does not violate the
transition preconditions. We choose H i+1 as it is defined in the Write commit transition.
The invariant is obviously preserved.

Other transitions: We choose H i+1 to be equal to H i. As there are no additional precondi-
tions in the instrumented machine rules, and no changes in the additional components
of the state, the instrumented machine can take the corresponding transition and the
invariant is preserved. J

8.3 View of the ARM+τ Machine
As we have seen for the MP-SY-LD example in Section 2, once a thread of the Promise
machine reads from a write and then executes an acquire fence, the view of the thread gets
updated with the message view of the write. The view update forbids subsequent reads
to read from too old writes (with too small timestamps). To show a simulation between
the Promise and the ARM+τ machines, we have to show a similar result for the ARM+τ
machine.

We start with introducing viewARM, an analog of viewcur:

viewARM(a, tid, path) ,⊔
com-writes-time(tid, path,a.tapef (tid),a.Hτ ) t⊔
sat-reads-view(lastCF(tape, path),a.tapef (tid),a.Hview) .

Unlike viewcur of the Promise machine, which is defined for a thread, viewARM is additionally
parametrized by path for the same reason that the variable state of the ARM machine is
parametrized by path—the machine executes instructions out-of-order, so different instructions
which might be executed at the same time have different τ -related restrictions. The definition

ECOOP 2017



22:22 Promising Compilation to ARMv8 POP

itself is very similar to the definition of the Hview entry in the Write commit transition: it is
a composition of singleton views corresponding to writes committed by the thread before
path and Hview entries corresponding to writes read by the thread before the last committed
fence (lastCF(tape, path)). We count reads up to any fence as both SY and LD ARM fences
are strong enough to be a result of compilation of an acquire fence of the Promise machine.

Having this definition, we can define the aforementioned restrictions. If a read is satisfied
from a committed write, the write has a timestamp which is greater than or equal to the
corresponding value of viewARM at the read instruction instance. We do not restrict reads
satisfied from not yet committed writes this way, as such writes do not have timestamps
until they are committed. Similarly, each committed write has to have a timestamp which is
greater than the value of viewARM at the write instruction instance:

I Theorem 8.2. ∀Prog,a, tid, tape = a.tapef (tid), path. Prog ` ainit −−−−−→
ARM+τ

∗ a⇒
(∀e. tape(path) = R (sat _ e) ∧ a.tapef (e.tid, e.path) is committed⇒

a.Hτ (e.tid, e.path) ≥ viewARM(a, tid, path, e.`)) ∧
(∀`. tape(path) = W (com _ ` _)⇒ a.Hτ (tid, path) > viewARM(a, tid, path, `)).

The proof of the theorem can be found in the extended version of the paper [20].

9 The Compilation Correctness Proof

In this section, we prove the main theorem stated in Section 3.

I Theorem 3.1. For all Prog and s, if Prog ` sinit −−−→
ARM

∗ s and FinalARM(s,Prog),

then there exists p such that Prog ` pinit −−−−−→
Promise

∗ p where FinalPromise(p,Prog) and
same-memory(s,p).

Here FinalPromise(p,Prog) means that the Promise machine cannot make a further transi-
tion (each thread’s path points out of the thread’s program instruction list) from p and all
promises are fulfilled.

Proof. Let’s fix the program Prog. In the remainder of the section we write “s −−−→
ARM

s′”
instead of “Prog ` s −−−→

ARM
s′” for all machines. We apply the result of Section 8.2, and

change the proof goal to the simulation for the ARM+τ machine:

∀Prog,a. ainit −−−−−→
ARM+τ

∗ a ∧ FinalARM+τ (a,Prog)⇒

∃p. pinit −−−−−→
Promise

∗ p ∧ FinalPromise(p,Prog) ∧ same-memory(a,p).

To prove it, we introduce a number of relations between ARM+τ and Promise states, which
are parts of the simulation relation.

The Iprefix relation states that every instruction instance, which has been executed by
the Promise machine, has been executed by the ARM+τ machine:

Iprefix(a,p) , ∀tid, path′ < p.tsf (tid).path. a.tapef (tid, path′) is committed.

The next relations connect the memories of the machines. Imem1 states that for every write,
which is committed by the ARM+τ machine, there is a message in the Promise memory to
the same location with the same value and timestamp, and its view is less or equal to the
corresponding view of the ARM request. If the path of the committed write is less than the



A. Podkopaev, O. Lahav, and V. Vafeiadis 22:23

corresponding thread’s pointer to the next instruction (p.tsf (tid).path), then the write is
fulfilled, otherwise it is promised but not fulfilled:

Imem1(a,p) , ∀tid, `, val, τ, view′, path.
W (com _ ` val) = a.tapef (tid, path) ∧ 〈τ,_, view′〉 = a.H (tid, path)⇒
∃view ≤ view′.

(path ≥ p.tsf (tid).path ⇒ 〈` : val@τ, view〉 ∈ p.tsf (tid).promises)∧
(path < p.tsf (tid).path ⇒
〈` : val@τ, view〉 ∈ p.MPromise \

⋃
tid

p.tsf (tid).promises).

Imem2 connects the memories in other direction: for every message in the Promise memory
(except for initial ones) there is a committed write instruction instance in the ARM+τ
machine:

Imem2(a,p) , ∀〈` : val@τ, view〉 ∈ p.MPromise. τ 6= 0⇒ ∃tid, path, view′ ≥ view.
W (com _ ` val) = a.tapef (tid, path) ∧ a.H (tid, path) = 〈τ,_, view′〉.

Imem3 relates initial writes to locations:

Imem3(a,p) , ∀`. 〈0tid , [],wr ` : 0〉 ∈ a.MPOP ∧ 〈` : 0@0, λ`. 0〉 ∈ p.MPromise.

Iview says that views of a Promise thread are restricted by the composition of singleton
views of writes and reads committed by the ARM thread. For the acquire view, it counts all
the writes and reads up to path. For the current view, it counts all the writes up to path
and reads up to the latest committed LD fence (lastLD(tape, path)). For the release view, it
counts all writes up to the latest committed SY fence (lastSY(tape, path)) and reads up to
the latest committed LD fence before the SY fence (lastLDSY(tape, path)).

Iview(a,p) , ∀tid, tape = a.tapef (tid), path = p.tsf (tid).path.
let pathLD, pathSY , lastLD(tape, path), lastSY(tape, path) in
let pathLDSY , lastLDSY(tape, path) in
(p.tsf (tid).viewacq ≤

⊔
viewf(tid, path, path, tape,a.H ))∧

(p.tsf (tid).viewcur ≤
⊔

viewf(tid, pathLD, path, tape,a.H ))∧
(p.tsf (tid).viewrel ≤

⊔
viewf(tid, pathLDSY, pathSY, tape,a.H ).

Istate declares that a variable state of a Promise thread is the same as the committed state
function up to the corresponding path of the ARM thread:

Istate(a,p) , ∀tid, regf = regfcom(Prog(tid),a.tapef (tid),p.tsf (tid).path).
∀reg,p.tsf (tid).st(reg) = regf (reg).

Icom-SY says that if an ARM thread committed a write, then all path-previous SY fences are
executed by the corresponding Promise thread:

Icom-SY(a,p) , ∀tid, tape = a.tapef (tid),
pathwrite = last-write-com(tape), pathSY < pathwrite.

tape(pathSY) = F _ SY ⇒ pathSY < p.tsf (tid).path.

where last-write-com(tape) is a path of a last write committed by the thread. The relation is
necessary for certification of the Promise machine steps.
Ireach asserts that states are reachable:

Ireach(a,p) , ainit −−−→
ARM

∗ a ∧ pinit −−−−−→
Promise

∗ p.

ECOOP 2017



22:24 Promising Compilation to ARMv8 POP

The relation Ibase combines the aforementioned relations:

Ibase , Iprefix ∩ Imem1 ∩ Imem2 ∩ Imem3 ∩ Iview ∩ Istate ∩ Icom-SY ∩ Ireach.

In the simulation, either the Promise machine is waiting for the next step of the ARM+τ
machine, or there is a Promise thread which should make at least one non-Promise write
step (corresponding to an instruction which the thread’s path component is pointing to). A
Promise thread tid is waiting for the corresponding ARM thread, if the next command to be
executed, which is pointed by path, is not fetched or committed in the ARM thread.

Itid
Promise is up to ARM(tid,a,p) , let tape, path , a.tapef (tid),p.tsf (tid).path in
tape(path) = ⊥ ∨ tape(path) is not committed.
IPromise is up to ARM (a,p) , ∀ tid. Itid

Promise is up to ARM(tid,a,p).
IPromise isn’t up to ARM (a,p) , ∃! tid. ¬ Itid

Promise is up to ARM(tid,a,p).

The relations are used to define two simulation relations:

Ipre , Ibase ∩ IPromise isn’t up to ARM I , Ibase ∩ IPromise is up to ARM

If the states are related by Ipre, there is a thread of the Promise machine which may take
a step (which is not Promise write) by executing the next instruction its path is pointing
to. After it either the thread has to make another step (Ipre(a,p′)), or all threads of the
Promise machine are waiting (I(a,p′)):

I Lemma 9.1. ∀(a,p) ∈ Ipre. ∃p′.p −−−−−→
Promise

p′ ∧ (a,p′) ∈ Ipre ∪ I.

As at every specific state of the ARM+τ machine it has committed a finite number of
instruction instances, we show that the Promise machine can make a finite number of
transitions to get its state to satisfy I:

I Lemma 9.2. ∀(a,p) ∈ Ipre. ∃p′. p −−−−−→
Promise

∗ p′ ∧ (a,p′) ∈ I.

Suppose, the ARM+τ and Promise machine states are related by I. Then, we show that the
ARM+τ machine may make a step. If the step is Write commit, then the Promise machine
has to promise the corresponding message, and the states of the machines are related by
Ipre ∪ I. If the step is not Write commit, then the Promise machine does not make a step,
and the states are related by the same relation Ipre ∪ I.

I Lemma 9.3. ∀(a,p) ∈ I.
(∀a′. a ¬ Write commit−−−−−−−−−→

ARM+τ
a′ ⇒ (a′,p) ∈ Ipre ∪ I) ∧

(∀a′. a Write commit−−−−−−−−→
ARM+τ

a′ ⇒ ∃p′. p Promise write−−−−−−−−→
Promise

p′ ∧ (a′,p′) ∈ Ipre ∪ I).

Then, we state the following lemma:

I Lemma 9.4. ∀(a,p) ∈ I. ∃p′. p −−−−−→
Promise

∗ p′ ∧ (a′,p′) ∈ I.

It straightforwardly follows from the three previous lemmas. 9

The theorem is proved by induction on the ARM+τ execution using Lemma 9.4. The
machine memories are the same at the end due to Imem1 and Imem2. The only thing, which
we need to show, is that FinalPromise(p,Prog) holds.

9 Proofs of the lemmas can be found in the extended version of the paper [20].



A. Podkopaev, O. Lahav, and V. Vafeiadis 22:25

The Promise machine cannot make a further step (each thread’s path points out of the
thread’s instruction list), as otherwise the ARM+τ machine would be able to fetch a new
instruction instance, and FinalARM+τ (a,Prog) would not hold. Each thread has fulfilled its
promises according to Imem1 and Imem2. J

10 Related Work

The most closely related work is the correctness proof of compilation from the Promise
machine to the x86-TSO and Power models in the paper introducing the Promise machine
[12].10 Those proofs were much simpler than our proof essentially because these models are
substantially simpler than the ARMv8 POP model. To simplify the correctness proof, Kang
et al. use a result of Lahav and Vafeiadis [13], which reduces the soundness of compilation
to proving soundness of certain local program transformations and of compilation with
respect to stronger memory models (SC and Strong-Power respectively). Sadly, however,
this reduction is not applicable to the ARMv8 POP model because of examples such as
ARM-weak, in which ARM may execute anti-dependent instructions out of order. As a
result, although Kang et al. do not use promise steps in the compilation part of their proof,
promise steps must be used to justify the correctness of compilation to ARMv8 POP, which
in turn renders our proof substantially more complicated than theirs.

In addition, there exist formal compilation proofs [6, 7] from the C++11 memory model
to x86-TSO and Power, although the latter proof was recently found to be flawed in the case
of SC accesses [14, 17] indicating that the C++ semantics for SC accesses is too strong. This
is also the reason why the Promise machine of Kang et al. [12] does not support SC accesses.

We introduced the intermediate ARM+τ machine to manage “lack of prescience”, i.e.,
absence of information about a final ordering of write messages in the storage during an
execution of the ARM machine. We could have used a backward simulation [16] and/or have
treated the timestamp mapping component of the ARM+τ state as a prophecy variable [4]
to establish a connection between the ARM and ARM+τ machines, but we found it easier
to do the proof in a forward style.

Instead of proving the correctness of compilation schemes, one can resort to testing or
model checking. Recently, Wickerson et al. [24] introduced an approach to automatically
check different properties of weak memory models, including compilation. The tool generates
all programs which size less than some given (small) parameter, and exhaustively checks
all executions of those programs. Their approach, however, only works for memory models
expressed in an axiomatic per-execution style, and is thus not directly applicable to neither
the Promise nor the ARMv8 POP semantics.

11 Conclusion

In this paper, we have proved soundness of the compilation of relaxed loads and stores, as
well as release and acquire fences, from the Promise machine to the ARMv8 POP machine.
Since the proof is already significantly complex, we have not attempted to model all the
features of the Promise machine. Specifically, we have not considered the compilation of
release/acquire accesses, read-modify-write (RMW) instructions, and SC fences. Extending

10Kang et al.’s proof for Power considers a compilation scheme that compiles acquire loads using Power’s
lwsync. This scheme is more expensive than the one implemented in existing compilers, which uses
control dependency and isync for acquire loads.

ECOOP 2017



22:26 Promising Compilation to ARMv8 POP

the proof to cover these instructions and mechanizing it are left for future work. In the
remainder of this section, we outline the issues involved in extending our proof.

Another useful item for future work would be to consider the correctness of compilation
from the Promise machine to the newer stronger ARMv8.2 model [1, 3]. As, however, the
new model is in many regards substantially stronger than ARMv8 POP, the compilation
proof should be much easier.

Handling Release and Acquire Accesses. There are two proposed compilation schemes for
release and acquire accesses [2]. A one of them involves fences considered in the paper:

Promise: a := [x]acq [x]rel := a

ARM: a := [x]; dmb LD dmb SY; [x] := a

Compilation correctness for a := [x]acq straightforwardly follows from results of Kang et
al. [12] and the current paper, as a transformation a := [x]acq  a := [x]rlx; fence(acquire)
is sound for the Promise machine. To cover the aforementioned mapping of [x]rel := a, one
should be able to restrict the ARM machine to commit writes, which directly follow SY
fences, right after committing the fences without losing any observable behaviors. Then, the
compilation correctness proof is a straightforward extension of the current proof.

Another compilation scheme uses special acquire (a := [x]LDAR) and release ([x]STLR := a)
ARM instructions, which were originally introduced to the architecture to cover SC accesses:

Promise: a := [x]acq [x]rel := a

ARM: a := [x]LDAR [x]STLR := a

These instructions induce rather strong synchronization. For instance, the ARM acquire
reads forbid program-following instructions to issue requests until the reads are satisfied, and
any satisfied acquire read requests are not removed from the storage, but start to act as a
fence request, i.e., become impossible to reorder with anything. To cover them one would
need to extend our definition of the ARM machine and Theorem 8.2.

Handling Read-Modify-Writes. The Promise machine with RMW instructions represents
message timestamps as ranges of rational numbers, and maintains the invariant that all
messages in memory have disjoint timestamp ranges. If there is a message with a timestamp
(τ, τ ′] in the memory and a thread T executes an RMW operation, which reads from that
message, the RMW message gets a timestamp range (τ ′, τ ′′] for some τ ′′ > τ , which prevents
other threads from adding a message “in-between” in future.

RMWs are compiled to ARM as a combination of an exclusive load followed by an
exclusive store, typically inside a loop. The ARM-POP model [9] guarantees that when
an exclusive store issues a write request eexcl to the storage, there is no write request to
the same location Ord-between this write request and the write request eprev read by the
corresponding exclusive load. The machine guarantees that the property is preserved during
an ongoing execution as well. This enables us to keep the same timestamp representation
in the ARM+τ machine: as all write requests in the storage of the ARM+τ machine have
integer timestamps, it is easy to show that the timestamp of eexcl is equal to the timestamp
of eprev increased by one. In the simulation, when the ARM+τ machine commits a exclusive
store with a timestamp τ , the Promise machine will promise a RMW with a timestamp range
(τ − 1, τ ].

A slight difficulty is that once RMWs are added to the source language, the compilation
scheme is no longer bijective, as RMWs get compiled to a sequence of ARM instructions.



A. Podkopaev, O. Lahav, and V. Vafeiadis 22:27

For example, a compare-and-swap instruction cas(`, valold, valnew) may be compiled to the
following loop (on the left):

Loop : a := loadexcl(`);
if a = valold goto Exit;
storeexcl(flag, `, valnew);
if flag = 0 goto Loop;

Exit :

Loop : a := [`];
if a = valold goto Exit;
flag := casrestricted(`, valold, valnew);
if flag = 0 goto Loop;

Exit :

For the sake of preserving a simple mapping between source and target programs, one might
introduce a restricted version of the CAS instruction in the Promise machine. This restricted
CAS would be allowed to read only from a write read by a previous load instruction, i.e.,
the write whose timestamp is equal (not greater or equal) to the corresponding value of
the thread’s current view. After that, one may show that the program transformation that
replaces cas(`, valold, valnew) with the loop shown above (on the right) is sound for the
extended Promise machine and prove compilation correctness for the extended machine.

Handling SC Fences. The Promise machine uses a global view to support SC fences. When
a thread executes an SC fence, it synchronizes its own views with the global view, i.e., assigns
to all of them (including the global one) the pointwise maximum. This models an existence
of a global order on SC fences.

SC fences are compiled to dmb SY fences in the ARM machine. As with write requests,
dmb SY fences are definitely ordered by Ord only at the end of an execution. Consequently,
one needs to extend the ARM+τ machine to calculate timestamps for dmb SY fences.

This, however, does not solve all problems. Currently in the simulation, when the ARM+τ
machine commits a dmb SY instruction, the Promise machine executes the corresponding
release fence instruction. Doing this is necessary, because it enables promising program-
following writes, when the ARM+τ machine commits them to the storage. In the same
situation, however, the Promise machine may not be able to execute the corresponding SC
fence, because the Promise machine has to execute them in the newly introduced timestamp
order, which may not coincide with a commit order of the ARM+τ execution.

References

1 ARM architecture reference manual: ARMv8, for ARMv8-A architecture profile. Available
at https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-
manual-armv8-for-armv8-a-architecture-profile [Online; accessed 16-May-2017].

2 C/C++11 mappings to processors. Available at https://www.cl.cam.ac.uk/~pes20/cpp/
cpp0xmappings.html. [Online; accessed 16-May-2017].

3 The herdtools7 repository. Available at https://github.com/herd/herdtools7 [Online;
accessed 16-May-2017].

4 Martín Abadi and Leslie Lamport. The existence of refinement mappings. Theor. Comput.
Sci., 82(2):253–284, 1991. doi:10.1109/LICS.1988.5115.

5 Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst., 36(2):7:1–
7:74, 2014. doi:10.1145/2627752.

6 Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and Peter
Sewell. The problem of programming language concurrency semantics. In ESOP, volume
9032 of LNCS, pages 283–307. Springer, 2015. doi:10.1007/978-3-662-46669-8_12.

ECOOP 2017

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://github.com/herd/herdtools7
http://dx.doi.org/10.1109/LICS.1988.5115
http://dx.doi.org/10.1145/2627752
http://dx.doi.org/10.1007/978-3-662-46669-8_12


22:28 Promising Compilation to ARMv8 POP

7 Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. Mathema-
tizing C++ concurrency. In POPL 2011, pages 55–66. ACM, 2011. doi:10.1145/
1925844.1926394.

8 Hans-J. Boehm and Brian Demsky. Outlawing ghosts: Avoiding out-of-thin-air results. In
MSPC 2014, pages 7:1–7:6. ACM, 2014. doi:10.1145/2618128.2618134.

9 Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc Maranget,
Will Deacon, and Peter Sewell. Modelling the ARMv8 architecture, operationally: Concur-
rency and ISA. In POPL 2016, pages 608–621. ACM, 2016. doi:10.1145/2837614.2837615.

10 John L. Hennessy and David A. Patterson. Computer Architecture - A Quantitative Ap-
proach (5. ed.). Morgan Kaufmann, 2012.

11 Alan Jeffrey and James Riely. On thin air reads: Towards an event structures model of
relaxed memory. In LICS 2016. IEEE, 2016. doi:10.1145/2933575.2934536.

12 Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. A promising
semantics for relaxed-memory concurrency. In POPL 2017. ACM, 2017. doi:10.1145/
3009837.3009850.

13 Ori Lahav and Viktor Vafeiadis. Explaining relaxed memory models with program trans-
formations. In FM 2016. Springer, 2016. doi:10.1007/978-3-319-48989-6_29.

14 Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. Repairing
sequential consistency in C/C++11. In PLDI 2017. ACM, 2017.

15 Leslie Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Computers, 28(9):690–691, 1979. doi:10.1109/
TC.1979.1675439.

16 Nancy Lynch and Frits Vaandrager. Forward and backward simulations: I. Untimed sys-
tems. Inf. Comput., 121(2):214–233, 1995. doi:10.1006/inco.1995.1134.

17 Yatin A. Manerkar, Caroline Trippel, Daniel Lustig, Michael Pellauer, and Margaret
Martonosi. Counterexamples and proof loophole for the C/C++ to POWER and ARMv7
trailing-sync compiler mappings. CoRR, abs/1611.01507, 2016. URL: http://arxiv.org/
abs/1611.01507.

18 Jeremy Manson, William Pugh, and Sarita V. Adve. The Java memory model. In POPL
2005, pages 378–391. ACM, 2005. doi:10.1145/1040305.1040336.

19 Jean Pichon-Pharabod and Peter Sewell. A concurrency semantics for relaxed atomics that
permits optimisation and avoids thin-air executions. In POPL 2016, pages 622–633. ACM,
2016. doi:10.1145/2837614.2837616.

20 Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. Promising compilation to ARMv8
POP. Extended version, 2017. Available at http://podkopaev.net/armpromise [Online;
accessed 16-May-2017].

21 Anton Podkopaev, Ilya Sergey, and Aleksandar Nanevski. Operational aspects of C/C++
concurrency. CoRR, abs/1606.01400, 2016. URL: http://arxiv.org/abs/1606.01400.

22 Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. Under-
standing POWER multiprocessors. In PLDI 2011, pages 175–186. ACM, 2011. doi:
10.1145/1993498.1993520.

23 Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O.
Myreen. x86-TSO: A rigorous and usable programmer’s model for x86 multiprocessors.
Commun. ACM, 53(7):89–97, 2010. doi:10.1145/1785414.1785443.

24 John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constantinides. Auto-
matically comparing memory consistency models. In POPL 2017. ACM, 2017. doi:
10.1145/3009837.3009838.

25 Yang Zhang and Xinyu Feng. An operational happens-before memory model. Frontiers of
Computer Science, 10(1):54–81, 2016. doi:10.1007/s11704-015-4492-4.

http://dx.doi.org/10.1145/1925844.1926394
http://dx.doi.org/10.1145/1925844.1926394
http://dx.doi.org/10.1145/2618128.2618134
http://dx.doi.org/10.1145/2837614.2837615
http://dx.doi.org/10.1145/2933575.2934536
http://dx.doi.org/10.1145/3009837.3009850
http://dx.doi.org/10.1145/3009837.3009850
http://dx.doi.org/10.1007/978-3-319-48989-6_29
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1006/inco.1995.1134
http://arxiv.org/abs/1611.01507
http://arxiv.org/abs/1611.01507
http://dx.doi.org/10.1145/1040305.1040336
http://dx.doi.org/10.1145/2837614.2837616
http://podkopaev.net/armpromise
http://arxiv.org/abs/1606.01400
http://dx.doi.org/10.1145/1993498.1993520
http://dx.doi.org/10.1145/1993498.1993520
http://dx.doi.org/10.1145/1785414.1785443
http://dx.doi.org/10.1145/3009837.3009838
http://dx.doi.org/10.1145/3009837.3009838
http://dx.doi.org/10.1007/s11704-015-4492-4


Interprocedural Specialization of Higher-Order
Dynamic Languages Without Static Analysis
Baptiste Saleil1 and Marc Feeley2

1 Université de Montréal
Montreal, Quebec, Canada
baptiste.saleil@umontreal.ca

2 Université de Montréal
Montreal, Quebec, Canada
feeley@iro.umontreal.ca

Abstract
Function duplication is widely used by JIT compilers to efficiently implement dynamic lan-

guages. When the source language supports higher order functions, the called function’s identity
is not generally known when compiling a call site, thus limiting the use of function duplication.

This paper presents a JIT compilation technique enabling function duplication in the presence
of higher order functions. Unlike existing techniques, our approach uses dynamic dispatch at call
sites instead of relying on a conservative analysis to discover function identity.

We have implemented the technique in a JIT compiler for Scheme. Experiments show that it
is efficient at removing type checks, allowing the removal of almost all the run time type checks
for several benchmarks. This allows the compiler to generate code up to 50% faster.

We show that the technique can be used to duplicate functions using other run time inform-
ation opening up new applications such as register allocation based duplication and aggressive
inlining.

1998 ACM Subject Classification D.3.4 Processors

Keywords and phrases Just-in-time compilation, Interprocedural optimization, Dynamic lan-
guage, Higher-order function, Scheme

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.23

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.3.2.14

1 Introduction

Dynamic languages typically have lower performance than static languages. A major reason
for this is that the compiler has less information about the program at compile time and
must postpone work to execution time.

Compilers generally use static analysis to predict execution time properties of the executed
program. The collected information allows the compiler to generate specialized versions of
functions according to the compilation context (i.e. the set of properties of the program).

In a higher order language with first-class functions, the specialization can depend on
multiple sources of information. To generate efficient code, functions are specialized using (i)
information available when compiling the call to the function and (ii) information captured
when creating the lexical closure of the function. A lexical closure is a memory object used
to implement first-class functions that stores the function and an environment containing the

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Baptiste Saleil and Marc Feeley;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 23; pp. 23:1–23:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.23
http://dx.doi.org/10.4230/DARTS.3.2.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


23:2 Interprocedural Specialization of Higher-Order Dynamic Languages

value of the free variables (i.e. the variables used by the function but defined in an enclosing
scope).

Code specialization is generally used along with JIT compilation to only generate the
actually executed versions.

A specialized function entry point is then uniquely identified by the triplet:

Ilambda, Pclosure, Pcall

With Ilambda the identifier of the function, Pclosure the captured properties at the closure
creation site and Pcall the properties at the call site. For example, if the compiler specializes
the code according to type information, Pclosure is the type of the closure’s free variables and
Pcall is the type of the actual parameters. When a call site is executed, a new version of
the callee is generated, specialized according to Pclosure and Pcall if such a version does not
currently exist.

When a programming language allows the use of higher order functions, the identity of
the callee is not generally known when compiling a call site thus only Pcall is available. If we
still want to use interprocedural specialization in the presence of higher order functions, two
problems must be addressed.

The first problem is that if the callee is unknown, the function entry point is retrieved
from the lexical closure. However, classical lexical closure representations store a single entry
point. Because the functions are specialized, they possibly have several entry points that
must be stored in the closure. These representations must then be extended to be used with
function specialization. The second problem is that if Pcall is the only information available,
and if the closure allows the compiler to store several specialized entry points, a dynamic
dispatch must be performed using the closure and Pcall to branch to the corresponding
specialized entry point.

An analogous problem exists for function returns. Because they are specialized, function
continuations possibly have several entry points. Thus classical representations of return
addresses must be extended. Because the continuation called at a return site may be unknown,
a dispatch must be performed to branch to the right continuation entry point. Note however
that function returns can be translated into function calls using Continuation-Passing Style
(CPS) meaning that it can, in principle, be solved in the same way.

This paper presents a new JIT oriented technique allowing the compiler to lazily generate
specialized versions of the functions according to Pclosure and Pcall in the presence of higher
order functions. The technique is simple and does not require the use of static analysis nor a
profiling phase. Unlike existing JIT techniques such as [9], our technique is based on dynamic
dispatch instead of on the discovery of the function identities. This enables interprocedural
specialization to be used at every call site. We also show that the technique can be used to
solve the problem for function returns without requiring an explicit CPS conversion.

Contributions. The first contribution is an extension of the widely used flat lexical closure
representation [12]. This extension allows the compiler to store several entry points in the
lexical closure to address the first problem introduced by higher order functions. The second
contribution is an efficient dynamic dispatch based on position invariance. This dynamic
dispatch allows branching to the appropriate entry point using information available at the
call site only, solving the second problem introduced by higher order functions.

The rest of the paper is structured as follow. Section 2 introduces Basic Block Ver-
sioning (BBV), an existing JIT compilation approach. We show how BBV can be used to
intraprocedurally specialize the code to collect Pcall and Pclosure . Section 3 presents our



B. Saleil and M. Feeley 23:3

( define make-sumer
( lambda (n)

( letrec ((f ( lambda (x)
(if (> x n)

0
(+ x (f (+ x 1)))))))

f)))

( define sum-to-10 ( make-sumer 10))
( define sum-to-pi ( make-sumer 3.14))

( println ( sum-to-10 6)) ; 6 + 7 + 8 + 9 + 10
( println ( sum-to-10 7.5)) ; 7.5 + 8.5 + 9.5
( println ( sum-to-pi 1.10)) ; 1.10 + 2.10 + 3.10

Figure 1 Scheme code of an arithmetic sequence generator with a common step of 1.

contributions. We first present the lexical closure extension and then the dynamic dispatch
based on position invariance. In section 4 we present the implementation of the technique in
a JIT compiler for Scheme [24], and how the implementation problems are solved. Section 5
presents the results of the experiments and the impact of the technique on the generated
machine code and the execution time. Related and future work are presented in sections 6
and 7 followed by a brief conclusion.

2 Basic Block Versioning

Basic Block Versioning (BBV) [7, 8, 9, 20, 21], is a simple JIT compilation approach based on
code duplication allowing the compiler to generate multiple specialized versions of the basic
blocks according to compilation contexts observed during execution of the program. A lazy
compilation design is used to only generate optimized versions that are actually executed.
BBV duplicates and specializes basic blocks on-the-fly and it does not require the use of an
expensive static analysis or profiling phase nor the use of interpretation or recompilation.

In the examples that follow, for simplicity we will consider a language with only two
concrete numerical types: fixed precision integers (fixnums) and floating point numbers
(flonums). Generalization to a richer set of numerical types is obvious.

The Scheme code presented in figure 1 is an example showing how lazy intraprocedural
BBV can be use to generate specialized code. In this example, function make-sumer generates
bounded arithmetic sequence calculators with common step of 1. Two sumers are created
using respectively an upper bound of 10, a fixnum and 3.14, a flonum.

Figure 2 shows the CFG that is generated by BBV while executing function f presented
in figure 1.

Initially, the function is represented by its compilation stub. A compilation stub is
a piece of code calling back into the compiler from the generated code. The stub stores
information such as the context the compiler uses to generate the code when the stub is
triggered. When the stub associated to function f is triggered for the first time, the compiler
has no information on the type of x and n. It must thus generate a run time type check to
determine if x is a fixnum for the test (> x n). Two stubs are then created to handle the

ECOOP 2017



23:4 Interprocedural Specialization of Higher-Order Dynamic Languages

Figure 2 Progression of compilation of function f using Basic Block Versioning.

two outcomes. They are set up to compile the following code using an augmented context.
This state is shown in the top of the figure.

When the check executes, if it succeeds, the compiler generates the following code using
a context in which it knows that x is a fixnum. If the type check failed, the compiler would
generate another check to determine the type of x. The bottom of the figure shows the
resulting generated code of function f called with (sum-to-10 6) after all the executed stubs
have been successively triggered. Initially, the type of the variables are unknown. When the
first check executes and succeeds, the type of x is discovered and propagated through the
stubs. The types of n and t2 (the value returned by the recursive call) are discovered and
propagated when the second and third type checks are executed. Because it is propagated,
the type of x is known when compiling the two additions thus no more check on x is inserted.
This allows the compiler to generate specialized versions of the basic blocks containing only
three checks instead of five. Basic blocks corresponding to type checks are emphasized in
figure 2.



B. Saleil and M. Feeley 23:5

If function f is later called with x not being a fixnum, the stub Stub 1 is triggered and a
new check is inserted to check if x is a flonum. If that is the case, new versions of the basic
blocks are generated using this information.

This results in two different function bodies each optimized for a particular compilation
context and accessible from a single function entry point. The purpose of interprocedural
specialization is to add the possibility to access the two versions using two different entry
points, and to branch to the appropriate entry point using information known at call sites to
avoid the dynamic type checks of the function parameters.

3 Interprocedural Specialization

We illustrated that BBV can be effective at propagating information intraprocedurally. When
applied to typing, figure 2 showed that in our example, two checks can be omitted. The
three remaining checks are respectively used to check the type of (i) the function argument
x, (ii) the free variable n and (iii) the value returned by the recursive call.

If the compiler knows Ilambda when compiling a call site, it can use Pcall to generate a
specialized version of the function, and branch to it. In our example, this means that the
first type check can be omitted for the recursive call. The same applies to return points (i.e.
calls to the continuations), so the third check can be omitted. Finally, if the compiler is able
to specialize the code according to captured information, in this example the type of the free
variable, all checks are avoided.

In the presence of higher order functions, compilers generally use static analysis such as
0-CFA [22] to predict which functions can be called at a given call site and which continuations
can be invoked at a given function return. Such static analyses are conservative, meaning that
if the analysis is not able to determine that the inferred property is verified in all executions,
the property is discarded resulting in a loss of precision. Furthermore, in the absence of code
duplication, checks must be inserted if the analysis inferred multiple properties for a given
site. Moreover, these analyses have high complexity, making them unsuitable for use in JIT
compilers.

Other techniques based on dynamic dispatch such as Polymorphic Inline Caching [16] allow
branching to the appropriate version using one or more guards degrading the performance of
polymorphic call sites.

For the rest of the paper, we consider the general case where the compiler does not know
the identity of the callee functions for the example presented in figure 1.

3.1 Function call
To use interprocedural code specialization in the presence of higher order functions, the
compiler needs to be able to branch to the appropriate function entry point using the closure
and Pcall only. In this paper, this situation is referred to as propagation through entry points.

This means that the compiler needs to be able to store the entry point of all the function’s
versions in its lexical closure. Classical closure representations only store a single address to
a function. These representations must then be extended to store a set of addresses instead
of a single address. Using a JIT compiler allows generating actually executed versions only,
limiting the number of entry points stored in each closure.

Given this new closure representation, the compiler must generate a dynamic dispatch
for a call site to branch to the appropriate entry point using Pcall . This dispatch can be
implemented in various ways including run time hashing or position invariant based dispatch.
Ideally we want the dispatch mechanism to execute in constant time.

ECOOP 2017



23:6 Interprocedural Specialization of Higher-Order Dynamic Languages

In the example of typing, Pcall is the type of the actual parameters known when compiling
the call. Using the function associated to sum-to-10 presented in figure 1 as an example, the
compiler generates a dynamic dispatch using the context (x:fixnum) for the call (sum-to-10
6). No version exists for this Pcall . A version of the function is then generated and its entry
point is stored in the lexical closure. Another version is generated for the call (sum-to-10
7.5) using the context (x:flonum). The entry point is also stored in the lexical closure.
Assuming that the compiler does not specialize the code according to Pclosure , it uses the
previously generated version for the call (sum-to-pi 1.10). When compiling the specialized
versions, the type of x is known thus no check on x is inserted in the expression (> x n).

Propagation through entry points is effective at removing dynamic type checks. However,
it is possible to propagate more than type information to specialize function bodies. Such
information includes the location of the arguments, to avoid the generation of extra move
instructions at call sites, or the constant values associated to the arguments to do lazy
interprocedural constant propagation.

3.2 Function return
As explained previously, an analogous problem exists for function returns that can be seen
as calls to continuations. In this case Ilambda is the identity of the continuation and Pcall is
the information available when compiling the function return. In this paper, this situation is
referred to as propagation through return points.

A single return address cannot be used to represent the continuation. As for lexical
closures, the representation must be extended to store several continuation entry points.
Using a JIT compiler allows generating actually executed versions only, limiting the number
of entry points stored in the entry point set.

The dispatch is implemented in the same way. Ideally, the dispatch mechanism should
also execute in constant time.

Using the function sum-to-10 presented in figure 1 as an example, the compiler generates
a dynamic dispatch using the context (x:fixnum) for the base case when the function is
called with (sum-to-10 6). A new version of the continuation of the recursive call is then
generated and its entry point is stored in the continuation entry point set. The same version
is used for the other return point because the compiler determines that the result of the
addition is a fixnum. When compiling the specialized version of the continuation, the type
of the returned value is known thus no check is inserted for the addition using the returned
value.

Propagation through return points is effective at removing dynamic type checks. However,
it is possible to propagate more than type information to specialize continuation bodies.
Such information includes the location of the returned value, to avoid the generation of extra
move instruction at return sites, or the constant value associated to the returned value to do
lazy interprocedural constant propagation.

3.3 Captured information
The solution presented for function calls and returns allows the compiler to specialize function
and continuation bodies using only Pcall and the closure. However because Pclosure may
vary from one closure instance to another it is not safe to use it to specialize the code when
compiling the function body.

We need to add to the compiler the ability to generate specialized code according to
Pclosure in addition to Pcall . Our solution is to use a different entry point set (i.e. a



B. Saleil and M. Feeley 23:7

specialized entry point set) in the closure each time a different Pclosure is observed. Pclosure
is then retained and stored in the compilation stub. This way, each time a dynamic dispatch
causes a new version to be generated using Pcall , the compiler uses the propagated Pcall and
the retained Pclosure to generate the version.

In the example of typing, Pclosure is the type of the free variables known when instantiating
the closure. We showed that the compiler is able to propagate types through entry points.
This means that when the compiler generates the code to create the closure associated to
f for the call (make-sumer 10), the compiler knows that n is a fixnum. This information
is retained by the compilation stub. The first time the dynamic dispatch generated for the
call (sum-to-10 6) is executed, a new version is generated using Pcall and Pclosure merged.
The version is then generated with the context (x:fixnum,n:fixnum) and its entry point is
stored in the closure associated to sum-to-10. The compiler then knows the type of n when
compiling the body and no type check is inserted in the specialized versions of sum-to-10
and sum-to-pi.

Entry point set specialization can also be used to specialize the continuations using
information available when creating an object representing a continuation. In the example of
typing, Pclosure is the type of the local variables live across the function call.

Entry point set specialization is effective at removing dynamic type checks. However, it
is possible to capture more information when creating the closure instance. Such information
includes the constant values associated to the free variables to do lazy interprocedural
constant propagation.

4 Implementation

We have implemented interprocedural specialization and entry point set specialization in
LC [20, 21] (Lazy Compiler), a JIT compiler for Scheme using Basic Block Versioning as
its compilation strategy. LC directly compiles Scheme s-expressions to x86 machine code
without using an intermediate representation. LC uses BBV to specialize code according to
the type of the variables. In this section, type information is taken as an example. Entry
point set specialization is discussed later in the section. For now specialization according to
Pcall only is considered.

4.1 Entry point set
To allow the use of higher order functions with function duplication, the closure representation
has been extended to store a pointer to a set of entry points (entry point table) instead
of a single entry point address in the closure. Because the entry points are shared by the
instances of a closure, only one table is created per function and is shared by the instances.

The compiler creates these tables at compilation time. Because the tables are live during
the execution of the program, they are allocated as permanent objects thus they do not
impact garbage collection time in LC.

The entry point table is initially filled with the function stub address. When a call site
is executed, there are two possible situations. (i) The dispatch fails, there is no version
associated to this Pcall . The stub is called, a new version is then generated using this Pcall ,
a new index of the table is associated to this Pcall , and the version address is written in the
table at this index. (ii) The dispatch succeeds, an index already is associated to this Pcall
and the control flows to this version using the address stored at this index.

Figure 3 shows an example of flat closure extension to store multiple entry points for
the instances of f (sum-to-10 and sum-to-pi). The left side of the figure shows the state

ECOOP 2017



23:8 Interprocedural Specialization of Higher-Order Dynamic Languages

Figure 3 Extended flat closures using an entry point table.

after the two calls to the make-sumer function. A stub and two closures storing the free
variables 10 and 3.14 are created. The two closures share the same entry point table which
is initially filled with the stub address. The call (sum-to-10 6) causes a new version of f
to be generated. The first slot in the table is then associated to the context (fixnum). The
call (sum-to-10 7.5) also causes a new version to be generated. The second slot in the
table is then associated to the context (flonum). The call (sum-to-pi 1.10) uses a Pcall
used by a previous call. The dispatch branches to the address stored in the second slot of
the table. The right side of the figure shows the final state. The first two entries of the table
now store the address of the two versions of the function.

The use of BBV allows the compiler to share code between multiple versions if the same
compilation context is observed. For example if a new version of this function is generated
for the context (unknown) the compiler generates a type check to discover the type of the
argument x for the expression (> x n). If x actually is a fixnum, the control simply flows to
the existing version after this check.

4.2 Global layout
If the compiler knows the identity of the callee function when compiling a call site, it knows
which slot is associated to a given Pcall . If it does not know the identity of the callee, a
dynamic dispatch must be performed. We decided to use position invariance to efficiently
implement this dispatch. This means that the compiler keeps a global layout shared by
all the entry point tables. When a new Pcall is associated to an index, this association is
followed by the table of every function. Therefore, when the compiler compiles a call site, it
determines the index associated to the current Pcall from the global layout. The generated
code uses this index to get the appropriate entry point from the table stored in the closure
resulting in a fast dispatch. If no index is associated to this Pcall , the compiler uses the
next available index and generates a jump to the address stored in the slot at this index.
Because the table is initially filled with the stub address, the stub is triggered, a new version
is generated and the table is patched.



B. Saleil and M. Feeley 23:9

Figure 4 Extended flat closures using an entry point table and a global layout.

Figure 4 shows an example of using a global layout. In this figure all closure instances
created during execution of our example are represented. After execution, we can see that
two Pcall have been used.

Two versions of function make-sumer are generated by the calls (make-sumer 10) and
(make-sumer 3.14). The compiler assigns the first two slots of the global layout to the
contexts (fixnum) and (flonum). Then, two versions of function f are generated by the
calls (sum-to-10 6) and (sum-to-10 7.5). The call (sum-to-pi 1.10) uses the version
generated by the call (sum-to-10 7.5). Because these three calls use contexts already
associated to the first two global layout slots, the compiler reuses these slots.

A consequence of using a global layout is that the entry point tables may contain some
holes associated to contexts for which the stub has not yet been triggered and will possibly
never be.

4.3 Size of the tables
In the global layout, each entry is associated to a single context. If the only information
used for entry point versioning is the type of the arguments, the compiler associates an
entry to each combination of types observed when compiling a call site of the program. To
avoid a combinatorial explosion, the compiler needs to limit the number of entries. We have
identified three strategies regarding the size of the global layout:

The size of the global layout is set ahead of time. One of the slots in the entry point
table is initially associated to a fallback context representing a generic context. Each
time a new Pcall is used at a call site, the compiler assigns the next entry of the global

ECOOP 2017



23:10 Interprocedural Specialization of Higher-Order Dynamic Languages

layout to this Pcall . When all entries are used, the compiler uses the fallback slot for all
subsequent contexts and stops specializing function entry points.
The tables are reallocated and copied when the global layout is full. This strategy implies
that the compiler patches all live closures to update the table pointers.
An additional level of indirection is used.

The compiler could use a combination of these strategies. It could resize the tables until a
fixed size limit is reached. It could also apply some heuristics to reduce the number of entries
used in the global layout. For example when specializing according to type information, a
compiler could use the fallback generic entry point if:

It does not know the type of a single argument. In this case, if the compiler assigns a
slot for this context in the global layout, this slot is wasted.
There are too many arguments. A large number of arguments probably means that a
rest parameter is used by the callee function. If it is used, the arguments are stored in
a compound data type thus type information is lost if the compiler does not propagate
compound types (as is the case in LC).

4.4 Captured information
Using entry point tables, the compiler is able to propagate Pcall to the callee function. When
creating a closure, the compiler knows Pclosure . It can then easily keep this information to
generate specialized function bodies. However, Pclosure may vary from one closure instance
to another. For example if Pclosure is the type of the free variables, two instances of the same
closure can hold data of different types. It is then not safe to use Pclosure to specialize the
body of the functions.

Our solution to this problem is to specialize the entry point table for each Pclosure (in
this case for each type combination of the free variables). Each time the compiler generates
closure instantiation code, it checks if a specialized table exists for the current Pclosure . If the
table exists, the compiler generates code to write the table address in the closure. If no table
is associated to this Pclosure , it creates a new stub waiting for Pcall and ready to compile
using this Pclosure . A new entry point table is created and filled with this stub address. The
address of the table is then written in the closure. Entry point table specialization allows the
compiler to generate more efficient code using the Pclosure it collected. However, the number
of entry point tables and holes is increased.

In our example, because the compiler is able to propagate the type of the arguments
through function calls, the type of n is known when generating the code to instantiate the
closure associated to f. Figure 5 shows the closure representations at the end of the execution.
We see that sum-to-10 and sum-to-pi use a different entry point table. The table used in
the closure associated to sum-to-10 is specialized for Pclosure =(n:fixnum) and the table
used in the closure associated to sum-to-pi is specialized for Pclosure =(n:flonum).

Two versions of function make-sumer are generated by the calls (make-sumer 10) and
(make-sumer 3.14). The compiler assigns the first two slots of the global layout to the
contexts (fixnum) and (flonum). Then two versions of function f are generated by the
calls (sum-to-10 6) and (sum-to-10 7.5). Because these two calls use contexts already
associated to the first two global layout slots, the compiler reuses these slots. Finally, a
new version of function f is generated by the call (sum-to-pi 1.10). This call uses the
context (flonum) thus the compiler uses the second slot of the table associated to the closure
sum-to-pi.



B. Saleil and M. Feeley 23:11

Figure 5 Extended flat closures using an entry point table, a global layout and table specialization.

To summarize, the following table shows the Pcall and Pclosure used for the different calls
to the sumers:

Call Pcall Pclosure

(sum-to-10 6) (x:fixnum) (n:fixnum)
(sum-to-10 7.5) (x:flonum) (n:fixnum)
(sum-to-pi 1.10) (x:flonum) (n:flonum)

We see that the type of x and n are known for each call. Two specialized versions
of sum-to-10 and one of sum-to-pi are then generated and no dynamic type checks are
executed.

4.5 Continuations
To allow propagation through return points, the compiler can convert the executed program
to CPS. This way, each function return is translated into a function call. Specialization of the
continuations is then directly handled by the specialization of the function bodies. However,
the same technique can be implemented for function returns to avoid the CPS conversion.

Compilers typically use a single return address to represent a continuation. This address
is written to the stack when executing the call and is used at the return point to jump to the
continuation. Using interprocedural versioning, the continuation possibly has several entry
points thus the continuation representation also needs to be extended. The compiler uses
a set of continuation entry points (return point table) initially filled with the continuation
stub address. The address of the table is written to the stack and a dispatch is performed at

ECOOP 2017



23:12 Interprocedural Specialization of Higher-Order Dynamic Languages

Function call:

1 push 0203 FF90h ; setup return point table
2 mov rbx , 40 ; setup first argument
3 mov r11 , 0 ; use first context index
4 mov rdx , [rsi +7] ; get entry point table from the closure
5 jmp [rdx +16] ; jump to entry point

Function return:

6 mov r11 , 0 ; use first context index
7 mov rdx , [rbp] ; get return point table from the stack
8 jmp [rdx +8] ; jump to return point

Figure 6 Example of x86 function call and return sequences (Intel syntax).

return points to branch to the appropriate continuation entry point. Because the identity of
the continuation may be unknown at function return, a global layout is used for the dispatch.

Pclosure may also vary from one instance to another. Table specialization is then used
to specialize the code according to Pclosure . In the example of type information, Pclosure
is the type of the live local variables known when instantiating the object representing the
continuation.

Our implementation limits Pcall to the type of the returned value (i.e. register allocation
information is ignored). This choice simplifies the implementation. Each table has a fixed
size equal to the number of types supported by the implementation with an additional entry
for the unknown case. Each type is associated to an index in the global layout prior to
execution forming the global layout.

Pcall may not be limited to the type of the returned value. For example the compiler
could propagate the register the value is assigned to. The same strategies as those presented
for function entry points can be used to handle the tables.

4.6 Impact on generated code
This implementation has an effect on the code generated for call sites and return points.
Figure 6 shows an example of generated code for a function call and a return site. In this
figure, the code added to implement interprocedural specialization is highlighted.

4.6.1 Function call
At line 3, the compiler writes the index of the global layout associated to the current context
in the register r11. In this example, the first index is used thus the compiler writes the
constant 0. If the call triggers the function stub (i.e. a version associated to this Pcall has not
yet been generated), the compiler uses this index to retrieve the Pcall from the global layout.
Pcall is then used to generate the specialized version. This extra move may be omitted if a
new stub entry point is created for each slot of the entry point table. We decided to keep
this instruction to save the space occupied by these stub entries, and to use only one stub
entry per table.

An extra move is generated at line 4. This instruction is used to retrieve the entry point
table from the closure. The closure is represented by a tagged address in the register rsi.



B. Saleil and M. Feeley 23:13

An offset of 7 bytes is used to get the 64 bits (the entry point table address) following the
closure header from the tagged address.

As shown at line 1, the continuation entry point table address is pushed to the stack
instead of a single return address introducing no additional cost.

Because the first index is used, the compiler generates, at line 5, a jmp to the address
stored in the first slot of the entry point table. An offset of 16 bytes is used because the first
slot is located after the table header (64 bits) and the fallback generic entry point (64 bits).

If the compiler knows Ilambda (i.e. the identity of the callee) when compiling a call site, it
retrieves the entry point from the table at compile time using Pcall . A single jmp instruction
is then generated. If the compiler knows Ilambda but no version has yet been generated for
the current Pcall , a single jmp instruction to the function stub can be generated and later
patched. In those cases, no dispatch is inserted.

4.6.2 Function return
The impact on the code sequence generated for the function returns is the same. Compilers
usually generate a single jump to the return address located in the stack (e.g. x86 ret
instruction).

To use interprocedural specialization, when a function return jumps to a stub, the index
associated to the current Pcall must be passed to the stub (move at line 6). Here the first
index is used (constant 0). It also needs to get the continuation entry point table from the
stack (line 7). A jmp is then generated to branch to the appropriate entry point. Here one
slot of the table is assigned to the context (unknown) so no space is reserved for a generic
continuation entry point after the table header. An offset of 8 bytes is used because the first
slot is located right after the table header (64 bits).

If the compiler knows Ilambda (i.e. the identity of the continuation) when compiling a
return site, no dispatch is inserted.

5 Experiments

LC implements a subset of the R5RS Scheme standard [17]. One of the goals of the compiler
is to be simple yet generate efficient code. To reach this goal, it uses a simple and light JIT
compiler directly translating Scheme s-expressions to x86 machine code using an extremely
lazy compilation design [20] and no intermediate representation such as SSA [10] or TAC
[18]. The compiler extends the Gambit Scheme compiler [13]; it uses its frontend, garbage
collector, and x86 assembler.

LC uses Basic Block Versioning [21] to generate efficient code extended with interproced-
ural specialization using the implementation presented in the previous section. The compiler
specializes basic blocks according to type information to reduce the number of dynamic type
checks, and register allocation to avoid the generation of extra mov instructions at join points.
However, only type information is interprocedurally propagated by our extensions.

Finally, it is worth mentioning that LC applies versioning on each subexpression of the
s-expression instead of at basic block level.

This section presents the results of the experiments obtained using interprocedural code
specialization to show its impact on the generated code. The 34 benchmarks used for the
experiments are taken from Gambit. Some benchmarks are not used for the experiments
because they use R5RS Scheme features not supported by LC. The number of iterations for
each benchmark are also taken from Gambit.

ECOOP 2017



23:14 Interprocedural Specialization of Higher-Order Dynamic Languages

su
m

fp

cp
st
ak

su
m

ar
ra

y1

m
br

ot ta
k

ac
k fib

fib
fp

gr
ap

hs

ea
rle

y

su
m

lo
op

pe
rm

9

pa
ra

ffi
ns

pn
po

ly al
l

sim
pl

ex

tr
ia
ng

l

pr
im

es

m
az

ef
un

de
st
ru

c

la
tt
ic
e

nq
ue

en
s

co
m

pi
le
r

de
riv

dd
er

iv

br
ow

se

pe
va

l

co
nf

or
m

ta
kl

nb
oy

er

sb
oy

er

bo
ye

r

di
vi

te
r

di
vr

ec

ar
ith

-m
ea

n
0%

20%

40%

60%

80%

100%

Max=5, Return points only Max=5, Entry points only Max=5, Entry and return points

Figure 7 Number of executed type checks relative to pure intraprocedural specialization.

Many of the benchmarks are micro-benchmarks using a limited set of types. Large
polymorphic real-world programs might present a challenge for our approach. To simulate
these programs, we added the benchmark all. This benchmark contains all the others as a
single program.

Experiments were conducted on a machine using an Intel Core i7-4870HQ CPU, with
16GB DDR3 RAM running the GNU/Linux operating system. To measure time, each
benchmark was executed 10 times, the minimum and maximum values are removed and the
average of the 8 remaining values is used.

5.1 Type checks
We consider a type check any code sequence inserted to dynamically retrieve the type of a
value. This includes the checks inserted to ensure the safety of the primitives, and the code
generated for the type predicate primitives such as pair?.

Chevalier-Boisvert and Feeley [8] showed that intraprocedural BBV is effective at removing
dynamic type checks for JavaScript. They observed that most JavaScript code is monomorphic
or slightly polymorphic and that the number of generated versions rarely exceeds 5. Thus, a
hard limit of 5 in the number of generated versions allows the compiler to take advantage of
context propagation and to avoid the explosion in the number of versions.

Our interprocedural extensions allow the compiler to collect more information by propagat-
ing compilation contexts interprocedurally. Figure 7 shows the number of executed type
checks relative to purely intraprocedural BBV.

For each benchmark, the three bars represent executions with propagation enabled through
return points only, entry points only and both entry and return points (full interprocedural
BBV). For each execution, the maximum number of versions is set to 5.

We see that propagation through return points only has no effect in most cases, but
allows the compiler to significantly remove type checks (up to 50%) for 4 of the benchmarks
out of 35. On average with return point propagation only, 6% more checks are removed
than pure intraprocedural BBV. Propagation through entry points has more impact on the
number of removed type checks. Almost all benchmarks are significantly improved and the
compiler is able to remove almost all checks for 5 of them. On average, 39% more checks are
removed using propagation through entry points.

For 9 of the benchmarks out of 35, almost all checks are removed using full interprocedural
propagation. This is explained by the fact that most of these benchmarks use recursive, com-



B. Saleil and M. Feeley 23:15

sim
pl

ex

m
br

ot

pn
po

ly

ar
ra

y1
fib

fp fib ac
k
su

m

su
m

lo
op

pe
rm

9
ta

k

su
m

fp

di
vr

ec

de
riv

tr
ia
ng

l

dd
er

iv

pr
im

es

di
vi

te
r

co
nf

or
m

de
st
ru

c

cp
st
ak

m
az

ef
un

la
tt
ic
e
ta

kl

pe
va

l

bo
ye

r

br
ow

se

nq
ue

en
s

co
m

pi
le
r al

l

sb
oy

er

nb
oy

er

gr
ap

hs

ea
rle

y

pa
ra

ffi
ns

ge
o-

m
ea

n
0%

50%

100%

150%

200%

250%

300%
Max=5, Return points only Max=5, Entry points only Max=5, Entry and return points

Figure 8 Generated code size relative to pure intraprocedural specialization.

putation intensive, and monomorphic functions in which the computed values and the value
of the arguments depend on the result of the previous calls. On average, full interprocedural
propagation allows the compiler to remove 46% more checks than intraprocedural BBV.

Our experiments show that the hard limit of 5 specialized versions to avoid code explosion
for intraprocedural BBV is valid for Scheme programs. When using our interprocedural
extensions, nqueens is the only significantly affected benchmark with 15% more checks
executed if we limit the number of versions. On average, less than 1% more check are
executed when we limit the number of versions. We conclude that this limit is still valid with
our interprocedural extensions.

5.2 Generated code size
Figure 8 shows the size of the code generated using interprocedural specialization relative to
the size of the code generated using pure intraprocedural specialization. The version limit
is set to 5. For each benchmark, the figure shows the impact of propagating information
through return points, entry points and both.

Propagation through return points does not significantly affect the size of the generated
code.

Using propagation through entry points, we see that there is a slight decrease in the code
size for about half of the benchmarks. This is due to the fact that these benchmarks are
mostly monomorphic causing the compiler to generate only one version of the code. Because
this version is specialized using the context, the compiler generates less code.

For most other benchmarks, we see an increase in the size of the generated machine code.
Using full interprocedural specialization, more versions are generated leading to more code.

An interesting effect can be seen for some benchmarks such as perm9. For this benchmark,
full interprocedural propagation causes a decrease in the generated code size compared
to propagation through entry or return points only. This is due to the fact that when
information is only propagated through entry or return points, information is lost at some
point causing the compiler to insert more dynamic type checks. Using full interprocedural
propagation, the compiler keeps the collected information and those checks are removed thus
smaller versions are generated.

On average, propagation through return points causes an increase of 3%, propagation
through entry points causes an increase of 8.5%, and if both are enabled, an increase of 9%
is observed.

ECOOP 2017



23:16 Interprocedural Specialization of Higher-Order Dynamic Languages

Benchmark Entry point
tables (kB) Benchmark Return point

tables (kB)
all 14097 all 619
compiler 5098 compiler 398
earley 156 peval 32
graphs 101 conform 23
sboyer 88 paraffins 23
conform 88 nboyer 19
nboyer 88 sboyer 18
peval 77 earley 17
paraffins 73 mazefun 17
browse 65 graphs 13
mazefun 60 browse 13
lattice 53 boyer 12
simplex 38 lattice 11
others < 32 others < 6

Figure 9 Memory used by entry and return point tables to execute each benchmark.

Our experiments show that these Scheme benchmarks do not cause an explosion in the
number of versions. Thus, setting a limit of 5 versions does not significantly decrease the
size of the generated code. However, this limit ensures that the compiler avoids the potential
explosion in the number of versions of highly polymorphic programs.

If there is no limit in the number of versions, the size of the code generated for the
benchmark nqueens is significantly decreased (11%). For this benchmark, some blocks
are generated exactly 6 times meaning that when using no limit, the compiler generates
6 optimized small versions. When the version limit is set to 5, the compiler generates 5
optimized versions and one more generic non-optimized version causing an increase in the
code size.

Because some blocks are generated more than 5 times when no limit is set, the size of the
code generated for the benchmark mazefun is significantly increased (17%).

On average, the size of the generated code is increased less than 1% if we do not limit
the number of versions.

5.3 Memory occupied by the tables
As explained in the previous section, interprocedural specialization causes a slight increase
in the size of generated code. The compiler must also create and store the entry and return
point tables. The table presented in figure 9 shows, for each benchmark, the total memory
space occupied by the entry and return point tables. The size is expressed in kilobytes and
represents the actual space needed to execute the benchmark (i.e. considering that all the
tables have a size that equals the final size of the global layout). It is computed using a limit
in the number of versions set to 5.

The benchmarks all and compiler are the largest benchmarks (respectively ~18KLOC
and ~11KLOC). These two benchmarks use about 14MB and 5MB for the entry point tables
and 0.6MB and 0.4MB for the return point tables, which is not significant on current systems.
Return point tables have a smaller impact because they are all of the same fixed small size.

Entry and return point tables are created at compile time and they live for all the
execution. Thus the compiler allocates the tables as permanent objects and they do not



B. Saleil and M. Feeley 23:17

fib
fp

su
m ta

k

pn
po

ly fib ac
k

gr
ap

hs

cp
st
ak

sim
pl

ex

la
tt
ic
e

ar
ra

y1

de
st
ru

c

su
m

fp

dd
er

iv al
l

ea
rle

y

co
nf

or
m

m
br

ot

m
az

ef
un

tr
ia
ng

l

di
vi

te
r

nq
ue

en
s

pe
rm

9

su
m

lo
op

bo
ye

r
ta

kl

pe
va

l

pr
im

es

de
riv

sb
oy

er

pa
ra

ffi
ns

br
ow

se

di
vr

ec

co
m

pi
le
r

nb
oy

er
0%

20%

40%

60%

80%

100%

Max=5, Return points only Max=5, Entry points only Max=5, Entry and return points

Figure 10 Execution time relative to pure intraprocedural specialization.

affect the garbage collector. We conclude that the tables required by the interprocedural
extensions do not use significant memory space.

5.4 Execution time
This section presents execution times only. Compilation and garbage collection time is not
taken into account.

Figure 10 presents the execution time using interprocedural specialization relative to the
execution time using pure intraprocedural specialization. For each benchmark, we show the
result using propagation through return points, propagation through entry points and full
interprocedural propagation. The version limit is set to 5.

We see that propagation through return points positively affects a dozen benchmarks (up
to 23% faster for fibfp). 8 benchmarks are negatively affected (up to 9% slower for compiler).

Propagation through entry points impacts execution time more significantly. All of the
benchmarks except two are improved (up to 42% for sum). divrec is not affected and nboyer
is slowed down by less than 5%.

Finally, when full interprocedural propagation is enabled all of the benchmarks except
divrec, compiler and nboyer are improved. divrec is not affected and the two others are
slowed down by less than 3%.

Propagation through both entry and return points allows the compiler to collect more
information and to generate more optimized code. However, the compiler is not able to
collect enough information to compensate for the negative impact of return point propagation
for the benchmark compiler but the slowdown is reduced from 9% to less than 3%.

These results show the potential of interprocedural propagation. For programs using
computation intensive recursive functions such as the fibfp benchmark, full interprocedural
propagation allows the compiler to generate fast optimized code.

For bigger programs using polymorphic functions such as compiler, the positive effect of
information propagation through return points does not compensate the extra indirection of
the return point table. However, propagation through entry points allows the compiler to
generate faster code for these benchmarks.

Finally, it is worth mentioning that we didn’t identify a use case in which it is significantly
better to propagate information through return points only.

Figure 11 shows the execution time relative to the code produced by the Gambit Scheme
compiler configured in unsafe mode which is representative of a fully statically type checked

ECOOP 2017



23:18 Interprocedural Specialization of Higher-Order Dynamic Languages

br
ow

se

su
m

fp
fib

fp

cp
st
ak ta

k

gr
ap

hs

pa
ra

ffi
ns

di
vi

te
r

de
riv ac

k

nq
ue

en
s

di
vr

ec

m
az

ef
un

co
nf

or
m al

l

dd
er

iv

de
st
ru

c fib

bo
ye

r

nb
oy

er

sb
oy

er

co
m

pi
le
r

m
br

ot

pe
va

l

pr
im

es

su
m

lo
op

ea
rle

y

tr
ia
ng

l

la
tt
ic
e

ar
ra

y1
su

m

sim
pl

ex

pe
rm

9
ta

kl

pn
po

ly
0%

50%

100%

150%

200%

250%

300%

350%

400%
LC - Max=5, Interprocedural LC - Max=5, Intraprocedural Gambit - Safe mode

Figure 11 Execution time relative to the execution time of the code generated by the Gambit
Scheme compiler configured in unsafe mode (capped at 400%).

situation. When configured in unsafe mode, Gambit does not insert run time type checks,
overflow checks and index checks. For each benchmark, we show the execution time of the
code generated by LC using full interprocedural propagation and a limit set to 5, LC using
pure intraprocedural propagation and a limit set to 5 and Gambit configured in safe mode
(i.e. the compiler inserts all the required run time checks and does not use BBV).

As expected, we see that full interprocedural propagation allows LC to significantly
improve the execution time of the benchmarks that were greatly and positively affected
regarding the number of type checks. For example, the code generated for sumfp, fibfp or fib
using interprocedural propagation is significantly faster than the code generated by Gambit
in safe mode.

Our approach allows generating code that is often as efficient as the code generated by
Gambit in unsafe mode, and more efficient in some cases. This is in part due to the fact that
LC does not use trampolines to implement tail call optimization.

The generated code ranges from 34% faster than the code generated by Gambit in unsafe
mode for browse, to 390% slower for pnpoly. However, the code generated by Gambit for
pnpoly in safe mode is 646% slower than Gambit in unsafe mode.

Theses experiments show that interprocedural specialization allows LC to generate
code that competes with the code generated by current Ahead-Of-Time efficient Scheme
implementations and, more generally, to write efficient interprocedurally optimizing compilers
for languages supporting closures using relatively simple JIT compilation techniques.

5.5 Compilation time
Figure 12 shows the compilation time using interprocedural propagation relative to the
compilation time using pure intraprocedural propagation. The version limit is set to 5.

Propagation through return points does not significantly impact the size of the generated
code. As expected, it does not significantly impact the compilation time either.

Propagation through entry points impacts the generated code size more significantly. As
expected, it also impacts the compilation time more significantly.

We see that paraffins is the most affected benchmark with 431% (70ms using intraproced-
ural propagation, and 302ms using interprocedural propagation).

The benchmarks compiler and all are the two largest benchmarks thus closer to real-world
programs. compiler is 150% slower to compile (1573ms using interprocedural propagation



B. Saleil and M. Feeley 23:19

tr
ia
ng

l

sim
pl

ex

m
br

ot fib

pn
po

ly ta
k
de

riv ac
k

ar
ra

y1
fib

fp

di
vr

ec

dd
er

iv

pr
im

es

pe
rm

9

di
vi

te
r

co
nf

or
m

su
m

fp
su

m

su
m

lo
op

m
az

ef
un

de
st
ru

c

pe
va

l

bo
ye

r

la
tt
ic
e

cp
st
ak

co
m

pi
le
r

br
ow

se
ta

kl al
l

nq
ue

en
s

nb
oy

er

sb
oy

er

ea
rle

y

gr
ap

hs

pa
ra

ffi
ns

0%

100%

200%

300%

400%

Max=5, Return points only Max=5, Entry points only Max=5, Entry and return points

Figure 12 Compilation time relative to pure intraprocedural BBV.

fib
fp

m
br

ot

su
m

fp

pn
po

ly
su

m ta
k fib ac

k

sim
pl

ex

la
tt
ic
e

de
st
ru

c

tr
ia
ng

l

nq
ue

en
s

ar
ra

y1
de

riv al
l

cp
st
ak

su
m

lo
op

di
vr

ec

di
vi

te
r

pr
im

es

br
ow

se

dd
er

iv

m
az

ef
un ta

kl

co
nf

or
m
bo

ye
r

gr
ap

hs

sb
oy

er

pe
va

l

nb
oy

er

pa
ra

ffi
ns

ea
rle

y

pe
rm

9

co
m

pi
le
r

0%

20%

40%

60%

80%

100%

120%

140%
Max=5, Return points only Max=5, Entry points only Max=5, Entry and return points

Figure 13 Total time relative to pure intraprocedural BBV.

and 2367ms using intraprocedural propagation). all is 166% slower to compile (2809ms using
interprocedural propagation and 4657ms using intraprocedural propagation).

5.6 Total time
Figure 13 shows the total time using interprocedural propagation relative to the total time
using pure intraprocedural propagation. This time is the total time spent to execute each
benchmark including compilation, execution and garbage collection time. The version limit
is set to 5.

When using propagation through return points, the execution time varies from 58%
(fibfp) to 108% (compiler) of the total time required by intraprocedural specialization. Using
propagation through entry points, the time varies from 23% (mbrot) to 125% (compiler).
When the compiler uses full interprocedural propagation, the time varies from 14% (fibfp) to
133% (compiler).

The significant speedup observed for the benchmarks fibfp, mbrot, sumfp and pnpoly is
due to the fact that they intensively use floating point arithmetic. Because the compiler
is able to propagate the type of the values, it directly stores untagged double precision
floating point numbers in registers. This allows avoiding the box allocations, the execution of
boxing and unboxing code, tagging and untagging code, type checks, and data moves between

ECOOP 2017



23:20 Interprocedural Specialization of Higher-Order Dynamic Languages

general purpose registers and floating point registers resulting in a significant decrease in the
execution and garbage collection time.

Our JIT compiler significantly decreases the time required to execute Scheme programs
both for micro benchmarks and real-world, more polymorphic programs such as the all
benchmark. However, these results show that the technique may slow down the execution
of programs, such as the compiler benchmark, using a more imperative style and fewer hot
spots.

6 Related work

6.1 Interprocedural BBV
The work done by Chevalier-Boisvert and Feeley [9] is closely related to our own. They
presented an extension of Basic Block Versioning enabling interprocedural code specialization
based on function identity collection. That extension uses intraprocedural BBV and adds
function identities to the propagated contexts. The identities are then propagated through
the stubs and possibly known when compiling a call site.

One difference with our work is that their extension enables interprocedural specialization
only if the identity of the callee is successfully propagated to the call sites whereas our
technique can be used at every call site. Furthermore, because this BBV extension propagates
function identities, more versions are generated especially for polymorphic call sites.

However, that approach can be combined with ours to propagate the function identities
when possible to avoid the run time dispatch and use our dispatch when identities cannot be
determined.

6.2 Inline Caching
Inline Caching (IC) is a technique used to efficiently implement dynamic languages first used
in the Smalltalk-80 System [11] and the Self language [6]. IC can be used to implement the
dynamic dispatch required by our interprocedural extensions. When a call site is executed
for the first time, a dynamic lookup is executed. The compiler stores the result of the lookup
at the call site and uses it to directly branch to the specialized version. A guard is inserted
to check if the identity is the same for subsequent calls.

Polymorphic Inline Caching (PIC) [16] is an extension of Inline Caching storing several
lookup results at call sites. A sequence of checks is inserted at call sites to dispatch according
to the currently used function. Each time the call is executed using a new callee, a check is
added to the sequence. Because PIC reveals the identity of the callee function, it can be
used to branch to a specialized version of the callee [5].

Because of the check sequence, PIC has a bigger impact when used in polymorphic call
sites. Furthermore, PIC is not suitable to be used for function return dispatch. Indeed, the
continuation used at a given return site frequently varies which may cause the generation of
several checks in the sequence.

6.3 Static analysis
Compilers usually use static analysis to determine the identity of the functions called at each
call site. In particular, the k-CFA [22] family of algorithms has been popular to implement
higher-order languages. The problem is that these analyses have high complexity (cubic in
the case of 0-CFA [19]) making them not suitable to use in a JIT compiler. Furthermore,



B. Saleil and M. Feeley 23:21

these analyses are imprecise (the identity of the callee cannot be determined for all sites)
limiting the reach of interprocedural specialization.

6.4 Tracing compilation
Tracing JIT compilation, first implemented in Dynamo [1] then adapted to JIT compilation
of high-level languages in HotpathVM [15], is a compilation approach used to optimize the
executed program at run time by optimizing frequently executed loops. This compilation
approach has been used to remove type checks and to reduce run time work [14, 23, 3].
Tracing and Meta-Tracing [4] are often used to efficiently implement dynamic languages such
as Javascript [14] and Scheme [2]. When a frequently executed loop is detected (profiling
phase), the executed operations are recorded (tracing phase) following function calls. A
specialized code sequence (a trace) is then generated and used for the next executions. A
guard is inserted at each site where execution can diverge from the recorded path.

Because the tracing phase follows function calls, the function bodies recorded during that
phase are inlined in the trace.

One difference with our work is that tracing compilation is based on function identities.
When a trace is executed and other functions than those recorded are executed, the guards
fail and the execution of the generated code is aborted. A tracing JIT also requires the use
of a complex architecture with multiple phases, and the use of an interpreter in addition to a
compiler.

7 Future work

The technique presented in this paper allows the compiler to propagate information collected
during execution of the program through entry and return points. We showed that results
are positive when propagating only type information. Future work includes extending the
propagated context to include other information. The compiler could interprocedurally
propagate register allocation information (i.e. the registers assigned to the actual parameters
and the returned value) to avoid the generation of the extra instructions needed to satisfy
the runtime calling convention. The compiler could also interprocedurally propagate the
constants and the function identities to do interprocedural lazy aggressive inlining and lazy
constant propagation in the presence of higher order functions.

8 Conclusion

This paper presents an approach allowing the compiler to interprocedurally specialize the
code using information available at call sites, return points and when creating function
closures. The approach is based on dynamic dispatch instead of trying to discover the
function identities.

We showed that interprocedural specialization does not require static analysis or complex
compiler architecture. Moreover, our approach can be used in the presence of higher order
functions using an extended flat closure representation.

When applied to typing, the interprocedural specialization is effective at removing dynamic
type checks. The compiler is able to remove almost all the checks for several benchmarks.
There is a slight increase in the size of the generated code because more specialized versions
of the code are generated. Because more code is generated, there is an increase in the
compilation time. Our experiments using LC, a JIT compiler for Scheme, show the approach
has a positive impact on the execution time. The code generated for the benchmarks is

ECOOP 2017



23:22 Interprocedural Specialization of Higher-Order Dynamic Languages

executed up to 50% faster than the code generated by pure intraprocedural type specialization.
These results indicate that a simple JIT compiler using interprocedural specialization, no
complex representation, no complex register allocation algorithm, a simple compilation
approach, and minimal static analysis can generate code competitive in performance with
current Scheme implementations. This makes the approach a perfect candidate for baseline
compilers to implement dynamic languages.

In addition to generating faster code when applied to typing, Our approach can be used
to specialize the code using more than type information, opening up new applications such
as register allocation based specialization and aggressive lazy inlining.

References

1 Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: a transparent dy-
namic optimization system. In Proceedings of the 2000 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2000, pages 1–12, 2000.

2 Spenser Bauman, Carl Friedrich Bolz, Robert Hirschfeld, Vasily Kirilichev, Tobias Pape,
Jeremy G. Siek, and Sam Tobin-Hochstadt. Pycket: a tracing JIT for a functional lan-
guage. In Proceedings of the 20th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2015, pages 22–34, 2015.

3 Carl Friedrich Bolz, Antonio Cuni, Maciej Fijałkowski, Michael Leuschel, Samuele Pedroni,
and Armin Rigo. Allocation removal by partial evaluation in a tracing JIT. In Proceedings
of the 20th ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation,
PEPM ’11, pages 43–52, 2011.

4 Carl Friedrich Bolz, Antonio Cuni, Maciej Fijałkowski, and Armin Rigo. Tracing the
meta-level: Pypy’s tracing JIT compiler. In Proceedings of the 4th workshop on the Im-
plementation, Compilation, Optimization of Object-Oriented Languages and Programming
Systems, ICOOOLPS 2009, pages 18–25, 2009.

5 Solomon Boulos and Jeremy Sugerman. Optimized execution of dynamic languages, Janu-
ary 26 2016. US Patent 9,244,665.

6 Craig Chambers, David Ungar, and Elgin Lee. An efficient implementation of Self a
dynamically-typed object-oriented language based on prototypes. In Proceedings of the
1989 Conference on Object-oriented Programming Systems, Languages and Applications,
OOPSLA 1989, pages 49–70, 1989.

7 Maxime Chevalier-Boisvert. On the fly type specialization without type analysis. PhD thesis,
Université de Montréal, 2015.

8 Maxime Chevalier-Boisvert and Marc Feeley. Simple and effective type check removal
through lazy basic block versioning. In 29th European Conference on Object-Oriented
Programming, ECOOP 2015, pages 101–123, 2015.

9 Maxime Chevalier-Boisvert and Marc Feeley. Interprocedural type specialization of JavaS-
cript programs without type analysis. In 30th European Conference on Object-Oriented
Programming, ECOOP 2016, pages 7:1–7:24, 2016.

10 Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.
Efficiently computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems, TOPLAS, 13(4):451–490, 1991.

11 L. Peter Deutsch and Allan M. Schiffman. Efficient implementation of the Smalltalk-80
system. In Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL 1984, pages 297–302, 1984.

12 R. Kent Dybvig. Three Implementation Models for Scheme. PhD thesis, University of
North Carolina at Chapel Hill, 1987.



B. Saleil and M. Feeley 23:23

13 Marc Feeley. Gambit Scheme compiler v4.8.7, January 2017. URL: http://gambitscheme.
org/.

14 Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin, Mohammad R.
Haghighat, Blake Kaplan, Graydon Hoare, Boris Zbarsky, Jason Orendorff, Jesse Ruder-
man, Edwin W. Smith, Rick Reitmaier, Michael Bebenita, Mason Chang, and Michael
Franz. Trace-based just-in-time type specialization for dynamic languages. In Proceedings
of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implement-
ation, PLDI 2009, pages 465–478, 2009.

15 Andreas Gal, Christian W. Probst, and Michael Franz. Hotpathvm: an effective JIT com-
piler for resource-constrained devices. In Proceedings of the 2nd International Conference
on Virtual Execution Environments, VEE 2006, pages 144–153, 2006.

16 Urs Hölzle, Craig Chambers, and David Ungar. Optimizing dynamically-typed object-
oriented languages with polymorphic inline caches. In Proceedings of the European Confer-
ence on Object-Oriented Programming, ECOOP 1991, pages 21–38, 1991.

17 Richard Kelsey, William D. Clinger, and Jonathan Rees. Revised5 report on the algorithmic
language Scheme. SIGPLAN Notices, 33(9):26–76, 1998.

18 Monica Lam, Ravi Sethi, JD Ullman, and Alfred Aho. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 2006.

19 Matthew Might. Environment analysis of higher-order languages. PhD thesis, Georgia
Institute of Technology, 2007.

20 Baptiste Saleil and Marc Feeley. Code versioning and extremely lazy compilation of Scheme.
In Scheme and Functional Programming Workshop, 2014.

21 Baptiste Saleil and Marc Feeley. Type check removal using lazy interprocedural code
versioning. In Scheme and Functional Programming Workshop, 2015.

22 Olin Shivers. Control-flow analysis of higher-order languages. PhD thesis, Carnegie Mellon
University, 1991.

23 Rodrigo Sol, Christophe Guillon, Fernando Magno Quintão Pereira, and Mariza A. S. Bi-
gonha. Dynamic elimination of overflow tests in a trace compiler. In Proceedings of the
20th International Conference on Compiler Construction: Part of the Joint European Con-
ferences on Theory and Practice of Software, CC’11/ETAPS’11, pages 2–21, 2011.

24 Gerald J. Sussman and Guy L. Steele Jr. Scheme: A interpreter for extended lambda
calculus. Higher-Order and Symbolic Computation, 11(4):405–439, 1998.

ECOOP 2017

http://gambitscheme.org/
http://gambitscheme.org/




A Linear Decomposition of Multiparty Sessions for
Safe Distributed Programming∗

Alceste Scalas1, Ornela Dardha2, Raymond Hu3, and
Nobuko Yoshida4

1 Imperial College London, UK
alceste.scalas@imperial.ac.uk

2 University of Glasgow, UK
ornela.dardha@glasgow.ac.uk

3 Imperial College London, UK
raymond.hu@imperial.ac.uk

4 Imperial College London, UK
n.yoshida@imperial.ac.uk

Abstract
Multiparty Session Types (MPST) is a typing discipline for message-passing distributed pro-
cesses that can ensure properties such as absence of communication errors and deadlocks, and
protocol conformance. Can MPST provide a theoretical foundation for concurrent and distrib-
uted programming in “mainstream” languages? We address this problem by (1) developing the
first encoding of a full-fledged multiparty session π-calculus into linear π-calculus, and(2) using
the encoding as the foundation of a practical toolchain for safe multiparty programming in Scala.

Our encoding is type-preserving and operationally sound and complete. Crucially, it keeps the
distributed choreographic nature of MPST, illuminating that the safety properties of multiparty
sessions can be precisely represented with a decomposition into binary linear channels. Previous
works have only studied the relation between (limited) multiparty and binary sessions via cent-
ralised orchestration means. We exploit these results to implement an automated generation of
Scala APIs for multiparty sessions, abstracting existing libraries for binary communication chan-
nels. This allows multiparty systems to be safely implemented over binary message transports,
as commonly found in practice. Our implementation is the first to support distributed multiparty
delegation: our encoding yields it for free, via existing mechanisms for binary delegation.

1998 ACM Subject Classification D.1.3 Concurrent Programming; D.3.1 Formal Definitions
and Theory; F.3.3 Studies of Program Constructs — Type structure

Keywords and phrases process calculi, session types, concurrent programming, Scala

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.24

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.3.2.3

1 Introduction

Correct design and implementation of concurrent and distributed applications is notoriously
difficult. Programmers must confront challenges involving protocol conformance (are messages

∗ Partially supported by EPSRC (grants EP/K034413/1, EP/K011715/1, EP/L00058X/1, EP/N027833/1,
EP/N028201/1) and EU (FP7 612985 “Upscale”). Dardha was awarded a SICSA PECE bursary for
visiting Imperial College London in January–March 2016.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 24; pp. 24:1–24:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.24
http://dx.doi.org/10.4230/DARTS.3.2.3
http://www.sicsa.ac.uk/research-exchanges-pece/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


24:2 A Linear Decomposition of Multiparty Sessions

Q Pa Pb Pc

–

– – –

Unordered

Alt

Alt

Alt
Loop

PlayA(s[a])

PlayB(s[b])

PlayC(s[c])

InfoBC(String)

InfoCA(String)

InfoAB(String)

Mov1AB(Int)

Mov1BC(Int)

Mov1CA(Int)

Mov2CA(Bool)

Mov2AB(Bool)

Mov2BC(Bool)

Mov1CA(Int)

Mov2CA(Bool)

—

G
am

e

Figure 1 Game server with 3 clients.

sent/received according to a specification?) and communication mechanics (how are the
interactions actually performed?). These difficulties are worsened by the potential complexity
of interactions among multiple participants, and if the communication topology is not fixed.

For example, consider a common scenario for a peer-to-peer multiplayer game: the clients,
initially unknown to each other, connect to a “matchmaking” server, whose task is to group
players and setup a game session in which they can interact directly. Figure 1 depicts this
scenario: Q is the server, connected to three clients Pa, Pb and Pc. To set up a game, Q
sends to each client some networking information (denoted by s[a]/s[b]/s[c], payloads of the
PlayA/B/C messages) to “introduce” the clients to each other and allow them to communicate.
Then, the clients follow the game protocol (marked as “Game”), consisting in some initial
message exchanges (Info), and a game loop: Pa chooses a message to send to Pb (Mov1AB or
Mov2AB) followed by a message from Pb to Pc, who chooses which message send back to Pa.

Figure 1 features structured protocols with inter-role message dependencies, and a dynamic
communication topology (starting client-to-server, becoming client-to-client). Implementing
them is not easy: programmers would benefit from tools to statically detect protocol violations
in source code, and realise the communication topology changes.

Multiparty Session Types (MPST) [27] are a theoretical framework for channel-based
communication, capable of modelling our example. In MPST, participants are modelled
as roles (e.g., game players a, b, c) and programs are session π-calculus processes; the
“networking information payloads” s[a]/s[b]/s[c] can be modelled as multiparty channels,
for interpreting roles a/b/c on the game session s. Notably, channels can themselves be
sent/received: this allows to delegate a multiparty interaction to another process, thus
changing the communicating topology. In Figure 1, the server Q sends (i.e., delegates) the
channel s[b] to Pb; the latter can then use s[b] to interact with the processes owning channels
s[a] and s[c] (i.e., Pa and Pc, after two more delegations).



A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:3

The MPST framework formalises protocols as session types: structured sequences of
inputs/outputs and choices. The MPST typing system assigns such types to channels, and
checks the processes using them. In our example, channel s[b] could have type:

Sb = c!InfoBC(String) . a?InfoAB(String) .
µt.
(
a & {?Mov1AB(Int).c!Mov1BC(Int).t , ?Mov2AB(Bool).c!Mov2BC(Bool).t }

)
Sb says that s[b] must be used to realise the Game interactions of Pb in Figure 1: first to send
InfoBC(String) to c, then receive InfoAB from a, then enter the recursive game “loop” µt.(. . .).
Inside the recursion, a & {. . .} is a branching from a: depending on a’s choice, the channel will
deliver either Mov1AB(Int) (in which case, it must be used to send Mov1BC(Int) to c, and loop), or
Mov2AB (then, it must be used to send Mov2BC to c, and loop). Analogous types can be assigned
to s[a] and s[c]. Delegation is represented by types like q?PlayB(Sb).end, meaning: from role
q, receive a message PlayB carrying a channel that must be used according to Sb above; then,
end the session. Session type checking ensures that, e.g., process Pb uses its channels abiding
by the types above — thus safely implementing the expected channel dynamics and fulfilling
role b in the game. Finally, MPST can formalise the whole Game protocol in Figure 1 as
a global type, and validate that it is deadlock-free; then, via typing, ensure that a set of
processes interacts according to the global type (and is, thus, deadlock-free).

MPST in practice: challenges. MPST could offer a promising formal foundation for safe
distributed programming, helping to develop type-safe and deadlock-free concurrent programs.
However, bridging the gap between theory and implementation raises several challenges:
C1 Multiparty sessions can have 2, 3 or more interacting roles; but in practice, communication

occurs over binary channels (e.g., TCP sockets). Can multiparty channels be implemented
as compositions of binary channels, preserving their type safety properties?

