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Abstract
We present an improved coarsening process for multilevel hypergraph partitioning that incor-
porates global information about the community structure. Community detection is performed
via modularity maximization on a bipartite graph representation. The approach is made suit-
able for different classes of hypergraphs by defining weights for the graph edges that express
structural properties of the hypergraph. We integrate our approach into a leading multilevel
hypergraph partitioner with strong local search algorithms and perform extensive experiments
on a large benchmark set of hypergraphs stemming from application areas such as VLSI design,
SAT solving, and scientific computing. Our results indicate that respecting community structure
during coarsening not only significantly improves the solutions found by the initial partitioning
algorithm, but also consistently improves overall solution quality.
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1 Introduction

Hypergraphs are a generalization of graphs, where each (hyper)edge (also called net) can
connect more than two vertices. The k-way hypergraph partitioning problem is the general-
ization of the well-known graph partitioning problem: partition the vertex set into k disjoint
blocks of bounded size (at most 1 + ε times the average block size), while minimizing an
objective function defined on the nets. Hypergraph partitioning (HGP) has a wide range of
applications. Two prominent areas are VLSI design and scientific computing (e. g. accelerat-
ing sparse matrix-vector multiplications) [53]. While the former is an example of a field where
small optimizations can lead to significant savings [63], the latter exemplifies problems where
hypergraph-based modeling is more flexible than graph-based approaches [16, 34, 35, 36, 43].
HGP also finds application as a preprocessing step in SAT solving, where it is used to identify
groups of connected variables [3, 24, 48].

Since hypergraph partitioning is NP-hard [46] and since it is even NP-hard to find good
approximate solutions for graphs [14], heuristic multilevel algorithms [15, 19, 33, 37] are
used in practice. These algorithms consist of three phases: In the coarsening phase, the
hypergraph is coarsened to obtain a hierarchy of smaller hypergraphs. After applying an
initial partitioning algorithm to the smallest hypergraph in the second phase, coarsening is
undone and, at each level, a local search method is used to improve the partition induced by
the coarser level.
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Coarsening is deemed to be the most important phase of the multilevel paradigm and an
area where future research is required to devise algorithms that are suitable for a wide range
of hypergraphs [40]. In order to create hypergraphs that are smaller than but structurally
similar to the given hypergraph, coarsening schemes try to identify and merge naturally
existing clusters of vertices [22]. State of the art hypergraph partitioning tools compute
matchings or clusterings using local similarity measures that only take into account the
direct neighborhood of each vertex [8, 5, 16, 22, 41, 42, 59, 60, 61]. Global considerations
are avoided due to the high running times of the respective algorithms [58].

Outline and Contribution. After introducing basic concepts and summarizing related
work in Section 2, we present our community-aware hypergraph coarsening framework in
Section 3. In a preprocessing phase, we perform modularity maximization on a bipartite
graph representation to detect global community structure in the input hypergraph. This
information is used to guide the coarsening process and to prevent contractions that obscure
naturally existing clustering structure. By incorporating information about the net sizes and
vertex degrees into the edge weights of the bipartite graph, we make our approach suitable
for different classes of hypergraphs. We implemented our algorithm in the open source
HGP framework KaHyPar [1]. Extensive experiments presented in Section 4 indicate that
respecting community structure during coarsening significantly improves solution quality
while having only a moderate impact on the running time. Section 5 concludes the paper.

