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Abstract
All-pairs suffix-prefix matching is an important part of DNA sequence assembly where it is the
most time-consuming part of the whole assembly. Although there are algorithms for all-pairs
suffix-prefix matching which are optimal in the asymptotic time complexity, they are slower than
SOF and Readjoiner which are state-of-the-art algorithms used in practice. In this paper we
present an algorithm for all-pairs suffix-prefix matching that uses a simple data structure for
storing input strings and advanced algorithmic techniques for matching, which together lead to
fast running time in practice. Our algorithm is 14 times faster than SOF and 18 times faster
than Readjoiner on average in real datasets and random datasets.
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1 Introduction

The problem of all-pairs suffix-prefix (APSP) matching is defined as follows: Given a collection
of k strings S1, S2, . . . , Sk, find the longest suffix of Si which is a prefix of Sj for all pairs
Si and Sj . Let N be the sum of lengths of the input strings S1, S2, . . . , Sk. All-pairs
suffix-prefix matching is an important part of DNA sequence assembly where it is the most
time-consuming part of the whole assembly process. In DNA sequence assembly, a parameter
om (for overlap minimum) is given for APSP matching where we want to find the longest
overlap of Si and Sj whose length is at least om. The output of APSP matching can be
stored in a k × k matrix Ov, where Ov[i, j] is the length of the longest suffix of Si that is a
prefix of Sj . Alternatively, the output can be a list of three integers (i, j, Ov[i, j]) such that
Ov[i, j] ≥ om as a compact representation.

All-pairs suffix-prefix matching has been studied in the fields of stringology and bioin-
formatics. In general, a solution for APSP matching consists of two phases: the first phase is
to build a data structure which represents all prefixes of the input strings, and the second
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14:2 Algorithm Engineering for All-Pairs Suffix-Prefix Matching

matching phase is to search the data structure to find occurrences of suffixes of each input
string (or equivalently, one can build a data structure representing all suffixes of the input
strings, and search it for prefixes of each string). Gusfield et al. [8] proposed a novel algorithm
of optimal O(N + k2) time for APSP matching by building a generalized suffix tree for the
input strings. Ohlebusch and Gog [16] gave another O(N + k2)-time algorithm by building
an enhanced suffix array [1, 14] for the input strings, which improves upon Gusfield et al.’s
in running time and space. Tustumi et al. [19] further improved the running time and space
of Ohlebusch and Gog’s algorithm. Louza et al. [13] presented a parallel algorithm for APSP
matching which is based on Tustumi et al.’s. In bioinformatics too, many algorithms have
been proposed for APSP matching [5, 6, 11, 15, 9, 10, 18, 17], and Readjoiner [6] and SOF
[9] are state-of-the-art algorithms which show best performances in practice. Although the
algorithms in [8, 16, 19] are optimal in the asymptotic worst-case time complexity, Readjoiner
and SOF are faster than these algorithms in practice. Hence there is a mismatch between
theoretical results and practice. A main reason for the mismatch is that the generalized suffix
tree [8, 7] and even the enhanced suffix array [1, 14] are heavy machineries (though they
provide powerful functionalities) and so the constants hidden in the asymptotic notations
are quite big. On the other hand, SOF uses a simple but effective data structure called the
compact prefix tree (also known as compact trie) for the input strings and its matching phase
uses quite naive algorithmic techniques. As another approach, we can build the Aho-Corasick
automaton [2] for the input strings, and solve APSP matching by searching the automaton
for each input string. We implemented this approach, but the Aho-Corasick automaton is
another piece of heavy machinery and just building it (without the matching phase) takes
more time than the whole SOF.