C2 MPST are far from the types of “mainstream” programming languages, as shown by Sb

above. Can they be rendered, e.g., as objects? If so, what are their API and internals?
C3 How should multiparty delegation be realised, especially in distributed settings?

The current state-of-the-art has not addressed these challenges. On one hand, exist-
ing theoretical works on encoding multiparty sessions into binary sessions [8, 9] introduce
centralised medium (or arbiter) processes to orchestrate the interactions between the multi-
party session roles: hence, they depart from the choreographic (i.e., decentralised) nature
of the MPST framework [27], and preclude examples like our peer-to-peer game in Fig-
ure 1. On the other hand, there are no existing implementations of full-fledged MPST; e.g.,
[57, 32, 33, 42, 52, 61, 55] only support binary sessions, while none of [29, 64, 17, 20] support
session delegation.

Our approach. In this work, we tackle the three challenges above with a two-step strategy:

S1 we give the first choreographic encoding of a “full” MPST calculus into linear π-calculus;
S2 we implement a multiparty session API generation for Scala, based on our encoding.

By step S1, we formally address challenge C1. Linear π-calculus provides a theoretical
framework with typed channels that cater only for binary communication, and may only be
used once for input/output. These “limitations” are key to the practicality of our approach.
In fact, they force us to figure out whether multiparty channels can be represented by a
decomposition into binary channels — and whether multiparty session types can be represented
by a decomposition into linear types. To solve these issues, we need study how to “decompose”
the intricate MPST theory in (much simpler) π-calculus terms. This endeavour was not
tackled before, and its feasibility was unclear. Its practical payoff is that linear π-calculus

ECOOP 2017



24:4 A Linear Decomposition of Multiparty Sessions

channels/types are amenable for an (almost) direct object-based representation (shown in
[61]): this tackles challenge C2. Further, using π-calculus we can prove whether such a
decomposition is “correct”, i.e., whether MPST processes can be encoded to only interact on
binary channels, preserving their type-safety and behaviour and “inheriting” deadlock-freedom.

In step S2, we generate high-level typed APIs for multiparty session programming,
ensuring their “correctness” by reflecting the types and process behaviours formalised in
step S1. Following the binary decomposition in step S1, we can implement such APIs as a
layer over existing libraries for binary sessions (available for Java [30], Haskell [57, 32, 42],
Links [44], Rust [33], Scala [61], ML [55]), in a way that solves challenge C3 “for free”.

Contributions. We present the first encoding (Section 5) of a full multiparty session π-
calculus (Section 2) into standard π-calculus with linear, labelled tuple and variant types
(Section 3).

We present a novel, streamlined MPST formulation, sharply separating global/local
typing. Using this formulation, we “close the gaps” between the intricacies of the MPST
theory and the (much simpler) π-calculus, and spot a longstanding issue with type merging
[18] (Definition 2.9, Section 2.1 “On Consistency”). We fix it, with a revised subject
reduction (Theorem 2.16).
At the heart of our encoding there is the discovery that the type safety property of MPST
is precisely characterised as a decomposition into linear π-calculus types (Theorem 6.3).
Our encoding of types preserves duality and subtyping (Theorem 6.1);our encoding of
processes is type-preserving and operationally sound and complete (Theorem 6.2 and
Theorem 6.5).
We subsume the encodings of binary sessions into π-calculus [14, 15], and support recursion
(Section 4), which was not properly handled in [13]. Further, we show that multiparty
sessions can be encoded into binary sessions choreographically, i.e., while preserving
process distribution (homomorphically w.r.t. parallel composition), in contrast to [8, 9].

In Section 7, we use our encoding as formal basis for the first implementation of mul-
tiparty sessions supporting distributed multiparty delegation, over existing Scala libraries
(paper’s artifact1).

Conventions. Derivations use single/double lines for inductive/coinductive rules. Recursive
types µt.T are always closed, and guarded: e.g., µt1.. . . µtn.t1 is not a type. We define
unf(µt.T )=unf(T{µt.T/t}), and unf(T )=T if T 6=µt.T ′. Type equality is syntactic: µt.T is
not equal to unf(µt.T ). We write P→P ′ for process reductions,→∗ for the reflexive+transitive
closure of →, and P6→ iff 6 ∃P ′ such that P→P ′. We assume a basic subtyping 6B capturing
e.g. Int6B Real. For readability, we use blue/red for multiparty/standard π-calculus.

2 Multiparty Session π-Calculus

In this section we illustrate a multiparty session π-calculus [27] (Definition 2.1), and its
typing system — including recursion, subtyping [19] and type merging [67, 18] (Section 2.1).
The calculus models processes that interact via multiparty channels connecting two or more
participants: this is a departure from many “classic” and simpler process calculi, like the

1 http://dx.doi.org/10.4230/DARTS.3.2.3

http://dx.doi.org/10.4230/DARTS.3.2.3


A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:5

Q

b
a

c

q

q

q

Pa p

Pb p

Pc
p

sa

sb

sc

s →

Q′

a
c

q

q

Pa p

Pb
′ b

Pc
p

sa

sc

s →→

Pa
′

a

Pb
′′

b

Pc
′

c
s

(a) (b) (c)

Figure 2 Multiparty peer-to-peer game. Dashed lines represent session scopes, and circled roles
represent channels with roles. (a) initial configuration; (b) delegation of channel with role s[b] (and
end of session sb); (c) clients directly interacting on session s, after “complete” delegation.

linear π-calculus (Section 3), that model binary channels. We provide various examples based
on the scenario in Section 1.

I Definition 2.1. The syntax of multiparty session π-calculus processes and values is:
Processes P ,Q ::= 0 | P |Q | (νs)P (inaction, composition, restriction)

c[p]⊕ 〈l(v)〉.P (selection towards role p)
c[p] &i∈I {li(xi).Pi} (branching from role p — with I 6= ∅)
def D inQ | X〈x̃〉 (process definition, process call)

Declarations D ::= X(x̃) = P (process declaration)
Channels c ::= x | s[p] (variable, channel with role p)

Values v ::= c | false | true | 42 | . . . (channel, base value)
fc(P ) is the set of free channels with roles in P , and fv(P ) is the set of free variables in P .

A channel c can be either a variable or a channel with role s[p], i.e., a multiparty
communication endpoint whose user impersonates role p in the session s. Values v can be
variables, or channels with roles, or base values. The inaction 0 represents a terminated
process. The parallel composition P |Q represents two processes that can execute concur-
rently, and potentially communicate. The session restriction (νs)P declares a new session
s with scope limited to process P . Process c[p]⊕ 〈l(v)〉.P performs a selection (internal
choice) towards role p, using the channel c: the labelled value l(v) is sent, and the execution
continues as process P . Dually, process c[p] &i∈I {li(xi).Pi} uses channels c to wait for a
branching (external choice) from role p: if the labelled value lk(v) is received (for some
k ∈ I), then the execution continues as Pk (with xk holding value v). Note that for all i ∈ I,
variable xi is bound with scope Pi. In both branching and selection, the labels li (i ∈ I) are
all different and their order is irrelevant. Process definition def D inQ and process call
X〈x̃〉 model recursion, with D being a process declaration X(x̃) = P : the call invokes
X by expanding it into P , and replacing its formal parameters with the actual ones. We
postulate that process declarations are closed, i.e., in X(x̃) = P , we have fv(P ) ⊆ x̃ and
fc(P ) = ∅. Note that our syntax is simplified in the style of [19]: it does not have dedicated
input/output prefixes, but they can be easily encoded using & (with one branch) and ⊕.

I Example 2.2. The following MPST π-calculus process implements the scenario in Figure 1:
def Loopb(x) = x[a] &

{
Mov1AB(y).x[c]⊕ 〈Mov1BC(y)〉.Loopb〈x〉 , Mov2AB(z).x[c]⊕ 〈Mov2BC(z)〉.Loopb〈x〉

}
in

def Clientb(y) = y[q] & PlayB(z) . z[c]⊕ 〈InfoBC(“...”)〉 . z[a] & InfoBA(y) . Loopb〈z〉 in
(νsa, sb, sc)

(
Q | Pa | Pb | Pc

)
where: Pb = Clientb〈sb[p]〉 (for brevity, we omit the definitions of Pa and Pc)

Q = (νs)
(
sa[q][p]⊕〈PlayA(s[a])〉 | sb[q][p]⊕〈PlayB(s[b])〉 | sc[q][p]⊕〈PlayC(s[c])〉

)

ECOOP 2017



24:6 A Linear Decomposition of Multiparty Sessions

In the 3rd line, sa, sb, sc are the sessions between the server process Q and the clients
Pa, Pb, Pc, which are composed in parallel with |. Each sessions has 2 roles: q (server) and
p (client); e.g., sb is accessed by the server (through the channel with role sb[q]) and by
the client Pb (through sb[p]); similarly, sa (resp. sc) is accessed by Pa (resp. Pc) through
sa[p] (resp. sc[p]), while the server owns sa[q] (resp. sc[q]). The body of the server process Q
defines a session s (with 3 roles a, b, c) for playing the game. Note that the scope of s does
not include Pa, Pb, Pc: see Figure 2(a) for a schema of processes and sessions.

The server Q uses the channel with role sb[q] (resp. sa[q], sc[q]) to send the message PlayB

(resp. PlayA, PlayC) carrying the channel with role s[b] (resp. s[a], s[c]) to p. The result is a
delegation of the channel to the client process Pb (resp. Pa, Pc). This way, each client obtains
a channel endpoint to interact in the game session s, interpreting a role among a, b and c.

The client Pb is implemented by invoking Clientb〈sb[p]〉 (defined in the 2nd line). Here,
y[q] & PlayB(z) means that y (that becomes sb[p] after the invocation) is used to receive PlayB(z)
from q, while z[c]⊕ 〈InfoBC(“...”)〉 means that z (that becomes s[b] after the delegation is
received) is used to send InfoBC(“...”) to c. The game loop is implemented with the recursive
process call Loopb〈z〉 (defined in the 1st line) — which becomes Loopb〈s[b]〉 after delegation.

I Definition 2.3. The operational semantics of multiparty session processes is:
(R-Comm) s[p][q] &i∈I {li(xi).Pi} | s[q][p]⊕ 〈lj(v)〉.Q → Pj{v/xj} |Q (if j ∈ I and fv(v) = ∅)

(R-Call) def X(x̃) = P in (X〈ṽ〉 |Q) → def X(x̃) = P in (P{ṽ/x̃} |Q)
(if x̃ = x1, . . . , xn, ṽ = v1, . . . , vn, fv(ṽ) = ∅)

(R-Par) P → Q implies P |R→ Q |R (R-Res) P → Q implies (νs)P → (νs)Q
(R-Def) P → Q implies def D inP → def D inQ

(R-Struct) P ≡P ′ and P→Q and Q′≡Q implies P ′→Q′ (with ≡ standard — see [60])

Rule (R-Comm) models communication: it says that the parallel composition of a branching
and a selection process, both operating on the same session s respectively as roles p and
q (i.e., via s[p] and s[q]) and targeting each other (i.e., s[p] is used to branch from q, and
s[q] is used to select towards p) reduces to the corresponding continuations, with a value
substitution on the receiver side. (R-Call) says that a process call X〈ṽ〉 in the scope of
def X(x̃) = P in . . . reduces by expanding X〈ṽ〉 into P , and replacing the formal parameters
(x̃) with the actual ones (ṽ). The remaining rules are standard: reduction can happen under
parallel composition, restriction and process definition. By (R-Struct), reduction is closed
under a structural congruence [60] stating, e.g., that | is commutative and associative, and
has 0 as neutral element (i.e., P |Q ≡ Q | P , P | (Q |R) ≡ (P |Q) |R and P | 0 ≡ P ).

I Example 2.4. The process in Example 2.2 reduces as (see also Figure 2(b), noting the
scope of s):

(νsa, sb, sc)
(
Q | Pa | Pb | Pc

)
→ (by (R-Comm) between Q and Pb, (R-Par), (R-Struct), (R-Res))

(νsa, sc)
(

(νs)
((
sa[q][p]⊕〈PlayA(s[a])〉 | sc[q][p]⊕〈PlayC(s[c])〉

)
| s[b][c]⊕〈InfoBC(“...”)〉 . . .

)
| Pa | Pc

)
2.1 Multiparty Session Typing
We now illustrate the typing system for the MPST π-calculus, and its properties. We adopt
standard definitions from literature — except for some crucial (and duly noted) adaptations.

The goal of the MPST typing system is to ensure that processes interact on their channels
according to given specifications, represented as session types. MPST foster a top-down
approach: a global type G describes a protocol involving various roles — e.g., the game with
roles a, b, c in Section 1; G is projected into a set of (local) session types Sa, Sb, Sc, . . . (one per



A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:7

role) that specify how each role is expected to use its channel endpoint; finally, session types
are assigned to channels, and the processes using them are type-checked. Typing ensures that
processes (1) never go wrong (i.e., use their channels type-safely), and (2) interact according
to G, by respecting its projections — thus realising a multiparty, deadlock-free session.

In the following, we provide a revised and streamlined presentation that clearly outlines
the interplay between the global/local typing levels. For this reason, unlike most papers, we
discuss local types first, and global types later, at the end of the section.

Session Types: Local and Partial. Session types describe the expected usage of a channel,
as a communication protocol involving two or more roles. They allow to declare structured
sequences of input/output actions, specifying who is the source/target role of interaction.

I Definition 2.5 (Types and roles). The syntax of (local) session types is:
S ::= p &i∈I ?li(U i).Si (branching from role p — with I 6= ∅)

p⊕i∈I !li(U i).Si (selection towards role p — with I 6= ∅)
µt.S | t | end (recursive type, type variable, termination)

B ::= Bool | Int | . . . (base type) U ::= B | S (closed) (payload type)

We omit &/⊕ when I is a singleton: p!l1(Int).S1 stands for p⊕i∈{1} !li(Int).Si.
The set of roles in S, denoted as roles(S), is defined as follows:

roles(p⊕i∈I !li(Ui).Si) , roles(p &i∈I ?li(Ui).Si) , {p} ∪
⋃
i∈I roles(Si)

roles(end) , ∅ roles(t) , ∅ roles(µt.S) , roles(S)

We will write p ∈ S for p ∈ roles(S), and p ∈ S\q for p ∈ roles(S) \ {q}.

The branching type p &i∈I ?li(U i).Si describes a channel that can receive a label li
from role p (for some i ∈ I, chosen by p), together with a payload of type Ui; then, the
channel must be used as Si. The selection p⊕i∈I !li(U i).Si, describes a channel that can
choose a label li (for any i ∈ I), and send it to p together with a payload of type Ui; then, the
channel must be used as Si. The labels of branch/select types are all distinct and their order
is irrelevant. The recursive type µt.S and type variable t model infinite behaviours.
end is the type of a terminated channel (often omitted). Base types B,B′, . . . can be
types like Bool, Int, etc. Payload types U,U ′, . . . are either base types, or closed session
types.

I Example 2.6. See the definition and description of session type Sb in Section 1 (p. 3).

To define session typing contexts later on, we also need partial session types.

I Definition 2.7. Partial session types, denoted by H, are:
H ::= &i∈I ?li(Ui).Hi | ⊕i∈I !li(Ui).Hi (branching, selection) (with I 6= ∅, Ui closed)

µt.H | t | end (recursive type, type variable, termination)

A partial session type H is either a branching, a selection, a recursion, a type variable, or a
terminated channel type. Unlike Definition 2.5, partial types have no role annotations: they
are similar to binary session types (but the payloads Ui can be multiparty) — and similarly,
they endow a notion of duality: the outputs of a type match the inputs of its dual, and vice
versa.

I Definition 2.8. H is the dual of H, defined as:
⊕i∈I !li(U i).Hi , &i∈I ?li(Ui).Hi &i∈I ?li(U i).Hi , ⊕i∈I !li(Ui).Hi

end , end t , t µt.H , µt.H

ECOOP 2017



24:8 A Linear Decomposition of Multiparty Sessions

The dual of a selection type is a branching with dualised continuations, and vice versa; the
payloads Ui are the same. Duality is the identity on end and t, and homomorphic on µt.H.

Multiparty session types can be projected onto a role q (Definition 2.9 below): this yields
a partial type that only describes the communications where q is involved. This is technically
necessary for typing rules, as we will see in Definition 2.11 later on.

I Definition 2.9. S � q is the partial projection of S onto q:

end � q , end t � q , t (µt.S) � q ,

{
µt.(S � q) if S � q 6= t′ (∀t′)
end otherwise

(p⊕i∈I !li(Ui).Si) � q ,

{
⊕i∈I !li(Ui).(Si � q) if q = p,
d
i∈I (Si � q) if p 6= q

(p &i∈I ?li(Ui).Si) � q ,

{
&i∈I ?li(Ui).Si � q if q = p,
d
i∈I (Si � q) if p 6= q

where
d

is the merge operator for partial session types:
end u end , end t u t , t µt.H u µt.H ′ , µt.(H uH ′)

&i∈I ?li(Ui).Hi u &i∈I ?li(Ui).H ′i , &i∈I ?li(Ui).(Hi uH ′i)
⊕i∈I !li(Ui).Hi u ⊕j∈J !lj(Uj).H ′j ,(

⊕k∈I∩J !lk(Uk).(Hk uH ′k)
)
⊕
(
⊕i∈I\J !li(Ui).Hi

)
⊕
(
⊕j∈J\I !lj(Uj).H ′j

)
The projection of end or a type variable t onto any role is the identity. Projecting a
recursive type µt.S onto q, means projecting S onto q, if S � q is not some t′, for all
possible recursive variables t′; otherwise, the projection is end. The projection of a selection
p⊕i∈I !li(Ui).Si (resp. branching p &i∈I ?li(Ui).Si) on role p, produces a partial selection type
⊕i∈I !li(Ui).(Si � p) (resp. branching &i∈I ?li(Ui).Si � p) with the continuations projected on
p. Otherwise, if projecting on q 6= p, the select/branch is “skipped”, and the projection is
the merging of the continuations, i.e.,

d
i∈I (Si � q). The u operator (introduced in [67, 18])

expands the set of session types whose partial projections are defined, which allows to type
more processes (as we will see in Definition 2.11 and Example 2.14 later on). Crucially, u
can compose different internal choices, but not external choices (because this could break
type safety).

Subtyping. The subtyping relation (Definition 2.10) says that a session type S is “smaller”
than S′ when S is “less demanding” than S′ — i.e., when S permits more internal choices,
and imposes less external choices, than S′. When typing processes (Definition 2.12), a
channel with a smaller type can be used whenever a channel with a larger type is required,
according to Liskov’s Substitution Principle [45]. Subtyping is defined on both local and
partial types.

I Definition 2.10 (Subtyping). The subtyping 6S on multiparty session types is the largest
relation such that
(i) if S 6S S

′, then ∀p∈(roles(S)∪roles(S′)) S�p6PS
′�p, and

(ii) is closed backwards under coinductive rules at the top of Figure 3.
The subtyping 6P on partial session types is coinductively defined by the rules at the bottom
of Figure 3.

Definition 2.10 uses coinduction to support recursive types [56, Section 20 and Section 21].
Clause (i) links local and partial subtyping, and ensures that if two types are related, then their
partial projections exist: this will be necessary later, for typing contexts (Definition 2.11).
The gist of Definition 2.10 lies in clause (ii). Rules (S-Brch)/(S-Sel) define subtyping on



A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:9

∀i ∈ I Ui 6S U
′
i Si 6S S

′
i (S-Brch)

================================
p &i∈I ?li(U i).Si 6S p &i∈I∪J ?li(U ′i).S′i

∀i ∈ I U ′i 6S Ui Si 6S S
′
i (S-Sel)

==============================
p⊕i∈I∪J !li(Ui).Si 6S p⊕i∈I !li(U ′i).S′i

B 6B B
′

======= (S-B)
B 6S B

′
========== (S-End)
end 6S end

S{µt.S/t} 6S S
′

============ (S-µL)
µt.S 6S S

′

S 6S S
′{µt.S′

/t
}

============= (S-µR)
S 6S µt.S′

∀i ∈ I Ui 6S U
′
i Hi 6P Hi

′ (S-ParBrch)
==================================

&i∈I ?li(U i).Hi 6P &i∈I∪J ?li(U ′i).Hi′
∀i ∈ I U ′i 6S Ui Hi 6P Hi

′ (S-ParSel)
=================================
⊕i∈I∪J !li(Ui).Hi 6P ⊕i∈I !li(U ′i).Hi′

========== (S-ParEnd)
end 6P end

H{µt.H/t} 6P H
′

============= (S-ParµL)
µt.H 6P H

′

H 6P H
′{µt.H′

/t
}

============== (S-ParµR)
H 6P µt.H ′

Figure 3 Subtyping for session types (top) and partial session types (bottom).

branch/select types. Both rules are covariant in the continuation types, i.e., they require
Si 6S S

′
i. (S-Brch) is covariant also in the number of branches offered, whereas (S-Sel) is

contravariant. (S-B) relates base types, if they are related by 6B. (S-End) relates terminated
channel types. (S-µL) and (S-µR) are standard under coinduction: they say that a recursive
session type µt.S is related to S′, iff its unfolding is related, too. The subtyping 6P for
partial types is similar, except for the lack of role annotations (thus resembling the binary
session subtyping [22]).

Multiparty Session Typing System. Before delving into the session typing rules (Defini-
tion 2.12), we need to formalise the notions of typing context and typing judgement, defined
below.

I Definition 2.11. A session typing context Γ is a partial mapping defined as:

Γ ::= ∅ | Γ, x :U | Γ, s[p] :S (with p 6∈ S)

We say that Γ is consistent iff for all s[p] :Sp, s[q] :Sq ∈ Γ with p 6= q, we have Sp � q 6P Sq � p.
We say that Γ is complete iff for all s[p] :Sp ∈ Γ, q ∈ Sp implies s[q] ∈ dom (Γ). We say that
Γ is unrestricted, un(Γ), iff for all c ∈ dom(Γ), Γ(c) is either a base type or end. The typing
contexts composition ◦ is the commutative operator with ∅ as neutral element:

Γ1, c :U ◦ Γ2, c
′ :U ′ , (Γ1 ◦ Γ2), c :U, c′ :U ′ (if dom (Γ2) 63 c 6= c′ 6∈ dom (Γ1))

Γ1, x :B ◦ Γ2, x :B , (Γ1 ◦ Γ2), x :B

A typing context can map a channel with role s[p] to a session type S (that cannot refer
to p itself, ruling out “self-interactions”), but not to a base type. Variables can be mapped
to either session or base types. The clause “∀c :S ∈ Γ : S � p is defined” is discussed below.

On Consistency. In Definition 2.11, and in the rest of this work, we emphasise the import-
ance of consistency of the context Γ for session typing: this condition is, in fact, necessary
to prove subject reduction, and will be central for our encoding (Section 5 and Section 6).
As an example of non-consistent typing context, consider s[p] :end, s[q] :p?l(U).S: we have
end � q = end 66P ?l(U).S = (p?l(U).S) � p.

Note that our consistency in Definition 2.11 is weaker than the one in previous papers
(where it is sometimes called coherency): we use 6P, instead of (syntactic) type equality
=, to relate dual partial projections. The reason being: if we use =, and adopt partial
projections with type merging (Definition 2.9), subject reduction does not hold. Hence, by

ECOOP 2017



24:10 A Linear Decomposition of Multiparty Sessions

(T-Name)
un(Γ)

Γ, c :S ` c :S

(T-Basic)
un(Γ) v ∈ B

Γ ` v :B

(T-DefCtx)

Θ, X : Ũ ` X : Ũ

(T-Sub)
Θ · Γ, c :U ` P U ′ 6S U

Θ · Γ, c :U ′ ` P

(T-Nil)
un(Γ)

Θ · Γ ` 0
(T-Par)

Θ · Γ1 ` P Θ · Γ2 ` Q
Θ · Γ1 ◦ Γ2 ` P |Q

(T-Res)
Θ · Γ,Γ′ ` P Γ′ = {s[p] :Sp}p∈I complete

Θ · Γ ` (νs :Γ′)P

(T-Brch)
∀i ∈ I Θ · Γ, xi :Ui, c :Si ` Pi

Θ · Γ, c :p &i∈I ?li(U i).Si ` c[p] &i∈I {li(xi).Pi}
(T-Sel)

Γ1 ` v :U Θ · Γ2, c :S ` P
Θ · Γ1 ◦ Γ2, c :p⊕ !l(U).S ` c[p]⊕ 〈l(v)〉.P

(T-Def)
Θ, X : Ũ · x̃ : Ũ ` P Θ, X : Ũ · Γ ` Q

Θ · Γ ` def X(x̃ : Ũ) = P inQ
(T-Call)

∀i ∈ {1..n} Γi ` vi :Ui un(Γ)
Θ, X :U1, . . . , Un · Γ1 ◦ . . . ◦ Γn ◦ Γ ` X〈v1, . . . , vn〉

Figure 4 Typing rules for the multiparty session π-calculus.

relaxing our definition, and proving Theorem 2.16 later on, we fix a longstanding mistake
appearing e.g., in [67, 18].

I Definition 2.12 (Session typing judgements). The process declaration typing context Θ
maps process variables X to n-tuples of types Ũ (one per argument of X), and is defined as:

Θ ::= ∅ | Θ, X : Ũ
Typing judgements are inductively defined by the rules in Figure 4, and have the forms:

for processes: Θ · Γ ` P (with Γ consistent, and ∀c :S ∈ Γ, S � p is defined ∀p ∈ S)
for values: Γ ` v :U for process variables: Θ ` X : Ũ

The judgement Θ · Γ ` P reads: “process P is well-typed in Θ and Γ”. Θ and Γ, in turn,
type respectively process variables (judgement Θ ` X : Ũ) and values, including channels
(judgement Γ ` v :U). Rule (T-Name) says that a channel has the type assumed in the session
typing context. (T-Basic) relates base values to their type. By (T-DefCtx), a process name
has the type assumed in the process declaration typing context. (T-Sub) is the standard
subsumption rule, using 6S (Definition 2.10). By (T-Nil), the terminated process is well typed
in any unrestricted typing context. By (T-Par), the parallel composition of P and Q is well
typed under the composition of the corresponding typing contexts, as per Definition 2.11.
By (T-Res), (νs)P is well typed in Γ, if s occurs in a complete set of typed channels with
roles (denoted with Γ′), and the open process P is well typed in the “full” context Γ,Γ′. For
convenience, we annotate the restricted s with Γ′ in the process, giving (νs :Γ′)P . (T-Brch)
(resp. (T-Sel)) state that branching (resp. selection) process on c[p] is well typed if c[p] is of
compatible branching (resp. selection) type, and the continuations Pi, for all i ∈ I, are well
typed with the continuation session types. By (T-Def), a process definition def X(x̃) = P inQ
is well typed if both P and Q are well typed in their typing contexts enriched with x̃ : Ũ .
For convenience, we annotate x̃ with types Ũ . By (T-Call), process call X〈v1, . . . , vn〉 is well
typed if the actual parameters v1, . . . , vn have compatible types w.r.t. X.

As mentioned above, we emphasise consistency by restricting typing judgements to
consistent typing contexts — i.e., those allowing to prove subject reduction. The clause
“∀c :S ∈ Γ : S � p is defined” is unusual in MPST works, but arises naturally: by requiring the
existence of partial projections, it rejects processes containing
(a) a channel with role s[p] :S that, for some q ∈ S, cannot be (consistently) paired with

s[q], or
(b) a variable x :S that, in a consistent and complete Γ, cannot be substituted by any s[p] :S.

Rejected processes cannot join any complete session (case (a)), or are never-executed
“dead code” (case (b)).



A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:11

I Remark 2.13. Unlike most MPST papers (e.g., [19, 11]), our rule (T-Res) does not directly
map a session s to a global type: this is explained in the next section, “Global Types”.

I Example 2.14. Consider the session type Sb in Section 1 (p. 3), and the client process
Pb = Clientb〈sb[p]〉 from Example 2.2. By Definition 2.12, the following typing judgement
holds:

Clientb :q?PlayB(Sb), Loopb :µt. a &
{

?Mov1AB(Int).c!Mov1BC(Int).t ,
?Mov2AB(Bool).c!Mov2BC(Bool).t

}
· sb[p] :q?PlayB(Sb) ` Clientb〈sb[p]〉

It says that the channel with role sb[p] is used following type q?PlayB(Sb).end (with a
delegation of a Sb-typed channel); the argument of Clientb has the same type; the argument
of Loopb is used following the game loop. This example cannot be typed without merging u
(Definition 2.9): its derivation requires to compute
Sb�c = !InfoBC(String).µt.(!Mov1BC(Int).t u !Mov2BC(Bool).t) = !InfoBC(String).µt.(!Mov1BC(Int).t⊕!Mov2BC(Bool).t),
which is undefined without merging.

The typing rules in Figure 4 satisfy a subject reduction property (Theorem 2.16) based
on typing context reductions. Reduction relations for typing contexts are common in typed
process calculi, and reflect the communications required by the types in Γ.

I Definition 2.15 (Typing context reduction). The reduction Γ→ Γ′ is:

s[p] :Sp, s[q] :Sq → s[p] :Sk, s[q] :S′k if
{

unf(Sp) = q⊕i∈I !li(Ui).Si k ∈ I

unf(Sq) = p &i∈I∪J ?li(U ′i).S′i Uk 6S U
′
k

Γ, c :U → Γ′, c :U ′ if Γ→ Γ′ and U 6S U
′

Our Definition 2.15 is a bit less straightforward than the ones in literature: it accommod-
ates subtyping (hence, uses 6S) and our iso-recursive type equality (hence, unfolds types
explicitly).

I Theorem 2.16 (Subject reduction). If Θ·Γ`P and P→P ′, then ∃Γ′: Γ→∗Γ′ and Θ·Γ′`P ′.

Global Types. We conclude this section with global types, mentioned in Section 2.1 and
Remark 2.13.

I Definition 2.17. The syntax of global types, ranged over by G, is:
G ::= p→ q :{li(Ui).Gi}i∈I (interaction — with Ui closed)

µt.G | t | end (recursive type, type variable, termination)

Type p→ q :{li(U i).Gi}i∈I states that role p sends to role q one of the (pairwise distinct)
labels li for i ∈ I, together with a payload Ui (Definition 2.5). If the chosen label is lj , then
the interaction proceeds as Gj . Type µt.G and type variable t model recursion. Type end
states the termination of a protocol. We omit the braces {...} from interactions when I is a
singleton: e.g., a→b : l1(U1).G1 stands for a→b :{li(U i).Gi}i∈{1}.

I Example 2.18. The following global type formalises the Game described in Section 1 and
Figure 1:

GGame = b→c : InfoBC(String) . c→a : InfoCA(String) . a→b : InfoAB(String) .

µt.a→b :


Mov1AB(Int).b→c : Mov1BC(Int).c→a :

{
Mov1CA(Int).t ,
Mov2CA(Bool).t

}
,

Mov2AB(Bool).b→c : Mov2BC(Bool).c→a :
{

Mov1CA(Int).t ,
Mov2CA(Bool).t

}


ECOOP 2017



24:12 A Linear Decomposition of Multiparty Sessions

In MPST theory, a global type G with roles pi (i ∈ I) is used to project2 a set of session
types Si (one per role). E.g., projecting GGame in Example 2.18 onto b yields the session
type Sb (p. 3). When all such projections Si are defined, and all partial projections of each
Si are defined (as per Definition 2.9), then we can define the projected typing context of G:

ΓG = {s[pi] :Si}i∈I where ∀i ∈ I : Si is the projection of G onto pi
and ΓG can be shown to be:
(a) consistent and complete, i.e., can be used to type the session s by rule (T-Res) (Figure 4),

and
(b) deadlock-free, i.e.: ΓG→∗Γ′G 6→ implies ∀i ∈ I : Γ′G(s[pi])=end.
Similarly, it can be shown that ΓG reduces as prescribed by G.

Now, from observation (a) above, we can easily define a “strict” version of rule (T-Res)
(Figure 4) in the style of [19, 11], where
1. the clause “Γ′ complete” is replaced with “Γ′ is the projected typing context of some G”,

and
2. in the conclusion, the annotation (νs :Γ′) is replaced with (νs :G).
Further, observation (b) allows to prove Theorem 2.19 below, as shown e.g. in [5]: a typed
ensemble of processes interacting on a single G-typed session is deadlock-free (note: with our
rules in Figure 4, the annotation (νs :G) would be (νs :ΓG)).

I Theorem 2.19 (Deadlock freedom). Let ∅·∅ ` P , where P ≡ (νs :G)
∣∣
i∈IPi and each Pi

only interacts on s[pi]. Then, P is deadlock-free: i.e., P →∗ P ′ 6→ implies P ′ ≡ 0.

Note that the properties above emerge by placing suitable session types Si in the premises
of (T-Res) — but our streamlined typing rules in Figure 4 do not require it, nor mention
G. The main property of such rules is ensuring type safety (Theorem 2.16). We will exploit
this insight (obtained by our separation of global/local typing) in our encoding (Section 5),
preserving semantics and types (and thus, Theorem 2.19) without explicit references to global
types.

3 Linear π-Calculus

The π-calculus is the canonical model for communication and concurrency based on message-
passing and channel mobility. It was developed in the late 1980’s, with the first publication
in 1992 [47], followed by various proposals for types and type systems. In this section we
summarise the theory of the π-calculus with linear types [37], adopting a standard formulation
and well-known results from [59]. We will present new π-calculus-related results in Section 4.

I Definition 3.1. The syntax of π-calculus processes and values is:
P ,Q ::= 0 | P |Q | (νx)P (inaction, parallel composition, restriction)

∗P | x〈v〉.P | x(y).P (process replication, output, input)
case v of {li(xi) . Pi}i∈I (variant destruct)
with [li :xi]i∈I =v doP (labelled tuple destruct)

u, v ::= x, y, w, z | l(v) | [li : vi]i∈I (name, variant value, labelled tuple value)
false | true | 42 | . . . (base value)

In π-calculus, names x, y, . . . can be intutively seen as variables (i.e., they can be substi-
tuted with values), and as communication channels (i.e., they can be used for input/output).
Values can be names, base values like false or 42, variant values l(v) and labelled tuples

2 We use a standard projection with merging [67, 18]: for its definition (not crucial here), see [60].



A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:13

[li : vi]i∈I . The inaction 0 and the parallel composition P |Q are similar to Definition 2.1.
The restriction (νx)P creates a new name x and binds it with scope P . The replicated
process ∗P represents infinite replicas of P , composed in parallel. The output x〈v〉.P
uses the name x to send a value v, and proceeds as P ; the input x(y).P uses x to receive
a value that will substitute y in the continuation P . Process case v of {li(xi) . Pi}i∈I pat-
tern matches a variant value v, and if it has label li, substitutes xi and continues as Pi.
Process with [li :xi]i∈I =v doP destructs a labelled tuple v, substituting each xi in P .
For brevity, we will often write “record” instead of “labelled tuple”.

I Definition 3.2. The π-calculus operational semantics is the relation → defined as:
(Rπ-Com) x〈v〉.P | x(y).Q → P |Q{v/y}
(Rπ-Case) case lj(v) of {li(xi) . Pi}i∈I → Pj{v/xj} (j ∈ I)
(Rπ-With) with [li :xi]i∈I =[li : vi]i∈I doP → P{vi/xi}i∈I

(Rπ-Res) P → Q implies (νx)P → (νx)Q
(Rπ-Par) P → Q implies P |R → Q |R

(Rπ-Struct) P ≡ P ′ ∧ P → Q ∧ Q′ ≡ Q implies P ′ → Q′

Rule (Rπ-Com) models communication between output and input on a name x: it reduces to
the corresponding continuations, with a value substitution on the receiver process. (Rπ-Case)
says that case applied on a variant value lj(v) reduces to Pj , with v in place of xj — provided
that lj is one of the supported cases (i.e., lj = li for some i ∈ I). Rule (Rπ-With) deconstructs
a labelled tuple [li : vi]i∈I : it says that with reduces to its continuation P with vi in place of
each xi, for all i ∈ I. By (Rπ-Res) and (Rπ-Par), reductions can happen under restriction and
parallel composition, respectively. By (Rπ-Struct), reduction is closed under the structural
congruence ≡, whose definition is standard (see [59, Table 1.1] and [60]).

π-Calculus Typing. We now summarise the π-calculus types, subtyping, and typing rules.

I Definition 3.3 (π-types). The syntax of a π-calculus type T is given by:
T ::= Li(T ) | Lo(T ) | L](T ) (linear input, linear output, linear connection)

](T ) | • (unrestricted connection, no capability)
〈li_Ti〉i∈I | [li :Ti]i∈I (variant, labelled tuple a.k.a. “record”)
µt.T | t | Bool | Int | . . . (recursive type, type variable, base type)

Linear types Li(T ), Lo(T ) denote, respectively, names used exactly once to input/output
a value of type T . L](T ) denotes a name used once for sending, and once for receiving, a
message of type T . ](T ) denotes an unrestricted connection, i.e., a name that can be used
both for input/output any number of times. • is assigned to names that cannot be used for
input/output. 〈li_Ti〉i∈I is a labelled disjoint union of types, while [li :Ti]i∈I (that we will
often call “record”) is a labelled product type; for both, labels li are all distinct, and their
order is irrelevant. As syntactic sugar, we write (Ti)i∈1..n for a record with integer labels
[i :Ti]i∈{1,..,n}. Recursive types and variables, and base types like Bool, are standard.

The predicate lin(T ) (Definition 3.4 below) holds iff T has some linear input/output
component.

I Definition 3.4 (Linear/unrestricted types). The predicate lin is inductively defined as:

lin(Li(T )) lin(Lo(T ))
∃j ∈ I : lin(Tj)
lin(〈li_Ti〉i∈I)

∃j ∈ I : lin(Tj)
lin([li :Ti]i∈I)

lin (T )
lin (µt.T )

We write un(T ) iff ¬ lin(T ) (i.e., T is unrestricted iff is not linear).

ECOOP 2017



24:14 A Linear Decomposition of Multiparty Sessions

(Tπ-Name)
un(Γ)

Γ, x :T ` x :T
(Tπ-Basic)

un(Γ) v ∈ B
Γ ` v :B

(Tπ-LVal)
Γ ` v :T

Γ ` l(v) :〈l_T 〉

(Tπ-LTup)
un(Γ) ∀i ∈ I Γi ` vi :Ti(⊎
i∈I Γi

)
] Γ ` [li : vi]i∈I : [li :Ti]i∈I

(Tπ-Sub)
Γ ` x :T T 6π T

′

Γ ` x :T ′
(Tπ-Nil)

un(Γ)
Γ ` 0

(Tπ-Par)
Γ1 ` P Γ2 ` Q

Γ1 ] Γ2 ` P |Q
(Tπ-Res1)

Γ, x :†(T ) ` P † ∈ {L], ]}
Γ ` (νx)P

(Tπ-Res2)
Γ, x :• ` P
Γ ` (νx)P

(Tπ-Inp)

Γ1 ` x :†(T ) † ∈ {Li, ]}
Γ2, y :T ` P

Γ1 ] Γ2 ` x(y).P
(Tπ-Out)

Γ1 ` x :†(T ) † ∈ {Lo, ]}
Γ2 ` v :T Γ3 ` P
Γ1 ] Γ2 ] Γ3 ` x〈v〉.P

(Tπ-Repl)
Γ ` P un(Γ)

Γ ` ∗P

(Tπ-Case)
Γ1 ` v :〈li_Ti〉i∈I ∀i ∈ I Γ2, xi :Ti ` Pi

Γ1 ] Γ2 ` case v of {li(xi) . Pi}i∈I
(Tπ-With)

Γ1 ` v : [li :Ti]i∈I Γ2, {xi :Ti}i∈I ` P
Γ1 ] Γ2 ` with [li :xi]i∈I =v doP

Figure 5 Typing rules for the linear π-calculus.

I Definition 3.5. Subtyping 6π for π-types is coinductively defined as:
B 6B B

′

======= (S-LB)
B 6π B

′
===== (S-LEnd)
• 6π •

T 6π T
′

============ (S-Li)
Li(T ) 6π Li

(
T ′
) T ′ 6π T

============= (S-Lo)
Lo(T ) 6π Lo

(
T ′
)

∀i ∈ I Ti 6π T
′
i

====================== (S-Variant)
〈li_Ti〉i∈I 6π

〈
li_T ′i

〉
i∈I∪J

∀i ∈ I Ti 6π T
′
i

================== (S-LTuple)
[li :Ti]i∈I 6π

[
li :T ′i

]
i∈I

T{µt.T/t} 6π T ′
============ (S-LµL)
µt.T 6π T ′

By rule (S-LB), 6π includes basic subtyping 6B. (S-LEnd) relates types without I/O capabilities.
By (S-Li) (resp. (S-Lo)), linear input (resp. output) subtyping is covariant (resp. contravariant)
in the carried type. By (S-Variant), subtyping for variant types is covariant in both carried
types and number of components. By (S-LTuple), subtyping for labelled tuples, a.k.a records,
is covariant in the carried types. (Note: “full” record subtyping allows to add/remove
entries [59, §7.3]; but here, “record” just means “labelled tuple”.) Rule (S-LµL) (and its
symmetric, omitted) relates a recursive type µt.T to T ′ iff its unfolding is related to T ′.

I Definition 3.6 (Typing context, type combination). The linear π-calculus typing context Γ
is a partial mapping defined as: Γ ::= ∅ | Γ, x :T
We write lin(Γ) iff ∃x :T ∈Γ : lin(T ), and un(Γ) iff ¬ lin(Γ). The type combinator ] is defined
as follows (and undefined in other cases), and is extended to typing contexts as expected.

Li(T ) ] Lo(T ) , L](T ) Lo(T ) ] Li(T ) , L](T ) T ] T , T if un(T )

(Γ1 ] Γ2)(x) ,

{
Γ1(x) ] Γ2(x) if x ∈ dom(Γ1) ∩ dom(Γ2)
Γi(x) if x ∈ dom(Γi) \ dom(Γj)

Figure 5 shows the typing system for the linear π-calculus. Typing judgements have
two forms: Γ ` v :T and Γ `P . (Tπ-Name) says that a name has the type assumed in the
typing context; (Tπ-Basic) relates base values to their types; both rules require unrestricted
typing contexts. By (Tπ-LVal), a variant value l(v) is of type 〈l_T 〉 if value v is of type
T . By (Tπ-LTup), a record value [li : vi]i∈I is of type [li :Ti]i∈I if for all i ∈ I, vi is of type
Ti. (Tπ-Sub) is the subsumption rule: if x has type T in Γ, then it also has any supertype
of T . By (Tπ-Nil), 0 is well typed in every unrestricted typing context. By (Tπ-Par), the
parallel composition of two processes is typed by combining the respective typing contexts.
By (Tπ-Res1), the restriction process (νx)P is well typed if P is typed by augmenting the
context with x :L](T ). or x :]T . In the first case, by applying Definition 3.6 (]), we have
x :L](T ) = x :Li(T ) ] Lo(T ): this implies that P owns both capabilities of linear input/output



A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:15

letx=v inP , (νz) (z〈v〉.0 | z(x).P ) (where z 6∈ {x} ∪ fn(v) ∪ fn(P ))

(Rπ-Let) letx=v inP → P{v/x} (Tπ-Let)
Γ1 ` v :T Γ2, x :T ` P

Γ1 ] Γ2 ` letx=v inP

(Tπ-Narrow)
Γ, x :T `P T ′6π T

Γ, x :T ′ ` P
(Tπ-MSubst)

∀i ∈ I Γi ` vi :Ti Γ, {xi :Ti}i∈I ` P(⊎
i∈I Γi

)
] Γ ` P{vi/xi}i∈I

Figure 6 “Let” binder (definition, reduction, typing), and narrowing / substitution rules.

of x. By (Tπ-Res2), the restriction (νx)P is typed if P is typed and x has no capabilities.
By (Tπ-Inp) (resp. (Tπ-Out)), the input and output processes are typed if x is a (possibly
linear) name used in input (resp. output), and the carried types are compatible with the
type of y (resp. value v). The typing context used to type the input and output process is
obtained by applying ] on the premises. By (Tπ-Repl), a replicated process ∗P is typed in
the same unrestricted context that types P . By (Tπ-Case), case v of {li(xi) . Pi}i∈I is typed
if the guard value v has variant type, and every Pi is typed assuming xi :Ti, for all i ∈ I.
By (Tπ-With), process with [li :xi]i∈I =v doP is typed if v is of record type and for all i ∈ I,
each vi has the same type as xi, i.e., Ti.

4 Some Typed π-Calculus Extensions and Results

We introduce some definitions and results on typed π-calculus: we will need them in Section 5
and Section 6, to state our encoding and its properties. As we target standard typed π-
calculus (Section 3), all our extensions are conservative, so to preserve standard results (e.g.,
subject reduction).

“Let” binder, narrowing, substitution. Figure 6 shows several auxiliary definitions and
typing rules. letx=v inP binds x in P , and reduces by replacing x with v in P . It is a macro
on other π-calculus contructs: hence, rules (Rπ-Let)/(Tπ-Let) are based on the reduction/typing
of its expansion (details in [60]). Rule (Tπ-Narrow) derives from the narrowing lemma [59,
7.2.5]. (Tπ-MSubst) represents zero or more applications of the substitution lemma [59, 8.1.4].

Duality and Recursive π-Types. The duality for linear π-types relates opposite but compat-
ible input/output capabilities. Intuitively, the dual of a Li(T ) is Lo(T ) (and vice versa) [15].
Note that the carried type T is the same: i.e., dual types can be combined with ] (Defini-
tion 3.6), yielding L](T ). However, defining duality for recursive π-types is not straightforward:
what is the dual of T = µt.Lo(t)? Is it maybe T ′ = µt.Li(t)? Since ] is not defined for
µ-types, we can check whether it is defined for the unfoldings of our hypothetical duals T and
T ′. Unfortunately, we have unf(T ) = Lo(µt.Lo(t)) and unf(T ′) = Li(µt.Li(t)): i.e., ] is again
undefined, so T ,T ′ cannot be considered duals. Solving this issue is crucial: in Section 5, we
will need to encode recursive partial types, preserving their duality (Definition 2.8) in linear
π-types.

What we want is a notion of duality that commutes with unfolding, so that if two recursive
types are dual, and we unfold them, we get a dual pair Lo(T )/Li(T ) that can be combined
with ] (since they carry the same T ). We address this issue by extending the π-calculus type
variables (Definition 3.3) with their dualised counterpart, denoted with t. We allow recursive
types such as µt.Li

(
t
)
(but not µt.. . .), and postulate that when unfolding, t is substituted

by a “dual” type µt.Lo(t), as formalised in Definition 4.1 below. Quite interestingly, our

ECOOP 2017



24:16 A Linear Decomposition of Multiparty Sessions

approach reminds of the “logical duality” for session types [43], but we study it in the context
of π-calculus (we will further discuss this topic in Section 8).

I Definition 4.1. T is the dual of T , and is defined as follows:
Li(T ) , Lo(T ) Lo(T ) , Li(T ) • , • (t) , t

(
t
)
, t µt.T , µt.T

{
t/t
}

The substitution of T for a type variable t or t is: t{T/t} , T t{T/t} , T

The dual of a linear input type Li(T ) is a linear output type Lo(T ), and vice versa, with the
payload type T unchanged, as expected. The dual of a terminated channel type • is itself.
The dual of a type variable t is t, and the dual of a dualised type variable t is t, implying
that duality on linear π-types is convolutive. The dual of µt.T is µt.T

{
t/t
}
, where type T is

dualised to T , and every occurrence of t is replaced by its dual t by Definition 4.1. Now, the
desired commutativity between duality and unfolding holds, as per Lemma 4.2 below.

I Lemma 4.2. unf
(
T
)

= unf(T ).

I Example 4.3. Let T = µt.Li
(
(t, t)

)
. Then:

unf(T ) = Li
((
µt.Li

(
(t, t)

)
, µt.Li

(
(t, t)

)))
= Li

((
µt.Li

(
(t, t)

)
, µt.Lo

(
(t, t)

)))
; and

unf
(
T
)

= unf
(
µt.Lo

(
(t, t)

))
= Lo

((
µt.Li

(
(t, t)

)
, µt.Lo

(
(t, t)

)))
= unf(T )

By adding dualised type variables in Definition 3.3, we naturally extend the definition of
fv(T ) (with µt.. . . binding both t and t), the subtyping relation 6π in Definition 3.5 (by
letting rules (S-LµL) and (S-LµR) use the substitution in Definition 4.1) and ultimately the
typing system in Definition 3.6. Using these extensions, we will obtain a rather simple
encoding of recursive session types (Definition 5.1), and solve a subtle issue involving duality,
recursion and continuations (Example 5.3).

The reader might be puzzled about the impact of dualised variables in the π-calculus
theory. We show that dualised variables do not increase the expressiveness of linear π-types,
and do not unsafely enlarge subtyping 6π: this is proved in Lemma 4.4, that allows to erase
dualised variables from recursive π-types. It uses
1. a substitution that only replaces dualised variables, i.e.: t{t′

/t}=t′; and
2. the equivalence =π defined as: 6π∩6π−1.

I Lemma 4.4 (Erasure of t). µt.T =π µt.T
{
µt′.T{t′/t}/t

}
, for all t′6∈ fv(T ).

I Example 4.5 (Application of erasure). Take T from Example 4.3. By Lemma 4.4, we have:
T =π µt.Li

((
t, µt′.Li

(
(t, t)

)
{t′
/t}
))

= µt.Li((t, µt′.Lo((t, t′)))).

Since T =π T
′ implies T 6π T ′ and T ′6π T , Lemma 4.4 says that any µt.T is equivalent to

a µ-type without occurrences of t: i.e., any typing relation with instances of t corresponds to
a t-free one. As a consequence, any typing derivation using t can be turned into a t-free one.
Summing up: adding dualised variables preserves the standard results of typed π-calculus.

Type Combinator
p
. Definition 4.6 introduces a type combinator that is a “relaxed”

version of ] (Definition 3.6) extended with subtyping. We will use it to encode MPST typing
contexts (Definition 5.6).

I Definition 4.6. The π-calculus type combinator C is defined on π-types as follows (and
undefined in other cases), and naturally extended to typing contexts:

Lo(T ) C Li(T ′) , Li(T ) ] Lo(T )
Li(T ′) C Lo(T ) , Li(T ) ] Lo(T )

}
if T 6π T ′ T C T , T if un(T )

(Γ1 C Γ2)(x) ,

{
Γ1(x) C Γ2(x) if x ∈ dom(Γ1) ∩ dom(Γ2)
Γi(x) if x ∈ dom(Γi) \ dom(Γj)



A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:17

The difference between ] and C is that the former combines linear inputs/outputs with the
same carried type, while C is more relaxed: it allows a carried type to be subtype of the other
— more exactly, the type carried by the output side can be smaller than the type carried by
the input side. This is shown in Lemma 4.7 and Example 4.8 below.

I Lemma 4.7. If T =T1CT2, and T ′1]T ′2 = T , then either
(a) T ′1 6π T1 and T ′2 6π T2, or
(b) T ′1 6π T2 and T ′2 6π T1.

Lemma 4.7 says that T1CT2 (when defined) is a type that, when split using ], yields
linear I/O types that are subtypes of the originating T1, T2. Intuitively, it means that C can
be soundly used to simplify typing derivations: if used to type some name x, it will yield
(when defined) a type that can also be obtained by suitably using ] and (Tπ-Sub) (Figure 5).

I Example 4.8. Let T1 = Li(Real), T2 = Lo(Int), and T = T1 C T2. We have T = L](Int);
if we let T ′1 ] T ′2 = T , then we get either (a) T ′1 = Li(Int) 6π T1 and T ′2 = Lo(Int) 6π T2,
or (b) T ′1 = Lo(Int) 6π T2 and T ′2 = Li(Int) 6π T1.

5 Encoding Multiparty Session-π into Linear π-Calculus

We now present our encoding of MPST π-calculus into linear π-calculus. It consists of an
encoding of types and an encoding of processes: combined, they preserve the safety properties
of MPST communications, both w.r.t. typing and process behaviour.

Encoding of Types. Our goal is to decompose MPST channel endpoints into point-to-point
π-calculus channels. This leads to the main intuition behind our approach: encode MPST
channel endpoints as labelled tuples, whose labels are roles, and whose values are names (for
communication). The idea is that if a multiparty channel of type S allows to talk with role
p, then the corresponding π-calculus record should have a label p, mapping to a name that
can send/receive messages to/from the process that plays the role p. This suggests the type
of an encoded MPST channel endpoint: it should be a π-calculus record — and since each
name appearing in such record is used to communicate, it should have an input/output type.

IDefinition 5.1. The encoding of session type S into linear π-types is: JSK , [p : JS � pK]p∈S
where the encoding of the partial projections JS � pK is:

J⊕i∈I !li(Ui).HiK , Lo
(
〈li_(JUiK, JHiK)〉i∈I

)
JBK , B JendK , •

J&i∈I ?li(Ui).HiK , Li
(
〈li_(JUiK, JHiK)〉i∈I

)
JtK , t Jµt.HK , µt.JHK

The encoding of a session type S, namely JSK, is a record that maps each role p∈S to the
encoding of the partial projection JS�pK. The latter adopts the basic idea of the encoding
of binary, non-recursive session types [36, 15]: it is the identity on a base type B, while
a terminated channel type end becomes •, with no capabilities. Selection ⊕i∈I !li(Ui).Hi

and branching &i∈I ?li(Ui).Hi are encoded as linear output and input types, respectively,
adopting a continuation-passing style (CPS). In both cases, the carried types are variants:
〈li_(JUiK, JHiK)〉i∈I for select and 〈li_(JUiK, JHiK)〉i∈I for branch, with the same labels as
the originating partial projections. Such variants carry tuples (JUiK, JHiK) and (JUiK, JHiK):
the first element is the encoded payload type, and the second (i.e., the encoding of Hi) is
the type of a continuation name: it is sent together with the encoded payload, and will be
used to send/receive the next message (unless Hi is end). Note that selection sends the
dual of JHiK: this is because the sender must keep interacting according to JHiK, while the

ECOOP 2017



24:18 A Linear Decomposition of Multiparty Sessions

recipient must operate dually (cf. Definition 4.1). E.g., if JHiK requires to send a message,
the recipient of JHiK must receive it. The encodings of type variables and recursive types are
homomorphic.

Note that by encoding session types as labelled tuples, we untangle the order of the
interactions among different roles. We will recover this order later, when encoding processes.

I Example 5.2. Consider the session type S , p!l1(Int).q?l2(S′).end, where S′ ,
r!l3(Bool).q?l4(String).end. By Definition 5.1, the encoding of S is:

JSK = [p : JS � pK, q : JS � qK] = [p : J!l1(Int)K, q : J?l2(S′)K]
= [p : Lo(〈l1_(Int, •)〉), q : Li(〈l2_([r : Lo(〈l3_(Bool, •)〉), q : Li(〈l4_(String, •)〉)], •)〉)]

Recursion, Continuations and Duality. We now point out a subtle (but crucial) difference
between Definition 5.1 and the encoding of binary, non-recursive session types in [15]. When
encoding partial selections, our continuation type is the dual of the encoding of Hi, i.e., JHiK;
in [15], instead, it is the encoding of the dual of Hi, i.e., JHiK. This difference is irrelevant
for non-recursive types (Example 5.2); but for recursive types, using JHiK would yield the
wrong continuations. Using JHiK, instead, gives the expected result, by generating dualised
recursion variables (cf. Definition 4.1). We explain it in Example 5.3 below.

I Example 5.3. Let H = µt.!l(Bool).t. By Definition 5.1, we have:

JHK = Jµt.!l(Bool).tK = µt.Lo
(
〈l_(JBoolK, JtK)〉

)
= µt.Lo

(
〈l_(Bool, t)〉

)
Let us now unfold the encoding of H. By Definition 4.1, we have:

unf(JHK) = unf
(
µt.Lo

(
〈l_(Bool, t)〉

))
= Lo

(
〈l_
(

Bool, µt.Li(〈l_(Bool, t)〉)
)
〉
)

This is what we want: since H requires a recursive output of Booleans, its encoding should
output a Boolean, together with a recursive input name as continuation. Hence, the recipient
will receive the first Boolean together with a continuation name, whose type mandates to
recursively input more Bools. If encoding continuations as in [15], instead, we would have:

JHK = µt.Lo
(
〈l_(JBoolK, JtK)〉

)
= µt.Lo(〈l_(Bool, t)〉) (t is not dualised)

unf(JHK) = Lo(〈l_(Bool, µt.Lo(〈l_(Bool, t)〉))〉)
which is wrong: the recipient is required to recursively output Bools. This wrong encoding
would also prevent us from obtaining Theorem 6.1 later on.

Encoding of Typing Contexts. In order to preserve type safety, we want to encode a session
judgement (Figure 4) into a π-calculus typing judgement (Figure 5). For this reason, we now
use the encoding of session types (Definition 5.1) to formalise the encoding of session typing
contexts.

I Definition 5.4. The encoding of a session typing context is:
J∅K,∅ JΘ · ΓK, JΘK, JΓK Jc :UK , JcK :JUK Js[p]K , zs[p]r

Θ, X : Ũ
z
, JΘK,

r
X : Ũ

z
JΓ, c :UK, JΓK, Jc :UK JxK , x JXK , zX

JΓ1 ◦ Γ2K, JΓ1K ] JΓ2K JX :U1, . . . , UnK , JXK :]
(
(JUiK)i∈1..n

)
When encoding typing contexts, variables (x) keep their name, while process variables (X)
and channels with roles (s[p]) are turned into distinguished names with a subscript: e.g., X
becomes zX . The composition Γ1◦Γ2 (Definition 2.11) is encoded using ] (Definition 3.6):
such an operation is always defined, since the domains of JΓ1K,JΓ2K can only overlap on basic
types.

Note that encoded process variables have an unrestricted connection type, carrying an
n-tuple of encoded argument types; encoded sessions, instead, are linearly-typed, similarly



A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:19

to [15]: this will allow to exploit the (partial) confluence properties of linear π-calculus [37]
to prove Theorem 6.5 later. Moreover, this will lead to the implementation discussed in
Section 7.

Encoding Typing Judgements: Overview. With these definitions at hand, we can now
have a first look at the encoding of session typing judgements in Figure 7 (but we postpone the
formal statement to Definition 5.7 later on, as it requires some more technical developments).

Terminated processes are encoded homomorphically. Parallel composition is also
encoded homomorphically — i.e., our encoding preserves the choreographic distribution of
the originating processes. Note that JP KΘ·Γ1 and JQKΘ·Γ2 are the encoded processes yielded
respectively by JΘ · Γ1 ` P K and JΘ · Γ2 ` QK: they exist because such typing judgements
hold, by inversion of (T-Par) (Figure 4). Similar uses of sub-processes encoded w.r.t. their
typing occur in the other cases. Process declaration def X(x̃ :U) = P inQ is encoded
as a replicated π-calculus process that inputs a value z on a name JXK = zX (matching
Definition 5.4), deconstructs it into x1, . . . , xn (using with, and hence assuming that z is an
n-tuple), and then continues as the encoding of the body P ; meanwhile, the encoding of Q
runs in parallel, enclosed by a delimitation on zX (that matches the scope of the original
declaration). Correspondingly, a process call X〈ṽ〉 is encoded as a process that sends the
encoded values JṽK on zX and ends (in MPST π-calculus, process calls are in tail position).

Selection on c[p] is encoded using information from the session typing context: the fact
that c has type S = p⊕ !l(U).S′ — i.e., JSK is a record type with one entry q :zq for each
q ∈ S. Therefore, the encoding first deconstructs JcK (using with), an then uses the (linear)
name in its p-entry to output on zp. Before performing the output, however, a new name z
is created: it is the continuation of the interaction with p. Then, one endpoint of z is sent
through zp as part of l(JvK, z), which is a variant value carrying a tuple. The other endpoint
of z is kept, and used to rebind JcK (using let) with a “new” record, consisting in all the
entries of the “original” JcK, except zp (which has been used for output). More in detail, the
“new” JcK has an entry for p (mapping p to z) iff S′ still involves p (otherwise, if p 6∈S′, then z
is discarded, since it has type JS′�pK=JendK=•). After let, the encoding continues as JP K.

Symmetrically, branching on c[p] is also encoded using information from the typing
context, i.e., that c has type S = p &i∈I ?li(U i).S′i — and therefore, JSK is a record type
with one entry q :zq for each q ∈ S. As above, the encoded process deconstructs JcK (using
with), an then uses the (linear) name in its p-entry to perform an input zp(y); y is assumed
to be a variant, and is pattern matched to determine the continuation. If y matches li (for
some i ∈ I), and it carries a tuple zi = (xi, z) (where z is a continuation name), then JcK is
rebound (using let) and the process continues as JPiK. The rebinding of JcK depends on li and
the continuation type S′i: the “new” JcK is a record with all the linear names of the “original”
JcK, except zp (which has been used for input); as above, an entry for p will exist (and map p
to z) iff S′i still involves p (otherwise, if p 6∈ S′i, then z has type • and is discarded).

We will explain the encoding of session restriction (νs)P later, after Definition 5.7,
as it requires some technicalities: namely, the substitution σ(Γ′). We can, however, have
an intuition about the role of σ(Γ′) by considering an obvious discrepancy. Consider the
following session π-calculus process, that reduces by communication (cf. Definition 2.3):

Γ, s[p] :S, s[q] :S′ ` s[p][q]&{l(x).P} | s[q][p]⊕ 〈l(v)〉.Q → P{v/x} |Q (1)

We would like its encoding to reduce and communicate, too — but it is not the case:

with [r : zr]r∈S=Js[p]K do . . . | with [r : zr]r∈S′ =Js[q]K do . . . 6→ (2)

ECOOP 2017



24:20 A Linear Decomposition of Multiparty Sessions

JΓ ` 0K , JΓK ` 0 JΘ · Γ1 ◦ Γ2 ` P |QK , JΘ · Γ1 ◦ Γ2K ` JP KΘ·Γ1 | JQKΘ·Γ2

r
Θ · Γ ` def X(x̃ : Ũ) = P inQ

z

︸ ︷︷ ︸
where Ũ = U1, . . . , Un and x̃ = x1, . . . , xn and ṽ = v1, . . . , vn

,
JΘ · ΓK `
(νJXK)

(
∗
(
JXK(z).with (xi)i∈{1..n}=z do JP KΘ,X:Ũ ·x̃:Ũ

)
| JQKΘ,X:Ũ ·Γ

)
︷ ︸︸ ︷r

Θ, X : Ũ · Γ1 ◦ . . . ◦ Γn ◦ Γ ` X〈ṽ〉
z
,

r
Θ, X : Ũ · Γ1 ◦ . . . ◦ Γn ◦ Γ

z
` JXK〈(JviK)i∈{1..n}〉.0

JΘ · c :S,Γ1 ◦ Γ2 ` c[p]⊕ 〈l(v)〉.P K︸ ︷︷ ︸
where S = p⊕ !l(U).S′

,
JΘ, c :S,Γ1 ◦ Γ2K `
with

[
q : zq

]
q∈S=JcK do (νz)zp〈l(JvK, z)〉.let JcK=z in JP KΘ·Γ2,c:S′︸ ︷︷ ︸
where z =

{
[p : z, q : zq]q∈S′\p if p ∈ S′[
q : zq

]
q∈S′ otherwise

JΘ · c :S,Γ ` c[p] &i∈I {li(xi).Pi}K︸ ︷︷ ︸
where S = p &i∈I ?li(U i).S′i

,

JΘ, c :S,ΓK ` with
[
q : zq

]
q∈S=JcK do zp(y).case y of

{
li(zi) .with (xi, z) =zi do let JcK=zi in JPiKΘ·Γ′

}
i∈I︸ ︷︷ ︸

where Γ′ = Γ, xi :Ui, c :S′i and zi =
{

[p : z, q : zq]q∈S′
i
\p if p ∈ S′i[

q : zq
]

q∈S′
i

otherwise

JΘ · Γ ` (νs :Γ′)P K︸ ︷︷ ︸
where conn(s,Γ′) = {{p1, q1}, . . . , {pn, qn}}

, JΘ · ΓK ` J(νs)KJP KΘ·Γ,Γ′σ(Γ′)︸ ︷︷ ︸
where J(νs)K = (νz{s,pi,qi})i∈{1..n}

Figure 7 Encoding of typing judgements. Here, JP KΘ·Γ =Q iff JΘ·Γ`P K = JΘ·ΓK`Q (Defini-
tion 5.7).

and the reason is that Js[p]K, Js[q]K are “just” record-typed names (respectively zs[p], zs[q],
as per Definition 5.4), whereas with-prefixes only reduce when applied to record values (cf.
Definition 3.2). Hence, to let our encoded terms reduce, we must first substitute Js[p]K, Js[q]K
with two records; moreover, to let the two encoded processes synchronise and exchange JvK,
such records must be suitably defined: we must ensure that the entries for q (in one record)
and p (in the other) map to the same (linear) name. In the following, we show how σ(Γ′)
handles this issue.

Reification of Multiparty Sessions. By simply translating a channel with role s[p] into a
π-calculus name zs[p], we have not yet captured the insight behind our approach, i.e., the
idea that a multiparty session can be decomposed into a labelled tuple of linear channels
(i.e., π-calculus names), connecting pairs of roles. We can formalise “connections” as follows.

IDefinition 5.5. The connections of s in Γ are: conn(s,Γ) ,
{
{p, q}

∣∣ s[p] :Sp ∈ Γ ∧ q ∈ Sp
}

Intuitively, two roles p, q are connected by s in Γ if p occurs in the type Γ(s[q]) (but q
might not occur in Γ(s[p]); note, however, that q will always occur if Γ is consistent).
Now, as anticipated above, we want to substitute each Js[p]K with a suitably defined record,
containing π-calculus names; moreover, such names must be typed in the typing context.
But what are exactly such names, and their types? This is answered by Definition 5.6.

I Definition 5.6 (Reification and decomposition of MPST contexts). The reification of a
session typing context ΓS is the substitution:

σ(ΓS) =
{ [q : z{s,p,q}]q∈Sp/Js[p]K

}
s[p]:Sp∈ΓS

The linear decomposition of ΓS is the π-calculus typing context δ(ΓS), defined as:

δ(ΓS) =
p
s[p]:Sp∈ΓS

{
z{s,p,q} :

q
unf
(
Sp � q

)y}
{p,q}∈conn(s,ΓS)



A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:21

JQK

b

a

c

q

q

q

JPaK p

JPbK p

JPcK
p

JsaK

JsbK

JscK

JsK →∗

JQ′K

a

c

q

q

JPaK p

JPb
′K b

JPcK
p

JsaK

JscK

JsK →∗

JPa
′K

a

JPb
′′K

b

JPc
′K

cJsK

(a) (b) (c)

Figure 8 Multiparty peer-to-peer game: encoded version of Figure 2. Lines are binary channels.

The π-calculus reification typing rule is (note that ΓS,Γ′S are MPST typing contexts):
JΘ · ΓSK, JΓ′SK ` P

JΘ · ΓSK, δ(Γ′S) ` Pσ(Γ′S)
(Tπ-Reify)

The simplest part of Definition 5.6 is σ(ΓS): it is a substitution that, for each s[p] :Sp ∈ ΓS,
replaces Js[p]K with a record containing one entry q :z{s,p,q} for each q∈ Sp. Note that if
there is also some s[q] :Sq ∈ ΓS with p∈Sq, then the corresponding record (replacing Js[q]K)
has an entry p :z{s,q,p} = z{s,p,q}; i.e., p (in one record) and q (in the other) map to the same
name. This realises the intuition of “multiparty sessions as records of interconnected binary
channels”.

The definition of σ(ΓS) was the last ingredient needed to formalise our encoding, presented
in Definition 5.7 below. The rest of Definition 5.6 will be used later on, to prove its correctness
(Theorem 6.2): hence, we postpone its explanation to page 22.

I Definition 5.7 (Encoding). The encoding of session typing judgements is given in Figure 7.
We define JP KΘ·Γ = Q iff JΘ · Γ ` P K = JΘ · ΓK ` Q. Sometimes, we write JP K for JP KΘ·Γ
when Θ,Γ are empty, or clear from the context.

We conclude by explaining the last case in Figure 7, which was not addressed on p.19.
The process (νs :Γ′)P is encoded by generating one delimitation for each z{s,pi,qi} whenever
{pi, qi} is a connection of s in Γ′ (Definition 5.5). Then, P is encoded, and the substitution
σ(Γ′) is applied: it replaces each Js[pi]K, Js[qi]K in JP K with records based on the delimited
z{s,pi,qi}.

I Example 5.8. Consider (1). If we delimit s and encode the resulting process, we obtain
a π-calculus process based on (2), enclosed by the delimitations yielded by J(νs)K, and the
substitution σ(s[p] :S, s[q] :S′, . . .). Since the latter replaces Js[p]K, Js[q]K with records whose
entries reflect roles(S) and roles(S′), the encoding can now reduce, firing the two withs.

I Example 5.9. Consider the main server/clients parallel composition in Example 2.2:
(νsa, sb, sc)

(
Q | Pa | Pb | Pc

)
where

Q = (νs)
(
sa[q][p]⊕〈PlayA(s[a])〉 | sb[q][p]⊕〈PlayB(s[b])〉 | sc[q][p]⊕〈PlayC(s[c])〉

)
Its encoding is the following process, with s decomposed into 3 linear channels (see Figure 8):
(νz{sa,p,q}, z{sb,p,q}, z{sc,p,q})

(
JQK | JPaK | JPbK | JPcK

)
where

JQK = (νz{s,a,b}, z{s,b,c}, z{s,a,c})
(
Jsa[q][p]⊕〈PlayA(s[a])〉K | Jsb[q][p]⊕〈PlayB(s[b])〉K | Jsc[q][p]⊕〈PlayC(s[c])〉K

)

6 Properties of the Encoding

In this section we present some crucial properties ensuring the correctness of our encoding.

ECOOP 2017



24:22 A Linear Decomposition of Multiparty Sessions

Encoding of Types. Theorem 6.1 below says that our encoding
1. commutes the duality between partial session types (Definition 2.8) and π-types (Defini-

tion 4.1), and
2. also preserves subtyping.
I Theorem 6.1 (Duality/subtyping preservation). JHK=JHK; if U6SU

′, then JUK6π JU ′K.

Encoding of Typing Judgements. Theorem 6.2 shows that the encoding of session typing
judgements into π-calculus typing judgements is valid. As a consequence, a well-typed MPST
process also enjoys the type safety guarantees that can be expressed in standard π-calculus.
I Theorem 6.2 (Correctness of encoding). Γ`v :U implies JΓK`JvK:JUK, Θ `X : Ũ implies
JΘK ` JXK : J̃UK, and Θ·Γ`P implies JΘ·Γ`P K.
The proof is by induction on the MPST typing derivation, and yields a corresponding
π-calculus typing derivation. One simple case is the following, that relates subtyping:

(T-Sub)
Θ · Γ, c :U ` P U ′6SU

Θ · Γ, c :U ′ ` P
implies

JΘ · Γ, c :U ` P K
q
U ′

y
6π JUK

q
Θ · Γ, c :U ′

y
` JP KΘ·Γ,c:U

(Tπ-Narrow)
(Figure 6)

and holds by the induction hypothesis and Theorem 6.1. The most delicate case is the
encoding of session restriction Θ·Γ ` (νs :Γ′)P (Figure 7): its encoding turns (νs) into a
set of delimited names, used in the substitution σ(Γ′) applied to JP KΘ·Γ,Γ′ . Hence, to prove
Theorem 6.2 in this case, we need to type such names, i.e., produce a context that types
JP KΘ·Γ,Γ′σ(Γ′). This is where δ(Γ′) and (Tπ-Reify) (Definition 5.6) come into play, as we
now explain.

More on reification and decomposition. By Definition 5.6, the typing context δ(ΓS), when
defined, δ(ΓS) has an entry for each role of each channel in ΓS; more precisely, an entry z{s,p,q}
for each s[p] :Sp ∈ ΓS and q ∈ Sp. Such entries are used to type the records yielded by σ(ΓS).
The type of z{s,p,q} is based on the encoding of the unfolded partial projection Sp � q, that
can be either •, or Li(T )/Lo(T ) (for some T ). Note that if there is also some s[q] :Sq ∈ ΓS
with p ∈ Sq, the type of z{s,q,p} = z{s,p,q} (when defined) is

q
unf
(
Sp � q

)y
C

q
unf
(
Sq � p

)y
.

This creates a deep correspondence between the consistency of ΓS and the existence of δ(ΓS),
shown in Theorem 6.3: the precondition for MPST type safety (i.e., consistency of ΓS) is
precisely characterised in π-calculus by the linear decomposition at the roots of our encoding.
I Theorem 6.3 (Precise decomposition). ΓS is consistent if and only if δ(ΓS) is defined.

The final part of Definition 5.6 is the π-calculus typing rule (Tπ-Reify), that uses δ(Γ′S)
to type a process on which σ(Γ′S) has been applied. Intuitively, δ(Γ′S) provides a typing
context that types each record yielded by σ(Γ′S). We now explain how the rule works and
why it is sound (with a slight simplification). Let Γ′S =

{
s[p] :Sp

}
p∈I , for some I. Then, by

Definition 5.6:
δ(Γ′S) =

p
p∈I
{
z{s,p,q} :

q
unf
(
Sp � q

)y}
{p,q}∈conn(s,ΓS) σ(Γ′S) =

{ [q : z{s,p,q}]q∈Sp/Js[p]K
}

p∈I

(Note: δ(Γ′S) is defined iff Γ′S is consistent, by Theorem 6.3). Take the I/O types yielded by
δ(Γ′S), i.e.,

{
T(s,p,q)

}
{p,q}∈conn(s,ΓS) such that δ(Γ′S) =

⊎
p∈I
{
z{s,p,q} :T(s,p,q)

}
{p,q}∈conn(s,ΓS)

(note T(s,p,q), T(s,q,p) are distinct). If we assume JΘ · ΓSK, JΓ′SK ` P , this derivation holds:∀q ∈ Sp

(Tπ-Name)
z{s,p,q} :T(s,p,q) ` z{s,p,q} :T(s,p,q) T(s,p,q) 6π

q
Sp � q

y

z{s,p,q} :T(s,p,q) ` z{s,p,q} :
q
Sp � q

y (Tπ-Sub){
z{s,p,q} :JSp � qK

}
q∈Sp

`
[
q : z{s,p,q}

]
q∈Sp

(Tπ-Rec)


p∈I JΘ · ΓSK, JΓ′SK ` P

JΘ · ΓSK, δ(Γ′S) = JΘ · ΓK ] δ(Γ′S) ` Pσ(Γ′S) (Tπ-MSubst - Figure 6)



A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:23

In particular, the assumptions T(s,p,q) 6π
q
Sp � q

y
hold by Lemma 4.7, since each T(s,p,q)

is obtained by splitting δ(Γ′S) (that combines types with C) using ]. The equivalence in
the conclusion holds since dom(JΘ·ΓSK)∩dom(δ(Γ′S))=∅. Hence: if the (Tπ-Reify) premise
(JΘ · ΓSK, JΓ′SK ` P ) holds, the above derivation holds, proving the conclusion of (Tπ-Reify).

Now, we can finish the proof of Theorem 6.2 for the case Θ·Γ`(νs :Γ′)P . Assuming that
the judgement holds, we also have Θ · Γ,Γ′ ` P and Γ′ complete (by the premise of (T-Res),
Figure 4): hence, Γ′ is consistent, and δ(Γ′) is defined (by Theorem 6.3). Assuming that
JΘ·Γ,Γ′ ` P K holds (by the induction hypothesis), we obtain:

JΘ · ΓK, JΓ′K ` JP KΘ·Γ,Γ′

JΘ · ΓK, δ(Γ′) ` JP KΘ·Γ,Γ′σ(Γ′)
(Tπ-Reify)

where δ(Γ′) types all the names z{s,p,q} in σ(Γ′), that are also delimited by J(νs)K. We can
conclude by applying (Tπ-Res1) to type such delimitations (cf. Figure 5 — this is allowed by
the completeness of Γ′): we get JΘ · ΓK ` J(νs)KJP KΘ·Γ,Γ′σ(Γ′), i.e., we match Figure 7.

Finally, notice (from Figure 7) that our encoding of processes uses some typing information.
In principle, a process could be typed by applying the rules in multiple ways (especially
(T-Sub) in Figure 4), and one might wonder whether an MPST process could have multiple
encodings. Proposition 6.4 says that this is not the case: the reason is that the only typing
information being used is the set of roles in each session type, which does not depend on the
typing rule — and is constant w.r.t. subtyping (i.e., S6SS

′ implies roles(S)=roles(S′)).

I Proposition 6.4 (Uniqueness). If Θ · Γ ` P and Θ′ · Γ′ ` P , then JP KΘ·Γ = JP KΘ′·Γ′ .

Encoding and Reduction. One usual way to assess that an encoding is “behaviourally
correct” (i.e., a process and its encoding behave “in the same way”) consists in proving
operational correspondence. Roughly, it says that the encoding is:
1. complete, i.e., any reduction of the original process is simulated by its encoding; and
2. sound, i.e., any reduction of the encoded process matches some reduction of the original

process.
This is formalised in Theorem 6.5, where with−−−→ denotes a reduction induced by (Rπ-With)
(Definition 3.2).

I Theorem 6.5 (Operational correspondence). If ∅ ·∅ ` P , then:
1. (Completeness) P→∗P ′ implies ∃x̃, P ′′ such that JP K→∗ (νx̃)P ′′ and P ′′ = JP ′K;

2. (Soundness) JP K→∗P∗ implies ∃x̃,P ′′,P ′ s.t. P∗→∗(νx̃)P ′′, P→∗P ′ and JP ′K with−−−→∗P ′′.

The statement of Theorem 6.5 is standard [23, §5.1.3]. Item 1 says that if P reduces to
P ′, then the encoding of the former can reduce to the encoding of the latter. Item 2 says
(roughly) that no matter how the encoding of P reduces, it can always further reduce to the
encoding of some P ′, such that P reduces to P ′. Note that when we write JP ′K, we mean
JP ′K∅·∅, which implies ∅ ·∅ ` P ′ (cf. Definition 5.7). The restricted variables x̃ in items 1-2
are generated by the encoding of selection (Figure 7): it creates a (delimited) linear name to
continue the session. To see why item 2 uses with−−−→∗, consider the following MPST process:

∅ · Γ, s[p] :S ` s[p][q]&{l(x).P} 6→ (the process is stuck)
If we encode it (and apply σ(Γ, s[p] :S) as per Example 5.8), we get a π-calculus process
that gets stuck, too — but only after firing one internal with-reduction:

with [r : zr]r∈S=
[
r : z{s,p,r}

]
r∈S do zq(y). . . . with−−−→ z{s,p,q}(y). . . . 6→

This happens whenever a process is deadlocked, because in Figure 7, the “atomic” MPST
branch/select actions are encoded with multiple π-calculus steps: first with to deconstruct

ECOOP 2017



24:24 A Linear Decomposition of Multiparty Sessions

the channels tuple, and then input/output. In general, if an MPST process is stuck, its
encoding fires one with for each branch/select, then blocks on an input/output.

Theorem 6.5 yields a corollary on deadlock freedom (Corollary 6.6), that in turn allows to
transfer deadlock freedom (Theorem 2.19) from MPST to π-calculus processes (Corollary 6.7
below).

I Corollary 6.6. P is deadlock-free if and only if JP K is deadlock-free, i.e.: JP K→∗ P ′ 6→
implies ∃Q ≡ 0 such that P ′ = JQK.

I Corollary 6.7. Let ∅·∅ ` P , where P ≡ (νs :G)
∣∣
i∈IPi and each Pi only interacts on s[pi].

Then, JP K is deadlock-free.

7 From Theory to Implementation

We can now show how our encoding directly guides the implementation of a toolchain
for generating safe multiparty session APIs in Scala, supporting distributed delegation. We
continue our Game example from Section 1, focusing on player b: we sketch the API generation
and an implementation of a client, following the results in Section 6. Our approach is to:
1. exploit type safety and distribution provided by an existing library for binary session

channels, and then
2. treat the ordering of communications across separate channels in the API generation.

Scala and lchannels. Our Scala toolchain is built upon the lchannels library [61, 62].
lchannels provides two key classes, Out[T] and In[T], whose instances must be used lin-
early (i.e., once) to send/receive (by method calls) a T-typed message: i.e., they represent
channel endpoints with π-calculus types Lo(T ) and Li(T ) (Definition 3.3). This approach
enforces the typing of I/O actions via static Scala typing; the linear usage of channels,
instead, goes beyond the capabilities of the Scala typing system, and is therefore enforced
with run-time checks.

lchannels delivers messages by abstracting over various transports: local memory, TCP
sockets, Akka actors [41]. Notably, lchannels promotes session type-safety through a
continuation-passing-style encoding of binary session types [61] that is close to our en-
coding of partial projections (formalised in Definition 5.1). Further, lchannels allows to
send/receive In[T]/Out[T] instances for binary session delegation [61, Example 4.3]; on dis-
tributed message transports, instances of In[T]/Out[T] can be sent remotely (e.g., via the
Akka-based transport).

Type-safe, distributed multiparty delegation. By Theorem 6.2, Definition 5.1 and The-
orem 6.3, we know that the game player session type Sb in our example (see Section 1, page 3)
provides the type safety guarantees of a tuple of (linear) channels, whose types are given by
the encoded partial projections of Sb onto a and c (Definition 2.9). This suggests that, using
lchannels, the delegation of an Sb-typed channel (as seen in Section 1) could be rendered in
Scala as:

In[PlayB] with definitions: case class PlayB(payload: Sb)
case class Sb(a: In[InfoAB],c: Out[InfoBC])

i.e., as a linear input channel carrying a message of type PlayB, whose payload has type Sb;
Sb, in turn, is a Scala case class, which can be seen as a labelled tuple, that maps a,c to
I/O channels — whose types derive from JSb�aK and JSb�cK (in fact, they carry messages of
type InfoAB/InfoBC). In this view, Sb is our Scala rendering of the encoded session type JSbK.
As said above, lchannels allows to send channels remotely — hence, also allows to remotely



A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:25

send tuples of channels (e.g., instances of Sb); thus, with this simple approach, we obtain
type-safe distributed multiparty delegation of an JSbK-typed channel tuple “for free”.

Multiparty API generation. Corresponding to the π-calculus labelled tuple type yielded by
the type encoding JSbK, the Sb class outlined above can ensure communication safety, i.e., no
unexpected message will be sent or received on any of its binary channels. Like JSbK, however,
Sb does not convey any ordering to communications across channels: i.e., Sb does not suggest
the order in which its fields a,c should be used. (Indeed, JSbK may type π-processes that use
its separate channels in any order, while preserving type safety.) To recover the “desired”
ordering of communications, and implement it correctly, we can refine our classes so that:
1. each multiparty channel class (e.g., Sb) exposes a send() or receive() method, according

to the I/O action expected by the multiparty session type (e.g., Sb);
2. the implementation of such method uses the binary channels as per our process encoding.
E.g., consider again Sb and Sb. Sb requires to send towards c, so Sb could provide the API:
case class Sb(a: In[InfoAB], c: Out[InfoBC]) {

def send(v: String) = { // v is the payload of InfoBC message
val c′ = c !! InfoBC(v)_ // lchannels method: send v, and return continuation
S′b(a, c′) } } // return a "continuation object"

Now, Sb.send() behaves exactly as our process encoding in Figure 7 (case for selection ⊕):
it picks the correct channel from the tuple (in this case, c), creates a new tuple S′b where c
maps to a continuation channel, and returns it — so that the caller can use it to continue the
multiparty session interaction. The class S′b should be similar, with a receive() method that
uses a for input (by following the encoding of &). This way, a programmer is correctly led to
write, e.g., val x = s.send(...).receive() (using method call chaining) — whereas attempting,
e.g., s.receive() is rejected by the Scala compiler (method undefined). These send()/receive()

APIs are mechanical, and can be automatically generated: we did it by extending Scribble.

Scribble-Scala Toolchain. Scribble is a practical MPST-based language and tool for de-
scribing global protocols [63, 68]. To implement our results, we have extended Scribble (both
the language and the tool) to support the full MPST theory in Section 2, including, e.g.,
projection, type merging and delegation (not previously supported). Our extension supports
protocols with the syntax in Figure 9 (left), by augmenting Scribble with a projection operator
@; then, it computes the projections/encodings explained in Section 5, and automates the
Scala API generation as outlined above (producing, e.g., the Sb, S’b,. . . classes and their
send/receive methods). This approach reminds the Java API generation in [29] — but we
follow a formal foundation and target the type-safe binary channels provided by lchannels
(that, as shown above, takes care of most irksome aspects — e.g., delegation). As a result,
the Pb client in Figure 1 can be written as in Figure 9 (right); and although conceptually
programmed as Figure 2, the networking mechanisms of the game will concretely follow
Figure 8.