2 Preliminaries

Notation and Definitions. An undirected hypergraph H = (V,E, c, ω) is defined as a set
of n vertices V and a set of m hyperedges/nets E with vertex weights c : V → R>0 and
net weights ω : E → R>0, where each net is a subset of the vertex set V (i.e., e ⊆ V ). The
vertices of a net are called pins. We use P to denote the multiset of all pins in H. We extend
c and ω to sets, i.e., c(U) :=

∑
v∈U c(v) and ω(F ) :=

∑
e∈F ω(e). A vertex v is incident to

a net e if v ∈ e. I(v) denotes the set of all incident nets of v. The degree of a vertex v is
d(v) := |I(v)|. The set Γ(v) := {u | ∃ e ∈ E : {v, u} ⊆ e} denotes the neighbors of v. The size
|e| of a net e is the number of its pins. Nets of size one are called single-vertex nets. A k-way
partition of a hypergraph H is a partition of its vertex set into k blocks Π = {V1, . . . , Vk} such
that

⋃k
i=1 Vi = V , Vi 6= ∅ for 1 ≤ i ≤ k and Vi∩Vj = ∅ for i 6= j. We call a k-way partition Π

ε-balanced if each block Vi ∈ Π satisfies the balance constraint: c(Vi) ≤ Lmax := (1 + ε)d c(V )
k e

for some parameter ε. Given a k-way partition Π, the number of pins of a net e in block Vi is
defined as Φ(e, Vi) := |{v ∈ Vi | v ∈ e}|. For each net e, Λ(e) := {Vi | Φ(e, Vi) > 0} denotes
the connectivity set of e. The connectivity of a net e is the cardinality of its connectivity set:
λ(e) := |Λ(e)|. A net is called cut net if λ(e) > 1. The k-way hypergraph partitioning problem
is to find an ε-balanced k-way partition Π of a hypergraph H that minimizes an objective
function over the cut nets for some ε. Several objective functions exist in the literature [6, 46].
The most commonly used cost functions are the cut-net metric cut(Π) :=

∑
e∈E′ ω(e) and

the connectivity metric (λ− 1)(Π) :=
∑

e∈E′(λ(e)− 1) ω(e), where E′ is the set of all cut
nets [23]. In this paper, we use the connectivity-metric, which accurately models the total
communication volume of parallel sparse matrix-vector multiplication [16]. Optimizing both
objective functions is known to be NP-hard [46]. Contracting a pair of vertices (u, v) means
merging v into u. The weight of u becomes c(u) := c(u) + c(v). We connect u to the former
neighbors Γ(v) of v by replacing v with u in all nets e ∈ I(v)\ I(u) and remove v from all nets
e ∈ I(u) ∩ I(v). Uncontracting a vertex u reverses the contraction. The two most common
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ways to represent a hypergraph H = (V,E, c, ω) as an undirected graph are the clique and
the bipartite representation [38]. In the following, we use nodes and edges when referring
to a graph representation and vertices and nets when referring to H. In the clique graph
Gx(V,Ex ⊆ V 2) of H, each net is replaced with an edge for each pair of vertices in the net:
Ex := {(u, v) : u, v ∈ e, e ∈ E}. Thus the pins of a net e with size |e| form a |e|-clique in Gx.
In the bipartite graph G∗(V ∪̇E,F ) the vertices and nets of H form the node set and for each
net e incident to a vertex v, we add an edge (e, v) to G∗. The edge set F is thus defined as
F := {(e, v) | e ∈ E, v ∈ e}. Each net in E therefore corresponds to a star in G∗. In both
models, node weights c and edge weights ω are chosen according to the problem domain [31].