In this paper we propose a fast algorithm for APSP matching. We first build a compact
prefix tree for the input strings, but in the matching phase we need more advanced techniques
because the only functionality that the compact prefix tree provides is to check whether
a given string is a prefix of the input strings or not. We divide the matching phase into
three cases depending on the lengths of suffixes of an input string, and in each case we use
an appropriate algorithmic technique which finds efficiently occurrences of the suffixes of
an input string corresponding to the case. We did experiments to compare our algorithm
against SOF and Readjoiner with real datasets and random datasets. In the experiments our
algorithm is 14 times faster than SOF and 18 times faster than Readjoiner on average. We
also obtain reasonable scalability with a parallel implementation of our algorithm.

2 New algorithm for APSP matching

Let S be a string of length n over an alphabet Σ. We denote the length of S by |S|. The
i-th character of S is denoted by S[i] (1 ≤ i ≤ |S|), and a substring S[i]S[i + 1]...S[j] by
S[i..j]. A substring S[1..i] for 1 ≤ i ≤ n is called a prefix of S and a substring S[i..n] for
1 ≤ i ≤ n is called a suffix of S. For strings A and B, we use A ≺ B to denote that A is
lexicographically smaller than B.

We describe the compact prefix tree CT of k input strings defined in [9]. The compact
prefix tree is basically a compact trie, i.e., there is one leaf corresponding to each input string
and every internal node has at least two children. An array sorted stores the lexicographic
ordering of the input strings such that Ssorted[1] � Ssorted[2] � ... � Ssorted[k]. The leaves of
CT are in the lexicographic order, and each node v of CT has an interval [a, b] such that
Ssorted[a], . . . , Ssorted[b] are the leaves in the subtree rooted at v. The compact prefix tree
provides a function Find(s), which returns the node v nearest to the root such that s is a
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Figure 1 Three cases of the matching step.

prefix of the string on the path from the root to v. If such a node does not exist, Find(s)
returns NULL. For notational convenience, let isort be the inverse function of sorted, i.e.,
isort[j] = c if j = sorted[c].

We first describe an overview of our algorithm for APSP matching. Our algorithm consists
of three steps: preprocessing, matching, and output steps. Our algorithm uses two integers
m and B as parameters (m ≥ B).

In the preprocessing step we construct a compact prefix tree CT for k input strings as in
[9]. In addition, we build auxiliary data structures which will be used in the matching
step.
In the matching step we consider each input string Si separately and do the following.
For each suffix s of Si, we find the interval [a, b] such that Ssorted[a], . . . , Ssorted[b] have s
as their prefixes. If the interval [a, b] is not empty, we insert (a, b, |s|) into oList[i]. But if
we find the interval [a, b] by calling Find(s) for every suffix s of Si, it will take too much
time. We reduce the number of calls to Find by dividing the suffixes of Si into three
cases and using different techniques for the cases. Figure 1 illustrates three cases of the
matching step.

In case 1, we consider each suffix s of Si such that |s| ≥ m. If s[m−B+ 1..m] appears
in Sj [m − B + 1..m] for some j (see Figure 1 (a)), we call Find(s); otherwise, it is
guaranteed that s does not appear as a prefix of input strings and so we don’t need to
call Find(s).
In case 2, we consider each suffix s such that B ≤ |s| < m. If s[|s| −B+ 1..|s|] appears
in Sj [|s| −B + 1..|s|] for some j (see Figure 1 (b)), we call Find(s); otherwise, s does
not appear as a prefix of input strings.
In case 3, we consider suffixes s such that |s| < B. For this case we precompute
Find(s′) for every string s′ of length less than B which appears as a prefix of input
strings, and we store them in a table Bprefix. Hence there are no calls to Find during
the matching step.

In the output step we find the longest overlap of Si and Sj for every j, which is the
largest l such that (a, b, l) is in oList[i] and interval [a, b] contains isort[j].

2.1 Preprocessing step
In the preprocessing step, we build data structures: a compact prefix tree CT , sorted, and
auxiliary data structures qrm, qList, and Bprefix.
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14:4 Algorithm Engineering for All-Pairs Suffix-Prefix Matching

We construct a compact prefix tree CT by inserting input strings one by one into the
tree while maintaining the lexicographic order of characters for children of each internal
node. At the end of the insertions, then, the input strings appear in the leaves of CT in the
lexicographic order. Hence sorted and the interval [a, b] of each node can be obtained by
traversing the tree.