8 Conclusion and Related Works

We presented the first encoding of a full-fledged multiparty session π-calculus into standard
π-calculus (Section 5), and used it as the foundation of the first implementation of multiparty
sessions (based on Scala API generation) supporting distributed multiparty delegation, on top
of existing libraries (Section 7). We proved that the type safety property of MPST is precisely
characterised by our decomposition into linear π-calculus (Theorem 6.3). We encode types by
preserving duality and subtyping (Theorem 6.1); our encoding of processes is type-preserving,

ECOOP 2017



24:26 A Linear Decomposition of Multiparty Sessions

global protocol ClientA(role p, role q) {
PlayA(Game@a) from q to p; } // Delegation payload

global protocol ClientB(role p, role q) {
PlayB(Game@b) from q to p; }

global protocol ClientC(role p, role q) {
PlayC(Game@c) from q to p; }

global protocol Game(role a, role b, role c) {
InfoBC(String) from b to c;
InfoCA(String) from c to a;
InfoAB(String) from a to b;
rec t { choice at a {

Mov1AB(Int) from a to b;
Mov1BC(Int) from b to c;
choice at c { Mov1CA(Int) from c to a; continue t; }

or { Mov2CA(Bool) from c to a; continue t; }
} or {
Mov2AB(Bool) from a to b;
Mov2BC(Bool) from b to c;
choice at c { Mov1CA(Int) from c to a; continue t; }

or { Mov2CA(Bool) from c to a; continue t; }
} } }

def P_b(c_bin: In[binary.PlayB]) = { // Cf. Ex.2.2
// Wrap binary chan in generated multiparty API
Client_b(MPPlayB(c_bin))

}

def Client_b(y: MPPlayB): Unit = {
// Receive Game chan (wraps binary chans to a/c)
val z = y.receive().p // p is the payload field
// Send info to c; wait info from a; enter loop
Loop_b(z.send(InfoBC("...")).receive())

}

def Loop_b(x: MPMov1ABOrMov2AB): Unit = {
x.receive() match { // Check a’s move

case Mov1AB(p, cont) => {
// cont only allows to send Mov1BC
Loop_b(cont.send(Mov1BC(p)))

}
case Mov2AB(p, cont) => {

// cont only allows to send Mov2BC
Loop_b(cont.send(Mov2BC(p)))

}}} // If e.g. case Mov2AB missing: compiler warn

Figure 9 Game example (Section 1). Left: Scribble protocols for client/server setup sessions,
and main Game (Example 2.18). Right: Scala code for player b, using Scribble-generated APIs to
mimick Example 2.2.

and operationally sound and complete (Theorem 6.2 and Theorem 6.5); hence, our encoding
preserves the type-safety and deadlock-freedom properties of MPST (Corollary 6.7). These
results ensure the correctness of our (encoding-based) Scala implementation. Moreover, our
encoding preserves process distribution (i.e., is homomorphic w.r.t. parallel composition);
correspondingly, our implementation of multiparty sessions is decentralised and choreographic.

Session Types for “Mainstream” Languages. We mentioned binary session implementa-
tions for various languages in Section 1. Notably, [57, 32, 33, 42, 52, 61, 55] seek to integrate
session types in the native host language, without language extensions, to avoid hindering
their use in practice. To do so, one approach (e.g. in [61, 55]) is combining static typing of
I/O actions with run-time checking of linear channel usage. Our implementation adopts this
idea (Section 7). Haskell-based works exploit its richer typing system to statically enforce
linearity — with various expressiveness/usability trade-offs based on their session types
embedding strategy.

Implementations of multiparty sessions are few and limited, due to the intricacies of the
theory (e.g., the interplay between projections, mergability and consistency), and practical
issues (e.g., realising multiparty abstractions over binary transports, including distributed
delegation), as discussed in Section 1. [64] was the first implementation of MPST, based
on extending Java with session primitives. [29] proposes MPST-based API generation for
Java, based on CFSMs [7], but has no formalisation — unlike our implementation, that
follows our encoding. [17, 20] develop MPST-influenced networking APIs in Python and
Erlang; [50] implements recovery strategies in Erlang. [17, 20, 50] focus on purely dynamic
MPST verification via run-time monitoring. [51, 48] extends [17] with actors and timed
specifications. [46] uses a dependent MPST theory to verify MPI programs. Crucially, none
of these implementations supports delegation (nor projection merging, needed by our Game
example, cf. Example 2.14).

Encodings of Session Types and Processes. [16] encodes binary session π-calculus into
an augmented π-calculus with branch/select constructs. [15], following [36], and [21] encode



A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:27

non-recursive, binary session π-calculus, respectively into linear π-calculus and the Generic
Type System for π-calculus [31], proving correctness w.r.t. typing and reduction. All the
above works investigate binary and (except [16]) non-recursive session types, while in this
paper we study the encoding of multiparty session types, subsuming binary ones; and unlike
[16], we target standard π-calculus. We encode branching/selection using variants as in
[15, 13], but our treatment of recursion, and the rest of the MPST theory, is novel.

Encodings of multiparty into binary sessions are studied in [9, 8]. Both use orchestration
approaches that add centralised medium/arbiter processes, and target session calculi (not
π-calculus). [53] uses a limited class of global types to extract “characteristic” deadlock-free
π-calculus processes — without addressing session calculi, nor proving operational properties.

Recursion and Duality. The interplay between recursion and duality has been a thorny
issue in session types literature, requiring our careful treatment in Section 4. [6, 1] noticed
that the standard duality in [26] does not commute with the unfolding of recursion when
type variables occur as payload, e.g., µt.!t.end. To solve this issue, [6, 1] define a new notion
of duality, called complement [1], then used in [13] to encode recursive binary session types
into linear π-types. Unfortunately, [2] later noticed that even complement does not commute,
e.g., when unfolding µt.µt′.!t.t′. As observed in Section 4, to encode recursive session types
we encounter similar issues in π-types. The reason seems natural: π-types do not distinguish
“payloads” and “continuations”, and in recursive linear inputs/outputs, type variables always
occur as “payload”, e.g., µt.Lo(t). Since, in the light of [2], we could not adopt the approach
of [13], we propose a solution similar to [43]: introduce dualised type variables t. [43] also
sketches a property similar to our Lemma 4.4. The main difference is that we add dualised
variables to π-types (while [43] adds t to session types). An alternative idea is given in [61]:
encoding recursive session types as non-recursive linear I/O types with recursive payloads.
This avoids dualised variables (e.g., Lo(µt.Li(t)) instead of µt.Lo

(
t
)
), but if adopted, would

complicate Definition 5.1. Moreover, [61] studies the encoding of recursive types, but not
processes.

Future work. On the practical side, we plan to study whether Scala language extensions
could provide stronger static channel usage checks. E.g., [25, 24] (capabilities) could allow
to ensure that a channel endpoint is not used after being sent; [58, 65] (effects) could allow
to ensure that a channel endpoint is actually used in a given method. We also plan to
extend our multiparty API generation approach beyond Scala and lchannels, targeting other
languages and implementations of binary sessions/channels [57, 32, 33, 42, 52, 55].

On the theoretical side, our encoding provides a basis for reusing theoretical results
and tools between MPST π-calculus and standard π-calculus. E.g., we could now exploit
Corollary 6.6, to verify deadlock-freedom of processes with interleaved multiparty sessions
(studied in [3, 10, 12]) by applying π-calculus deadlock detection methods to their encodings
[38, 35, 66]. Moreover, we can prove that our encoding is barb-preserving: hence, we plan to
study its full abstraction properties w.r.t. barbed congruence in session π-calculus [40, 39]
and π-calculus.

Thanks to the reviewers for their remarks, and to B. Toninho for fruitful discussions.
Thanks to S.S. Jongmans, R. Neykova, N. Ng, B. Toninho for testing the companion artifact.

ECOOP 2017



24:28 A Linear Decomposition of Multiparty Sessions

References

1 Giovanni Bernardi and Matthew Hennessy. Using higher-order contracts to model session
types (extended abstract). In CONCUR, 2014. doi:10.1007/978-3-662-44584-6_27.

2 Giovanni Bernardi and Matthew Hennessy. Using higher-order contracts to model session
types. Logical Methods in Computer Science, 12(2), 2016. doi:10.2168/LMCS-12(2:10)
2016.

3 Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-
Ciancaglini, and Nobuko Yoshida. Global progress in dynamically interleaved multiparty
sessions. In CONCUR, 2008. doi:10.1007/978-3-540-85361-9_33.

4 Laura Bocchi, Julien Lange, and Nobuko Yoshida. Meeting Deadlines Together. In CON-
CUR, 2015. doi:http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.283.

5 Laura Bocchi, Julien Lange, and Nobuko Yoshida. Meeting Deadlines Together (long ver-
sion). Technical report, 2015. Long version of [4]. URL: http://mrg.doc.ic.ac.uk/
publications/meeting-deadlines-together/long.pdf.

6 Viviana Bono and Luca Padovani. Typing copyless message passing. Logical Methods in
Computer Science, 8(1), 2012. doi:10.2168/LMCS-8(1:17)2012.

7 Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J. ACM,
30(2), April 1983. doi:10.1145/322374.322380.

8 Luís Caires and Jorge A. Pérez. Multiparty session types within a canonical binary theory,
and beyond. In FORTE, 2016. doi:10.1007/978-3-319-39570-8_6.

9 Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip Wadler.
Coherence generalises duality: A logical explanation of multiparty session types. In CON-
CUR, 2016. doi:10.4230/LIPIcs.CONCUR.2016.33.

10 Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. In-
ference of global progress properties for dynamically interleaved multiparty sessions. In
COORDINATION, 2013. doi:10.1007/978-3-642-38493-6_4.

11 Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. A
gentle introduction to multiparty asynchronous session types. In Formal Methods for Mul-
ticore Programming, 2015. doi:10.1007/978-3-319-18941-3_4.

12 Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani.
Global Progress for Dynamically Interleaved Multiparty Sessions. Mathematical Structures
in Computer Science, 760, 2015. doi:10.1017/S0960129514000188.

13 Ornela Dardha. Recursive session types revisited. In BEAT, 2014. doi:10.4204/EPTCS.
162.4.

14 Ornela Dardha. Type Systems for Distributed Programs: Components and Sessions,
volume 7 of Atlantis Studies in Computing. Atlantis Press, July 2016. doi:10.2991/
978-94-6239-204-5.

15 Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. In PPDP,
2012. doi:10.1145/2370776.2370794.

16 Romain Demangeon and Kohei Honda. Full abstraction in a subtyped pi-calculus with
linear types. In CONCUR, 2011. doi:10.1007/978-3-642-23217-6_19.

17 Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Practical interruptible conversations: Distributed dynamic verification with multiparty
session types and Python. Formal Methods in System Design, 2015. doi:10.1007/
s10703-014-0218-8.

18 Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. Parameterised
multiparty session types. Logical Methods in Computer Science, 8(4), 2012. doi:10.2168/
LMCS-8(4:6)2012.

http://dx.doi.org/10.1007/978-3-662-44584-6_27
http://dx.doi.org/10.2168/LMCS-12(2:10)2016
http://dx.doi.org/10.2168/LMCS-12(2:10)2016
http://dx.doi.org/10.1007/978-3-540-85361-9_33
http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.283
http://mrg.doc.ic.ac.uk/publications/meeting-deadlines-together/long.pdf
http://mrg.doc.ic.ac.uk/publications/meeting-deadlines-together/long.pdf
http://dx.doi.org/10.2168/LMCS-8(1:17)2012
http://dx.doi.org/10.1145/322374.322380
http://dx.doi.org/10.1007/978-3-319-39570-8_6
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.33
http://dx.doi.org/10.1007/978-3-642-38493-6_4
http://dx.doi.org/10.1007/978-3-319-18941-3_4
http://dx.doi.org/10.1017/S0960129514000188
http://dx.doi.org/10.4204/EPTCS.162.4
http://dx.doi.org/10.4204/EPTCS.162.4
http://dx.doi.org/10.2991/978-94-6239-204-5
http://dx.doi.org/10.2991/978-94-6239-204-5
http://dx.doi.org/10.1145/2370776.2370794
http://dx.doi.org/10.1007/978-3-642-23217-6_19
http://dx.doi.org/10.1007/s10703-014-0218-8
http://dx.doi.org/10.1007/s10703-014-0218-8
http://dx.doi.org/10.2168/LMCS-8(4:6)2012
http://dx.doi.org/10.2168/LMCS-8(4:6)2012


A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:29

19 Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, and
Nobuko Yoshida. Precise subtyping for synchronous multiparty sessions. In PLACES, pages
29–43, 2015. doi:10.4204/EPTCS.203.3.

20 Simon Fowler. An Erlang implementation of multiparty session actors. In ICE, 2016.
doi:10.4204/EPTCS.223.3.

21 Simon J. Gay, Nils Gesbert, and António Ravara. Session types as generic process types.
In EXPRESS/SOS, 2014. doi:10.4204/EPTCS.160.9.

22 Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta
Informatica, 42(2-3), 2005. doi:10.1007/s00236-005-0177-z.

23 Daniele Gorla. Towards a unified approach to encodability and separation results for process
calculi. Inf. Comput., 208(9), 2010. doi:10.1016/j.ic.2010.05.002.

24 Philipp Haller and Alexander Loiko. LaCasa: lightweight affinity and object capabilities in
Scala. In OOPSLA, 2016. doi:10.1145/2983990.2984042.

25 Philipp Haller and Martin Odersky. Capabilities for uniqueness and borrowing. In ECOOP,
2010. doi:10.1007/978-3-642-14107-2_17.

26 Kohei Honda, Vasco Vasconcelos, and Makoto Kubo. Language primitives and type
disciplines for structured communication-based programming. In ESOP, 1998. doi:
10.1007/BFb0053567.

27 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session
types. In POPL, 2008. Full version in [28]. doi:10.1145/1328438.1328472.

28 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session
types. J. ACM, 63(1), March 2016. doi:10.1145/2827695.

29 Raymond Hu and Nobuko Yoshida. Hybrid session verification through endpoint API
generation. In FASE, 2016. doi:10.1007/978-3-662-49665-7_24.

30 Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based distributed programming
in java. In ECOOP, 2008. doi:10.1007/978-3-540-70592-5_22.

31 Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-calculus. Theo.
Comput. Sci., 311(1-3), 2004. doi:10.1016/S0304-3975(03)00325-6.

32 Keigo Imai, Shoji Yuen, and Kiyoshi Agusa. Session type inference in Haskell. In PLACES,
2010. doi:10.4204/EPTCS.69.6.

33 Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen. Session
types for Rust. In WGP@ICFP, 2015. doi:10.1145/2808098.2808100.

34 Naoki Kobayashi. Type systems for concurrent programs. In 10th Anniversary Colloquium
of UNU/IIST, 2002. doi:10.1007/978-3-540-40007-3_26.

35 Naoki Kobayashi. A new type system for deadlock-free processes. In CONCUR, 2006.
doi:10.1007/11817949_16.

36 Naoki Kobayashi. Type systems for concurrent programs. Extended version of [34],
Tohoku University, 2007. URL: http://www.kb.ecei.tohoku.ac.jp/~koba/papers/
tutorial-type-extended.pdf.

37 Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-calculus.
ACM Trans. Program. Lang. Syst., 21(5), September 1999. doi:10.1145/330249.330251.

38 Naoki Kobayashi and Davide Sangiorgi. A hybrid type system for lock-freedom of mobile
processes. ACM Trans. Program. Lang. Syst., 32(5), 2010.

39 Dimitrios Kouzapas and Nobuko Yoshida. Globally governed session semantics. In CON-
CUR, 2013. doi:10.1007/978-3-642-40184-8_28.

40 Dimitrios Kouzapas and Nobuko Yoshida. Globally governed session semantics. Logical
Methods in Computer Science, 10(4), 2014. doi:10.2168/LMCS-10(4:20)2014.

41 Lightbend, Inc. The Akka framework, 2017. URL: http://akka.io/.
42 Sam Lindley and J. Garrett Morris. Embedding session types in Haskell. In Haskell, 2016.

doi:10.1145/2976002.2976018.

ECOOP 2017

http://dx.doi.org/10.4204/EPTCS.203.3
http://dx.doi.org/10.4204/EPTCS.223.3
http://dx.doi.org/10.4204/EPTCS.160.9
http://dx.doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.1016/j.ic.2010.05.002
http://dx.doi.org/10.1145/2983990.2984042
http://dx.doi.org/10.1007/978-3-642-14107-2_17
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1145/2827695
http://dx.doi.org/10.1007/978-3-662-49665-7_24
http://dx.doi.org/10.1007/978-3-540-70592-5_22
http://dx.doi.org/10.1016/S0304-3975(03)00325-6
http://dx.doi.org/10.4204/EPTCS.69.6
http://dx.doi.org/10.1145/2808098.2808100
http://dx.doi.org/10.1007/978-3-540-40007-3_26
http://dx.doi.org/10.1007/11817949_16
http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf
http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf
http://dx.doi.org/10.1145/330249.330251
http://dx.doi.org/10.1007/978-3-642-40184-8_28
http://dx.doi.org/10.2168/LMCS-10(4:20)2014
http://akka.io/
http://dx.doi.org/10.1145/2976002.2976018


24:30 A Linear Decomposition of Multiparty Sessions

43 Sam Lindley and J. Garrett Morris. Talking bananas: Structural recursion for session types.
In ICFP, 2016. doi:10.1145/2951913.2951921.

44 Links homepage. http://links-lang.org/. S. Fowler and D. Hillerström and S. Lindley
and G. Morris and P. Wadler.

45 Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Trans.
Program. Lang. Syst., 16(6), November 1994. doi:10.1145/197320.197383.

46 Hugo A. Lopez, Eduardo R. B. Marques, Francisco Martins, Nicholas Ng, Casar San-
tos, Vasco Thudichum Vasconcelos, and Nobuko Yoshida. Protocol-based verification of
message-passing parallel programs. In OOPSLA, 2015. doi:10.1145/2814270.2814302.

47 Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, parts I
and II. Inf. Comput., 100(1), 1992. doi:10.1016/0890-5401(92)90008-4.

48 Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed Runtime Monitoring for
Multiparty Conversations. In BEAT, volume 162. EPTCS, 2014. Full version in [49].
doi:10.4204/EPTCS.162.3.

49 Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed runtime monitoring
for multiparty conversations. Formal Aspects of Computing, 2017. doi:10.1007/
s00165-017-0420-8.

50 Rumyana Neykova and Nobuko Yoshida. Let It Recover: Multiparty Protocol-Induced
Recovery. In CC, 2017. doi:10.1145/3033019.3033031.

51 Rumyana Neykova and Nobuko Yoshida. Multiparty Session Actors. Logical Methods in
Computer Science, 13(1), March 2017. doi:10.23638/LMCS-13(1:17)2017.

52 Dominic A. Orchard and Nobuko Yoshida. Effects as sessions, sessions as effects. In POPL,
2016. doi:10.1145/2837614.2837634.

53 Luca Padovani. Deadlock and lock freedom in the linear π-calculus. Online version of [54],
January 2014. URL: https://hal.inria.fr/hal-00932356.

54 Luca Padovani. Deadlock and lock freedom in the linear π-calculus. In CSL-LICS. ACM,
2014. doi:10.1145/2603088.2603116.

55 Luca Padovani. A simple library implementation of binary sessions. Journal of Functional
Programming, 27, 2017. Website: http://www.di.unito.it/~padovani/Software/FuSe/
FuSe.html. doi:10.1017/S0956796816000289.

56 Benjamin C. Pierce. Types and programming languages. MIT Press, MA, USA, 2002.
57 Riccardo Pucella and Jesse A. Tov. Haskell session types with (almost) no class. In Haskell,

2008. doi:10.1145/1411286.1411290.
58 Lukas Rytz, Martin Odersky, and Philipp Haller. Lightweight polymorphic effects. In

ECOOP, 2012. doi:10.1007/978-3-642-31057-7_13.
59 Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile Processes. Cam-

bridge University Press, 2001.
60 Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A linear decomposition

of multiparty sessions for safe distributed programming. Technical Report 2, Imperial
College London, 2017. URL: https://www.doc.ic.ac.uk/research/technicalreports/
2017/#2.

61 Alceste Scalas and Nobuko Yoshida. Lightweight session programming in scala. In ECOOP,
2016. doi:10.4230/LIPIcs.ECOOP.2016.21.

62 Alceste Scalas and Nobuko Yoshida. Lightweight Session Programming in Scala (Artifact).
Dagstuhl Artifacts Series, 2(1), 2016. doi:http://dx.doi.org/10.4230/DARTS.2.1.11.

63 Scribble homepage. http://www.scribble.org.
64 K. C. Sivaramakrishnan, Karthik Nagaraj, Lukasz Ziarek, and Patrick Eugster. Efficient

session type guided distributed interaction. In COORDINATION, 2010. doi:10.1007/
978-3-642-13414-2_11.

http://dx.doi.org/10.1145/2951913.2951921
http://links-lang.org/
http://dx.doi.org/10.1145/197320.197383
http://dx.doi.org/10.1145/2814270.2814302
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.4204/EPTCS.162.3
http://dx.doi.org/10.1007/s00165-017-0420-8
http://dx.doi.org/10.1007/s00165-017-0420-8
http://dx.doi.org/10.1145/3033019.3033031
http://dx.doi.org/10.23638/LMCS-13(1:17)2017
http://dx.doi.org/10.1145/2837614.2837634
https://hal.inria.fr/hal-00932356
http://dx.doi.org/10.1145/2603088.2603116
http://www.di.unito.it/~padovani/Software/FuSe/FuSe.html
http://www.di.unito.it/~padovani/Software/FuSe/FuSe.html
http://dx.doi.org/10.1017/S0956796816000289
http://dx.doi.org/10.1145/1411286.1411290
http://dx.doi.org/10.1007/978-3-642-31057-7_13
https://www.doc.ic.ac.uk/research/technicalreports/2017/#2
https://www.doc.ic.ac.uk/research/technicalreports/2017/#2
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.21
http://dx.doi.org/http://dx.doi.org/10.4230/DARTS.2.1.11
http://www.scribble.org
http://dx.doi.org/10.1007/978-3-642-13414-2_11
http://dx.doi.org/10.1007/978-3-642-13414-2_11


A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:31

65 Matías Toro and Éric Tanter. Customizable gradual polymorphic effects for Scala. In
OOPSLA, 2015. doi:10.1145/2814270.2814315.

66 TYPICAL. Type-based static analyzer for the pi-calculus. http://www-kb.is.s.u-tokyo.
ac.jp/~koba/typical/.

67 Nobuko Yoshida, Pierre-Malo Deniélou, Andi Bejleri, and Raymond Hu. Parameterised
multiparty session types. In FOSSACS, 2010. doi:10.1007/978-3-642-12032-9_10.

68 Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The Scribble protocol
language. In TGC, 2013. doi:10.1007/978-3-319-05119-2_3.

ECOOP 2017

http://dx.doi.org/10.1145/2814270.2814315
http://www-kb.is.s.u-tokyo.ac.jp/~koba/typical/
http://www-kb.is.s.u-tokyo.ac.jp/~koba/typical/
http://dx.doi.org/10.1007/978-3-642-12032-9_10
http://dx.doi.org/10.1007/978-3-319-05119-2_3




Mailbox Abstractions for Static Analysis of Actor
Programs∗

Quentin Stiévenart1, Jens Nicolay2, Wolfgang De Meuter3, and
Coen De Roover4

1 Software Languages Lab, Vrije Universiteit Brussel, Belgium
qstieven@vub.ac.be

2 Software Languages Lab, Vrije Universiteit Brussel, Belgium
jnicolay@vub.ac.be

3 Software Languages Lab, Vrije Universiteit Brussel, Belgium
wdmeuter@vub.ac.be

4 Software Languages Lab, Vrije Universiteit Brussel, Belgium
cderoove@vub.ac.be

Abstract
Properties such as the absence of errors or bounds on mailbox sizes are hard to deduce static-
ally for actor-based programs. This is because actor-based programs exhibit several sources of
unboundedness, in addition to the non-determinism that is inherent to the concurrent execution
of actors. We developed a static technique based on abstract interpretation to soundly reason
in a finite amount of time about the possible executions of an actor-based program. We use
our technique to statically verify the absence of errors in actor-based programs, and to compute
upper bounds on the actors’ mailboxes. Sound abstraction of these mailboxes is crucial to the
precision of any such technique. We provide several mailbox abstractions and categorize them
according to the extent to which they preserve message ordering and multiplicity of messages in a
mailbox. We formally prove the soundness of each mailbox abstraction, and empirically evaluate
their precision and performance trade-offs on a corpus of benchmark programs. The results show
that our technique can statically verify the absence of errors for more benchmark programs than
the state-of-the-art analysis.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages – Program Ana-
lysis

Keywords and phrases static analysis, abstraction, abstract interpretation, actors, mailbox

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.25

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.3.2.11

1 Introduction

Although most actor models disallow actors from sharing state, actor-based programs are
still difficult to reason about. For instance, reasoning about a message-level data race still
requires computing the execution interleavings of all involved actors. Static analyses to

∗ Quentin Stiévenart is funded by the GRAVE project of the “Fonds voor Wetenschappelijk Onderzoek”
(FWO Flanders). Jens Nicolay is funded by the the SeCloud project sponsored by Innoviris, the Brussels
Institute for Research and Innovation.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Quentin Stiévenart, Jens Nicolay, Wolfgang De Meuter, and Coen De Roover;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 25; pp. 25:1–25:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.25
http://dx.doi.org/10.4230/DARTS.3.2.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


25:2 Mailbox Abstractions for Static Analysis of Actor Programs

reason about actor-based programs are therefore required. To terminate in finite time and
space, static program analyses need to account for several sources of unboundedness [26].
This is already challenging for higher-order programs, where the data domain is unbounded
and control-flow is intertwined with the flow of data [31]. Adding actors to higher-order
programs complicates matters further. Most actor models do not limit the number of actors
created at run-time nor the number of messages exchanged, and correct but non-terminating
actor programs are common. Due to the model’s inherent concurrency, there are myriads of
different executions possible for a given program with a given input.

To enable defect detection and other tool support, we present a static analysis that
computes a sound over-approximation of the runtime behavior of a given actor-based higher-
order program. If this over-approximation does not exhibit the sought-after defect, neither
does the program for any possible input and any possible actor execution interleaving (i.e.,
the over-approximation is sound). A defect found in the over-approximation might, however,
not have any counterpart in the runtime behavior of the program (i.e., the defect is a false
positive). Such false positives often stem from the use of imprecise abstractions.

Static analyses for actor-based higher-order programs are few and far between. We
argue that existing analyses use mailbox abstractions that undermine their precision. Before
introducing our approach (Section 1.3), we discuss two important problems of existing work
that hamper their use as the foundation for proper tool support.

1.1 Problem #1: Missing interleavings for ordered-message mailbox
models

Most actor models schedule actors non-deterministically for execution at any given moment.
This renders reasoning about an actor program by enumerating all possible execution
interleavings computationally expensive.

Actor models are said to satisfy the isolated turn principle [13] or to feature macro-step
semantics [2] if actors are precluded from sharing state and feature message reception as
the only blocking operation. If this is the case, it is possible to treat message processing in
isolation for every message and every actor. A macro step is a sequence of small operational
steps, involving a single actor, from the reception of a message until the completion of
the work associated with that message. Agha et al. [2] prove that, for actor models with
unordered mailboxes, any small-step interleaving has a semantically equivalent macro-step
interleaving. As a result, static analyses only need to account for the interleavings of macro
steps rather than the interleavings of all small steps.

Macro-step semantics has been used in prior work to reduce the number of interleavings
to verify actor programs [36, 28]. The situation, however, is different for actor models in
which mailboxes do preserve the ordering of their messages. Examples of such actor models
include the original actor model [1], and implementations such as Erlang [3] and Akka [24].

To illustrate how the order of message sends is impacted by macro-step semantics, consider
Listing 1. In this example, two actors are defined by specifying their initial behavior (lines
2 and 7). The first actor (line 2) with behavior beh1 takes no parameters, and handles
three different messages (lines 3–5). After processing a message, an actor becomes a new
behavior. The second actor (line 7) with behavior beh2 takes one parameter, target, and
upon receiving message start (line 8) sends two messages to this target (lines 9 and 10). The
main process then creates actor t (line 12) with behavior beh1, and actor a with behavior
beh2 (line 13), specifying actor t as its target. The process then sends message start to
actor a (line 14), followed by message m3 to actor t.



Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover 25:3

Listing 1 Example program motivating the need for static analyses to revisit macro-stepping for
actor models with ordered-message mailboxes.

1 (define beh1
2 (actor ()
3 (m1 () (become beh1))
4 (m2 () (become beh1))
5 (m3 () (become beh1 ))))
6 (define beh2
7 (actor (target)
8 (start ()
9 (send target m1)

10 (send target m2)
11 (become beh2 target ))))
12 (define t (create beh1))
13 (define a (create beh2 t))
14 (send a start)
15 (send t m3)

For a static analysis to be sound for an actor model in which mailboxes preserve the
ordering of their messages, it should account for actor t to receive messages in its mailbox in
any of the following orders:

m1, m2, m3: actor a sends its messages, after which the main process is scheduled for
execution,
m3, m1, m2: the main process sends its message, after which it is followed by actor a,
m1, m3, m2: actor a sends a first message, the main process is scheduled, after which actor
a sends its second message.

The same analysis sped up through macro-stepping will, however, no longer include the
third interleaving in its over-approximation of the program’s runtime behavior. This is
because the analysis will not interleave the main process with actor a’s processing of the
start message. According to the analysis, actor a will always send both m1 and m2 without
interruptions. Analyses sped up through macro-stepping are therefore unsound for actor
models in which mailboxes preserve message ordering.

To render the analysis sound again, we therefore propose to speed it up through a finer-
grained variant of macro-stepping that we call ordered macro-stepping. During an ordered
macro step, the analysis allows each actor to receive a message and to send a single message.
The ordered macro step ends right before a second message is sent, as message sends can
introduce other interleavings to be considered by the analysis. Two ordered macro steps
(instead of one regular macro step) are therefore required to analyze actor a’s processing of
the start message. The first one ends before actor a sends the second message, allowing
the main actor to send its message before a sends message m2. The difference with regular
macro-stepping is small, but ensures that analyses account for interleavings at message sends
as well.

This example illustrates that regular macro-stepping, while useful to speed up static
analysis, needs to be adapted for actor models with ordered-message mailboxes. Otherwise,
important message interleavings might be discarded rendering the analysis unsound. For
unordered-message mailboxes, regular macro-stepping suffices because messages can be
reordered arbitrarily in the mailbox.

ECOOP 2017



25:4 Mailbox Abstractions for Static Analysis of Actor Programs

Listing 2 Example actor-based stack implementation adapted from Agha [1].
1 (define stack-node
2 (actor (content link)
3 (push (v)
4 (become stack-node v
5 (lambda () (become stack-node content link ))))
6 (pop (customer)
7 (if link
8 (begin
9 (send customer message content)

10 (link))
11 (begin
12 (error "stack␣underflow")
13 (terminate ))))))
14 (define display (create display-actor ))
15 (define act (create stack-node #f #f))
16 (send act push (read-int ))
17 (send act pop display)

1.2 Problem #2: Loss of message ordering and multiplicity

To ensure termination in a finite amount of time and space, static analyses need to abstract
every potentially unbounded program component. For actor-based programs this includes
the actors’ mailboxes. Static analyses can avoid abstracting mailboxes if the program’s
actor model explicitly constrains mailbox size or if mailbox bounds can be computed for the
actor program ahead-of-time. However, only 2 out of the 11 actor models surveyed in De
Koster et al. [14] allow explicit bounds on mailboxes, and computing mailbox bounds for
any actor-based program is undecidable in general. Mailbox abstractions have to be chosen
carefully, as illustrated by the following example.

Consider Listing 2, adapted from Agha [1]. This program uses an actor with behavior
stack-node to represent a stack. When receiving the push message with a value v to be
stored on the stack (line 3), the actor creates a closure capable of restoring its current state,
i.e., the values of content and link. The actor then sets content to the pushed value and
link to the closure. When receiving a pop message (line 6), the value of content is sent to
the provided target actor customer, and the link closure is called to restore the previous
state. Should the stack be empty upon a pop (i.e., link is #f), a stack underflow error is
raised (line 12). The main process pushes a value obtained from the user on a stack act (line
16), pops one value from this stack (line 17), which will send it (line 9) to a display actor
(omitted from the example, passed along on line 17) that will print the value received.

Although the program in Listing 2 contains an error statement on line 12, this error is not
reachable in any execution of the program under any input nor under any interleaving. Some
related work, such as D’Osualdo et al. [17], abstracts mailboxes as powersets. Lines 16–17
then result in a mailbox that is abstracted as the set {push, pop}. To preserve soundness,
analyses need to extract messages from this mailbox non-deterministically. This is because
there is no information about the multiplicity of the messages in the mailbox. Analyses
therefore compute not one, but two mailboxes as the result of retrieving push from this
mailbox: {pop} and {push, pop}. Retrieving the next message from the mailbox {pop} again
yields two mailboxes: ∅ and {pop}. Through the former case, the analysis accounts for pop
being present but once and deems the stack underflow error unreachable as a result. Through



Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover 25:5

the latter case, the analysis accounts for pop being present more than once. It now deems
the stack underflow error reachable as the stack may be empty when a subsequent pop is
processed. This false positive results from a loss of precision due to the use of a powerset
abstraction for the actor’s mailbox.

Other related work, such as Agha et al. [2] and Garoche et al. [22], relies on a multiset
definition of mailboxes. Multisets are sets that preserve multiplicity but, like powersets, are
unordered. However, a mailbox abstraction that preserves multiplicity does not suffice either
to analyze this program precisely. At the point where the stack actor has received the push
message followed by the pop message, the analysis has computed its mailbox abstraction to
the multiset [push 7→ 1, pop 7→ 1]. This multiset encodes the information that a both a push
message and a pop messages are present once in the mailbox. Again, the analysis needs to
extract the next message to process non-deterministically, giving rise to two possible successor
mailboxes [pop 7→ 1] and [push 7→ 1]. The former multiset represents the mailbox of the
stack actor after it has processed message push. In contrast to the set abstraction, retrieving
the next message from this mailbox gives rise to a single mailbox [], because pop is present
only once, and no stack underflow error can be reached through (spurious) subsequent pop
messages. However, because ordering information is not preserved, pop might be processed
before its corresponding push, the analysis still deems the stack underflow error reachable
under a multiset abstraction for the actor’s mailbox.

This example motivates the importance of mailbox abstractions that satisfy ordering and
multiplicity: without one or the other, the analysis cannot automatically prove the program
in Listing 2 free of errors.

1.3 Our approach

We argue that precise analysis of actor-based programs requires a proper mailbox abstraction.
For actor models with ordered-message mailboxes (e.g., [1, 25, 24, 3]), this abstraction needs
to preserve ordering and multiplicity of its messages (Section 1.2). In addition, those actor
models require the analysis to interleave message sending using ordered macro-stepping for
it to be sound (Section 1.1). For the others (e.g., [2, 22]), ordered macro-stepping is still
sound but regular macro-stepping suffices. We therefore do not present one analysis, but a
framework capable of analyzing programs from different actor models that features ordered
macro-stepping and takes a mailbox abstraction as parameter.

Our framework approaches the problem of statically analyzing actor-based programs
through abstract interpretation [10]. We start by defining a simple actor language, λα,
which is an extension of the λ-calculus (Section 2). We express the concrete semantics for
λα as an abstract machine (Section 3). The result of executing an input program under
these semantics is a flow graph that represents the program’s runtime behavior and enables
verifying behavioral properties. In this work we focus on verifying the absence of runtime
errors and mailbox bounds. Because the computed flow graph can be infinite under concrete
semantics, we apply a systematic abstraction, resulting in an abstract semantics for λα
(Section 4). We leave the mailbox abstraction as a parameter of the abstract semantics,
and present multiple instantiations of mailbox abstractions together with their properties,
categorized into four categories (Section 5). We evaluate each of these mailbox abstractions
on a set of benchmark programs with respect to performance and precision (Section 6), and
compare our results with those obtained by Soter, a state-of-the-art tool for analyzing Erlang
programs [17]. We conclude with a discussion of related work and the limitations of our
approach (Section 7).

ECOOP 2017



25:6 Mailbox Abstractions for Static Analysis of Actor Programs

e ∈ Exp ::= ae | (ae ae∗)
| (letrec ((x e)∗) e)

| (error)

| (create ae ae∗)
| (send ae t ae∗)
| (become ae ae∗)
| (terminate)

ae ∈ AExp ::= x | lam | act
lam ∈ Lam ::= (λ (x∗) e)

act ∈ Act ::= (actor (x∗)

(t (y∗) e)∗)

x, y ∈ Var a finite set of variable names
t ∈ Tag a finite set of tags

Figure 1 Grammar of the minimalistic higher-order λα language supporting concurrent actors.

Our work makes the following contributions:
We present the concrete and an abstracted formal semantics of an actor-based higher-order
programming language. The abstracted semantics computes a sound over-approximation
of a given program’s runtime behavior. To reduce non-determinism and hence speed up
computation, the abstracted semantics is the first to incorporate a finer-grained variant
of macro-stepping, called ordered macro-stepping. We show that regular macro-stepping
is not sound when analyzing actor programs from ordered-message mailbox models.
We leave the abstraction for the actors’ mailboxes as a parameter to the abstracted
semantics. We categorize possible mailbox abstractions according to the extent to
which they preserve message ordering, and to the extent to which they preserve message
multiplicity. We formally prove the soundness of each mailbox abstraction, and empirically
evaluate their impact on the precision and running time of the analysis on a corpus of
benchmark programs.
We demonstrate how to use the sound over-approximation computed by our analysis to
formally verify mailbox bounds and the absence of runtime errors. An evaluation shows
that our technique is more precise than a state-of-the-art tool. The higher precision of
our mailbox abstractions enables verifying these properties on 12 benchmark programs,
of which 6 cannot be verified by the tool we compare with.

2 A Simple Actor Language: λα

Figure 1 defines the syntax of a minimalistic higher-order programming language based on
the λ-calculus in A-Normal Form [19]. It supports actors through the following constructs:

actor defines an actor behavior, associating each type of the messages the behavior can
receive with a corresponding message processing body,
create spawns a new actor from a given behavior and returns its process identifier,
send sends a message to a specific actor identified by its process identifier,
become changes the behavior of the current actor, and
terminate ends the execution of the current actor.

Note that messages exchanged between actors consist of a tag t (a simple name) and an
arbitrary number of arguments. Because tags are syntactic elements, like variable names,
they are finite within a program. To facilitate benchmarking, the implementation used in
our evaluation (Section 6.1) extends this language with additional features such as support
for if-expressions. We refer to Listing 1 and 2 from the introduction for example programs
in this language.



Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover 25:7

We assume the following about the concrete semantics of λα programs.
1. Mailboxes work in a FIFO fashion: received messages are sent to the back of the actor’s

mailbox, and the actor can only process the message at the front of its mailbox. Although
the most widely used actor models differ here, the majority of models uses FIFO mailboxes:
6 of the 11 models reviewed in De Koster et al. [14] have FIFO mailboxes.

2. Messages are received in the same order as sent, and no message is lost during transmission.
Modeling a real-world situation with messages being possibly lost or reordered would
increase the complexity of the model without adding to the discussion.

3. No side effects can occur within the body of an actor. This is enforced by the language,
as it does not include assignment constructs (e.g., set!). Many actor languages are free
of side effects by definition, or contain only limited side effects. Such side effects lead to
possible data races and are better avoided [7].

3 Concrete Semantics of λα as an Abstract Machine

3.1 State Space

We define the concrete semantics of λα as an abstract machine in Figure 2. This enables its
abstraction using a systematic approach [38]. Each state’s mapping of process identifiers to
evaluation contexts is testament to its concurrency support. A process’ evaluation context
ctx can be waiting for a message (wait), can be stuck due to a programmer error (error), or
can be processing a message (ev when an expression is evaluated in a given environment,
and ko when a value is reached). It is always linked to a current actor behavior a, with the
special case that the initial process is linked to the main behavior. Other actors have an
instantiated behavior (acti), consisting of an actor expression and an extended environment.
Its final component is a mailbox represented as a sequence of messages, where each message
is composed of a tag (see Figure 1) and a list of values. The only values in λα are regular
closures (clo) which combine a lambda expression with a definition environment, actor
closures (actd) which combine an actor definition with a definition environment, and process
identifiers (pid).

We use a value store σ to store values produced by the program. The machine’s
continuations κ are threaded through a separate continuation store Ξ. Separating the
addresses at which values and continuations are allocated will render the abstract semantics
more precise. Both stores are shared by all processes. This not to model shared-memory
concurrency, but to enable an important optimization called global store widening [38],
discussed in Section 6.1. Process identifiers, value addresses and continuation addresses are
parameters of the semantics. We give instantiations of these parameters in Section 3.3.

3.2 Atomic Expressions

Atomic expressions AExp are expressions that the machine reduces to a value in a single
step without having to allocate addresses or having to modify the store. They are evaluated
through A : AExp × Env × Store → Val. Its definition is as usual, with the addition that
actor definitions are wrapped with their definition environment, similarly to closures.

A(x, ρ, σ) = σ(ρ(x)) A(lam, ρ,_) = clo(lam, ρ) A(act, ρ,_) = actd(act, ρ)

ECOOP 2017



25:8 Mailbox Abstractions for Static Analysis of Actor Programs

ς ∈ Σ = Procs × Store ×KStore
π ∈ Procs = Pid ⇀ Context

ctx ∈ Context = (Control ×Kont
×Actor ×Mbox)

c ∈ Control ::= ev(e, ρ) | ko(v)
| wait | error

v ∈ Val ::= clo(lam, ρ)
| actd(act, ρ)
| pid(p)

m ∈ Message = Tag ×Val∗

a ∈ Actor ::= acti(act, ρ)
| main

φ ∈ Frame ::= letk(a, e, ρ)
κ ∈ Kont = Frame ×KAddr + {ε}
ρ ∈ Env = Var ⇀ Addr
σ ∈ Store = Addr ⇀ Val

Ξ ∈ KStore = KAddr ⇀ Kont
mb ∈ Mbox = Message∗

addr ∈ Addr , kaddr ∈ KAddr
p ∈ Pid

Figure 2 State space of the concrete abstract machine for λα.

3.3 Addresses, Process Identifiers and Allocation
Value addresses, continuation addresses and process identifiers are parameters of the semantics.
They are produced by the allocation functions alloc : Var × Σ→ Addr , kalloc : Exp × Σ→
KAddr and palloc : Exp × Σ → Pid respectively. For λα’s concrete abstract machine, an
example instantiation is as follows.

Addr = Var × N
KAddr = N

Pid = N

alloc(x, 〈_, σ,_〉) = (x, |Dom(σ)|+ 1)
kalloc(e, 〈_,_,Ξ〉) = |Dom(Ξ)|+ 1
palloc(e, 〈π,_,_〉) = |Dom(π)|+ 1

3.4 Concrete Mailboxes
The following parameters to the abstract machine complete Figure 2’s definition of mailboxes.

empty ∈ Mbox is a special element representing the empty mailbox.
enq : (Message ×Mbox)→ Mbox enqueues a message at the back of a mailbox.
deq : Mbox → P(Message ×Mbox) dequeues a message from the front of the mailbox,
resulting in the message and the new mailbox. Using a powerset as range will facilitate
incorporating non-determinism in the abstract semantics. The result of dequeuing from
the empty mailbox is the empty set.
size : Mbox → N computes the size of a mailbox.

The concrete representation of a mailbox is a sequence of messages, with the following
definitions (where :: both denotes prepending a sequence with an element, and appending an
element at the end of a sequence).

empty = ε

enq(m,mb) = mb :: m
deq(ε) = {}

deq(m :: mb) = {(m,mb)}
size(ε) = 0

size(m :: mb) = size(mb) + 1

3.5 Transition Relation
The small-step transition relation ( 7→) : Pid×Effect×Σ×Σ defines the small-step semantics
of the λα language, in Figure 3. We write ς p7−→

E
ς ′ as a shorthand for (p,E, ς, ς ′) ∈ ( 7→),

meaning that from state ς, a small step on actor p can be performed to reach state ς ′, and this
generates effect E. This transition relation is therefore annotated with the process identifier



Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover 25:9

p of the actor that performs a transition, and with an effect E used by the macro-step
transition relation.

The possible effects correspond to the actions that actors can perform: creating a new
actor (Create), sending a message (Send), receiving a message (Receive), changing the actor’s
behavior (Become), or terminating the actor (Terminate). The NoEffect effect denotes the
absence of effect on a transition. We shorten ς p7−−−−−→

NoEffect
ς ′ to ς p7−→ ς ′.

E ∈ Effect ::= Create | Send | Receive | Become | Terminate | NoEffect

Rules for transitions that do not affect other actors or the current actor’s behavior or
mailbox are called sequential rules. We only formalize the sequential rule for the error
statement as an example. Other sequential rules follow the same structure. The non-sequential
rules are related to how actors interact with each other and their mailbox.

T-Err: evaluating an error statement yields an error state.
T-Create: create spawns a new actor with the given behavior (actd), where constructor
parameters are bound to the given arguments to create an actor instantiation (acti). The
newly created actor starts in a wait status, and with an empty continuation and mailbox.
T-Become: become changes an actor’s behavior by updating its current behavior and
binding its constructor parameters to the given arguments. The return value of become
is the new behavior.
T-Receive: when an actor is waiting, it can dequeue a message from the front of its
mailbox and process it, by evaluating the corresponding message processing body of its
current behavior in an extended environment.
T-Wait: an actor with an empty continuation has computed a value and has therefore
completed the processing of a message. It then goes back to waiting for new messages.
T-Send and T-Send-Self: when an actor sends a message, two different rules may
apply: one for an actor sending a message to a different actor, the other for an actor
sending a message to itself. To send a message from a sender actor to a different receiver
actor (T-Send), the receiver actor and the message arguments have to be evaluated. The
message is then enqueued on the receiver actor’s mailbox. Self-sends are handled by a
different rule (T-Send-Self) to avoid incorrect updates to the process map.
T-Terminate terminate removes the actor from the process map. Here, π − p denotes
the removal of the element of which the key is p.

3.6 Macro-Stepping Semantics
As motivated in Section 1.1, we speed up our analysis through a variant of regular macro-
stepping [2] that we call ordered macro-stepping. We now formalize a general macro-stepping
semantics from which either can be instantiated.

The transition relation ( p7−→
E

) performs a small step in the evaluation of a program. A
macro step is a sequence of small steps of which the first can produce any effect, and the
remaining steps are constrained to a restricted set of effects. The particular restriction
determines whether the macro step is ordered. We first define a restricted multi-stepping
transition relation ( 7−→∗↓) ⊆ (Pid × P(Effect)× P(Effect)× Σ× Σ). It performs multiple
small steps of the transition relation on a single actor until it reaches a transition producing
an effect that is disallowed. This multi-stepping transition relation is defined in Figure 4,
where set X denotes effects that are never allowed and function f : Effect → P(Effect)
defines which effects are no longer allowed once a given effect has been produced.

ECOOP 2017



25:10 Mailbox Abstractions for Static Analysis of Actor Programs

π(p) = 〈ev((error), ρ), κ, a,mb〉
〈π, σ,Ξ〉 p7−→ 〈π[p 7→ 〈error, κ, a,mb〉], σ,Ξ〉

T-Error

π(p) = 〈ev((create æa æ1 . . .æn), ρ), κ, a,mb〉
p′ = palloc(æa, 〈π, σ,Ξ〉) actd(act, ρa) = A(æa, ρ, σ)

(actor (x1 . . . xn) . . . ) = act addr i = alloc(xi, 〈π, σ,Ξ〉)
vi = A(æi, ρ, σ) ρ′a = ρa[xi 7→ addr i] a′ = acti(act, ρ′a)

〈π, σ,Ξ〉 p7−−−−→
Create

〈π[p 7→ 〈ko(pid(p′)), κ, a,mb〉,

p′ 7→ 〈wait, ε, a′, empty〉],
σ[addr i 7→ vi],Ξ〉

T-Create

π(p) = 〈ev((become æa æ1 . . .æn), ρ), κ, a,mb〉
actd(act, ρa) = A(æa, ρ, σ)

(actor (x1 . . . xn) . . . ) = act addr i = alloc(xi, 〈π, σ,Ξ〉)
vi = A(æi, ρ, σ) ρ′a = ρa[xi 7→ addr i] a′ = acti(act, ρ′a)

〈π, σ,Ξ〉 p7−−−−−→
Become

〈π[p 7→ 〈ko(actd(act, ρa)), κ, a′,mb〉], σ[addr i 7→ vi],Ξ〉
T-Become

π(p) = 〈wait, ε, a,mb〉 ((t, v1 . . . vn),mb′) ∈ deq(mb)
acti((actor (x1 . . . xn) . . . (t (y1 . . . yn) e) . . . ), ρb) = a

addr i = alloc(yi, 〈π, σ,Ξ〉) ρ′b = ρb[yi 7→ addr i]
〈π, σ,Ξ〉 p7−−−−−→

Receive
〈π[p 7→ 〈ev(e, ρ′b), ε, a,mb′〉],

σ[addr i 7→ vi],Ξ〉

T-Receive

π(p) = 〈ko(v), ε, a,mb〉
〈π, σ,Ξ〉 p7−→ 〈π[p 7→ 〈wait, ε, a,mb〉], σ,Ξ〉

T-Wait

π(ps) = 〈ev((send æ0 t æ1 . . . aen), ρ), κs, as,mbs〉 pid(pr) = A(æ0, ρ, σ)
π(pr) = 〈c, κr, ar,mbr〉 pr 6= ps vi = A(æi, ρ, σ) m = (t, v1 . . . vn)

〈π, σ,Ξ〉 ps7−−−→
Send

〈π[ps 7→ 〈ko(pid(pr)), κs, as,mbs〉,

pr 7→ 〈c, κr, ar, enq(m,mbr)〉],
σ,Ξ〉

T-Send

π(p) = 〈ev((send æ0 t æ1 . . . aen), ρ), κ, a,mb〉
pid(p) = A(æ0, ρ, σ) vi = A(æi, ρ, σ) m = (t, v1 . . . vn)
〈π, σ,Ξ〉 p7−−−→

Send
〈π[p 7→ 〈ko(pid(p)), κ, a, enq(m,mb)〉], σ,Ξ〉

T-Send-Self

π(p) = 〈ev((terminate), ρ),_,_,_〉
〈π, σ,Ξ〉 p7−−−−−−−→

Terminate
〈π − p, σ,Ξ〉

T-Terminate

Figure 3 Concrete transition relation for λα programs.



Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover 25:11

ς1
p7−→
E
ς2 ς2

p7−−→
Es

∗↓
X∪f(E) ςN

E 6∈ X

ς1
p7−−−−−→

Es∪{E}

∗↓
X
ςN

M-Main

ς1
p7−−→
E1

ς2 ς2
p7−−→
E2

ς3

E1 6∈ X E2 ∈ X

ς1
p7−−−→
{E1}

∗↓
X
ς2

M-Stop

ς1
p7−−→
E1

ς2 6 ∃ς3, ς2
p7−−→
E2

ς3

E1 6∈ X

ς1
p7−−→
E1

∗↓
X
ς2

M-Blocked

ς1
p7−−−−−→

Es∪{E}

M
ςN ⇐⇒ ς1

p7−→
E
ς2 ∧ ς2

p7−−→
Es

∗↓
f(E) ςN

Figure 4 Concrete macro-stepping transition relation.

M-Main: a small step producing an allowed effect can be performed, followed by a
restricted multi-step with the set of disallowed effects augmented by the result of f on
the produced effect.
M-Stop: only a single small step can be performed, because the next small step would
produce an effect that is disallowed.
M-Blocked: only a single small step can be performed, because no further small steps
can be performed from the resulting state on the same process (i.e., the process is blocked).

The macro-stepping transition relation ( 7−→M ) ⊆ (Pid ×P(Effect)×Σ×Σ), also defined
in Figure 4, first makes a single unrestricted small step followed by a restricted multi-step.
Using f(E) = {Receive} gives rise to the unordered macro-stepping semantics of Agha et
al. [2]. Its restriction disallows receiving messages after the first small step of a macro
step. Our ordered macro-stepping semantics follows from f(Send) = {Receive,Send}, and
f(E) = {Receive} otherwise. This restriction disallows actors from sending more than one
message. Sending more results in another macro-step. As in the unordered macro-stepping
semantics, message can only be received during the first small step of an ordered macro step.

3.7 Collecting Macro-Stepping Semantics

The collecting semantics of a λα program e under macro-stepping can be computed as
the fixpoint of the function Fe : P(Σ) → P(Σ). The collecting semantics lfp(Fe) is a set
containing every reachable state in the evaluation of program e under any possible interleaving.
The granularity of interleavings is defined by the macro-stepping semantics, in particular by
the restricting function f . As explained in Section 1.1, the use of macro-stepping semantics
instead of interleaving semantics has the benefit of reducing the number of interleavings
to consider when analyzing a program. Evaluation starts at an initial state given by the
injection function I : Exp → Σ.

Fe(S) = {I(e)} ∪

ς ′ | 〈π,_,_〉︸ ︷︷ ︸
ς

∈ S ∧ p ∈ Dom(π) ∧ ς p7−→
Es

M
ς ′


I(e) = 〈[main 7→ 〈ev(e, []), empty,main〉], [], []〉

ECOOP 2017



25:12 Mailbox Abstractions for Static Analysis of Actor Programs

3.8 Program Properties
Useful properties of actor-based programs can be inferred from the collecting semantics.
We demonstrate this for reachability of error states and for bounds on actor mailboxes.
Examples of other properties include the possible values of a variable, the messages and
message arguments that an actor can receive during its lifetime, or the behaviors that an
actor actually assumes. Because reachability within the collecting semantics is not decidable,
we resort to abstraction in order to automatically verify these properties (Section 4.7).

Reachability of error states. Predicate ErrorReachablee holds when an error is reachable
in program e.

ErrorReachablee ⇐⇒ ∃〈π,_,_〉 ∈ lfp(Fe), p ∈ Dom(π) | π(p) = 〈error,_,_,_〉

Mailbox bounds. Function MailboxBounde(p) computes the maximal number of messages
an actor with process identifier p can have in its mailbox when executing program e.

MailboxBounde(p) = max ({size(mb) | 〈π,_,_〉 ∈ lfp(Fe) ∧ π(p) = 〈_,_,_,mb〉})

4 Abstract Interpretation of λα

The semantics of λα can be abstracted systematically in a sound manner using the abstracting
abstract machines approach of Van Horn and Might [38], through the abstraction function α
given in the accompanying technical report1.

4.1 Abstract State Space
The state space resulting from systematic abstraction is given in Figure 5. Abstract com-
ponents that are the counterpart of a concrete component are denoted by a hat (X̂). The
abstraction of addresses and process identifiers is a parameter of the analysis. We also leave
the abstraction of the mailbox a parameter of the analysis, of which we discuss possible
instantiations in Section 5. Systematic abstraction has made process map, value store
and continuation store to map elements of their domain to sets of contexts, values and
continuations. This change in ranges stems from the abstract semantics having to compute
a sound over-approximation with but a finite amount of addresses and process identifiers.
Messages are now composed of a tag and a sequence of sets of abstract values. Section 4.4
motivates this change by reduced non-determinism.

4.2 Abstract Atomic Expressions
Abstract evaluation of atomic expressions might yield more than one abstract value, as the
value store now maps addresses to sets of abstract values because a single abstract address
can correspond to multiple concrete ones. We therefore obtain the following definition of
Â : AExp × Ênv × Ŝtore → P(Val)

Â(x, ρ, σ) = σ(ρ(x)) A(lam, ρ,_) = {clo(lam, ρ̂)} A(act, ρ,_) = {actd(act, ρ̂)}

1 https://soft.vub.ac.be/~qstieven/ecoop2017/techreport.pdf

https://soft.vub.ac.be/~qstieven/ecoop2017/techreport.pdf


Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover 25:13

ς̂ ∈ Σ̂ = P̂rocs × Ŝtore × K̂Store

π̂ ∈ P̂rocs = P̂id ⇀ P(Context)

ĉtx ∈ Ĉontext = (Ĉontrol × K̂ont

× Âctor × M̂box)

ĉ ∈ Ĉontrol ::= ev(e, ρ̂) | ko(v̂)
| wait | error

v̂ ∈ V̂al ::= clo(lam, ρ̂)
| actd(act, ρ̂)
| pid(p̂)

m̂ ∈ M̂essage = Tag × P(V̂al)∗

â ∈ Âctor ::= acti(act, ρ̂) | main

φ̂ ∈ F̂rame ::= letk(âddr , e, ρ̂)

κ̂ ∈ K̂ont = F̂rame × K̂Addr + {ε}

ρ̂ ∈ Ênv = Var ⇀ Âddr

σ̂ ∈ Ŝtore = Âddr ⇀ P(V̂al)

Ξ̂ ∈ K̂Store = K̂Addr ⇀ P(K̂ont)

m̂b ∈ M̂box

âddr ∈ Âddr , k̂addr ∈ K̂Addr

p̂ ∈ P̂id

Figure 5 State space of the abstracted abstract machine for λα.

4.3 Abstract Addresses, Process Identifiers and Allocation
Functions âl loc : Var × Σ̂→ Âddr , k̂alloc : Exp × Σ̂→ K̂Addr , and p̂alloc : Exp × Σ̂→ P̂id
determine the allocation of value addresses, continuation addresses and process identifiers
respectively. The instantiation of these parameters to the analysis influences precision,
but not soundness, as the AAM technique has been proven sound under any allocation
strategy [32, 23]. The following instantiation results in a flow-sensitive, context-insensitive
0-CFA analysis.

Âddr = Var

K̂Addr = Exp

P̂id = Exp

âlloc(x, ς̂) = x

k̂alloc(e, ς̂) = e

p̂alloc(e, ς̂) = e

4.4 Abstract Transition Relation
The abstract transition rules, depicted in Figure 6, act on components of the abstract
state space. We highlight the differences with the concrete rules, which arise due to sound
over-approximation.

The process map π̂ now maps each process identifier to a set of processes. Hence the
premise π(p) = . . . becomes π̂(p̂) 3 . . ., at the cost of non-determinism when one abstract
process identifier is mapped to more than one abstract process.
For the same reason, and because the store now maps each abstract address to a set
of values, process map updates and store updates become join operations: π[p 7→ . . .]
becomes π̂ t [p̂ 7→ {. . .}]. Introducing abstract counting [33, 34] enables to perform strong
updates on the store and process map when an abstract address or an abstract process
identifier is mapped to a single element.
In rules AbsT-Create, AbsT-Become, AbsT-Send and AbsT-Send-Self, the con-
crete vi = A(. . .) become V̂i = Â(. . .), where V̂i ∈ P(V̂al), instead of v̂i ∈ Â(. . .). This
is because the result of the atomic evaluation will eventually be added to the store,
which now maps to sets of values. Not having to fire rules for individual set elements,
non-determinism is reduced.
For the same reason, we directly store sets of values in messages in rules AbsT-Send
and AbsT-Send-Self.

ECOOP 2017



25:14 Mailbox Abstractions for Static Analysis of Actor Programs

In the rule AbsT-Terminate, it is not sound to remove the context of the terminating
actor from the process map. This is because an abstract actor may correspond to more
than one concrete actor, in which case only one of the concrete actors would terminate.
Removing the abstract actor would in effect terminate all the concrete actors it corresponds
to. This is problematic in terms of precision, but is remedied by our introduction of
abstract counting [33] on the process map.
The condition pr 6= ps disappears from the rule AbsT-Send. Due to abstraction, a single
abstract process identifier may correspond to more than one concrete process identifier.
When a message is sent from a process with identifier p̂, then either the target has a
different process identifier and only AbsT-Send applies; or the target has the same
process identifier. In the second case, the message may be sent to the same process or a
different process, and both AbsT-Send and AbsT-Send-Self may apply. Requiring
p̂r 6= p̂s would incorrectly ignore the case in which an actor sends a message to a different
one with the same abstract process identifier. With abstract counting, the condition can
be restored when both p̂r and p̂s each correspond to a single process identifier.

4.5 Abstract Macro-Stepping Semantics
The formalization of macro-stepping for the abstract semantics remains the same: a single
abstract small step is performed, followed by a number of effect-restricted abstract small steps.
We obtain an abstract macro-stepping transition relation (̂7−→M ) ⊆ (P̂id×P(Effect)×Σ̂×Σ̂).
Its soundness follows from the soundness of the abstract small-step transition relation, and
is proven in Section 6.6.

4.6 Abstract Collecting Macro-Step Semantics
The abstract collecting semantics of a λα program e is the fixpoint of F̂e : P(Σ̂)→ P(Σ̂).

F̂e(Ŝ) =
{
Î(e)

}
∪

ς̂ ′ | 〈π̂,_,_〉︸ ︷︷ ︸
ς̂

∈ Ŝ ∧ p̂ ∈ Dom(π̂) ∧ ς̂
̂̂p7−→
Es

M

ς̂ ′


Î(e) = 〈[main 7→

{
〈ev(e, []), êmpty,main〉

}
], [], []〉

The abstract collecting semantics lfp(F̂e) is therefore a set of abstract states that over-
approximates the set of states reachable in all concrete execution of program e. If the
abstractions used yield a finite state space, reachability within the abstract collecting
semantics becomes decidable. This is the case if the number of addresses, process identifiers
and mailboxes are bounded. The 0-CFA formulation of addresses and process identifiers
described in Section 4.3 is bounded, as well as the bounded mailbox abstractions described
in Section 5.

4.7 Abstract Program Properties
Our analysis computes a sound over-approximation of the program’s behavior. More precisely,
its abstract collecting semantics is a set of abstract program states that at least represent
every reachable concrete program state. However, the computed set may also contain spurious
abstract states that correspond to concrete program states that are not found in the concrete
collecting semantics. This impacts the abstract program properties in several ways.



Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover 25:15

π̂(p̂) 3 〈ev((error), ρ̂), κ̂, â, m̂b〉

〈π̂, σ̂, Ξ̂〉
̂̂p7−→〈π̂ t [p̂ 7→

{
〈error, κ̂, â, m̂b〉

}
], σ̂, Ξ̂〉

AbsT-Error

π̂(p̂) 3 〈ev((create æa æ1 . . .æn), ρ̂), κ̂, â, m̂b〉
p̂′ = p̂alloc(æa, 〈π̂, σ̂, Ξ̂〉) actd(act, ρ̂a) = Â(æa, ρ̂, σ̂)

(actor (x1 . . . xn) . . . ) = act âddr i = âl loc(xi, 〈π̂, σ̂, Ξ̂〉)
V̂i = Â(æi, ρ̂, σ̂) ρ̂′a = ρ̂a[xi 7→ âddr i] â′ = acti(act, ρ̂′a)

〈π̂, σ̂, Ξ̂〉
̂̂p7−−−−→
Create

〈π̂ t [p̂ 7→
{
〈ko(pid(p̂′)), κ̂, â, m̂b〉

}
]

t [p̂′ 7→
{
〈wait, ε, â′, êmpty〉

}
],

σ̂ t [âddr i 7→ V̂i], Ξ̂〉

AbsT-Create

π̂(p̂) 3 〈ev((become æa æ1 . . .æn), ρ̂), κ̂, â, m̂b〉
actd(act, ρ̂a) = Â(æa, ρ̂, σ̂)

(actor (x1 . . . xn) . . . ) = act âddr i = âl loc(xi, 〈π̂, σ̂, Ξ̂〉)
V̂i = Â(æi, ρ̂, σ̂) ρ̂′a = ρ̂a[xi 7→ âddr i] â′ = acti(act, ρ̂′a)

〈π̂, σ̂, Ξ̂〉
̂̂p7−−−−−→

Become
〈π̂ t [p̂ 7→

{
〈ko(actd(act, ρ̂a)), κ̂, â′, m̂b〉

}
],

σ̂ t [âddr i 7→ V̂i], Ξ̂〉

AbsT-Become

π̂(p̂) 3 〈wait, ε, â, m̂b〉 ((t, V̂1 . . . V̂n), m̂b
′
) ∈ d̂eq(m̂b)

acti((actor (x1 . . . xn) . . . (t (y1 . . . yn) e) . . . ), ρ̂b) = â

âddr i = âl loc(yi, 〈π̂, σ̂, Ξ̂〉) ρ̂′b = ρ̂b[yi 7→ âddr i]

〈π̂, σ̂, Ξ̂〉
̂̂p7−−−−−→

Receive
〈π̂ t [p̂ 7→

{
〈ev(e, ρ̂′b), ε, â, m̂b

′
〉
}

],

σ̂ t [âddr i 7→ V̂i], Ξ̂〉

AbsT-Receive

π̂(p̂) 3 〈ko(v̂), ε, â, m̂b〉

〈π̂, σ̂, Ξ̂〉
̂̂p7−→〈π̂ t [p̂ 7→

{
〈wait, ε, â, m̂b〉

}
], σ̂, Ξ̂〉

AbsT-Wait

π̂(p̂s) 3 〈ev((send æ0 t æ1 . . . aen), ρ̂), κ̂s, âs, m̂bs〉 pid(p̂r) 3 Â(æ0, ρ̂, σ̂)
π̂(p̂r) 3 〈ĉ, κ̂r, âr, m̂br〉 V̂i = A(æi, ρ̂, σ̂) m̂ = (t, V̂1 . . . V̂n)

〈π̂, σ̂, Ξ̂〉
̂̂ps7−−−→
Send

〈π̂ t [p̂s 7→
{
〈ko(pid(p̂r)), κ̂s, âs, m̂bs〉

}
]

t [p̂r 7→
{
〈ĉ, κ̂r, âr, ênq(m̂, m̂br)〉

}
],

σ̂, Ξ̂〉

AbsT-Send

π̂(p̂) 3 〈ev((send æ0 t æ1 . . . aen), ρ̂), κ̂, â, m̂b〉
pid(p̂) 3 Â(æ0, ρ̂, σ̂) V̂i = Â(æi, ρ̂, σ̂) m̂ = (t, V̂1 . . . V̂n)

〈π̂, σ̂, Ξ̂〉
̂̂p7−−−→
Send

〈π̂ t [p̂ 7→
{
〈ko(pid(p̂)), κ̂, â, ênq(m̂, m̂b)〉

}
], σ̂, Ξ̂〉

AbsT-Send-Self

π̂(p̂) 3 〈ev((terminate), ρ̂),_,_,_〉

〈π̂, σ̂, Ξ̂〉
̂̂p7−−−−−−−→

Terminate
〈π̂, σ̂, Ξ̂〉

AbsT-Terminate

Figure 6 Abstract transition relation for λα programs. ECOOP 2017



25:16 Mailbox Abstractions for Static Analysis of Actor Programs

Reachability of abstract error states. Predicate ̂ErrorReachablee may report error states
that are never reachable in program e, due to spurious program states. However, every
reachable error state is reported. If the analysis reports nothing, the program e contains no
reachable error states. It can therefore be used to prove the absence of errors in a program.

̂ErrorReachablee ⇐⇒ ∃〈π̂,_,_〉 ∈ lfp(F̂e), p̂ ∈ Dom(π̂) | π̂(p̂) 3 〈error,_,_,_〉

Abstract mailbox bounds. Function ̂MailboxBounde(p) computes an upper-bound on the
number of messages in the mailbox of actor p. Because it is an upper-bound, actor p may
never reach this bound. However, the mailbox of process p will never exceed this bound,
because the analysis is sound. Depending on the precision of the mailbox abstraction, ŝize
might yield ∞, although the size of the mailbox might be bounded in all concrete executions.

̂MailboxBounde(p) = max
({

ŝize(m̂b) | 〈π̂,_,_〉 ∈ lfp(F̂e) ∧ π̂(α(p)) 3 〈_,_,_, m̂b〉
})

5 Mailbox Abstractions

The representation of the actors’ mailboxes M̂box is a parameter to the analysis. In this
section we describe multiple sound instantiations of this parameter. Because mailboxes are
merely containers of messages, they do not depend on the values of the messages themselves.
Therefore, whether abstract or concrete messages are stored in the abstract mailboxes does
not influence their properties nor soundness, and we describe mailbox abstractions in the
context of concrete messages for the sake of clarity. Analogous to Section 3.4, it suffices to
provide definitions for the following. We define α and v for each mailbox abstraction and
provide complete soundness proofs in an accompanying technical report2.

(v) ⊆ M̂box × M̂box is a partial order relation.
α : Mbox → M̂box is the abstraction function.
ênq : M̂essage × M̂box → M̂box enqueues a message at the back of a mailbox.
d̂eq : M̂box → P(M̂essage × M̂box) dequeues a message from the front of a mailbox.
Depending on the abstraction, this operation may be non-deterministic. Each element of
the resulting set is a tuple containing the message dequeued from the mailbox and the
subsequent mailbox.
ŝize : M̂box → N ∪ {∞} computes the size of a mailbox, and may over-approximate.
êmpty : M̂box represents the empty mailbox.

A mailbox abstraction is sound if all of the above definitions are sound over-approximations
of their concrete counterparts. Formally, this means the following.

ênq is a sound over-approximation of enq: ∀m,mb : α(enq(m,mb)) v ênq(m,α(mb)).
d̂eq is a sound over-approximation of deq: ∀m,mb,mb′ : (m,mb′) ∈ deq(mb) =⇒
∃m̂b

′
, (m, m̂b

′
) ∈ d̂eq(α(mb)) ∧ α(mb′) v m̂b

′
.

ŝize is a sound over-approximation of size: ∀mb, size(mb) ≤ ŝize(α(mb)).
êmpty represents the empty mailbox empty: α(empty) = êmpty.

2 https://soft.vub.ac.be/~qstieven/ecoop2017/techreport.pdf.

https://soft.vub.ac.be/~qstieven/ecoop2017/techreport.pdf


Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover 25:17

Table 1 Categorization of the concrete List mailbox and five mailbox abstractions.

Ordering No Ordering
Multiplicity List, Bounded List (§5.3) Multiset (§5.4), Bounded Multiset (§5.5)
No Multiplicity Graph (§5.6) Powerset (§5.2)

5.1 Categorization of Mailbox Abstractions
We now describe one unbounded (Multiset) and four bounded (Powerset, Bounded List,
Bounded Multiset, Graph) mailbox abstractions. When the domain of messages is finite, all
bounded mailbox abstractions are also finite. The domain of messages is finite if the value
domain itself is finite, which is the case when abstract process identifiers are also finite. Note
that a finite number of abstract process identifiers does not limit the analysis to programs
with bounded actors, as discussed in Section 7.5.

Table 1 depicts a two-dimensional categorization of the mailbox abstractions. A mailbox
abstraction preserves message ordering information if it can encode which messages have
arrived before others (partially or up to some bound), that is, α(m1 :: m2 :: mb) 6= α(m2 ::
m1 :: mb). A mailbox abstraction preserves message multiplicity if it can encode the number
of times a message has been received (up to some bound), that is, there exists a bound such
that α(m : mb) 6= α(m : m : mb). For completeness, Table 1 also categorizes the concrete
(unbounded) List mailbox introduced in Section 3.4.

5.2 Powerset Abstraction
The powerset abstraction, used by D’Osualdo et al. [17], abstracts a concrete mailbox to the
set of messages it contains.

m̂b ∈ PS = P(Message)
emptyPS = ∅

enqPS(m, m̂b) = m̂b ∪ {m}

deqPS(m̂b) =
{

(m, m̂b), (m, m̂b −m) | m ∈ m̂b
}

sizePS(∅) = 0

sizePS(m̂b) =∞

Though sound, this coarse abstraction only keeps track of which messages are present in the
mailbox, and preserves neither ordering nor multiplicity of messages.

5.3 Bounded List Abstraction
Combining the powerset abstraction with a bounded concrete mailbox results in the bounded
list abstraction. It is defined as follows for a bound of n, where αLn

is the abstraction
function that converts a list to a set if its length exceeds the bound.

m̂b ∈ Ln = Mbox | PS
emptyLn

= ε

enqLn
(m, m̂b) = enqPS(m, m̂b) if m̂b ∈ PS

= αLn (enq(m, m̂b)) if m̂b ∈ Mbox

deqLn
(m̂b) = deqPS(m̂b) if m̂b ∈ PS

= deq(m̂b) if m̂b ∈ Mbox

sizeLn (m̂b) = sizePS(m̂b) if m̂b ∈ PS

= size(m̂b) if m̂b ∈ Mbox

We write L≥n to denote bounded list abstractions with a bound of at least n. This sound
abstraction preserves full precision over the messages in a mailbox —ordering and multiplicity
are both preserved— up to the point where the bound is reached. Once the number of
messages in the mailbox exceeds the bound n, the bounded list abstraction behaves like the
powerset abstraction, rendering it finite.

ECOOP 2017



25:18 Mailbox Abstractions for Static Analysis of Actor Programs

5.4 Multiset Abstraction
The list of messages can be abstracted to a multiset that keeps track of the multiplicity of
each message, but has no ordering information.

m̂b ∈ MS = M → N
emptyMS = λx.0

enqMS(m, m̂b) = m̂b[m 7→ m̂b(m) + 1]

deqMS(m̂b) = {(m, m̂b[m 7→ m̂b(m)− 1])

| m ∈ Dom (mb) ∧ m̂b(m) ≥ 1}

sizeMS(m̂b) =
∑

m∈Dom(m̂b)

m̂b(m)

The multiset abstraction is sound but unbounded: there is no bound on the number of times
each message may appear.

5.5 Bounded Multiset Abstraction
The multiset abstraction can be made finite by imposing a bound on the multiplicity of each
message. Once this bound is exceeded for a message, the multiplicity of that message is
abstracted and becomes ∞.

m̂b ∈ MSn = M → (N≤n ∪ {∞})
emptyMSn

= λx.0

sizeMSn (m̂b) =
∑

m∈Dom(m̂b)

m̂b(m)

enqMSn
(m, m̂b) = m̂b[m 7→ m̂b(m) + 1] if m̂b(m) < n

= m̂b[m 7→ ∞] otherwise

deqMSn
(m̂b) =

{
(m, m̂b[m 7→ m̂b(m)− 1]) | m ∈ Dom(m̂b) ∧ 1 ≤ m̂b(m) ≤ m

}
∪
{

(m, m̂b), (m, m̂b[m 7→ 0]) | m ∈ Dom(m̂b) ∧ m̂b(m) =∞
}

We write MS≥n to denote multiset abstractions with a bound of at least n.

5.6 Graph Abstraction
We propose graphs as a new mailbox abstraction that preserves ordering. A mailbox is
abstracted by a graph in which the nodes correspond to messages and the edges denote an
ordering relation between messages: an edge between node a and b indicates that b appears
after a in the mailbox. This abstraction also maintains information about the first and last
message in the mailbox. Figure 7 depicts the following evolution of a mailbox using this
abstraction.

Enqueuing message 0 on the empty mailbox creates a node 0, and makes the first (f)
and last (l) pointers point to this node (Figure 7a).
Enqueuing message 1 creates a new node connected to the previous first node, updates
the first pointer, but leaves the last pointer as is (Figure 7b).
Enqueuing message 0 does not create a new node since the node 0 is already in the graph,
but does add a new edge from 1 to 0, and updates the first pointer (Figure 7c).
Dequeuing a message yields the message pointed by the last node. The resulting mailbox
has the same graph, but the last node is updated to point to a successor of its current
node (Figure 7d).

Informally, upon a dequeue operation, the node pointed by the l pointer is returned, and the
mailbox is updated so that the last pointer points to a successor node of the returned node.



Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover 25:19

0

f l

(a)

0

1
f l

(b)

0

1
f l

(c)

0

1
f l

(d)

Figure 7 Visual representation of the graph abstraction.

Upon a queue operation, a new node is added with the corresponding message, the f pointer
is updated to point to this new node, and an edge is added between this new node and the
old node pointed by the f pointer. The size of the mailbox is known only when there is a
single path from the l node to the l node, otherwise the size is approximated by ∞.

m̂b ∈ G = (P(Message)
× P(Message ×Message)
×Message ×Message) ∪ {⊥}

emptyG = 〈∅,∅,⊥〉

sizeG(⊥) = 0
sizeG(〈V,E, f, l〉) = 1 + PathLength(l, f, 〈V,E〉)

enqG(m,⊥) = 〈{m} , {} ,m,m〉
enqG(m, 〈V,E, f, l〉) = 〈V ∪ {m} , E ∪ {〈f,m〉} ,m, l〉

deqG(⊥) = ∅
deqG(〈V,E, f, l〉) = {(l,⊥)} if | {(l, l′) ∈ E | l′ ∈ V } | = 0
deqG(〈V,E, f, l〉) = {(l, 〈V,E, f, l′〉) | (l, l′) ∈ E, l′ ∈ V } otherwise

PathLength (defined in the accompanying technical report3) computes the length of the
unique path between l and f . If no such unique path exists, it over-approximates with ∞.
This sound abstraction preserves ordering information but does not preserve multiplicity.
However, when there exists a single path from l to f , the size of the mailbox is equal to the
length of that path. Function PathLength returns n if there is a single path between l and
f , and this path has length n. Otherwise, it returns ∞. For example, this is the case in
Figures 7a and 7b, but not in Figure 7c nor in Figure 7d. The graph abstraction is finite
when the domain of messages is finite, and needs no bounding.

6 Evaluation

We used our implementation (Section 6.1) to evaluate the applicability of the different
mailbox abstractions on a set of benchmark programs (Section 6.2). The experiments were
executed with Scala 2.12.1 on a MacBook Pro with a 2.8 GHz i7 processor and 16 GB of
memory. We compare mailbox abstractions in terms of running time of the analysis and size
of the flow graph generated (Section 6.3), and precision (Section 6.4). Timing information
represents the average of running each benchmark 10 times after 2 warmup runs. We also
compare our implementation with Soter (Section 6.5), a state-of-the-art analyzer for Erlang,
and conclude with some remarks on soundness (Section 6.6).

3 https://soft.vub.ac.be/~qstieven/ecoop2017/techreport.pdf

ECOOP 2017

https://soft.vub.ac.be/~qstieven/ecoop2017/techreport.pdf


25:20 Mailbox Abstractions for Static Analysis of Actor Programs

6.1 Implementation
We implemented the technique presented in this paper in a modular static analysis tool [37],
which is freely available4. The prototype is implemented in Scala and supports the actor
model of λα on top of a subset of R5RS Scheme. It implements the mailbox abstractions
presented in Section 5. We incorporated two additional optimizations: global store widening
and abstract counting. Global store widening [38] is an abstraction that reduces the precision
of the analysis in order to reach a fixed point faster. Abstract counting [34] replaces joins
with updates in the process map when it is known that a process identifier maps to a single
abstract actor.

6.2 Benchmarks
We translated benchmarks from multiple sources to λα, remaining as close as possible to
their original implementation. We unrolled all loops that create a fixed number of actors,
in order to benefit from the additional precision offered by abstract counting. Solutions to
overcome this need for unrolling loops are given in Section 7.5. Moreover, in order to compare
our approach with Soter, which analyzes Erlang programs, we also faithfully translated all
the benchmarks in Erlang. The correspondance between the λα and Erlang versions of the
benchmarks is as close as possible. We used the following benchmark programs for evaluation,
which reflect specific patterns of mailboxes in actor programs and are in line with related
work. They range from 12 LOC to 32 LOC.

pp, count, count-seq, fjt-seq, fjc-seq: benchmark programs from the Savina bench-
mark suite [27], translated from Scala.
factorial, stack: benchmark programs from Agha [1], translated from pseudo-code.
cell: a typical example actor program.
parikh, pipe-seq, unsafe-send, safe-send, state-factory, stutter: benchmark
programs from Soter [16], translated from Erlang.

Note that all the benchmarks create a fixed number of actors (Table 2). When run with
abstract semantics, this can correspond to the same number of abstract actors, or to fewer
abstract actors, where one abstract actors models the behavior of a group of concrete actors
(e.g., in factorial). We did not target benchmarks with an unbounded number of concrete
actors, as this is an orthogonal problem to the points discussed in this paper. We discuss
this case in Section 7.5.

6.3 Running Time and Flow Graph Size
We measured the impact of the different mailbox abstractions on the size of the flow graph
generated by the analysis. Similarly to bounded model checking [6], the bounds for the
multiset and list mailbox abstractions were determined by running each benchmark with
increasing bounds (n = 1, 2, . . .) for each of these bounded abstractions, selecting the lowest
bound yielding maximal precision.

From the results of our experiments, summarized in Table 2, we conclude that the graph
abstraction generally yields the smallest, or close to the smallest, number of states. Using
the graph abstraction also resulted in the lowest running time in 7 out of 14 benchmarks.
The powerset abstraction, on the other hand, yields comparatively poor results in general,
timing out in 2 out of 14 benchmarks.

4 https://github.com/acieroid/scala-am.

https://github.com/acieroid/scala-am


Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover 25:21

Table 2 Number of states (#s) and time taken (t, in milliseconds) to generate the flow graphs
for each bounded mailbox abstraction. A time of ∞ means that the time limit of 60 seconds was
exceeded; in this case #s is the number of states that have been explored when the time limit was
reached. The size of the smallest flow graph on each row is underlined. The column P indicates the
number of processes for each benchmark.

Benchmark P PS (powerset) MSn (multiset) Ln (list) G (graph)
#s t n #s t n #s t #s t

pp 3 21 352 1 8 24 1 8 18 8 15
count 3 83 829 1 22 90 1 21 96 22 90
count-seq 3 45 207 1 10 15 2 8 8 8 8
fjt-seq 4 201 4609 1 589 12191 1 589 9746 589 8832
fjc-seq 4 15 38 1 15 21 1 15 22 15 25
factorial 8 1486+ ∞ 1 46 1009 1 52 1644 22 155
stack 3 85 636 1 42 46 4 16 13 16 13
cell 3 70 313 1 23 18 2 15 11 15 12
parikh 3 31 49 1 8 7 2 8 7 8 8
pipe-seq 4 2662+ ∞ 1 24 56 1 24 47 24 55
unsafe-send 2 4 4 1 3 3 1 3 3 3 3
safe-send 2 100 273 1 32 29 4 28 17 30 19
state-factory 3 76 553 1 43 274 1 160 745 214 814
stutter 2 28 76 1 60 103 1 34 79 15 23

The results also show that in 4 out of 14 benchmarks the bound for the list abstraction
needs to be higher than the bound for the multiset abstraction to achieve maximal precision.
In the count-seq benchmark, for example, a counting actor receives two kinds of messages:
increment and retrieve. The bounded list abstraction therefore requires a bound of 2 to
analyze this program precisely. On the other hand, the bound for the multiset abstraction is
not on the size of the mailbox, but at the level of individual messages. The increment and
retrieve messages appear only once, and therefore the multiset mailbox abstraction can
analyze this program precisely with a bound of 1.

6.4 Precision

To measure the precision of the different mailbox abstractions, we compared mailboxes and
dequeued messages during static analysis with their corresponding concrete values. Resulting
from over-approximation, a spurious abstract element lacks corresponding concrete elements
in actual runs of the program. The more spurious elements, the less precise the results of an
analysis. We counted the following spurious elements in the analysis results and summed the
results for all benchmarks (Table 8).
1. Spurious mailboxes.
2. Spurious messages resulting from spurious mailboxes (Spurious Messages #1 ).
3. Spurious messages resulting from non-spurious mailboxes (Spurious Messages #2 ).
Any message dequeued from a spurious mailbox is a spurious message, directly linking the
number of such spurious messages to the number of spurious mailboxes. This link is not that
direct for spurious messages resulting from non-spurious mailboxes, and at least a different
mailbox abstraction is required to decrease the number of spurious messages in this category.
For example, a non-empty mailbox will always yield spurious messages if abstracted by a
powerset, no matter the precision of the other abstractions used in the analysis.

ECOOP 2017



25:22 Mailbox Abstractions for Static Analysis of Actor Programs

0 20 40 60 80 100 120 140 160 180 200 220 240

Graph

Bounded List

Bounded Multiset

Powerset

3

27

27

15

19

41

147

15

17

25

67

Number of spurious elements

Spurious Mailboxes
Spurious Messages #1
Spurious Messages #2

Figure 8 Precision metrics for the different mailbox abstractions (lower is better).

The results show that the coarse powerset abstraction is the most imprecise abstraction,
resulting in many spurious elements. These spurious elements in turn result in spurious
program states (Section 6.3), rendering the abstraction not scalable. This makes the use of
the powerset abstraction unsuitable for proving program properties directly (Section 6.5).

The multi-set abstraction benefits from higher precision because it preserves multiplicity,
therefore resulting in fewer spurious mailboxes. However, because it lacks order information,
it does not improve over the powerset abstraction in the number of spurious messages
resulting from non-spurious mailboxes.

The list and graph abstraction preserve both multiplicity and ordering, which renders
them more precise. On benchmarks with an unbounded number of messages, both lose some
precision. However, when the messages in an unbounded mailbox follow a specific pattern,
the graph abstraction yields a better precision than the bounded list abstraction. This is
because the list abstraction reduces to a powerset once the bound is reached, thereby losing
ordering information. This is the case in the stutter benchmark, where the list abstraction
results in 10 spurious elements, while the graph analyzes it with full precision (i.e., without
spurious elements).

The only benchmark where the graph abstraction yields more spurious elements than
the other abstractions is state-factory. This is because this benchmarks contains an actor
receiving a specific message an unbounded number of times, as well as a single instance of
another message. Due to the specific message being received an unbounded number of times,
the graph abstraction does not maintain the multiplicity information over the message that is
unique. Using the bounded multiset abstraction on the other hand preserves this multiplicity
and yields no spurious elements. Using the powerset and bounded list abstractions does not
preserve this multiplicity information, yielding spurious elements. However because these
abstractions have a smaller domain size, they produce less spurious mailboxes in comparison
with the graph abstraction (2 for the powerset abstraction, 3 for the bounded list abstraction,
6 for the graph abstraction).