Related Work. Since the 1990s HGP has evolved into a broad research area. We refer
to [6, 9, 53, 58] for an extensive overview, and focus instead on issues closely related to
the contributions of our paper. Well-known multilevel HGP software packages with certain
distinguishing characteristics include PaToH [16] (originating from scientific computing),
hMetis [41, 42] (originating from VLSI design), Mondriaan [61] (sparse matrix partitioning),
MLPart [5] (circuit partitioning), Zoltan [22] and Parkway [59] (parallel), UMPa [60] (directed
hypergraph model, multi-objective), and kPaToH (multiple constraints, fixed vertices) [8]. All
of these algorithms compute vertex matchings [5, 8, 16, 22, 61] or clusterings [16, 41, 42, 59]
on each level of the coarsening hierarchy. Different rating functions are used to determine the
vertices to be matched or clustered together. All clustering algorithms proceed in a local and
greedy fashion: For each vertex the neighbor that maximizes the rating function is chosen
as contraction partner. Global decisions are avoided due to the high running times of the
respective algorithms [58]. Hagen and Kahng [32] propose a O(n3) time algorithm that uses
cycles in random walks of the clique representation to identify global clustering structure.
Cong and Lim [18] use approximate edge separability computations as a global clustering
measure and give an algorithm that runs in O(m+ n logn) time on the clique representation
with m edges and n nodes. Note that for sparse hypergraphs the number of edges in the
clique representation can be as high as m ∈ O(n2). Lotfifar and Johnson [47] suggest to
cluster hyperedges and to remove less important ones to make better global vertex clustering
decisions using rough set clustering.

KaHyPar. The Karlsruhe Hypergraph Partitioning framework instantiates the multilevel
approach in its most extreme version, removing only a single vertex in every level of the
hierarchy. By using this very fine grained n-level approach combined with strong local
search heuristics, KaHyPar seems to be the method of choice for optimizing the cut- and the
(λ − 1)-metric unless speed is more important than quality [1, 56]. Currently, it contains
two coarsening algorithms. The first algorithm [56] starts with calculating the locally best
contraction partner u ∈ Γ(v) for each vertex v according to a rating function. Then the
contractions are performed in decreasing rating score order. Ratings are stored in a priority
queue and kept up-to-date during the coarsening process. Thus the algorithm always contracts
the vertex pair with the globally highest rating. In the second algorithm vertices are visited
in random order and each vertex is immediately contracted with its highest-rated neighbor.
This approach is shown to not affect the solution quality, while being significantly faster
than the first algorithm [1].

Community Detection via Modularity Maximization. Community detection tries to ex-
tract an underlying structure from a graph by dividing its nodes into disjoint subgraphs (com-
munities) such that connections are dense within subgraphs but sparse between them [28, 55].

SEA 2017
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Different quality functions are used to judge the goodness of a division into communities.
The most popular quality function is the modularity of Newman and Girvan [52], which
compares the observed fraction of edges within a community with the expected fraction
of edges if edges were placed using a random edge distribution that preserves the degree
distribution of the graph [27]. More formally, given a graph G and disjoint communities
C = {C1, . . . , Cx}, modularity is defined as:

Q := 1
2m

∑
ij

[
Aij −

kikj

2m

]
δ(Ci, Cj) (1)

where Aij is the entry of the adjacency matrix A representing edge (i, j), m = 1
2
∑

ij Aij is the
number of edges in the graph, ki is the degree of node i, Ci is the community of vertex i, and
δ is the Kronecker delta. Note that this can be generalized to weighted graphs: Aij represents
the weight of edge (i, j), ki =

∑
j Aij is the weighted degree of node i and m = 1

2
∑

ij Aij is
the sum of all edge weights [51]. Modularity optimization is known to be NP-hard [13], but
several efficient heuristics exist. A fast and widely used algorithm is the Louvain method
introduced by Blondel et al. [12]: Initially, each node is assigned to a community of its
own. Then the algorithm proceeds in two phases that are repeated iteratively. In the first
phase, nodes are repeatedly assigned to the neighboring community that maximizes the
increase in modularity. This local, greedy optimization stops when no further increase is
possible. In the second phase, the graph is coarsened according to the community structure
discovered in the first phase by contracting each community into a single node. Then, the
process starts again on the coarsened graph and is repeated until the maximum modularity is
achieved. The communities of the coarsest graph determine the community structure of the
input graph. The algorithm has low computational complexity and is thus suitable for large
graphs [28, 45]. There exist several definitions of modularity adapted specifically to bipartite
graphs [10, 30, 39, 49]. However, we do not consider these in this work, since they do not
translate into fast algorithms and therefore only scale to small bipartite graphs [49]. We note
that there also exist techniques to detect communities in k-partite, k-uniform hypergraphs.
In these approaches, hypergraphs are projected to k bipartite graphs and bipartite modularity
measures are used to detect community structures [50].