The values of two parameters m and B are set as follows. Let ms be the length of a
shortest string among k input strings. We define m as follows.

m =


ms if N

c1k ≤ ms ≤ N
c2k

N
c1k if ms <

N
c1k

N
c2k if ms >

N
c2k ,

(1)

for some constants c1 and c2. We define B = min(log|Σ| 2mk,m), and a string of length B
will be called a block.

We will use an auxiliary data structure qrm for case 1 in Figure 1. Let m′ = max(m, om),
and let k′ be the number of input strings whose length is at leastm′. Let S ′ = {S′1, S′2, . . . , S′k′}
be the collection of the length-m prefixes of input strings whose length is at least m′. Hence
S ′ looks like a k′ ×m matrix as in Figure 1 (a). For every string x of length B, qrm[f(x)] is
the rightmost occurrence of x in S ′, i.e.,

qrm[f(x)] =
{

max{q | x = S′i[q −B + 1..q] for 1 ≤ i ≤ k′} if x appear in S ′

B − 1 otherwise,
(2)

where f(x) is a function mapping a string x to an integer used as an index of the qrm table,
i.e.,

f(x) =
|x|∑
i=1

rank(x[i])|Σ|i−1, (3)

where rank(c) is a function mapping a character c to a lexicographic order of c within the
range [0, Σ − 1]. To compute the values of qrm, we scan all blocks (i.e., all substrings of
length B) in S ′. The table qrm is initially set to B− 1. In each position q = B,B+ 1, . . . ,m,
we consider k′ blocks xi = S′i[q −B + 1..q] for 1 ≤ i ≤ k′ and set qrm[f(xi)] to q.

We will use qList for case 2 in Figure 1. Let B′ = max(B, om) and let k′′ be the number
of input strings whose length is at least B′. Let S ′′ = {S′′1 , S′′2 , . . . , S′′k′′} be the collection of
input strings whose length is at least B′. For the last block x of S′′j for every 1 ≤ j ≤ k′′,
qList[f(x)] is defined as a list of all distinct positions q such that S′′i [q −B + 1..q] = x for
1 ≤ i ≤ k′′ and B′ ≤ q ≤ m.

If om ≥ m, we do not compute qList because case 2 finds overlaps whose length is less
than m. If om < m we compute qList by scanning all blocks in S ′′ as follows. We define a
temporary table T that indicates whether a block x appears at the end of some input string.
That is, if |Sj | ≥ B and x = Sj [|Sj | −B + 1..|Sj |], T [f(x)] = 1; otherwise, T [f(x)] = 0. In
each position q, we consider k′′ blocks xi = S′′i [q −B + 1..q] for 1 ≤ i ≤ k′′. If T [f(xi)] = 1
and q is not in qList[f(xi)] (i.e., q is not at the front of qList[f(xi)]), we insert q into
qList[f(xi)].

We will use Bprefix for case 3 in Figure 1. Consider a string s such that |s| < B. If s is a
prefix of some input string (i.e., s appears as a prefix in CT ), Bprefix[f ′(s)] is a pointer to
the node v nearest to the root of CT such that s is a prefix of the string on the path from
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the root to v, where f ′(s) is a function mapping a string s to an integer:

f ′(s) =
|s|−1∑
i=1
|Σ|i + f(s). (4)

Note that f ′(s) maps a string s into an integer within the range [0,
∑B−1

i=1 |Σ|i − 1]. If s is
not a prefix of the input strings, Bprefix[f ′(x)] is set to NULL.

If om ≥ B, we do not compute Bprefix because case 3 finds overlaps whose length is less
than B. If om < B, we compute Bprefix as follows. Initially, all entries of Bprefix are set to
NULL. We traverse CT for all character depths (i.e., number of characters on the path from
the root) less than B, and set Bprefix[f ′(s)] for string s that appears as a prefix in CT .