6.5 Comparison with Soter
We compare our analysis of λα with Soter, a state-of-the-art analysis tool for Erlang
programs [17]. We translated our benchmarks to Erlang in order to analyze them with Soter.
The result of running Soter and our analysis on these benchmarks is given in Table 3. Some
benchmarks have unbounded mailboxes, hence there is no bound to prove; other benchmarks
make no use of the error construct, hence the absence of error is trivial. These benchmarks
are therefore not included in Table 3.



Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover 25:23

Table 3 Comparison with Soter. Column Type is the verified property: absence of run-time errors
(Err.) or bound on some mailbox (Bnd.). Column Safe is the expected analysis result. For both
Soter and our technique, column Res. gives the result of the analysis, column t is the running time
of the full analysis, and column Abs. lists the abstractions used. The time given for our technique is
the range of the time taken by the abstractions listed in Abs.

Soter Us
Benchmark Type Safe Res. Abs. t (ms) Res. Abs. t (ms)
parikh Err. 3 3 D0 38 3 MS≥1, L≥1, G 7− 8
unsafe-send Err. 7 7 D0 13 7 PS ,MS≥0, L≥0, G 3− 4
safe-send Err. 3 3 D1 267 3 L≥4, G 17− 19
stutter Err. 3 7 D2 53 3 G 23− 23
stack Err. 3 7 D2 2260 3 L≥4, G 13− 13
count-seq Err. 3 7 D2 109 3 L≥2, G 8− 8
cell Err. 3 7 D2 383 3 L≥2, G 11− 12
pipe-seq Bnd. 3 3 D0 165 3 MS≥1, L≥1, G 47− 55
state-factory Bnd. 3 3 D0 622 3 MS≥1, G 274− 814
pp Bnd. 3 3 D0 95 3 MS≥1, L≥1, G 15− 24
count-seq Bnd. 3 3 D0 71 3 MS≥1, L≥2, G 8− 10
cell Bnd. 3 7 D2 383 3 MS≥1, L≥2, G 11− 18
fjc-seq Bnd. 3 7 D2 81 3 MS≥1, L≥1, G 21− 25
fjt-seq Bnd. 3 7∗ n.a. n.a. 7 n.a. n.a.

For both Soter and our technique, column Abs. lists the abstractions that enable
verification of either the absence of errors or the bound on mailboxes. This is with a simple
query on the generated flow graph alone in our case, and with some more complex post-
processing for Soter. In the case of Soter, the only tunable parameter is the data abstraction
depth, which varies between 0 and 2. We chose the lowest data abstraction depth that could
be used to verify the properties, and else used an abstraction depth of 2. In the case of our
technique, we list all mailbox abstractions that enabled proving each program property. In
practice, choosing an abstraction to verify each program can be automated by running the
analysis with each abstraction, increasing the bound for bounded abstractions, until one is
able to prove the property. If no abstraction can be used to prove the property, one can
conclude that either the property does not hold, or that the analysis yields a false positive.
Overall, we see that our technique is able to verify mailbox bounds and the absence of
run-time errors in a similar amount of time as Soter. With a proper mailbox abstractions
the analysis takes less than one second for each benchmark.

An important distinction between our approach and Soter is that Soter generates a coarse
flow graph as the model of a program, and then performs model checking on this graph
to verify program properties. Our technique constructs a more precise flow graph of the
program on which the verification can be performed directly, not requiring a separate model
checking step to prove the absence of run-time errors or bounds on mailboxes. To highlight
this difference, consider the parikh benchmark. It contains a server actor that expects
init as a first message, but throws an error if it receives a second init message. With a
powerset mailbox abstraction, which does not preserve multiplicity, the error is reachable in
the graph generated by Soter. However, it can be proved unreachable by performing an extra
model-checking step. On the other hand, our approach benefits from improved precision
from the mailbox abstraction, resulting in a smaller and more precise flow graph that does
not contain the error state. No further steps are therefore required.

ECOOP 2017



25:24 Mailbox Abstractions for Static Analysis of Actor Programs

Additionally, we are able to handle programs that Soter cannot handle. For example,
stutter needs a mailbox abstraction that preserves ordering information among an un-
bounded number of messages following the pattern of Figure 7, and for which the graph
abstraction is ideally suited. As another example, stack needs a mailbox abstraction that
preserves ordering information on four consecutive messages. Note that on fjt-seq, our
technique fail to prove the required bound. However, Soter produces unsound results: it
proves a bound that is lower than the expected bound.

6.6 Soundness

The approach presented in this paper combines sound techniques: systematic abstraction
of abstract machines [38], ordered macro-stepping semantics (a variant of macro-stepping
semantics of Agha et al. [2]), and sound mailbox abstractions.. To prove the soundness of the
analysis, we first note that the abstract semantics over-approximate the concrete semantics.

I Theorem 1 ((̂7−→) is a sound over-approximation of ( 7−→)). If we have ς1
p7−→
E

ς2, and

α(ς1) v ς̂1, then ∃ς̂2 such that ς̂1
p̂7−→
E

ς̂2, α(ς2) v ς̂2 and α(p) = p̂.

Proof. The proof follows a similar structure as in Van Horn and Might [38] and D’Osualdo [15],
and is based on the soundness of mailbox abstractions (proven in the accompanying technical
report5). Note that any address allocation strategy leads to a sound analysis [32, 23]. J

Our abstract version of macro-stepping semantics combines multiple small steps into a
macro-step, in a sound manner (Theorem 3).

I Theorem 2 ((̂7−→∗↓) is a sound over-approximation of ( 7−→∗↓)). If we have ς1
p7−→
E

∗↓
ςN and

α(ς1) v ς̂N , then ∃ς̂N such that ς̂1
p̂7−→
E

∗↓
ς̂N , α(ςN ) v ς̂N and α(p) v p̂.

Proof. The proof is by induction on the rules of 7−→∗↓. For the cases M-Stop and M-
Blocked, the proof directly follows from Theorem 1. The case M-Main consists of two
parts: a first step of ̂7→, proven by Theorem 1, and a second step of ̂7→∗↓ that follows by the
induction hypothesis. J

I Theorem 3 ((̂7−→M ) is a sound over-approximation of ( 7−→M )). If we have ς1
p7−→
E

M
ςN and

α(ς1) v ς̂N , then ∃ς̂N such that ς̂1
p̂7−→
E

M

ς̂N , α(ςN ) v ς̂N and α(p) v p̂.

Proof. A macro-step is the composition of an unrestricted small-step followed by a restricted
multi-step. Soundness therefore follows from Theorems 1 and 2. J

Our analysis therefore forms a sound over-approximation of the concrete semantics of a
program.

5 https://soft.vub.ac.be/~qstieven/ecoop2017/techreport.pdf

https://soft.vub.ac.be/~qstieven/ecoop2017/techreport.pdf


Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover 25:25

7 Related Work

In this paper, we aim at providing a sound over-approximation of the behavior of actor
programs. A number of existing tools supporting actors aim for a different goal: providing
a very precise under-approximation. That is, tools based on model checking and concolic
testing can detect errors in actor programs, based on a number of concrete executions of
a program. They are said to be sound for defect detection [7] in that any detected error is
an error that will arise under certain conditions. However, such tools can only prove the
absence of errors by exploring the entire set of possible executions of a program, which might
not be finite due to the numerous sources of unboundedness. Our technique, in contrast,
is sound for correctness: if our technique cannot detect a defect, it proves that the given
program is free of that defect under all possible inputs and interleavings. However, if a defect
is detected, it might be a false positive resulting from a too coarse abstraction. Identifying
whether a detected defect is a false positive or a true defect is up to the user of the analysis,
and can be a burden if the number of false positives is high. Reducing the number of false
positives of an analysis is important in order to reduce the burden on the user [9].

Similarly to D’Osualdo et al. [17], we apply the abstracting abstract machine (AAM)
technique of Van Horn and Might [38] to actor programs. This technique enables a systematic,
sound abstraction of concrete semantics given as an abstract machine. Instead of applying
AAM to build a coarse model of the program and then performing model-checking on
that model (as done by D’Osualdo et al. [17]), we use AAM as the only step in our static
analysis. We show that with proper mailbox abstractions, this single step is sufficient to
verify properties such as absence of errors and mailbox bounds, with a better precision than
D’Osualdo et al. [17]. Our technique has two limitations: it does not deal with programs
in which the number of actors is unbounded, and it reasons about every possible message
interleaving. Both of these problems impact the scalability of the technique, but nonetheless
should not overshadow the contributions of this paper. Indeed, our formalizations and
observations of the properties of different mailbox abstractions are applicable to other static
analysis techniques than AAM.

7.1 Actor Languages

In this paper, we focus on actors following the classical actor model introduced by Agha [1].
The foundations of this model have been formalized in detail by Agha et al. [2], with the
difference that mailboxes are represented by multisets. We represent concrete mailboxes
for each actor by queues, in order to be able to model other mailbox formalisms and
implementations that assume that mailboxes are ordered [1, 25, 24, 3, 20]. Another difference
with Agha et al. [2] is that we do not restrict values that can be communicated: our
formalization supports messages that contain closures. For a recent survey of existing actor
models and their specificities, we refer to De Koster et al. [14].

The concept of macro-stepping is introduced in Agha et al. [2], where a macro step is
defined as multiple small steps made within a single actor between the reception of two
messages. We introduce ordered macro-stepping, a finer-grained variant of macro-stepping
that properly accounts for interleavings of message sends. This is because regular macro-
stepping is not sound for analyzing programs from ordered-message mailbox actor models.

ECOOP 2017



25:26 Mailbox Abstractions for Static Analysis of Actor Programs

7.2 Abstract Interpretation of Actor Programs

Huch [26] represents some of the earliest work on static analysis of actors-based programs
through abstract interpretation. The author identifies four sources of unboundedness that
render analyzing actor programs challenging: data unboundedness, stack unboundedness,
mailbox unboundedness, and unboundedness of the number of spawned processes. He solves
the first two sources of unboundedness, and mitigates the last two by framing the analysis in
the context of programs that “use only finite parts of the message queues and create only
finitely many processes”. Our analysis deals with unbounded number of messages, but we
leave the problem of unbounded processes for future work.

A closely related work to ours is Soter [16, 17], to which we compare in Section 6. Static
checks included in Erlang’s analyzer dialyzer [7, 8] are sound for defect detection. Our
approach is over-approximative and therefore sound for correctness.

Garoche et al. [22] present an abstract interpretation approach to verify properties of
an actor calculus. The focus is on abstractions that enable reasoning about the number of
actors bound to a process identifier, while this paper focuses on abstractions to reason about
the mailbox content of an actor. Garoche et al. [21] extends the earlier approach to detect
orphan messages in actor programs, using a vector addition system, similarly to D’Osualdo et
al. [17]. The difference with our work is that we reason about the content of mailboxes while
performing the control-flow analysis, while both Garoche et al. [21] and D’Osualdo et al. [17]
only do so at a later stage. Moreover, Garoche et al. [21] uses the multiset representation for
concrete mailboxes, while we take ordering information into account.

7.3 Type Systems

Multiple type systems have been formalized for actor programs. However, most of them only
focus on detecting type errors in the sequential subset of the language [29, 30]. A notable
exception is Dagnat and Pantel [11]. This type system focuses on detecting messages that
will never be handled. However, it reasons about global properties of actors, while our
analysis is able to reason about actors at different moments in their lifetime.

7.4 Model Checking and Specification Logics

Dam and Fredlund [12] introduce a specification logic and proof system for Core Erlang
programs that can be used to perform model-checking on Erlang programs. This approach has
been integrated in the Erlang Verification Tool [4], later extended to deal with OTP-specific
constructs such as gen_server [5]. It supports verifying that an implementation satisfies a
given specification, but is not fully automated like our approach.

Both dCUTE [36] and Basset [28] perform automated testing on actor programs and
exploit reduction techniques to reduce the size of the explored state space. dCUTE uses
concolic testing and incorporates dynamic partial order reduction (DPOR), while Basset uses
model checking and allows to choose between DPOR or an actor-specific state comparison
reduction technique. Both rely on concrete execution of the program, and only terminate if
the program itself terminates. These techniques are sound for defect detection, while ours is
sound for correctness and guaranteed to terminate in finite time. A common point is the
use of macro-stepping to reduce the number of interleavings to explore. However, as we do
assume ordering on the mailbox, we use the finer-grained ordered macro-stepping.



Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover 25:27

7.5 Limitations and Future Work
The main limitations of our work have an impact on the scalability of the analysis. They do
not diminish the contributions of this paper. The different mailbox abstractions we propose,
the evaluation of their impact on the properties of the analysis, and the adaptation of
macro-stepping semantics to actor models with ordered mailboxes are our main contributions.
These contributions are not limited to the analysis framework described in this paper.

The two main limitations, and how they could be addressed in the future, are the following.
The use of abstract counting is crucial to obtain the precise results of Section 6. Without
it, the analysis is unable to yield useful results. But even with abstract counting, results
can become too imprecise if an abstract process identifier corresponds to more than one
concrete actor. This is why we had to adapt some benchmarks in order to have different
call sites for each created actor, so that each would get associated with a different process
identifier. One solution to this problem is using a more precise context-sensitivity, so that
multiple actors created at the same call site in different contexts are mapped to different
process identifiers. But, the analysis and its precision have to be finite, so precision has
to be lost at some point. To reason precisely about programs with an unbounded number
of actors (e.g., where the number of actors spawned is dependent on user input), this
precision loss will have to be remedied.
While our analysis uses macro-stepping to reduce the amount of non-determinism, it still
explores a program under all the possible message interleavings. Scaling to larger programs
where that number of interleavings can become tremendous remains problematic. There
is extensive literature on how to tackle this problem in the context of shared-memory
concurrency [35, 18], and it has also been explored in the context of concolic testing of
actor programs [36, 28]. We plan on adapting these techniques to our framework.

Note that in the language considered, messages are assumed to be received in the same
order as sent. This limits the analysis to a local setting. Extending the analysis to a
distributed setting where messages may be reordered under certain conditions6 would require
to relax this assumption.

We did not discuss the possible extension of this work to analyze programs that do not
guarantee actor isolation. In order to analyze for example actor programs written in Scala,
which may contain actors that share memory, it is necessary to adapt the analysis. However,
the necessary changes are isolated thanks to the modular design of our approach: one has to
introduce a new effect to represent reads and writes to shared memory, and to adapt the
macro-stepping semantics so that a macro-step is interrupted upon side effects. This is done
by redefining function f of Section 3.6.

8 Conclusion

We presented a framework for statically analyzing actor-based programs through abstract
interpretation. Starting from the concrete semantics of an actor language, we apply systematic
abstraction in order to obtain an abstract interpreter for that language. We introduce and
incorporate a finer-grained variant of macro-stepping that we call ordered macro-stepping.
This is because several actor models feature mailboxes that preserve ordering information
about their messages, for which regular macro-stepping results in a static analysis that

6 For example, Erlang ensures that messages sent from a given actors will be received in the same order,
but nothing is guaranteed about the order of the messages sent from different actors.

ECOOP 2017



25:28 Mailbox Abstractions for Static Analysis of Actor Programs

may miss execution interleavings and therefore is unsound. We identify the abstraction
used for the actors’ mailboxes as a key component of any analysis for actor-based programs.
Our analysis is therefore parameterized by the mailbox abstraction used, and we provide
different instantiations of this parameter that differ in the extent to which the multiplicity
and ordering of messages is preserved.

We evaluated the applicability of the different mailbox abstractions on a set of benchmark
programs with regard to two program properties: absence of errors, and bounds on mailbox
sizes. The use of suitable mailbox abstractions enabled our analysis to verify programs
properties that related work could not. We found that the prevalent powerset mailbox
abstraction, which preserves neither multiplicity nor ordering, is too imprecise to prove these
properties. Using a graph-based mailbox abstraction, in contrast, resulted in sufficiently
small flow graphs that enable proving them for all benchmark programs. Our results also
show that our improvements in the precision of the computed flow graphs obviate the need
for a separate model checking step.

We conclude that sound and precise abstraction of mailboxes is crucial to the precision
of any static analysis for actor-based programs. Our work demonstrates that a well-chosen
mailbox abstraction can improve the precision of the analysis significantly, thus enabling
static verification of the absence of errors and the computation of mailbox bounds.

References
1 Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT

Press, Cambridge, MA, USA, 1986.
2 Gul Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. A foundation for actor

computation. J. Funct. Program., 7(1):1–72, 1997.
3 Joe Armstrong. Programming erlang : software for a concurrent world. Pragmatic pro-

grammers. Pragmatic Bookshelf, 2007.
4 Thomas Arts, Mads Dam, Lars-Åke Fredlund, and Dilian Gurov. System description:

Verification of distributed erlang programs. In Automated Deduction - CADE-15, 15th
International Conference on Automated Deduction, Lindau, Germany, July 5-10, 1998,
Proceedings, pages 38–41, 1998.

5 Thomas Arts and Thomas Noll. Verifying generic erlang client-server implementations. In
Implementation of Functional Languages, 12th International Workshop, IFL 2000, Aachen,
Germany, September 4-7, 2000, Selected Papers, pages 37–52, 2000.

6 Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu.
Bounded model checking. Advances in Computers, 58:117–148, 2003.

7 Maria Christakis and Konstantinos Sagonas. Static detection of race conditions in erlang.
In Practical Aspects of Declarative Languages, 12th International Symposium, PADL 2010,
Madrid, Spain, January 18-19, 2010. Proceedings, pages 119–133, 2010.

8 Maria Christakis and Konstantinos Sagonas. Static detection of deadlocks in erlang. Tech-
nical report, 2011.

9 Patrick Cousot. The verification grand challenge and abstract interpretation. In Verified
Software: Theories, Tools, Experiments, First IFIP TC 2/WG 2.3 Conference, VSTTE
2005, Zurich, Switzerland, October 10-13, 2005, Revised Selected Papers and Discussions,
pages 189–201, 2005.

10 Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proceedings
of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 238–252. ACM, 1977.



Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover 25:29

11 Fabien Dagnat and Marc Pantel. Static analysis of communications for erlang. In Proceed-
ings of 8th International Erlang/OTP User Conference, 2002.

12 Mads Dam and Lars-Åke Fredlund. On the verification of open distributed systems. In
Proceedings of the 1998 ACM symposium on Applied Computing, SAC’98, Atlanta, GA,
USA, February 27 - March 1, 1998, pages 532–540, 1998.

13 Joeri De Koster, Stefan Marr, Tom Van Cutsem, and Theo D’Hondt. Domains: Sharing
state in the communicating event-loop actor model. Computer Languages, Systems &
Structures, 45:132–160, 2016.

14 Joeri De Koster, Tom Van Cutsem, and Wolfgang De Meuter. 43 years of actors: a
taxonomy of actor models and their key properties. In Proceedings of the 6th International
Workshop on Programming Based on Actors, Agents, and Decentralized Control, AGERE
2016, Amsterdam, The Netherlands, October 30, 2016, pages 31–40, 2016.

15 Emanuele D’Osualdo. Verification of Message Passing Concurrent Systems. PhD thesis,
University of Oxford, 2015.

16 Emanuele D’Osualdo, Jonathan Kochems, and Luke Ong. Soter: an automatic safety
verifier for erlang. In Proceedings of the 2nd edition on Programming systems, languages
and applications based on actors, agents, and decentralized control abstractions, AGERE!
2012, October 21-22, 2012, Tucson, Arizona, USA, pages 137–140, 2012.

17 Emanuele D’Osualdo, Jonathan Kochems, and Luke Ong. Automatic verification of erlang-
style concurrency. In Static Analysis - 20th International Symposium, SAS 2013, Seattle,
WA, USA, June 20-22, 2013. Proceedings, pages 454–476, 2013.

18 Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for model check-
ing software. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2005, Long Beach, California, USA, January
12-14, 2005, pages 110–121, 2005.

19 Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of
compiling with continuations. In Proceedings of the ACM SIGPLAN’93 Conference on
Programming Language Design and Implementation (PLDI), Albuquerque, New Mexico,
USA, June 23-25, 1993, pages 237–247, 1993.

20 Simon Fowler, Sam Lindley, and Philip Wadler. Mixing metaphors: Actors as channels and
channels as actors. arXiv preprint arXiv:1611.06276, 2016.

21 Pierre-Loïc Garoche. Static Analysis of an Actor-based Process Calculus by Abstract Inter-
pretation. PhD thesis, National Polytechnic Institute of Toulouse, France, 2008.

22 Pierre-Loïc Garoche, Marc Pantel, and Xavier Thirioux. Static safety for an actor dedicated
process calculus by abstract interpretation. In Formal Methods for Open Object-Based
Distributed Systems, 8th IFIP WG 6.1 International Conference, FMOODS 2006, Bologna,
Italy, June 14-16, 2006, Proceedings, pages 78–92, 2006.

23 Thomas Gilray, Michael D. Adams, and Matthew Might. Allocation characterizes polyvari-
ance: a unified methodology for polyvariant control-flow analysis. In Proceedings of the
21st ACM SIGPLAN International Conference on Functional Programming, ICFP 2016,
Nara, Japan, September 18-22, 2016, pages 407–420, 2016.

24 Munish K. Gupta. Akka essentials. Packt Publishing Ltd, 2012.
25 Philipp Haller. On the integration of the actor model in mainstream technologies: the

scala perspective. In Proceedings of the 2nd edition on Programming systems, languages
and applications based on actors, agents, and decentralized control abstractions, AGERE!
2012, October 21-22, 2012, Tucson, Arizona, USA, pages 1–6, 2012.

26 Frank Huch. Verification of erlang programs using abstract interpretation and model check-
ing. In Proceedings of the fourth ACM SIGPLAN International Conference on Functional
Programming (ICFP ’99), Paris, France, September 27-29, 1999., pages 261–272, 1999.

ECOOP 2017



25:30 Mailbox Abstractions for Static Analysis of Actor Programs

27 Shams Mahmood Imam and Vivek Sarkar. Savina - an actor benchmark suite: Enabling
empirical evaluation of actor libraries. In Proceedings of the 4th International Workshop on
Programming based on Actors Agents & Decentralized Control, AGERE! 2014, Portland,
OR, USA, October 20, 2014, pages 67–80, 2014.

28 Steven Lauterburg, Mirco Dotta, Darko Marinov, and Gul Agha. A framework for state-
space exploration of java-based actor programs. In ASE 2009, 24th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, Auckland, New Zealand, November
16-20, 2009, pages 468–479, 2009.

29 Anders Lindgren. A prototype of a soft type system for erlang. Master’s thesis, Uppsala
University, 1996.

30 Simon Marlow and Philip Wadler. A practical subtyping system for erlang. In Proceedings
of the 1997 ACM SIGPLAN International Conference on Functional Programming (ICFP
’97), Amsterdam, The Netherlands, June 9-11, 1997., pages 136–149, 1997.

31 Jan Midtgaard. Control-flow analysis of functional programs. ACM Comput. Surv.,
44(3):10, 2012.

32 Matthew Might and Panagiotis Manolios. A posteriorisoundness for non-deterministic ab-
stract interpretations. In Verification, Model Checking, and Abstract Interpretation, 10th
International Conference, VMCAI 2009, Savannah, GA, USA, January 18-20, 2009. Pro-
ceedings, pages 260–274, 2009.

33 Matthew Might and Olin Shivers. Improving flow analyses via gammacfa: abstract garbage
collection and counting. In Proceedings of the 11th ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP 2006, Portland, Oregon, USA, September 16-21,
2006, pages 13–25, 2006.

34 Matthew Might and David Van Horn. A family of abstract interpretations for static analysis
of concurrent higher-order programs. In Static Analysis - 18th International Symposium,
SAS 2011, Venice, Italy, September 14-16, 2011. Proceedings, pages 180–197, 2011.

35 Doron A. Peled. Ten years of partial order reduction. In Computer Aided Verification,
10th International Conference, CAV ’98, Vancouver, BC, Canada, June 28 - July 2, 1998,
Proceedings, pages 17–28, 1998.

36 Koushik Sen and Gul Agha. Automated systematic testing of open distributed programs.
In Fundamental Approaches to Software Engineering, 9th International Conference, FASE
2006, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2006, Vienna, Austria, March 27-28, 2006, Proceedings, pages 339–356, 2006.

37 Quentin Stiévenart, Maarten Vandercammen, Wolfgang De Meuter, and Coen De Roover.
Scala-AM: A modular static analysis framework. In 16th IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM 2016, Raleigh, NC, USA,
October 2-3, 2016, pages 85–90, 2016.

38 David Van Horn and Matthew Might. Abstracting abstract machines: a systematic ap-
proach to higher-order program analysis. Commun. ACM, 54(9):101–109, 2011.



Compiling Tree Transforms to Operate on Packed
Representations

Michael Vollmer1, Sarah Spall2, Buddhika Chamith3, Laith Sakka4,
Chaitanya Koparkar5, Milind Kulkarni6, Sam Tobin-Hochstadt7,
and Ryan R. Newton8

1 Indiana University, Bloomington, IN, USA
vollmerm@indiana.edu

2 Indiana University, Bloomington, IN, USA
sjspall@indiana.edu

3 Indiana University, Bloomington, IN, USA
budkahaw@indiana.edu

4 Purdue University, West Lafayette, IN, USA
lsakka@purdue.edu

5 Indiana University, Bloomington, IN, USA
ckoparka@indiana.edu

6 Purdue University, West Lafayette, IN, USA
milind@purdue.edu

7 Indiana University, Bloomington, IN, USA
samth@indiana.edu

8 Indiana University, Bloomington, IN, USA
rrnewton@indiana.edu

Abstract
When written idiomatically in most programming languages, programs that traverse and con-
struct trees operate over pointer-based data structures, using one heap object per-leaf and per-
node. This representation is efficient for random access and shape-changing modifications, but for
traversals, such as compiler passes, that process most or all of a tree in bulk, it can be inefficient.
In this work we instead compile tree traversals to operate on pointer-free pre-order serial-
izations of trees. On modern architectures such programs often run significantly faster than
their pointer-based counterparts, and additionally are directly suited to storage and transmission
without requiring marshaling.

We present a prototype compiler, Gibbon, that compiles a small first-order, purely functional
language sufficient for tree traversals. The compiler transforms this language into intermediate
representation with explicit pointers into input and output buffers for packed data. The key
compiler technologies include an effect system for capturing traversal behavior, combined with
an algorithm to insert destination cursors. We evaluate our compiler on tree transformations
over a real-world dataset of source-code syntax trees. For traversals touching the whole tree,
such as maps and folds, packed data allows speedups of over 2× compared to a highly-optimized
pointer-based baseline.

1998 ACM Subject Classification D.3.3 Language Constructs and Features

Keywords and phrases compiler optimization, program transformation, tree traversal

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.26

© Michael Vollmer, Sarah Spall, Buddhika Chamith, Laith Sakka, Chaitanya Koparkar,
Milind Kulkarni, Sam Tobin-Hochstadt, and Ryan R. Newton;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 26; pp. 26:1–26:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


26:2 Compiling Tree Transforms to Operate on Packed Representations

struct Tree {
  enum {Leaf, Node} tag;
  union {
    struct {long long elem}
    struct {struct Tree* l;
            struct Tree* r;}}}

N

NL 1

L 2 L 3

(a) Standard representation of a tree structure in C: by default, word-sized tags and pointers.

N L 1 N L 2 L 3

(b) Serialized version of the same tree. Not to scale: tags take one byte and integers eight.

Figure 1 Standard and serialized representations of trees.

1 Introduction

Programs that traverse and construct trees are widely used across all domains of computer
science, ranging from compiler passes, to the browser Document Object Model, to particle
simulations with space-partitioning trees. Yet almost all modern programming languages
and compilers represent trees and their traversals identically. Each node of the tree is a
heap object, followed by fields for child nodes or leaf values. This representation has not
changed since early LISP systems and is shared across source languages with diverse type
systems—whether algebraic data types or class hierarchies, statically or dynamically typed.
The deviations from this consensus are found within limited high-performance scenarios
where complete trees can be laid out using address arithmetic with no intermediate nodes.

We submit that this consensus is premature. In numerical computing it is an axiom that
you cannot treat the numbers in a matrix as individual heap objects. Rather, the emphasis
is on bulk efficiency. Likewise, many tree traversals process trees in bulk, reading or writing
them in one pass. On such workloads, traditional tree representations are not favored by
current trends in computer architecture. Pointer-chasing implies randomized memory access
patterns. While previous work addresses spatial locality for tree data [4], much memory is
still wasted both in pointers themselves and in tags on nodes (e.g. distinguishing “interior”
vs “leaf” objects). For example, a C compiler uses 96 bytes of memory to represent the tree
shown in Figure 1a. On the other hand, if we are sending the tree over the network, we would
naturally use a more compact form in serializing it, as shown in Figure 1b. In the latter
version, we use the same 24 bytes for the data in the leaves, but only 5 bytes for the spine
(capturing the “tags” of the 5 nodes in the tree), rather than 72. Further, a tree traversal
processing this memory representation follows a precisely linear memory access pattern,
because the data is already laid out in a preorder traversal. On architectures with inexpensive
unaligned access, such as modern x86, this is a desirable in-memory representation as well as
a serialization format.1

Indeed, if we can compile programs to operate directly on this serialization, we follow a
precedent of using serialization formats jointly as memory formats. For example, Cap’N Proto
[28] makes it ergonomic for C++ code to operate directly on the Protobuf serialization format

1 Even restricted to aligned access, we would still shrink from 72 bytes to 20 by switching to a packed
format.



M. Vollmer et. al. 26:3

in memory. Likewise “data baking”2. is an established practice in video games—caching
assets on disk in a format that allows them to be mmap’d into memory and used without
further conversion. As a general example of this capability, the Glasgow Haskell Compiler
(GHC) recently added the capability to store any closed subgraph of the heap as a Compact
Normal Form (CNF) [29]—a contiguous memory region that is treated as a kind of “super
heap object”, never traced by the GC and collected only when there are no pointers into any
of the sub-parts of the CNF.

The packed tree format above is precisely a dense encoding of a CNF—a transitive closure
of heap objects with no escaping pointers, in this case, no pointers at all. GHC’s CNF
support—like related efforts at region [26] or pool memory management [16]—colocates
heap objects without changing their representation. Code accessing the data can remain
unchanged. In contrast, the dense tree format requires a complete rearrangement of the
compiled code that operates on the data. This rearrangement is fundamental to the space
savings and format simplicity.

In this paper, we take a first step towards compiler support for packed tree data types
without changing the source program. Packed representations aren’t always appropriate,
and we don’t automate the choice of when to use them, but rather automate the necessary
code transformations to transparently use packed representations for selected data types.
Henceforth, we use tree traversals or tree transforms to refer to programs that walk over
an immutable tree, building an output tree of size proportional to the input tree, without
substantially relying on sharing in the representation. We also address a limited class of tree
searches that require random access within a tree. We make the following contributions:

We present a compiler, dubbed Gibbon, that can compile a range of tree transforms,
written in a minimal functional language, to be more than twice as fast as standard
techniques (Section 3). We evaluate Gibbon against both a number of existing compilers
and its own best performance (without packing) in Section 6.
We present compilation algorithms for data packing (Section 4), including a method
for determining when a function reaches the end of its input(s), and for converting to a
destination-cursor-passing style, which supports operating on data in dense byte streams.
In an additional evaluation, we show that not only can tree traversals become faster in the
packed representation, but that they are still amenable to parallel speedup (Section 7.2.1).
To leverage parallelism, we need random access and thus extra layout information in dense
encodings—a feature that also allows tree searches to be expressed in our framework,
such as a point correlation application evaluated in Section 7.2.2.

2 Background and Example

We begin our study of packed tree representations with perhaps the simplest example: binary
trees with integer leaves. In a language with algebraic data types, a recursive walk on the
tree would typically use pattern matching, which we demonstrate with the following function
that increments each integer leaf by one.

data Tree = Leaf Int | Node Tree Tree

add1 t = case t of
Leaf n → Leaf (n+1)
Node x y → Node (add1 x) (add1 y)

2 Described here http://nullprogram.com/blog/2016/11/15/

ECOOP 2017

http://nullprogram.com/blog/2016/11/15/


26:4 Compiling Tree Transforms to Operate on Packed Representations

Here we use a Haskell-like syntax, but in fact the small, strict, first-order, purely functional
language of tree traversals we consider in this paper is already a subset of most existing
languages. The above program is not substantially different in C, Haskell, ML, F#, Scala,
Swift, Rust, etc. Only the details of switching on sum types (tagged unions) differ, as well as
the syntax for constructing an object while initializing its fields, here: Node e1 e2.

The first problem for tree-walks such as this is memory management, as add1 can easily
become a malloc or garbage collector benchmark. For instance, the following C code is over
twice as slow as the same implementation in Java or a good functional compiler, thanks to
overhead in malloc.

Tree* add1(Tree* t) {
Tree* tout = (Tree*)malloc(sizeof(Tree));
tout→tag = t→tag;
if (t→tag == Leaf) {

tout→elem = t→elem + 1;
} else {

tout→l = add1(t→l);
tout→r = add1(t→r);

}
return tout;

}

But even if we assume bump-pointer allocation in an arena, and no header objects—even
if we go further and enable the __packed__ attribute for our structs to save tag space—the
performance of the above code is still several times below what is achievable. The main
observation of this paper is that bulk tree walks are efficient if done directly on a pre-order
serialization of the tree, and that it is possible to automate the translation of recursive
functions, such as add1 above, into code that directly manipulates data buffers containing
serialized trees.

char* add1(char* tin, char* tout) {
if (*tin == Leaf) {

*tout = Leaf;
tin++; tout++;
*(int*)tout = *(int*)tin + 1;
return (tin + sizeof(int));

} else {
*tout = Node;
tin++; tout++;
char* t2 = add1(tin,tout);
tout += (t2 - t);
return add1(t2,tout);

}
}

For our simple example, this buffer-
passing code isn’t complicated to write by
hand in C, as pictured on the right. Yet this
approach cannot scale—it quickly becomes te-
dious and error prone. Clearly, no one would
use a technique like this for building a non-
trivial tree processing program such as a com-
piler or a web browser!

This C program is similar to the output
produced by the Gibbon compiler we describe
in this paper. We refer to the input and
output pointers as cursors, and one of the
primary jobs of the compiler is to insert them
automatically.

2.1 Challenges and Limitations
At a basic level, the remainder of the paper describes how to generate efficient, but complex,
cursor-passing C code automatically from the simple functional tree-walking program we
began with. However, this code generation process is not as easy as our initial example
makes it seem. Our compiler must solve several challenging problems: ensuring complete



M. Vollmer et. al. 26:5

traversal to consume the stream in order, tracking the state of cursors into the tree, and
more. We begin by outlining some of those challenges, and delve into their solutions in
subsequent sections. Of course, many challenges can be overcome with extensions to the data
format, and in Sections 2.1.2 and 7 we will explore various extensions to the basic preorder
serialization. But we begin with the most basic scenario, where all data for a tree resides in
one buffer, contiguously.

2.1.1 Ensuring complete traversal
Our add1 function is well-behaved and easy to compile. But many real programs, even very
simple ones, pose more challenges. For example, consider the following two seemingly-similar
functions:

left t = case t of
Leaf n → n
Node x _ → left x

right t = case t of
Leaf n → n
Node _ y → right y

These functions are isomorphic to each other in a pointer-based representation. But
with a preorder, packed representation there is the stark difference between them. The left
function only needs access to left branches, which are serialized immediately after the tag
for Node. But the right function needs to skip over that left child, to reach the right child.
Our prototype adopts a simple solution for this problem: generate a dummy traversal that
walks the left child to reach the right. This of course is inefficient for many applications,
if the tree traversal need only consider a small portion of the tree. But in bulk processing
where most of the tree is visited, dummy traversal is simple and fast, preserving the linear
memory access pattern favored by modern processors. However, adopting this strategy is
not straightforward—the compiler must determine when these extra traversals are needed.
This requires the addition of an effect system to track how much of the input buffer is read,
corresponding to the effect of moving a cursor in the resulting code (Section 4.1).

2.1.2 Extensions
There are many possible extensions to the basic preorder format. For example, we can include
indirections, which use a distinct tag in the serialized stream to insert a pointer to another
buffer or portion of the existing buffer. We can also selectively use alternative constructors
that include size information and allow random access. Note that we can still save space
even while storing size (layout) information. For instance, the Node record above could be
laid out as: NodeTag <size_left> <left> <right>.

Whereas a pointer based representation would spend two words for the left and right
pointer (16 bytes3), if we assume individual tree values are less than 4GB, we need only four
bytes for the size of the left tree, and we needn’t store the size of the right tree at all! Indeed,
we plan to explore the tradeoff between density of encoding, and computational overhead. A
dense encoding in the style of UTF8 would enable us to store small values of <size_left>
in as little as one byte.

We return to the topic of extending the basic format in Section 7, and we present prelim-
inary experiments using layout and indirection extensions in Section 7.2.1 and Section 7.2.2.
Further, in the future, it makes sense to fully explore the spectrum of representations between

3 One basic advantage that we leverage here is that 64 bit platforms have become wasteful of memory,
using 8 bytes for every pointer, even though most of the time it is unneeded.

ECOOP 2017



26:6 Compiling Tree Transforms to Operate on Packed Representations

packed and pointer-based. In this paper, to simplify the exposition, we present our core
language plus our compilation algorithms in the setting of the simple, completely serialized
representation.

2.2 Related Work
One line of closely related work focuses on managing data layout in trees and other data
structures to promote spatial locality [4, 5, 27, 16, 6], by modifying garbage collection to
co-locate objects [6], modifying memory allocators to proactively place objects with similar
access patterns together [16, 4], or modifying the internal layout of objects to place hot
fields near each other [5]. These approaches attempt to “pack” data together, using various
techniques, into cache lines to improve spatial locality, and hence have some resemblance to
our packed representations, which gain some performance benefits from packing tree data
into a compact format that promotes spatial locality.

Perhaps the most closely related of these is Chilimbi et al.’s cache conscious structure
layout [4]. They propose a cache-conscious data placement scheme where, given a traversal
function, tree-structured data will be laid out in memory in a clustered manner: nodes from
small subtrees will be placed on single cache lines. By matching the tree layout to a specified
traversal order, spatial locality is improved when the tree is traversed in that order. A key
difference between our packed representation and Chilimbi et al.’s work is that this work
focused on object layout, without changing the internal representation of the objects. Leaving
the object representation of tree nodes the same allows code that manipulates the objects to
remain the same, but incurs costs: there is no opportunity to reduce the space or instruction
overhead incurred by pointers linking nodes in the tree (see Figure 1), as exploiting that
opportunity requires code transformation. Most of the aforementioned spatial locality work
makes the same tradeoff.

One exception is Chilimbi et al.’s work on automatic structure splitting [5], where objects
are transformed into split representations, allowing hot fields from multiple objects to be co-
located on a single cache line while those objects’ cold fields are placed elsewhere. Because this
layout optimization changes the internal representation of the object, Chilimbi et al. develop
a compiler pass that automatically transforms code to work with the split representation.
The transformations for structure splitting concern how to access object fields, and hence,
unlike our work, do not require deeper transformations to remove the pointer dereferences
inherent in traversing linked data structures. Indeed, neither this work nor cache-conscious
structure placement affect the behavior of pointers in data structures.

Lattner and Adve’s automatic pool allocation identifies memory allocations that, roughly,
correspond to different data structures so that objects from disjoint data structures can be
allocated into separate pools [16]. This approach does not change the internal layout of data
structures (and hence does not require substantial modifications to the way a data structure
is used) nor does it do any further layout optimization to promote locality. However, it
does enable a compression step. Because pointers internal to data structures point to other
objects in the same pool, these pointers do not need to point to arbitrary addresses, and can
instead use fewer bits to represent the target [17].

Hsu looks at a representation of abstract syntax trees that uses a matrix layout, allowing
operations to be specified in a data-parallel manner without traversing pointers [14]. While
this representation shares a goal with ours of avoiding pointers, it is not “packed”—the
representation requires a dense representation of a sparse matrix—and hence does not yield
the type of space savings we target.

In the high-performance computing community, linearizing trees and tree traversals for
improved performance has been a common technique [18, 9]. These linearizations tend to be



M. Vollmer et. al. 26:7

ad hoc, written specifically for a given application, and each application must be re-written by
hand to benefit. This contrasts with our compiler-based approach which allows programmers
to write using idiomatic traversal algorithms, relying on the compiler to synthesize the packed
representation as well as the algorithm to traverse that representation.

Similar ad hoc layout transformations have recently been pursued in the context of
vectorization [20, 22, 23]. Meyerovich et al. discuss different linearization schemes that can
promote packed SIMD loads and stores, improving vectorization efficiency [20]. These layouts
have the implicit effect of eliminating pointer dereferences, as in our packed representations,
but rely on index arithmetic to traverse formerly-linked nodes, rather than encoding particular
traversal orders. Ren et al. look at a wide range of tree layouts for vectorization, each
targeted at different traversal patterns [22, 23]. These layouts are chosen to match the
traversal patterns of an application, enabling the removal of pointers, as in our layouts. Ren
et al. use a library-based approach: applications are written using high-level tree interfaces,
with specific layouts chosen based on hardware and application considerations. In contrast,
our work focuses on compiler-driven transformations of both the tree layout and the code
that traverses the tree.

3 The Gibbon Input Language

To demonstrate the compilation technique we propose, we use a typed programming language
simple enough to present briefly in a paper, and featureful enough to express some interesting
tree-manipulating functions, such as compiler passes.

The syntax is given in Figure 2—it is simply a standard first-order functional language.
Programs consist of a series of data type declarations and function declarations. Similar
to most functional programming languages, programmers may define algebraic data types,
and dispatch on them with a case form (called match or switch in some languages). For
example, a data type for Peano numbers would have two cases: Zero and Successor.

Data types declared with data are automatically and implicitly packed in this language.
In this basic design, the only non-packed data types are tuples (e1, . . . , en), accessed with e.n.
Note, however, that tuples are sufficient for functions to take and return arbitrary numbers
of packed data types. When we perform cursor translation in our compiler, this will mean
passing multiple output cursors to a function in order to provide buffers for it to write its
results to.

Other language features are standard: tuple access, let binding, conditionals, and primitive
operations. Conditionals are included to avoid the need for Bool to be packed data (because
case operates on packed data only). Standard primitive values are included such as integers,
booleans, and symbols. Finally, Gibbon provides dictionaries (not shown) to support more
sophisticated operations such as bulk transformations—substitution on an abstract syntax
tree is one example. A fuller language would support richer data types, more operations, and
data structures such as arrays and lists, but the crucial elements for expressing tree-shaped
data and transformations on trees are present.

Rather than moving directly from a high-level functional language to cursor-oriented
low-level C code, our compiler transforms programs first into an intermediate language
which captures the crucial invariants. These additional forms are presented in Figure 3 and
described in Section 4.

ECOOP 2017



26:8 Compiling Tree Transforms to Operate on Packed Representations

K ∈ Data Constructors, T ∈ Type Constructors, v ∈ Variables

Program prog ::= dd ; vd ; fd ; e
Packed Data Declarations dd ::= data T = K τ

Value Declarations vd ::= v : τ ; v = e

Function Declarations fd ::= f : τ → τ ; f ( v ) = e

Expressions e ::= v | n | True | False | e� e | f e
| (e1, . . . , en) | e . n | let v : τ = e in e

| case e of K v ⇒ e | if e then e else e

Types τ ::= T | ( τ 1, . . . , τ n) | Int | Bool | . . .
Prim Ops � ::= + | − | ∗ | . . .

Figure 2 Grammar for source language.

Expressions e ::= . . . | switch v of K (v)⇒ e | toEnd (e) | fromEnd (e)
| write (‘K’, v ) | write ( n , v ) | read ( v ) | finish (e)

Types τ ::= . . . | T` | Needs([τ ], τ) | Has([τ ]) | End(ˆ̀)
Extended vars v ::= v | end v | start v

Location vars ` ::= α | β | . . .

Figure 3 Extensions to the core language for cursor-inserting compilation. Here we read and
write word-sized (or smaller) values from byte streams. And switch is a low-level mechanism to read
and case on the next tag byte from a stream.

Using Gibbon

Gibbon is implemented as a language built on Racket [8], using Racket’s language implemen-
tation and extension facilities. Gibbon’s type checking support is implemented by compiling
to Typed Racket [25]. A programmer can develop and test a Gibbon program using the
DrRacket IDE and tools, which include code coverage, syntax highlighting, on-the-fly type
checking, etc.

Given a working Gibbon program, it can then be compiled using our compiler via a
C backend and a standard C compiler. These backends apply the techniques described in
subsequent sections to automatically use packed data to represent all types declared using
the data form.

4 Compilation Algorithms

Gibbon’s approach is to convert programs into a form of destination passing style [15], where
destinations are not managed per-heap-object (i.e. per-data-constructor), but rather for
entire trees or subtrees. This approach implies function calls producing data types do not
generally call the allocator, for example, even a simple function such as f below (on the left)
is transformed to take a destination cursor argument, as shown on the right:

data Foo = MkFoo Int
f() = MkFoo 3

f ptr = let p2 = write('MkFoo',ptr)
in write(3,p2)



M. Vollmer et. al. 26:9

We say that data types like Foo are packed types, whereas Int, Bool, Symbol, etc. are
not. As we will see in this section, during compilation the data constructors for packed types
(MkFoo) will themselves come to require destination cursor arguments, before eventually
ending up in the final state (shown above) of writing directly to input and output data
streams. We insert these cursors using the extended language of Figure 3, which includes an
extended type-system for safely dealing with cursors (currently used only by the compiler,
and not exposed to the user).

Functions do not, however, merely have the effect of writing destination memory. Some-
times functions will need to allocate new memory regions as well. We treat tuples (e1,e2) as
value types, so they don’t account for allocation. But consider expressions (e :: T), where
T does not contain packed values, yet subexpressions of e have types which do. For instance:

g n = (case MkFoo n of MkFoo i → i) + 4

If the optimizer does not eliminate this silly expression, then MkFoo must be given a
destination, even though the constructed data does not escape the function g. For this
purpose, we will use a very simple form of region allocation which takes advantage of the
purely functional nature of the Gibbon language. Namely, we know that the case expression
of type Int above can have no other visible effect or communication than producing an Int,
so thus we can region allocate the MkFoo constructor inside a buffer that is freed when the
expression returns (in the implementation, this resembles stack allocation). This follows
the precedent of other languages such as UrWeb [7], as well as previous work on region
types [26, 11].

This matter of destination routing is the primary function of the Gibbon compiler.
However, to support it, other analyses are required. For instance, determining the destination
cursor for a field within a data record requires determining an end witness for the field before
it—that is, a pointer to the position in the buffer that marks the end of one field and the
start of the next. If we recursively unpack adjacent fields without storing a pointer to the
later fields, we must rediscover those downstream fields as a side effect of traversing their
upstream ones. (For example, in our binary tree data type, to discover the start location of
y in Node x y, we must first scroll through x in the preorder packed data.) Thus we begin
with an inter-procedural analysis of which functions are able to traverse their inputs.

The overall structure of the compiler, covered in the rest of this section, is:
1. Infer traversal effects (Section 4.1).
2. Generate additional traversals as necessary to reach input ends (Section 4.2).
3. Route end-of-value witnesses as additional function returns (Section 4.3).
4. Switch to destination cursor-passing with additional function arguments (Section 4.4).
5. Code generation (Section 4.5).

4.1 Inferring traversal effects

To reason about traversals, we associate with every packed type an abstract location. This is
different from a region variable in prior work, because it is a symbolic value representing the
exact memory location that a value starts at. No two distinct data constructors can share
the same location, whereas two values can share the same “region”. The type signature of
add1 becomes:

add1 :: Treeα → Treeβ

ECOOP 2017



26:10 Compiling Tree Transforms to Operate on Packed Representations

This is read “function f takes a tree at location α and produces one at location β.”
Note that a function of type Treeα →Treeα is necessarily the identity function. Next, if f
examines all the bytes in α, we say it has the effect traverse(α) and we write its type as:

add1 :: Treeα
α−→ Treeβ

We write endα to signify the location after the last byte of α, or α̂ for short. One way of
looking at a function that traverses α is that it can witness endα. At runtime, this witness
is merely a pointer value. Ultimately we will rewrite the function to return such a witness.
For now, the goal of the effect inference pass is to determine a consistent traversal type for
all functions jointly. Of course, if f calls g, whether f reaches (witnesses) the end of its input
may depend on whether g does likewise.

A lattice of locations

The locations used above, α, β, are metavariables that can range over different locations,
depending on what the (location-polymorphic) function f is applied to. Intuitively, we expect
outputs to be polymorphic in location, corresponding to the as-yet-undetermined destination
parameter. Conversely, inputs already exist in memory at a fixed location. This includes
lexically-bound variables introduced by λs or pattern matching. For example, the variables
tr, x, and y from add1 below.

add1 :: Tree → Tree
f(tr) = case tr of Node x y → · · ·

In fact we name these fixed locations after their lexical variables, simply: `tr, `x, `y. In
contrast, let-bound variables take on the locations of their right-hand-side. Every data
constructor in the program introduces a fresh location. Fixed variables only unify with
themselves, but fresh variables unify with any other (non-tuple) location. Together with
tuple locations (`, `), these fresh and fixed locations form a lattice under unification. For
example, (`1, `2) v (`3, `4), if and only if there exists a substitution on metavariables that
ensures `1 = `3 ∧ `2 = `4 . Such a substitution assigns fixed locations to metavariables, and
does not allow metavariables to range over entire tuple locations.

In this lattice, non-packed values such as integers always have location ⊥. On the other
hand a top value (>) is reached when two locations are incompatible. For example, the
following term has location > because it attempts to unify two fixed locations `x and `y.

(case p of Node x y → if _ then x else y) :: SomePackedDatatype

Indeed, we cannot statically know what location this expression will return, even symboli-
cally. (We have no notion of disjunction locations in our definition: e.g., `x ∨ `y.) Finally,
ends are always distinct locations from starts: ∀`.end(`) 6= `.

Analysis and fixed point

We use the lattice of locations above to perform a program analysis, assigning a location to
each subexpression, as well as a set of traversal effects. The basic idea is that an expression
case e of . . ., creates a traversal effect for the location of e provided that all the branches
of the case traverse the (non-statically-sized) arguments of their data constructors. This
stage of the process is optimistic, in that it assumes that any additional traversals that are
necessary but not present will subsequently be inserted later. For example:

case v of K (y :: Tree) (x :: Int) → x



M. Vollmer et. al. 26:11

Here, when reading data type K from a a preorder serialization in a buffer, accessing the
simple scalar x requires somehow traversing y to witness ˆ̀y, where ˆ̀y = `x. During the infer
effects phase, we optimistically assign the traverse effect, traverse(`v), to the above code,
assuming that a dummy traversal will later be inserted (Section 4.2). If it were not, this
program couldn’t compile!

Even with this assumption, determining the traversal effect signature for each function is
nontrivial because of interdependencies between functions. Thus we design this pass as a
traditional program analysis that iterates to a fixed point. We begin with every function
having a maximum traversal signature—we assume it reaches the end of every packed input.
Then, this set monotonically decreases in every round until the fixed point is reached.

The running add1 example does not contain mutual recursion, so it takes only one
iteration to reach a fixed point. But the reasoning is still recursive (inductive)—add1 is only
able to traverse its input because its recursive call sites traverse their (subtree) inputs:

add1 :: Treeα
α−→ Treeβ

add1 t = −− when the polymorphic type is instantiated, α 7→ `t
case t of −− case has traverse(`t), because all branches do

Leaf n → Leaf (n+1) −− fresh location; γ, static size, thus traverse(`t)
Node x y → let x' = add1 x in −− x’ at fresh loc; call’s effect: traverse(`x)

let y' = add1 y in −− y’ at fresh loc; call’s effect: traverse(`y)
Node x' y' −− traverse(`y) implies traverse(`t)

Here the compiler has also performed a bit of standard flattening, introducing temporaries.
Inferring the traverse effect for the Leaf case is trivial, because once we know t is a Leaf, we
know its exact byte size, and can compute ˆ̀

t = `t + 9 bytes. In the Node case, because of the
polymorphic signature, (∀αβ. Treeα

α−→ Treeβ), the lexical variables x' and y' have fresh,
unrestricted locations, but, more importantly the recursive call gets the effect traverse(`y),
due to the effect annotation on the function’s type ( α−→).

4.2 Copy and traversal insertion

During analysis, we generated all the information we need not only to label traversal effects
in function signatures, but to recognize where they are needed, but missing, and where
destination-location constraints conflict. Next we need to repair the program to fix these
problems. With the inter-procedural traversal types settled, we reprocess the program and
repeat the same location analysis, but this time, we mark wherever we are (1) missing a
witness of a field stored within a packed buffer, or (2) have conflicting constraints where a
packed value flows to two incompatible destinations (sharing).

First, a missing end-witness can always be restored, if necessary, by inserting a call to a
dummy traversal function. For example, the program fragment from the previous subsection
(with a missing traversal) would take the following form after a dummy-traversal insertion:

case v of K (y :: Tree) (x :: Int) → −− Here we know `x = ˆ̀
y

let endy = traverseTree y in x

Here, traverseTree is synthesized by the compiler based on the structure of the type
definition. The call to traverseTree may look like dead code, but it’s dead code with the
correct location, which lets the compiler pass described in the next section reuse the end of y
as the start address of x.

ECOOP 2017



26:12 Compiling Tree Transforms to Operate on Packed Representations

Second, a conflicting destination location can always be resolved by inserting a copy
function4. A simple example of a program that forces a copy is one that introduces sharing:

let x = f t in Node x x

In later extensions (Section 7), we will use these missing traversals and conflicts to go
back and change the data format (i.e. use packed records augmented with indirection nodes,
rather than the most straightforward preorder serialization). But, for completeness, it always
suffices to naively insert copies or dummy traversals. Copy insertion for the above program
would break the sharing:

let x = f t in Node x (copyTree x)

Here the call to x can flow to the destination location right after the Node constructor,
and can, from there, be copied to occur a second time in the output buffer. Inlining can also
resolve these conflicts, producing Node (f t) (f t), in which the two calls flow to different
destations in the output buffer. Our current prototype compiler prefers inlining where
possible (because it enables subsequent optimizations), and uses copy-insertion otherwise.

4.3 Routing end-of-value witnesses
After all traversal constraints are satisfied by recursive calls or compiler-inserted traversals,
we then transform the program in a type-directed way, to include additional return-values:
end-witnesses.

add1 :: Treeα
α−→ Treeβ −− Before

add1' :: Treeα → ( End(α̂), Treeβ ) −− After

Here the type of the end-witness is End(α̂), which signifies a cursor (pointer) to the
end of a value, which is not useful by itself. Rather, it is useful if it witnesses the start
of another value. This brings us to the topic of our type system for cursors. Cursors
are internal to the compiler, rather than exposed to the user. We use a typing discipline
resembling session types [13] to ensure their correct handling in the compiler’s intermediate
language—specifically, the types ensure that data is read from and written to buffers in the
correct order.

We add three new cursor types: the End type, as mentioned above, Has cursors for
reading, and Needs cursors for writing. These will be described further in Section 4.4. In
brief, Has([A,B]) is an input pointer that, when read from, yields a value of type A as well
as a pointer of type Has([B]). The Has type is parameterized by a list of types A, B, . . . ,
which correspond to the types of values that must be read in a particular order from the
buffer. Needs([A,B], C) is an output pointer that requires a value of type A be written
to the pointer, followed by B, after which a fully initialized value of type C can be read
from the buffer. A given Needs cursor must be used linearly, after the address is written to,
writing it again would clobber existing data.

During the routing pass, we use these cursor types to insert additional bindings in the
program that explicitly encode facts about how to reach the end of a given location. This
uses startv and endv as special variables to refer to the physical start and end locations of
other variables. (startv is roughly &v in C.) Namely:

4 More generally, we can perform a program synthesis here to fix the program by generating a recursive call
that meets that constraint. Copies work, but so does inlining. Ultimately, when we consider indirection
extensions to the data format (Section 7), the program repair process interacts with data-structure
layout choices, because sharing can be addressed by adding (limited) indirections back in.



M. Vollmer et. al. 26:13

One field’s end becomes its successor’s start. This becomes a binding, such as:
let starty= endx.
Fields of static sizes have known offsets, such as:
let starty= startx+ offset.
In case a of K b1. . .bn → . . ., the end of last field bn is also the end of a, thus
let enda= endbnin · · ·

We could record these facts in program metadata, but in our current approach we instead
manifest them explicitly as let bindings. Note, however, that they may refer to (temporarily)
unbound end-variables! We solve this later with a pass that reorders these bindings.

Performing this transformation on add1 yields a program with extra bindings as well as
the additional end-address-of-input return values.

add1' :: Treeα → ( End(α̂), Treeβ ) ;
add1' tr = case tr of

Leaf n → let endn = toEnd(startn + 8) in
let endtr = endn in
(endtr, Leaf n+1)

Node x y → let starty = fromEnd(endx) in
let (endx,x') = add1' x in
let (endy,y') = add1' y in
let endtr = endy in
(endtr, Leaf x' y') ;

Just as with the dummy traversal example earlier, the compiler at this phase does not use the
starty binding. Later, when we switch to using explicit cursors into input and output byte
streams (Section 4.4), we lose direct access to fields beyond the first one, and the starty
binding then replaces the binding for y.

Further, to make the injected bindings above type check, the compiler must insert
coercions between Has/Needs types on the one hand and End types on the other. The
toEnd/fromEnd forms are coercions. The compiler ensures the correctness of these coercions
and offset computations. For instance, given startn :: Has(Int), we know that startn+8
is a valid offset (8 is the size of Int), but that 7 would not be.

Lastly, before we proceed, note that the original textual order of the program does not
effect the results of traversal inference or end-witness discovery. This is because the compiler
aggressively reorders programs in order to connect end-witnesses with their consumers.
(Starting with purely functional programs makes this easier.) For example, the following two
programs for summing the leaves of a tree are equivalent to the compiler.

sum1 t = case t of Leaf n → n | Node x y → sum1 y + sum1 x
sum2 t = case t of Leaf n → n | Node x y → sum2 x + sum2 y

4.4 Output cursor insertion
Next we are ready for the core translation in the compiler—switching to destination-cursor-
passing calling conventions. This proceeds in two phases:

First, perform a dataflow analysis and mark every data constructor, K, or function call
which returns packed data, with a destination. A destination is a static source location
of another constructor application, or is one of the output terminals of the enclosing

ECOOP 2017



26:14 Compiling Tree Transforms to Operate on Packed Representations

function definition, i.e. location β in a Treeβ output. Copy-insertion will have guaranteed
a unique destination for each such value (i.e. no sharing).
Second, perform a type-directed, type-preserving cursor-insertion pass. This augments
functions with additional inputs (output cursors), and changes their return value conven-
tion to return additional end witnesses for outputs as well as inputs. That is, rather than
conventionally returning the start address of an output value, the function now returns
the end-address of that same value.

For example, the add1 function becomes:

add1'' :: (Has([Treeα]), Needs([Treeβ ], γ)) →( End(α̂), End(β̂)) ;
add1'' cin cout =

switch cin of
LEAF(cin1) → let cout2 = write(LEAF,cout) in

let (cin2,n) = read(cin1) in
let cout3 = write(cout2, n+1) in
(toEnd(cin2), toEnd(cout3))

NODE(cin1) → let cout2 = write(NODE,cout) in
let (end1, cout3) = add1'' cin1 cout2 in
let (end2, cout4) = add1'' fromEnd(end1) cout3 in
(end2, toEnd(cout4))

The new switch form reads one byte from an input buffer and dispatches based on the
contained tag. Each case of the switch statement binds a cursor pointing to the beginning of
the first field of the matched data—naturally these cursors have different Has types based
on the types of fields in the respective data constructor. The return value of the function
has turned into a End cursor, whereas the inputs have turned into read and write cursors
respectively (Has and Needs). These behave much like typed channels with protocols. We
use the extensions in Figure 3 to write and read cursors:

write :: (Needs(a : rst, b), a) →Needs(rst, b)
read :: Has(t : rst) →(Has(rst), t)

Here we use Haskell-style list syntax at the type-level, so single-colon is “cons”, and
the list literal [a,b] is shorthand for a : b : []. Needs tracks a list of values its waiting
for. For instance, given a data type, data Foo = MkFoo Int Int, after we write a tag
for MkFoo to an output buffer, the output cursor has type Needs([Int,Int],Foo). The
second argument of the Needs is the type of the value which will be completed only after all
the obligations have been satisfied. Once the list of needed-values is empty, retrieving the
completed value can be accomplished with finish:

finish :: Needs([],T) →Has([T ])

In the context of the above example, if cout :: Needs([Tree`], γ), then the expres-
sion write(cout,LEAF) has type Needs([Int], γ), whereas write(cout,NODE) has type
Needs([Tree, Tree], γ), corresponding to the different number and type of the fields for
those respective data constructors.

Locally dilated representation of packed values

Sometimes the end-witness of a given value is computed, say, underneath a conditional. Thus
we may need to change the types of expressions to (locally) tack on additional return values.
In order to accomplish this, our cursor-inserting transformation internally switches to a dilated



M. Vollmer et. al. 26:15

representation of every packed value. Inside the local scope of a function body, a subexpression
that originally returned Treeα, must instead return a pair (Has(Treeα), End(α̂)). The
transformed program routes these tuple values throughout the function body, making it
possible for the compiler to directly produce End(α̂), in the tail position of the function body,
to satisfy the calling convention by returning an end-witness. Note that the inter-procedural
calling conventions do not change to reflect this dilated representation, rather, mediation
happens at the call sites.

One surprising aspect of the cursor-passing output language is that it is still purely
functional. Rather than directly encoding effects, we have created a purely functional
interface where write returns a new cursor, and all Needs() cursors must be used in a linear,
but pure, way. (For instance, in the Gibbon interpreter we use for debugging, evaluating
programs after every compiler pass, we model cursors as lists, where write is “cons”.)

The fate of constructors and case expressions

Here we cover the switch form in more detail. The cursor-insertion pass lowers constructors
to operate directly on destination cursors. Thus MkFoo 55 becomes a multi-step operation,
where we first initialize the MkFoo structure (returning a cursor pointing to its Int field),
then write the 55 to that cursor. We capitalize data constructor names when they are used
as simple one-byte “enum” values:

let cur2 = write(MKFOO,curs) −− 1 byte tag
cur3 = write(cur2,55) −− 8 byte int

in (curs, toEnd(cur3)) −− Return dilated start/end pair. cur3 = curs+9

The above program is well-typed, following the protocol on output cursors. The “value”
of the resulting data constructor is now equivalent to the pointer location at which it was
written, i.e. curs, which we return in the body, together with an end-witness to match
the dilated convention. Note again that cursors themselves are persistent, not mutated,
which is why each operation with side-effects on a buffer (e.g. write), returns a fresh cursor
representing the new value of the cursor.

Finally, what becomes of the case expression? case v of K x y → e2, if both x and y
are of fixed size, is ultimately translated to:

switch startv of
K(cur) → let (cur2,x) = read(cur)

(cur3,y) = read(cur2)
in e2

Here switch reads one byte from the cursor given as its scrutinee, and then dispatches
based on that tag (just like C’s switch statement). It is a binding form only insofar as it
binds a cursor, cur, to the position just after the tag—i.e., the start of K’s fields. Then, we
generate explicit code to read the fields one at a time from the appropriate positions in the
byte stream. Not that the Has type for cur will contain two values, cur2 one, and cur3
zero remaining values.

4.5 Code generation
The final step for Gibbon compiler is to generate native code. Any backend target would
do (LLVM, native code, etc.), but we presently generate C code. Because the current
Gibbon design is a first order language, this is straightforward. We generate C code in static
single-assignment form.

ECOOP 2017



26:16 Compiling Tree Transforms to Operate on Packed Representations

The compiler eliminates tuples through “unarization”, except at function call returns
where structs encoding tuples are returned. Tuple function arguments become multiple
arguments. Conditionals that return tuples instead write multiple destination variables. The
compiler walks through the program to accumulate all remaining anonymous tuple types,
and emits C struct declarations for each.

The cursors become merely char* pointers, and switch statements closely correspond
to C switches, while read and write are open-coded as pointer operations. Because read
returns two values, it generates multiple statements rather than creating a tuple, and thus
need not create a struct. Finally, the generated C code is linked with a simple run time
system that includes code for (de)allocation and initialization.

5 Implementation

In the next section we evaluate a prototype Gibbon compiler, implemented in Haskell, exposed
through a Racket #lang mode, and generating code via C. This compiler implements the
algorithms of the prior section, with a few current limitations.

Packed & Pointer, malloc & bumpalloc

The Gibbon C backend supports multiple modes of code generation, which we compare in
the next section. The first distinction is between two primary implementation strategies:

packed: Generate code using all the compiler passes of Section 4. Data of packed type
can be read from disk in human readable or binary/packed formats, but in memory it
stays always in preorder serialized representation.
pointer: Use traditional C struct representations. This mode provides a baseline for
comparison. It shares the front and back of the compiler with packed mode. But, in pointer
mode, we skip the transformations that introduce cursors and packed representations.
Rather, we use a traditional pointer graph of heap objects to represent all data. This
mode uses the default policies of the C compiler for struct layout.

The packed mode manages tree data by allocating large buffers to serve as output
destinations (and an additional large region for scoped allocations). In the future, we will
employ the standard technique for a block-structured heap, where a linked list of blocks
provides growable storage areas for destination cursors. The current performance should be
representative of an implementation strategy that uses large regions capped by guard pages
to enable unbounded growth.

Within the pointer mode, we allocate regular heap objects and thus need an allocation
strategy. One policy is to use the system malloc implementation, but this does not typically
perform well given the large numbers of fine-grained allocations incurred by out-of-place tree
transformations. A second strategy is to use a custom arena-allocation method for storing
heap objects. This doesn’t change the internal layout of heap objects, but it does pack them
densely within cache lines and provides a near-optimal memory management strategy—about
the best you can do without going to packed. We use a simple arena implementation where
a single global variable stores the heap pointer, which is incremented upon allocation.

For each of these implementation strategies, no garbage collection is required. In both
packed and pointer mode, we can use coarse-grained arena deallocation. Our region inference
is currently quite simple compared to a compiler like MLKit [26], and is not yet suitable
for programs complex programs with complex lifetimes. Our present benchmarks allocate
regions for input and output trees, and temporary packed data that does not escape a lexical



M. Vollmer et. al. 26:17

scope is freed at the end of the scope. Finally, for comparison purposes, we also generate
code for a fine-grained malloc/free mode of the pointer-based backend, which substitutes a
recursive “free tree” function in place of arena deallocation.

For benchmarking, we add an iterate(e) form to the language which runs an expression
multiple times and reports the time for all iterations together. Iterate also resets the state of
the arena allocator, after each iteration but the final one, in order to “undo” the effects of
previous iterations and avoid leaking memory. Thus, when we benchmark a traversal with
iterate(treetraversal(tr1)), we repeatedly walk tr1 to produce tr2, such that tr2 is
allocated into the same memory region on each iteration. This optimizes our use of the cache
if both input and output trees fit in memory. It is this optimized version of the “bumpalloc”
pointer-based mode that provides the most competitive baseline against which to evaluate
our proposed packed-mode compiler pipeline in Section 6.

Embedding Gibbon

Ultimately the ideas in Gibbon should either be ported to a mature compiler for existing
general purpose languages, or the prototype Gibbon compiler should be used as an embedded
domain-specific language (EDSL) from within such a host. In the latter scenario, we would
write tree-traversals in a subset of the host language that corresponds to Gibbon, and those
traversals would then be compiled to a shared object file and linked back into the host
program for transparent interoperability. Tree data would be marshaled at the boundary, as
usual, in this case converting from pointer graphs to packed representations. Indeed, this
arrangement is similar to that used by existing EDSLs for, e.g., GPU programming [19, 3, 24],
except that those languages are typically focused on arrays and matrices and exclude recursive
sum types and recursion—which are Gibbon’s emphasis.

Currently, we’ve taken the first steps to making Gibbon available as an embedded language
in the host language Racket. Our front-end Gibbon is available as a custom #lang gibbon
mode in Racket. This provides IDE support via DrRacket, while enforcing all the specific
restrictions of our minimal language (including using Typed Racket to enforce the type
system with good error messages and source locations). What remains is to enable in-calls
and out-calls between Racket and Gibbon. Indeed, these are already possible using a Gibbon
backend which simply expands Gibbon (during macro expansion) to run as native Racket
code. Eventually, the C backend will likewise be supported without modifying the program.

In the next section we compare to the Racket backend as a baseline for a high-level
language with significant overheads. This information is useful, but the more relevant data
for evaluating the packing technique is to compare the different modes supported by the C
backend (packed and pointer).

6 Evaluation

We evaluate the performance of our approach in three ways. First, we examine the performance
of packed vs. pointer-based tree walks in idealized microbenchmarks. We also use these
microbenchmarks to examine the state of the art in several existing compilers. And while we
find significant variation between compilers, no existing system we’re aware of comes close to
matching Gibbon’s packed mode. Second, in Section 6.2, we evaluate an important class of
tree traversals—AST traversals, as found in a compiler. We use ASTs gathered from real
programs to ensure realistic shape and depth. Specifically, these tree benchmarks operate
on Racket’s intermediate representation, and show substantial speedup using the packed
representation. Finally, in Section 7, we look ahead to what a future compiler will be able

ECOOP 2017



26:18 Compiling Tree Transforms to Operate on Packed Representations

 0.001

 0.01

 0.1

 1

 10

 100

 19  20  21  22  23  24  25
Tree size

C (packed)
C (pointer)

Chez Scheme
GHC
Java

MLton
OCaml

Rust
Racket

 0.001

 0.01

 0.1

 1

 10

 100

 19  20  21  22  23  24  25
Tree size

 0.001

 0.01

 0.1

 1

 10

 19  20  21  22  23  24  25
Tree size

Figure 4 Performance when building (left), mapping add1 (top), and summing (right) a tree
respectively. Traditional compiler approaches vs. the packed approach. All handwritten implemen-
tations. X axis is tree depth, implying 2N leaves. Y axis shows time in seconds.

to achieve if it extends the basic preorder packed format, including indirections or layout
information to enable parallel traversals.

All benchmarks were conducted on a cluster of identical, dedicated Intel machines in a
two socket configuration with Xeon E5-2670 CPUs at 2.60 Ghz, 20MB cache, and 32GB
RAM, running Ubuntu 14.04 LTS. All C code is compiled with GCC 5.3 and -O3.

6.1 Microbenchmarks
Our first benchmarks return to the example from Section 2: simple binary trees. We implement
three operations: constructing a tree, incrementing the values in a tree, and summing the
elements of a tree. To understand the performance of packed data representations, we
implemented these three operations in multiple ways across a variety of languages: with
pointer-based trees in Racket, Chez Scheme, MLton, GHC Haskell, and C (using both malloc
as well as a fast bump-pointer allocator).

Figure 4 shows the results for these three microbenchmarks on purely handwritten
implementations, while varying tree size. The results show a clear advantage for packed
representations (note the log scale), in some cases with 100x speedup over pointer-based
representations in garbage-collected languages. All competing implementations use their
default memory management settings, including GC parameters as well as the “C (pointer)”
using the system malloc.



M. Vollmer et. al. 26:19

 0.001

 0.01

 0.1

 1

 10

 100

 19  20  21  22  23  24  25
Tree size

Gibbon
Gibbon (Racket)
Gibbon (pointer)

Gibbon (bumpalloc)
Handwritten C

 0.001

 0.01

 0.1

 1

 10

 19  20  21  22  23  24  25
Tree size

Gibbon
Gibbon (Racket)

Handwritten C
 0.001

 0.01

 0.1

 1

 10

 19  20  21  22  23  24  25
Tree size

Gibbon
Gibbon (Racket)

Gibbon (bumpalloc)
Handwritten C

Figure 5 Cursor-inserting compiler’s performance compared to handwritten cursorized C im-
plementation. Tree building (left), tree summing (right), and mapping add1 over the tree (top).
The Gibbon prototype is currently embedded in Racket, so we show its Racket backend as well, as
different modes of its C backend (packed, pointer, bumpalloc).

We next implement the tree building and summing benchmarks in Gibbon, and use our
prototype cursor-inserting compiler to generate code over packed representations. Figure 5
shows the results of comparing this generated code to both Racket and the handwritten C
version of the packed representation. We see that our compiler generated code is competitive
with, and occasionally exceeds, hand-written C code performing packed tree traversals.

Figure 5 shows building, mapping over, and summing a tree, separately. Here we introduce
a couple of additional variants, which we will carry into the next section. First, the pointer
version of Gibbon, as explained in Section 5, uses the same code generator, but does not pack
trees, and uses system malloc and free to manage memory. This version is faster than the
Racket backend, but much slower than packed. Also, over these benchmarking runs, at these
tree sizes, the pointer-based implementations consume 6× more memory than packed ones.

However, there is one more mode of the Gibbon code generator, bumpalloc, also described
in Section 5, which shrinks the gap further. “bumpalloc” uses the same representations as
“pointer”, but approximates optimal memory management with cheap arena allocation rather
than simple malloc. Still, it remains the case that on add1, packed yields a geomean speedup
of 1.75× over bumpalloc, and 18× over the malloc-based pointer code.

ECOOP 2017



26:20 Compiling Tree Transforms to Operate on Packed Representations

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  20  40  60  80  100  120  140

Ti
m

e
s 

sl
o
w

e
r 

th
a
n
 G

ib
b
o
n
 C

 p
a
ck

e
d
 v

e
rs

io
n

Number of words in leaf

C pointer C bumpalloc

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0  20  40  60  80  100  120  140

Ti
m

e
s 

sl
o
w

e
r 

th
a
n
 G

ib
b
o
n
 C

 p
a
ck

e
d
 v

e
rs

io
n

Number of words in leaf

C pointer C bumpalloc

Figure 6 The factor slowdown of competing approaches compared to a baseline of Gibbon’s
packed mode. The malloc-based implementation performs especially badly when given large structs
of over 800 bytes each.

The influence of leaf size

In our simple tree example, we have thus far used a single Int as the payload of the leaf. This
implies a certain, fixed ratio of payload bytes to the memory used for storing the structure of
the tree—i.e., the tags in the packed representation, or tags and pointers in a traditional
representation. We would expect that increasingly “heavy” nodes, with many scalar fields,
would directly reduce the advantage of the packed representation. To verify this hypothesis,
we ran a simple parameter study where we generated alternate versions of the Tree data
type and add1 traversal over it, varying the number of Leaf fields. Figure 6 shows the
results. As expected, the best performance of the packed approach is with zero leaves, and
the performance of the bumpalloc version catches up as the scalar payload of leaves increases.

Pathological cases

Because Gibbon fixes a traversal order, it is possible to write programs that exhibit patha-
logically bad performance when compiled with the packed approach. A simple example
is a function that traverses a binary tree to return its right-most leaf. With the pointer
approach, the function need not ever inspect the left child of any node, while with the packed
approach the compiler must traverse both left and right children of every node, leading to
asymptotically worse run-time complexity. For example, when run on trees of height 12, the
generated packed code runs 150× slower than the pointer code (and arbitrarily slower on
progressively larger trees). In Section 7, we propose a solution to this problem: the addition
of indirection in packed buffers.

6.2 Compiler passes on realistic inputs
While our microbenchmarks demonstrate the potential of the packed representation, and also
demonstrate Gibbon’s ability to automatically generate code that operates on the packed
representation from idiomatic implementations, they don’t demonstrate a large savings of
programmer effort, because directly implementing functions on simple data in a packed
representation is tractable.

More challenging, however, is to operate on trees that have more complex structure,
such as the abstract syntax trees (ASTs) that arise in full blown programming languages:



M. Vollmer et. al. 26:21

(i) the trees themselves do not have homogeneous structure, so the location of a particular
tree node in a packed buffer is intimately related to the types of the other nodes in the
tree; and (ii) the operations on the tree nodes are not homogeneous, so the structure of
computations (including how to extract particular fields from a serialized representation
of a tree node) varies based on the type of the tree node. In this setting, writing a tree
traversal that operates directly over a packed representation is complex and error prone. On
the other hand, writing such a traversal in an idiomatic style using pattern matching is fairly
straightforward. This, then, is an ideal use case for Gibbon’s approach.

Benchmarks

In this portion of the evaluation, we look at the performance of two classes of tree walk on
full Racket Core syntax, an AST definition which is excerpted in Figure 8. These benchmarks
consume a Racket abstract syntax tree as input and produce either (1) a count of nodes, or
(2) a new abstract syntax tree. While we only evaluate two simple treewalks, we note that
these traversals contain the two major operation types that might be performed on trees:
maps, where the output tree is structurally similar to the input tree but with a function
applied to each node, and folds, which in this context is transforming an entire subtree
into some differently-structured result. Seen at this high level, all compiler passes on ASTs
are roughly similar, differing mostly in the work done near the leaves of trees. For example,
substitution, copy-propagation, and constant folding all traverse a tree and “act locally”. In
general, many transformations only transform a small fraction of the input and spend most
of their time simply walking over syntax.

We write both benchmarks in Gibbon. We then generate versions of each benchmark, as
before, one using Gibbon’s pointer-based backend (which generates passes over pointer-based
ASTs in C), and one using Gibbon’s packed backend. By letting the implementations differ
only in the backends used to generate them, we isolate the performance differences to those
that arise from the difference in representation. Because Gibbon allows tree traversals to be
written using standard data type match operations, this evaluation also serves to confirm
our ability to generate packed implementations from idiomatic code.

We generated a dataset of inputs by collecting all of the (macro-expanded) source code
from the main Racket distribution, which contains 4,456 files consuming 1GB of code which
drops to 485MB when stripped of whitespace and comments, and 102MB once packed in
our dense representation. We benchmark on this entire dataset, but report only on a subset,
sampling from a spectrum of sizes. The largest single file was 1.4MB. To simulate larger
programs (as would be found in whole-program compilation), we combined the largest K
files into one, varying K from 1 to 4,456. This is representative of a whole program compiler,
which would indeed need to load these modules as one tree.

Results

First, our benchmark methodology is to traverse each input tree N times, doubling N until
the run takes at least two seconds. This gives us a uniform way of measuring both traversals
over very small trees and very large ones.

Figure 7 shows the performance of Gibbon’s packed mode vs gibbon’s pointer (malloc) and
bumpalloc modes, expressed as slowdowns of the pointer-based approaches over packed. We
measured the last level cache reference and cache misses and found dramatic improvements
in these for the packed approach (and modest differences in the number of instructions
executed). Nevertheless the performance of pointer-based approaches is good at small sizes:

ECOOP 2017



26:22 Compiling Tree Transforms to Operate on Packed Representations

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10  100  1000  10000  100000  1x106  1x107  1x108Ti
m

e
s 

sl
o
w

e
r 

th
a
n
 G

ib
b

o
n
 C

 p
a
ck

e
d

 v
e
rs

io
n

Size of tree (bytes)

C pointer C bumpalloc

 1

 10

 100

 10  100  1000  10000  100000  1x106  1x107  1x108Ti
m

e
s 

sl
o
w

e
r 

th
a
n
 G

ib
b

o
n
 C

 p
a
ck

e
d

 v
e
rs

io
n

Size of tree (bytes)

C pointer C bumpalloc

Figure 7 The factor slowdown of competing approaches compared to a baseline of Gibbon’s
packed mode. The X axis is the size in bytes of the (packed) input tree. Left is the fold benchmark
which counts the AST nodes in the tree. On the right is a map over the tree.

data Toplvl = DefineValues ListSym Expr | DefineSyntaxes ListSym Expr
| BeginTop ListToplvl | Expression Expr

data Expr = VARREF Sym | Top Sym | Lambda Formals ListExpr | App Expr ListExpr
| CaseLambda LAMBDACASE | If Expr Expr Expr | SetBang Sym Expr
| Begin ListExp | Begin0 Expr ListExpr | Quote Datum
| QuoteSyntax Datum | QuoteSyntaxLocal Datum
| LetValues LVBIND ListExpr | LetrecValues LVBIND ListExpr
| WithContinuationMark Expr Expr Expr
| VariableReference Sym | VariableReferenceTop Sym | VariableReferenceNull

. . .

Figure 8 Excerpt of Racket Core AST definition in Gibbon., which follows https://docs.
racket-lang.org/reference/syntax-model.html. There are nine data types total.

(1) trees are small and fit in cache, (2) the single-threaded workload can acquire all of the last
level cache, not contending with other threads on the 16-core machine. The end result is that
the system is able to mask the bad behavior of these implementations at these sizes. When
the input/output tree sizes exceed the cache size, however, we see a phase shift. Once we
need to stream trees from memory, the smaller memory footprints and linear access patterns
of Gibbon’s packed approach yield speedups of 2.5-3× for fold and 2× for map.

7 Extensions

This section evaluates two extensions to Gibbon that enable more complicated traversals
and expose more opportunities for performance.

Our benchmarks up until now focus on “full” treewalks: traversals that visit every node
of the input tree, in order. While this assumption is accurate for most compiler passes, there
are some scenarios and applications where this may not be true:

If a traversal exploits truncation. Some tree traversals, such as those of space-partitioning
trees [10] gain asymptotic improvements by truncating traversals of subtrees. Based
on some condition (for example, that a given subspace in a space-partitioning tree is
unimportant), traversal of a node’s entire subtree is skipped, and the traversal continues
on to the sibling of the current node. This optimization means that not all of the tree is
visited by the traversal.

https://docs.racket-lang.org/reference/syntax-model.html
https://docs.racket-lang.org/reference/syntax-model.html


M. Vollmer et. al. 26:23

If a traversal is parallelized. To run a traversal in parallel, multiple threads collaborate
to walk over a tree. In many traversals, this parallelism is natural: walks over different
subtrees are independent of each other. In such a scenario, a single thread may not walk
over the entire tree and, indeed, may not even start its tree walk at the beginning of the
buffer holding the tree.

For both of these cases, our current Gibbon compiler is insufficient, because it does not
support non-full treewalks. It assumes that the cursor moving through the buffer runs by
each node in the tree during the tree walk, and the transformations that ensure that cursors
get routed correctly assume the same. The key distinction here is that in both the truncation
case and the parallelism case, we need some way to move a cursor to (or generate a cursor
at) some later point in a packed tree buffer without walking over the intermediate tree nodes.

This section describes an extension to Gibbon’s packed representation—layout information—
that enables these more sophisticated traversals, as well as a evaluation of two benchmarks
that use this extended representation.

7.1 Adding Layout Information for Indirection
As described in Section 4.2, our current approach for handling traversals where we need a
cursor position (e.g., the position of a right child) without an accompanying traversal that
generates it—in other words, if we need to skip over a portion of the tree—is to insert a
dummy traversal that traverses the portion of the tree we are skipping. This dummy traversal
generates the required cursor position to continue with the “real” traversal. However, this
approach can be inefficient if the amount of work done by the dummy traversal is large.
In some situations, these dummy traversals can turn O(logn) operations into O(n) ones,
an unacceptable increase in complexity (consider, for example, the right example from
Section 2.1).

Our solution to this problem is the introduction of indirections in the packed representation.
These are, effectively, values stored in the packed tree that can be used to generate necessary
cursor positions without performing traversals. This layout information amounts, essentially,
to adding pointers to our packed representation (albeit ones that only have to be used in lieu
of dummy traversals). However, they still preserve some of the space benefits of the packed
representation for three reasons. First, indirections are not necessary for the first child, as it
is placed immediately after its parent. Second, indirections are only necessary during some
portions of traversal; if a particular type of node does not have computations that require
skipping subtrees, there is no need to add indirections to that type of node. Third, even if
indirections are required everywhere, if they are only offsets within the buffer, full (64-bit)
pointers are not required, enabling space savings [16].

The particular type of indirection needed depends on the mechanism of the traversal.
Here, we discuss two common patterns.

Pointer-style indirection The most common type of indirection is a “pointer style” indirec-
tion, where the indirection serves to provide easy access to children beyond the first child:
a node contains a field that contains the size of the left subtree. Adding that value to the
current cursor allows the cursor to be moved past the left subtree and on to the right
subtree. These types of indirections are useful to quickly access, say, the right child of a
node without traversing the left child’s subtree. The right code example from Section 2.1
can benefit from a pointer-style indirection.

Rope-style indirection This is a more subtle style of indirection. In some types of tree
traversals (such as those that arise in n-body codes [10]), an interior node is visited

ECOOP 2017



26:24 Compiling Tree Transforms to Operate on Packed Representations

and, based on some data-dependent condition, either both children of the interior node
are visited or neither is visited, effectively truncating the traversal of both the left and
the right subtrees. This truncation effectively serves as a data-dependent base case
for a recursive traversal. We call these rope-style indirections because these types of
indirection pointers are frequently called “ropes” when used in GPU implementations
of tree traversals [9, 21, 12]. An indirection pointer captures the size of both the left
and right subtrees (generalizing, all child subtrees) of a node, allowing the cursor to be
bumped to the necessary location upon truncation.
Interestingly, Gibbon’s packed representation makes finding the next node easy—a simple
calculation of the size of subtrees. In pointer-based representations, finding the next node
of the tree requires more work: it could be the right sibling of the current node, it could
be the node’s parent’s right sibling, etc.

Note that in both cases, the indirection pointer’s main job is to capture the size of a
subtree or subtrees rooted at a particular node. In general, if a given interior node knows
the sizes of all of its child subtrees, it can use these indirection pointers to provide random
access to a tree, even if that tree is in a packed representation. Hence, we call this indirection
information layout information.