3 Community-aware Coarsening

There are three main design goals underlying coarsening schemes of multilevel hypergraph
partitioning algorithms [42]:
1. Coarsening should successively reduce the size of the nets, because small nets allow

move-based local search algorithms to identify moves that improve the solution quality
more easily.

2. Coarsening should successively reduce the number of nets in the coarser hypergraphs.
This can be accomplished by preferring contractions that create single-vertex nets and
leads to simpler instances for initial partitioning, since single-vertex nets cannot be cut.

3. Vertices should be contracted in such a way that the initial partitioning algorithm is able
to compute a high-quality solution, i.e. the partition of the coarsest level should not be
significantly worse than the final partition of the hypergraph. Therefore, it is necessary
that the coarse approximations remain structurally similar to the input hypergraph.

To accommodate goals one and two, state-of-the-art HGP libraries use rating functions
to identify and contract highly connected vertices such that the number of nets and their
size is successively reduced. The most commonly used rating function is heavy-edge: Given
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(a) input

(d) random tie-breaking

(g) community detection

(b) obscured clusters

(f) heavy neighbors

  

n1

u v
{u, v}

(c) maximal matching

 

(d) random tie-breaking (e) prefer unclustered

 

Figure 1 (a) Hypergraph with 10 vertices and 13 nets. Nets containing only two vertices are
shown as graph edges. By cutting net n1 the hypergraph can be partitioned into two balanced
blocks. (b) Contracting vertex pair (u, v) obscures the naturally existing clustering structure and
the cut of size 1. (c)–(f) Properties of coarsening algorithms that lead to the contraction of (u, v):
(c) Coarsening is based on maximal matchings. (d) Random tie-breaking among all neighbors with
same rating score. (e) Preferring unclustered vertices to break ties. (f) Contraction partners with
highest rating score are already too heavy. (g) Our approach: Restrict contractions to vertex pairs
within the same community. This prevents the contraction of (u, v) in all aforementioned cases.

two vertices u and v ∈ Γ(u), it is defined as r(u, v) :=
∑

e∈E′ ω(e)/(|e| − 1), where E′ :=
{I(v) ∩ I(u)}. This rating is employed in several tools including hMetis [41], Parkway [59],
KaHyPar [1, 56] and PaToH [17] and prefers vertex pairs that share a large number of
heavy nets with small size. Structural similarity between the coarser approximations and the
original hypergraph (goal three) is maintained by allowing the formation of vertex clusters
instead of enforcing matchings, since their maximality constraint can destroy some naturally
existing clusters in the hypergraph [40] (see Fig. 1 (a)–(c) for an example). Furthermore the
algorithms ensure that the distribution of vertex weights does not become too imbalanced
at the coarsest level, since this limits the number of feasible initial partitions satisfying the
balance constraint. This is done by either enforcing an upper-bound on the vertex weight or
by integrating a penalty factor into the rating function that discourages the formation of
heavy vertices.

However, since coarsening decisions are only based on local information, several situations
can arise in which naturally existing structure is obscured: If multiple neighbors have the
same rating score, coarsening algorithms employ different tie-breaking strategies such as
randomly choosing one of them or giving preference to vertices that have not yet been
clustered [1, 40] (see Fig. 1 (d),(e)). Furthermore, a restriction on the maximum allowed
vertex weight can lead to situations in which the highest rated contractions are forbidden by
the weight constraint. Therefore the coarsening algorithm performs a contraction with lower
rating score (Figure 1 (f)). Situations like these arise, because all coarsening algorithms
are guided by local, greedy decisions based on rating functions that solely consider the
weights and sizes of nets connecting candidate vertices and therefore lack a global view of
the clustering problem. If information about the community structure were to be known
before the coarsening process, these cases could have been prevented explicitly. We therefore
propose an approach to combine a global view on the problem with local coarsening decisions.