The space complexity of our algorithm is bounded by the memory space used by k

input strings and the data structures CT , sorted, qrm, qList, and Bprefix. The input uses
N log |Σ| bits (i.e. O(N) space), and the data structures use O(km) space, which is O(N)
because km = Θ(N).

2.2 Matching step
In the matching step we consider each input string Si separately and we need to find
v = Find(s) for every suffix s of Si. If v is not NULL, we insert (a, b, |s|) into oList[i], where
[a, b] is the interval of v. To reduce the number of calls to Find, we have the three cases in
Figure 1.

In case 1, we consider suffixes s of Si such that |s| ≥ m′ from longest to shortest. Let p
be the start position of a current suffix s to be considered. Initially, p = 1.

If qrm[f(x)] is not m, the current suffix s cannot appear in CT as a prefix and so we don’t
need to call Find(s). Moreover, suffixes of Si starting at positions p+ 1, p+ 2, . . . ,m−
qrm[f(x)]− 1 cannot appear in CT as prefixes. Hence p is updated to p+m− qrm[f(x)].
If qrm[f(x)] is m, we make a call Find(s). If Find returns a node v, we insert (a, b, |s|)
into oList[i], where [a, b] is the interval of v. If Find returns NULL, we do nothing.
Finally, we increase p by 1.

The preprocessing and matching steps of case 1 are essentially the same as those in Wu and
Manber’s algorithm [20], which is a Boyer-Moore type algorithm [3, 4, 12], but cases 2 and 3
are different from Wu and Manber’s.

In case 2, we consider suffixes s of Si such that B′ ≤ |s| < m′. If om ≥ m (i.e.,
m′ = max(m, om) = om), we skip case 2. In case 2, therefore, m′ = m. Note that the last
blocks of the suffixes considered in this case are x = Si[|Si| −B + 1..|Si|]. Since a position q
in qList[f(x)] means that x appears at (ending) position q in one of the strings in S ′′, the
length-q suffix s of Si (i.e. s = Si[|Si| − q + 1..|Si|]) may appear in CT . Hence, we make a
call Find(s) for every position q in qList[f(x)].

In case 3, we consider suffixes s of Si such that |s| < B′. If om ≥ B (i.e., B′ =
max(B, om) = om), we skip case 3. In case 3, therefore, B′ = B. For every suffix s of Si such
that om ≤ |s| < B, we look up Bprefix[f ′(s)], which already contains the result of Find(s).

The pseudocode of the matching step is shown in Algorithm 1.

2.3 Output step
In the output step we find the longest suffix of Si that is a prefix of Sj for every j, whose
length is the largest l such that tuple (a, b, l) is in oList[i] and interval [a, b] contains isort[j].
(We assume that the output of APSP matching is a list of three integers (i, j, l) because it
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Algorithm 1 Fast algorithm for APSP matching
1: procedure FastAPSP({S1, S2, . . . , Sk}, om)
2: Precompute m, B, m′, B′, CT , sorted, qrm, qList and Bprefix
3: for i← 1 to k do . Matching step
4: p← 1 . Case 1
5: while p ≤ |Si| −m′ + 1 do
6: x← Si[p+m−B..p+m− 1]
7: if qrm[f(x)] = m then
8: v ← Find(Si[p..|Si|])
9: if v 6= NULL then

10: oList[i].insert(v.interval, |Si| − p+ 1)
11: p← p+ 1
12: p← p+m− qrm[f(x)]
13: if |Si| ≥ B′ then . Case 2
14: x← Si[|Si| −B + 1..|Si|]
15: for each q in qList[f(x)] do
16: v ← Find(Si[|Si| − q + 1..|Si|])
17: if v 6= NULL then
18: oList[i].insert(v.interval, q)
19: for p← max(|Si| −B + 2, 1) to |Si| − om+ 1 do . Case 3
20: x← Si[p..|Si|]
21: v ← Prefix[f ′(x)]
22: if v 6= NULL then
23: oList[i].insert(v.interval, |Si| − p+ 1)
24: Perform output step for oList[i]

is a more compact representation in DNA sequence assembly.) In other words, for every
1 ≤ c ≤ k we want to find the largest l such that (a, b, l) is in oList[i] and interval [a, b]
contains c. Then l is the length of the largest overlap of Si and Ssorted[c] and thus we output
(i, sorted[c], l).