Not every traversal requires full random access to the tree, and hence not every piece
of layout information is necessary to synthesize traversals over packed trees. Automatically
inferring what layout information is necessary, inserting them into packed representations,
and synthesizing cursor updates based on that layout information is a topic for future work.

7.2 Evaluation
Because Gibbon does not currently support a packed representation extended with layout
information, our evaluation uses hand-written packed implementations (in C) that include
that layout information, mimicking what would be produced by a backend that understands
indirections. We evaluate two benchmarks: a parallelization microbenchmark (Section 7.2.1)
that uses pointer-style indirections to distribute the traversal of a tree, and an implementation
of two-point correlation (Section 7.2.2) that uses rope-style indirections.

7.2.1 Parallelism opportunity study
We evaluate a parallel version of our add1 benchmark from Section 6.1. In the pointer-based
version of this code, adding parallelism using Cilk [2] is straightforward: because the add1
operation treats the left and right subtrees independently, we can simply add Cilk spawn
commands to recursive calls to introduce parallelism, cutting off parallelism (after depth 5)
to avoid runtime overhead.

For the packed representation, however, we cannot simply adopt this approach: being able
to spawn a task that processes the right subtree of a node requires being able to reach that
right subtree without traversing the left subtree. We thus manually introduce pointer-style
indirections that allow programs written over the packed representation to directly access
the right subtree, facilitating parallel execution. In any scenario where there is a Cilk spawn,
we use the indirection pointer to launch the right-subtree task, allowing that work to be
stolen. Once we cease using spawns, producing coarse-grained leaf tasks, we revert to the
full tree-walks supported by Gibbon.

Figure 9 shows the result of our parallel packed implementation (left), compared to the
performance of a mature parallel functional compiler, GHC, running the same benchmark
(right). While for small trees we see that our parallel implementation does not yield much



M. Vollmer et. al. 26:25

 0

 2

 4

 6

 8

 10

 12

 0  2  4  6  8  10  12  14  16

Pa
ra

lle
l 
sp

e
e

d
-u

p
 (

v
s 

o
n

e
 t

h
re

a
d

)

Number of threads

15
16
17
18
19
20
21
22
23
24
25

 2

 4

 6

 8

 10

 12

 2  4  6  8  10  12  14  16

Pa
ra

lle
l 
sp

e
e

d
-u

p
 (

v
s 

o
n

e
 t

h
re

a
d

)

Number of threads

17
18
19
20
21
22
23
24
25

Figure 9 Parallel speedup: mapping a function over a packed tree. Each line is labeled with
the tree depth that it represents, including trees of 215 to 225 leaves. This compares a Cilk (C)
implementation using the packed trees with layout information that allow random access to subtrees
(top). For comparison, we also show the parallel speedup from a mature parallel functional compiler
(GHC, bottom). All lines are normalized to their own 1-core speeds. In absolute terms, GHC starts
off 34× slower than our approach at one core, and grows to 223× slower at 16 cores.

scaling, for large trees we can achieve a speedup of about 11× on 16 cores (relative to one-core
execution). In contrast, the GHC implementation cannot scale beyond eight cores. At these
allocation rates, GHC spends much of its time in garbage collection, and the runtime system
presents a bottleneck. When comparing the packed implementation directly to GHC, the
packed version is 34× faster on a single core and 223× faster on 16 cores!

While automatically exploiting parallelism in Gibbon is future work, these results demon-
strate the potential for large performance gains.

7.2.2 Point correlation
Point correlation is a well-known algorithm used in data mining [10]: given a set of points in
a k-dimensional space, point correlation computes the number of points in that space that
lie within a distance r from a given point p.

In a naive implementation of point correlation, each point in the space needs to be checked
against the query point. A more efficient approach is to use kd-trees [1] to store the points.
KD-trees are space-partitioning trees where the root of the kd tree represents the entire

ECOOP 2017



26:26 Compiling Tree Transforms to Operate on Packed Representations

0.98 0.99 0.97

1.36
1.26 1.25

0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

sp
ee
du
p

tree	size

Performance	of	Packed	Representation	for	Point	
Correlation	

Figure 10 Speedup of packed implementation of point correlation over pointer-based implemen-
tation. X axis shows varying tree sizes (represented in number of nodes).

space, and each node’s children represents a partition of that node’s space into two subspaces.
KD-trees allow the search process to skip some regions in the space. By storing at each
internal node the boundaries within which all descendent points lies, the search process can
skip a subtree is a given point is far enough from the boundaries. As a result, querying a
kd-tree to perform point-correlation is O(log n) instead of O(n). Note that it is exactly the
process of “skipping” subtrees that gives kd-tree-based point correlation its efficiency, but
also that prevents a normal packed representation from sufficing to implement the algorithm:
there is no way to skip past a subtree without performing a dummy traversal, obviating the
asymptotic performance gains.

We implemented both a standard pointer-based version of 2-point correlation in C, as well
as a version that operates over a packed representation augmented with indirection pointers.
Each interior node stores a rope-style indirection pointer that maintains the size of its child
subtrees. If a traversal is truncated at that node, the cursor is incremented by the value in
that indirection pointer, skipping the subtrees and resuming traversal on the rest of the tree.

Figure 10 shows the speedup of the packed version with respect to the standard pointer-
based implementation for different tree sizes. For each tree size, we ran 10 query points
through the tree. For small trees, the queries were performed 10000 times to produce sufficient
runtime for accurate measurements. Each experiment was performed 10 times, and the mean
is reported.

We note first that for every tree size, the packed representation uses 56% less memory than
the pointer-based trees. This reduction in memory usage has two sources: nodes do not need
to store left-child pointers; and more efficient packing of data in the packed representation.
For small trees, the runtime performance of the packed and pointer versions are comparable.
For large trees, the packed version is up to 35% faster than the pointer-based version.

We note that the relatively smaller performance improvement for this benchmark versus
the AST benchmarks is unsurprising. First, taking an indirection means that any spatial
locality gains from the packed representation are lost, resulting in similar behavior to the
pointer-based version. Second, there is relatively more work to be done per node in this
benchmark, so the time spent in traversal of the tree is relatively less, reducing the opportunity
for improvement.



M. Vollmer et. al. 26:27

8 Future Work and Conclusions

Future work

While our initial results show that packed tree-based data representation have significant
promise for accelerating tree transformations, much more work remains to be done. First, our
Gibbon compiler remains an initial prototype—a more realistic implementation supporting
arrays, lists, and more base values would allow the construction of more interesting programs,
further validating our hypotheses. We also plan to support optional automatic inclusion of
layout information to enable applications such as kd-trees directly in Gibbon. This should
support studies in auto-parallelization, which can use packed data regions to coarsen tasks
and help with parallel communication and memory management.

The area of buffer management also deserves attention. For example, using indirections,
it is possible to write a insert or rebalancing operation on an immutable packed tree, by
writing the new nodes into a fresh buffer (like a transaction log). But this quickly introduces
fragmentation and memory reclamation problems that must be managed.

Another extension is data type factoring, storing leaves in a separate, dense, aligned
vector. This enables (1) vectorization of numeric operations, and (2) separating out pointers
that the GC must traverse. This may prove essential for an open-world implementation of
the Gibbon approach in a managed language such as Java, Haskell, or Racket, where GC
support is necessary and interoperation with arbitrary pointer-based values is desirable.

Conclusions

This paper investigates the use of packed representations to represent tree structures, which
serialize a tree and eliminate the pointers connecting the various nodes. While this represen-
tation saves space and, with carefully-written code, can result in performance improvements
(due to prefetching and spatial locality), writing programs that operate directly on the packed
representation is challenging and error prone. To address this problem, this paper introduces
Gibbon, a simple functional language and compiler that allows programmers to write tree
traversal algorithms in standard, idiomatic ways (recursion over algebraic data types), and
a compiler that automatically generates the packed representation for an application and
transforms Gibbon programs to operate directly on that representation.

We show through a series of microbenchmarks and case studies that our packed represen-
tation is highly efficient compared to pointer-based representations, both in terms of space
usage and time, and that we can process complex data, such as the full Racket language’s
ASTs in Gibbon, and automatically translate them to packed implementations. We also
discuss extensions to Gibbon’s representation that introduces selective random access to
packed tree nodes, enabling more complex applications.

References

1 Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Commun. ACM, 18:509–517, September 1975. doi:10.1145/361002.361007.

2 Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: an efficient multithreaded runtime system. SIG-
PLAN Notices, 30:207–216, August 1995. doi:10.1145/209937.209958.

3 Kevin J. Brown, Arvind K. Sujeeth, Hyouk Joong Lee, Tiark Rompf, Hassan Chafi, Martin
Odersky, and Kunle Olukotun. A heterogeneous parallel framework for domain-specific

ECOOP 2017

http://dx.doi.org/10.1145/361002.361007
http://dx.doi.org/10.1145/209937.209958


26:28 Compiling Tree Transforms to Operate on Packed Representations

languages. In Proceedings of the 2011 International Conference on Parallel Architectures
and Compilation Techniques, PACT ’11, pages 89–100. IEEE, 2011.

4 TM Chilimbi, MD Hill, and JR Larus. Cache-conscious structure layout. ACM SIGPLAN
Notices, 1999. URL: http://dl.acm.org/citation.cfm?id=301633.

5 Trishul M. Chilimbi, Bob Davidson, and James R. Larus. Cache-conscious structure defi-
nition. In Proceedings of the ACM SIGPLAN 1999 conference on Programming language
design and implementation, PLDI ’99, pages 13–24, New York, NY, USA, 1999. ACM.
doi:10.1145/301618.301635.

6 Trishul M. Chilimbi and James R. Larus. Using generational garbage collection to imple-
ment cache-conscious data placement, 1999. doi:10.1145/301589.286865.

7 Adam Chlipala. An optimizing compiler for a purely functional web-application lan-
guage. In Proceedings of the 20th ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2015, pages 10–21, New York, NY, USA, 2015. ACM. doi:
10.1145/2784731.2784741.

8 Matthew Flatt and PLT. Reference: Racket. Technical report, PLT Design, Inc., 2010.
http://racket-lang.org/tr1/.

9 Michael Goldfarb, Youngjoon Jo, and Milind Kulkarni. General transformations for gpu
execution of tree traversals. In Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis (Supercomputing), SC ’13, 2013.

10 Alexander G Gray and Andrew W Moore. N-body’problems in statistical learning. In
NIPS, volume 4, pages 521–527. Citeseer, 2000.

11 Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James
Cheney. Region-based memory management in Cyclone. In PLDI, 2002. URL: http:
//dl.acm.org/citation.cfm?id=512563.

12 Michael Hapala, Tomas Davidovic, Ingo Wald, Vlastimil Havran, and Philipp Slusallek.
Efficient Stack-less BVH Traversal for Ray Tracing. In Proceedings 27th Spring Conference
of Computer Graphics (SCCG) 2011, pages 29–34, 2011.

13 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In Proceedings of the
7th European Symposium on Programming: Programming Languages and Systems, ESOP
’98, pages 122–138, London, UK, UK, 1998. Springer-Verlag. URL: http://dl.acm.org/
citation.cfm?id=645392.651876.

14 Aaron W. Hsu. The Key to a Data Parallel Compiler. In Proceedings of the 3rd
ACM SIGPLAN International Workshop on Libraries, Languages, and Compilers for
Array Programming, ARRAY 2016, pages 32–40, New York, NY, USA, 2016. ACM.
doi:10.1145/2935323.2935331.

15 James Larus. Restructuring Symbolic Programs for Concurrent Execution on Multiproces-
sors. PhD thesis, University of California at Berkeley, 1989.

16 Chris Lattner and Vikram Adve. Automatic pool allocation: improving performance by
controlling data structure layout in the heap. ACM SIGPLAN Notices, 40:129–142, 2005.
doi:10.1145/1065010.1065027.

17 Chris Lattner and Vikram S. Adve. Transparent pointer compression for linked data struc-
tures. In Proceedings of the 2005 Workshop on Memory System Performance, MSP ’05,
pages 24–35, New York, NY, USA, 2005. ACM. doi:10.1145/1111583.1111587.

18 Junichiro Makino. Vectorization of a treecode. J. Comput. Phys., 87:148–160, March 1990.
doi:10.1016/0021-9991(90)90231-O.

19 Trevor L. McDonell, Manuel M.T. Chakravarty, Gabriele Keller, and Ben Lippmeier. Opti-
mising purely functional GPU programs. In ICFP: International Conference on Functional
Programming, pages 49–60. ACM, 2013.

http://dl.acm.org/citation.cfm?id=301633
http://dx.doi.org/10.1145/301618.301635
http://dx.doi.org/10.1145/301589.286865
http://dx.doi.org/10.1145/2784731.2784741
http://dx.doi.org/10.1145/2784731.2784741
http://racket-lang.org/tr1/
http://dl.acm.org/citation.cfm?id=512563
http://dl.acm.org/citation.cfm?id=512563
http://dl.acm.org/citation.cfm?id=645392.651876
http://dl.acm.org/citation.cfm?id=645392.651876
http://dx.doi.org/10.1145/2935323.2935331
http://dx.doi.org/10.1145/1065010.1065027
http://dx.doi.org/10.1145/1111583.1111587
http://dx.doi.org/10.1016/0021-9991(90)90231-O


M. Vollmer et. al. 26:29

20 Leo A. Meyerovich, Todd Mytkowicz, and Wolfram Schulte. Data paral-
lel programming for irregular tree computations. In HotPAR. USENIX, May
2011. URL: https://www.microsoft.com/en-us/research/publication/
data-parallel-programming-for-irregular-tree-computations/.

21 Stefan Popov, Johannes Günther, Hans-Peter Seidel, and Philipp Slusallek. Stackless kd-
tree traversal for high performance GPU ray tracing. Computer Graphics Forum, 26(3):415–
424, September 2007. (Proceedings of Eurographics).

22 Bin Ren, Gagan Agrawal, James R. Larus, Todd Mytkowicz, Tomi Poutanen, and Wolfram
Schulte. SIMD parallelization of applications that traverse irregular data structures. In
Proceedings of the 2013 IEEE/ACM International Symposium on Code Generation and
Optimization, CGO 2013, Shenzhen, China, February 23-27, 2013, pages 20:1–20:10. IEEE
Computer Society, 2013. doi:10.1109/CGO.2013.6494989.

23 Bin Ren, Todd Mytkowicz, and Gagan Agrawal. A portable optimization engine for acceler-
ating irregular data-traversal applications on SIMD architectures. TACO, 11(2):16:1–16:31,
2014. doi:10.1145/2632215.

24 Bo Joel Svensson, Mary Sheeran, and Ryan R. Newton. Design exploration through code-
generating dsls. Commun. ACM, 57(6):56–63, June 2014.

25 Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of typed
scheme. In George C. Necula and Philip Wadler, editors, Proceedings of the 35th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008,
San Francisco, California, USA, January 7-12, 2008, pages 395–406. ACM, 2008. doi:
10.1145/1328438.1328486.

26 Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Inf. Comput.,
132(2):109–176, 1997.

27 D. N. Truong, F. Bodin, and A. Seznec. Improving cache behavior of dynamically allo-
cated data structures. In Proceedings of the 1998 International Conference on Parallel
Architectures and Compilation Techniques, PACT ’98, pages 322–, Washington, DC, USA,
1998. IEEE Computer Society. URL: http://portal.acm.org/citation.cfm?id=522344.
825680.

28 Kenton Varda. Cap’n Proto, 2015. URL: https://capnproto.org/.
29 Edward Z. Yang, Giovanni Campagna, Ömer S. Ağacan, Ahmed El-Hassany, Abhishek

Kulkarni, and Ryan R. Newton. Efficient communication and collection with compact
normal forms. In Proceedings of the 20th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2015, pages 362–374, New York, NY, USA, 2015. ACM.
doi:10.1145/2784731.2784735.

ECOOP 2017

https://www.microsoft.com/en-us/research/publication/data- parallel-programming-for-irregular-tree-computations/
https://www.microsoft.com/en-us/research/publication/data- parallel-programming-for-irregular-tree-computations/
http://dx.doi.org/10.1109/CGO.2013.6494989
http://dx.doi.org/10.1145/2632215
http://dx.doi.org/10.1145/1328438.1328486
http://dx.doi.org/10.1145/1328438.1328486
http://portal.acm.org/citation.cfm?id=522344.825680
http://portal.acm.org/citation.cfm?id=522344.825680
https://capnproto.org/
http://dx.doi.org/10.1145/2784731.2784735




Towards Strong Normalization for Dependent
Object Types (DOT)∗

Fei Wang1 and Tiark Rompf 2

1 Purdue University, West Lafayette, USA
wang603@purdue.edu

2 Purdue University, West Lafayette, USA
firstname@purdue.edu

Abstract
The Dependent Object Types (DOT) family of calculi has been proposed as a new theoretic
foundation for Scala and similar languages, unifying functional programming, object oriented
programming and ML-style module systems. Following the recent type soundness proof for
DOT, the present paper aims to establish stronger metatheoretic properties. The main result
is a fully mechanized proof of strong normalization for D<:, a variant of DOT that excludes
recursive functions and recursive types. We further discuss techniques and challenges for adding
recursive types while maintaining strong normalization, and demonstrate that certain variants of
recursive self types can be integrated successfully.

1998 ACM Subject Classification D.3.3 [Programming Languages]: Language Constructs and
Features

Keywords and phrases Scala, DOT, strong normalization, logical relations, recursive types

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.27

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.3.2.5

1 Introduction

The Dependent Object Types (DOT) calculus [8, 47, 7] aims to be a uniform foundation
for modern expressive languages that combine features from traditional object-oriented
languages, functional languages, and ML-style module systems.

After many years of false starts, a recent breakthrough in the study of DOT’s metatheory
established the key property of type soundness [47], which states that any well-typed program
either diverges or evaluates to a (properly typed) value. Thus, type soundness guarantees the
absence of runtime errors, as captured by the slogan “well-typed programs don’t go wrong”.

In this paper, we investigate another key metatheoretic property: strong normalization,
which states that any well-typed program evaluates to a (properly typed) value. Thus,
strong normalization implies type soundness, but in addition to excluding runtime errors,
it excludes the option of divergence: all well-typed programs must terminate. Standard
proof methods for type soundness do not scale to termination results, and hence, more
involved proof techniques are needed. It is also clear that strongly-normalizing languages
cannot be Turing-complete. Hence, some restrictions on the language are necessary to ensure
termination.

∗ This research was supported by NSF through awards 1553471 and 1564207.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Fei Wang and Tiark Rompf;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 27; pp. 27:1–27:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.27
http://dx.doi.org/10.4230/DARTS.3.2.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


27:2 Towards Strong Normalization for Dependent Object Types (DOT)

A key contribution of this paper is to show that the one important restriction needed in
DOT is to prevent the creation of recursive type values. In particular, we can still include
DOT’s flavor of recursive self types without giving up on strong normalization. This result is
surprising, because adding traditional recursive types to simply-typed λ-calculus or System
F leads to Turing-completeness.

Why does strong normalization matter? It is well known from previous work that type
soundness of Turing-complete DOT versions hinges on the termination of path expressions
p that are used in path-dependent types p.Type. In fact, Scala has documented soundness
bugs related to path expressions such as lazy vals which are not guaranteed to terminate
[47]. Hence, studying termination properties of DOT-like calculi in a formal setting is a
stepping-stone for future type system extensions of DOT, for example towards higher-kinded
types and type lambdas [38].

This paper is structured around its individual contributions:
We review System D<:, its relation to F<: and to DOT and Scala, as well as the previous
type soundness result (Section 2).
We present our strong normalization proof for D<: in full detail. The proof method
follows the standard Girard-Tait approach based on logical relations [31, 54]. The key
challenge in adapting proof techniques from F<: and similar systems lies in the handling
of bounded first-class type values (Section 3).
We scale our proof from D<: towards DOT. We adapt the proof method to include
intersection types, which are used in DOT to model type refinement, and we clarify the
boundary between strongly normalizing and Turing-complete systems, where the key
challenge lies in handling DOT’s recursive self types. We first show that, consistent
with our expectations from similar systems, recursive type values are enough to encode
fixpoint combinators and lead to a Turing-complete language. But surprisingly, with
only non-recursive type values, we can still add recursive self types to the calculus and
maintain strong normalization (Section 4).

Our mechanized Coq proofs are available from:
https://github.com/tiarkrompf/minidot/tree/master/ecoop17

2 Background: System D<:

We base our description on a formal model situated inbetween F<: and full DOT, called
System D<: [9]. Like DOT, D<: has abstract type members and path-dependent type
selections. But in constrast to full DOT, which represents all values as objects with method
and type members, it has separate forms for dependent functions and first-class type values,
and it lacks recursive types.

2.1 Syntax and Typing Rules
System D<: is at its core a system of first-class type objects and path-dependent types.
Type objects can be seen as single-field records containing an abstract type member. Type
selections, or path-dependent types serve to access these abstract type members.

The syntax and typing rules are shown in Figure 2, after reviewing those of System F<: in
Figure 1. The type language includes ⊥ and >, as least and greatest element of the subtyping
relation, first-class abstract types (Type T1..T2), lower-bounded by T1 and upper-bounded
by T2, type selections on a variable x.Type (i.e., path-dependent types), where x is a term
variable bound to a type object, and finally dependent function types (x : T ) → T x. The

https://github.com/tiarkrompf/minidot/tree/master/ecoop17


F. Wang and T. Rompf 27:3

Syntax

T ::= X | > | T → T | ∀X <: T.TX
t ::= x | λx : T.t | ΛX <: T.t | t t | t [T ]
Γ ::= ∅ | Γ, x : T | Γ, X <: T

Subtyping Γ ` S <: U

Γ ` T <: >

Γ ` X <: X

Γ 3 X <: U Γ ` U <: T
Γ ` X <: T

Γ ` S2 <: S1 , T1 <: T2

Γ ` (S1 → T1) <: (S2 → T2)

Γ ` S2 <: S1
Γ, X <: S2 ` TX1 <: TX2

Γ ` (∀X <: S1.T
X
1 ) <: (∀X <: S2.T

X
2 )

Γ ` T1 <: T2 Γ ` T2 <: T3

Γ ` T1 <: T3

Type assignment Γ ` t : T

Γ 3 x : T
Γ ` x : T

Γ, x : S ` t : T
Γ ` (λx : S.t) : (S → T )

Γ ` t1 : (S → T ) , t2 : S
Γ ` t1 t2 : T

Γ, X <: S ` t : TX

Γ ` (ΛX <: S.t) : (∀X <: S.TX)

Γ ` t1 : (∀X <: U.TX) , T2 <: U
Γ ` t1[T2] : TT2

Γ ` t : S , S <: T
Γ ` t : T

Figure 1 System F<:: syntax and typing rules. The notation TX denotes that variable X may
occur free in T . Occuring in the same rule, TU denotes T with all occurrences of X replaced with
U . Types are otherwise assumed to be closed with respect to the environment.

notation T x denotes that term variable x may occur free in T . The term language includes
variables x, creation of type objects (Type T ), λ-abstractions λx.t, and applications t1 t2.

The subtyping relation can compare type selections with the bounds of the underlying
abstract types, and compare type objects and dependent functions, respectively. Type
assignment contains fairly standard cases for dependent abstraction and application.

To relate System D<: to Scala, let us take a step back and consider two ways to define a
standard List data type:

class List[E] // parametric, functional style
class List { type E } // modular style, w. type member

The first one is the standard parametric version. The second one defines the element type
E as a type member, which can be referenced using a path-dependent type. To see the
difference in use, here are the two respective signatures of a standard map function:

def map[E,T](xs: List[E])(fn: E => T): List[T] = ...
def map[T] (xs: List)(fn: xs.E => T): List & { type E = T } = ...

Again, the first one is the standard parametric version. The second one uses the path-
dependent type xs.E to denote the element type of the particular list xs passed as argument,

ECOOP 2017



27:4 Towards Strong Normalization for Dependent Object Types (DOT)

Syntax

T ::= ⊥ | > | Type T..T | x.Type | (x : T )→ T x

t ::= x | Type T | λx.t | t t
Γ ::= ∅ | Γ, x : T

Subtyping Γ ` S <: U

Γ ` ⊥ <: T (Sbot) Γ ` T <: > (Stop)

Γ ` T1 <: T2 Γ ` T2 <: T3

Γ ` T1 <: T3
(Strans)

Γ ` x.Type <: x.Type (SselX)

Γ ` x : Type T..>
Γ ` T <: x.Type

(Ssel1)

Γ ` x : Type ⊥..T
Γ ` x.Type <: T

(Ssel2)

Γ ` S2 <: S1 , U1 <: U2

Γ ` Type S1..U1 <: Type S2..U2
(Styp)

Γ ` S2 <: S1
Γ, x : S2 ` Ux1 <: Ux2
Γ ` (x : S1)→ Ux1 <:

(x : S2)→ Ux2

(Sfun)

Type assignment Γ ` t : T

x : T ∈ Γ
Γ ` x : T

(Tvar)

Γ ` Type T : Type T..T (Ttyp)

Γ, x : T1 ` t : T x2
Γ ` λx.t : (x : T1)→ T x2

(Tabs)

Γ ` t : (x : T1)→ T x2 , y : T1

Γ ` t y : T y2
(Tdapp)

Γ ` t1 : (x : T1)→ T2 , t2 : T1

Γ ` t1 t2 : T2
(Tapp)

Γ ` t : T1 , T1 <: T2

Γ ` t : T2
(Tsub)

Figure 2 System D<:: a generalization of F<: with type values and path-dependent types. A
type x.Type refers to the type “within” x (i.e. path dependent type). The notation T x denotes
that variable x may occur free in T . Types are otherwise assumed to be closed with respect to the
environment.

and uses a refined type List & { type E = T } to define the result of map. Such refined
types are included in DOT, but absent in D<:.

It is easy to see how the modular surface syntax directly maps to the formal D<: syntax,
if we express fully abstract types { type E } as (Type ⊥..>) and concrete type aliases
{ type E = T } as (Type T..T ). It is also important to note that the modular style with
first-class type objects can directly encode the functional style, which corresponds to bounded
parametric polymorphism as in System F<:, but with increased expressiveness due to the ⊥
type and potential lower bounds on type variables.



F. Wang and T. Rompf 27:5

Runtime Structures
H ::= ∅ | H,x : v Runtime environments
v ::= 〈H,λx.t〉 | 〈H,Type T 〉 Runtime values
r ::= Timeout | Done (Error | Val v) Interpreter results

Definitional Interpreter

(∗ Some Coq data types and auxi l iary functions el ided ∗)
Fixpoint eval (n : nat )(env : venv)( t : tm){ struct n}: option ( option vl ) :=
DO n1 ⇐ FUEL n; (∗ t o t a l i t y : n1<−n−1, TIMEOUT i f n=0 ∗)
match t with

| tvar x ⇒DONE (lookup x env) (∗ variable x ∗)
| ttyp T ⇒DONE (VAL (vty env T)) (∗ type value Type T ⇒ 〈H,Type T 〉 ∗)
| tabs x ey ⇒DONE (VAL (vabs env x ey )) (∗ lambda λx.ey ⇒ 〈H,λx.ey〉 ∗)
| tapp ef ex ⇒ (∗ application ef ex ∗)
DO vf ⇐ eval n1 env ef ;

DO vx ⇐ eval n1 env ex ;
match vf with

| (vabs env2 x ey) ⇒
eval n1 ((x , vx ) : : env2) ey

| _⇒ERROR
end

end .

Figure 3 System D<:: Operational Semantics.

2.2 Operational Semantics

The operational semantics of D<: follows the standard call-by-value λ-calculus evaluation
rules very closely. We can give a formal semantics in many different ways. We follow previous
work [9] in using an environment-based functional evaluator, which serves as a definitional
interpreter in the style of Reynolds [46]. A substitution-free semantics is attractive in the case
of DOT, mainly because term substitution requires additional mechanics in the metatheory
to properly handle type selections: in the surface syntax, [v/x](x.Type) = v.Type is not a
legal type. However, one can freely switch between environment-based and substition-based,
as well as big-step and small-step semantics following the interderivation techniques of Danvy
et al. [20, 21, 2].

Figure 3 shows both the definition of runtime values and the definition of the evaluator.
We opt to show the evaluator in actual Coq code. The only case that is different from
a call-by-value λ-calculus evaluator is the case that evaluates first-class type expressions
Type T to a form of type closure 〈H,Type T 〉.

The other aspect that is worth noting about our evaluator is that it is a total function,
by virtue of inheriting totality from its defining language, Coq. The evaluator takes a fuel
value n and distinguishes explicitly between Timeout, Error, and value results. The FUEL
operation in the first line desugars to a simple non-zero check:

match n with
| z ⇒ TIMEOUT
| S n1 ⇒ ...

end

The fuel value upper-bounds the number of steps the evaluator may take and can thus
serve as induction measure to prove properties about evaluation.

ECOOP 2017



27:6 Towards Strong Normalization for Dependent Object Types (DOT)

2.3 Previous Work: Type Soundness
To prove type soundness for D<:, previous work by Amin and Rompf [9] followed a technique
of Siek [50] and Ernst, Ostermann and Cook [25], which consists in using the numeric fuel
value as induction measure. Similar techniques have recently been proposed by Owens et
al. [43].

I Theorem 1 (Type soundness for D<:). If eval does not time out, it returns a well-typed
value: 1

Γ ` t : T Γ � H eval k H t = Done r
r = Val v H ` v : T

Proof. By induction on the fuel value k. Note that Γ � H means that Γ is well-formed with
H, i.e. the two environments are of the same length and values in H have corresponding
types in Γ. J

The proof has some complications compared to well-documented proofs for F<:, caused by
the fact that lower-bounded type members, may lead to transitivity chains T1 <: x.T <: T2
with a type selection in the middle, whereas in F<:, only upper-bounded type variables
X <: T can occur. These issues are described in detail in previous work [10, 47, 9].

It is important to note that soundness becomes quite a bit more complicated once recursive
types are added in full DOT [47].

2.4 Type Soundness Hinges on Strong Normalization of Paths
The soundness of DOT hinges on the fact that path terms p in type selections p.Type are
strongly normalizing. For this reason, current soundness results only cover type selection on
variables x.Type. Identifying larger terminating fragments of DOT lays the basis for future
extensions towards richer path expressions, and therefore, more general notions of dependent
types.

To see why termination of path expressions is important, it is necessary to realize that one
cannot, in general, enforce “good bounds” for all types occuring in a given program [10]. This
means that for a type (Type T1..T2), we need to accept that we cannot statically guarantee
that T1 <: T2. The reason is that this property is not preserved by intersection types, which
play a key role in DOT to model type refinement. Hence, DOT enforces this property in a
syntactic way, by allowing type values to only contain type aliases (Type T..T ). This means
that we only accept that a type has “good bounds” if it is inhabited. A transitivity chain
T1 <: p.T <: T2 is only safe if evaluation of p terminates with a unique value.

Non-termination of path-expressions or evaluation to non-values (through lazy vals, type
projections, or null values) is a recurring source of soundness bugs in the production Scala
language and compiler [11, 47].

3 Strong Normalization

We present our strong normalization proof for D<: in detail. Instead of assuming eval k H t

in the premise of Theorem 1, we now want to derive ∃ k. eval k H t in the conclusion.

1 In a slight abuse of notation, we will sometimes use inference rule notation in this paper to state lemmas
and theorems. This is just to make the formulas easier to parse and avoid spelling out all ∀/∃ quantifiers.



F. Wang and T. Rompf 27:7

I Definition 2 (Strong Normalization). Any well-typed term evaluates to a well-typed value:

Γ ` t : T Γ � H
eval k H t = Done Val v H ` v : T

We have fixed a deterministic call-by-value evaluation strategy, since it is known from
previous work that arbitrary reductions already violate type soundness [9]. In this setting,
strong normalization can be taken as a synonym for termination.2 Under non-deterministic
evaluation strategies, one distinguishes between strong and weak normalization: strong
normalization requires that all possible evaluations of a given term terminate with its normal
form. Weak normalization only requires that every term has a normal form, which can be
reached through some evaluation path.

3.1 The Girard-Tait Proof Method: Starting-Point F<:

The standard approach of proving termination is the method of Girard and Tait [31, 54].
For every type T we define its denotation JT K as the set of values that inhabit T , with
type-specific characterics that carry the key inductive properties of the main proof. The
judgement v : T then becomes v ∈ JT K. Based on these sets of values, we can also define sets
of terms t (paired with runtime environment H):

EJT K = {〈H, t〉 | ∃k, v. eval k H t = Done Val v ∧ v ∈ JT K}

that evaluate to a value of type T in environment H, in a certain number of steps k.
Standard proofs for a variety of type systems such as System F, F<:, and F-bounded can

be found in the literature [28, 39]. As we will see, adapting this proof technique for D<: from
F<: and similar systems is not entirely trivial. The key challenge lies in handling bounded
first-class type values, which are absent in F<:. Nevertheless, it is instructive to look at this
simpler setting first. The syntax and typing rules for F<: are reviewed in Figure 1.

The semantic interpretation of types, J.K, can be defined as:

J>Kρ = {v} i.e. set of all values
JXKρ = ρ(X)
JT1 → T2Kρ = {〈H,λx.t〉 | ∀vx ∈ JT1Kρ. 〈H(x 7→ vx), t〉 ∈ EJT2Kρ}
J∀X <: T1.T

X
2 Kρ = {〈H,ΛX.t〉 | ∀D ⊆ JT1Kρ. 〈H, t〉 ∈ EJTX2 Kρ(X 7→D)}

The definition of J.K is well-founded, since J.K is only used on proper subterms on the
right hand sides, including indirectly through EJ.K. The denotation of J>K is the set of all
values. To handle type variables X, J.K is parameterized over a context ρ which maps names
to sets of values. Note that ρ and H have different types and they are not interchangable.
The definition of JT1 → T2K captures the essential statement of the termination theorem as it
applies to functions: if there is a function argument value of the right type, then evaluation
of the function body will terminate after some number of steps and produce a result value
of the right type. Also note that F<: does not usually have a bottom type ⊥, but one can
naturally define J⊥Kρ = ∅.

Subtyping is inherently tied to a narrowing property for J.Kρ, i.e., the ability to replace
a binding in ρ with a subtype. However we cannot prove this directly, since J.Kρ is used

2 Our use of the term “strong normalization” is consistent with that of McAllester et al. [39], who also
used a (partial) evaluation function in their proof of strong normalization for System F2 and Fω.

ECOOP 2017



27:8 Towards Strong Normalization for Dependent Object Types (DOT)

recursively in a contravariant position for function arguments. Hence, the case for ∀ types
has narrowing “built-in” via ∀D ⊆ JT1Kρ.

To complete the termination proof, a key lemma is needed to model the subsumption
case, and interpret the subtyping relation in a semantic way (� is a consistency relation;
Γ � H ∼ ρ means that Γ(x) = T implies H(x) ∈ ρ(x) ⊆ JT Kρ):

I Lemma 3 (Semantic Widening). If Γ � H ∼ ρ and Γ ` T1 <: T2, then JT1Kρ ⊆ JT2Kρ

Proof. By induction on the subtyping derivation. J

We can interpret Lemma 3 equivalently as a widening or closure property: if v ∈ JT1Kρ
and Γ ` T1 <: T2 then v ∈ JT2Kρ. Additional lemmas about environment extension and
shrinkage (weakening and strenghtening) as well as about type substitution are needed as
well. With these helper lemmas, we can complete the desired theorem:

I Theorem 4 (Strong Normalization for F<:). Any well-typed term evaluates to a well-typed
value:

Γ ` t : T Γ � H ∼ ρ
〈H, t〉 ∈ EJT Kρ

Proof. By induction on the typing derivation. J

In particular, Theorem 4 holds for closed terms, in empty environments Γ and H.
It is worth noting that we assume lenient well-formedness throughout. All free variables

of syntactically valid forms (types or terms) are bound in environments. This assumption is
implicit in all definitions, lemmas and theorems, unless a free variable is explicitly mentioned,
as in T x.

3.2 System D<:: Type Values and Bounds
For D<:, we encounter key difficulties when defining J.K. A first straightforward attempt
inspired by F<: and adapted to path-dependent types might look like this:

J>Kρ = {v}
J⊥Kρ = ∅
JType T1..T2Kρ = {〈H,Type T 〉 | JT1Kρ ⊆ JT2Kρ}
Jx.TypeKρ = ρ(x)
J(x : T1)→ T x2 Kρ = {〈H,λx.t〉 | ∀D ⊆ JT1Kρ. ∀vx ∈ D.
〈H(x 7→ vx), t〉 ∈ EJT x2 Kρ(x 7→D)}

However, this can’t be right: consider the case where we have a function type, and
D = JType L..UK ⊆ JT1K. We add D to the environment ρ, but when it is picked up by some
x.Type, we end up comparing again to the type of the binding JType L..UK, but we need
to compare with the upper bound JUK instead! This behavior is dictated by the (SSel2)
subtyping rule from Figure 2:

Γ ` x : Type ⊥..U
Γ ` x.Type <: U

(Ssel2)

The semantic widening Lemma 3 needs to map this rule to Jx.TypeK ⊆ JUK, and hence
show that for any value, v ∈ ρ(x) implies v ∈ JUK. But unfortunately, we have no way to



F. Wang and T. Rompf 27:9

show this, as ρ(x) is mapped to JType ⊥..UK. Attempts to extract the bounds syntactically
from a given type, directly or indirectly, fail at various stages in the proof. To solve this
problem, we extend the definition of JT K to cover not only the type T itself but also its
bounds. We let JT K0 denote the values that inhabit T , JT KU the values that inhabit the
upper bound of T , JT KUU the upper bound of the upper bound, and so on. In the example
above, we can now access JUK0 via ρ(x)U = JType ⊥..UKU. However, this is not quite enough.
Consider the case in the semantic widening Lemma 3 that interprets the (SSel1) subtyping
rule:

Γ ` x : Type L..>
Γ ` L <: x.Type

(Ssel1)

Lemma 3 needs to map this rule to JLK ⊆ Jx.TypeK. Now we would have to show that
v ∈ JLK implies v ∈ ρ(x), so we need to track lower bounds, too. Just like with upper
bounds, we identify JLK0 with ρ(x)L = JType L..>KL. We need an additional property that
ρ(x)L ⊆ ρ(x)U to complete this case of the lemma. The following definitions make all this
more precise:

I Definition 5 (Indexed Value Sets). We index the value sets as JT KB∗, where B∗ is a possibly
empty list of bound selectors B that can be either U (upper bound) or L (lower bound). We
use 0 to denote the empty list explicitly.

I Definition 6 (Polarity of Bound Selectors). Let pos B∗ = true if the number of L in B∗ is
even, false otherwise. We also write B+ to denote a positive sequence of bound specifiers
(pos = true) and B− a negative one (pos = false).

I Definition 7 (Indexed Value Set Inclusion). An indexed value set D1 is smaller or equal
than D2, written D1 v D2, iff

∀B+. DB+
1 ⊆ DB+

2 ∧ ∀B−. DB−
2 ⊆ DB−

1

To add some intuition to this definition, consider the case where T1 <: T2 <: T3 <: T4.
Then Type T2..T3 <: Type T1..T4, based on our subtyping rule. Regard D2 as JType T1..T4K,
and D1 as JType T2..T3K. Then intuitively, D1 v D2, which makes sense when we see that
DU

1 ⊆ DU
2 , and DL

2 ⊆ DL
1, because DU

1 = JT3K and DU
2 = JT4K, and DL

1 = JT2K and DL
2 =

JT1K.

I Definition 8 (Good bounds). An indexed value set D has “good bounds”, written
GoodBounds D, iff for all A∗ such that DA∗ 6= ∅ we have:

∀B+. DA∗LB+ ⊆ DA∗UB+ ∧ ∀B−. DA∗UB− ⊆ DA∗LB−

To add some intuition to this definition, consider DA∗L as D1 and DA∗U as D2. Intuitively,
DA∗L v DA∗U. Then applying definition 7 to D1 and D2 gives us definition 8.

The switching of polarity is necessary to account for contravariance in lower-bound
comparisions, in accordance with the (Styp) subtyping rule. Note that the definition of
“good bounds” is lenient with respect to empty sets, which correspond to uninhabited types.

With these auxiliary definitions at hand, we can define the value type relation J.K for D<::

ECOOP 2017



27:10 Towards Strong Normalization for Dependent Object Types (DOT)

I Definition 9 (Value Type Relation).

J>KB+
ρ = {v}

J>KB−
ρ = ∅

J⊥KB+
ρ = ∅

J⊥KB−
ρ = {v}

JType T1..T2K0
ρ = {〈H,Type T 〉 | JT1Kρ v JT2Kρ}

JType T1..T2KUB∗
ρ = JT2KB∗

ρ

JType T1..T2KLB∗
ρ = JT1KB∗

ρ

Jx.TypeKB∗
ρ = ρ(x)UB∗

J(x : T1)→ T x2 K0
ρ = {〈H,λx.t〉 | ∀D.D v JT1Kρ ∧GoodBounds D ⇒

∀vx ∈ D0. 〈H(x 7→ vx), t〉 ∈ EJT x2 K0
ρ(x7→D)}

J(x : T1)→ T x2 K(B+ 6= 0)
ρ = {v}

J(x : T1)→ T x2 K(B−)
ρ = ∅

EJT KB∗
ρ = {〈H, t〉 | ∃k, v. eval k H t = Done Val v ∧ v ∈ JT KB∗

ρ }

The interpretation of > includes all values, and the upper bound of >, and in fact all
positive deeper bounds are again equal to >. Its negative bounds are not inhabited: they
correspond to the definition of type ⊥. All positive bounds of ⊥ are empty, and thus equal
to ⊥ itself. The lower bound of ⊥, and all other negative bounds, are equal to >. The
interpretation of Type T1..T2 requires the bounds T1 and T2 to be properly ordered, and can
extract the corresponding bound for selectors UB∗ and LB∗. Note that to keep the definition
well-founded, no restrains are given for the relationship between T and T1, T2, and none are
needed. This somewhat surprising scheme works essentially due to a type erasure property
(types are not required to be represented at runtime). We will see an alternative model
in Section 4. Type selections x.T are mapped to the upper bound of the type stored in
the context, in accordance with subtyping rule (Ssel2). Function types are interpreted as
expected for the base type, and have lower bound ⊥ and upper bound >. This is to ensure
that every type has some bounds.

The definition of EJ.K is as before. If within some steps k, a term t evaluates to some
value v in an evironment H, and v belongs to the set of values that inhabits type T with
context ρ (i.e. v ∈ JT K0

ρ), then the pair 〈H, t〉 is a member of the logical relation EJT K0
ρ.

Bound selectors other than 0 are analagous.
We prove a couple of straightforward structural lemmas, which we will use at various

later points:

I Lemma 10 (Weakening/Strengthening). The value type relation is invariant under extending
and shrinking the context:

x /∈ FV (T )
JT KB∗

ρ = JT KB∗
ρ(x 7→D)

Proof. By induction on the size of T . J

I Lemma 11 (Substitution). The value type relation is invariant under substitution of bound
variables that map to equivalent type sets:

ρ(x) = ρ(y)
JT xKB∗

ρ = JT yKB∗
ρ



F. Wang and T. Rompf 27:11

Proof. By induction on the size of T . J

I Definition 12 (Consistent Environments). A type environment Γ, a value environment H,
and a value typing context ρ are consistent, written, Γ � H ∼ ρ, iff they contain exactly the
same bindings and the following proposition holds:

Γ(x) = T

H(x) ∈ ρ(x)0 ∧ ρ(x) v JT Kρ ∧ GoodBounds ρ(x)

We also use the notation Γ � ρ when we do not need to refer to a specific value
environment H, but assume that a suitable one exists. The strong similarity between
consistent environments and the definition of J(x : T1)→ T x2 K0

ρ is no coincidence. We need to
maintain this correspondence, so that when the environment is extended with new bindings
for a λx.y term, the consistency of the involved (type, value, and value typing) environments
is retained. We formulate this capability as an auxiliary structural lemma:

I Lemma 13 (Extending Consistent Environments).

Γ � H ∼ ρ v ∈ D0 D v JT Kρ(x 7→D) GoodBounds D
(Γ, x : T ) � (H,x : v) ∼ (ρ, x : D)

Proof. By straightforward case distinction on the target index y. If y = x, i.e. y refers to the
newly added T , v, and D in the three respective environments, then the provided premises
are just right for the goal. If y 6= x, i.e. y refers to older respective entries, then necessary
evidence can be obtained from Γ � H ∼ ρ, with the help of Lemma 10. J

3.3 Good Bounds
We are now ready to prove our first semantically meaningful lemma:

I Lemma 14 (Good Bounds). In a consistent environment, all types have good bounds:

Γ � ρ
GoodBounds JT Kρ

Proof. By induction on T . The cases for >, ⊥, and for function types are solved by
contradiction, since either the type itself or the lower bound in question is not inhabited. The
case for type selections x.Type uses the consistent environment rule, which states that all
value sets D in ρ have the GoodBounds property. Case for type values Type T1..T2 requires a
case distinction on the bound selectors B∗. If B∗ is 0, the result follows immediately from the
definition of J.K. If B∗ is L :: B′∗ or U :: B′∗, the result follows from the inductive hypothesis,
either for the type of the lower bound T1 or the type of the upper bound T2, respectively. J

3.4 Semantic Subtyping
As already discussed in Section 3.1 for F<:, we need a key lemma that provides a semantic
interpretation of the syntactic subtyping relation. This semantic widening or subsumption
lemma for D<: is slightly different from the one for F<: (Lemma 3). First, because it is
defined on indexed value sets and on the corresponding ordering relation v instead of plain
sets and set inclusion ⊆, and therefore needs to take the switch of direction for negative
bounds selectors into account. Second, in D<: the subtyping rules for type selections x.Type,

ECOOP 2017



27:12 Towards Strong Normalization for Dependent Object Types (DOT)

(Ssel1) and (Ssel2), depend on the type assignment relation, which again depends on
subtyping via the subsumption rule (Tsub). Hence, we need to prove two statements in a
mutual induction.

I Lemma 15 (Semantic Widening).

Γ � H ∼ ρ Γ ` T1 <: T2

JT1Kρ v JT2Kρ

I Lemma 16 (Inversion of Variable Typing).

Γ � H ∼ ρ Γ ` x : T
H(x) ∈ ρ(x)0 ρ(x) v JT Kρ GoodBounds ρ(x)

Proof. By simultaneous induction on the subtyping and type assignment relations. Cases
(Styp) and (Strans) are solved directly by the inductive hypothesis. Cases (Ssel1) and
(Ssel2) are solved by a combination of the inductive hypothesis for type assignment and
the resulting properties for the value set D. For case (Sfun), the case for the parameter
type is solved by the inductive hypothesis. To use the inductive hypothesis for the result
type, the results for the function argument and the consistent environments premise have
to be extended using Lemma 10 and Lemma 13. The remaining subtyping cases (Sbot),
(Stop), and (SselX), are immediate. Case (Tvar) follows from the consistent environments
property. Case (Tsub) follows by induction on both type assignment and subtyping. J

3.5 Inversion of Function Typing
When we know that a value v is of a function type, we need to be able to extract more
knowledge from this value. In particular, we need to be able to derive that the value is
an actual function closure, and that, given a proper argument value, the evaluation of the
function body will terminate at the correct type. After all, this is the main design of our
value type relationship definition. The inversion lemmas below make this knowledge explicit.

I Lemma 17 (Non-Dependent Function Inversion).

v ∈ J(x : T1)→ T2K0
ρ GoodBounds JT1Kρ

v = 〈H ′, λx.t〉 ∀vx ∈ JT1K0
ρ. 〈H ′(x 7→ vx), t〉 ∈ EJT2K0

ρ

Proof. The main challenge of the proof is to create a value set D, such that D v JT1Kρ ∧
GoodBounds D, even though this D is never referred to by T2. Thankfully we can just
use the identity set (i.e. JT1Kρ) for this case, with the help of the “good bounds” premise.
Strengthening (Lemma 10) shrinks the internal context ρ(x 7→ JT1Kρ) back to ρ, since x is
not free in T2. J

Lemma 17 deals with non-dependent function application in case (Tapp), where the
resulting types do not have any free variables. We also need the next lemma, to deal with
dependent function application in case (Tdapp).

I Lemma 18 (Dependent Function Inversion).

v ∈ J(x : T1)→ T x2 K0
ρ ρ(z) v JT1Kρ GoodBounds ρ(z)

v = 〈H ′, λx.t〉 ∀vx ∈ ρ(z)0. 〈H ′(x 7→ vx), t〉 ∈ EJT z2 K0
ρ



F. Wang and T. Rompf 27:13

Proof. Here, ρ already contains a matching value set D at position z. Via substitution
(Lemma 11), we can switch between names x and z as required. The rest of the proof is
straightforward. J

Not all premises needed for Lemma 17 and Lemma 18 are directly available from the
consistent environment premise in Theorem 19, but they can be obtained indirectly. Lemma 16
is used to connect consistent environments with the premises needed for dependent application,
and the good bounds premise for non-dependent application follows from Lemma 14.

3.6 The Main Strong Normalization Proof
Our main strong normalization theorem states that a correctly typed term, under consistent
environment, will always evaluate to a value of the same type.

I Theorem 19 (Strong Normalization for D<:). Any well-typed term evaluates to a well-typed
value:

Γ ` t : T Γ � H ∼ ρ
〈H, t〉 ∈ EJT K0

ρ

Proof. By induction on the typing derivation. Case (Ttyp) is immediate. Case (Tvar)
follows from the consistent environment premise. Case (Tapp) is solved by the inductive
hypothesis, Lemma 17, and using the resulting evidence. The good bounds premise for
Lemma 17 follows from the good bounds Lemma 14 and consistent environments. Case
(Tdapp) is solved by the inductive hypothesis, Lemma 18, and Lemma 16. Both of the two
application cases need extra calculations to sum up a sufficient amout of evaluation fuel k in
the resulting EJ.K evidence. Case (Tabs) uses the environment extension Lemma 13 and
“stores” the inductive hypothesis inside the returned J(x : T1)→ T x2 Kρ evidence, where it can
be picked up by an application case later. Case (Tsub) follows from the inductive hypothesis
and Lemma 15. J

4 Scaling up to DOT

Having proved strong normalization for D<:, we would like to add more language features.
Particular missing features from DOT are supports for records or objects with multiple
members, and recursive types.

4.1 Intersection Types
DOT uses intersection types T1 ∧ T2 to model objects with multiple methods and type
members, such as (Type A = ...) ∧ (Type B = ...). Unfortunately, intersection types are not
readily supported by our proof. To see why, consider first the usual introduction rule for
intersection types

Γ ` t : T1 , Γ ` t : T2

Γ ` t : T1 ∧ T2
(Tand)

and again the definition of J.K for type values:

JType T1..T2K0
ρ = {〈H,Type T 〉 | JT1Kρ v JT2Kρ}

ECOOP 2017



27:14 Towards Strong Normalization for Dependent Object Types (DOT)

Since this definition does not relate T to T1 and T2 in any way, we may assign two types
with conflicting bounds to a given value in (Tand), even though each type may have good
bounds individually. Hence, the intersection of two such types will have bad bounds.

The straightforward idea would be to require in the definition of JType T1..T2K0
ρ that T

is inbetween T1 and T2, but unfortunately, this would make J.K no longer well-founded.
It is well known that simply-typed λ-calculus with intersection types corresponds exactly

to the strongly normalizing λ-terms [29]. Hence, we should be able to support them in D<:,
too, without breaking strong normalization. However, additional mechanisms are needed to
carry the evidence that from rule (Ttyp)

Γ ` Type T : Type T..T (Ttyp)

only type aliases can be created, which by definition cannot have conflicting bounds.

4.2 Recursion
DOT also supports recursive functions and recursive self types. In contrast to traditional iso-
or equi-recursive types, the self-reference is a term variable instead of a type variable:

T ::= .. | µ(x : T x)

Recursive Type Values May Diverge

By intention, DOT is a full Turing-complete language. But it is interesting to study the
boundary between strongly normalizing and Turing-complete systems. What is the minimum
required change to achieve Turing-completeness? Consistent with our expectations from
traditional models of recursive types, we demonstrate that recursive type values are enough
to encode diverging computation. If we replace the current introduction rule for type values

Γ ` Type T : Type T..T (Ttyp)

with a recursive one

Γ ` {x => Type T x} : µ(x : Type T x..T x) (TtypRec)

and assume standard syntactic sugar for let bindings, then we can write the following
term:

let x = {x => Type (x.Type → ⊥)} in
let g = λ(f : x.Type). f f in
g g

This term is well-typed and diverges. Hence, we have a counterexample to strong
normalization.

Recursive Self Types Don’t

But surprisingly, with only non-recursive type values via rule (Ttyp), we can still add
recursive self types to the calculus and maintain strong normalization. The full DOT
calculus [47] includes the following introduction and elimination rules:



F. Wang and T. Rompf 27:15

(* Only showing the evaluation rule for unpack terms *)
Fixpoint eval(n: nat)(env: venv)(t: tm){struct n}: option (option vl) :=

DO n1 ⇐ FUEL n; (* totality: TIMEOUT if not enough fuel *)
match t with

... (* same as in Figure 2 *)
| tunpack ex x ey ⇒ (* unpack ex as x in ey *)

DO vx ⇐ eval n1 env ex;
eval n1 ((x,vx)::env) ey

end.

Figure 4 Operational Semantics of unpack terms.

Γ ` x : T x

x : µ(z : T z) ∈ Γ
(TvarPack)

x : µ(z : T z) ∈ Γ
Γ ` x : T x

(TvarUnpack)

As well as a subtyping rule for recursive types:

Γ, x : T1 ` T x1 <: T x2
Γ ` µ(x : T1) <: µ(x : T2)

(Srec)

In this paper, we settle for a slightly weaker model, with an explicitly scoped unpack
construct and the following typing rule (Tunpack) instead of (TvarUnpack) above:

Γ ` e1 : µ(z : T z) Γ, x :T x ` e2 : U
Γ ` unpack e1 as x in e2 : U

(Tunpack)

The unpack term is newly introduced. Its operational semantics is that of a standard
let construct, implemented in the definitional interpreter as shown in Figure 4. We will
come back to discuss difficulties in the proof with rule (TvarUnpack) in Section 4.4.

F-Bounded Quantification

Can we still do anything useful with recursive self types if the creation of proper recursive
type values is prohibited? Even in this setting, recursive self types enable a certain degree of
F-bounded quantification [16], as the following example shows.

Using Scala syntax, and assuming that we extend our calculus with support for records
with multiple named members as in DOT, we can define a type of points with cartesian
coordinates:
type Point = { val x: Int; val y: Int }

We further define a type of comparable points:
type CmpPoint = { val x: Int; val y: Int; def cmp(other: Point): Boolean }

Values of type CmpPoint are straightforward to create, and the comparison operation
only needs to look at x and y, which are already present in type Point. Assuming any
standard interpretation of record subtyping, CmpPoint is a subtype of Point. Hence, due
to contravariance, CmpPoint is a subtype of { def cmp(o: CmpPoint): Boolean }. In
other words, CmpPoint values are comparable to each other, but the comparison can only

ECOOP 2017



27:16 Towards Strong Normalization for Dependent Object Types (DOT)

treat them as Points—in particular, cmp cannot call cmp on another CmpPoint, which
could potentially lead to cycles.

With recursive self types, we can abstract over types that are comparable to themselves:
type SelfComparable = { m =>

type BoxedType <: { def cmp(other: m.BoxedType): Boolean }
}

This type is legal to define using rule (Ttyp), since there is no recursive reference to
SelfComparable, but we could not create a type value that holds a direct equivalent of
BoxedType. However, we can create a type value that holds CmpPoint, and assign it type
SelfComparable via up cast:
val p = { type BoxedType = CmpPoint }
val m = p: SelfComparable // up-cast

The definition of BoxedType in SelfComparable looks dangerously close to the diverging
case shown above, and it will in fact lead to a form of self application, when a given CmpPoint
is compared to itself. The crucial difference is that BoxedType is lower-bounded by type ⊥,
as opposed to being a type alias in the case above. It cannot be a precise type, because we
explicitly want to widen the argument type of cmp from Point to CmpPoint. Due to this
imprecise lower bound, we cannot assing type m.BoxedType to any value “from the outside”.

Given this abstraction it is straightforward to define functions that operate on self-
comparable data types in a generic way.

4.3 Extended Proof Method
For both intersection types and recursive self types, the required invariants rely in crucial
ways on transporting properties from the creation site of type objects to their use sites – in
particular the fact that only type aliases 〈H,Type T 〉 can be created (with type (Type T..T )),
and that these cannot be recursive.

This was also a key insight in the soundness proof for DOT, but it is not directly reflected
in the termination proof from Section 3, which is based on tracking the GoodBounds property
as part of an environment predicate.

Our revised proof method is based on the idea that we can pair each 〈H,Type T 〉 value
with the semantic interpretation of the type member JT K. So JT K in general is no longer a
set of values, but a set of (v, J.K) pairs. On the first glance, this looks tricky because value
sets become recursive:

J.K = {(v, J.K)}
However we can employ a fairly straightforward indexing scheme to make this definition

well-founded:
J.K0 = {v}
J.Kn+1 = {(v, J.Kn)}

We can now define value sets as the intersection of all finite approximations:

JT K =
⋂
n

JT Kn

As it turns out, we no longer need the previuos L/U bound selectors, and the (Type T1..T2)
case can ensure that the actual type member of an object is inbetween the given bounds.
This also enables support for intersection types.

The value type relation in this model is defined as follows, where D is a value set
J.K and Dn the approximation at a particular index. We write (v,D) ∈ JT Kρ to mean
∀n. (v,Dn) ∈ JT Kn+1

ρ . The environment ρ maps names to non-indexed value sets.



F. Wang and T. Rompf 27:17

I Definition 20 (Value Type Relation with ∧ and µ).

JT K0
ρ = {v}

J>Kn+1
ρ = {v,Dn}

J⊥Kn+1
ρ = {}

JType T1..T2Kn+1
ρ = {〈H,Type T 〉 , Dn | JT1Knρ ⊆ Dn ⊆ JT2Knρ}

Jx.TypeKn+1
ρ = ρ(x)n+1

J(x : T1)→ T x2 Kn+1
ρ = {〈H,λx.t〉 , Dn | ∀vx, Dx. (vx, Dx) ∈ JT1Kρ ⇒

〈H(x 7→ vx), t〉 ∈ EJT x2 Kρ(x 7→Dx)}

Jµ(x : T x)Kn+1
ρ = {v,Dn | (v,Dn) ∈ JT xKn+1

ρ(x 7→D)}

JT1 ∧ T2Kn+1
ρ = JT1Kn+1

ρ ∩ JT2Kn+1
ρ

EJT Kρ = {〈H, t〉 | ∃k, v,D. eval k H t = Done Val v ∧ (v,D) ∈ JT Kρ}

Compared to Section 3, the proof structure in this model remains largely identical, with
some simplifications. For example, we no longer need a “good bounds” lemma, and it also
becomes more tractable to integrate the function inversion lemmas into the main proof
(explicit functional inversion lemmas are no longer needed). We list the following definitions
and lemmas/theorems to highlight the main differences to Section 3. The individual proofs
are largely analogous.

I Definition 21 (Consistent Environments Rec). A type environment Γ, a value environment
H, and a value typing context ρ are consistent, written, Γ � H ∼ ρ, iff they contain exactly
the same bindings and the following proposition holds:

Γ(x) = T

(H(x), ρ(x)) ∈ JT Kρ

I Lemma 22 (Extending Consistent Environments Rec).

Γ � H ∼ ρ (v,D) ∈ JT Kρ(x 7→D)

(Γ, x : T ) � (H,x : v) ∼ (ρ, x : D)

I Lemma 23 (Semantic Widening Rec).

Γ � H ∼ ρ Γ ` T1 <: T2

JT1Kρ ⊆ JT2Kρ

I Lemma 24 (Inversion of Variable Typing Rec).

Γ � H ∼ ρ Γ ` x : T
(H(x), ρ(x)) ∈ JT Kρ

I Theorem 25 (Strong Normalization Rec). Any well-typed term evaluates to a well-typed
value:

Γ ` t : T Γ � H ∼ ρ
〈H, t〉 ∈ EJT Kρ

ECOOP 2017



27:18 Towards Strong Normalization for Dependent Object Types (DOT)

4.4 Limitations on Unpacking Recursive Types
As already mentioned in Section 4.2, our current proof relies on unpacking recursive self
types in explicitly scoped contexts, via rule (Tunpack). The full DOT formalism [47, 9],
however, includes an unpacking rule that is symmetric to the (TvarPack) rule:

x : µ(z : T z) ∈ Γ
Γ ` x : T x

(TvarUnpack)

Note that since the subtyping rules for type selections (Ssel1),(Ssel2) are defined in
terms of variable type assignment Γ ` x : (Type L..U), these may pack and (especially!)
unpack recursive types as well.

Extending our strong normalization proof to include rule (TvarUnpack) has proven
difficult, for the following reason. The given definition of Jµ(x : T x)K contains an implicit
existential on the right hand side, which we can make explicit as follows:

Jµ(x : T x)Kn+1
ρ = {v, d | ∃D. d = Dn ∧ (v,D) ∈ JT xKρ(x 7→D)}

In the (TvarUnpack) case of the main theorem, we have

∀n. (H(x), ρ(x)n) ∈ Jµ(x : T x)Kn+1
ρ

and we need to show
∀n. (H(x), ρ(x)n) ∈ JT xKn+1

ρ .

Equivalently, with H(x) = v and ρ(x) = E we have

∀n. ∃D. En = Dn ∧ ∀k. (v,Dk) ∈ JT yKk+1
ρ(y 7→D)

and we need to show
∀n. (v,En) ∈ JT yKn+1

ρ(y 7→E).

This is problematic, as we may have a different D for each n. Taking a more global view, we
know that this can never actually be the case, as recursive types are only ever assigned by
rule (TvarPack), which uses the same D = ρ(x) for each n. However, the given definition
of J.K is unable to carry forward this piece of evidence, and it seems very hard to impose
a corresponding constraint within the current indexed definition of J.Kn+1 = {(v, J.Kn)}.
Monotonicity properties such as those often used in step-indexed logical relations [4, 3] are
not sufficient. Since we do not have the number of execution steps available as an input, the
function case J(x : T1)→ T x2 K requires access to JT1K at higher indexes than its own, and
therefore precludes establishing any useful upper bound on n.

We leave support for (TvarUnpack) in our mechanized proof as future work, along with
more diverse models of recursive types, which would further increase expresssiveness, while
remaining strongly normalizing. An obvious candidate among those would be, for example,
an extension with strictly positive recursive type values, similar to the model that underlies
inductive definitions in Coq [30].

5 Related Work

Semantic Models

There is a vast body of work on semantics and proof techniques, including Plotkin’s struc-
tural operational semantics [45], Kahn’s Natural Semantics [35], and Reynold’s Definitional
Interpreters [46].



F. Wang and T. Rompf 27:19

The use of step counters in natural semantics to distinguish between divergence and
errors goes back to at least Gunter and Rémy’s partial proof semantics [32] and has recently
been advocated in the context of compiler verification [43].

Strong Normalization

The standard proof method for strong normalization is based on logical relations and goes
back to Girard and Tait [31, 54]. Strong normalization proofs for F<: and related calculi we
presented by McAllester et al. [39] and by Ghelli [28]. Step-indexed logical relations extend
the general proof method to turing complete languages. While they cannot, of course, be used
to derive termination results in this case, this method can be used to show type soundness
and other properties in the presence of recursive types, mutable state, and other relevant
language features [12, 3, 5]. Terminating calculi that include recursion facilities have been
studied for example by Stump et al. [53]. Their work on termination casts provides a type
and effect system for termination. A possibly diverging term t can be cast to terminating
type, if there is evidence for Terminates t, which is a primitive type form. Casinghino et al.
[17] combine proofs and programs in a dependently typed language, where the logical subset
is proven to be strongly normalizing via plain Girard-Tait logical relations, and step-indexed
logical relations are used in the computational fragment to enable full recursion.

Subtyping and Dependent Types

Subtyping has been combined with logically consistent (and thus strongly normalizing)
dependent type systems, albeit without polymorphism [13], motivated by applications in the
context of logical frameworks. Pure subtype systems [34] unify not only types and terms,
but also type assignment and subtyping. Being still fairly recent work, the metatheory of
such pure subtype systems does not appear to be fully developed yet. In the context of
intersection types, it is well known that the typable terms in simply-typed λ-calculus with
intersection types are exactly the strongly normalizing λ-terms. A rather elegant proof is
due to Ghilezan [29].

Recursive Self Types

System S by Fu and Stump [26] also considers a form of self-types and strong normalization.
The motivation is to establish lambda encodings as a practical foundation for datatypes,
i.e., enable type theories without primitive datatypes such as those in Coq and Agda. In
particular, the self-type construct in System S is used to support dependent elimination with
lambda encodings, including induction principles. Strong normalization was established by
erasure to a version of System Fω with positive recursive types.

Comparing System S with self types in DOT, it appears that rules (selfGen) and
(selfInst) in System S are analogous to (TvarPack) and (TvarUnpack) in DOT. Our
(Tunpack) rule introduces an additional unpack term construct, which appears less elegent.
The key difference with System S seems to be that their rules deal with arbitrary terms,
while the rules in DOT only deal with variables. Thus, the self-types in System S appear to
be more general, but on the other hand System S has no notion of subtyping.

CDLE (the Calculus of Dependent Lambda Eliminations) [52] is a continuation of this
idea and goal, and added lifting types to the calculus in order to support large eliminations.
The key proven results for CDLE are type soundness and logical consistency, i.e., that no
terms can inhabit contradictory types (false). The CDLE calculus has been implemented

ECOOP 2017



27:20 Towards Strong Normalization for Dependent Object Types (DOT)

as a system called Cedille. Cedille is implemented in Agda, however with Agda’s positivity
checker turned off to allow for higher-order encodings.

Scala Foundations

Much work has been done on grounding Scala’s type system in theory. Early efforts included
νObj [42], Featherweight Scala [19] and Scalina [40].

None of them lead to mechanized metatheoretical results, especially soundness. DOT [8]
was proposed as a simpler and more foundational core calculus, focusing on path-dependent
types but disregarding classes, mixin linearization and similar questions. The original DOT
formulation [8] had actual preservation issues.

The µDOT calculus [10] is the first calculus in the line with a mechanized soundness
result.

Soundness for full DOT has been established more recently [47, 7], and recent work [9]
has connected DOT with well-studied calculi such as F<: through D<: and related systems.
The various DOT results are described in full detail in Amin’s PhD thesis [6].

ML Module Systems

1ML [48] unifies the ML module and core languages through an elaboration to System Fω
based on earlier such work [49]. Compared to DOT and D<:, the formalism treats recursive
modules in a less general way and it only models fully abstract vs fully concrete types, not
bounded abstract types.

In good ML tradition, 1ML supports Hindler-Milner style type inference, with only
small restrictions. Path-dependent types in ML modules go back at least to SML [37], with
foundational work on translucent signatures by Harper and Lillibridge [33] and Leroy [36].
MixML [22] drops the stratification requirement and enables modules as first-class values.

Related Languages

Other calculi related to DOT’s path-dependent types include the family polymorphism of
Ernst [23], Virtual Classes [25, 24, 41, 27], and ownership type systems like Tribe [18, 15].

Like System D<:, pure type systems [14] unify term and type abstraction. Extensions of
System F<: related to DOT include intersection types and bounded polymorphism [44] and
higher-order subtyping [51, 1].

6 Conclusions

Following the recent type soundness proof for DOT, the present paper establishes stronger
metatheoretic properties. The main result is a fully mechanized proof of strong normalization
for D<:, a variant of DOT that excludes recursive functions and recursive types. We further
showed that certain variants of DOT’s recursive self types can be integrated successfully
while keeping the calculus strongly normalizing. This result is surprising, as traditional
recursive types are known to make a language Turing-complete.

Acknowledgements. The authors thank Nada Amin, Martin Odersky, Sandro Stucki, and
the anonymous ECOOP reviewers.



F. Wang and T. Rompf 27:21

References
1 Andreas Abel. Polarised subtyping for sized types. Mathematical Structures in Computer

Science, 18:797–822, 10 2008.
2 Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional corre-

spondence between evaluators and abstract machines. In PPDP, 2003.
3 Amal J. Ahmed. Semantics of types for mutable state. PhD thesis, Princeton University,

2004.
4 Amal J. Ahmed. Step-indexed syntactic logical relations for recursive and quantified types.

In ESOP, 2006.
5 Amal J. Ahmed. Step-indexed syntactic logical relations for recursive and quantified types.

In ESOP, 2006.
6 Nada Amin. Dependent Object Types. PhD thesis, EPFL, August 2016.
7 Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. The

essence of dependent object types. In A List of Successes That Can Change the World,
volume 9600 of Lecture Notes in Computer Science, pages 249–272. Springer, 2016.

8 Nada Amin, Adriaan Moors, and Martin Odersky. Dependent object types. In FOOL,
2012.

9 Nada Amin and Tiark Rompf. Type soundness proofs with definitional interpreters. In
POPL, 2017.

10 Nada Amin, Tiark Rompf, and Martin Odersky. Foundations of path-dependent types. In
OOPSLA, 2014.

11 Nada Amin and Ross Tate. Java and scala’s type systems are unsound: the existential
crisis of null pointers. In OOPSLA, pages 838–848. ACM, 2016.

12 Andrew W. Appel and David A. McAllester. An indexed model of recursive types for
foundational proof-carrying code. ACM Trans. Program. Lang. Syst., 23(5):657–683, 2001.

13 David Aspinall and Adriana Compagnoni. Subtyping dependent types. Theoretical Com-
puter Science, 266(1):273–309, 2001.

14 H. P. Barendregt. Handbook of logic in computer science. In S. Abramsky, Dov M. Gabbay,
and S. E. Maibaum, editors, Handbook of Logic in Computer Science, chapter Lambda
Calculi with Types. Oxford University Press, 1992.

15 Nicholas R. Cameron, James Noble, and Tobias Wrigstad. Tribal ownership. In OOPSLA,
2010.

16 Peter S. Canning, William R. Cook, Walter L. Hill, Walter G. Olthoff, and John C.
Mitchell. F-bounded polymorphism for object-oriented programming. In FPCA, pages
273–280. ACM, 1989.

17 Chris Casinghino, Vilhelm Sjöberg, and Stephanie Weirich. Combining proofs and programs
in a dependently typed language. In POPL, pages 33–46. ACM, 2014.

18 Dave Clarke, Sophia Drossopoulou, James Noble, and Tobias Wrigstad. Tribe: a simple
virtual class calculus. In AOSD, 2007.

19 Vincent Cremet, François Garillot, Sergueï Lenglet, and Martin Odersky. A core calculus
for Scala type checking. In MFCS, 2006.

20 Olivier Danvy and Jacob Johannsen. Inter-deriving semantic artifacts for object-oriented
programming. J. Comput. Syst. Sci., 76(5):302–323, 2010.

21 Olivier Danvy, Kevin Millikin, Johan Munk, and Ian Zerny. On inter-deriving small-step
and big-step semantics: A case study for storeless call-by-need evaluation. Theor. Comput.
Sci., 435:21–42, 2012.

22 Derek Dreyer and Andreas Rossberg. Mixin’ up the ML module system. In ICFP, 2008.
23 Erik Ernst. Family polymorphism. In ECOOP, 2001.
24 Erik Ernst. Higher-order hierarchies. In ECOOP, 2003.

ECOOP 2017



27:22 Towards Strong Normalization for Dependent Object Types (DOT)

25 Erik Ernst, Klaus Ostermann, and William R. Cook. A virtual class calculus. In POPL,
2006.

26 Peng Fu and Aaron Stump. Self types for dependently typed lambda encodings. In RTA-
TLCA, volume 8560 of Lecture Notes in Computer Science, pages 224–239. Springer, 2014.

27 Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. Dependent classes. In OOPSLA,
2007.

28 Giorgio Ghelli. Termination of system f-bounded: A complete proof. Inf. Comput.,
139(1):39–56, 1997.

29 Silvia Ghilezan. Strong normalization and typability with intersection types. Notre Dame
Journal of Formal Logic, 37(1):44–52, 1996.

30 Eduardo Giménez. Structural recursive definitions in type theory. In ICALP, volume 1443
of Lecture Notes in Computer Science, pages 397–408. Springer, 1998.

31 Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de l’arithmétique
d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

32 C. A. Gunter and D. Rémy. A proof-theoretic assesment of runtime type errors. Technical
Report 11261-921230-43TM, AT&T Bell Laboratories, 1993.

33 Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules
with sharing. In POPL, 1994.

34 DeLesley S. Hutchins. Pure subtype systems. In POPL, 2010.
35 Gilles Kahn. Natural semantics. In STACS, 1987.
36 Xavier Leroy. Manifest types, modules and separate compilation. In POPL, 1994.
37 David Macqueen. Using dependent types to express modular structure. In POPL, 1986.
38 Dmitry Petrashko Martin Odersky, Guillaume Martres. Implementing higher-kinded types

in dotty. In Scala, 2016.
39 David A. McAllester, J. Kucan, and D. F. Otth. A proof of strong normalization of F2, Fω

and beyond. Inf. Comput., 121(2):193–200, 1995.
40 Adriaan Moors, Frank Piessens, and Martin Odersky. Safe type-level abstraction in Scala.

In FOOL, 2008.
41 Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers. Scalable extensibility via

nested inheritance. In OOPSLA, 2004.
42 Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias Zenger. A nominal theory

of objects with dependent types. In ECOOP, 2003.
43 Scott Owens, Magnus O. Myreen, Ramana Kumar, and Yong Kiam Tan. Functional big-

step semantics. In ESOP, 2016.
44 Benjamin C. Pierce. Programming with Intersection Types and Bounded Polymorphism.

PhD thesis, Carnegie Mellon University, December 1991.
45 Gordon D. Plotkin. A structural approach to operational semantics. J. Log. Algebr. Pro-

gram., 60-61:17–139, 2004.
46 John C. Reynolds. Definitional interpreters for higher-order programming languages.

Higher-Order and Symbolic Computation, 11(4):363–397, 1998.
47 Tiark Rompf and Nada Amin. Type soundness for dependent object types (DOT). In

OOPSLA, pages 624–641. ACM, 2016.
48 Andreas Rossberg. 1ML - core and modules united (F-ing first-class modules). In ICFP,

2015.
49 Andreas Rossberg, Claudio V. Russo, and Derek Dreyer. F-ing modules. J. Funct. Program.,

24(5):529–607, 2014.
50 Jeremy Siek. Type safety in three easy lemmas. http://siek.blogspot.com/2013/05/

type-safety-in-three-easy-lemmas.html, 2013.
51 Martin Steffen. Polarized higher-order subtyping. PhD thesis, University of Erlangen-

Nuremberg, 1997.

http://siek.blogspot.com/2013/05/type-safety-in-three-easy-lemmas.html
http://siek.blogspot.com/2013/05/type-safety-in-three-easy-lemmas.html


F. Wang and T. Rompf 27:23

52 Aaron Stump. The calculus of dependent lambda eliminations. Technical report, The
University of Iowa (under submission to JFP), 2016. http://homepage.cs.uiowa.edu/
~astump/papers/cedille-draft.pdf.

53 Aaron Stump, Vilhelm Sjöberg, and Stephanie Weirich. Termination casts: A flexible
approach to termination with general recursion. In PAR, volume 43 of EPTCS, pages
76–93, 2010.

54 William W. Tait. Intensional interpretations of functionals of finite type I. J. Symb. Log.,
32(2):198–212, 1967.

A Mechanization in Coq

We outline the correspondence between the formalism on paper and its implementation in
Coq (https://github.com/tiarkrompf/minidot/tree/master/ecoop17).

The Coq package contains the following source files:
dsubsup_total.v – Strong normalization proof forD<:, closely matches the presentation
in Section 3
dsubsup_total_rec.v – Strong normalization proof for D<: with recursive self types
and intersection, Section 4

A.1 Model

A.1.1 Syntax (Figure 2)

ty S, T, U ::= Type
TTop > top type
TBot ⊥ bottom type
TMem S U Type : S..U type member
TAll S U (x : S) : Ux (dependent) function type
TSel X x.Type type selection
TBind T {z ⇒ T z} recursive self type
TAnd T T T ∧ T intersection type

tm t, u ::= Term
tvar x x variable reference
ttyp T Type T type value
tabs T t λx : T.t function abstraction
tapp t t t t function invocation

For representing variabe names in relation to an environment, we use a reverse de Bruijin
convention, so that the name is invariant under environment extension. An environment is
a list of right-hand sides (types, values, ...). The older the binding, the more to the right,
the smaller its number. The name is uniquely determined by the position in the list as the
length of the tail (see indexr function in the artifact).

In addition, for types, we use a locally-nameless de Bruijin convention for variables under
dependent types so that it’s easy to substitute binders without variable capture. A variable
x bound in T x by a dependent function type (x : S)→ T x (or type abstraction for D<:) is
represented by (TVarB i) where i is the de Brujin level, i.e., the number of other binders in
scope in between a bound variable occurrence and its binder.

ECOOP 2017

http://homepage.cs.uiowa.edu/~astump/papers/cedille-draft.pdf
http://homepage.cs.uiowa.edu/~astump/papers/cedille-draft.pdf
https://github.com/tiarkrompf/minidot/tree/master/ecoop17


27:24 Towards Strong Normalization for Dependent Object Types (DOT)

A.1.2 Type System Judgements
stp Γ S U Γ ` S <: U Subtyping
has_type Γ t T Γ ` t : T Typing
val_type H v T H ` v : T Runtime Value Typing

As we mention in Section 3, we omit routine well-formedness checks from the rules on paper
for readability. In Coq, these correspond to closed conditions, which ensure that all the
variables in a type are well-bound for the given environment and binding structure. The
relation closed k |j| |H| T ensures that T is well-bound in a context H, abstract environment
J and under at most ≤ k binders.

A.2 Strong Normalization Proofs for Plain D<: (Section 3)
A.2.1 Figures and Definitions

(Figure 2, System D<:) — file dsubsup_total.v (tm, ty, stp)
(Definition 5, Indexed Value Sets) — file dsubsup_total.v (bound, sel)
(Definition 6, Polarity of Bound Selectors) — file dsubsup_total.v (pos)
(Definition 7, Indexed Value Set Inclusion) — file dsubsup_total.v (vtsub)
(Definition 8, Good bounds) — file dsubsup_total.v (good_bounds)
(Definition 9, Value Type Relation) — file dsubsup_total.v (val_type)
(Definition 12, Consistent Environments) — file dsubsup_total.v (R_env)

A.2.2 Lemmas
(Lemma 10, Weakening/Strengthening) corresponds to
Lemma valtp_extend(H) and Lemma valtp_shrink(M,H).
(Lemma 11, Substitution) corresponds to Lemma vtp_subst(1,2,3).
(Lemma 13, Extending Consistent Environments) corresponds to Lemma wf_env_extend(0).
(Lemma 14, Good Bounds) corresponds to Lemma valtp_bounds.
(Lemma 15, Semantic Widening) corresponds to Lemma valtp_widen.
(Lemma 16, Inversion of Variable Typing) corresponds to Lemma invert_var.
(Lemma 17, Non-Dependent Function Inversion) corresponds to Lemma invert_abs.
(Lemma 18, Dependent Function Inversion) corresponds to Lemma invert_dabs.

A.2.3 Theorems
(Theorem 19, Strong Normalization for D<:) corresponds to Theorem full_total_safety.

A.3 Intersection and Recursive Types (Section 4)
The core lemmas and definitions are analogous to the ones in Section 3 as shown above. The
definition of value sets as the intersection of all finite approximations

JT K =
⋂
n

JT Kn

translates to Coq as follows, extending our definition of value sets as characteristic func-
tions (vl -> Prop) to accommodate the indexing scheme. We use universal quantification
(∀n) to represent unbounded intersection:



F. Wang and T. Rompf 27:25

Fixpoint vset n :=
match n with

| 0 => vl -> Prop
| S n => vl -> vset n -> Prop

end.
Definition vseta := forall n, vset n.

Note that val_type n in the Coq file corresponds to J.Kn+1 in the text. Lemma
valtp_to_vseta adjusts the index back.

ECOOP 2017





Mixed Messages: Measuring Conformance and
Non-Interference in TypeScript∗

Jack Williams1, J. Garrett Morris2, Philip Wadler3, and
Jakub Zalewski4

1 University of Edinburgh, Edinburgh, Scotland
jack.williams@ed.ac.uk,

2 University of Edinburgh, Edinburgh, Scotland
Garrett.Morris@ed.ac.uk

3 University of Edinburgh, Edinburgh, Scotland
wadler@inf.ed.ac.uk

4 University of Edinburgh, Edinburgh, Scotland
jakub.zalewski@ed.ac.uk

Abstract
TypeScript participates in the recent trend among programming languages to support gradual
typing. The DefinitelyTyped Repository for TypeScript supplies type definitions for over 2000
popular JavaScript libraries. However, there is no guarantee that implementations conform to
their corresponding declarations.

We present a practical evaluation of gradual typing for TypeScript. We have developed a tool
for use with TypeScript, based on the polymorphic blame calculus, for monitoring JavaScript
libraries and TypeScript clients against the TypeScript definition. We apply our tool, TypeScript
TPD, to those libraries in the DefinitelyTyped Repository which had adequate test code to use.
Of the 122 libraries we checked, 62 had cases where either the library or its tests failed to conform
to the declaration.

Gradual typing should satisfy non-interference. Monitoring a program should never change
its behaviour, except to raise a type error should a value not conform to its declared type.
However, our experience also suggests serious technical concerns with the use of the JavaScript
proxy mechanism for enforcing contracts. Of the 122 libraries we checked, 22 had cases where
the library or its tests violated non-interference.

1998 ACM Subject Classification D.2.5 [Software Engineering]: Testing and Debugging

Keywords and phrases Gradual Typing, TypeScript, JavaScript, Proxies

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.28

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.3.2.8

1 Introduction

We have good news and we have bad news. The good news: gradual typing can be used to
enforce conformance between type definitions and implementations of JavaScript libraries

∗ This work was supported by Microsoft Research through its PhD Scholarship Programme, and by
EPSRC grants EP/K034413/1 and EP/L01503X/1.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Jack Williams, J. Garrett Morris, Philip Wadler, and Jakub Zalewski;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 28; pp. 28:1–28:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.28
http://dx.doi.org/10.4230/DARTS.3.2.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


28:2 Mixed Messages: Measuring Conformance and Non-Interference in TypeScript

used with TypeScript clients. The bad news: technical concerns with the use of JavaScript
proxies to enforce contracts are a real problem in practice.

Optional typing integrates static and dynamic typing with the aim of providing the best
of both worlds, and can be found in languages including C#, Clojure, Dart, Python, and
TypeScript. TypeScript [16] extends JavaScript with optional type annotations, with an
aim to improving documentation and tooling. For example, auto-completion is made more
precise by providing suggestions compatible with the inferred type. TypeScript is unsound
by design: type inference provides a plausible candidate for the type of code, but falls short
of a guarantee that values returned by code will conform to the inferred type. TypeScript
instead favours convenience and ease of interoperation with JavaScript [4].

JavaScript’s popularity depends upon (and leads to) the existence of a large number of
libraries. TypeScript allows developers to import JavaScript libraries into TypeScript clients,
using a definition file to specify the types at which the client may invoke library members.
The definition file is separate from the library in order to permit legacy JavaScript libraries
to be imported without change. The DefinitelyTyped repository [5] is the primary hub for
aggregating definition files, with over 2000 definitions.

JavaScript libraries and TypeScript clients should conform to the definition file. For
instance, when calling a library function the client should supply an argument of the correct
type, and the library should return a result of the correct type. Some static type checking
(not necessarily sound) is done for a client’s conformance to the definition, and no checking
is carried out on the library itself. Since many of the contributors of definition files are
not authors of the corresponding JavaScript library, mistakes can easily creep in. Further,
maintenance of the definition file may not keep in lock step with maintenance of the library.
As a consequence, developers may be provided with misleading auto-complete suggestions,
and, more insidiously, be led to introduce hard-to-detect bugs.

Gradual typing [24, 32] is a method for integrating dynamic and static types whilst
guaranteeing soundness, by inserting run-time checks at the boundaries between typed and
untyped code. The theory of gradual typing has been extended to support references [24],
objects [23], refinement types [39], polymorphism [1], intersections and unions [13].

We have developed a tool, ‘TypeScript: The Prime Directive’, or TPD for short, which
applies gradual typing to TypeScript. (In previous versions of the paper the tool was named
TypeScript: The Next Generation.) TPD dynamically monitors libraries and clients to en-
sure they conform to the corresponding definition. We tested our system on every library in
the DefinitelyTyped repository that runs under Node.js and was accompanied by a test suite
that passed all its tests (without using TPD). At the time this work began, the repository
contained 500 libraries, of which 122 satisfied our criteria. For each such library, we applied
TPD and classified failures to conform to the definition. TPD revealed failures in 62 of the
122 libraries, totalling 179 distinct errors.

The intention of TPD is to provide gradual typing for a JavaScript library and its cli-
ent without having to modify existing code. Each definition generates wrapper code that
enforces a contract between library and client by monitoring whenever a field is read or
written or a method is invoked. The wrapper code checks that values passed by the client
and returned from the library conform to the correct type, and assigns blame appropriately
to either the client or library when the contract is violated. To this end, TPD uses opaque
proxies to implement type wrappers.