Imagine that intervals [a, b] in oList[i] are on the x-axis. We scan the intervals from c = 1
to k, and maintain the values of l in tuples (a, b, l) such that interval [a, b] contains the current
c in a max-heap. Then for every current c, we output (i, sorted[c], max value in max-heap).
This process can be implemented as follows. We first make an array tA of (a, l)’s and an
array tB of (b, l)’s from tuples (a, b, l) in oList[i]. We sort tA in non-decreasing order of a’s
and tB in non-decreasing order of b’s. Finally we increase c from 1 to k, and if c hits a of
(a, l), we insert l into the max-heap, and if c hits b of (b, l′), we delete l′ from the max-heap.
Then (i, sorted[c], max value in max-heap) for every current c is a correct output.

Since the number of tuples in oList[i] is at most |Si|, the space usage of oList[i], tA, and
tB is O(|Si|) (thus O(N)), and this space for oList can be reused for every 1 ≤ i ≤ k.

2.4 Implementation options
The implementation of our algorithm provides several options: overlap minimum, output,
and parallel options. The overlap minimum option is given by −om i, where i is the value of
overlap minimum om. The output option receives 1, 2, or 3 as a parameter. In the case of 1,
the program provides the matrix Ov as output. In the case of 2, the program gives the list of
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Table 1 Real datasets used in experiments.

clementina sinensis trifoliata C. elegans Atta
N 104640576 154995828 46648250 167035020 315387616
k 118365 208909 62344 334465 2835

avg length 884.05 741.93 748.24 499.41 111247.84
ms 18 13 89 7 1929

three integers (i, j, Ov[i, j]). In the case of 3, it gives the list of all overlaps for each pair (not
only the longest overlap) like Readjoiner [6] and SOF [9] with −o 2. Our program with option
3 presents all the overlaps by outputting (i, sorted[a], l), (i, sorted[a+1], l), . . . , (i, sorted[b], l)
from each tuple (a, b, l) in oList[i] instead of running the output step. Given the number p
of threads as a parameter for the parallel option, our program is executed in parallel. In
the preprocessing step, qrm and qList are computed in parallel. The matching step is also
executed in parallel by p threads.

3 Experiments

Tustumi et al. [19] and Louza et al. [13] compared only the matching phases of their optimal
algorithms for APSP matching against SOF and Readjoiner, not accounting for the time to
build the data structures to store input strings, and SOF and Readjoiner are in general faster
than their algorithms. (If the time to build the data structures is included, the gap would be
greater.) Among practical algorithms [5, 6, 11, 15, 9, 10, 18, 17] for APSP matching, SOF
and Readjoiner show best performances. Therefore, we compared our algorithm1 with SOF
and Readjoiner. Our algorithm and SOF were compiled with g++ (v. 4.9.2) with the -O3
optimization flag. Readjoiner (version 1.2) was compiled using the provided Makefile with
“64bit=yes assert=no amalgamation=yes threads=yes”. For parallel experiments, we used
the OpenMP library. All experiments were conducted on a computer with Intel Xeon X5672
CPU, which has 8 cores, 32 GB RAM, and the Linux debian 3.2.0-4-amd64 operating system.

We used two types of datasets which are real and random. The five real datasets are
the complete EST databases of Citrus clementina2, Citrus sinensis2, Citrus trifoliata2,
C. elegans3, and Atta cephalotes4, which were used as the datasets in the SOF paper [9].
The alphabet of the datasets is {A,C,G, T}. Table 1 shows specific information of the
datasets. Whereas Readjoiner discards low-quality reads before APSP matching, we made
three algorithms take all reads as input strings for a fair comparison. The random datasets
are generated by a program1 that gives k strings such that the lengths of the strings follow a
normal distribution with mean µ and standard deviation σ and the characters of the strings
follow a uniform distribution over the alphabet, where k, µ and σ are parameters given by
the user. The alphabet is again {A,C,G, T}. We generated two datasets rnd1 and rnd2,
where rnd1 has 300000, 1000, and 150 as k, µ, and σ, respectively, and rnd2 has 1000000,
500, and 100.

We compare the performances of SOF, Readjoiner, and our algorithm for the whole
process of APSP matching, i.e., including the time to build their own data structures, the

1 http://theory.snu.ac.kr/?p=814
2 http://www.citrusgenomedb.org
3 http://www.uni-ulm.de/in/theo/research/seqana
4 http://antgenomes.org
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Table 2 Running time (in second) of algorithms for real datasets.

om algorithm clementina sinensis trifoliata C. elegans Atta

10

SOF 22.68 44.18 8.07 62.44 23.91
Readjoiner 114.13 450.48 57.52 231.66 -

Our1 3.44 6.10 1.50 14.83 0.70
Our2 5.07 11.21 1.94 14.52 0.86

15

SOF 21.98 40.60 7.70 61.94 24.58
Readjoiner 50.47 137.54 33.87 84.25 -

Our1 2.90 4.90 1.37 14.19 0.64
Our2 3.36 6.44 1.42 13.84 0.73

20

SOF 20.82 36.60 7.35 60.48 23.79
Readjoiner 11.53 38.42 3.36 44.15 -

Our1 2.78 4.33 1.30 14.02 0.64
Our2 2.94 4.75 1.29 13.67 0.69

25

SOF 20.35 35.89 7.33 59.62 23.86
Readjoiner 7.26 18.80 3.07 27.37 -

Our1 2.72 4.29 1.29 13.89 0.64
Our2 2.77 4.42 1.28 13.54 0.66

Figure 2 Running time (in second) of algorithms for real datasets (y-axis in log scale).

time for the matching phase, and the time to write the output (For Readjoiner, it is the
overlap phase of the whole sequence assembly). The labels of Our1 and Our2 mean our
algorithm with option output = 2 and output = 3, respectively. For SOF, option −o 2 is used.
Our2, SOF with −o 2 and Readjoiner return the same output, which includes all overlaps
for each pair of input strings. Our1 solves the problem of APSP matching as it is defined
(i.e., it returns the longest overlap for each pair of input strings). Readjoiner does not have
an option to return the longest overlap for each pair of input strings. SOF finds the longest
overlap only when it returns the matrix Ov (with option −o 1), but when it returns a list
of (i, j, Ov[i, j]) as output (with option −o 2), it returns all overlaps for each pair of input
strings and there is no way to return the longest overlap for each pair. In our algorithm we
set c1 to 16 and c2 to 8 in all experiments.
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Table 3 Running time (in second) of algorithms for random datasets.

om algorithm rnd1 rnd2 om algorithm rnd1 rnd2

10

SOF 109.16 258.82

20

SOF 108.40 252.59
Readjoiner 481.10 1322.40 Readjoiner 31.67 149.51

Our1 5.26 13.44 Our1 4.85 12.67
Our2 5.14 14.01 Our2 4.74 12.48

15

SOF 108.92 256.03

25

SOF 107.3 250.25
Readjoiner 123.60 214.52 Readjoiner 7.34 14.70

Our1 4.86 13.03 Our1 4.77 12.38
Our2 4.81 12.84 Our2 4.83 12.16

Figure 3 Running time (in second) of algorithms for random datasets (y-axis in log scale).