Gradual typing should satisfy non-interference. Monitoring a program should never
change its behaviour, except to raise a type error should a value not conform to its declared
type. A similar principle exists in the Star Trek universe known as the Prime Directive. Mon-



J. Williams, J. G. Morris, P. Wadler, and J. Zalewski 28:3

itoring a planet should never interfere with the development of said planet. Unfortunately,
the current design of proxies for JavaScript makes it impossible to ensure non-interference
in all cases, a bit like adherence to the Prime Directive in the television shows. Van Cutsem
and Miller [33, 34] propose a proxy mechanism for JavaScript, which has been adopted in
the most recent JavaScript standard. Keil and Thiemann [12] show that using proxies may
cause interference in theory, but don’t address the question of how likely one is to encounter
the issue in practice.

Work by Keil et al. [11] evaluates interference caused by the use of opaque proxies for
contract checking. They study the effect of proxies on individual equality tests during the
execution of annotated benchmarks. An object and its proxy do not have the same object
identity. It may be that in the original code an object is compared with itself, while in
monitored code an object is compared with a wrapped version of itself, or two differently
wrapped version of the same object are compared. Hence, a comparison that previously
returned true might return false in monitored code—a violation of non-interference.

Keil et al. [11] only consider interference due to proxies changing identity. We identify
a new source of interference caused by the use of dynamic sealing to enforce parametric
polymorphic contracts. Sealed data may react differently to certain operations, notably
typeof, leading to violations of non-interference. Our evaluation considers all types of
interference caused by proxies. TPD caused interference in 22 of the 122 libraries tested, of
which 12 were due to proxy equality, five were due to sealing, 4 were due to reflection, and
2 were due to issues in the proxy implementation.

Gradual typing provides a mechanism for ensuring that library and client conform to the
type definition. Our application and evaluation of gradual typing for TypeScript provides
mixed messages. Our experiments, along with others [7], show that definition files are
prone to error. Proxies should be an ideal technique for implementing gradual typing; a
proxy allows wrapper code to be attached without having to modify the source. Our results
show that using opaque proxies to implement gradual typing in JavaScript is not a viable
method. For gradual typing to succeed in JavaScript, programmers must be provided with an
alternative to opaque proxies. Some alternatives [11] have been presented that ameliorate
the problem of proxy identity, but do not consider the problem of dynamic sealing. We
consider the challenges associated with implementing dynamic seals and whether a suitable
solution exists.

The main contributions of this paper are:
We present the core concepts behind the implementation of TypeScript TPD, including
the use of proxies to implement polymorphic wrappers and seals. We discuss the issues
that arise when implementing dynamic seals using proxies. (Section 2).
We give a series of examples from the DefinitelyTyped repository that illustrate how
library or client files may fail to conform to the given definition file, and show how TPD
helps to detect such failures. (Section 3).
We present examples of proxies causing interference in monitored JavaScript libraries
drawn from our testing of the DefinitelyTyped repository. Examples of both interfer-
ence caused by identity changes and interference caused by dynamic seals are shown.
(Section 4).
We give the results of our measurements on 122 libraries in the DefinitelyTyped repos-
itory, recording when the tool detected a library that did not conform to its definition.
We analyse the different causes for failure of non-interference, and count the number of
cases of each kind of failure. (Section 5).

Section 6 discusses alternatives and proposed solutions in the context of our results, Section 7
presents related work, and Section 8 concludes.

ECOOP 2017



28:4 Mixed Messages: Measuring Conformance and Non-Interference in TypeScript

2 Concepts of TPD: Functions, Polymorphism, and Proxies

This section outlines the design of TPD, including two central concepts, function wrapping
and dynamic sealing. We describe how they are implemented using proxies, and also describe
various problems associated with this use of opaque proxies.

2.1 Wrapping
TypeScript TPD takes a JavaScript library and wraps each library export according to its
type as specified in the corresponding TypeScript definition file. All libraries export a single
object that provides their API. A definition file may explicitly declare that object using the
export = notation. Below is an example definition file using the explicit notation.

1 // example1 .d.ts
2 declare function foo(x: number ): number
3 export = foo;

The object exported by the library is the function foo, which accepts an argument of type
number, and returns a result of type number. TPD will wrap the function foo in a contract
for the corresponding type (x: number) => number.

Another way to write a definition file is to declare the individual members of the exported
object. Below is an example definition that declares the exported object’s members.

1 // example2 .d.ts
2 export var y: string ;
3 export function bar(z: boolean ): boolean ;

Property y and function bar are properties of the single object exported by the library.
TPD will wrap the library in a contract for the combined type {y: string; bar: (z:
boolean) => boolean}.

The implementation of contracts in TPD builds on existing work on gradual typing and
in particular the blame calculus [39]. In the blame calculus run-time type coercions, or casts,
are used to integrate dynamically typed and statically typed regions of code. The work by
Findler and Felleisen [8] and Wadler and Findler [39] guides our implementation of function
wrappers, and the work by Ahmed et al. [2] guides our implementation of polymorphic
contracts.

2.2 Functions
We begin by discussing the implementation of wrappers for primitive values. Wrappers for
base types such as number and boolean can verify that their target conforms to the type
by immediately inspecting the value. For example, a wrapper for the type number can be
implemented as follows:

1 function wrapNumber (value ,label) {
2 if( typeof value != " number ") {
3 blame(label);
4 }
5 return value;
6 }

The function tests that the value supplied has the correct run-time type. If the value is
not of type number then a call to function blame is issued with the appropriate label. The



J. Williams, J. G. Morris, P. Wadler, and J. Zalewski 28:5

function blame does not immediately halt the program, as it would in the blame calculus.
This is because we wanted to catch all blame errors in a single execution rather that stop
at the first. A call to blame will log an error message and proceed with the execution.

Ensuring conformance to a function type cannot be done by inspecting the value that
is being wrapped. For functions, a particular context may supply a incorrect argument to
the function, or the function may only return an incorrect result for a particular argument.
Similar problems arise in passing any non-primitive type, such as objects. Our approach to
function wrappers follows that of Findler and Felleisen [8] and Wadler and Findler [39]. A
function wrapper must adhere to the value it supervises and wrap each function application.
When applied, a function wrapper will wrap each argument, apply the function, and then
wrap the result. We refer the reader to Wadler [38] for a summary of the blame calculus
and higher-order blame attribution.

TPD implements function wrappers using the Proxy API [33], where each function wrap-
per corresponds to a single proxy. A proxy constructor takes a target object that is replaced
by the proxy, and a handler object that contains trap functions to attach to the proxy. Traps
intercept a variety of operations including property access, property update, application, and
construction. If a trap is not present in the supplied handler then the default behaviour is
assumed. Some operations have invariants that must be preserved by the handler passed to
the proxy, otherwise a run-time error is thrown1.

A function wrapper can be implemented using a proxy with an apply trap that performs
the wrapping. A simplified implementation is defined as follows:

1 function wrapFunction (fun ,label ,type) {
2 if( typeof fun != " function ") {
3 blame(label);
4 return fun;
5 }
6 var handler = {
7 apply: function (target , thisArg , argumentsList ) {
8 var wrappedArguments = wrap( argumentsList , negate (label),

type. domain );
9 var result = target .apply(thisArg , wrappedArguments );

10 return wrap(result , label , type.range);
11 }
12 }
13 return new Proxy(fun , handler );
14 }

The arguments to the apply trap are the target object, the this argument for the call, and
the list of arguments for the call. The body of the trap wraps the argument list according
the domain of type, negating the blame label for each argument. The target object is then
applied to the wrapped arguments. The handler then wraps the function result using the
range of the function type before returning. We distinguish errors in the arguments to a
function from errors in the function itself; following Wadler and Findler [39] we call the
former negative blame, and the latter positive blame. This is why the blame label on line 8
is negated.

1 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy/
handler/getPrototypeOf#Invariants

ECOOP 2017

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy/handler/getPrototypeOf#Invariants
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy/handler/getPrototypeOf#Invariants


28:6 Mixed Messages: Measuring Conformance and Non-Interference in TypeScript

2.3 Polymorphism and Sealing
As well as functions TPD also provides support for polymorphic, or generic, types. Generic
types are monitored via sealing, which enforces parametricity. Parametricity [20, 37] enforces
data abstraction: a parametric function acts identically on its arguments irrespective of
their types. TPD builds on existing work by Ahmed et al. [2] to ensure parametricity. For
instance, if the definition file includes

1 declare function sort <X>
2 (list: List <X>, comp: (x: X, y: X) => boolean ): List <X>

then for all types X, sort accepts a list with elements of type X and a comparator function
and returns a list of X, where the comparator function accepts a pair of elements of type
X and returns a boolean. Parametricity ensures that if we change the representation of
X, say from dates in one format to dates in another format, then sorting a list in the first
representation gives the same answer as sorting in the second representation—so long as the
comparator applied to two elements in the first representation gives the same answer as for
two corresponding elements in the second representation. It is surprising that a wrapper
can ensure this property without examining the code of sort! TPD does so by using the
types to guide sealing and unsealing of values of variable type. In this case, elements of
the argument list are sealed when passed into sort, unsealed before being passed to the
comparator, and unsealed when returning the final list. Sealing the input list ensures the
desired parametricity property because it guarantees that only the comparison function may
operate on the elements. Any other operation on the elements will raise blame because the
operation will not appropriately unseal the elements.

Some functions do not satisfy parametricity.

1 function weird(x) {
2 if ( typeof x === " number ") return x+1;
3 else return x
4 }

It is fine to declare that weird accepts a value of any type and returns a value of any type.

1 declare function weird(x: any): any // ok

However, it is not correct to declare a generic type that says function weird for all types X
accepts a value of type X and returns a value of type X.

2 declare function weird <X>(x: X): X // not ok

Even though it always returns a value of the same type passed to it, function weird violates
parametricity as it does not treat all types the same. We are not able to give weird the
type as shown on line 2. Indeed, parametricity guarantees that the only total function with
the generic type declared for weird is the identity function; and the only partial functions
with that type are those that always raise an exception.

Type variables play an important role in correctly implementing sealing and they para-
meterise both the seal and unseal operations. To illustrate their significance consider the
following example.

1 declare function badSwap <X,Y>(p: {x: X, y: Y}): {x: Y, y: X};

Parametricity tells us that the only total function that satisfies the type attached to the
function badSwap is the swap function. The function takes an object with fields x and y,



J. Williams, J. G. Morris, P. Wadler, and J. Zalewski 28:7

and returns a new object with the same properties but the contents swapped. Suppose
badSwap is incorrectly implemented as follows.

1 function badSwap (p) {
2 return {x: p.x, y: p.y};
3 }
4 var z = badSwap ({x: true , y: 3});

When badSwap is wrapped by TPD, accessing property x or y on argument p will return
a sealed value. When accessing property x or y on result z, TPD will unseal the contents.
Without type variables there is no way to identify which seal corresponds to the argument’s
x field (of type X), or y field (of type Y). Although both fields in z contain seals, they have
not been swapped as the type requires! To implement polymorphic wrappers in TPD both
the seal and unseal operations take a key, a type variable. Every seal is associated with the
type variable it was sealed under, and unsealing takes a type variable that must match the
seal’s type variable, raising blame otherwise. In the example, accessing property x on result
z will unseal the contents using type variable Y, but the value stored is sealed under type
variable X, resulting in blame.

Seals are implemented in TPD using proxies that raise blame on all traps. Every seal
is recorded in a WeakMap2 alongside the type variable under which the object was initially
sealed. Wrapping an object in a proxy will return type "object" but wrapping a function
in a proxy directly will return type "function". To ensure type tests behave uniformly on
all seals, all values are wrapped in an additional object prior to sealing. A seal will always
return type "object" when queried using typeof; in the weird example, sealing x causes
the function to behave as the identity. Primitives must be wrapped because they cannot be
the direct target of a proxy.

We present an outline implementation of sealing and unsealing.

1 var SEALS = new WeakMap (); // Global Seal Store
2 function seal(x, tyVar , label) {
3 var wrappedVal = { contents : x}; // Mask x’s type
4 var handler {
5 get: function (target , property , receiver ) {
6 blame( negate (label));
7 return x[ property ];
8 },
9 set: function (target , property , value , receiver ) {

10 blame( negate (label));
11 return x[ property ] = value;
12 },
13 · · · // rest of traps omitted for brevity
14 }
15 var seal = new Proxy(wrappedVal , handler );
16 SEALS.set(seal ,{v:x, tyVar: tyVar };
17 return seal;
18 }
19 function unseal (x, tyVar , label) {
20 if(SEALS.has(x)) {
21 var contents = SEALS.get(x);
22 if( contents .tyVar !== tyVar) {

2 https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/WeakMap

ECOOP 2017

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/WeakMap


28:8 Mixed Messages: Measuring Conformance and Non-Interference in TypeScript

23 blame(label); // Sealed under different tyVar
24 }
25 return contents .v;
26 } else {
27 blame(label); // Not a sealed value
28 return x;
29 }
30 }

The seal function takes a value x to be sealed, the type variable associated with the seal,
and the blame label associated with the operation. Sealing first wraps the target x in an
additional object to mask its underlying type. A handler is created that raises blame on
all traps, we omit most cases for brevity (marked by · · · ). The action of each trap is to
first raise blame on the label. After raising blame, the trap forwards the operation to the
original value x. The handler is used to create a new seal proxy which is then added to the
seal store. Every seal in the store is associated with the value it seals and type variable the
value was sealed under.

The unseal function takes a value x to be unsealed, the type variable associated with
the unseal, and the blame label associated with the operation. Unsealing a value x first
determines if x is a seal; if the value is not a seal then blame is allocated to label and the
value is immediately returned. If the value supplied to unseal is a seal then the corres-
ponding sealed value and type variable are examined. If the type variable attached to the
seal matches the type variable supplied to the function, then the unsealed value is returned.
Otherwise, blame is first raised for trying to unseal a value sealed under a different type
variable, then the unsealed value is returned.

Polymorphic wrappers in TPD introduce interference by altering a value’s type when
sealing.

1 function interfere (x) {
2 return ( typeof x === " number ") ? 1 : 0;
3 }

Applying interfere to 42 will return 1. Wrapping interfere at type <X>(x: X) =>
number and applying the function to 42 will return 0 because the sealed input now has
type “object”. To satisfy non-interference, applying a type test to a sealed object should
cause blame. However, attaining such behaviour is impossible with wrapper code alone; one
would need to rewrite the JavaScript interpreter to change the semantics of typeof, so that
it raised an error if it attempted to find the type of a sealed value.

3 Failure to Conform

TypeScript definition files are often provided by contributors other than the authors of the
libraries they describe, and definition and library may fail to conform. TypeScript might be
said to fall foul of the adage “Do as I say, not as I do” when what the definition file says
and what the library does fail to conform.

In this section we consider two examples taken from the wild. The lack of conformance
between definition and library leads to problems, all of which were uncovered through mon-
itoring with TPD. In each case we state whether the blame was positive (originating in the
library) or negative (originating in the client). In case of failure, it may be that either the
definition, the implementation, or the client diverges from what was intended. In all of the
cases we examined, divergence arose from an error in the definition.



J. Williams, J. G. Morris, P. Wadler, and J. Zalewski 28:9

1 export class Valve {
2 · · ·
3 check(obj: any , options : ICheckOptions , callback : (err: any ,

cleaned : any) => void): void;
4 check(obj: any , callback : (err: any , cleaned : any) => void):

void;
5 }

Figure 1 swiz - Definition.

Each example was found by instrumenting a library with TPD and observing output from
TPD indicating a type error. All code fragments below are taken from the DefinitelyTyped
repository and the JavaScript library in question. Some blank lines have been deleted, and
elisions are indicated by ellipses “· · · ”.

3.1 Higher-order Positive Blame
Here is an example of positive blame, where the library fails to conform to the definition.

I Example 1 (swiz). The swiz library is a framework for object serialisation and validation.
The library was written by Rackspace [18], the accompanying definition was written by
Goddard [9], and the client was written by Rackspace [18].

Definition. Figure 1 shows the definition for class Valve; we draw focus to the overloaded
function check. The first overload accepts three arguments, one of type any, one of type
ICheckOptions, and one of function type that accepts two arguments of type any and
returns nothing. The second overload only accepts two arguments, the first and third of the
prior overload. Both overloads return void.

Library. Figure 2 shows the implementation for the function check. The function declares
three arguments: _obj, options, and callback. We draw the reader’s attention to the
uses of callback within the definition. On lines 4, 10, and 17 the function is applied to
one argument, on lines 25 and 29 the function is applied to two arguments. The three
applications of the callback with a single argument are inconsistent with the definition file
that states the callback takes two arguments.

Client. Figure 3 shows client code from a tutorial provided by the library authors. In the
example there are two applications of the check function, the first passes goodServer, and
the second passes badServer. As to be expected, the authors understand their library and
the callback in the second application of check does not utilise its second argument. This
is because a bad server was passed.

The callback may use the second parameter in such a way that when its value is
undefined, erroneous behaviour occurs. Such an example is reading or writing a property
of an undefined object. TPD detects the mismatch and allocates positive blame, indicating
that the source of the mismatch was the in library rather than the client. This particular
case is higher-order positive blame and occurs when a wrapped function receives an argu-
ment, itself a function, and uses that function argument incorrectly. In this example, it does
not provide sufficient arguments to the callback function.

ECOOP 2017



28:10 Mixed Messages: Measuring Conformance and Non-Interference in TypeScript

1 Valve. prototype .check = function (_obj , options , callback ) {
2 · · ·
3 if (! this. schema ) {
4 callback (’no schema specified ’);
5 return ;
6 }
7 if ( options . strict ) {
8 for (key in obj) {
9 if (obj. hasOwnProperty (key) && !this. schema . hasOwnProperty (

key)) {
10 callback ({’key ’: key , ’message ’: ’This key is not allowed ’

});
11 return ;
12 }
13 }
14 }
15 checkSchema (obj , this.schema , [], false , this.baton , function (

err , cleaned ) {
16 if (err) {
17 callback (err);
18 return ;
19 }
20 if ( finalValidator ) {
21 finalValidator (cleaned , function (err , finalCleaned ) {
22 if (err instanceof Error) {
23 throw new Error(’err argument must be a swiz error

object ’)
24 }
25 callback (err , finalCleaned );
26 });
27 }
28 else {
29 callback (err , cleaned );
30 }
31 });
32 };

Figure 2 swiz - Library.



J. Williams, J. G. Morris, P. Wadler, and J. Zalewski 28:11

1 var validity = swiz. defToValve (defs), v = new Valve( validity .
Server );

2 // Valid payload
3 var goodServer = {
4 · · ·
5 ’ipaddress ’ : ’42.24.42.24 ’
6 };
7 v.check(goodServer , function (err , cleaned ) {
8 console .log(’Success :’);
9 console .log( cleaned );

10 });
11 // Invalid payload
12 var badServer = {
13 · · ·
14 ’ipaddress ’ : ’127.0 ’
15 };
16 v.check(badServer , function (err , cleaned ) {
17 console .log(’Error - invalid ip:’);
18 console .log(err);
19 });

Figure 3 swiz - Client.

1 declare module " asciify " {
2 function asciify (text: string , callback : AsciifyCallback ): void;
3 function asciify (text: string , options : string , callback :

AsciifyCallback ): void;
4 function asciify (text: string , options : AsciifyOptions , callback

: AsciifyCallback ): void;
5 · · ·
6 }

Figure 4 asciify - Definition.

3.2 Negative Blame
Here is an example of negative blame, where the client fails to conform to the definition.

I Example 2 (asciify). The package asciify is a library and command-line tool for
generating ASCII art. The library was written by Evans and Shaw [6], the accompanying
definition was written by Norbauer [17], and the client was written by Evans and Shaw [6].

Definition. Figure 4 shows an excerpt from the definition file. We focus on the function
asciify, that has three overloads. The first overload accepts two arguments, a string to be
transformed and a callback. The second overload accepts three arguments, the additional
argument is options of type string. The third overload also accepts three arguments, but
options is of type AsciifyOptions.

Library. Figure 5 shows part of the implementation for the function asciify. The text
argument is coerced to a string by appending the empty string, exploiting JavaScript’s
implicit type coercions. If opts is of function type the first overload is assumed, callback
is then updated to have the value of opts.

ECOOP 2017



28:12 Mixed Messages: Measuring Conformance and Non-Interference in TypeScript

1 module . exports = function (text , opts , callback ) {
2 // Ensure text is a string
3 text = text + ’’;
4 if ( typeof opts === ’function ’) {
5 callback = opts;
6 opts = null;
7 }
8 · · ·
9 }

Figure 5 asciify - Library.

1 asciify (138 , ’pyramid ’, function (err , res){
2 · · ·
3 }
4 );
5 asciify (false , ’pyramid ’, function (err , res){
6 · · ·
7 }
8 );

Figure 6 asciify - Client.

Client. Figure 6 shows an extract from the unit tests accompanying the library. The first
test case applies asciify to the number 138, the second applies to the boolean false.
TPD interprets overloaded functions as having an intersection type; Keil and Thiemann [13]
determined that a context (client) satisfies an intersection type if it respects at least one con-
stituent of the intersection. The first overload of the function is violated as three arguments
are supplied, rather than two. The second and third overloads are violated as the text
argument does not have type string. TPD detects the mismatch and allocates negative
blame, indicating that the source of the mismatch was the in client rather than the library.
This mismatch demonstrates that the type of the function is too conservative: the function
argument text may be of any type, rather than string.

4 Examples of Interference

The alteration of object identity through the use of proxies has been considered in existing
work [11, 12]. We are not aware of any work that extensively presents interference caused
by using proxies as dynamic seals. In this section we present a range of examples taken from
the wild that demonstrate how proxies cause violations of non-interference, reinforcing the
claim that proxy interference is a real problem. Each example was found by instrumenting
a library with TPD and observing a unit test fail, when previously it did not. All code
fragments below are taken from the DefinitelyTyped repository and the JavaScript library
in question. Some blank lines have been deleted, and elisions are indicated by ellipses “· · · ”.

4.1 Proxy Identity
Here is an example of interference caused by a proxy changing object identity, where a
wrapped and unwrapped version of the same object are compared.



J. Williams, J. G. Morris, P. Wadler, and J. Zalewski 28:13

1 declare module ’gulp -if’ {
2 import fs = require (’fs’);
3 import vinyl = require (’vinyl ’);
4
5 interface GulpIf {
6 · · ·
7 ( condition : boolean , stream : NodeJS . ReadWriteStream ,

elseStream ?: NodeJS . ReadWriteStream ): NodeJS .
ReadWriteStream ;

8 · · ·
9 }

10 var gulpIf : GulpIf ;
11 export = gulpIf ;
12 }

Figure 7 gulp-if - Definition.

1 ’use strict ’;
2
3 var match = require (’gulp -match ’);
4 var ternaryStream = require (’ternary - stream ’);
5 var through2 = require (’through2 ’);
6
7 module . exports = function (condition , trueChild , falseChild ,

minimatchOptions ) {
8 if (! trueChild ) {
9 throw new Error(’gulp -if: child action is required ’);

10 }
11
12 if ( typeof condition === ’boolean ’) {
13 // no need to evaluate the condition for each file
14 // other benefit is it never loads the other stream
15 return condition ? trueChild : ( falseChild || through2 .obj ());
16 }
17
18 function classifier (file) {
19 return !! match(file , condition , minimatchOptions );
20 }
21 return ternaryStream (classifier , trueChild , falseChild );
22 };

Figure 8 gulp-if - Library.

ECOOP 2017



28:14 Mixed Messages: Measuring Conformance and Non-Interference in TypeScript

1 · · ·
2 describe (’when given a boolean ,’, function () {
3 var tempFile = ’./ temp.txt ’;
4 var tempFileContent = ’A test generated this file and it is safe

to delete ’;
5
6 it(’should call the function when passed truthy ’, function (done)

{
7 // Arrange
8 var condition = true;
9 var called = 0;

10 var fakeFile = {
11 path: tempFile ,
12 contents : new Buffer ( tempFileContent )
13 };
14
15 var s = gulpif (condition , through .obj( function (file , enc , cb)

{
16 // Test that file got passed through
17 (file === fakeFile ). should .equal(true);
18
19 called ++;
20 this.push(file);
21 cb();
22 }));
23
24 // Assert
25 s.once(’finish ’, function (){
26
27 // Test that command executed
28 called . should .equal (1);
29 done ();
30 });
31 // Act
32 s.write( fakeFile );
33 s.end ();
34 });
35 · · ·
36 }

Figure 9 gulp-if - Client.



J. Williams, J. G. Morris, P. Wadler, and J. Zalewski 28:15

I Example 3 (gulp-if). The gulp-if library is a plugin for the streaming build system
gulp. The definition was written by Skeen and Asana [27], the library and client were
written by Richardson [22].

Definition. Figure 7 shows an extract from the definition file for gulp-if. The type of the
exported library is defined by interface GulpIf; an interface describes an object. Objects
in TypeScript may have properties, methods, and be directly callable like functions. If an
interface only contains function signatures, we can interpret the interface as a function type.
Line 8 elides overloaded call signatures that do not feature in our example code. Function sig-
natures are of the form (args): type, where args is a possibly empty list of name: type
pairs. Placing ? after a field or argument name indicates that it is optional. This function
signature accepts a condition of type boolean, a stream of type NodeJS.ReadWriteStream,
and optionally another stream of the same type, and the function returns a stream of the
same type.

Library. Figure 8 shows the entire implementation of the library. The library exports a
single function that returns a new stream based on the truth value of condition passed to
the function. When the condition is satisfied the stream passed as trueChild is returned. If
the condition is not satisfied then if an else stream was passed as falseChild, that stream
is returned, otherwise a default stream is returned instead.

Client. Figure 9 shows an extract from the unit tests accompanying the gulp-if library.
In the example we present the test that exhibited interference caused by proxies changing
object identity. The describe function indicates a set of tests and the it function indicates
a particular test case. On line 15 the library (bound to gulpif) is used to create a new
stream s. This particular test case checks that the stream passed as the trueChild argument
correctly receives the data when the condition is true. The true stream is created using the
function through.obj that creates a basic stream using a transform function supplied as an
argument; the transformer function is defined on lines 16–21. A transform function receives
as argument the piped data, in this case a file, an encoding string, and a callback to execute
when done. For this test, the transform function asserts that the correct file was supplied to
the stream using an equality test, and then increments a counter to indicate it was evaluated.
Lines 25–30 add a finalising handler to stream s that asserts the true stream was piped to
by checking that counter has be incremented once. Line 32 initiates the test by writing the
file fakeFile to the stream.

Before and After. Before wrapping the expected outcome is that the assertions on lines 17
and 28 should hold. The correct file should be piped through the stream (line 17), and the
final callback should be fired (line 28).

After wrapping with TPD the first assertion (line 17) fails. To understand why, first
consider the type of the stream returned from the call to the library. From the definition
file the library function returns a NodeJS.ReadWriteStream, this has a method with the
following signature 3.

1 write( buffer : Buffer , cb?: Function ): boolean ;

3 https://github.com/DefinitelyTyped/DefinitelyTyped/blob/master/types/node/index.d.ts

ECOOP 2017

https://github.com/DefinitelyTyped/DefinitelyTyped/blob/master/types/node/index.d.ts


28:16 Mixed Messages: Measuring Conformance and Non-Interference in TypeScript

1 declare module "clone" {
2 · · ·
3 function clone <T>( val: T, circular ?: boolean , depth ?: number ): T
4
5 module clone {
6 function clonePrototype <T>( obj: T): T;
7 }
8 export = clone
9 }

Figure 10 clone - Definition.

Recall that TPD wraps both the argument and result to every function call. When the
instrumented library returns a result of type NodeJS.ReadWriteStream, the function result
will be wrapped by TPD according to the type NodeJS.ReadWriteStream. Consequently,
when the test case initiates the test using the write method, TPD will wrap the function
argument using the type Buffer. As a Buffer is an object type a proxy is used in place,
thus giving the argument a new identity. This proxy is passed to the transform function
as parameter file, and when compared for identity with fakeFile, returns false when
previously the comparison returned true.

To address this particular example the equality test must be explicitly replaced with a
proxy-aware version. Another alternative is to use transparent proxies [11] that retain the
identity of the object they wrap. Membranes [12, 34] will not work because only one object
in the comparison is wrapped in a proxy; membranes only work when comparing objects on
the same side of the membrane.

4.2 Dynamic Sealing
Here is an example of interference caused by a proxy used as dynamic seal, where the type
of a sealed object is changed.

I Example 4 (clone). The clone library provides deep cloning for objects, arrays, and
other JavaScript data types. The definition was written by Simpson [26], the library and
client were written by Vorbach [36].

Definition. Figure 10 shows the definition file for clone. The library exports the generic
clone function that accepts a value to be cloned of type T, an optional optimisation para-
meter circular of type boolean, and an optional depth parameter of type number, and
returns a value of type T. Readers familiar with generics and parametricity will realise that
a clone function cannot possibly have this type as it violates parametricity! However, we
would hope that monitoring the function would alert the programmer to this error by raising
blame, rather than violating non-interference.

Library. Figure 11 shows an extract from the implementation of the clone library. We
have removed a significant amount of code to focus on the sections relevant to our example.
All redactions are indicated by “· · · ”. The function clone defines an inner recursive function
_clone that does most of the heavy-lifting. We draw the reader’s attention to the initial
segment to the _clone function, ranging from line 18 to line 29. When the function is passed
a null pointer it returns null. When the (optional) cloning depth has been reached the



J. Williams, J. G. Morris, P. Wadler, and J. Zalewski 28:17

1 · · ·
2 function clone(parent , circular , depth , prototype ,

includeNonEnumerable ) {
3 if ( typeof circular === ’object ’) {
4 depth = circular .depth;
5 prototype = circular . prototype ;
6 includeNonEnumerable = circular . includeNonEnumerable ;
7 circular = circular . circular ;
8 }
9 · · ·

10 if ( typeof circular == ’undefined ’)
11 circular = true;
12
13 if ( typeof depth == ’undefined ’)
14 depth = Infinity ;
15
16 // recurse this function so we don ’t reset allParents and

allChildren
17 function _clone (parent , depth) {
18 // cloning null always returns null
19 if ( parent === null)
20 return null;
21
22 if (depth === 0)
23 return parent ;
24
25 var child;
26 var proto;
27 if ( typeof parent != ’object ’) {
28 return parent ;
29 }
30 · · ·
31 }
32 return _clone (parent , depth);
33 }
34 · · ·

Figure 11 clone - Library.

ECOOP 2017



28:18 Mixed Messages: Measuring Conformance and Non-Interference in TypeScript

1 exports ["clone number "] = function (test) {
2 test. expect (5); // how many tests?
3
4 var a = 0;
5 test. strictEqual (clone(a), a);
6 a = 1;
7 test. strictEqual (clone(a), a);
8 a = -1000;
9 test. strictEqual (clone(a), a);

10 a = 3.1415927;
11 test. strictEqual (clone(a), a);
12 a = -3.1415927;
13 test. strictEqual (clone(a), a);
14
15 test.done ();
16 };

Figure 12 clone - Client.

current pointer is returned. If the value to be cloned is not an object, for example a number,
the value is immediately returned. A number is trivially a clone of itself as numbers, and
other primitives, have no notion of identity.

Client. Figure 12 shows an extract from the unit tests accompanying the clone library.
In the example we present the test that exhibited interference caused by dynamic sealing.
Specifically, this example shows a violation of non-interference resulting from a seal changing
the type of the value it wraps. The exports object acts as a map that associates string
test descriptions to test functions. A test function accepts a single argument test that acts
as the testing API, offering functions such as expect, strictEqual, and done. This test
function expects five tests, each cloning a primitive number and asserting that the result is
the same.

Before and After. Before wrapping the expected outcome is that each call to the clone
function should return the argument without change.

After wrapping with TPD every call to the clone function will seal the argument because
the argument has generic type T. Recall that before sealing, every value is wrapped in an
object to mask the value’s type, and to fix the seal’s type to object. When each number
in the test is passed to clone, the number is first wrapped in an object, sealed, and then
passed to the clone function. The type test on line 27, a type test that originally returned
number, will now return object. As the condition is not met the function will fail to return
immediately, instead it will proceed to clone the seal. The function result will be a clone of
the sealed number rather than the number itself.

To address this particular example a proxy must be able to trap the typeof operation
and throw an error when the type of a seal is queried. This is not possible in JavaScript, so
one would have to replace all typeof operations with proxy-aware type tests.



J. Williams, J. G. Morris, P. Wadler, and J. Zalewski 28:19

Table 1 Classification of Failures to Conform.

Blame

Error Kind (+) Library (−) Client

Value Type 47 47
Function Arity 23 43
Void Return Type 14 2
Parametricity 3 0

Distinct Errors 87 92

Distinct Libraries 40 48

5 Evaluation

We used the DefinitelyTyped [5] repository as a corpus of libraries and definitions to evaluate
our gradual typing tool TPD. We believe there are two important conclusions from our
experiments. First, TypeScript definitions are prone to error. Second, interference caused
by proxies is a problem in practice. The artifact containing the libraries, definition files, and
source code is available on the Dagstuhl Research Online Publication Server (DROPS). The
source code for the tool is also available online4.

5.1 Method
We selected the libraries that targeted the Node.js run-time, that could be installed and
executed without manual configuration, and that had a set of unit tests accompanying the
library source code that all passed. Libraries were wrapped automatically using TPD and
their unit tests executed. We recorded failures of the library or client to conform to the
definition, classifying the error. In addition, we recorded violations of non-interference.
As all libraries passed their tests prior to wrapping, we attributed any failing tests after
wrapping as interference. In total we tested 122 libraries, and all libraries are listed in the
appendix. Testing was conducted using a MacBook Pro with a 2.6 GHz i5 and 8GB RAM.

5.2 Failures to Conform
Table 1 shows failures to conform detected by TPD. We distinguish four error kinds and give
the blame polarity of the error. In total there were 179 distinct errors found in 62 libraries.

Value Type Value type errors occur when a value does not have the expected run-time
type tag, such as number or string, tested using the built-in typeof operator.

Function Arity. If the arguments passed to a function are too many, or too few, it is classed
as an arity error. Typically this was due to definition authors not understanding which
arguments should be optional. The majority of errors were the fault of the client, which is
expected given that first-order functions are more prevalent than higher-order functions.

4 https://github.com/jack-williams/tpd

ECOOP 2017

https://github.com/jack-williams/tpd


28:20 Mixed Messages: Measuring Conformance and Non-Interference in TypeScript

Table 2 Classification of Interference.

Cause of Interference

Proxy Identity TI 7
TII 5

Sealing 5
Reflection 4
Proxy Implementation 2

Distinct Libraries 22

Void Return Type. When a function returns a value but its type states it returns void,
we class this as a void return type error. These errors were typically caused by incorrectly
considering a synchronous function as asynchronous.

Parametricity. Parametricity errors were due to functions being incorrectly typed as para-
metric. There are two ways to elicit parametric blame: returning a value that is not a
seal, or tampering with a sealed value. A common example of an incorrectly typed function
would be one that takes an object and, using reflection, creates a new object with the same
property mappings. The use of reflection to access properties amounts to tampering, raising
blame.

5.3 Violations of Non-interference
Table 2 shows the violations of non-interference observed. We distinguish four causes and
give their frequency. After instrumenting the code, 22 libraries violated non-interference.

Proxy Identity. We witnessed 12 libraries that failed tests due to proxies changing the
identity of objects. Our classification adopts a similar dichotomy of identity failure as
Keil et al. [11]. The first (TI) compares a wrapped and unwrapped version of the same
object, of which there were seven. Avoiding interference in these cases requires rewriting
all equality tests to proxy-aware alternatives, or providing transparent proxies that do not
change object identity [11]. The second (TII) compares different proxies of the same object,
our experiments found five cases. This problem may be addressed with identity preserving
membranes, where identical objects passing through the membrane are wrapped using the
same proxy, thus preserving equality inside the membrane [12, 34].

Sealing. There were five libraries that presented interference caused by the use of sealing
to enforce parametricity. We implemented seals using proxies that raised blame on all traps.
The Proxy API only permits objects to be sealed; to seal a primitive value it must be
wrapped in an object, which changes its type. As discussed earlier, we are unable to restore
non-interference because the typeof operator cannot be trapped.

Reflection. We observed tests failing due to reflection in four libraries. TPD adds wrapper
code to a library, so packages that inspect their code as part of their testing process, for
example linting, will observe differences when wrapped. In particular, additional libraries



J. Williams, J. G. Morris, P. Wadler, and J. Zalewski 28:21

required by TPD would appear in the global namespace and be considered unexpected by
tests that inspect the global object’s properties

Proxy Implementation. There were two libraries that exhibited failing tests due to issues
with the underlying proxy implementation. The Proxy API is not mature, and some com-
ponents of the run-time are not proxy-aware. Parts of the underlying run-time perform
dynamic type checking, and if not proxy-aware, will throw an error when supplied a proxy.

5.4 Comparative Techniques
TypeScript TPD is a tool that uses gradual typing to enforce library and client conformance
to a definition. TypeScript TPD is not a tool specifically designed to detect erroneous
definition files. Our method of evaluated gradual typing using DefinitelyTyped allows us to
detect errors in definitions. Other tools such as TSCheck, TSInfer, and TSEvolve [7, 14]
are designed to detect errors in definitions and support the construction of new definitions.
These tools have the advantage of not requiring test code to detect errors, and do not
introduce interference as they use static analysis. We believe there is a place for both
approaches. There are clear benefits to writing and debugging definitions using these static
tools. However, even when library and definition can be guaranteed to conform, an unsound
TypeScript client may deviate from the definition. TPD enables a programmer to enforce
client conformance in this case.

5.5 Performance
We measured the effect of using TPD on test completion time by recording how long it
took to execute the entire test suite. Such a metric does not give a precise account of the
cost of run-time checks because a test suite may include other unrelated stages. Evaluating
the exact cost of wrappers would require understanding of each library test suite as well as
manual instrumentation of the code. Our chosen evaluation method is still relevant because
executing the test suite is a common step in development, significantly slowing this down
would be a considerable hindrance to adoption. Amongst the libraries that did not exhibit
interference, wrapping introduced a 38% increase in testing time on average.

Rastogi et al. [19] developed a modified version of TypeScript, Safe TypeScript, that
inserts run-time checks to enforce safety. They place an emphasis on performance, where
we do not implement any wrapper optimisation. Predictably, there system incurs a smaller
overhead of 15% on the run-time.

5.6 Threats to Validity
We identify five threats to the validity of our result. First, our result may be perceived as
adding nothing new to the existing work by Feldthaus and Møller [7] that shows TypeScript
definitions are prone to error. We believe there are two new components to our results.
Where Feldthaus and Møller test the largest ten libraries, we test a range of sizes. Our
results show that errors in definitions are not exclusive to the largest and most complex
libraries. Where Feldthaus and Møller only analyse the library implementation, we also
monitor clients (test code). Half of the errors we detected were the fault of the client.

Second, our approach of detecting interference is incomplete. It is possible that TPD
violates non-interference but a library still passes all its unit tests. As a consequence, our
results may not account for all occurrences of interference caused by proxies. We claim

ECOOP 2017



28:22 Mixed Messages: Measuring Conformance and Non-Interference in TypeScript

that the frequency of proxy interference observed is intolerable in practice; failing to detect
additional cases does not weaken this claim.

Third, the client code we use to exercise the library is the library’s corresponding unit
test suite. The frequency of interference observed when running unit tests may not be
representative of real library usage. In particular, unit tests may contain a higher number of
equality tests than real code. Even if unit tests do elicit more violations of non-interference
than typical code, we believe that running unit tests are an important component of library
design; altering test behaviour is a significant problem for practitioners.

Fourth, the experiments were only conducted on a small proportion of the Definitely-
Typed repository. We believe our criteria for selecting libraries is not biased towards exhibit-
ing greater interference, but we cannot categorically claim that our sample is representative
of all JavaScript libraries in the repository.

Fifth, unit test coverage may not be high enough to capture all common interactions
with a library. As a result, we may fail to detect errors in conformance, or we may fail to
observe cases of interference that may occur in practice. We believe that the errors and
interference we report is significant; failing to detect additional cases does not diminish this.

6 Design Alternatives and Solutions to Interference

In this section we discuss design alternatives and solutions to the problem of interference.
Keil et al. [11] survey different approaches to proxy implementation and equality. We sup-
plement their summary using our experiences of TPD.

6.1 Rewriting

The systematic replacement of equality operations with proxy-aware versions would remedy
interference associated with identity. All proxies are stored in a WeakMap to which the
new equality operation has access. A custom equality operation allows the choice between
making proxies appear opaque or transparent. The same technique can be applied to the
typeof operation to remove interference caused by dynamic sealing. Replacing equality and
type tests with proxy-aware alternatives allows blame to be raised upon the application of
an operation to a seal; currently equality and type tests cannot be trapped. An approach
that uses rewriting must ensure that it correctly handles dynamically loaded code and use
of eval [11].

6.2 Transparent Proxies

An alternative to using opaque proxies as provided by JavaScript currently would be to use
transparent proxies [11]. A transparent proxy forwards identity checks to the target object
so wrapping an object does not alter its identity. One design aspect of transparent proxies
is the use of realms [11]. The realm of a proxy is the context that constructed the proxy,
represented using a token. Inside a proxy’s realm the proxy has a distinct identity rather
than assuming the identity of the target object. Realms are essential to the implementation
of dynamic seals. Two seals of the same object sealed under different type variables must
be distinguishable, otherwise unsealing cannot be correctly implemented. Unsealing would
take place inside the realm of seal proxies, where each seal has its own identity. Outside
the realm—in client or library code—seals will inherit the identity of their target object, as
desired.



J. Williams, J. G. Morris, P. Wadler, and J. Zalewski 28:23

1 var prim_get = Reflect .get; // Reference to unpatched API
2 var typings = new WeakMap ();
3 function wrapObj (obj ,label ,type) {
4 typings .set(obj ,{ label: label , type: type });
5 return obj;
6 }
7 // Patch Reflect API
8 Reflect .get = function (target ,property , receiver ) {
9 var value = prim_get (target ,property , receiver );

10 if( typings .has( target )) {
11 var label = typings .get( target ).label;
12 var type = typings .get( target ).type;
13 var prop_type = type[ property ] ? type[ property ] : Type.Any;
14 return wrap(value ,label , prop_type );
15 } else {
16 return value;
17 }
18 }

Figure 13 Modified Reflect API.

6.3 Reflection
An alternative to using proxies is to use the Reflect API 5. The Reflect interface is inten-
tionally identical to the Proxy interface, so a comparison is natural.

Wrapping for base types remains unchanged, a type test is performed on the value. When
wrapping an object a typing for the object is created rather than a proxy. A typing associates
the object with its type and label in a WeakMap. The Reflect API is patched to use the typings
to monitor operations performed through the API. When accessing properties on an object
using reflection, the patched operation uses any typings to wrap the corresponding property.
If no typing exists then the operation is handled by the unpatched operation. Figure 13
shows how to patch property access in this style. From the code it can be seen that wrapping
an object returns the same object, therefore preserving object identity. Patching the Reflect
API is an approach that requires native object operations (foo.x) to be rewritten to use
the Reflect API (Reflect.get(foo,”x”)). This approach is semantically different to using
proxies. A proxy based approach associates a type to a particular pointer using a wrapper.
A reflect based approach associates a type to the value on the heap. To illustrate, take the
following example.

1 var x = {a: 3}
2 var y = wrap(x,Type.obj ({a: Type.Bool }));
3 Reflect .get(y,"a"); // Proxy -> Blame | Reflect -> Blame
4 Reflect .get(x,"a"); // Proxy -> No Blame | Reflect -> Blame

A proxy based solution will raise blame when accessing the property on y, but not x. A
reflection based solution will raise blame for both operations. The second operation will
not raise blame when using proxies because the reference x is not wrapped in a proxy and
therefore the look-up performs no type checking. The reflection based solution raises blame

5 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/
Reflect

ECOOP 2017

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Reflect
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Reflect


28:24 Mixed Messages: Measuring Conformance and Non-Interference in TypeScript

because typings are assigned to the object’s underlying identity, rather than creating a new
pointer to a proxy. The reflection based design is closer in nature to the work on monotonic
references by Siek et al. [25], and may therefore benefit from the performance advantages
that calculus provides.

6.4 Dynamic Sealing

Implementing sound and non-interfering wrappers for parametric polymorphism in JavaS-
cript is a challenging problem—with no clear panacea. Trapping the typeof operation
is the immediate remedy to the problems experienced by TPD. The behaviour could be
constrained to only allow a trap to report the same type as the target or throw an error,
which would be sufficient for TPD. Even then, the current language specification does not
include the possibility of throwing an error when using typeof, so permitting this may be
too problematic in practice.

An implementer of sealing is forced to chose between soundness and non-interference
when typeof cannot be trapped. According to parametricity, the function fakeConst with
type <T>(x: T) => number must be the constant number function; the implementation
given below is not the constant number function.

1 function fakeConst <T>(x: T): number {
2 if( typeof x === " number ") { return 1; }
3 else { return 2 };
4 }

A choice must be made: enforce parametricity by masking the argument’s type, necessarily
interfering, or satisfy non-interference by revealing the seal target’s type, violating paramet-
ricity. TPD enforces parametricity so the example will always return 2 because the type of
a seal is always object. If TPD were to enforce non-interference instead, then the violation
of parametricity is not reported as a type error to the programmer because the type test
cannot be trapped. If a proxy could alter behaviour of typeof then blame could be triggered
when typeof is invoked, ensuring both soundness and non-interference.

A programmer may favour unsound monitoring over wrappers that change the semantics
of their program. This is a problem because primitive values cannot be sealed without being
wrapped in an object first, introducing interference. One approach to this problem is to use
virtual values [3]. A virtual value is a value that that supports behavioural modification,
much like a proxy. Applying a primitive operation to a virtual value will invoke a trap,
defined by the programmer. Virtual values would allow the sealing of primitives directly. In
this situation we are not forced to change the type of a seal. Therefore it would be possible
to implement unsound, but non-interfering seals, by allowing a seal to retain the type of the
target it encapsulates.

7 Related Work

Optional and Gradual Typing. Mezzetti et al. [15] investigate unsoundness caused by
optional typing in Dart, and whether the unsoundness in the type system can be justified by
increased practicality to programmers. They conclude that most cases of unsoundness can
be justified. A notable example that they argue is unjustified is bivariant function subtyping.

Takikawa et al. [30] study the performance of gradual typing and give a damning in-
dictment. Should other language implementations see similar performance results then the



J. Williams, J. G. Morris, P. Wadler, and J. Zalewski 28:25

future of gradual typing may be cut short. Their evaluation of gradual typing is conduc-
ted using Typed Racket, a language with arguably the most extensive support for gradual
typing, including transparent proxies [28]. The study they conduct is the first systematic
approach to monitoring the performance of gradual typing.

Vitousek et al. [35] implement and evaluate a gradually typed variant of Python, Retic-
ulated Python. They acknowledge the problem of proxies changing identity and type but
do not provided data recording the scale of the problem. Their implementation uses three
mechanisms for wrapping mutable objects: guarded (proxies), transient, and monotonic.
Transient and monotonic checks do not alter object identity, unlike the guarded semantics.

Guha et al. [10] present the design of parametric polymorphic contracts in Scheme and
JavaScript. Their system requires polymorphic contracts to be instantiated with a type,
where our system implicitly instantiates all contracts with the dynamic type, following
Ahmed et al. [1]. Guha et al. [10] implement seals using standard objects rather than
proxies, and their seals do not raise negative blame when tampered with.

JavaScript and TypeScript. The only existing works on checking conformance between
JavaScript libraries and their TypeScript definition files is that of Feldthaus and Møller [7]
and Kristensen and Møller [14]. Unlike our system, Feldthaus and Møller [7] perform static
analysis rather than dynamic monitoring. They combine heap snap-shot analysis and light-
weight static analysis of function definitions. Both techniques are unsound but carry the
advantage of incurring no run-time cost, and not causing interference. Their tool highlights
a large number of mismatches, corroborating our outcome; TypeScript definition files are
prone to errors and there is a real need for machine verified documentation. Kristensen and
Møller [14] provide the tools TSInfer and TSEvolve, tools that help construct new definitions
and maintain them. Comparing the dynamic method of checking library conformance with
other static techniques is future work.

Work on providing a static type system for JavaScript was conducted by Thiemann [31]
who used singleton types and first class record labels to capture the semantics of the proto-
type based object system of JavaScript.

Swamy et al. [29] developed TS?, a gradually-typed core of JavaScript. Their compiler
inserts checks that use run-time type information (RTTI) to ensure type safety. The type
safety guarantees that their system provides hold even under arbitrary interaction with
JavaScript programs, programs that may dynamically load code. Memory isolation prevents
the mutation of TS? objects by untrusted code. Safe TypeScript [19] is another compiler
for TypeScript that guarantees type safety. Unlike Swamy et al. [29], they focus on scale
and as a result their system is faster but more permissive. Their system employs differential
subtyping to determine the minimum amount of RTTI a value must carry. Safe TS and
our tool TPD differ in some of the errors they detect. For example, Safe TS treats classes
nominally, while TPD does not. TPD allows the (implicit) cast from generic types to any,
via sealing, while Safe TS does not.

Richards et al. [21] developed StrongScript, a variant of TypeScript that offers dynamic,
optional, and concrete types. Dynamic types are not statically checked and may fail at
run-time. Optional types can refer to any value, but operations on optional types are
statically checked. Run-time checks are used to ensure optionally typed values conform to
the interface. Concrete types are statically checked in full, and introduce no run-time checks.
StrongScript satisfies trace preservation, related to non-interference. Adding optional types
to a dynamically typed program, introducing run-time checks, should not break the run-time
behaviour of the program. If the dynamically typed program terminates to a value, then
the same program with optional types should also terminate to that value.

ECOOP 2017



28:26 Mixed Messages: Measuring Conformance and Non-Interference in TypeScript

Proxies and Interference. Trustworthy proxies within JavaScript was explored by Van
Cutsem and Miller [34]. They proposed a proxy API that that retains object invariants
through the use of membranes. Their work addressed the issue of frozen objects crossing
over the membrane. When referencing a property of a frozen object inside the membrane
the result is transitively wrapped in a new proxy. This breaks the frozen invariant whereby
the returned value must be identical to the underlying field. By using a shadow target to
store wrapped frozen properties the value returned successfully passes the invariant check.

Keil et al. [11] gave insight into the design of transparent proxies for JavaScript. Their
work presents solutions to the identity issue caused by proxies, as well as implementing an
extension to the SpiderMonkey engine enabling support for transparent proxies.

8 Conclusion

Gradual typing integrates statically and dynamically typed code. While there are several
theoretical frameworks for gradual typing that ensure desirable properties such as conform-
ance and non-interference, adopting these to existing languages such as JavaScript poses
many difficulties. TPD is an application of gradual typing that wraps JavaScript libraries
according to their TypeScript definition file. We implement wrappers using proxies, a facil-
ity in JavaScript that lets us attach type checking code without having to apply rewriting
to the library. Proxies change the identity of their target and so my cause interference. We
evaluate whether, in practice, this problem is prevalent enough to rule out opaque proxies
as an implementation technique for gradual typing. Our results show that proxies cause in-
terference in an intolerable number of cases, either by changing the identity of their target,
or by changing the type of their target when used as a seal.

There is cause for some optimism. TPD detected a significant number of mismatches
between libraries and their definition files. A solution to error prone definitions files is
needed and gradual typing may be the answer. The nature of TypeScript means that even
if library and definition conform, errors may still come from a client. Our work has shown
the value of monitoring a JavaScript library and client to ensure they correspond to the
TypeScript definition file (conformance), and that by preventing proxies from redefining
equality or typeof the current definition of JavaScript makes it impossible to monitor for
conformance without changing the semantics of the program (non-interference). If we are to
have the benefits of both conformance and non-interference, JavaScript will need to evolve,
something which it has demonstrated it is capable of doing.

Acknowledgements. The authors wish to thank anonymous reviewers of the paper and
artifact.

References
1 Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. Blame for All. In

ACM Symposium on Principles of Programming Languages (POPL), 2011. doi:10.1145/
1925844.1926409.

2 Amal Ahmed, Dustin Jamner, Jeremy G. Siek, and Philip Wadler. Theorems for Free
for Free: Parametricity, With and Without Types. In ACM International Conference on
Functional Programming (ICFP), 2017.

3 Thomas H. Austin, Tim Disney, and Cormac Flanagan. Virtual Values for Language
Extension. In ACM Conference on Object-Oriented Programming: Systems, Languages,
and Applications (OOPSLA), 2011. doi:10.1145/2076021.2048136.

http://dx.doi.org/10.1145/1925844.1926409
http://dx.doi.org/10.1145/1925844.1926409
http://dx.doi.org/10.1145/2076021.2048136


J. Williams, J. G. Morris, P. Wadler, and J. Zalewski 28:27

4 Gavin Bierman, Martín Abadi, and Mads Torgersen. Understanding typescript. In
European Conference on Object-Oriented Programming (ECOOP), 2014. doi:10.1007/
978-3-662-44202-9_11.

5 DefinitelyTyped. DefinitelyTyped repository. https://github.com/DefinitelyTyped/
DefinitelyTyped, May 2017.

6 Oli Evans and Alan Shaw. asciify. https://github.com/olizilla/asciify, May 2017.
7 Asger Feldthaus and Anders Møller. Checking correctness of typescript interfaces for javas-

cript libraries. In ACM Conference on Object-Oriented Programming: Systems, Languages,
and Applications (OOPSLA), 2014. doi:10.1145/2714064.2660215.

8 Robert Bruce Findler and Matthias Felleisen. Contracts for Higher-order Functions. In
ACM International Conference on Functional Programming (ICFP), 2002. doi:10.1145/
583852.581484.

9 Jeff Goddard. swiz.d.ts. https://github.com/borisyankov/DefinitelyTyped/tree/
master/types/swiz/index.d.ts, May 2017.

10 Arjun Guha, Jacob Matthews, Robert Bruce Findler, and Shriram Krishnamurthi.
Relationally-parametric Polymorphic Contracts. In Dynamic Languages Symposium (DLS),
2007. doi:10.1145/1297081.1297089.

11 Matthias Keil, Sankha Narayan Guria, Andreas Schlegel, Manuel Geffken, and Peter
Thiemann. Transparent Object Proxies in JavaScript. In European Conference on Object-
Oriented Programming (ECOOP), 2015. doi:10.4230/LIPIcs.ECOOP.2015.149.

12 Matthias Keil and Peter Thiemann. On the proxy identity crisis. CoRR, 2013.
13 Matthias Keil and Peter Thiemann. Blame assignment for higher-order contracts with

intersection and union. In ACM International Conference on Functional Programming
(ICFP), 2015. doi:10.1145/2858949.2784737.

14 Erik Krogh Kristensen and Anders Møller. Inference and evolution of typescript declara-
tion files. In Proc. 20th International Conference on Fundamental Approaches to Software
Engineering (FASE), 2017. doi:10.1007/978-3-662-54494-5_6.

15 Gianluca Mezzetti, Anders Møller, and Fabio Strocco. Type Unsoundness in Practice: An
Empirical Study of Dart. In Dynamic Languages Symposium (DLS), 2016. doi:10.1145/
2989225.2989227.

16 Microsoft. TypeScript language specification. https://github.com/Microsoft/
TypeScript/blob/master/doc/spec.md, January 2016.

17 Alan Norbauer. asciify.d.ts. https://github.com/DefinitelyTyped/DefinitelyTyped/
blob/master/types/asciify/index.d.ts, May 2016.

18 Rackspace. node-swiz. https://github.com/racker/node-swiz, May 2017.
19 Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagiotis Vekris.

Safe & Efficient Gradual Typing for TypeScript. In ACM Symposium on Principles of
Programming Languages (POPL), 2015. doi:10.1145/2775051.2676971.

20 John Reynolds. Types, abstraction, and parametric polymorphism. In Information Pro-
cessing, 1983.

21 Gregor Richards, Francesco Zappa Nardelli, and Jan Vitek. Concrete Types for TypeScript.
In European Conference on Object-Oriented Programming (ECOOP), 2015. doi:10.4230/
LIPIcs.ECOOP.2015.76.

22 Rob Richardson. gulp-if. https://github.com/robrich/gulp-if, May 2017.
23 Jeremy Siek and Walid Taha. Gradual typing for objects. In European Conference on

Object-Oriented Programming (ECOOP), 2007. doi:10.1007/978-3-540-73589-2_2.
24 Jeremy G. Siek and Walid Taha. Gradual Typing for Functional Languages. In Scheme

and Functional Programming Workshop (Scheme), 2006.

ECOOP 2017

http://dx.doi.org/10.1007/978-3-662-44202-9_11
http://dx.doi.org/10.1007/978-3-662-44202-9_11
https://github.com/DefinitelyTyped/DefinitelyTyped
https://github.com/DefinitelyTyped/DefinitelyTyped
https://github.com/olizilla/asciify
http://dx.doi.org/10.1145/2714064.2660215
http://dx.doi.org/10.1145/583852.581484
http://dx.doi.org/10.1145/583852.581484
https://github.com/borisyankov/DefinitelyTyped/tree/master/types/swiz/index.d.ts
https://github.com/borisyankov/DefinitelyTyped/tree/master/types/swiz/index.d.ts
http://dx.doi.org/10.1145/1297081.1297089
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.149
http://dx.doi.org/10.1145/2858949.2784737
http://dx.doi.org/10.1007/978-3-662-54494-5_6
http://dx.doi.org/10.1145/2989225.2989227
http://dx.doi.org/10.1145/2989225.2989227
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
https://github.com/DefinitelyTyped/DefinitelyTyped/blob/master/types/asciify/index.d.ts
https://github.com/DefinitelyTyped/DefinitelyTyped/blob/master/types/asciify/index.d.ts
https://github.com/racker/node-swiz
http://dx.doi.org/10.1145/2775051.2676971
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.76
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.76
https://github.com/robrich/gulp-if
http://dx.doi.org/10.1007/978-3-540-73589-2_2


28:28 Mixed Messages: Measuring Conformance and Non-Interference in TypeScript

25 Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, Sam Tobin-Hochstadt, and Ronald
Garcia. Monotonic References for Efficient Gradual Typing. In European Symposium on
Programming (ESOP), 2015. doi:10.1007/978-3-662-46669-8_18.

26 Kieran Simpson. clone.d.ts. https://github.com/DefinitelyTyped/DefinitelyTyped/
blob/master/types/clone/index.d.ts, May 2017.

27 Joe Skeen and Asana. gulp-if.d.ts. https://github.com/DefinitelyTyped/
DefinitelyTyped/blob/master/types/gulp-if/index.d.ts, May 2017.

28 T. Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler, and Matthew Flatt.
Chaperones and Impersonators: Run-time Support for Reasonable Interposition. In
ACM Conference on Object-Oriented Programming: Systems, Languages, and Applications
(OOPSLA), 2012. doi:10.1145/2384616.2384685.

29 Nikhil Swamy, Cedric Fournet, Aseem Rastogi, Karthikeyan Bhargavan, Juan Chen, Pierre-
Yves Strub, and Gavin Bierman. Gradual Typing Embedded Securely in JavaScript. In
ACM Symposium on Principles of Programming Languages (POPL), 2014. doi:10.1145/
2578855.2535889.

30 Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias Fel-
leisen. Is Sound Gradual Typing Dead? In ACM Symposium on Principles of Programming
Languages (POPL), 2016. doi:10.1145/2837614.2837630.

31 Peter Thiemann. Towards a Type System for Analyzing JavaScript Programs. In European
Symposium on Programming (ESOP), 2005. doi:10.1007/978-3-540-31987-0_28.

32 Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage Migration: From Scripts
to Programs. In Dynamic Languages Symposium (DLS), 2006. doi:10.1145/1176617.
1176755.

33 Tom Van Cutsem and Mark S. Miller. Proxies: Design Principles for Robust Object-
oriented Intercession APIs. In Dynamic Languages Symposium (DLS), 2010. doi:10.
1145/1899661.1869638.

34 Tom Van Cutsem and Mark S. Miller. Trustworthy proxies: Virtualizing objects with
invariants. In European Conference on Object-Oriented Programming (ECOOP), 2013.
doi:10.1007/978-3-642-39038-8_7.

35 Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. Design and
Evaluation of Gradual Typing for Python. In Dynamic Languages Symposium (DLS),
2014. doi:10.1145/2775052.2661101.

36 Paul Vorbach. node-clone. https://github.com/pvorb/node-clone, May 2017.
37 Philip Wadler. Theorems for free! In ACM Conference on Functional Programming Lan-

guages and Computer Architecture (FPCA), 1989. doi:10.1145/99370.99404.
38 Philip Wadler. A complement to blame. In Summit on Advances in Programming Languages

(SNAPL), 2015. doi:10.4230/LIPIcs.SNAPL.2015.309.
39 Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed. In

European Symposium on Programming (ESOP), 2009. doi:10.1007/978-3-642-00590-9_
1.

http://dx.doi.org/10.1007/978-3-662-46669-8_18
https://github.com/DefinitelyTyped/DefinitelyTyped/blob/master/types/clone/index.d.ts
https://github.com/DefinitelyTyped/DefinitelyTyped/blob/master/types/clone/index.d.ts
https://github.com/DefinitelyTyped/DefinitelyTyped/blob/master/types/gulp-if/index.d.ts
https://github.com/DefinitelyTyped/DefinitelyTyped/blob/master/types/gulp-if/index.d.ts
http://dx.doi.org/10.1145/2384616.2384685
http://dx.doi.org/10.1145/2578855.2535889
http://dx.doi.org/10.1145/2578855.2535889
http://dx.doi.org/10.1145/2837614.2837630
http://dx.doi.org/10.1007/978-3-540-31987-0_28
http://dx.doi.org/10.1145/1176617.1176755
http://dx.doi.org/10.1145/1176617.1176755
http://dx.doi.org/10.1145/1899661.1869638
http://dx.doi.org/10.1145/1899661.1869638
http://dx.doi.org/10.1007/978-3-642-39038-8_7
http://dx.doi.org/10.1145/2775052.2661101
https://github.com/pvorb/node-clone
http://dx.doi.org/10.1145/99370.99404
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.309
http://dx.doi.org/10.1007/978-3-642-00590-9_1
http://dx.doi.org/10.1007/978-3-642-00590-9_1


J. Williams, J. G. Morris, P. Wadler, and J. Zalewski 28:29

A List of Libraries Tested

Library (Testing time percentage increase after wrapping)

ansicolors (9.58) hapi (41.32) parsimmon (25.12)
any-db (28.28) highland (x) promptly (15.67)
asciify (2.81) htmlparser2 (83.95) protobufjs (37.52)
aspnet-identity-pw (11.23 http-string-parser (3.48) radius (20.78)
assert (35.21) inflection (x) readdir-stream (10.78)
assertion-error (6.83) insight (0.44) rimraf (4.37)
async (x) ip (6.70) sanitize-html (5.61)
atpl (7.34) ix.js (12.02) sax (40.39)
bcrypt (15.56) jjv (29.54) semver (19.52)
bl (6.17) json-pointer (71.22) sendgrid (14.96)
buffer-equal (1.83) jsonwebtoken (3.67) sinon (x)
bunyan-logentries (10.05) jwt-simple (40.17) sinon-chai (7.45)
chai (x) lazy.js (x) sjcl (x)
change-case (12.54) leaflet (8.82) socket.io (13.18)
checksum (5.90) less (12.84) source-map (40.67)
clone (x) levelup (4.43) stream-to-array (5.13)
commander (68.03) libxmljs (x) superagent (0.61)
consolidate (14.78) logg (x) supertest (97.48)
convert-source-map (2.14) long (523.51) swiz (28.97)
cookie (87.93) marked (65.51) through (215.68)
cookie.js (67.52) mdns (1.18) timezone-js (31.43)
deep-diff (11.99) mime (46.33) tv4 (27.41)
deep-freeze (x) minimatch (x) twig (24.44)
detect-indent (28.04) minimist (10.38) type-detect (17.47)
diff (66.84) mockery (43.25) underscore.string (x)
dustjs-linkedin (31.80) mongoose-mock (61.83) universal-analytics (32.95)
esprima (58.00) mousetrap (11.06) update-notifier (4.43)
event-loop-lag (50.02) nconf (11.07) uri-templates (57.39)
exit (52.73) nedb (59.69) validator (x)
form-data (1.00) nexpect (9.69) vinyl (4.64)
formidable (x) nightmare (2.26) vinyl-fs (17.74)
fs-extra (12.70) noble (0.88) vinyl-source-stream (1.41)
gruntjs (x) node-fibers (9.99) websocket (1.30)
gulp (x) node-git (1.40) which (6.05)
gulp-autoprefixer (29.38) node-mysql (x) winston (29.82)
gulp-if (x) node-restify (22.13) wrench (7.31)
gulp-istanbul (28.89) node-tar (35.75) ws (x)
gulp-mocha (41.05) node-uuid (682.42) yargs (10.94)
gulp-replace (37.87) nodemailer (25.38) yosay (9.47)
gulp-sass (12.74) nopt (x) zeroclipboard (x)
gulp-typedoc (16.65) oboe.js (x)

ECOOP 2017





EVF: An Extensible and Expressive Visitor
Framework for Programming Language Reuse∗

Weixin Zhang1 and Bruno C. d. S. Oliveira2

1 The University of Hong Kong, Hong Kong, China
wxzhang2@cs.hku.hk

2 The University of Hong Kong, Hong Kong, China
bruno@cs.hku.hk

Abstract
Object Algebras are a design pattern that enables extensibility, modularity, and reuse in main-
stream object-oriented languages such as Java. The theoretical foundations of Object Algebras
are rooted on Church encodings of datatypes, which are in turn closely related to folds in func-
tional programming. Unfortunately, it is well-known that certain programs are difficult to write
and may incur performance penalties when using Church-encodings/folds.

This paper presents EVF: an extensible and expressive Java Visitor framework. The visitors
supported by EVF generalize Object Algebras and enable writing programs using a generally
recursive style rather than folds. The use of such generally recursive style enables users to more
naturally write programs, which would otherwise require contrived workarounds using a fold-like
structure. EVF visitors retain the type-safe extensibility of Object Algebras. The key advance in
EVF is a novel technique to support modular external visitors. Modular external visitors are able
to control traversals with direct access to the data structure being traversed, allowing dependent
operations to be defined modularly without the need of advanced type system features. To make
EVF practical, the framework employs annotations to automatically generate large amounts
of boilerplate code related to visitors and traversals. To illustrate the applicability of EVF
we conduct a case study, which refactors a large number of non-modular interpreters from the
“Types and Programming Languages” (TAPL) book. Using EVF we are able to create a modular
software product line (SPL) of the TAPL interpreters, enabling sharing of large portions of code
and features. The TAPL software product line contains several modular operations, which would
be non-trivial to define with standard Object Algebras.

1998 ACM Subject Classification D.1.5 Object-oriented Programming, D.3.3 Language Con-
structs and Features, D.3.4 Processors

Keywords and phrases Visitor Pattern, Object Algebras, Modularity, Domain-Specific Lan-
guages

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.29

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.3.2.10

1 Introduction

New Programming or Domain-Specific Language (DSL) implementations are needed all the
time. However creating new languages is hard! There are two major factors that contribute to

∗ This work has been sponsored by the Hong Kong Research Grant Council projects number 27200514
and 17258816.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Weixin Zhang and Bruno C. d. S. Oliveira;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 29; pp. 29:1–29:32

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.29
http://dx.doi.org/10.4230/DARTS.3.2.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


29:2 EVF

such difficulty: 1) the amount of implementation effort; and 2) the need for expert knowledge
in language design/implementation. A lot of implementation effort is involved in the creation
and the maintenance of a language. A programming language consists of various components:
syntactic and semantic analyzers, a compiler or interpreter, and tools that are used to support
the development of programs in that language (e.g. IDE’s or debuggers). Furthermore,
the language has to be maintained, bugs have to be fixed, and new features have to be
implemented. In addition to those engineering problems, software engineers lacking proper
training miss the knowledge to do good language design. Because of these two factors, the
costs for creating a new language are usually prohibitive, or it is hard to find engineers with
the right skills for doing programming language implementation.

One way to address those challenges is to reuse language components. Programming
languages share a lot of features. This is the case with Java or C, for example. Both languages
have mechanisms to declare variables, support basic arithmetic operations as primitives,
have loop constructs, or have similar scoping rules for variables. Moreover, nearly all new
languages or DSLs will “copy” many features from existing languages, rather than having a
completely new set of features. Therefore, there is conceptual reuse in programming languages.
Unfortunately, it is hard to materialize the conceptual reuse into software engineering reuse
in existing programming languages.

A simple way to achieve “reuse” is to copy and paste the code for an existing compiler and
modify that. While this may be relatively effective (if the existing compiler is well-written),
it duplicates code. Changes to the original compiler (bug fixes, new features, refactorings,
etc.) will very likely be difficult to apply to the derived compiler. Because of that, the code
of the two compilers often diverges, leading to duplication. So, reuse by copy&paste only
works in the initial phase. At later stages, reuse becomes harder as careful synchronization
of changes in both code bases is needed.

Many researchers have noticed the problems of copy&paste for reuse before. A popular
approach to reuse of language components is offered by some language workbenches [18,
13, 15, 22]. Language workbenches aim at rapid prototyping of languages and related
programming tools. The importance of modularity, reuse and composition of languages
in language workbenches is well-recognized in the community. Erdweg et al. [15] mention
“Reuse and composition of languages, leading to language-oriented programming both at the
object level and metalevel” as one of the three key trends observed in the field of language
workbenches. Indeed many language workbenches use syntactic meta-programming techniques
to create language implementations and tools. One of the earliest uses of meta-programming
techniques was the ASF+SDF approach to language composition [30]. In ASF+SDF it
is possible to construct a library of language definition modules. Various other language
workbenches (e.g. Spoofax [29] or Neverlang [54]) use similar techniques to modularize
language definitions. However, while this simple syntactic modularization approach works, it
lacks the desirable properties of separate compilation and modular type-checking.

An alternative approach to reuse of language components is offered by design patterns [19]
that work on mainstream programming languages. Until recently it was thought that
limitations in mainstream languages prevented or significantly complicated reusing language
components in a modularly type-safe way. Indeed, well-known (minimalistic) challenges such
as the Expression Problem (EP) [59], were created to illustrate such difficulties. However,
recent research [53, 39, 52, 7, 41, 60] has shown that mainstream languages do allow for
relatively practical solutions to the EP.

One such solution is the so-called Object Algebras [41]. Object Algebras provide a
generalization of abstract factories and can solve challenging modularity problems, including



W.Zhang and B. C. d. S. Oliveira 29:3

the EP. Object Algebras fully preserve separate compilation and modular type-checking.
Nevertheless, solving the EP is just a step towards providing reuse of language components.
Reusability in realistic language components requires addressing other modularity challenges,
which the EP does not account for. Although significant progress [20, 27, 43, 50, 62] has
been made towards scaling up Object Algebras to more realistic language components, there
are still obstacles that need to be overcome.

A particular problem with Object Algebras is that they force a programming style
similar to Church encodings [8] or functional programming folds [26]. While this structure
works for many practical operations, certain operations are hard to express and/or incur on
performance penalties. An example is capture-avoiding substitution [47], which poses two
major challenges: 1) it is typically implemented with a top-down algorithm, which may not
require traversing the full term, if shadowing exists; and 2) it depends on another operation
that collects free variables from a term to avoid capture. Object Algebras are naturally
suited for bottom-up algorithms that do a full traversal of the term. Simulating top-down
algorithms with Object Algebras is possible but can be cumbersome and penalizing in terms
of performance. Moreover, dependencies have to either be encoded via tuples with a heavy
encoding [41] or require sophisticated type system features not available in Java [43, 50].

This paper presents EVF: an extensible and expressive Java Visitor framework. EVF
is helpful to modularize semantic components of programming languages that operate on
Abstract Syntax Trees (ASTs). Examples of such semantic components include: interpreters,
compilers, pretty printers, various program analyses, and several optimizations and trans-
formations over ASTs. EVF semantic components are just standard Java programs that are
type-checked and separately compiled by the Java compiler. With EVF, library writers can
develop such semantic language components modularly for various programming language
features. Users can then simply choose the required features for the language and reuse the
semantic components from the libraries, possibly with some new language constructs added
for their specific purpose. In other words, EVF allows users to develop Software-Product
Lines (SPLs) [10] of semantic language components.

The visitors in EVF generalize Object Algebras, and enable writing programs using a
generally recursive style rather than folds. The use of such generally recursive style enables
users to write programs more naturally. The support for extensibility improves on techniques
used by Object Algebras, and on modular visitors [40]. It is known that Object Algebras
are closely related to internal visitors [44]: a simple, but less expressive, variant of visitors
related to Church encodings of datatypes [6]. The key advance in EVF is a novel technique
to support modular external visitors that works in Java-like languages. In contrast to
internal visitors, external visitors [6, 44] are based on Parigot encodings of datatypes [46]: a
more expressive form of encodings that enables direct control of traversals, and modularly
expressing dependencies.

To alleviate programmers from writing large amounts of boilerplate related to ASTs and
AST traversals, EVF employs annotations to automatically generate such code. In essence, a
user needs only to specify an Object Algebra interface, which describes the desired structure.
EVF processes that interface and generates various useful interfaces and classes. Noteworthy
are EVF’s generic queries and transformations, which generalize Shy-style traversals [62]
and remove the limitation of bottom-up only traversals.

Overall, while there is a cost associated to learning the framework, EVF helps in reducing
both the implementation effort and the required knowledge for programming language
implementations through reuse. Essentially, through reuse, the more complex and intricate
parts of several algorithms can be moved to properly encapsulated library code. Thus, we

ECOOP 2017



29:4 EVF

believe the benefits of using EVF outweigh the costs of learning it. Section 3 shows a detailed
example on how reuse can lower complexity in language implementation.

To further illustrate the applicability of EVF we conduct a case study refactoring many
non-modular interpreters from the “Types and Programming Languages” (TAPL) book [47].
Using EVF we are able to create a modular SPL of the TAPL interpreters, enabling sharing
large portions of code and features. Our programming language SPL contains several modular
operations, which would be non-trivial to define with standard Object Algebras.

In summary, the contributions of this paper are:
A new approach to modular external visitors: We present a novel technique to
support modular external visitors that works in Java-like languages. The new technique
allows modular visitor components to be expressed using a generally recursive style.
Simpler modular dependent operations: Previous attempts to modular dependent
operations either require a lot of boilerplate or sophisticated features not available in
Java-like languages. Modular external visitors solve this problem with simple generics.
Generalized generic queries and transformations: EVF overcomes the bottom-
up limitations of generic queries and transformations of Shy, and supports top-down
traversals as well.
Code generation for AST boilerplate code: Using an annotation processor, EVF
generates large amounts of boilerplate code related to ASTs and AST traversals. Users
only need to specify an annotated Object Algebra interface to trigger code generation.
Implementation and TAPL case study: We illustrate the practical applicability of
EVF with a large case study that refactors a non-trivial and non-modular OCaml code
base into modular and reusable Java code. EVF and the case study are available at:
https://github.com/wxzh/EVF

2 Modular External Visitors

This section provides the background and presents the key technical idea: a form of external
visitors which is modular/extensible, offers control over traversals and only requires a simple
form of generics for its implementation.

2.1 Background: Internal/External Visitors and Object Algebras
The origins of Object Algebras go back to the relationship between type-theoretic encodings
of datatypes and the Visitor pattern. The original connection was established by Buchlovsky
and Thielecke [6]. They pointed out that variants of the Visitor pattern correspond to
different types of type-theoretic encodings. So-called internal visitors correspond to (typed)
Church encodings of datatypes [5], whereas external visitors correspond to Parigot encodings
of datatypes [46, 44].

Internal Visitors and Object Algebras. A simple example of internal visitors is shown in
Figure 1. The example models a basic form of arithmetic expressions consisting of only two
constructs: integer literals and addition. The interface Alg<E> models the visitor interface.
The two methods (Lit and Add) model the so-called visit methods. Object Algebras use
exactly the same interface as internal visitors [41]. In the context of Object Algebras, we
would refer to the interface as an Object Algebra interface. The point at which internal
visitors and Object Algebras differ is on how to create ASTs. Internal visitors use an interface
Exp which contains an accept method. Then, for each language construct, there is a class

https://github.com/wxzh/EVF


W.Zhang and B. C. d. S. Oliveira 29:5

interface Alg<E> {
E Lit(int n);
E Add(E e1, E e2);

}
interface Exp {

<E> E accept(Alg<E> v);
}
class Lit implements Exp {

int n;
public <E> E accept(Alg<E> v) {

return v.Lit(n);
}

}
class Add implements Exp {

Exp e1, e2;
public <E> E accept(Alg<E> v) {

return v.Add(e1.accept(v), e2.accept(v))
;

}
}

Figure 1 Code for internal visitors.

interface EVis<E> {
E Lit(int n);
E Add(EExp e1, EExp e2);

}
interface EExp {

<E> E accept(EVis<E> v);
}
class ELit implements EExp {

int n;
public <E> E accept(EVis<E> v) {

return v.Lit(n);
}

}
class EAdd implements EExp {

EExp e1, e2;
public <E> E accept(EVis<E> v) {

return v.Add(e1, e2);
}

}

Figure 2 Code for external visitors.

that implements such interface. Object Algebras do not use such interface. Instead, they
construct expressions directly through instances of the Alg<E> interface.

A concrete example of an operation on arithmetic expressions is evaluation. Evaluation
is defined as a visitor (or Object Algebra), which implements Alg<Integer>:

class Eval implements Alg<Integer> {
public Integer Lit(int n) { return n; }
public Integer Add(Integer e1, Integer e2) { return e1 + e2; }

}

External Visitors. Figure 2 shows the equivalent code for modeling arithmetic expressions
written with external visitors. The interface EVis plays the same role as Alg. However,
differently from Alg, in EVis the Add method takes two expressions as arguments. There is
also similar code for defining the type of expressions, and the two classes that implement
expressions. Because of the different signature for the Add method in EVis, the definition
of the accept method in EAdd is different as well. Instead of calling the accept method
in the two subexpressions (e1 and e2) and passing the result to Add, the new code passes
the subexpressions directly to Add. In other words, external visitors offer control over the
traversal of the term to the visitor implementation. For example, when defining evaluation,
the Add method now calls the accept method and computes the result:

class EEval implements EVis<Integer> {
public Integer Lit(int n) { return n; }
public Integer Add(EExp e1, EExp e2) { return e1.accept(this) + e2.accept(this);

}
}

ECOOP 2017



29:6 EVF

2.2 Internal versus External Visitors
To better compare the advantages and disadvantages of internal and external visitors, lets
consider an extension to expressions with subtraction and conditionals.

Extension using Internal Visitors. With internal visitors (or Object Algebras) it is simple
to create an interface, which extends the original algebra interface for arithmetic expressions:

interface ExtAlg<E> extends Alg<E> {
E Sub(E e1, E e2);
E If(E e1, E e2, E e3);

}

The extension includes two new constructs for the language: subtraction (Sub), and a simple
form of conditional expressions (If). For simplicity, the condition evaluates to a number with
0 representing false, and any other number representing true. With such extended visitor
interface, writing an extended evaluator is, at first sight, quite easy:

class ExtEval extends Eval implements ExtAlg<Integer> {
public Integer Sub(Integer e1, Integer e2) { return e1 - e2; }
public Integer If(Integer e1, Integer e2, Integer e3) {

return !e1.equals(0) ? e2 : e3; // WRONG!!
}

}

Problem 1: Lack of Control in Internal Visitors. The Sub case is trivial. However, the
definition for If expressions is clearly wrong. Moreover, it is not possible to find a correct
definition without changing how the visitor is instantiated. All methods in the visitor receive
the results of evaluation as an argument: they cannot control when to (recursively) evaluate
expressions. This works very well when the computation being expressed traverses the full
term in a purely bottom-up manner. Unfortunately, for conditionals this is a problem, since
only one branch needs to be evaluated. The implementation in ExtEval, however, evaluates
both branches. This not only is problematic for performance reasons, but it is the wrong thing
to do if the language being implemented supports, for example, some form of side-effects.

The lack of control problem is not fundamental, but it significantly complicates pro-
gramming in practice and may introduce performance penalties. Previous work has shown
how to correctly model far more complicated constructs and languages using Object Al-
gebras [20, 27, 43, 50, 62]. However, this is done by changing the way Object Algebras are
instantiated and using more complex techniques. Instead of choosing Integer as the instanti-
ation for the type parameter of Alg, a different type, which suitably delays evaluation, is used.
Several other problems also arise from the lack of control problem. For example, expressing
dependent (non-compositional) operations (i.e. operations which are modularly defined in
terms of other operations) is very inconvenient. To express such kinds of operations tuples
can be used in Java, but this requires the definition of a lot of boilerplate code [41]. Another
approach is to use intersection types [11, 48] with a special merge operator [51] to perform
composition. This requires a type system more powerful than Java. Scala does support
intersection types and it is possible to encode a weak form of a merge operator [43, 50], but
the lack of support for a native merge operator in Scala complicates code and limits the
scalability of the approach.

All in all, the lack of control problem in Object Algebras is a well-known, more than
80-year-old problem. When Church discovered Church encodings in the untyped lambda



W.Zhang and B. C. d. S. Oliveira 29:7

calculus [8], he realized that certain operations were quite difficult to express. The most
famous instance of that is the predecessor function on Church numerals. When Church
tried to define the predecessor function on Church numerals, it first appeared impossible to
define. Eventually, he realized that it is possible to encode the predecessor function using a
pair, which performs computation bottom-up and rebuilds the original term. While such
an algorithm does compute the predecessor function, it is much more complicated than the
traditional predecessor function, and it takes linear time to compute, instead of being a
constant time operation. Since Church’s work, various other programming techniques have
been based on Church encodings [26, 23, 42, 7], but the essential difficulties in expressing
certain operations remained. Object Algebras are no different. Being essentially Church
encodings, similar difficulties arise for certain operations, and similar workarounds apply, as
Section 3 further illustrates.

Problem 2: Lack of Extensibility with External Visitors. The obvious attempt to solve
the limitations of Object Algebras is to turn to external visitors, which do allow control over
the traversal. However, if we try to do the same extension with external visitors we face a
different problem: it is no longer possible to simply extend the original visitor interface.

In order to account for the extension with subtraction and conditionals, we have to change
or copy&paste existing code for visitors. In other words, the visitor code is non-modular
(unlike the code for Object Algebras). Different interfaces are necessary for the extension:

interface MVis<E> {
E Lit(int x);
E Add(MExp e1, MExp e2);
E Sub(MExp e1, MExp e2);
E If(MExp e1, MExp e2, MExp e3);

}

In external visitors, the visitor interface depends on the AST type and vice-versa. Since
the new AST nodes for subtraction and conditionals require a visitor type that is aware of
the new nodes, it is not possible to use the old interface EExp. Instead, a new interface MExp is
needed with an accept method taking a richer type of visitors. Correspondingly, the visitor
interface has to be changed. The Add method no longer takes expressions of type EExp as
arguments. Instead, it now requires expressions of type MExp. When defining evaluation, the
code for EEval cannot be reused either. Thus, the code for Lit and Add has to be essentially
repeated in MEval:

class MEval implements MVis<Integer> {
public Integer Lit(int n) { return n; }
public Integer Add(MExp e1, MExp e2) { return e1.accept(this) + e2.accept(this);

}
public Integer Sub(MExp e1, MExp e2) { return e1.accept(this) - e2.accept(this);

}
public Integer If(MExp e1, MExp e2, MExp e3) {

return !e1.accept(this).equals(0) ? e2.accept(this) : e3.accept(this);
}

}

However, the implementation of If is now correct! Because external visitors delegate
the control over traversals to the implementation of visitors, the expressions for the then
and else branches only need to be evaluated when the suitable condition applies. Therefore,
unlike internal visitors, no workarounds are necessary to implement the operation.

ECOOP 2017



29:8 EVF

interface AVis<R,E> {
E Lit(int x);
E Add(R e1, R e2);
E visitExp(R e);

}
interface CExp {

<E> E accept(AVis<CExp,E> v);
}
interface CVis<E>

extends AVis<CExp,E> {
default E visitExp(CExp e) {

return e.accept(this);
}

}

class CLit implements CExp {
int n;
public CLit(int n) { this.n = n; }
public <E> E accept(AVis<CExp,E> v) {

return v.Lit(n);
}

}
class CAdd implements CExp {

CExp e1, e2;
public CAdd(CExp e1, CExp e2) {

this.e1 = e1; this.e2 = e2;
}
public <E> E accept(AVis<CExp,E> v) {

return v.Add(e1, e2);
}

}

Figure 3 Modular external visitors with abstracted recursive calls.

2.3 Key Idea: Abstracting Recursive Calls
To solve both problems we propose a new type of external visitors that abstracts the recursive
calls. Figure 3 presents the code for the original arithmetic expressions encoded with the
new visitor. Compared to EVis, this new visitor interface AVis has two changes. First, it
uses an additional type parameter R to decouple itself from any concrete expression type.
This first difference is known in the literature [43], and has been used in the past to provide
generalized versions of Object Algebras. However, the second, and more important difference
is the introduction of a new method visitExp that abstracts the recursive calls. Like the
accept method in the Visitor pattern, visitExp allows programmers to explicitly control
recursive calls. In fact, calls to visitExp are essentially indirect calls to accept. Readers
familiar with type-theoretic encodings of datatypes may find that the use of the visitExp
method reminiscent of Mendler encodings of datatypes [34]. Indeed in Mendler-encodings of
datatypes programmers can also control recursive calls with a function argument. However,
as we shall discuss in Section 7 Modular External Visitors have significant differences to
Mendler-style encodings.