Table 2 and Figure 2 show the running time (in second) of each algorithm with the real
datasets. We carried out experiments when om is 10, 15, 20, and 25. The y-axis (i.e. running
time) of Figure 2 is in log scale. Our algorithm outperforms SOF and Readjoiner in all cases.
In the experiment with Atta, we obtained a huge speed-up compared with SOF because
case 1 of the matching step of our algorithm is very effective when m is large. When one
of the input strings is very large (its length is over 15 millions in Atta), SOF shows a poor
performance. In the experiment with Atta, Readjoiner stopped and printed "cannot realloc()
memory" for all values of om. Readjoiner is not efficient for small values of om (e.g., om = 5).
Experimental results show that our algorithm performs well consistently, not depending on
one large input string or values of om.

Table 3 and Figure 3 show the running time of each algorithm with random datasets.
Again we did experiments when om is 10, 15, 20, and 25. The y-axis (i.e. running time) is in
log scale. The performance of our algorithm is better than those of SOF and Readjoiner in
all cases. The running time of Readjoiner decreases as om increases.

We computed the average speedup of our algorithm Our2 over SOF and Readjoiner for all
experiments. The average speedup of Our2 over SOF for all 28 experiments (5 real datasets
+ 2 random datasets and 4 values of om) is about 14 and that of Our2 over Readjoiner for
all 24 experiments (4 read datasets + 2 random datasets and 4 values of om) is about 18.

Table 4 and Figure 4 show the running time of each algorithm with parallel options for
real datasets. We used different numbers of threads (1, 2, 4, and 8) and a fixed value 15 of
om, which was the value of om in all experiments of the SOF paper [9]. Our algorithm and
SOF show reasonable scalability in all experiments. However, SOF does not scale well in the
experiment with Atta because SOF has poor scalability when one of the input strings is very
large. Readjoiner does not show good scalability in all experiments.

The peak value of memory usage is measured by /usr/bin/time -v. Table 5 and Figure 5
show the peak memory for SOF, Readjoiner, and Our2 on the real datasets with om = 15.
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Table 4 Running time (in second) of algorithms with parallel options 1, 2, 4, and 8.

algorithm thread clementina sinensis trifoliata C. elegans Atta

SOF

1 21.98 40.60 7.70 61.94 24.59
2 11.63 21.41 4.32 34.98 23.23
4 6.95 11.41 2.26 20.10 23.15
8 4.61 8.56 1.59 14.22 23.06

Readjoiner

1 50.47 137.54 33.87 84.25 -
2 42.92 118.02 19.67 80.88 -
4 41.57 117.39 18.35 77.86 -
8 43.22 113.64 18.14 71.71 -

Our1

1 2.90 4.90 1.37 14.19 0.64
2 1.88 3.17 0.99 8.94 0.62
4 1.28 2.04 0.53 5.79 0.43
8 1.09 1.97 0.44 4.96 0.42

Our2

1 3.36 6.44 1.42 13.84 0.73
2 2.34 4.81 0.93 8.44 0.72
4 1.77 3.52 0.61 5.69 0.54
8 1.48 3.43 0.50 4.84 0.53

Figure 4 Running time (in second) of algorithms with parallel options 1, 2, 4 and 8 (y-axis in
log scale).
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Table 5 Peak memory usage (in MB) of algorithms.

clementina sinensis trifoliata C. elegans Atta
SOF 53 81 26 101 111

Readjoiner 191 419 83 88 -
Our2 128 263 89 280 270

Figure 5 Peak memory usage of algorithms.

Our algorithm uses more memory than SOF in all cases because of additional auxiliary data
structures, but the memory usage of our algorithm is still within the optimal bound of O(N)
as described in Sections 2.1 and 2.3. Our algorithm uses more memory or less memory than
Readjoiner depending on datasets.

4 Conclusion

In this paper we have presented a fast algorithm for all-pairs suffix-prefix matching. The
main idea of the algorithm is a combination of a simple but effective data structure for storing
input strings and advanced algorithmic techniques for matching to achieve fast running time.
Experimental results show that our algorithm runs much faster than previous state-of-the-art
algorithms SOF and Readjoiner for APSP matching. Also we obtain reasonable scalability
with a parallel implementation of our algorithm.
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