The interface that provides the implementation for visitExp (which just calls accept) is
CVis. Programmers will define their own visitors by implementing the other visit methods.
When an actual visitor instance is needed, a class extending both the user-defined visitor and
CVis is created. Thus, we end up with code which is essentially equivalent to non-modular
external visitor code. Code for defining the AST hierarchy is very similar to non-modular
external visitors. The accept method takes a CVis instance which extends AVis with R
specified as CExp.

Evaluation with Control. AEval implements the evaluator for the expression language,
where R is still a type parameter while E is instantiated to Integer:
interface AEval<R> extends AVis<R,Integer> {

default Integer Lit(int n) { return n; }
default Integer Add(R e1, R e2) { return visitExp(e1) + visitExp(e2); }

}

The evaluation on subexpressions of Add are now controlled via visitExp. However, visitExp
should remain abstract for retaining the extensibility on AEval. AEval is hence modeled as an



W.Zhang and B. C. d. S. Oliveira 29:9

interface with Lit and Add implemented using Java 8 default methods. An additional step to
instantiate AEval as a class is needed for the purpose of creating objects. This can be done
through defining a class that implements both AEval and CVis:

class CEval implements AEval<CExp>, CVis<Integer> {}

Then we are able to evaluate an expression using an instance of CEval:

CExp e = new CAdd(new CLit(1), new CLit(2));
e.accept(new CEval()); // 3

Modular Extension. As the dependency on the AST type has been removed from visitors,
modular extensions on the visitor interface and its concrete implementations are enabled:

interface AVisExt<R,E> extends AVis<R,E> {
E Sub(R e1, R e2);
E If(R e1, R e2, R e3);

}
interface AEvalExt<R> extends AEval<R>, AVisExt<R,Integer> {

default Integer Sub(R e1, R e2) { return visitExp(e1) - visitExp(e2); }
default Integer If(R e1, R e2, R e3) {

return !visitExp(e1).equals(0) ? visitExp(e2) : visitExp(e3);
}

}

However, a remaining problem is that we still need a new AST infrastructure for the
extension:

interface CExpExt { <E> E accept(AVisExt<CExpExt,E> v); }
interface CVisExt<E> extends AVisExt<CExpExt,E> {

default E visitExp(CExpExt e) { return e.accept(this); }
}
... // 4 classes elided including Lit and Add

Discussion. The following table summarizes the strength and weakness of each approach:

Approach Modular Visitor Modular AST Traversal Control
Object Algebras Yes Yes No
Internal Visitors Yes No No
External Visitors No No Yes
Modular External Visitors Yes No Yes

Object Algebras and internal visitors do not offer traversal control. Nevertheless, both
visitor code and code for creating ASTs is modular in Object Algebras. The reason why
the code for creating ASTs is modular in Object Algebras is that ASTs are created directly
using an instance of the Object Algebra interface [41]. In contrast, all visitors (whether
internal or external) require AST interfaces (such as Exp, EExp, MExp, CExp), and corresponding
classes implementing those interfaces. However such AST class hierarchies are not reusable
in extensions. External visitors provide traversal control at the price of losing modularity on
the visitor code. Modular external visitors retain traversal control and bring modularity to
the visitor code, but AST code is still not modular.

While AST code is still non-modular with modular external visitors, in practice, it is
the visitor code that is important to modularize. The visitor code is what programmers

ECOOP 2017



29:10 EVF

e ::= x variable
λx.e abstraction
e e application
i literal
e− e subtraction

(a) Syntax

FV (x) = {x}
FV (λx.e) = FV (e) \ {x}
FV (e1 e2) = FV (e1) ∪ FV (e2)
FV (i) = ∅
FV (e1 − e2) = FV (e1) ∪ FV (e2)

(b) Free variables
[x 7→ s]x = s

[x 7→ s]y = y if y 6= x

[x 7→ s](λx.e) = λx.e

[x 7→ s](λy.e) = λy.[x 7→ s]e if y 6= x ∧ y /∈ FV (s)
[x 7→ s](e1 e2) = [x 7→ s]e1 [x 7→ s]e2
[x 7→ s]i = i

[x 7→ s](e1 − e2) = [x 7→ s]e1 − [x 7→ s]e2

(c) Substitution

Figure 4 Formalization of the untyped lambda calculus.

will write to define various operations over ASTs. The AST code is mechanical and can be
automatically generated, which is precisely one of the things that the EVF framework does.
Programming with modular external visitors is, in some sense, similar to programming with
algebraic datatypes in functional languages. That is, programmers can control the code for
functions defined by pattern matching (similar to visitors) but not the code for constructors
(similar to AST code).

3 EVF for Modularity and Reuse of PL Implementations

This section introduces the EVF framework by modeling the untyped lambda calculus. We
are going to implement two operations, free variables and capture-avoiding substitution,
where the latter depends on the former. Based on modular external visitors introduced in
Section 2, EVF allows such dependency to be expressed in a simple way. EVF further
complements modular external visitors by automatically generating boilerplate code related
to ASTs and AST traversals. Compared with the implementations with traditional (non-
modular) visitors and Object Algebras, the EVF implementation has advantages in terms of
simplicity, modularity, and reusability. The section finishes with a discussion on how EVF
reduces both the implementation effort and the need for specialized knowledge for language
implementation.

3.1 Untyped Lambda Calculus: A Running Example
Figure 4 formalizes the untyped calculus: its syntax and two operations, free variables and
capture-avoiding substitution, following Pierce’s definition [47].

Syntax. The language has 5 syntactic forms: variables, lambda abstractions, lambda
applications, integer literals and subtractions. The meta variable e ranges over expressions;
x over names; i over integers. With the syntax, the operational semantics can be defined.



W.Zhang and B. C. d. S. Oliveira 29:11

Free Variables. A variable in an expression is said to be free if it is not bound by any
enclosing abstractions. The operation FV (e) collects the set of free variables from an
expression e. The definition relies on some set notations. Their meanings are: ∅ denotes an
empty set; {x} represents a set with one element x; \ calculates the difference of two sets; ∪
is the set union operator.

Substitution. Substitution, written as [x 7→ s]e, is an operation that replaces all free
occurrences of variable x in the expression e with the expression s. The definition is indeed
quite subtle, especially for the abstraction case. The body of an abstraction will be substituted
only when two conditions are satisfied. The first condition, y 6= x, takes care of shadowing
introduced by the abstraction. The second condition, y /∈ FV (s), avoids free variables in s
being captured after substitution. For example, [x 7→ y](λx.x) and [x 7→ y](λy.x) have no
effect because of the first and the second condition respectively. Thus, the two conditions
together preserve the meaning of an expression after substitution.

3.2 A Summary of the Implementations and Results
We implemented the untyped lambda calculus using the Visitor pattern, Object Algebras
and EVF respectively (full code can be found online). The table below summarizes the
implementations from modularity, the source lines of code (SLOC) and the number of cases
to implement for each operation:

Approach Modular Syntax Free Variables Substitution
SLOC SLOC # Cases SLOC # Cases

The Visitor Pattern No 46 20 5 22 5
Object Algebras (w/ Shy) Yes 7 12 2 55 5
EVF Yes 7 12 2 13 2

From the table we can see that the EVF implementation is best in all these aspects. It
is modular and uses least SLOC and number of cases to implement both operations. The
comparison between the Visitor pattern and EVF shows the power of meta-programming.
By generating AST and AST traversals automatically, EVF eliminates a large portion of
SLOC. On the other hand, the comparison between Object Algebras and EVF illustrates
the expressiveness of EVF. Object Algebras bypass the concrete representation of an AST
structure, making the syntax definition simple. The definition of free variables in Object
Algebras is as short as that in EVF with the help of the Shy framework [62], which generates
traversal templates similar to EVF. However, substitution does not fit any Shy template,
and worse it is very cumbersome to define with Object Algebras causing the expansion of
SLOC. The remainder of this section explains the three implementations and the results in
detail.

3.3 An Implementation with the Visitor Pattern
We first discuss an implementation with the (external) Visitor pattern presented in Figure 5.

Syntax. The visitor interface LamAlg describes the constructs supported by the language.
The Exp interface represents the AST type. Classes that implement Exp, for instance Var and
Abs, are concrete constructs of the language. The LamAlg interface declares visit methods to
deal with these constructs, one for each. Concrete constructs use their corresponding visit
method in implementing the accept method exposed by the Exp interface.

ECOOP 2017



29:12 EVF

interface LamAlg<O> {
O Var(String x);
O Abs(String x, Exp e);
O App(Exp e1, Exp e2);
O Lit(int n);
O Sub(Exp e1, Exp e2);

}
interface Exp {

<O> O accept(LamAlg<O> v);
}
class Var implements Exp {

String x;
Var(String x) { this.x = x; }
public <O> O accept(LamAlg<O> v)

{
return v.Var(x);

}
}
class Abs implements Exp {

String x;
Exp e;
Abs(String x, Exp e) {

this.x = x; this.e = e;
}
public <O> O accept(LamAlg<O> v)

{
return v.Abs(x, e);

}
}
... // 3 classes elided

class FreeVars implements LamAlg<Set<String>>
{

public Set<String> Var(String x) {
return Collections.singleton(x);

}
public Set<String> Abs(String x, Exp e) {

return e.accept(this).stream()
.filter(y -> !y.equals(x))
.collect(Collectors.toSet());

}
... // 3 cases elided

}
class SubstVar implements LamAlg<Exp> {

String x;
Exp s;
SubstVar(String x, Exp s) {

this.x = x; this.s = s;
}
public Exp Var(String y) {

return y.equals(x) ? s : new Var(x);
}
public Exp Abs(String y, Exp e) {

if (y.equals(x)) return new Abs(x, e);
if (s.accept(new FreeVars()).contains(x))

throw new RuntimeException();
return new Abs(x, e.accept(this));

}
... // 3 cases elided

}

Figure 5 Untyped lambda calculus with the Visitor pattern.

Free Variables. Operations for the language are defined as concrete implementations of
the LamAlg interface. A concrete visitor FreeVars collects free variables from an expression.
FreeVars implements LamAlg by instantiating the type parameter as Set<String>. Since the
traversal is controlled by the programmer via the accept method, we call e.accept(this) to
collect free variables from the body of the abstraction.

Substitution. Similarly, the class SubstVar models substitution. Substitution is a trans-
formation over the expression structure. We hence instantiate the abstract type of LamAlg
to the expression type Exp. Like FreeVars, we call e.accept(this) to perform substitution
on children. Indeed, the argument passed to the accept method is not restricted to be this
and can indeed be an arbitrary instance of LamAlg. This allows existing peer visitors to be
reused. For instance, we call s.accept(new FreeVars()) to reuse previously defined FreeVars
for collecting free variables from the expression s.

Summary. The implementation with the Visitor pattern has two problems: it is not
modular (i.e. does not allow new language constructs to be modularly added); and it requires
substantial amounts of code, including AST classes and code for each of the 5 language
constructs for both free variables and substitution.



W.Zhang and B. C. d. S. Oliveira 29:13

@Algebra interface LamAlg<Exp> {
Exp Var(String x);
Exp Abs(String x, Exp e);
Exp App(Exp e1, Exp e2);
Exp Lit(int n);
Exp Sub(Exp e1, Exp e2);

}
class FreeVars implements

LamAlgQuery<Set<String>> {
public Monoid<Set<String>> m() {

return new SetMonoid<>();
}
public Set<String> Var(String x)

{
return Collections.singleton(x)
;

}
public Set<String> Abs(String x,

Set<String> e) {
return e.stream()

.filter(y -> !y.equals(x))

.collect(Collectors.toSet());
}

}
interface IFV {

Set<String> FV();
}
interface ISV<Exp> {

Exp before();
Exp after();

}

class SubstVar<Exp extends IFV>
implements LamAlg<ISV<Exp>> {

String x;
Exp s;
LamAlg<Exp> alg;
SubstVar(String x, Exp s, LamAlg<Exp> alg) {

this.x = x; this.s = s; this.alg = alg;
}
public ISV<Exp> Var(String y) {

return new ISV<Exp>() {
public Exp before() {

return alg.Var(y);
}
public Exp after() {

return y.equals(x) ? s : alg.Var(y);
}};}
public ISV<Exp> Abs(String y, ISV<Exp> e) {

return new ISV<Exp>() {
public Exp before() {

return alg.Abs(y, e.before());
}
public Exp after() {

if (y.equals(x))
return alg.Abs(y, e.before());

if (s.FV().contains(y))
throw new RuntimeException();

return alg.Abs(y, e.after());
}};}
... // 3 cases elided

}

Figure 6 Untyped lambda calculus with Object Algebras.

3.4 An Implementation with Object Algebras
Next, we discuss an implementation with Object Algebras shown in Figure 6.

Syntax. Object Algebras bypass the concrete AST representation, making it simple to
model the language. The Object Algebra interface LamAlg is similar to the visitor interface
except that both recursive arguments and return values are of the abstract type Exp. Note
that LamAlg is annotated with @Algebra provided by the Shy framework. Through annotation
processing, Shy will generate traversal templates for LamAlg.

Free Variables. Operations over the language are defined as Object Algebras, which are
implementations of the LamAlg interface. The Object Algebra FreeVars is very much like
the visitor version. The difference to the visitor version is that programmers have indirect
control over the traversal due to the bottom-up nature of Object Algebras. This makes
the operation definition simpler by removing accept invocations. Also, by using Shy, the
number of cases to implement is reduced to 2. The LamAlgQuery template provides a default
implementation for each case by using a client-supplied monoid instance. Regarding FreeVars,
it should return an empty set for a base case or unite the intermediate sets from subtrees
for an intermediate case. By supplying a set monoid and overriding the variable and the
abstraction case, we are able to give the complete definition for FreeVars.

ECOOP 2017



29:14 EVF

Substitution. Modeling substitution using Object Algebras is tricky. There are two major
difficulties: 1) expressing the dependency on free variables modularly; 2) substitution traverses
the expression structure in a flexible way, and not in a purely bottom up manner. For the
first difficulty, we define an interface IFV and set it as the upper bound of the Exp. This
way, we are able to call FV on the expression s. For the second difficulty, a similar technique
to that employed in defining the predecessor function on Church numerals is applied (see
discussion in Section 2.2). Instead of just returning the expression after substitution, we also
keep track of the original expression. The pair-like interface ISV is defined for such purpose.
This interface is critical for the definition of Abs because the body can either be substituted
or not depending on whether the condition holds. As the body e is now of type ISV<Exp>, we
can call before or after for obtaining the expression before and after substitution.

Summary. Although capture-avoiding substitution is possible to model using Object Al-
gebras, the implementation is rather inefficient and complicated. The dependency on free
variables is pushed to the successor algebra that is applied after SubstVar, which requires
additional boilerplate for composing that algebra with FreeVars. Unlike the implementation
of free variables, which can benefit from the Shy framework to reduce the number of cases,
the definition of substitution does not fit any of the traversal templates offered by the Shy
framework. Thus 5 cases are needed for substitution.

3.5 An Implementation with EVF
The corresponding implementation of the untyped lambda calculus with EVF is given by
Figure 7. EVF uses a Java annotation processor for generating the boilerplate code related
to AST creation and various traversal templates. The Java annotation processor uses the
standard javax.annotation.processing API, which is part of the Java platform. To interact
with EVF, users simply annotate the standard Object Algebra interfaces with @Visitor.
The companion infrastructure code will then be automatically generated at compile-time. In
a modern IDE like Eclipse or IntelliJ, usually each time the code is saved, the compilation is
triggered with new infrastructure generated.

From Object Algebras to Modular Visitors. EVF is used to complement code written
with modular external visitors with code generation. Modular external visitor interfaces are
the basis of the generated code. However, users of EVF do not need to write such modular
external visitor interfaces directly. Instead, EVF allows clients to write the traditional
Object Algebra interfaces, as done for example in lines 1-7 of Figure 7. Since it is possible to
automatically generate a modular external visitor interface from an Object Algebra interface,
this is done automatically by EVF. This is good for users because Object Algebra interfaces
are simpler than modular external visitor interfaces. Figure 8 shows the corresponding
modular external visitor interface generated for LamAlg. Note that GLamAlg is parameterized
by two types Exp and OExp, where Exp captures recursive arguments and OExp is for return
values. It replaces the return type of constructors with OExp and inserts a method visitExp
that converts Exp to OExp. We leave the discussion on the technical details to Section 4.

Code Generation for Structural Traversals. Neither FreeVars nor SubstVar extend GLamAlg
directly. Instead, they extend the generated traversal templates LamAlgQuery and
LamAlgTransform respectively. Similarly to Shy, EVF supports various traversal patterns
that can be used to remove boilerplate code. The implementation of FreeVars using EVF is
close to that using Object Algebras. One difference is that subexpressions are of abstract



W.Zhang and B. C. d. S. Oliveira 29:15

1 @Visitor interface LamAlg<Exp> {
2 Exp Var(String x);
3 Exp Abs(String x, Exp e);
4 Exp App(Exp e1, Exp e2);
5 Exp Lit(int n);
6 Exp Sub(Exp e1, Exp e2);
7 }
8 interface FreeVars<Exp> extends LamAlgQuery<Exp,Set<String>> {
9 default Monoid<Set<String>> m() {

10 return new SetMonoid<>();
11 }
12 default Set<String> Var(String x) {
13 return Collections.singleton(x);
14 }
15 default Set<String> Abs(String x, Exp e) {
16 return visitExp(e).stream().filter(y -> !y.equals(x))
17 .collect(Collectors.toSet());
18 }
19 }
20 interface SubstVar<Exp> extends LamAlgTransform<Exp> {
21 String x();
22 Exp s();
23 Set<String> FV(Exp e);
24 default Exp Var(String y) {
25 return y.equals(x()) ? s() : alg().Var(y);
26 }
27 default Exp Abs(String y, Exp e) {
28 if (y.equals(x())) return alg().Abs(y, e);
29 if (FV(s()).contains(y)) throw new RuntimeException();
30 return alg().Abs(y, visitExp(e));
31 }
32 }

Figure 7 Complete code for the untyped lambda calculus with EVF.

AST type Exp and we call visitExp explicitly to trigger the traversal on subexpressions, e.g.
in line 16. The ability to control the traversal makes a great difference in defining SubstVar.
Shy only supports bottom-up traversals, due to the inherited limitation from standard Object
Algebras. In contrast, EVF does not limit the traversal strategy and traversal patterns
can be used in top-down operations such as SubstVar. As a result, the implementation of
SubstVar is not only simpler and more efficient than the one with Object Algebras, but it
also requires only the explicit definition of 2 cases (instead of 5) due to EVF’s ability to
reuse more flexible traversal templates. In Section 4.3 we will give formal specifications of
the traversal templates and introduce more forms of traversal patterns.

Modular Dependent Visitors. The support for external visitors allows modular dependent
operations to be defined with simple generics. For example, to express the dependency on
free variables in the definition of substitution, we declare an abstract method FV in line 23 of
Figure 7, which takes an expression and returns a set of free variables. Then we are able to
collect the free variable set from s by calling FV in line 29. The reader may have noticed that
FV and FreeVars’s visitExp share the same signature. In fact, FV is implemented by calling
visitExp on an instance of FreeVars. But the coupling with peer visitors such as FreeVars
are deferred to the instantiation stage of the dependent visitor, as we will see next. This

ECOOP 2017



29:16 EVF

interface GLamAlg<Exp,OExp> {
OExp Var(String x);
OExp Abs(String x, Exp e);
OExp App(Exp e1, Exp e2);
OExp Lit(int n);
OExp Sub(Exp e1, Exp e2);
OExp visitExp(Exp e);

}

Figure 8 Generated modular external visitor interface for the untyped lambda calculus.

1 class FreeVarsImpl implements FreeVars<CExp>, LamAlgVisitor<Set<String>> {}
2 class SubstVarImpl implements SubstVar<CExp>, LamAlgVisitor<CExp> {
3 String x;
4 CExp s;
5 public SubstVarImpl(String x, CExp s) { this.x = x; this.s = s; }
6 public String x() { return x; }
7 public CExp s() { return s; }
8 public Set<String> FV(CExp e) { return new FreeVarsImpl().visitExp(e); }
9 public LamAlg<CExp> alg() { return new LamAlgFactory(); }

10 }
11 public class LC {
12 public static void main(String[] args) {
13 LamAlgFactory alg = new LamAlgFactory();
14 CExp exp = alg.App(alg.Abs("y", alg.Var("y")), alg.Var("x")); // (\y.y) x
15 new FreeVarsImpl().visitExp(exp); // {"x"}
16 new SubstVarImpl("x", alg.Lit(1)).visitExp(exp); // (\y.y) 1
17 }
18 }

Figure 9 Instantiation and client code for the untyped lambda calculus.

simple reuse mechanism improves the modularity of visitors significantly, and can be used
together with OO inheritance for modularity and extensibility. This is in contrast with the
Object Algebras approach, which requires significant complexity to deal with dependencies.

Instantiation and Client Code. Abstract recursive calls and modular dependencies prevent
visitors from being modeled as concrete classes. An additional step for instantiation is
necessary for object creation. We use interfaces and default methods to define visitors and to
make them extensible by exploiting Java 8 multiple interface inheritance. EVF generates
LamAlgVisitor, an interface that extends GLamAlg with visitExp implemented. Line 1 and
lines 2-10 of Figure 9 illustrate how to instantiate FreeVars and SubstVar using the generated
LamAlgVisitor. The dependencies declared in SubstVar must be fulfilled. For example, in
line 8, we call the visitExp method on an FreeVarsImpl instance to realize the FV method.

Concrete AST Representation. Different from conventional Object Algebras, the construc-
tion and interpretation of an AST are separated in EVF. An AST infrastructure like that in
Figure 5 is automatically generated by EVF. The generated factory class, LamAlgFactory, is
exposed to the clients for constructing ASTs. Once created, an AST will reside in memory
and is able to accept different visitors to traverse itself. For example, we construct an AST
of form (λy.y) x in line 14. By invoking the visitExp method defined on visitor instances,
we traverse the same AST using FreeVars and SubstVar in line 15 and 16 respectively.



W.Zhang and B. C. d. S. Oliveira 29:17

@Visitor ExtLamAlg<Exp> extends LamAlg<Exp> {
Exp Bool(boolean b);
Exp If(Exp e1, Exp e2, Exp e3);

}
interface ExtFreeVars<Exp> extends ExtLamAlgQuery<Exp,Set<String>>, FreeVars<Exp>

{}
interface ExtSubstVar<Exp> extends ExtLamAlgTransform<Exp>, SubstVar<Exp> {}

Figure 10 Untyped lambda calculus with extensions.

3.6 Discussion
Suppose we wish to implement a larger language based on the untyped lambda calculus.
Instead of defining everything from scratch, we can easily build this language through reusing
existing EVF components, as illustrated by Figure 10. The annotated Object Algebra
interface ExtLamAlg extends LamAlg with constructs for boolean values and if-expressions. To
support free variables and substitution for this extended language, we can simply compose
existing components defined for LamAlg (FreeVars and SubstVar) with newly generated tem-
plates for ExtLamAlg (ExtLamAlgQuery and ExtLamAlgTransform). We can even combine more
features via multiple interface inheritance. Of course, similar instantiation code shown in
Figure 9 is needed for the client code.

We discuss the strength and weakness of PL implementations using EVF here:
1. Modularity: Like Object Algebras, EVF components are modular, extensible and

type-safe. This means that it is possible to create libraries of language components. For
example, the implementations of the untyped lambda calculus can be put in a library, and
be reused in implementations of larger programming languages that include the untyped
lambda calculus. This is simply not possible (in a type-safe way) with an implementation
based on traditional (non-modular) visitors. In other words, modularity enables the
creation of SPLs of language components.

2. Reduction of Implementation Effort: A direct consequence of modularity is that
implementation effort can be reduced through reuse. In EVF there are two different
mechanisms which support reuse:

Reuse from Extensibility: A larger language can extend the existing operations
and define only cases for the new language constructs. As the above example shows,
for defining a new language that extends the untyped lambda calculus, only the cases
for the extended constructs would be defined by the programmer.
Reuse from Traversal Templates: Many operations, including free variables and
substitution are structure-shy. That is, in most cases the definition is a congruent
recursive traversal of the children. Only a few cases (variables and binders) are actually
defining interesting behavior. Thus, traversal templates significantly reduce the number
of cases that needs to be written by language implementers. Indeed, if an extension to
the untyped lambda calculus does not have new binders or types of variables like the
above example, programmers do not need to define any new cases for free variables
and substitution: they get an automatic implementation from the traversal templates.

3. Reduction of Knowledge about PL Implementations: Reuse enables moving
complex aspects of PL implementations to library code. For example, it is well-known that
capture-avoiding substitution is a rather subtle operation to define. If PL implementers
can simply reuse implementations of such operations, they do not need to understand the
tricky details of the operation. With EVF any language extensions that do not involve
new types of binders or variables, do not require users to understand how capture-avoiding
substitution works.

ECOOP 2017



29:18 EVF

Syntax of Object Algebra Interfaces
L ::= interface I0 extends I {C} Object Algebra interfaces
C ::= X c(T x); constructors
I ::= A<X> interface types
T ::= X | int | boolean | . . . argument types
Translation Scheme
J@Visitor interface I0 extends I {C}K = interface JI0K extends JIK { JCK visitXin(I0)}
JA<X>K = GA<X,[OX | X ∈ allXin(AT(I))]>
JX c(T x);K = OX c(T x);
Auxiliary Definitions
returntype(X c(T x);) = X
allXin(interface I0 extends I {C}) = {returntype(C) | C ∈ C} ∪

⋃
I∈I allXin(AT(I))

newXin(interface I0 extends I {C}) = allXin(AT(I0)) \
⋃

I∈I allXin(AT(I))
visitXin(I) = [OX visitX(X x); | X ∈ newXin(AT(I))]

Figure 11 Translation from Object Algebra interfaces to modular visitor interfaces.

There are also two main limitations of the EVF framework:
1. Learning Effort: The definitions of EVF visitors may not be very intuitive at first

glance. It takes some effort from users to learn the modular visitor encoding, various
traversal templates and how to instantiate visitors.

2. Boilerplate Instantiation: Although most boilerplate code is eliminated by EVF,
there is still some left. Visitors have to be instantiated manually before they can be
actually used, which may require significant amounts of code (see Figure 9 for example).

4 Code Generation in EVF

To facilitate development using modular external visitors, EVF automatically generates a
lot of boilerplate code related to ASTs and AST traversals. This section gives the details
about the generated code in a formal way.

4.1 Modular External Visitor Interfaces
It is cumbersome for users to directly write down the modular external visitor interfaces,
especially when multiple sorts are needed. This motivates us to let EVF automatically
translate a conventional Object Algebra interface into its corresponding modular external
visitor interface. A generated modular external visitor interface has been shown in Figure 8.
Figure 11 formalizes the translation.

Syntax of Object Algebra Interface. We first give the grammar of standard Object Algebra
interfaces. The metavariable A ranges over Object Algebra interface names; X ranges over
type parameters; c and x range over names. We write I as shorthand for I1, . . . , In, X for
X1, . . . ,Xn; C for C1 . . .Cn (no commas in between). We abbreviate operations on pairs of
sequences similarly, writing “T x” for “T1 x1, . . . ,Tn xn”, where n is the length of T and x.
Following standard practice, we assume an Object Algebra interface table (AT) that maps
an Object Algebra interface type I to its declaration L.

Translation Scheme. Translation rules are defined using semantic brackets (J·K). The
bracket notation [f(A) | A ∈ A] denotes that the function f is applied to each element in the



W.Zhang and B. C. d. S. Oliveira 29:19

list A sequentially to generate a new list. The curly brace notation {f(A) | A ∈ A} is similar
to the bracket notation except that it collects a set of elements while preserving their order.

The fundamental step of the translation is to separate input types from the type parameter
list. We classify a type parameter as an input type if it is a return type of any constructor
from the algebra interface hierarchy. These type parameters are special because they have
corresponding output type and visitX method. The translation scheme consists of three
main steps. First, we find out all input types and augment the type parameter list with their
corresponding output types. Second, the return types of the constructors are replaced by
output types. Last, the visitX methods are generated for new input types.

Auxiliary Definitions. The translation scheme relies on auxiliary definitions: returntype gets
the return type of a constructor (considered as an input type); allXin collects all input types
from the interface hierarchy; newXin collects input types that are not introduced by super
interfaces; finally, visitXin generates one visitX method for each input type.

4.2 AST Infrastructure
Each modular visitor interface should have the corresponding AST infrastructure for instan-
tiation and client code. However, such AST infrastructure is non-modular and tedious to
write, as we have seen in Section 2. This is because whenever extending a modular visitor,
we have to define a new AST hierarchy representing both newly introduced constructs as well
as all existing constructs. Fortunately, EVF automatically generates such infrastructure for
us. For example, the following code shows the generated AST infrastructure for the untyped
lambda calculus:
public interface Exp { <OExp> OExp accept(GLamAlg<Exp,OExp> v); }
public interface LamAlgVisitor<OExp> extends GLamAlg<Exp,OExp> {

default OExp visitExp(Exp e) { return e.accept(this); }
}
public class LamAlgFactory implements LamAlg<Exp> {

public Exp Var(String x) {
return new Exp() {

public <OExp> OExp accept(GLamAlg<Exp,OExp> v) {
return v.Var(x);

}};}
public Exp Abs(String x, Exp e) {

return new Exp() {
public <OExp> OExp accept(GLamAlg<Exp,OExp> v) {

return v.Abs(x, e);
}};}
...

}

The code is slightly different from the code shown in Figure 3. Instead of generating one
class per construct, EVF generates a concrete factory LamAlgFactory that implements the
Object Algebra interface (abstract factory). LamAlgFactory exposes one factory method for
each construct, which not only simplifies the creation of ASTs (without using new all the
time) but also can be used for instantiating modular transformations. For example, line 9
and line 13-14 in Figure 9 illustrate the use of LamAlgFactory.

4.3 Boilerplate Traversals
AST traversals often contain a lot of boilerplate code. To address that problem the Shy
framework [62] provides a number of boilerplate traversals automatically for Object Algebras.

ECOOP 2017



29:20 EVF

EVF also supports boilerplate traversals just as Shy does, but it generalizes them to modular
external visitors. Notably, and unlike Shy, boilerplate traversals in EVF are not restricted
to be bottom-up. We have seen how such traversals help in eliminating boilerplate code in
Section 3. In this section, we formalize two core traversal templates and additionally introduce
a novel type of traversal pattern. Other Shy templates like contextual transformations are
omitted for space reasons, but they are essentially variations of these core templates.

Queries with Default Values. Inspired by wildcard patterns in functional languages, EVF
supports a new type of queries with default values. This template gives each case an
implementation using the client-supplied default value, which is handy for defining operations
with a lot of cases sharing the same behavior. Consider the untyped calculus again. We
may want to inspect the form of an expression, for example whether it is a literal. It would
be tedious to define such an operation because we have to define a lot of repetitive cases -
all cases except for Lit return a false. With the LamAlgDefault template, however, we only
need to supply a default value (false) once via implementing the m method instead of giving
each of those repetitive cases an implementation manually:
interface IsLit<Exp> extends LamAlgDefault<Exp, Boolean> {

default Zero<Boolean> m() { return () -> false; }
default Boolean Lit(int n) { return true; }

}

Now we give the template of queries with default values formally. Given an Object Algebra
interface A, let X denote the input types of A where X = allXin(AT(A)). The template is:
interface Zero<O> { O empty(); }

interface A0Default<X0,O> extends GA0<X0,

|X0|︷ ︸︸ ︷
O,...,O>, ADefault<X,O> {

Zero<O> m();
default O c(T x) { return m().empty(); }

}

The functional interface Zero is the default value provider on which Default depends. Default
implements all cases of an interface simply through returning that default value. The default
value is obtained by invoking m().empty(). The implementation of m is delayed to concrete
visitors that use the Default template, for allowing different default values to be specified.

Queries by Aggregation. Another form of query traverses the whole AST and aggregates a
value. Recall the definition of FreeVars shown in Figure 7. It uses the template LamAlgQuery.
The template for queries by aggregation is given below:
interface Monoid<O> extends Zero<O> { O join(O x, O y); }

interface A0Query<X0,O> extends GA0<X0,

|X0|︷ ︸︸ ︷
O,...,O>, AQuery<X,O> {

Monoid<O> m();
default O c(T x) {

return


m().empty(); if @T ∈ T ∧ T ∈ X0,

Stream.of([visitT(x)|T ∈ T ∧ T ∈ X0]) otherwise.
.reduce(m().empty(),m()::join);

}
}

The Monoid interface can not only provide the default value through the empty method
inherited from Zero, but also exposes a join method for combining intermediate results.



W.Zhang and B. C. d. S. Oliveira 29:21

Query gives different implementations to a constructor according to whether it is a primitive
(i.e. no argument of any input types) or a combinator. If the constructor is a primitive,
the result is m().empty(); otherwise corresponding visitX methods get called on recursive
arguments and their results are combined using m().join(). For example, in the definition
of FreeVars, the generic SetMonoid class is used for fulfilling the m dependency where empty
returns an empty set and join is the union of two sets:
class SetMonoid<T> implements Monoid<Set<T>> {

public Set<T> empty() { return Collections.emptySet(); }
public Set<T> join(Set<T> x, Set<T> y) {

return Stream.concat(x.stream(), y.stream()).collect(Collectors.toSet());
}

}

Transformations. Transformations are operations that transform an AST to another AST.
Transformations use a factory to construct another AST that is further transformed or
consumed. Recall the definition of SubstVar shown in Figure 7. It uses the transforma-
tion template LamAlgTransform for eliminating boilerplate code. The general template for
transformations is given below:

interface A0Transform<X0> extends GA0<X0,X0>, ATransform<X,X> {
A0<X0> alg();
default X c(T x) { return alg().c(visitT (T, x)); }

}

In Transform the output types are the same as input types, reflecting the essence of a
transformation. An auxiliary definition visitT is needed, which transforms an argument only
when it is of any input types:

visitT (T, x) =
{

visitT(x) if T ∈ X0,

x otherwise.

5 Case Study

To reveal the utility of EVF, we implemented a large number of interpreters from TAPL [47].
TAPL is a good benchmark for modularity mainly because it contains a dozen of languages,
where subsequently defined languages are extensions of the previously defined ones. The
original implementation in OCaml1 is, however, non-modular. Using EVF we are able to
create a modular SPL of the TAPL interpreters, enabling sharing large portions of code and
features. Our programming language SPL contains several modular operations, which would
be non-trivial to define with standard Object Algebras.

5.1 Overview
Terms and types are the main data structures for modeling languages, on which families of
operations are defined. Such operations include: interpreters and type-checkers for terms;
type equality and subtype relations for types. Starting from a simple untyped arithmetic
language, TAPL gradually introduces new features (lambdas, records, references, exceptions,
etc.) and combines them with some of existing features to form various languages. However,

1 https://www.cis.upenn.edu/~bcpierce/tapl

ECOOP 2017

https://www.cis.upenn.edu/~bcpierce/tapl


29:22 EVF

arith

boolnat

extension

recordfloatstringlet tyarith

typed

fullerror

simplebool

bot

fullref

fullsimple

variant

fullsub

moreextension

varapp

top

fulluntyped

untyped

rcdsubbot

arith

boolnat

extension

recordliterallet tyarith

typed

fullerror

simplebool

bot

fullref

fullsimple

variant

fullsub

moreextension

varapp

top

fulluntyped

untyped

rcdsubbot

LEGEND
original package

extracted package
term dependency
type dependency

Figure 12 Package dependency graph.

due to the use of algebraic datatypes in OCaml, “combining” features is actually done
through copy&paste, causing modularity issues. EVF, on the other hand, is equipped with
modular composition mechanisms and can compose features without code duplication.

Figure 12 gives a bird’s-eye view of the EVF implementation of TAPL. To enhance
modularity, we extract conceptually independent features into separate packages for reuse.
In Figure 12, original packages are represented using boxes and extracted packages are
represented using ellipses. The interactions among languages are explicitly revealed by the
arrows. For example, bool is an extracted language representing booleans and conditionals,
on which arith and simplebool are built.

Composable Language Implementations. According to the criteria set by Erdweg et
al. [14], EVF has a good support for language composition. Specifically, three forms of
language composition — language extension, language unification and extension composition
— are supported. The support for language composition in EVF owes to Java 8 multiple
interface inheritance. For example, arith unifies nat and bool with an extension (TmIsZero)
that supports testing whether a term is zero or not:

@Visitor interface TermAlg<Term> extends bool.TermAlg<Term>, nat.TermAlg<Term> {
Term TmIsZero(Term t);

}

Instead of duplicating constructs from nat and bool, we reuse them by extending their
respective TermAlg. From Figure 12 we can see that arith, as an extension, is further
composed by extension. This kind of composability retains on operations as well.

Multiple Sorts. The case study also illustrates how multi-sorted languages can be defined
using EVF. The demand for multiple sorts arises when a term needs a type in its definition.
For instance, typed implements the typed lambda calculus, whose TermAlg is multi-sorted:

@Visitor interface TermAlg<Term,Ty> extends varapp.TermAlg<Term> {



W.Zhang and B. C. d. S. Oliveira 29:23

Term TmAbs(String x, Ty ty, Term t);
}

The abstraction (TmAbs) requires its argument of a specific type. Here we use another type
parameter Ty to loosely capture the dependency on types and model types in a separate
Object Algebra interface:

@Visitor interface TyAlg<Ty> {
Ty TyArr(Ty ty1, Ty ty2);

}

The reason to separate types and terms is that they belong to different syntactic categories in
the typed lambda calculus, on which two completely different sets of operations are defined.
It would make no sense to have a small-step evaluator on types or defining subtyping relations
on terms. This separation makes visitors fine-grained, allowing independent extensibility on
both types and terms.

Dependent Operations. A key difference between TAPL and other case studies conducted
on modularity is that operations in TAPL may have complex dependencies. An instance is
the typechecking function, which has complex dependencies in the presence of subtyping:

Typeof
Join SubtypeMeet TyEqv

The typechecker Typeof directly depends on Join and Subtype for calculating the least
supertype of the two branches of an if-expression and performing a subtype check between
the calculated type against the expected type respectively. Join and Subtype have their own
dependencies on Meet and TyEqv. Meet in turn depends on Join, making the dependency circu-
lar. Such complex dependencies pose difficulties in modularizing Typeof. Fortunately, EVF
makes the implementation of Typeof straightforward using similar dependency mechanism
presented in Section 3.

5.2 Components

De Bruijn Indices. In TAPL, de Bruijn indices are used in languages based on the lambda
calculus for modeling binder-related constructs. As opposed to the nominal representation
used in Section 3, a variable is represented by a natural number, denoting the distance from
the closest binder to its corresponding binder. For example, the nominal term λx.λy.(x y)
corresponds to the de Bruijn term λ.λ.(1 0). From the implementation point of view, de Bruijn
indices have many advantages, making it simpler to define substitution and α-equivalence.
However, terms represented in de Bruijn indices become less readable and not so intuitive to
manipulate. Hence, operations on de Bruijn indices are a good candidate to be part of the
library so that end users can enjoy benefits of de Bruijn indices without being bothered by
their technical details. We encapsulate these operations including shifting and substitution
as EVF components and put into the extracted varapp package. To reuse de Bruijn indices
and their associated operations elsewhere, an EVF user can easily reuse these components in
their own languages via some glue code similar to Figure 10. On the other hand, an OCaml
user would have to copy&paste the code snippet and modify it accordingly.

ECOOP 2017



29:24 EVF

Constant Function Elimination. Optimizations are another suitable source of candidates
to be modeled as components. The reason is that an optimization typically focuses on a
small set of language constructs with a fixed algorithm. By implementing optimizations as
EVF components, their complexity is hidden and they can be easily adapted elsewhere.

We added constant function elimination [32] to the TAPL case study for demonstration
purposes. An abstraction λx.e1 is a constant function if x is not used in e1. Then, an
application (λx.e1) e2 can be safely replaced by e1 while retaining the semantics. Our goal
is to eliminate all such constant functions in a term. This optimization is nontrivial to define
as it has several dependencies.

First, we need to extract the body from an abstraction:
interface GetBodyFromTmAbs<Term> extends TermAlgDefault<Term,Optional<Term>> {

default Zero<Optional<Term>> m() { return () -> Optional.empty(); }
default Optional<Term> TmAbs(String x, Term t) { return Optional.of(t); }

}

By using the TermAlgDefault template, only the abstraction case needs to be explicitly defined.
Next, we check whether the variable introduced by the abstraction is used in the body:
interface IsVarUsed<Term> extends TermAlgQueryWithCtx<Integer,Boolean,Term> {

default Monoid<Boolean> m() { return new OrMonoid(); }
default Function<Integer, Boolean> TmVar(int x, int n) { return c -> x == c; }
default Function<Integer,Boolean> TmAbs(String x, Term t) {

return c -> visitTerm(t).apply(c+1);
}

}

The traversal template TermAlgQueryWithCtx is a variant of queries by aggregation, which
additionally takes a context in recursive calls. Finally, we are able to define the optimization:
interface ConstFunElim<Term> extends TermAlgTransform<Term> {

Term termShift(int d, Term t);
Optional<Term> getBodyFromTmAbs(Term t);
Boolean isVarUsed(int i, Term t);
default Term TmApp(Term e1, Term e2) {

Term e = visitTerm(e1);
return getBodyFromTmAbs(e)

.map(t -> isVarUsed(0, t) ? alg().TmApp(e, visitTerm(e2)) : termShift(-1, t))

.orElse(alg().TmApp(e, visitTerm(e2)));
}

}

ConstFunElim traverses the AST top down. When a TmApp is found, it will first optimize
e1 to be e and then extract the body t from e using getBodyFromTmAbs. Next we check
whether the variable is used in the body via isVarUsed. If not, the whole expression will
be replaced by t with its de Bruijn indices decreased by 1 using termShift. Otherwise, the
optimization continues on e2 and wraps the optimized e1 and e2 back to TmApp. Constant
function elimination as well as various other operations (including the small-step evaluators)
would be tricky to model using Object Algebras because they are in essence top-down
operations. However, with modular external visitors such operations are easy to model and
traversal templates can be used to eliminate boilerplate on them.

5.3 Evaluation
To evaluate EVF’s implementation of the case study, we compare to the original OCaml
implementation. Table 1 compares SLOC (excluding blank lines and comments) of the EVF



W.Zhang and B. C. d. S. Oliveira 29:25

Table 1 SLOC statistics EVF vs OCaml: A package perspective.

Extracted Package EVF Original Package EVF OCaml % Reduced
bool 98 arith 33 102 68%
extension 34 bot 61 184 67%
floatstring 104 fullerror 105 366 72%
let 47 fullref 247 880 72%
moreextension 106 fullsimple 83 651 88%
nat 103 fullsub 116 628 82%
record 198 fulluntyped 47 300 85%
top 86 rcdsubbot 39 255 85%
typed 138 simplebool 38 211 77%
utils 172 tyarith 26 135 78%
varapp 65 untyped 46 128 61%
variant 161 Total 2153 3840 44%

implementation2 with the non-modular OCaml version. The left-hand side counts SLOC
of the extracted packages and the right-hand side compares SLOC of the original packages.
Although an OOP language like Java is considerably more verbose than a functional language
like OCaml, EVF’s implementation reduces 44% of SLOC counting all packages, thanks
to modularity and code generation techniques. The reduction of SLOC for each original
package is on average 76%. For feature-rich languages like fullsimple, the reduction is even
more dramatic and can be up to 88%. The reason is that all these original packages reuse
features from other packages more or less. If all these languages were orthogonal in features,
OCaml would beat EVF in terms of SLOC without question. However, from Figure 12
we can see that features like the lambda calculus are frequently reused by other packages
directly or indirectly, which makes a great difference to the total SLOC.

The comparison of SLOC between packages is not that straightforward: EVF’s imple-
mentation has dependencies whereas the OCaml implementation is stand-alone. Table 2
does the comparison from the component perspective which sums the SLOC of two core
components, AST definitions and small-step evaluators, for all packages. The results show
that both SLOC are reduced significantly, which explains why the total SLOC of EVF is
reduced.

As discussed in Section 3, the drawback of EVF components is an additional step for
instantiation. The SLOC needed for instantiating an operation is proportional to the number
of dependencies it has. To measure the instantiation overhead, we count the SLOC of
instantiation per original package. The statistics show that the SLOC grows together with
the language. Concretely, the SLOC for the simplest (arith), the medium (simplebool) and
the largest (fullref ) languages are 26, 63 and 109. The reason is that feature-rich languages
support more operations and/or their supported operations have more dependencies.

6 Performance Measurements

This section gives the preliminary performance measurements on EVF. The novel visitX
methods introduced by EVF add one more level of dispatching to the standard Visitor

2 We count only the files core.ml and syntax.ml, excluding the parser, the REPL and etc.

ECOOP 2017



29:26 EVF

Table 2 SLOC statics EVF vs OCaml: A component perspective.

Component EVF OCaml % Reduced
AST Definition 85 231 64%
Small-step Evaluator 263 481 46%

Table 3 Performance.

Approach Time (ms)
Imperative Visitor 133
Functional Visitor 163
Runabout 278
EVF 262

pattern, which causes some execution overhead. To have a rough idea about the impact
of the visitX methods on performance, we run a microbenchmark adapted from [45]. We
compare ourselves with respect to the two variants of the Visitor pattern [6]: imperative
visitors and functional visitors. An imperative visitor uses side effects to do the computation
whereas a functional visitor computes a result via return values. We also compare ourselves
to Runabout [21], a performant reflection-based approach for achieving extensibility.

The benchmark requires each approach to model linked lists and sum a linked list of
length 2000 for 10000 times. Implementations with these four approaches can be found
online. The benchmark programs were compiled using Oracle JDK 1.8 and executed on
the JVM in 64bit server mode on a 2.6 GHz MacBook Pro Intel Core i5 with 8GB memory.
Table 3 summarizes the run time of each approach. The results show that imperative visitors
are fastest among the four approaches. The functional visitor implementation ran slower
than the imperative visitor approach due to the heavy use of recursion. One more layer of
indirection brings additional performance penalty to EVF, which takes about double of the
time with respect to the imperative visitor but still outperforms the Runabout. Of course,
more rigorous and extensive benchmarks need to be performed to validate the results.

7 Related Work

Extensible Visitors. Early work on the Visitor pattern [31, 58, 45] pointed out extensibility
limitations of the Visitor pattern and proposed several solutions. Those early approaches
use runtime checks and can suffer from runtime errors without careful use. Palsberg and
Jay [45] proposed a generic class Walkabout as the root of visitors. By using Java’s runtime
reflection, the Walkabout removes the need for accept methods in AST types. This decouples
the AST type from the visitor interface, allowing new variants to be introduced as well.
Unfortunately, the extensive use of introspection causes severe performance penalties. Based
on the Walkabout, Grothoff proposed Runabout [21], attempting to achieve reasonable
performance through sophisticated bytecode generation and caching. Forax’s Sprintabout [17]
further improves the performance of Runabout by eliminating the manual creation of AST
infrastructure. However, Walkabout and its successors are not type-safe. Torgersen [53]
developed variations of the Visitor pattern to solve the Expression Problem [59]. The
solutions are type-safe but rely on advanced features of generics such as wildcards or F-bounds.
Also, the programming patterns are relatively complex thus hard for programmers to learn.
Inspired by other type-safe variations of Visitor pattern [44, 40, 24] using advanced Scala



W.Zhang and B. C. d. S. Oliveira 29:27

type system features, our work applies similar techniques but requires only simple generics
available in Java. The visitX methods in modular external visitor interfaces are a novel
contribution of our work, and greatly account for the simplicity and flexibility of EVF.

Structure-Shy Traversals with Visitors. There has also been work on eliminating boilerplate
code in the Visitor pattern. A typical way is to use default visitors [38]. A default visitor
defines the traversal template for a specific visitor interface. By subclassing the default
visitor, concrete visitors only need to override interesting cases. Walkabout [45] removes the
need of a new traversal template for every visitor interface by providing a single traversal
template that works for all visitors. The default traversal in Walkabout is achieved through
invoking the overloaded visit method on children. EVF employs annotation processing to
automatically generate specialized traversal templates for each modular visitor interface.
But the fundamental difference is that static type safety is preserved in EVF. Visser [57]
ported ideas from the rewriting system Stratego [56] to the Visitor pattern. The resulting
framework JJTraverler exposes a series of visitor combinators to achieve flexible traversal
control and visitor combination. The proposed combinators can express various traversal
strategies such as bottom-up, top-down, sequential or alternative composition of visitors.
To make these combinators generic, runtime reflection is also used. The combinators are
developed in the setting of imperative visitors and hence can not be directly mapped to
EVF. We would like to explore a library of visitor combinators in EVF as future work.

Object Algebras and Church Encodings. Various programming techniques have been
inspired by Church encodings in the past. Hinze [23] firstly Church-encoded datatypes using
type classes in Haskell. Based on Hinze’s work, Oliveira et al. [42] presented solutions to
the EP using type classes. Carette et al. [7] and Hofer et al. [25] further illustrated the
applicability of those techniques for defining interpreters and embedded DSLs. Another well-
known solution to the EP is “Data types à la carte” (DTC) [52]. DTC represents a data type
as a functor, where a type parameter is used for capturing recursive occurrences of that data
type, enabling extensibility. A type-level fixpoint is defined for tying the knot. As discussed in
detail in Section 2, Church encodings suffer from lack of traversal control. A variant of Church
encodings called Mendler encoding [34] offers recursion control. Delaware et al. [12] combines
Mendler encodings and DTC to develop modular meta-theory. Technically speaking, Modular
external visitors differ from Mendler-style encodings in that they require recursive types. The
use of recursive types is unproblematic in Java and it is the key for dealing with dependencies
and achieving more efficient traversals. Mendler encodings, on the other hand, do not rely on
recursive types, but cannot deal with dependencies and (just as regular Church encodings)
suffer from efficiency problems. In object-oriented programming, Object Algebras [41] are also
a modular design pattern based on Church encodings. Object Algebras solve the recursion
control problem by instantiating Object Algebra interface using thunks [41]. Improved
support for dependencies for Object Algebras have been proposed [43, 50]. Unfortunately,
this cannot be ported to Java as more sophisticated features are required. Other problems
such as no concrete AST representation hinder the practical use of Object Algebras [20].
EVF visitors solve these problems with only simple generics, thus eliminating the need for
various techniques used with Object Algebras.

Component-Based Language Development. The idea of constructing languages by as-
sembling components dates back to the 1980s [30]. Most closely related is Mosses’s work
on component-based semantics [36]. The idea is to provide a collection of highly reusable
fundamental constructs (funcons) with predefined semantics [9]. By mapping the constructs

ECOOP 2017



29:28 EVF

of a language to these funcons, the operational semantics of the language can be obtained
for free. The semantics of these funcons are specified using modular structural operational
semantics (MSOS) [35]. Later work on Implcitly MSOS (I-MSOS) [37] deals with the con-
text propagation problem, further improving the modularity and reusability of semantics
specification. From MSOS/I-MSOS specifications, interpreters can be derived [49]. Similar
funcons can also be developed as EVF components.

Language Workbenches. Language workbenches are aimed at lowering the amount of
effort to develop new languages. Examples of modern, mature language workbenches include:
Xtext [13], MPS [18], Spoofax [29]. At the moment some language workbenches and other
tools provide support for code reuse through syntactic modularization techniques, based on
meta-programming and code generation. For example, DynSem [55] is a DSL integrated
into Spoofax for generating interpreters from I-MSOS like specifications. Such techniques
allow language components to be specified in separate files. However, more semantic aspects
of modularity, such as the ability to do separate compilation and modular type-checking
are typically missing. Recent work on MontiCore [22] generates both the visitor and the
AST infrastructure from the grammar specification. MontiCore allows two dimensions of
extensibility. The extensibility on data variants is achieved through making the extended
AST types subtypes of the initial AST types, and overriding the accept methods inherited
from the initial AST types appropriately. MontiCore automatically overrides the accept
methods by checking the runtime type of the visitor instance and casting it to the most
specific one. Moreover, since the accept methods are overloaded in extended AST types, the
compiler gives no warning when an initial visitor is applied to an extended AST, leading
to unexpected behavior. The technique is quite similar to Krishnamurthi et. al’s [31]
early solution to extensible visitors. Like their solution, Monticore’s approach does not
fully support modular type-checking, due to the use of casts. EVF provides a different
approach to the composition of semantic language components that fully supports type-safe
extensibility, as well as separate compilation. Unlike MontiCore, EVF generates different
AST infrastructures for different visitor interfaces and requires no casts. Hence, the compiler
will capture the mismatch between the visitors and the AST. However, EVF does not support
modularization of syntactic language components (such as grammars and/or parsers) for the
moment. An interesting venue for future work would be to integrate the EVF techniques
into a language workbench, such as MontiCore.

Software Product-Lines. Software Product-Lines (SPLs) [10, 33, 28] allow similar systems
(with different variations) to be generated from a set of common features. There are various
tools that can be used to develop SPLs, including GenVoca [4], AHEAD [3], FeatureC++ [2]
and FeatureHouse [1]. SPLs tools can also be used to modularize features in programming
languages and are an alternative to language workbenches. In contrast to language work-
benches, SPLs tools are targeted at general purpose software development. Similarly to most
language workbenches, most SPLs tools use syntactic modularization mechanisms, which do
not support separate compilation and/or modular type-checking.

8 Conclusion

We have presented EVF: an extensible and expressive Java Visitor framework. EVF’s
support for modular external visitors allows complex dependencies between operations to
be expressed modularly and provides users with flexible traversal strategies for defining



W.Zhang and B. C. d. S. Oliveira 29:29

expressive operations. To make EVF easy to use, we develop an annotation processor to
generate boilerplate code. Users only need to annotate the Object Algebra interfaces. Then
all the infrastructure will be automatically generated, including ASTs and AST traversals.
The TAPL case study demonstrates the applicability and benefits of EVF in reducing both
implementation effort and the need for specialized PL implementation knowledge. Currently,
EVF users have to instantiate visitors manually. One line of future work is to investigate
automatic instantiation of visitors. Similar instantiation problem has been identified by
Wang and Oliveira [60] and solved by Wang et al. [61]. It may be possible to automatically
instantiate visitors in EVF through a combination of family polymorphism [16] and the
technique from [61]. Another avenue of future work is to use EVF in larger applications,
such as compilers or program analysis tools.

Acknowledgements. We would like to thank the anonymous reviewers for their helpful
comments.

References
1 Sven Apel, Christian Kastner, and Christian Lengauer. Featurehouse: Language-

independent, automated software composition. In Proceedings of the 31st International
Conference on Software Engineering, 2009.

2 Sven Apel, Thomas Leich, Marko Rosenmüller, and Gunter Saake. Featurec++: on the
symbiosis of feature-oriented and aspect-oriented programming. In International Confer-
ence on Generative Programming and Component Engineering, 2005.

3 Don Batory. Feature-oriented programming and the ahead tool suite. In Proceedings of the
26th International Conference on Software Engineering, 2004.

4 Don Batory and Bart J. Geraci. Composition validation and subjectivity in genvoca gen-
erators. IEEE Transactions on Software Engineering, 23(2):67–82, 1997.

5 Corrado Böhm and Alessandro Berarducci. Automatic synthesis of typed λ-programs on
term algebras. Theoretical Computer Science, 39:135–154, 1985.

6 Peter Buchlovsky and Hayo Thielecke. A type-theoretic reconstruction of the visitor pattern.
Electronic Notes in Theoretical Computer Science, 155:309–329, 2006.

7 Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. Finally tagless, partially evaluated:
Tagless staged interpreters for simpler typed languages. Journal of Functional Programming,
19(05):509–543, 2009.

8 Alonzo Church. A set of postulates for the foundation of logic I. Annals of Mathematics,
33:346–366, 1932.

9 Martin Churchill, Peter D. Mosses, and Paolo Torrini. Reusable components of semantic
specifications. In Proceedings of the 13th International Conference on Modularity, 2014.

10 Paul Clements and Linda Northrop. Software product lines. Addison-Wesley„ 2002.
11 Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Functional characters of

solvable terms. Mathematical Logic Quarterly, 27(2-6):45–58, 1981.
12 Benjamin Delaware, Bruno C. d. S. Oliveira, and Tom Schrijvers. Meta-theory à la carte.

In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2013.

13 Sven Efftinge and Markus Völter. oAW xText: A framework for textual DSLs. InWorkshop
on Modeling Symposium at Eclipse Summit, 2006.

14 Sebastian Erdweg, Paolo G Giarrusso, and Tillmann Rendel. Language composition un-
tangled. In Proceedings of the Twelfth Workshop on Language Descriptions, Tools, and
Applications, 2012.

ECOOP 2017



29:30 EVF

15 Sebastian Erdweg, Tijs Van Der Storm, Markus Völter, Meinte Boersma, Remi Bosman,
William R Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex Loh, et al. The
state of the art in language workbenches. In International Conference on Software Language
Engineering, 2013.

16 Erik Ernst. Family polymorphism. In European Conference on Object-Oriented Program-
ming, 2001.

17 Rémi Forax, Etienne Duris, and Gilles Roussel. Reflection-based implementation of java
extensions: the double-dispatch use-case. In Proceedings of the 2005 ACM symposium on
Applied computing, 2005.

18 Martin Fowler. Language workbenches: The killer-app for domain specific languages, 2005.
http://martinfowler.com/articles/languageWorkbench.html.

19 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns : Ele-
ments of Reusable Object-Oriented Software. Addisson-Wesley, 1994.

20 Maria Gouseti, Chiel Peters, and Tijs van der Storm. Extensible language implementation
with object algebras. In Proceedings of the 2014 International Conference on Generative
Programming: Concepts and Experiences, 2014.

21 Christian Grothoff. Walkabout revisited: The runabout. In European Conference on Object-
Oriented Programming, 2003.

22 Robert Heim, Pedram Mir Seyed Nazari, Bernhard Rumpe, and Andreas Wortmann. Com-
positional language engineering using generated, extensible, static type-safe visitors. In
European Conference on Modelling Foundations and Applications, 2016.

23 Ralf Hinze. Generics for the masses. Journal of Functional Programming, 16(4-5), 2006.
24 Christian Hofer and Klaus Ostermann. Modular domain-specific language components in

scala. In Proceedings of the 9th International Conference on Generative Programming and
Component Engineering, 2010.

25 Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adriaan Moors. Polymorphic
embedding of dsls. In Proceedings of the 7th international conference on Generative pro-
gramming and component engineering, 2008.

26 Graham Hutton. A tutorial on the universality and expressiveness of fold. Journal of
Functional Programming, 9(4):355–372, 1999.

27 Pablo Inostroza and Tijs van der Storm. Modular interpreters for the masses. In Pro-
ceedings of the 2015 International Conference on Generative Programming: Concepts and
Experiences, 2015.

28 Christian Kästner, Sven Apel, and Klaus Ostermann. The road to feature modularity? In
Proceedings of the 15th International Software Product Line Conference, Volume 2, 2011.

29 Lennart C.L. Kats and Eelco Visser. The spoofax language workbench: Rules for declarative
specification of languages and ides. In Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications, 2010.

30 Paul Klint. A meta-environment for generating programming environments. ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 1993.

31 Shriram Krishnamurthi, Matthias Felleisen, and Daniel P Friedman. Synthesizing object-
oriented and functional design to promote re-use. In Proceedings of the 12th European
Conference on Object-Oriented Programming, 1998.

32 Ralf Lämmel, Joost Visser, and Jan Kort. Dealing with large bananas. In Johan Jeuring,
editor, Workshop on Generic Programming, Ponte de Lima, July 2000. Technical Report
UU-CS-2000-19, Universiteit Utrecht.

33 Roberto E Lopez-Herrejon, Don Batory, and William Cook. Evaluating support for fea-
tures in advanced modularization technologies. In European Conference on Object-Oriented
Programming, 2005.



W.Zhang and B. C. d. S. Oliveira 29:31

34 Nax Paul Mendler. Inductive types and type constraints in the second-order lambda calcu-
lus. Annals of pure and Applied logic, 51(1-2):159–172, 1991.

35 Peter D Mosses. Modular structural operational semantics. The Journal of Logic and
Algebraic Programming, 60:195–228, 2004.

36 Peter D Mosses. Component-based semantics. In Proceedings of the 8th international
workshop on Specification and verification of component-based systems, 2009.

37 Peter D. Mosses and Mark J. New. Implicit propagation in structural operational semantics.
Electronic Notes in Theoretical Computer Science, 229(4):49–66, August 2009.

38 Martin E Nordberg III. Variations on the visitor pattern. Ann Arbor, 1996.
39 Martin Odersky and Matthias Zenger. Independently extensible solutions to the expres-

sion problem. In The 12th International Workshop on Foundations of Object-Oriented
Languages, 2005.

40 Bruno C. d. S. Oliveira. Modular visitor components. In Proceedings of the 23rd European
Conference on Object-Oriented Programming, 2009.

41 Bruno C. d. S. Oliveira and William R. Cook. Extensibility for the masses: Practical
extensibility with object algebras. In Proceedings of the 26th European Conference on
Object-Oriented Programming, 2012.

42 Bruno C. d. S. Oliveira, Ralf Hinze, and Andres Löh. Extensible and modular generics for
the masses. Trends in Functional Programming, 7:199–216, 2006.

43 Bruno C. d. S. Oliveira, Tijs van der Storm, Alex Loh, and William R. Cook. Feature-
oriented programming with object algebras. In Proceedings of the 27th European Conference
on Object-Oriented Programming, 2013.

44 Bruno C. d. S. Oliveira, Meng Wang, and Jeremy Gibbons. The visitor pattern as a reusable,
generic, type-safe component. In Proceedings of the 2008 ACM International Conference
on Object Oriented Programming Systems Languages and Applications, 2008.

45 Jens Palsberg and C. Barry Jay. The essence of the visitor pattern. In Proceedings of the
22nd International Computer Software and Applications Conference, 1998.

46 Michel Parigot. Recursive programming with proofs. Theoretical Computer Science,
94(2):335–356, 1992.

47 Benjamin C Pierce. Types and programming languages. MIT press, 2002.
48 Garrel Pottinger. A type assignment for the strongly normalizable λ-terms. To HB Curry:

essays on combinatory logic, lambda calculus and formalism, pages 561–577, 1980.
49 Casper Bach Poulsen and Peter D Mosses. Generating specialized interpreters for modular

structural operational semantics. In International Symposium on Logic-Based Program
Synthesis and Transformation, 2013.

50 Tillmann Rendel, Jonathan Immanuel Brachthäuser, and Klaus Ostermann. From object
algebras to attribute grammars. In Proceedings of the 2014 ACM International Conference
on Object-Oriented Programming Systems Languages and Applications, 2014.

51 John C Reynolds. The coherence of languages with intersection types. In International
Symposium on Theoretical Aspects of Computer Software, 1991.

52 Wouter Swierstra. Data types à la carte. Journal of functional programming, 18(04):423–
436, 2008.

53 Mads Torgersen. The expression problem revisited – four new solutions using generics. In
Proceedings of the 18th European Conference on Object-Oriented Programming, 2004.

54 Edoardo Vacchi and Walter Cazzola. Neverlang: A framework for feature-oriented language
development. Computer Languages, Systems & Structures, 43:1–40, 2015.

55 Vlad Vergu, Pierre Neron, and Eelco Visser. Dynsem: A dsl for dynamic semantics specific-
ation. In 26th International Conference on Rewriting Techniques and Applications, 2015.

ECOOP 2017



29:32 EVF

56 Eelco Visser. Stratego: A language for program transformation based on rewriting
strategies system description of stratego 0.5. In International Conference on Rewriting
Techniques and Applications, 2001.

57 Joost Visser. Visitor combination and traversal control. In Proceedings of the 2001 ACM
International Conference on Object-Oriented Programming Systems Languages and Applic-
ations, 2001.

58 John Vlissides. Visitor in frameworks. C++ Report, 11(10):40–46, 1999.
59 Philip Wadler. The Expression Problem. Email, November 1998. Discussion on the Java

Genericity mailing list.
60 Yanlin Wang and Bruno C. d. S. Oliveira. The expression problem, trivially! In Proceedings

of the 15th International Conference on Modularity, 2016.
61 Yanlin Wang, Haoyuan Zhang, Bruno C d S Oliveira, and Marco Servetto. Classless java.

In Proceedings of the 2016 ACM SIGPLAN International Conference on Generative Pro-
gramming: Concepts and Experiences, 2016.

62 Haoyuan Zhang, Zewei Chu, Bruno C. d. S. Oliveira, and Tijs van der Storm. Scrap your
boilerplate with object algebras. In Proceedings of the 2015 ACM International Conference
on Object-Oriented Programming Systems Languages and Applications, 2015.



An Empirical Study on Deoptimization in the
Graal Compiler∗

Yudi Zheng1, Lubomír Bulej†2, and Walter Binder3

1 Faculty of Informatics, Università della Svizzera italiana (USI), Switzerland
Yudi.Zheng@usi.ch

2 Faculty of Mathematics and Physics, Charles University, Czech Republic
lubomir.bulej@d3s.mff.cuni.cz

3 Faculty of Informatics, Università della Svizzera italiana (USI), Switzerland
Walter.Binder@usi.ch

Abstract
Managed language platforms such as the Java Virtual Machine or the Common Language Runtime
rely on a dynamic compiler to achieve high performance. Besides making optimization decisions
based on the actual program execution and the underlying hardware platform, a dynamic com-
piler is also in an ideal position to perform speculative optimizations. However, these tend to
increase the compilation costs, because unsuccessful speculations trigger deoptimization and re-
compilation of the affected parts of the program, wasting previous work. Even though speculative
optimizations are widely used, the costs of these optimizations in terms of extra compilation work
has not been previously studied. In this paper, we analyze the behavior of the Graal dynamic
compiler integrated in Oracle’s HotSpot Virtual Machine. We focus on situations which cause
program execution to switch from machine code to the interpreter, and compare application
performance using three different deoptimization strategies which influence the amount of extra
compilation work done by Graal. Using an adaptive deoptimization strategy, we managed to
improve the average start-up performance of benchmarks from the DaCapo, ScalaBench, and
Octane benchmark suites, mostly by avoiding wasted compilation work. On a single-core system,
we observed an average speed-up of 6.4% for the DaCapo and ScalaBench workloads, and a speed-
up of 5.1% for the Octane workloads; the improvement decreases with an increasing number of
available CPU cores. We also find that the choice of a deoptimization strategy has negligible
impact on steady-state performance. This indicates that the cost of speculation matters mainly
during start-up, where it can disturb the delicate balance between executing the program and
the compiler, but is quickly amortized in steady state.

1998 ACM Subject Classification D.3.4 Programming Languages, Processors — Compilers, Op-
timization

Keywords and phrases Dynamic compiler; profile-guided optimization; deoptimization

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.30

∗ The research presented in this paper was supported by Oracle (ERO project 1332), by the
European Commission (contract ACP2-GA-2013-605442), by the Charles University institutional fund-
ing (project SVV-260451), and by project no. LTE117003 (ESTABLISH) from the INTER-EUREKA
LTE117 programme by the Ministry of Education, Youth and Sports of the Czech Republic.

† Major part of the work was conducted while Lubomír Bulej was with Faculty of Informatics, Università
della Svizzera italiana (USI), Switzerland.

© Yudi Zheng, Lubomír Bulej, and Walter Binder;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 30; pp. 30:1–30:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


30:2 An Empirical Study on Deoptimization in the Graal Compiler

1 Introduction

Managed language platforms such as the Java Virtual Machine (JVM) or the Common
Language Runtime provide memory-safe and portable execution environments targeted by
many object-oriented programming languages. On these platforms, programs are initially
executed by an interpreter which collects and uses profiling information to schedule frequently
executed methods (or code paths) for compilation into machine code to speed up the execution
of the program. The compilation is handled by a dynamic optimizing compiler (or a hierarchy
of compilers if compilation is tiered). By making a program run faster, the dynamic compiler
frees up computational resources that can be used to perform more optimizations. However,
to actually benefit from faster program execution, the compiler should only consume a
fraction of the computational resources that it has freed up. Because the effects of dynamic
compilation accumulate over time, the goal is to speed up the program as soon as possible,
but without slowing it down by the compilation work. Deciding what to compile, when, and
how then becomes an optimization problem of its own [17].

Besides producing machine-code for the underlying hardware platform, the dynamic
compiler is also in an ideal position to perform speculative optimizations based on the
collected profiling information. While profile-driven and feedback-driven optimizations are
not exclusive to managed platforms with dynamic compilers, a dynamic compiler works with
profiles that reflect the actual behavior of the currently executing program. This provides
the compiler with a more accurate view of the common-case behavior which the compiler
should optimize. If a certain assumption about program behavior turns out to be wrong,
the affected code can be recompiled to reflect the new behavior. This allows the dynamic
compiler to pay less attention to uncommon execution paths, replacing them with traps that
switch from program’s machine code back to the virtual machine’s (VM) runtime which then
decides how to handle the situation. As a result, the compiler needs to do less work and
produces higher-density code for the common code paths. Combined with aggressive inlining
and code specialization based on receiver type feedback, a dynamic compiler can optimize
away a significant portion of the abstraction overhead commonly found in object-oriented
programs that make heavy use of small methods and dynamic binding.

The pioneering work by the authors of the SmallTalk-80 [6] and the Self-93 [11] systems
has laid down the foundations of modern dynamic compilers, and sparked an enormous
body of research [1] on techniques that make managed language platforms fast, such as
selective compilation [11, 15, 4, 16, 17], profiling for feedback-directed optimization and code
generation [22, 2, 25, 21], or dynamic deoptimization and on-stack replacement [10, 19, 7,
14, 12]. As a result, adaptive compilation and speculative optimization techniques are now
widely used. Ideally, speculative optimizations will always turn out to be right and provide
performance gains that outweigh the one-time cost in terms of compilation time before
the program terminates. In reality, some speculations in the machine code will be wrong,
and trigger deoptimization. Besides switching to interpreted (or otherwise less optimized)
execution mode, deoptimization may also trigger recompilation of the affected code, thus
wasting previous compilation work and adding to the overall cost of compilation.

How often does this happen and for what reason? How much compilation effort is
wasted and what is the cost of speculative optimizations? What happens when the compiled
code triggers deoptimization? In fact, these aspects of speculative optimizations have not
been previously studied in the literature—unlike, e.g., the trade-offs involved in selective
compilation. We therefore analyze the deoptimization behavior of code compiled by the
Graal [18] dynamic compiler and the behavior of the VM runtime in response to the



Y. Zheng, L. Bulej, and W. Binder 30:3

deoptimizations. Even though Graal has not (yet) replaced the classic C2 server compiler,
it is integrated in Oracle’s HotSpot Virtual Machine and serves as the basis for the Truffle
framework for self-optimizing interpreters [24]. Truffle allows executing programs written in
modern dynamic languages on the JVM and generally outperforms the original interpreters.
Similarly to the classic C2 compiler, Graal performs feedback-directed optimizations and
generates code that speculates on receiver types and uncommon paths, but is more aggressive
about it. Unlike the C2 compiler, when Graal reaches a deoptimization site in the compiled
code, it switches back to interpreted mode and discards the machine code with the aim to
generate it again using better profiling information. The C2 compiler is more conservative
and in many cases discards the compiled code only after it triggers multiple deoptimizations.
The obvious question is then: which of the two approaches is better, and how often programs
actually violate the assumptions put in the code by the dynamic compiler?

In this paper, we make the following contributions:
1. We characterize the deoptimization causes in the code produced by Graal for the Da-

Capo [3], ScalaBench [20]), and Octane [8] benchmark suites (Section 3). We show
that only a small fraction (∼2%) of deoptimization sites is triggered, most of which
(∼98%) cause reprofiling. We investigate the causes of two types of repeatedly triggered
deoptimizations that appear in the profile.

2. We provide two alternative deoptimization strategies for the Graal compiler. A conser-
vative strategy, which defers invalidation of compiled code until enough deoptimizations
are observed (default HotSpot behavior not used by Graal), and an adaptive strategy
which switches among various deoptimization actions based on a precise deoptimization
profile (Section 4).

3. We evaluate the performance of both deoptimization strategies and compare them to the
default strategy used by Graal (Section 5). We show that the conservative strategy may
cause extra compilation work, while the adaptive strategy reduces compilation work and
provides statistically significant benefits to startup performance on a single-core system
with both static and dynamic languages.

Before presenting our main contributions, we provide a summary of related work and the
necessary background on deoptimization (both general and Graal-specific).

2 Related Work and Background

Dynamic deoptimization as a way to transfer execution from compiled code to interpreted
code was introduced in the Self system to facilitate full source-level debugging of optimized
code [10]. It also introduced techniques such as on-stack-replacement, which were since
adopted and improved by others [19, 7, 14, 12].

Being more interested in the use of deoptimization in the implementation of speculative
optimizations, we trace their origins to partial and deferred compilation in Self [5]. To reduce
compilation time, program code that was predicted to execute infrequently was compiled only
as a stub which invoked the compiler when a particular code path was first executed, thus
deferring the compilation of uncommon code paths until they were actually needed. Many
of the techniques found in Self, such as adaptive compilation, dynamic deoptimization, and
speculative optimizations using deoptimization, were later adopted by Java [19, 14]. Further
improvements to the HotSpot VM target selective compilation [15, 4, 16, 17], phase-based
recompilation [9], and feedback-directed optimization [22, 2, 25, 21].

In general, deoptimization switches to a less optimized execution mode, e.g., interpreted
execution, or execution of machine code generated by a baseline compiler. In Self, de-

ECOOP 2017



30:4 An Empirical Study on Deoptimization in the Graal Compiler

optimization was primarily used to defer compilation and to execute uncommon code in
the interpreter. In a modern HotSpot JVM, especially with Graal enabled, deoptimization
represents a key recovery mechanism for speculative optimizations. However, despite the
role of deoptimization in the implementation of speculative optimizations, we are not aware
of a study that characterizes the actual deoptimization behavior of programs compiled by a
speculating dynamic compiler, and the impact of the deoptimizations on the compiled code.

That does not mean that deoptimization does not receive any attention. In recent
work [23], the authors present a VM implementation technique that allows a deoptimization
triggered in aggressively optimized code to resume execution in (deoptimized) machine code
generated by the same compiler at a different optimization level. In contrast to an interpreter
or baseline compiler, both of which rely on a fixed stack-frame layout, using a single compiler
allows using an optimized stack layout for both the optimized and deoptimized code. This
approach helps reduce the complexity of a VM implementation, because neither an interpreter
nor a baseline compiler are needed.

In the remainder of this section we first provide more background on the use of deoptimiz-
ation in speculative optimizations, and then complement it with details specific to the Graal
compiler.

2.1 Speculation and Deoptimization

Speculative optimizations are aimed at optimizing for the common case, which is approximated
using profiling data collected during program execution. Common speculative optimizations
include implicit null checks, uncommon conditional branch elision, and type specialization.
If a speculation turns out to be wrong, deoptimization allows the VM to ensure that the
program always executes correctly, albeit more slowly.

Deoptimizations are usually triggered synchronously with program execution, either
explicitly by invoking a deoptimization routine of the VM runtime, or implicitly, by performing
an operation which causes a signal (e.g., segmentation fault in the case of a null pointer)
to be sent to the VM, which handles the signal and switches execution to the interpreter.
Deoptimizations can be also triggered asynchronously at the VM level, when the program
invalidates assumptions under which it was compiled, e.g., when the second class implementing
an interface is loaded.

The ability to trigger deoptimization from compiled code allows the compiler to avoid
generating code that will be rarely used, e.g., code that constructs and throws exceptions,
because exceptions should be rare in well-written programs. This applies both to explicitly
thrown exceptions as well as exceptions that can be thrown implicitly by operations such
as array access or division by zero. Based on the profiling feedback, the dynamic compiler
can apply a similar approach to conditional jumps, replacing low-probability branches
with a deoptimization trigger. Hence, the compiler saves computing resources by avoiding
code generation for the uncommon paths. Moreover, this approach helps speed up global
optimizations thanks to the reduced program state, and makes the generated machine code
more compact, resulting in better instruction cache performance.

Another common kind of speculative optimization relies on type feedback, which allows
the compiler to specialize code to most commonly used types. For instance, the targets of a
virtual method invocation may be inlined (or the invocation can be devirtualized) if only a
limited number of receiver types has been observed at a particular callsite. The type-specific
code will be guarded by type-checking conditions, while a generic code path representing an
uncommon branch may trigger deoptimization to handle the invocation in the interpreter.



Y. Zheng, L. Bulej, and W. Binder 30:5

While deoptimization is handled by the VM runtime, the compiler needs to provide the
VM with details on how to handle it. This information is typically provided in form of
parameters passed to the invocation of the deoptimization trigger routine in the generated
code. For example, if recompilation of the code that triggers a deoptimization is unlikely
to make it any better, the VM is instructed to just switch to the interpreter and leave the
compiled code as-is. If a deoptimization does not depend on profiling data and could be
eliminated by recompiling the code, the code is invalidated and the corresponding compilation
unit is immediately scheduled for recompilation. If a deoptimization was caused by insufficient
profiling information, besides invalidating the machine code, the VM also attempts to reprofile
the method thoroughly and recompile it later based on the updated profile. To avoid an
endless cycle of recompilation and deoptimization for pathological cases, per-method counters
are used to stop recompilation of a method if it has been recompiled too many times (yet
did not eliminate the deoptimization).

In state-of-the-art dynamic compilers the mapping between a deoptimization reason and
the corresponding deoptimization action is hard-coded. This makes perfect sense for certain
cases, when there is only a single suitable deoptimization action. However, determining the
most suitable action for situations in which the deoptimization is caused by an incomplete
profile is difficult. For instance, when the compiler inlines potential callee methods based
on the receiver type profile, it inserts a reprofiling deoptimization trigger in the uncommon
(generic) path to cope with previously unseen receiver types. When encountering a very
rare receiver type, deoptimization (including reprofiling) is triggered. However, due to the
(usually) limited receiver type profile space1, the newly collected profiling information might
not include the rare case at the time of recompilation. The dynamic compiler will then either
use the original invocation as the uncommon path (if megamorphic inlining is supported), or
not inline the callsite at all. In both cases, the reprofiling and recompilation effort is wasted,
and the recompiled code may become even worse.

2.2 Deoptimization in the Graal Compiler
The Graal compiler is integrated into the HotSpot runtime via the JVM Compiler Interface
(JVMCI)2 and replaces the HotSpot VM’s C2 server compiler when enabled. It makes
heavy use of profile-directed speculative optimizations and is thus more likely to exhibit
deoptimizations. Because Graal only provides the last-level compiler, it can only instruct the
HotSpot runtime what action to perform during deoptimization. The deoptimization actions
used internally by Graal can be therefore directly mapped to the deoptimization actions
defined in the HotSpot runtime.

The possible deoptimization actions are summarized in Table 1. Apart from the None
action, which only switches execution to the interpreter, all other options influence the compil-
ation unit which triggered the deoptimization in some way. Most of them invalidate the compil-
ation unit’s machine code immediately, with the exception of the RecompileIfTooManyDeopts
action, which depends on a profile of preceding deoptimizations, and only invalidates the
compiled code if too many deoptimizations are triggered at the same site or within the
compilation unit.

Even though the deoptimization action is fixed in the compiled code, the HotSpot runtime
rewrites the actual action either to force reprofiling or to avoid endless deoptimization

1 -XX:TypeProfileWidth in the Oracle JVM, defaults to 2 in standard HotSpot runtime or 8 in the Graal
compiler.

2 http://openjdk.java.net/jeps/243

ECOOP 2017

http://openjdk.java.net/jeps/243


30:6 An Empirical Study on Deoptimization in the Graal Compiler

Table 1 Deoptimization actions in the Graal compiler.

Graal Deopt Action Description HotSpot Deopt Action

None Do not invalidate the compiled
code.

Action_none

RecompileIfTooManyDeopts Do not invalidate the compiled code
and schedule a recompilation if
enough deoptimizations are seen.

Action_maybe_recompile

InvalidateReprofile Invalidate the compiled code and
reset the invocation counter.

Action_reinterpret

InvalidateRecompile Invalidate the compiled code and
schedule a recompilation immedi-
ately.

Action_make_not_entrant

InvalidateStopCompiling Invalidate the compiled code and
stop compiling the outermost
method of this compilation.

Action_make_not_compilable

Table 2 Deoptimization reasons in the Graal compiler.

Deoptimization Reason Description Associated Action

None Absence of a relevant deoptimization. -
NullCheckException Unexpected null or zero divisor. None

InvalidateRecompile
InvalidateReprofile

BoundsCheckException Unexpected array index. InvalidateReprofile
ClassCastException Unexpected object class. InvalidateReprofile
ArrayStoreException Unexpected array class. InvalidateReprofile
UnreachedCode Unexpected reached code. InvalidateRecompile

InvalidateReprofile
TypeCheckedInliningViolated Unexpected receiver type. InvalidateReprofile
OptimizedTypeCheckViolated Unexpected operand type. InvalidateRecompile

InvalidateReprofile
NotCompiledExceptionHandler Exception handler is not compiled. InvalidateRecompile
Unresolved Encountered an unresolved class. InvalidateRecompile
JavaSubroutineMismatch Unexpected JSR return address. InvalidateReprofile
ArithmeticException A null_check due to division by zero. None

InvalidateReprofile
RuntimeConstraint Arbitrary runtime constraint violated. None

InvalidateRecompile
InvalidateReprofile

LoopLimitCheck Compiler generated loop limits check failed. InvalidateRecompile
TransferToInterpreter Explicit transfer to interpreter. -



Y. Zheng, L. Bulej, and W. Binder 30:7

and recompilation cycles. If a recompilation is scheduled for the second time for the same
deoptimization site with the same reason, the HotSpot runtime rewrites the action to
InvalidateReprofile, which resets method’s hotness counters and causes it to be reprofiled. If
the total number of recompilations of any method exceeds a threshold, the HotSpot runtime
rewrites the action to InvalidateStopCompiling to prevent further recompilation of the method.

To illustrate how Graal uses these deoptimization actions, Table 2 shows the deoptimiz-
ation reasons along with the associated actions as defined and used throughout the Graal code
base. The table reveals that the actions RecompileIfTooManyDeopts and
InvalidateStopCompiling are not used as of Graal v0.173. This suggests that the compiler
tries to keep full control over invalidation of compiled code, and that it tries not to give up
any optimization opportunity until the HotSpot runtime enforces certain actions.

Some of the deoptimization reasons are used with multiple actions, depending on the
situation in which the deoptimization is invoked. For instance, the OptimizedTypeCheck-
Violated reason is used when inlining the target of an interface with a single implementation,
and when optimizing instanceof checks. In the former case, if a guard on the expected receiver
type fails, the compiler invokes the InvalidateRecompile action with the reason Optimized-
TypeCheckViolated, because it has produced the compiled code under the assumption that
there is only a single implementation of a particular interface. In the latter case, the compiler
checks against types derived from the given type that have been observed so far. Because
the occurrence of a previously unseen type indicates an incomplete type profile, the compiler
invokes the InvalidateReprofile action to get a more accurate type profile. If the compiler
knew that the previously unseen type was a very rare case, it could invoke the None action.
However, because encountering a new type may also signify a phase change in the application,
Graal uses the InvalidateReprofile action.

Nevertheless, the mapping between deoptimization reasons and deoptimization actions
in the Graal compiler is hard-coded and represents the trade-offs between startup and
steady-state performance made by the compiler developers. In the following sections, we
provide quantitative and qualitative analyses of how these decisions influence the actual
deoptimization behavior of the Graal compiler.

3 Study of Deoptimization Behavior

In this section we analyze the deoptimization behavior of the HotSpot VM with the Graal
compiler when executing benchmarks from the DaCapo [3], ScalaBench [20], and Octane [8]
benchmark suites. The individual benchmarks are based on real-world programs written in
Java and Python (DaCapo), Scala (ScalaBench), and JavaScript (Octane), slightly modified
to run under a benchmarking harness suitable for experimental evaluation. The Python
workloads are executed by Jython, a Python interpreter written in Java, the Scala workloads
are compiled to Java bytecode, and the JavaScript workloads are executed by Graal.js, a
JavaScript runtime written in Java on top of the Truffle framework [24].

We first analyze the kind of deoptimization sites emitted by Graal and the frequency
with which they are triggered during execution, and then investigate two specific cases in
which the same deoptimizations are triggered repeatedly.

3 https://github.com/graalvm/graal-core/tree/graal-vm-0.17

ECOOP 2017

https://github.com/graalvm/graal-core/tree/graal-vm-0.17


30:8 An Empirical Study on Deoptimization in the Graal Compiler

3.1 Profiling Deoptimizations
To collect information about deoptimizations, we use a deoptimization profiler based on the
accurate profiling framework integrated in Graal [26]; that framework ensures that profiling
does not perturb the compiler optimizations. The profiler instruments each deoptimization
site and reports the number of deoptimizations triggered at that site during execution.

The identity of each deoptimization site consists of the deoptimization reason, action, the
originating method and bytecode index, and (optionally) a context identifying the compilation
root if the method was inlined. The information encoded in the site identity along with
the number of deoptimizations triggered at the site allow us to perform qualitative and
quantitative analysis of the deoptimizations triggered in the compiled code produced by Graal.
To this end, we profile selected benchmarks4 from the DaCapo 9.12 suite, all benchmarks
from the ScalaBench suite, and selected benchmarks5 from the Octane suite on a multi-core
platform6.

We present the resulting profile from different perspectives. First we provide a static
break-down of the deoptimization sites and deoptimization actions found in the code emitted
by Graal (Section 3.1.1). This is complemented by a dynamic view of deoptimization sites
that are actually triggered during execution (Section 3.1.2). Finally, we look at the most
frequent repeatedly-triggered deoptimizations, because these are potential candidates for
wasted compilation work (Section 3.1.3).

3.1.1 Deoptimizations Sites Emitted
The profiling results are summarized in Table 3. The top-level column groups represent
the actions used at the deoptimization sites. We only track three of the five possible
deoptimization actions, because Graal does not make use of the other two (c.f. Section 2.2).
The bottom-level columns correspond to the number of deoptimization sites invoking a
particular action, the fraction of the total number of sites, and the fraction of the total
number of deoptimization sites emitted at which at least one deoptimization was triggered.

In general, the number of deoptimization sites emitted during a benchmark’s lifetime varies
significantly, ranging from 2000 to 23 000. For the DaCapo benchmarks, 94.17% of the total
deoptimization sites invoke the InvalidateReprofile action, 3.23% just switch to the interpreter
(action None), and 2.60% invoke the InvalidateRecompile action. For the ScalaBench bench-
marks, the compiler emits a slightly higher proportion (95.44%) of the InvalidateReprofile
deoptimization sites and a lower proportion (1.16%) of the InvalidateRecompile sites. We
attribute this to the fact that the Scala language features are compiled into complex call
chains in the Java bytecode. During dynamic compilation, these callsites are optimized with
type guards that lead to InvalidateReprofile deoptimization sites. To summarize, in standard
Java/Scala applications the Graal compiler favors speculative profile-directed optimizations,
which invoke the InvalidateReprofile deoptimization action in their guard failure paths.

For the Octane benchmarks, the compiled code of the Graal.js self-optimizing interpreter
contains a higher proportion (4.74%) of the InvalidateRecompile deoptimization sites. One of
the reasons for this difference is that language runtimes implemented on top of the Truffle

4 The eclipse and tomcat benchmarks were excluded due to their incompatibility with Java 8.
5 The pdf.js benchmark was excluded due to an internal exception.
6 Intel Xeon E5-2680, 2.7 GHz, 8 cores, 64 GB RAM, CPU frequency scaling and Turbo mode disabled,
hyper-threading enabled, Oracle JDK 1.8.0_101 b13 HotSpot Server VM (64-bit), Graal VM 0.17,
running on Ubuntu Linux Server 64-bit version 14.04.1



Y. Zheng, L. Bulej, and W. Binder 30:9

Table 3 The number and percentage of deoptimization sites with a particular action emitted
and triggered during the first benchmark iteration of the DaCapo and ScalaBench workloads, and
during the warmup phase of the Octane workloads.

Benchmark None Reprofile Recompile
# % %Hit # % %Hit # % %Hit

D
aC

ap
o

avrora 94 3.2 .00 2813 94.2 1.04 79 2.7 .00
batik 147 3.5 .00 3991 94.5 2.70 86 2.0 .02
fop 186 3.8 .00 4639 95.6 1.52 30 0.6 .00
h2 208 2.6 .00 7516 94.0 2.49 275 3.4 .05
jython 337 2.9 .00 10 837 94.5 1.89 289 2.5 .03
luindex 196 6.4 .00 2839 92.8 1.37 26 0.9 .00
lusearch 204 6.7 .00 2785 91.2 0.75 64 2.1 .00
pmd 163 2.6 .00 5942 93.2 1.11 270 4.2 .09
sunflow 92 4.1 .00 2123 94.7 1.12 26 1.2 .00
tradebeans 267 2.7 .00 9307 93.4 2.25 394 4.0 .02
tradesoap 608 2.8 .00 20 866 94.6 1.71 593 2.7 .02
xalan 225 3.7 .00 5880 95.3 0.34 63 1.0 .00
Total 2727 3.2 .00 79 538 94.2 1.68 2195 2.6 .02

Sc
al
aB

en
ch

actors 116 2.5 .00 4418 95.2 1.87 108 2.3 .09
apparat 230 3.8 .00 5751 94.7 2.45 91 1.5 .12
factorie 133 4.0 .00 3153 94.4 1.71 54 1.6 .00
kiama 178 4.9 .00 3423 94.3 2.26 31 0.9 .00
scalac 289 1.8 .00 15 525 97.6 3.15 90 0.6 .01
scaladoc 288 2.5 .00 10 909 96.1 2.93 155 1.4 .00
scalap 133 5.2 .00 2428 94.2 1.59 18 0.7 .00
scalariform 189 4.3 .00 4198 94.7 1.11 44 1.0 .00
scalatest 215 5.0 .00 4083 94.2 1.25 37 0.9 .05
scalaxb 166 4.4 .00 3547 94.7 1.68 31 0.8 .03
specs 212 5.4 .00 3672 93.6 1.27 39 1.0 .05
tmt 191 4.0 .00 4535 94.0 1.97 99 2.0 .00
Total 2340 3.4 .00 65 642 95.4 2.27 797 1.2 .03

O
ct
an

e

box2d 195 2.2 .00 8162 91.8 1.43 538 6.1 .46
code-load 699 2.9 .00 23 041 93.8 1.43 827 3.4 .37
crypto 142 2.1 .00 6325 92.6 1.46 364 5.3 .16
deltablue 136 2.3 .00 5395 91.8 1.19 347 5.9 .15
earley-boyer 172 2.4 .00 6740 92.5 1.65 376 5.2 .36
gbemu 200 1.9 .00 9743 92.9 2.74 546 5.2 .28
mandreel 367 3.3 .00 10 197 92.4 1.72 470 4.3 .37
navier-stokes 129 2.4 .00 4930 92.8 1.88 256 4.8 .06
raytrace 133 2.2 .00 5696 92.4 1.28 334 5.4 .32
regexp 221 2.3 .00 9050 93.1 2.27 449 4.6 .11
richards 113 2.2 .00 4834 91.9 1.48 316 6.0 .19
splay 123 2.0 .00 5664 93.1 1.87 296 4.9 .12
typescript 294 2.0 .00 13 403 93.1 1.58 694 4.8 .38
zlib 204 2.9 .00 6458 92.8 1.98 298 4.3 .17
Total 3128 2.4 .00 119 638 92.8 1.71 6111 4.7 .28

ECOOP 2017



30:10 An Empirical Study on Deoptimization in the Graal Compiler

framework heavily utilize the Truffle API. Because this API consists of many interfaces with
a single implementation, the compiled code for callsites invoking the Truffle API uses guarded
devirtualized invocations. Consequently, the (many) corresponding guard failure paths
invoke the InvalidateRecompile deoptimization action with OptimizedTypeCheckViolated as the
reason (c.f. Section 2.2). The second reason for the higher proportion of InvalidateRecompile
deoptimization sites is that the Truffle framework encourages aggressive type specialization
in the interpretation of abstract syntax tree (AST) nodes of the hosted language. Internally,
Truffle uses Java’s exception mechanism to undo type specialization, and because at the time
the type specialization occurs the exception handler has never been executed (otherwise the
type specialization would not happen in the first place), the dynamic compiler considers
the exception handler to be uncommon and replaces it with a deoptimization site which
invokes the InvalidateRecompile action with NotCompiledExceptionHandler as the reason. This
mechanism allows Truffle to attempt aggressive type specialization and recompile with generic
types if a type-related exception occurs.

3.1.2 Deoptimization Sites Triggered
Of all the sites emitted for the DaCapo benchmarks, only 1.68% were actually triggered
and invoked the InvalidateReprofile deoptimization action during execution. The proportion
increases to 2.27% in the ScalaBench benchmarks for the same reason that affects the
total number of emitted sites. Similarly, only 0.02% of the sites in the DaCapo bench-
marks and 0.03% of the sites in the ScalaBench benchmarks were triggered and invoked
the InvalidateRecompile action. This indicates that in ordinary Java/Scala applications,
deoptimization sites that do not rely on profiling feedback represent only a small fraction
of the total number of deoptimization sites and are rarely triggered. In addition, these
sites tend to be eliminated by the recompilation they force, therefore they rarely cause
repeated deoptimizations. In total, over 98% of all triggered deoptimizations invoke the
InvalidateReprofile action, while only less than 2% invoke the InvalidateRecompile action. This
suggests that in the code produced by the Graal compiler, deoptimizations are dominated by
those that force reprofiling of the affected code.

Compared to DaCapo and ScalaBench, the number and the proportion of the
InvalidateRecompile deoptimizations triggered during execution of the Octane benchmarks
on top of Graal.js is significantly higher. As discussed earlier, this is because the Truffle code
that undoes type specialization in the hosted language is implicitly replaced by deoptim-
ization. Nevertheless, similarly to DaCapo and ScalaBench, the most frequently triggered
deoptimization action in the Octane benchmarks is InvalidateReprofile (88.83%).

3.1.3 Deoptimizations Triggered Repeatedly
In Table 4 we show the number of sites which trigger a particular deoptimization more
than once during benchmark execution. In the DaCapo benchmarks, these sites account
for 11.67% of deoptimization sites triggered at least once, and for 26.64% of all triggered
deoptimizations; the results for ScalaBench are similar. For the Octane benchmarks on
Graal.js, the proportion of repeated deoptimization sites drops to 5.96%, which is caused by
Truffle invalidating the type specialization code that triggered a deoptimization.

While it is possible for multiple threads to trigger the same deoptimization site in the same
version of the compiled code, the majority of the repeated deoptimizations originate from
recompiled code. This means that if recompilation does not eliminate these deoptimization
sites, reprofiling either does not produce a profile that would change the optimization
decisions, or that the profile is not provided in time for the recompilation.



Y. Zheng, L. Bulej, and W. Binder 30:11

Table 4 Number of deoptimization sites that were triggered repeatedly and the deoptimization
reason used at the most frequently triggered InvalidateReprofile deoptimization site during the first
benchmark iteration of the DaCapo and ScalaBench workloads, and during the warmup phase of
the Octane workloads. Due to the obfuscated code in the binary release of Graal.js, some of the
reported sites (marked with *) are identified by their deoptimization target instead of their precise
location in the bytecode.

Benchmark Repeated Deoptimizations Most Frequent Site
#Sites %Sites %Deopts #Hit Reason

D
aC

ap
o

avrora 6 19.4 41.9 4 UnreachedCode
batik 4 3.5 7.5 3 TypeCheckedInliningViolated
fop 2 2.7 10.0 6 UnreachedCode
h2 27 13.3 28.5 6 OptimizedTypeCheckViolated
jython 22 10.0 23.6 9 UnreachedCode
luindex 0 0.0 0.0 - -
lusearch 2 8.7 36.4 10 TypeCheckedInliningViolated
pmd 6 7.8 17.4 5 UnreachedCode
sunflow 1 4.0 7.7 2 TypeCheckedInliningViolated
tradebeans 34 15.0 36.8 10 TypeCheckedInliningViolated
tradesoap 58 15.2 32.0 5 TypeCheckedInliningViolated
xalan 1 4.8 16.7 4 TypeCheckedInliningViolated
Total 163 11.7 26.6

Sc
al
aB

en
ch

actors 14 15.4 67.7 64 UnreachedCode
apparat 15 9.6 24.6 3 TypeCheckedInliningViolated
factorie 8 14.0 40.2 9 OptimizedTypeCheckViolated
kiama 11 13.4 39.3 10 OptimizedTypeCheckViolated
scalac 70 13.9 34.2 23 TypeCheckedInliningViolated
scaladoc 41 12.3 35.1 23 TypeCheckedInliningViolated
scalap 2 4.9 11.4 3 TypeCheckedInliningViolated
scalariform 7 14.3 34.4 7 OptimizedTypeCheckViolated
scalatest 3 5.4 10.2 2 TypeCheckedInliningViolated
scalaxb 1 1.6 4.6 3 TypeCheckedInliningViolated
specs 1 1.9 3.8 2 TypeCheckedInliningViolated
tmt 7 7.4 21.4 9 OptimizedTypeCheckViolated
Total 180 11.4 34.3

O
ct
an

e

box2d 16 9.5 20.4 * 6 TypeCheckedInliningViolated
code-load 35 7.9 18.6 6 UnreachedCode
crypto 2 1.8 6.0 5 UnreachedCode
deltablue 5 6.3 12.9 3 TypeCheckedInliningViolated
earley-boyer 5 3.4 74.3 * 398 TypeCheckedInliningViolated
gbemu 17 5.4 11.5 4 UnreachedCode
mandreel 12 5.2 13.4 5 UnreachedCode
navier-stokes 4 3.9 10.0 * 5 TypeCheckedInliningViolated
raytrace 2 2.0 4.0 2 TypeCheckedInliningViolated
regexp 16 6.9 16.6 9 UnreachedCode
richards 1 1.1 2.3 2 TypeCheckedInliningViolated
splay 3 2.5 4.8 2 UnreachedCode
typescript 24 8.5 66.3 * 237 TypeCheckedInliningViolated
zlib 11 7.3 13.7 2 OptimizedTypeCheckViolated
Total 153 6.0 33.7

ECOOP 2017



30:12 An Empirical Study on Deoptimization in the Graal Compiler

Table 5 Number of deoptimizations per iteration when executing the DaCapo and ScalaBench
benchmarks.

Iteration 1 2 3 4 5 6 ... 15 16 17 18 19 20
avrora 43 17 4 1 2 0 0 0 0 0 0 0
batik 120 20 18 14 6 2 1 1 0 0 1 0
fop 80 23 5 4 2 0 0 1 1 0 0 0
h2 246 17 4 1 2 0 0 1 1 0 0 0
jython 259 27 2 1 0 0 1 1 2 1 0 1
luindex 42 14 1 0 0 0 0 0 0 0 0 0
lusearch 33 3 0 0 0 0 ... 0 0 0 0 0 0
pmd 86 25 6 11 5 4 1 1 2 3 0 0
sunflow 26 3 1 0 0 0 0 0 0 0 0 0
tradebeans 304 7 4 0 0 0 0 0 0 0 0 0
tradesoap 475 34 3 0 2 2 0 1 0 0 0 1
xalan 24 1 1 0 0 0 0 0 0 0 0 0
actors 238 28 5 6 4 5 0 1 2 1 1 2
apparat 187 22 9 3 5 2 3 2 2 2 2 3
factorie 82 10 0 0 0 0 0 1 2 0 0 0
kiama 117 5 2 3 3 3 0 0 1 0 0 2
scalac 656 123 36 25 22 21 8 14 5 13 8 12
scaladoc 450 106 18 13 1 6 1 0 0 2 2 8
scalap 44 10 0 0 0 0 ... 0 0 0 0 0 0
scalariform 64 23 9 5 4 3 1 0 0 0 0 0
scalatest 59 29 8 9 3 1 1 0 0 0 0 0
scalaxb 66 26 3 0 0 1 0 0 0 0 1 0
specs 53 10 9 5 5 7 6 6 4 2 3 4
tmt 112 6 4 3 2 1 2 1 2 2 2 1

To aid in investigating the reasons behind the worst-case repeated deoptimizations, Table 4
also lists the deoptimization sites that repeatedly trigger the most deoptimizations during
the execution of a particular benchmark. All of the worst-case deoptimization sites invoke
the InvalidateReprofile action, which is consistent with our findings so far.

We observe that the most frequently triggered deoptimization sites cause reprofiling for
three main reasons: TypeCheckedInliningViolated, OptimizedTypeCheckViolated, and Unreached-
Code. Deoptimizations specifying UnreachedCode as the reason result from conditional
branches that were eliminated based on (assumed) zero execution probability according to
the branch profile for the corresponding bytecode. The actors benchmark contains the most
frequent deoptimization site of this type in method java.util.concurrent.locks.AbstractQueued-
Synchronizer$ConditionObject.await(), which contains a blocking thread synchronization op-
eration. Deoptimizations that specify type-checking violations as the reason result from
optimizations that rely on a type profile. Here, the compiler typically uses deoptimization
in the failure path of a guard that ensures that type-specific code is only reached with
proper types. Among the benchmarks that suffer from deoptimizations for these reasons, the
scalac and scaladoc benchmarks share the same worst-case deoptimization site which triggers
deoptimization 23 times.

In the case of the Octane benchmarks on Graal.js, a high number of repeated deoptimiz-
ations are triggered in the earley-boyer and typescript benchmarks. The underlying reason
for repeated deoptimizations is the same as in the case of the DaCapo and ScalaBench
suites—inaccurate profiling information caused by associating a profiling record with a
deoptimization target (instead of origin), and subsequent sharing of this record by multiple
deoptimization sites. Unfortunately, code obfuscation in the Graal.js binary release prevents
us from presenting the situation in more detail at source code level.



Y. Zheng, L. Bulej, and W. Binder 30:13

3.1.4 Deoptimizations per Iteration
Finally, Table 5 shows the number of deoptimizations triggered in subsequent benchmark
iterations for the DaCapo and ScalaBench benchmarks. Most benchmarks encounter no
more than 3 deoptimizations per iteration after the 4th iteration, because the compiled
code for most of the hot methods stabilizes. However, there are a few cases of repeated
deoptimizations, especially in the scalac benchmark, where on average 10 deoptimizations
per iteration are triggered even past the 15th iteration. In most cases, TypeCheckedInlining-
Violated is given as the reason, and half of the deoptimizations originate at the same bytecode
(scala.collection.immutable.HashSet.elemHashCode(Object)#9) inlined in different methods.
This suggests that the receiver type profile may not be updated properly (or soon enough)
after deoptimization and reprofiling.

3.2 Investigating Repeated Deoptimizations
Our findings in Section 3.1.3 indicate that certain deoptimizations are triggered repeatedly at
the same site. If a particular deoptimization is triggered by multiple threads in one version
of the compiled code, the subsequent recompilation should eliminate the deoptimization site.
However, repeated deoptimizations triggered at the same site in multiple subsequent versions
of the compiled code indicate a problem, because that site should have been eliminated by
recompilations.

By analyzing the cases of repeatedly triggered deoptimization, we have discovered that
this situation occurs because an outdated method profile is used during the recompilation. In
the Graal compiler, this can happen because Graal inlines methods aggressively, but at the
same time, deoptimization site in the inlined code can deoptimize to the caller containing the
callsite of the inlined method (if no program state modification precedes the deoptimization
site in the inlined code). After deoptimization, when the interpreter wants to invoke the
(previously inlined) method at the callsite, the callee can be compiled either at a different
level (without speculation and thus deoptimization), or with a different optimization outcome
that did not emit a deoptimization site. In both cases, the profile for the callee is not updated,
and subsequent recompilations of its inlined code will use an inaccurate profile, resulting in
repeated deoptimizations.

We now illustrate the situations leading to repeated deoptimization for two specific cases:
the UnreachedCode deoptimization in the actors benchmark, and the type-check related
deoptimizations in the scalac benchmark.

3.2.1 Repeated Deoptimizations in the actors Benchmark
The results in Table 4 show that the actors benchmark contains a site which triggers
the UnreachedCode deoptimization 64 times during the first iteration of the benchmark
execution. Figure 1 shows a snippet of code containing this deoptimization site. The await()
method invokes the checkInterruptWhileWaiting(Node) method (line 21), which returns a
value depending on the result of the Thread.interrupted() method.

When compiling the await() method, Graal inlines the invocation of the (small and private)
checkInterruptWhileWaiting(Node) method at the callsite (line 21). The ternary operator used
in the return statement of that method is essentially a conditional branch compiled using
the ifeq7 bytecode, for which the VM collects a branch profile. Because thread interruption

7 Branch if the value on top of the operand stack is zero, i.e., false.

ECOOP 2017



30:14 An Empirical Study on Deoptimization in the Graal Compiler

1 public abstract class AbstractQueuedSynchronizer
2 extends AbstractOwnableSynchronizer implements java.io. Serializable {
3 final boolean isOnSyncQueue (Node node) {
4 if (node. waitStatus == Node. CONDITION || node.prev == null )
5 return false ;
6 ...
7 }
8 public class ConditionObject implements Condition , java.io. Serializable {
9 private int checkInterruptWhileWaiting (Node node) {

10 return Thread . interrupted () ?
11 ( transferAfterCancelledWait (node) ? THROW_IE : REINTERRUPT ) : 0;
12 }
13
14 public final void await () throws InterruptedException {
15 ...
16 int savedState = fullyRelease (node );
17 int interruptMode = 0;
18 while (! isOnSyncQueue (node )) {
19 LockSupport .park( this );
20 if (( interruptMode = checkInterruptWhileWaiting (node ))
21 != 0)
22 break ;
23 }
24 ...
25 }
26 }
27 }

Figure 1 Excerpt from the source code of java.util.concurrent.locks.AbstractQueuedSynchronizer.

happens rarely, it is very likely that all invocations of Thread.interrupted() will return false,
and the branch profile for the ifeq bytecode will tell the compiler that the branch was taken
in 100% of the cases. By default8, Graal removes the code in the (apparently) unreachable
branch, and inserts a guard for the expected result of the Thread.interrupted() method with
a failure path which invokes the InvalidateReprofile deoptimization with UnreachedCode as
the reason.

In the await() method, threads may block in the park() method at line 19, which returns
when a thread is unparked, or when a thread is interrupted. Any thread returning from the
park() method will execute the condition at line 20, including the inlined optimized version
of checkInterruptWhileWaiting(Node). If a thread was interrupted, the Thread.interrupted()
method returns true contrary to the expectation, and causes the thread to trigger a deoptim-
ization. The first thread to trigger the deoptimization will invalidate the compiled code
of the await() method by making it not entrant (execution entering the compiled code will
immediately switch to interpreter), and resume execution in the interpreter.

However, there may be more threads in the same situation, executing the (now invalidated)
compiled code—the 64 repeated deoptimizations in the actors benchmark were caused by
64 different threads triggering the same deoptimization in the same version of the compiled
code. While this kind of repeated deoptimization causes threads to execute in the interpreter,
it only leads to a single recompilation and is relatively harmless. The branch profile for the
ifeq bytecode will be updated during interpreted execution, and taken into account during
recompilation of the await() method.

But the await() method contains another UnreachedCode deoptimization site that is
problematic. In this case, Graal inlines the invocation of the (final) isOnSyncQueue(Node)
method at the callsite (line 18). The null-check in the inlined code uses the ifnonnull bytecode
(line 4), which is a conditional branch. Based on the associated branch profile indicating
100% branch-taken probability, Graal replaces the unreachable branch with a deoptimization
which is triggered if node.prev is null.

8 This can be disabled via -Dgraal.RemoveNeverExecutedCode=false.



Y. Zheng, L. Bulej, and W. Binder 30:15

1 class HashSet [A] extends Set[A]
2 with GenericSetTemplate [A, HashSet ] with SetLike [A, HashSet [A]] {
3 protected def elemHashCode (key: A) = if (key == null ) 0 else key.##
4 protected def computeHash (key: A) = improve ( elemHashCode (key ))
5 }

9 // Java pseudo - code for the ## operation
10 int ##() {
11 if ( this instanceof Number ) {
12 return BoxesRunTime . hashFromNumber ( this );
13 } else {
14 return hashCode ();
15 }
16 }

Figure 2 Excerpt from scala.collection.immutable.HashSet.

1 if (key.type == String ) {
2 // inlined code of String . hashCode
3 } else {
4 deoptimize ( InvalidateReprofile , TypeCheckedInliningViolated ,
5 HashSet . computeHash /* target method */ , 0 /* target bytecode index */
6 ); // never returns
7 }

Figure 3 Pseudo-code of the Graal-compiled code for the ## operation.

If the deoptimization in the loop header is triggered, the code of the await() method will
be invalidated and the interpreter will resume execution at beginning of the loop (line 18).
The interpreter will then likely invoke the compiled version of the isOnSyncQueue(Node)
method, which contains the same guard and deoptimization derived from the same ifnonnull
branch profile. In the meantime, because the actors benchmark is highly multi-threaded,
another thread may set node.prev to a non-null value. The compiled version of the isOnSync-
Queue(Node) method will then execute normally, without retriggering the deoptimization.
Without that the isOnSyncQueue(Node) method will not be reinterpreted, and the branch
profile for the ifnonnull bytecode will not be updated. When recompiling the await() method,
the compiler will use an inaccurate branch profile and produce the same code that was
previously invalidated. In our experiment, we observed 9 deoptimizations originating at the
same site, but triggered in different versions of the compiled code. This kind of repeated
deoptimizations is more serious, because it causes reprofiling of the await() method (requiring
it to be executed in the interpreter more times) and subsequent recompilation, but does not
improve the situation.

3.2.2 Repeated Deoptimizations in the scalac Benchmark
Another deoptimization anomaly that can be observed in the profiling results concerns
several benchmarks that exhibit the same pattern of repeated deoptimizations, with either
TypeCheckedInliningViolated or OptimizedTypeCheckViolated specified as the reason. This is
also true for the steady-state execution of the scalac benchmark shown in Table 5, which we
now investigate in more detail.

The code containing the deoptimization site is shown in Figure 2. At line 4 the compute-
Hash(Object) method invokes the elemHashCode(Object) method, which in turn invokes the
## operation on key. The ## operation is a Scala intrinsic which can be expressed as Java
pseudo-code shown in lines 10–16. For every use of the ## operation, the Scala compiler
directly inlines the corresponding bytecode sequence into the bytecode it produces.

Line 11 produces an instanceof bytecode which checks for the Number class, and is subject
to type-profile-based optimizations in Graal. When compiling the instanceof bytecode into

ECOOP 2017



30:16 An Empirical Study on Deoptimization in the Graal Compiler

machine code, the compiler queries the recorded type profile associated with the particular
bytecode, and generates tests against the profiled types instead of the operand type, and a
failure path which will trigger deoptimization if all the type checks fail.

In our experiment, when compiling the computeHash(Object) method for the first time,
the compiler receives a type profile containing only the String class, and generates machine
code corresponding to the pseudo-code shown in Figure 3. The deoptimization in the else
branch actually transfers execution to the beginning of the computeHash(Object) method,
because the program state is not mutated between the invocation of the elemHashCode(Object)
method and the deoptimization due to the inlined ## operation. When the interpreter
reaches the invocation of the elemHashCode(Object) method again, it will likely find the
method compiled, so the invocation will switch to machine code. However, with the default
tiered compilation strategy, the elemHashCode(Object) method is very likely to be compiled
by the level 1 compiler, which is intended for simple methods. As such, level 1 compilation
does not use profile-directed optimizations for instanceof and the generated code does not
update the profiling information. The compiled version of the elemHashCode(Object) method
will therefore correctly handle the ## operation for all types, but the type profile for the
inlined code of the ## operation will not be updated. When Graal compiles the compute-
Hash(Object) method again, it will inline the elemHashCode(Object) method again, but
the type profile for the instanceof bytecode will still contain only the String class. The
recompiled elemHashCode(Object) method will therefore repeatedly trigger deoptimizations
and recompilations.

Consequently, the anomaly occurs when a deoptimization due to an inlined method
resumes in the caller and invokes a compiled version of the (previously inlined) callee. If the
callee is compiled at level 1, it neither contains profile-directed optimizations nor updates
profiling information. When the caller is recompiled (as it is a hot method) and the callee is
inlined again, the compiler uses the inaccurate type profile for the code in the callee and
generates code that triggers the same deoptimization.

We have also identified a similar problem when Graal devirtualizes method invocations.
A devirtualized callsite uses a number of type checks against types from a callsite’s receiver
profile to invoke concrete methods on specific receiver types, and may trigger deoptimization if
it encounters an unexpected receiver type (unless the callsite is megamorphic, which performs
a virtual method dispatch). The problem occurs if a callsite is devirtualized in the ancestor
of the direct caller of a method, which may happen when the direct caller is inlined. If such
a devirtualized (non-megamorphic) callsite triggers a deoptimization and does not transfer
execution to the direct caller, the receiver type profile used for devirtualization of the callsite
may not be updated if the direct caller also has a standalone compiled version that neither
devirtualizes the callsite (and thus trigger the same deoptimization) nor collects profiling
information. In general, this situation is caused by the weighted inlining mechanism in the
Graal compiler, and the problem would be remedied by either disallowing deoptimization to
cross the direct caller’s method boundary, or by invalidating its compiled code.

4 Alternative Deoptimization Strategies

The deoptimization code produced by Graal mostly invokes the InvalidateReprofile action,
hoping to trade extra work in the short term for a potentially better peak performance in the
long term. Another reason for using this kind of deoptimization is to cope with application
phase changes. These can manifest in the form of completely different execution and type
profiles, rendering the compiled code based on profiles from the previous phase obsolete.



Y. Zheng, L. Bulej, and W. Binder 30:17

Obviously, the compiler cannot tell ahead of time whether the actual benefits will outweigh
the costs. However, as long as the costs are not excessive, they will be amortized in the long
term even without huge performance gains.

With this strategy, the worst-case scenario for long-term performance is the occurrence of
rare cases that trigger deoptimization. In this case, the ensuing reprofiling and recompilation
will not provide a long-term benefit, but instead cause short-term performance degradation.
Worse, during recompilation, the rare case may cause the compiler to abandon speculative
optimizations that have worked well before the rare case occurred.

The solution is to introduce some tolerance for rare cases, delaying deoptimizations until
the supposedly rare cases become more frequent. This notion is supported by the HotSpot
runtime, as the presence of the action_maybe_recompile deoptimization action suggests.
However, Graal does not use its own corresponding action (RecompileIfTooManyDeopts) in the
deoptimization code it emits. Presumably, this is because Graal speculates aggressively and
the Graal developers do not want to delay recompilation if the program violates optimization
assumptions. In addition, because Graal focuses on achieving high peak performance, the
cost associated with eager deoptimizations should be amortized in the longer run.

Because the effect of this approach on performance has not been previously studied, we
modify Graal to support two additional strategies for handling deoptimizations and compare
the performance achieved with the alternative strategies to the default strategy used by
Graal. Unlike the default strategy, which always invokes the InvalidateReprofile action, the
alternative strategies differ in the degree of tolerance for rare cases.

4.1 Conservative Deoptimization Strategy
The first strategy, referred to as conservative, replaces the use of the InvalidateReprofile action
with the RecompileIfTooManyDeopts. This strategy relies on the existing mechanisms in the
HotSpot runtime to determine when to invalidate the compiled code and when to reinterpret
(and possibly reprofile) it. The runtime keeps an execution profile for each method, including
information about deoptimizations. The deoptimization profile consists of a counter for each
deoptimization reason as well as a recompilation counter. It also stores limited information
associated with deoptimization targets (referred to as traps), i.e., the bytecode instructions
at which the interpreter resumes execution after deoptimization. The per-trap information
is keyed to the bytecode index of the target instruction in the target method, and stores
the reasons9 for which the trap was targeted, and whether the method code was invalidated
and recompiled due to this trap. The deoptimization reasons are split into two categories
considered separately. The first category, referred to as per-method, represents reasons that
are only considered at the method level, while the second category, referred to as per-bytecode,
represents reasons that are only considered at the bytecode level.

When a deoptimization is triggered, the HotSpot runtime uses the method profile to
make the following decisions: (1a) if the deoptimization reason belongs to the per-bytecode
category, was previously observed at this trap, and the deoptimization count (taken from the
method-level profile) for that reason exceeds a per-bytecode threshold10, the compiled code is
invalidated; (1b) if the deoptimization reason belongs to the per-method category and the
deoptimization count for that reason exceeds a per-method threshold11, the compiled code

9 To limit memory consumption, only one precise reason can be stored, otherwise the profile just indicates
that there is more than one reason.

10 -XX:PerBytecodeTrapLimit, defaults to 4.
11 -XX:PerMethodTrapLimit, defaults to 100.

ECOOP 2017



30:18 An Empirical Study on Deoptimization in the Graal Compiler

is invalidated; (2) for compiled code that is to be invalidated, if the per-trap information
shows that the code has been previously recompiled for the same per-bytecode reason, or if
the recompilation counter is greater than 0 for other reasons, the runtime resets the method
execution and back-edge counters to facilitate reprofiling; (3) if the recompilation counter
for a per-bytecode reason exceeds a per-bytecode threshold12, or a per-method threshold13 for
per-method reasons, the deoptimizing method is made not compilable.

The per-trap information is inherently approximate. For example, it does not distinguish
between two deoptimization sites sharing the same deoptimization target. But when Graal is
enabled, it makes it even more approximate. While the trap bytecode index always refers to
the instruction in the bytecode of the target method, updates to the per-trap information are
stored in the profile of the method in which a deoptimization occurred (not the deoptimization
target, as in the case of HotSpot without Graal). A deoptimization triggered by an inlined
method will therefore update the per-trap information of the compilation root using an index
associated with the bytecode in the target method. This is presumably to avoid spurious
invalidation of the compiled code of methods that were inlined with speculative optimizations.
However, if several methods inlined in the same compilation root contain a trap instruction,
they may share the same slot in the per-trap profile of the compilation root. In addition, due
to Graal’s aggressive inlining, the deoptimization target may cross method boundaries—a
deoptimization from an inlined method may target the returning bytecode of the previous
callsite in the caller.

4.2 Adaptive Deoptimization Strategy
The second strategy, referred to as adaptive, uses a custom deoptimization profile to choose
a deoptimization action both during dynamic compilation and during program execution.
Unlike the HotSpot runtime or Graal (c.f. Section 4.1), we simply associate a deoptimization
counter with each deoptimization site ID (c.f. Section 3), but disregard the stack trace for
inlined methods. This means that methods inlined in different compilation roots will update
the same deoptimization counters.

During compilation, whenever Graal intends to emit the InvalidateReprofile deoptimiza-
tion at a particular site, we check the value of the counter corresponding to that site, and
emit the default deoptimization code (invoking InvalidateReprofile) if the value is between
two thresholds, deoptsTolerated (exclusive, defaults to 1) and deoptsAllowed (inclusive, de-
faults to 100). If the counter exceeds the deoptsAllowed threshold, too many deoptimiza-
tions have been triggered at that particular site, and we instead emit code to invoke the
InvalidateStopCompiling deoptimization. If the method containing the deoptimization site
is being inlined, we mark the method as non-inlineable and emit the InvalidateRecompile
deoptimization in the inlined code. Consequently, the method is inlined one last time in
the compilation root being compiled, but will not be inlined in future recompilations of
any method. If the counter does not exceed the deoptsTolerated threshold, the number of
deoptimizations triggered at the site is considered tolerable, and we emit code that chooses
between the None and InvalidateReprofile deoptimization actions at runtime. When such a
deoptimization site is reached and the corresponding deoptimization counter still does not
exceed the deoptsTolerated threshold, the deoptimization just switches to the interpreter and
keeps the compiled code as-is (the None action). Otherwise the deoptimization invalidates

12 -XX:PerBytecodeRecompilationCutoff, defaults to 200.
13 -XX:PerMethodRecompilationCutoff, defaults to 400.



Y. Zheng, L. Bulej, and W. Binder 30:19

the code and resets the hotness counters of the corresponding method to force reprofiling
(the InvalidateReprofile action).

To avoid using a stale deoptimization profile during application phase changes, the counters
for deoptimization sites involved in a particular compilation are aged in each compilation.
Alternatively, we provide an option to age the deoptimization profile periodically, which
allows tolerating deoptimizations based on rates, instead of absolute numbers.

5 Performance Evaluation

We now evaluate performance of the two additional strategies and compare them to the
default strategy used by Graal. Using the same set of benchmarks and the same hardware
platform as presented in Section 3, we evaluate the deoptimization strategies with a varying
number of CPU cores available to the JVM. To minimize interference due to compilation of
Graal classes, we enable bootstrapping of Graal14 at JVM startup.

Because the DaCapo and ScalaBench benchmark suites are similar (ScalaBench uses
the DaCapo benchmarking harness), we present the results for these two benchmark suites
separately from the results for the Octane benchmarks on Graal.js, which are not directly
comparable to the results from the other two suites. We also subject the results from the
DaCapo and ScalaBench benchmark suites to more extensive evaluation, whereas the results
for the Octane benchmarks are meant to illustrate the indirect impact of deoptimization
strategies on the performance of the hosted language (JavaScript).

5.1 DaCapo and ScalaBench Evaluation
To evaluate the impact of the deoptimization strategies on the performance of the benchmarks
from the DaCapo and ScalaBench benchmark suites, we collect15 the following performance
metrics: (1) startup time, i.e., the wall-clock time for the execution of the first benchmark
iteration, (2) steady-state execution time, i.e., the wall-clock time for the execution of the
last benchmark iteration, and (3) compilation time in each iteration, i.e., CPU time spent in
compiler threads during benchmark iteration.

To present the results, we plot the speed-up factor of each benchmark against the baseline,
as well as the geometric mean of speed-up factors for all benchmarks to illustrate the overall
effect. When discussing average performance, we also report the range of speed-up factors
for individual benchmarks contributing to the particular geometric mean.

5.1.1 Choosing the Baseline
The choice of the baseline for evaluating the performance of the alternative deoptimization
strategies in Graal deserves a justification. Because changes were made to the original Graal
implementation, using HotSpot with Graal in place of the server compiler is our default
choice. However, the production configuration of the HotSpot JVM still uses the C2 server
compiler in the last compilation tier, which makes C2 a candidate for a performance baseline.
Moreover, reporting changes against a well-known HotSpot configuration can help assessing
the relevance of the presented changes.

A problem could arise if the Graal baseline was significantly slower than C2. Any per-
formance improvements would be reported against a slow baseline, but the peak performance

14Enabled by the -XX:+BootstrapJVMCI option.
15Data from 10 benchmark runs, each benchmark executed for at least 10 iterations and 10 seconds.

ECOOP 2017



30:20 An Empirical Study on Deoptimization in the Graal Compiler

1 2 4 8 160.6

0.8

1

1.2

1.4

1.6

1.8

2

scalac
lusearch

scalatest

scalap

lusearch

factorie

scalatest
scalap

lusearch

xalan

factorie

scalap

factorie
xalan
luseach

tradesoap

scalap

factorie

lusearch

scalap

CPU Cores Available to JVM

Sp
ee
du

p
Fa

ct
or

(a) Startup

1 2 4 8 160.6

0.8

1

1.2

1.4

1.6

1.8

2
scalariform
scalaxb

factorie

scaladoc

factorie
scalaxb

jython

factorie

sunflow

apparat

factorie

sunflow

apparat

factorie

sunflow

apparat

CPU Cores Available to JVM

Sp
ee
du

p
Fa

ct
or

(b) Steady-state

Figure 4 Startup and steady-state performance of the DaCapo and ScalaBench benchmarks on
Graal, with C2 as the baseline. Black circles indicate the speed-up factor of individual benchmarks
(ratio of mean execution time on Graal and C2). Value greater than 1 means that Graal outperforms
C2. Red points represent the geometric mean of speed-up factors across all bechmarks. The line
connecting the geometric means is intended only as a visual aid.

might not reach or exceed that of C2. To resolve this tension, we evaluate the relative
performance of the two potential baselines, C2 and Graal, using the same benchmarks that
will be used to evaluate the alternative deoptimization strategies.

The results of this comparison for different number of cores available to the JVM are
shown in Figure 4. The plot of startup performance (Figure 4a) shows that on average, the
Graal baseline outperforms the C2 baseline. We attribute this to the fact that we enable
bootstrapping of the Graal compiler, which may also precompile frequently executed methods
from the Java class library in addition to methods from the Graal compiler itself.

On the other hand, the plot of steady state performance (Figure 4b) shows that on
average, the Graal baseline becomes slightly slower (2.1% in the worst case for 4 cores, with
an average speed-up factor of 0.979 and individual speed-up factors from 0.824 to 1.364) than
C2 as more CPU cores are made available to the JVM. The single-core case is an exception
in which Graal outperforms C2 by 9% (average speed-up factor of 1.090, individual speed-up
factors from 0.888 to 1.913).

In summary, Graal is a competitive compiler for our workload and this experiment
validates our choice of Graal as the baseline.

5.1.2 Start-up Performance

The result of evaluating the startup and steady-state performance of the alternative deoptim-
ization strategies is presented in Figure 5. The default deoptimization strategy used in Graal
represents the baseline. Figure 5a shows that in the single-core case the conservative strategy
is on average 1.8% slower than the baseline (average speed-up factor of 0.982, individual
speed-up factors from 0.941 to 1.190). As the number of CPU cores increases, the single-core
slowdown becomes a slight speed-up for 16 cores. The conservative strategy apparently
causes more compilation work and more cores allow it to hide the compilation latency. While
tolerating some deoptimizations may provide a slight performance benefit, in this case it is
completely outweighed by the extra compilation work.

In contrast, Figure 5c shows that the adaptive strategy is on average 6.4% faster in
the single-core case (average speed-up factor of 1.064, individual speed-up factors from



Y. Zheng, L. Bulej, and W. Binder 30:21

1 2 4 8 160.8

0.9

1

1.1

1.2

tradebeans

factorie

apparat

luindex

kiama
scalap

scalac

scalap

factorie

apparat

sunflow

Cores Available to JVM

Sp
ee
du

p
Fa

ct
or

(a) Conservative Startup

1 2 4 8 160.8

0.9

1

1.1

1.2

scalac
kiama

avrora

factorie
fop

scalac
tmt

factorie

scalaxb

scalatest

actors

scaladoc
scalaxb

factorie

actors

scalaxb
factorie

actors

factorie

scalaxb

Cores Available to JVM

Sp
ee
du

p
Fa

ct
or

(b) Conservative Steady-state

1 2 4 8 160.9

1

1.1

1.2

1.3 luindex

apparat
fop

scalac
h2

avrora

sunflow
jython
factorie

luindex
fop
apparat
scaladoc

pmd

tmt

scalatest
luindex

kiama

tmt
factorie

luindex
apparat

scalac

h2
sunflow

luindex

apparat

scalac

tmt
sunflow

Cores Available to JVM

Sp
ee
du

p
Fa

ct
or

(c) Adaptive Startup

1 2 4 8 160.9

1

1.1

1.2

1.3

apparat

scalac

fop

batik

specs
scalaxb

tmt

scalac
apparat

factorie
scalaxb

apparat

scalatest
lusearch

tmt
scalaxb

apparat

tradebeans

scalaxb

apparat

factorie
scalaxb

Cores Available to JVM

Sp
ee
du

p
Fa

ct
or

(d) Adaptive Steady-state

Figure 5 Startup and steady-state performance of the alternative deoptimization strategies when
executing the DaCapo and ScalaBench benchmarks. Black circles indicate the speed-up factor of
individual benchmarks against the default Graal baseline. Red points represent the geometric mean
of speed-up factors across all bechmarks. The line connecting the geometric means is intended only
as a visual aid.

0.630 to 1.451), and remains on average slightly faster. The adaptive strategy causes less
compilation work, improving startup performance on average, but the benefit diminishes
with the increasing number of available CPU cores, because the (baseline) default strategy
can hide some of its compilation latency.

The two alternative strategies differ mainly in the level of tolerance for deoptimizations,
the accuracy of the deoptimization profile used to make decisions, and the deoptimization
actions taken. The conservative strategy actually makes the compiler less sensitive to changes
in profiling information during startup. On the one hand, the RecompileIfTooManyDeopts
deoptimization used by the conservative strategy delays recompilation, but on the other
hand it causes methods to be recompiled without being thoroughly reprofiled. Recall also
that unlike the adaptive strategy, the conservative strategy associates deoptimization profile
with the target of a deoptimization, not its origin. This impairs the ability to tolerate
rare deoptimizations but deal with deoptimizations that are repeatedly triggered at the
same deoptimization site. Due to inlining, the code triggering the deoptimizations may be
duplicated in different methods and target different deoptimization traps, spreading the
information about a single deoptimization site among different profiles.

ECOOP 2017



30:22 An Empirical Study on Deoptimization in the Graal Compiler

The effect of tolerating deoptimizations is clearly workload dependent, and the results
show a few interesting cases. The luindex benchmark clearly benefits from the adaptive
strategy, as it exhibits a speed-up factor of 1.289 in the single-core case, and a speed-up
factor of at least 1.083 throughout the experiment. Interestingly, it does not benefit from the
conservative strategy, exhibiting a slow-down (speed-up factor of 0.965) in the single-core
case, even though the compilation times for both strategies are similar.

In contrast to luindex, the factorie benchmark does not benefit from either of the strategies,
exhibiting slowdowns (speed-up factors from 0.928 to 0.996) throughout the experiment.
Further investigation shows that the slowdown results from an increased number of deoptim-
izations which may result in more time spent in the interpreter.

5.1.3 Steady-state Performance
The plots in Figure 5b and Figure 5d show the steady-state performance of both strategies.
Even though the results for individual benchmarks differ slightly, on average the steady-state
performance of the conservative strategy does not really differ from the baseline. In the
case of the adaptive strategy, the overall speed-up factor remains slightly below 1 as the
number of CPU cores increases. We attribute this to the fact that unlike the conservative
strategy, which is supported by the HotSpot runtime and attempts to store all profiling
data efficiently, the implementation of the adaptive strategy is far from optimized. It uses
more memory to store profiling data, and emits conditional code and a volatile memory
access at deoptimization sites that select deoptimization action at runtime. We expect this
to impact performance, especially given the memory barriers associated with the volatile
memory access and the increasing number of CPU cores.

For some benchmarks, the increased tolerance to deoptimizations provided by both
strategies is beneficial even during steady-state execution. The scalac benchmark benefits
from both strategies in single-core and dual-core configurations, exhibiting a performance
improvement of 9.4% (single-core) and 5% (dual-core) with the adaptive strategy, and 11.6%
(single-core) and 4.4% (dual-core) with the conservative strategy. The apparat benchmark
benefits from the adaptive strategy even in 4-core and 8-core configurations, which we
attribute to the aging of the deoptimization profile. On the other hand, benchmarks such as
tmt exhibit an average 4% slow-down in steady-state performance for all core configurations.
Short-running benchmarks (less than 300ms) such as fop and scalaxb have a tendency to
amplify speed-ups and slow-downs, so they appear as outliers in the plots.

5.1.4 Overall Execution and Compilation Time
Figure 6 shows the amount of execution time saved for the 24 benchmarks from the DaCapo
and ScalaBench suites together in a single-core configuration. When considering the total
execution time, the execution time of each benchmark provides a weight to its respective
speed-up or slow-down. With the adaptive strategy, the first iteration of all benchmarks
finishes 17.7 seconds earlier than with the default strategy (which required 337 seconds
in total), resulting in a speed-up factor of 1.053. With the conservative strategy, the first
iteration takes 6 seconds longer than with the default strategy, resulting in a speed-up
factor of 0.982. Note that these speed-up factors implicitly weigh the speed-up achieved for
individual benchmarks by the execution time of each benchmark, giving a more conservative
estimate than the geometric mean of speed-up factors, which treats all benchmarks with
equal weight. The improvement observable with the adaptive strategy diminishes with the
increasing number of available CPU cores, but the adaptive strategy still manages to save
some time on each iteration, which would accumulate in the long run. Considering the



Y. Zheng, L. Bulej, and W. Binder 30:23

1 2 3 4 5 6 7 8 9 10
−10

0

10

20

Benchmark Iteration

Sa
ve
d
T
im

e
(s
)

conservative adaptive

Figure 6 Total saved execution time for the selected 24 DaCapo and ScalaBench benchmarks in
single-core setup. Negative values represent a slowdown.

1 2 4 8 160

50

100

150

200

Available Cores

C
P
U

T
im

e
(s
)

baselineUnique conservativeUnique adaptiveUnique

baselineRecomp conservativeRecomp adaptiveRecomp

(a) 1st Iteration

1 2 4 8 160

20

40

60

Available Cores

C
P
U

T
im

e
(s
)

(b) 2nd Iteration

1 2 4 8 160

2

4

6

8

Available Cores

C
P
U

T
im

e
(s
)

(c) 10th Iteration

Figure 7 The total CPU time spent compiling ( + ) and recompiling ( ) when executing the
24 selected DaCapo and ScalaBench benchmarks.

overall execution time shows that the adaptive strategy does not necessarily hurt steady-state
performance, as the results discussed in Section 5.1.3 may suggest.

Even though there are benefits in avoiding repeated deoptimizations, the influence of the
increasing number of CPU cores on the performance results suggests that the differences in
performance can be mostly attributed to compilation. To support this observation, Figure 7
provides a summary of the compilation log for all strategies. The data shows that indeed
the adaptive strategy saves approximately 8% in the total compilation time compared to
the default strategy in the first iteration of the single-core scenario, which benefits the most.
The alternative strategy mostly saves time in all scenarios, but the impact on total execution
time diminishes with increased number of cores available, and in steady-state execution. In
contrast, the conservative strategy is apparently not a good fit for the first iteration, because
it creates more compilation work. It saves some compilation time in later iterations, but too
little too late.

ECOOP 2017



30:24 An Empirical Study on Deoptimization in the Graal Compiler

1 2 3 4 5 6 7 8 16

1

2

3

4

5

6

deoptsTolerated

#
be

nc
hm

ar
ks

20

40

60

80

100

1.064 1.071
1.076 1.077

1.085
1.086

1.089 1.090

1.091

%
be

nc
hm

ar
ks

Figure 8 Theoretical speed-up with optimal values of deoptsTolerated for each of the 24 selected
DaCapo and ScalaBench benchmarks. The bars represent the number of benchmarks for which the
value was optimal. The line connecting the blue points represents the cumulative percentage of
benchmarks for which the optimal threshold does not exceed the corresponding value. Associated
with each blue point is the overall speed-up factor that would be achieved if we managed to choose
an optimal threshold for each benchmark not exceeding the corresponding value.

5.1.5 Tolerance for Deoptimizations in the Adaptive Strategy
The tolerance of the adaptive strategy to deoptimizations can be adjusted by changing the
deoptsTolerated and deoptsAllowed thresholds (c.f. Section 4.2). The results presented so
far were obtained with the default values, but we are interested in how different levels of
tolerance to deoptimizations impact performance of the strategy. Because the strategy had
the most effect on the 1st benchmark iteration in the single-core configuration, we evaluated
the performance of the adaptive strategy with the deoptsTolerated threshold set to 1–8, and
16. We analyzed the speed-up factors of individual benchmarks for all tested values of the
deoptsTolerated threshold, and selected the threshold value resulting in maximal speed-up
factor as optimal for each benchmark.

The tolerance to deoptimizations, and thus the value of the deoptsTolerated threshold, is
clearly a property of a particular workload and represents a tuning parameter. If we were
able to (quickly) determine the appropriate threshold based on the character of the workload
being executed, the parameter could be adjusted in response to program behavior. To gauge
the potential for improvement, Figure 8 shows the theoretical speed-up factor that could be
achieved, if we managed to find the optimal deoptsTolerated threshold (within a given limit)
for each benchmark. The plot shows that searching for an optimal threshold in the range of
1–5 would provide an optimal value for approximately 50% of benchmarks (given the upper
bound of 16), and yield a speed-up factor of 1.085.

5.2 Octane on Graal.js Evaluation
To evaluate the performance of the Octane benchmarks running on Graal.js, we use the
benchmarking harness for the Octane suite provided in the GraalVM binary release16. The
harness uses benchmark-specific warm-up times ranging from 15 to 120 seconds, and a
common steady-state period of 10 seconds. When finished executing a benchmark, the

16 http://www.oracle.com/technetwork/oracle-labs/program-languages/downloads/index.html



Y. Zheng, L. Bulej, and W. Binder 30:25

1 2 4 8 160.8

0.9

1

1.1

1.2

1.3
Crypto

DeltaBlue

Splay

zlib

Gameboy

Splay

Typescript

DeltaBlue

Box2D
RayTrace

Splay
Mandreel

zlib

Crypto
zlib

Typescript

Crypto

CodeLoad

CPU Cores Available to JVM

Sp
ee
du

p
Fa

ct
or

(a) Conservative Warm-up

1 2 4 8 160.8

0.9

1

1.1

1.2

1.3

CodeLoad
zlib

Splay
DeltaBlue

Crypto

Box2D
RegExp
Crypto

Typescript

Splay

Richards

Splay

CodeLoad

CodeLoad

Splay

Gameboy

CPU Cores Available to JVM

Sp
ee
du

p
Fa

ct
or

(b) Conservative Steady-state

1 2 4 8 160.8

0.9

1

1.1

1.2

1.3
Crypto

RayTrace

DeltaBlue
Gameboy

Richards

Splay

CodeLoad

zlib

RayTrace

Splay

Mandreel

Typescript

zlib

Crypto

Splay

Box2D

Typescript

Splay

Box2D

zlib

CPU Cores Available to JVM

Sp
ee
du

p
Fa

ct
or

(c) Adaptive Warm-up

1 2 4 8 160.8

0.9

1

1.1

1.2

1.3

CodeLoad

Gameboy

RegExp

Box2D

Crypto

Typescript

CodeLoad

Splay

Crypto

Typescript

CodeLoad

Splay

CPU Cores Available to JVM

Sp
ee
du

p
Fa

ct
or

(d) Adaptive Steady-state

Figure 9 Warm-up and steady-state performance of the alternative deoptimization strategies
when executing the Octane benchmarks on Graal.js. Black circles represent the speed-up factor of
individual benchmarks against the default Graal baseline. Red points represent the geometric mean
of speed-up factors across all benchmarks. The line connecting the geometric means is intended only
as a visual aid.

harness reports per-iteration execution times achieved during the warm-up and steady-state
periods. We collect the per-iteration execution times for both phases and report the speed-up
factors w.r.t. the default deoptimization strategy. Because the warm-up and steady-state
phases are defined differently for the Octane suite than for the DaCapo and ScalaBench
suites, we report the speed-up factors separately.

The plots in Figure 9a and Figure 9c show the warm-up performance of Octane benchmarks
running on Graal.js with the conservative strategy and the adaptive strategy, respectively.
We again show the speed-up factors for the individual benchmarks and the overall speed-up
factor calculated as a geometric mean of the individual speed-up factors. In the single core
case, both alternative deoptimization strategies achieve better warm-up performance than
the default strategy. On average, the conservative strategy is approximately 3.5% faster
(average speed-up factor of 1.035, individual speed-up factors from 0.931 to 1.255) and the
adaptive strategy is approximately 5.1% faster (average speed-up factor of 1.051, individual
speed-up factors from 0.989 to 1.253) than the default strategy.

The results indicate that the JavaScript runtime implemented using the Truffle framework
generally benefits from tolerating deoptimizations during startup due to the reduction of
the compilation work. This is potentially beneficial for JavaScript workloads that mostly

ECOOP 2017



30:26 An Empirical Study on Deoptimization in the Graal Compiler

c2/g1gc c2/noinline c2/notiered c2/graal graal/nospec
0

1

2

3

lusearch
specs
tradesoap
factorie

scalac
scaladoc

fopscalariform

tradebeans

apparat

tmt
factorie

scalac
scaladoc
specs

factorie

pmd

scalac

scalatest
scalap

scalap
scalatest

apparat
factorie

VM Configuration

Sp
ee
du

p
Fa

ct
or

(a) Startup (1-core)

c2/g1gc c2/noinline c2/notiered c2/graal graal/nospec
0

1

2

3

scalariform

tradesoap
factorie

scalatest

tmtfactorie

jython
scalariform
scalaxb
scalac

fop
scalap

scalariform
scalaxb

factorie
scalac

specs

scalatest
tradebeans
scalaxb

VM Configuration

Sp
ee
du

p
Fa

ct
or

(b) Steady-state (1-core)

Figure 10 Startup and steady-state performance of different VM configurations executing the
DaCapo and ScalaBench benchmarks. Black circles represent speed-up factor against the respective
baseline, red points represent geometric mean of speed-up factors across all benchmarks.

execute code once, instead of repeatedly. However, similarly to the DaCapo and ScalaBench
benchmarks, the benefit diminishes as the number of available CPU cores increases. Even
though JavaScript is a single-threaded language, the runtime may use additional CPU cores
to hide compilation latency.

Finally the plots in Figure 9b and Figure 9d show the steady-state performance of Octane
benchmarks with the conservative and adaptive strategies, respectively. Neither of them
deviates from the performance of the default strategy in a significant way.

5.3 On the Scale of Performance Changes

The results of performance evaluation indicate that on average the adaptive deoptimization
strategy provides moderate improvements to startup performance in a single-core scenario.
As the number of cores and benchmark runtime increases, the effect wears off, until it
disappears. Because the improvement is moderate, it is difficult to assess how it fits the
overall picture. In his 1974 paper, Knuth notes that in established engineering disciplines,
12% improvement, easily obtained, is never considered marginal [13]. The improvements
obtained here are roughly half of that, but still rather easily obtained, given the complexity
of the other parts of the VM.

Arguably, the execution time aspect of the improvement diminishes with more CPU cores
available to the JVM, but the computation saved remains. To provide a frame of reference,
we evaluate the single-core performance of five different configurations of the HotSpot VM
and compare it with their respective baselines. Two of the configuration changes swap entire
VM subsystems, while three other changes alter the behavior of the dynamic compiler.



Y. Zheng, L. Bulej, and W. Binder 30:27

The first baseline is the default configuration of HotSpot with C2 as the top tier-compiler
to which we compare the following configurations:

g1gc Replaces the default garbage collector in HotSpot with the Garbage First (G1) garbage
collector.

noinline Disables inlining in C2.
notiered Disables tiered compilation in HotSpot, i.e., disables C1 compiler.

graal Replaces the C2 server compiler with Graal.
The second baseline is the default configuration of HotSpot with Graal as the top-tier

compiler to which we compare the following configuration:
nospec Disables the majority of speculative optimizations relying on deoptimization in Graal,

providing a rough estimate of performance gains enabled by deoptimization.
The results of the evaluation are shown in Figure 10. The subfigures correspond to startup

(Figure 10a) and steady state (Figure 10b) performance, each showing average performance of
the first four configurations compared to the C2 baseline, followed by the fifth configuration
compared to the Graal baseline.

In a single-core setting, the change of the GC algorithm caused a 10.4% degradation
in startup performance, and a 12.9% degradation in steady-state performance of the g1gc
configuration. We are aware that this results from different mode of operation of the G1
collector, which is typically recommended for heaps exceeding 6 GB. However, it illustrates
the kind of performance impact a careless swap of a GC may have in a particular scenario.

The noinline and nospec configurations reduce the amount of compilation work, either
due to avoiding redundant compilation of methods that could have been inlined, or due to
compiling immediately using the top-tier compiler. Consequently, we observe a significantly
better startup performance in the single-core scenario—29.4% improvement due to disabled
inlining, and 12.6% due to disabled tiered compilation. In steady state, disabled tiered
compilation retains a 7.4% performance improvement, but disabled inlining changes the
situation dramatically. Because inlining is a critical optimization that increases optimization
scope and effectively enables inter-procedural optimization, disabling inlining causes a 40%
degradation in steady-state performance.

The graal configuration illustrates the effect of replacing C2 with Graal as the top-tier
compiler. This situation is investigated more closely in Section 5.1.1, here we just note a 14.4%
improvement in startup performance, and 9% improvement in steady-state performance.

Finally, the nospec configuration illustrates the effect of disabling various speculative
optimizations in the Graal compiler. These include elimination of unreached branches,
heuristic inlining, speculative instanceof test, elimination of unreached exception handlers,
and elimination of safepoints within a loop. On average, this change appears to have neutral
impact on startup performance, but has a significant impact later, resulting in a 26.1%
degradation in steady-state performance.

This suggests that the above speculative optimizations pay off in the long term, but do
not provide much benefit at startup. The adaptive strategy complements this by providing a
moderate improvement in startup performance without adversely affecting performance in
the long term.

6 Conclusion

Deoptimization is a key fallback mechanism for implementing speculative optimizations in
modern dynamic compilers. While the existing literature covers the implementation aspects
of deoptimization in great depth, the actual use of deoptimizations in compiled code has not
been previously studied.

ECOOP 2017



30:28 An Empirical Study on Deoptimization in the Graal Compiler

We present a study of deoptimization behavior in benchmarks executing on a Graal-
enabled HotSpot VM. We profile deoptimization sites in the code produced by the Graal
compiler, and provide a qualitative and quantitative analysis of deoptimization causes in
benchmark suites such as DaCapo, ScalaBench, and Octane, which provide workloads derived
from real applications and libraries written in Java, Python, Scala, and JavaScript. We
show that only a small fraction of deoptimization sites actually trigger deoptimizations at
runtime, and that most of the deoptimizations actually triggered in Graal-compiled code
unconditionally invalidate and reprofile the method which caused a deoptimization.

To gain insight on the trade-offs made by Graal in its default deoptimization strategy,
we modify Graal to add support for two alternative deoptimization strategies and evaluate
benchmark performance using the three strategies. We show that by avoiding the conservative
strategy provided by the HotSpot VM runtime, Graal gains better startup performance.
However, we also show that certain tolerance to deoptimizations can provide performance
benefits, if used with a precise deoptimization profile. The adaptive strategy, which switches
among various deoptimization actions based on a precise deoptimization profile, manages to
reduce the amount of method recompilations and eliminate certain repetitive deoptimizations.
As a result, on a single-core system, it improves the average start-up performance by 6.4% in
the DaCapo and ScalaBench benchmarks, and by 5.1% in the Octane benchmarks.

Finally, we show that tolerance to deoptimizations is a workload-specific parameter, and
that finding correlation between some workload characteristics and the appropriate level of
tolerance to deoptimizations can potentially provide additional performance benefits.

Acknowledgements. We thank Jan Vitek, Olga Vitek, Petr Tůma, and the anonymous
ECOOP reviewers for their suggestions on how to improve the paper. We also thank Tom
Rodriguez, Doug Simon, Gilles Duboscq and Thomas Würthinger for their support with the
HotSpot VM and the Graal compiler.

References
1 Matthew Arnold, Stephen J. Fink, David Grove, Michael Hind, and Peter F. Sweeney. A

Survey of Adaptive Optimization in Virtual Machines. Proceedings of the IEEE, 93(2):449–
466, 2005.

2 Matthew Arnold, Michael Hind, and Barbara G. Ryder. Online Feedback-directed Optimiz-
ation of Java. In Proc. 17th ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, OOPSLA 2002, pages 111–129. ACM, 2002.

3 Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z.
Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish
Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wie-
dermann. The DaCapo Benchmarks: Java Benchmarking Development and Analysis. In
Proc. ACM SIGPLAN International Conference on Object-oriented Programming, Systems,
Languages, and Applications, OOPSLA 2006, pages 169–190. ACM, 2006.

4 Dries Buytaert, Andy Georges, Michael Hind, Matthew Arnold, Lieven Eeckhout, and
Koen De Bosschere. Using Hpm-sampling to Drive Dynamic Compilation. In Proc. 22nd
ACM SIGPLAN Conference on Object-oriented Programming, Systems and Applications,
OOPSLA 2007, pages 553–568. ACM, 2007.

5 Craig Chambers and David Ungar. Making pure object-oriented languages practical. In
Proc. ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages,
and Applications, OOPSLA 1991, pages 1–15. ACM, 1991.



Y. Zheng, L. Bulej, and W. Binder 30:29

6 L. Peter Deutsch and Allan M. Schiffman. Efficient Implementation of the Smalltalk-80
System. In Proc. 11th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL 1984, pages 297–302. ACM, 1984.

7 S. J. Fink and Feng Qian. Design, Implementation and Evaluation of Adaptive Recompila-
tion with On-stack Replacement. In Proc. IEEE/ACM International Symposium on Code
Generation and Optimization, CGO 2003, pages 241–252. IEEE Computer Society, March
2003.

8 Google. Octane 2.0 JavaScript Benchmark. https://developers.google.com/octane/.
9 Dayong Gu and Clark Verbrugge. Phase-based Adaptive Recompilation in a JVM. In Proc.

6th IEEE/ACM International Symposium on Code Generation and Optimization, CGO
2008, pages 24–34. ACM, 2008.

10 Urs Hölzle, Craig Chambers, and David Ungar. Debugging Optimized Code with Dynamic
Deoptimization. In Proc. ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 1992, pages 32–43. ACM, 1992.

11 Urs Hölzle and David Ungar. Reconciling Responsiveness with Performance in Pure Object-
oriented Languages. ACM Trans. Program. Lang. Syst., 18(4):355–400, July 1996.

12 Madhukar N. Kedlaya, Behnam Robatmili, C&#289;lin Caşcaval, and Ben Hardekopf. De-
optimization for Dynamic Language JITs on Typed, Stack-based Virtual Machines. In
Proc. 10th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution En-
vironments, VEE 2014, pages 103–114. ACM, 2014.

13 Donald E. Knuth. Structured Programming with Go to Statements. ACM Comput. Surv.,
6(4):261–301, December 1974.

14 Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck, Thomas Rodriguez, Ken-
neth Russell, and David Cox. Design of the Java HotSpot™ Client Compiler for Java 6.
ACM Trans. Archit. Code Optim., 5(1):7:1–7:32, May 2008.

15 Chandra J. Krintz, David Grove, Vivek Sarkar, and Brad Calder. Reducing the Overhead
of Dynamic Compilation. Software: Practice and Experience, 31(8):717–738, 2001.

16 Prasad Kulkarni, Matthew Arnold, and Michael Hind. Dynamic Compilation: The Benefits
of Early Investing. In Proc. 3rd International Conference on Virtual Execution Environ-
ments, VEE 2007, pages 94–104. ACM, 2007.

17 Prasad A. Kulkarni. JIT Compilation Policy for Modern Machines. In Proc. ACM Interna-
tional Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA 2011, pages 773–788. ACM, 2011.

18 Oracle. Graal project. http://openjdk.java.net/projects/graal/.
19 Michael Paleczny, Christopher Vick, and Cliff Click. The Java HotSpot™ Server Com-

piler. In Proc. Symposium on Java Virtual Machine Research and Technology Symposium
- Volume 1, JVM 2001, pages 1–1. USENIX Association, 2001.

20 Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder. Da Capo con Scala:
Design and Analysis of a Scala Benchmark Suite for the Java Virtual Machine. In Proc.
ACM International Conference on Object Oriented Programming, Systems, Languages and
Applications, OOPSLA 2011, pages 657–676. ACM, 2011.

21 Toshio Suganuma, Toshiaki Yasue, Motohiro Kawahito, Hideaki Komatsu, and Toshio Na-
katani. Design and Evaluation of Dynamic Optimizations for a Java Just-in-time Compiler.
ACM Trans. Program. Lang. Syst., 27(4):732–785, July 2005.

22 John Whaley. Partial Method Compilation Using Dynamic Profile Information. In Proc.
16th ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages,
and Applications, OOPSLA 2001, pages 166–179. ACM, 2001.

23 Christian Wimmer, Vojin Jovanovic, Erik Eckstein, and Thomas Würthinger. One Com-
piler: Deoptimization to Optimized Code. In Proc. 26th International Conference on Com-
piler Construction, CC 2017, pages 55–64. ACM, 2017.

ECOOP 2017

https://developers.google.com/octane/
http://openjdk.java.net/projects/graal/


30:30 An Empirical Study on Deoptimization in the Graal Compiler

24 Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Duboscq,
Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. One VM to Rule
Them All. In Proc. ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software, Onward! 2013, pages 187–204. ACM, 2013.

25 Toshiaki Yasue, Toshio Suganuma, Hideaki Komatsu, and Toshio Nakatani. An Efficient
Online Path Profiling Framework for Java Just-In-Time Compilers. In Proc. 12th Inter-
national Conference on Parallel Architectures and Compilation Techniques, PACT 2003,
pages 148–158. IEEE Computer Society, 2003.

26 Yudi Zheng, Lubomír Bulej, and Walter Binder. Accurate Profiling in the Presence of Dy-
namic Compilation. In Proc. ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2015, pages 433–450. ACM,
2015.


	p00-frontmatter
	Message from the PC Chair
	Message from the Artifact Evaluation Chairs
	Message from the President of AITO
	Organization
	External Reviewers

	p01-schulte
	p02-bracha
	p03-tate
	p04-anderson
	Introduction
	Background
	Julia
	Related Work

	Motivating Examples
	Black-Scholes option pricing
	Gaussian blur
	Two-dimensional wave equation simulation

	Parallel patterns in ParallelAccelerator
	Building Blocks
	Map
	Reduction
	Cartesian Map
	Stencil

	Implementing ParallelAccelerator
	Domain Transformation
	Parallel Transformation
	Code Generation
	Experimental JGen Backend


	Empirical Evaluation
	Horn-Schunck optical flow estimation
	Black-Scholes option pricing model
	Gaussian blur image processing
	Laplace 3D 6-point stencil
	Quantitative option pricing model
	2D lattice Boltzmann fluid flow model
	Harris corner detection
	2D wave equation simulation
	Julia set computation
	Nengo NEF algorithm
	Impact of Individual Optimizations

	Limitations and Future Work
	Conclusion

	p05-berger
	Introduction
	HGMP design space
	The HGMP subset of meta-programming
	Program fragment representation
	Strings
	ASTs

	UpMLs
	Compile-time vs. run-time execution
	Implicit and explicit HGMP
	HGMP vs. macro expansion

	A simple HGMP calculus
	ASTs
	Compile-time HGMP
	Scoping

	Run-time HGMP

	Enriching the calculus
	Higher-order ASTs
	UpMLs
	The relationship between compile-time levels

	Lifting
	Cross-level variable scoping
	Examples

	A recipe for creating HGMP calculi
	Example: staged typing and HGMP
	Design issues
	Staged typing for the foundational calculus
	Examples

	Related work
	Conclusions

	p06-castegren
	Introduction
	Lock-Free Programming with Linearity
	The Challenges of Linear Lock-Free Programming
	Typing the Life of a List Node: Speculation, Publication and Acquisition
	Atomic Transfer of Ownership
	LOLCAT in Action: Implementation of a Treiber Stack
	Data Structures with Multiple Contention Points

	Formalising Linear Ownership in LOLCAT
	Static Semantics
	Dynamic Semantics

	Meta Theory
	Prototype Implementation & OO Support
	Implementing [style=capabilities,basicstyle=,keywordstyle=]@CAT@ and Fix Pointers
	LOLCAT and Object-Oriented Programming
	Garbage Collection and ABA

	Related Work
	Conclusions & Future Work
	Type Transitions in LOLCAT

	p07-cruz
	Introduction
	Type-Based Declassification Policies
	An Object Language for Type-Based Declassification
	Type-Based Relaxed Noninterference
	Expressiveness of Declassification Policies
	Related work
	Conclusion
	Auxiliary Definitions
	Environments
	Well-formedness of types and environments
	Subtyping
	Type equivalence
	Simple type system


	p08-delbianco
	Introduction
	Our contributions

	Verification challenge and main ideas
	Specification
	Client reasoning
	Internal auxiliary state
	Auxiliary code implementation
	Correctness
	Discussion
	Related work
	Conclusions
	A brief introduction to FCSL
	Implementation and Correctness of relink

	p09-dietrich
	Introduction
	Contracts and Their Checking
	Contracts and Evolution
	Research Questions and Contributions

	Contract Patterns in Java
	Terminology
	Conditional Runtime Exceptions (CRE) and Unsupported Operations
	Contract APIs
	Assertions
	Contract Annotations
	Other Approaches

	Methodology
	Data Sets
	Contract Element Classification
	Methodology for Contract Usage Study
	Methodology for Evolution Study
	Methodology for LSP Study
	Verifiability

	Results
	Contract Usage (RQ1)
	Contract Evolution (RQ2)
	Contract Safety and Program Evolution (RQ3)
	LSP Study (RQ4)

	Limitations and Threats to Validity
	Data Set
	Contract Extraction
	Evolution
	LSP Study

	Related Work
	Empirical Studies
	Contract Languages
	Contracts in Component Composition and Evolution

	Conclusion

	p10-dietrich
	Introduction
	The Java Vulnerabilities
	Terminology
	Turtles all The Way Down
	SerialDOS
	Pufferfish
	Enabling Language, Runtime and Library Features

	Case Studies
	Jenkins / Tomcat
	JBoss
	Discussion

	Object-Graph Engineering in other Languages
	Ruby
	C#
	JavaScript
	Summary

	Mitigation
	JEP290
	Restricting Enabling Language, Runtime and Library Features
	Thread-Based Sandboxing
	Sandboxing via Contracts
	Validation
	Discussion

	Related Work
	Object Serialisation
	Serialisation-Related Vulnerabilities in Java
	DoS Attacks
	Algorithmic Complexity Vulnerabilities
	Arbitrary Code Execution Vulnerabilities
	Serialisation-Related Vulnerabilities in Other Languages
	Detection of DoS Vulnerabilities
	Strategies Against Untrusted Deserialisation
	Resource Limits And Isolation
	Contracts

	Conclusion
	Additional Source Code Listings
	Java
	Ruby
	C#

	Proofs

	p11-fowler
	Introduction
	Motivation
	Our approach
	Summary of results
	Contributions and paper outline

	Channels and actors side-by-side
	ch: A concurrent -calculus for channels
	Syntax and typing of terms
	Operational semantics
	Progress and canonical forms

	act: A concurrent -calculus for actors
	Syntax and typing of terms
	Operational semantics
	Progress and canonical forms

	From act to ch
	Translation (act to ch)
	Properties of the translation

	From ch to act
	Extensions to the core language
	Translation strategy (ch into act)
	Translation
	Properties of the translation

	Extensions
	Synchronisation
	Selective receive
	Choice
	Behavioural types

	Related work
	Conclusion

	p12-fu
	Introduction
	Overview of Puppet
	Puppet: key concepts
	Manifests and catalogs
	Resource declarations
	Variables and strict mode
	Classes and includes
	Qualified names
	Inheritance and class parameters
	Class statements
	Defined resource types


	Puppet
	Abstract syntax
	Operational Semantics
	Auxiliary definitions: catalogs, scopes and environments
	Expression evaluation
	Statement evaluation
	Manifest compilation


	Metatheory
	Implementation and Evaluation
	Test cases and results
	Other Puppet examples
	Unsupported features

	Related work
	Conclusions

	p13-gordon
	Introduction
	Background on Commutative and Sequential Effect Systems
	Effect Quantales
	Modeling Prior Sequential Effect Systems with Effect Quantales
	Locking with Effect Quantales
	An Effect Quantale for Atomicity
	Other Examples

	Iteration
	Properties Required of an Iteration Operator
	Iteration via Closure Operators
	Iterating Concrete Effects

	Syntactic Type Soundness for Generic Sequential Effects
	Parameters to the Language
	The Core Language, Formally
	Syntactic Safety

	Relationships to Semantic Notions of Effects
	Productors and Effectoids
	Effect-indexed Monads, a.k.a. Graded Monads
	Joinads and Joinoids
	Limitations of Semantics-Based Work

	Modeling Prior Effect Systems in a Generic Framework
	Types for Safe Locking and Atomicity

	Related and Future Work
	Generic Effect Systems
	Algebraic Approaches to Computation
	Concrete Effect Systems
	Limitations and Future Work

	Conclusions

	p14-harkes
	Introduction
	Declarative Data Modeling by Feature Selection
	Running Example.
	Orthogonality of Field Configurations in IceDust
	Generalizing Data Modeling with IceDust

	Run-Time Feature Interaction
	Operational Semantics
	Sound Composition of Calculation Strategies
	Implementations
	Case Studies
	Multiplicity Bounds for the Right-Hand Side of Derived Relations
	Related Work
	Summary and Future Work

	p15-huang
	Introduction
	Overview
	Happens-Before Race Detection
	Concurrential Redundancy

	The ReX Algorithm
	Example

	The LockSet Optimization
	Evaluation
	Redundancy and Optimal Performance
	ReX Performance, Precision & Soundness

	Related Work
	Conclusion

	p16-huang
	Introduction
	Maximal Causality Reduction
	 Motivation and Technical Background
	Motivation
	System Dependency Graph

	Our Approach
	Constraints Reduction
	Dependency Analysis
	Control Dependency
	Data Dependency
	Dependency Reads Computation

	Discussion

	Redundant Executions
	Redundancy Elimination

	Implementation and Evaluation
	Implementation
	Methodology
	Reduction Analysis
	Overall Checking Performance Comparison

	Related Work
	Conclusion

	p17-kaiser
	Introduction
	Iris: A Unifying Framework for Concurrent Separation Logics
	Separation Logics for Release-Acquire Consistency
	Our Contributions

	Release-Acquire and Non-Atomics
	Release-Acquire
	Non-Atomics
	The RN language

	Iris
	Iris by Example
	Encoding Separation Logic for SC
	Verifying MP in SC

	Instantiating Iris with RN
	Encoding Separation Logic for RN
	MP in RN


	iGPS
	Key Features of GPS
	Single-Writer Protocols
	The Model of iGPS

	Other Contributions
	Related Work

	p18-kuci
	Introduction
	Background and Motivation
	Featherweight Java: Syntax and Typing Rules
	Contextual and Co-Contextual Featherweight Java by Example

	Co-Contextual Structures for Featherweight Java
	Class Variables and Constraints
	Context Requirements
	Structure of Class Tables and Class Table Requirements
	Operations on Class Tables and Requirements
	Class Table Construction and Requirements Removal

	Co-Contextual Featherweight Java Typing Rules
	Expression Typing
	Method Typing
	Class Typing
	Program Typing

	Typing Equivalence
	Efficient Incremental FJ Type Checking
	Performance Evaluation
	Evaluation on synthesized FJ programs
	Evaluation on real Java program

	Related work
	Conclusion and Future Work

	p19-mayer
	Introduction
	Example Run of Our Synthesis Algorithm
	Discussion
	Advantages of Synthesis Approach
	Challenges in Obtaining Efficient Algorithms

	Notation
	Trees and Domains
	Transducers

	Transducers as Morphisms
	Learning 1STS from a Sample
	NP-completeness of the general case
	Word Equations
	Algorithm for Learning from a Sample

	Learning 1STSs Without Ambiguity
	Test Sets for Context-Free Languages
	Plandowski's Test Set
	Linear Context-Free Grammars
	Context-Free Grammars

	Tree Test Sets for Transducers
	Learning 1STSs Without Ambiguity

	Learning 1STS Interactively
	Tree with Values
	Implementation
	Evaluation
	Related Work
	Equivalence of top-down tree-to-string transducers
	Test sets

	Conclusion

	p20-melicher
	Introduction
	Wyvern Module System
	Threat Model
	Resource Modules
	Pure Modules
	Authority Analysis

	Wyvern Syntax and Semantics
	Module Syntax
	Core Language Syntax
	Translation of Modules into Objects
	Static Semantics
	Dynamic Semantics
	Type Soundness

	Authority Safety
	Significance of Authority Safety
	Formal Definition of Authority Safety
	auth() Rules
	pointsto() Rules
	Determining Authority of an Object
	Authority Safety Theorem


	Implementation
	Limitations
	Related Work
	Conclusion

	p21-petricek
	Introduction
	Using type providers in a novel way
	Simplifying data scripting languages
	What makes data exploration scripts complex
	Unifying language constructs with member access
	Tooling and dot-driven development
	Expressing structured logic using members

	Tracking column names
	Using row types and type state
	Using the pivot type provider

	Formalising the host language and runtime
	Relational algebra with vector semantics
	Foo calculus with lazy context

	Formalising the pivot type provider
	Pivot type provider
	Properties of the pivot type provider
	Adding the filtering operation

	Case study: Visualizing Olympic medalists
	Related and further work
	Further work
	Related work

	Conclusions
	Sample of the Olympic medals data set

	p22-podkopaev
	Introduction
	Models through Examples
	A More Complex Behavior
	More Abstract Storage Subsystem: POP

	Main Challenges and High-Level Proof Structure
	The ARM Machine
	The Promise Machine
	Basic Properties of the ARM Storage
	Introduction of Timestamps to the ARM Machine
	The ARM+tau Machine
	Definition of the ARM+tau Machine
	Simulation of the ARM Machine
	View of the ARM+tau Machine

	The Compilation Correctness Proof
	Related Work
	Conclusion

	p23-saleil
	Introduction
	Basic Block Versioning
	Interprocedural Specialization
	Function call
	Function return
	Captured information

	Implementation
	Entry point set
	Global layout
	Size of the tables
	Captured information
	Continuations
	Impact on generated code
	Function call
	Function return


	Experiments
	Type checks
	Generated code size
	Memory occupied by the tables
	Execution time
	Compilation time
	Total time

	Related work
	Interprocedural BBV
	Inline Caching
	Static analysis
	Tracing compilation

	Future work
	Conclusion

	p24-scalas
	Introduction
	Multiparty Session -Calculus
	Multiparty Session Typing

	Linear -Calculus
	Some Typed -Calculus Extensions and Results
	Encoding Multiparty Session- into Linear -Calculus
	Properties of the Encoding
	From Theory to Implementation
	Conclusion and Related Works

	p25-stievenart
	Introduction
	Problem #1: Missing interleavings for ordered-message mailbox models
	Problem #2: Loss of message ordering and multiplicity
	Our approach

	A Simple Actor Language: 
	Concrete Semantics of  as an Abstract Machine
	State Space
	Atomic Expressions
	Addresses, Process Identifiers and Allocation
	Concrete Mailboxes
	Transition Relation
	Macro-Stepping Semantics
	Collecting Macro-Stepping Semantics
	Program Properties

	Abstract Interpretation of 
	Abstract State Space
	Abstract Atomic Expressions
	Abstract Addresses, Process Identifiers and Allocation
	Abstract Transition Relation
	Abstract Macro-Stepping Semantics
	Abstract Collecting Macro-Step Semantics
	Abstract Program Properties

	Mailbox Abstractions
	Categorization of Mailbox Abstractions
	Powerset Abstraction
	Bounded List Abstraction
	Multiset Abstraction
	Bounded Multiset Abstraction
	Graph Abstraction

	Evaluation
	Implementation
	Benchmarks
	Running Time and Flow Graph Size
	Precision
	Comparison with Soter
	Soundness

	Related Work
	Actor Languages
	Abstract Interpretation of Actor Programs
	Type Systems
	Model Checking and Specification Logics
	Limitations and Future Work

	Conclusion

	p26-vollmer
	Introduction
	Background and Example
	Challenges and Limitations
	Ensuring complete traversal
	Extensions

	Related Work

	The Gibbon Input Language
	Compilation Algorithms
	Inferring traversal effects
	Copy and traversal insertion
	Routing end-of-value witnesses
	Output cursor insertion
	Code generation

	Implementation
	Evaluation
	Microbenchmarks
	Compiler passes on realistic inputs

	Extensions
	Adding Layout Information for Indirection
	Evaluation
	Parallelism opportunity study
	Point correlation


	Future Work and Conclusions

	p27-wang
	Introduction
	Background: System D<:
	Syntax and Typing Rules
	Operational Semantics
	Previous Work: Type Soundness
	Type Soundness Hinges on Strong Normalization of Paths

	Strong Normalization
	The Girard-Tait Proof Method: Starting-Point F<:
	System D<:: Type Values and Bounds
	Good Bounds
	Semantic Subtyping
	Inversion of Function Typing
	The Main Strong Normalization Proof

	Scaling up to DOT
	Intersection Types
	Recursion
	Extended Proof Method
	Limitations on Unpacking Recursive Types

	Related Work
	Conclusions
	Mechanization in Coq
	Model
	Syntax (Figure 2)
	Type System Judgements

	Strong Normalization Proofs for Plain D<: (Section 3)
	Figures and Definitions
	Lemmas
	Theorems

	Intersection and Recursive Types (Section 4)


	p28-williams
	Introduction
	Concepts of TPD: Functions, Polymorphism, and Proxies
	Wrapping
	Functions
	Polymorphism and Sealing

	Failure to Conform
	Higher-order Positive Blame
	Negative Blame

	Examples of Interference
	Proxy Identity
	Dynamic Sealing

	Evaluation
	Method
	Failures to Conform
	Violations of Non-interference
	Comparative Techniques
	Performance
	Threats to Validity

	Design Alternatives and Solutions to Interference
	Rewriting
	Transparent Proxies
	Reflection
	Dynamic Sealing

	Related Work
	Conclusion
	List of Libraries Tested

	p29-zhang
	Introduction
	Modular External Visitors
	Background: Internal/External Visitors and Object Algebras
	Internal versus External Visitors
	Key Idea: Abstracting Recursive Calls

	EVF for Modularity and Reuse of PL Implementations
	Untyped Lambda Calculus: A Running Example
	A Summary of the Implementations and Results
	An Implementation with the Visitor Pattern
	An Implementation with Object Algebras
	An Implementation with EVF
	Discussion

	Code Generation in EVF
	Modular External Visitor Interfaces
	AST Infrastructure
	Boilerplate Traversals

	Case Study
	Overview
	Components
	Evaluation

	Performance Measurements
	Related Work
	Conclusion

	p30-zheng
	Introduction
	Related Work and Background
	Speculation and Deoptimization
	Deoptimization in the Graal Compiler

	Study of Deoptimization Behavior
	Profiling Deoptimizations
	Deoptimizations Sites Emitted
	Deoptimization Sites Triggered
	Deoptimizations Triggered Repeatedly
	Deoptimizations per Iteration

	Investigating Repeated Deoptimizations
	Repeated Deoptimizations in the actors Benchmark
	Repeated Deoptimizations in the scalac Benchmark


	Alternative Deoptimization Strategies
	Conservative Deoptimization Strategy
	Adaptive Deoptimization Strategy

	Performance Evaluation
	DaCapo and ScalaBench Evaluation
	Choosing the Baseline
	Start-up Performance
	Steady-state Performance
	Overall Execution and Compilation Time
	Tolerance for Deoptimizations in the Adaptive Strategy

	Octane on Graal.js Evaluation
	On the Scale of Performance Changes

	Conclusion