Community-aware Coarsening Framework. Our framework consists of two phases. First,
a (graph-based) community detection algorithm is used to partition the vertices of the hyper-
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Hypernodes
(>-nodes)

Hyperedges
(⊥-nodes)

|V | � |E|

d(v)� |e|

|V | ' |E|

d(v) ' |e|

|V | � |E|

d(v)� |e|

Figure 2 Bipartite graph-based representations of hypergraphs of varying density. In hypergraphs
with low density, the bipartite graph consists of many >-nodes with low average degree and fewer
⊥-nodes with high average degree (left). If d ≈ 1, the number of >- and ⊥-nodes and their average
degrees are roughly equal (middle). High-density hypergraphs lead to bipartite representations with
fewer >-nodes with high average degree and many ⊥-nodes with low average degree (right).

graph into a set C = {C1, . . . , Cx} of internally densely and externally sparsely connected
communities. The actual number of communities |C| is determined by the community detec-
tion algorithm. Then, a hypergraph coarsening algorithm is applied on each community Ci

independently. This can be accomplished by modifying the algorithm to only contract vertices
within the same community, i.e. given a vertex u ∈ Ci, we restrict potential contraction
partners to Γ(u)∩Ci. By preventing inter-community contractions, the coarsening algorithm
maintains the structural similarity discovered by the community detection algorithm, while
still allowing local, intra-community decisions to be based on rating functions tailored to
the HGP problem. Note that this framework is independent of the algorithms used for
community detection and coarsening. In the following, we describe one instantiation, which
performs community detection via modularity maximization using the Louvain method.

Hypergraph Representation. In order to employ the Louvain method as community detec-
tion algorithm, a suitable graph-based representation of the hypergraph has to be chosen. As
described in Section 2 the two common models are the clique and the bipartite representation.
However, several reasons make the clique representation unsuitable for our purpose. Inserting(|e|

2
)
graph edges into the clique graph for every net e destroys the natural sparsity of the

hypergraph [6] and therefore may be prohibitively costly in terms of both space and running
time. Furthermore and more importantly, this exaggerates the importance of nets with more
than two pins [57], since large nets automatically imply a high edge density in the clique
representation. We therefore use the bipartite representation, which allows us to encode any
hypergraph in O(|P |) space. In the following, we refer to the graph nodes representing the
vertices of the hypergraph as >-nodes and to the nodes representing the nets as ⊥-nodes
(see Figure 2 for an example).

Modeling Peculiarities. By performing community detection on the bipartite graph repres-
entation we receive a community partition of both the vertices and the nets of the hypergraph,
since both are represented as (>,⊥)-nodes in the graph. However, we are only interested in
the community structure of the vertices. Therefore we have to take structural properties of
the hypergraphs into account. More specifically, we have to consider the density:

d := d(v)
|e|

= |P |/n
|P |/m

= m

n
, (2)

where d(v) is the average vertex degree and |e| is the average net size. If d ≈ 1, the number
of >-nodes is roughly equal to the number of ⊥-nodes and d(v) ' |e|. If d� 1 then there are
more ⊥-nodes than >-nodes and d(v)� |e|, whereas if d� 1 the opposite is the case (see
Figure 2). In case the hypergraph exhibits low density and therefore a large average net size,
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special care has to be taken in order to ensure that the community structure is not exclusively
shaped by the high-degree ⊥-nodes. Similarly, the large number of ⊥-nodes can lead to a
community structure that is dominated by the nets of the hypergraph in the high-density
case. Hypergraphs with density d ≈ 1 do not pose a problem, since the number of >-nodes
and ⊥-nodes as well as their degrees are balanced. We account for these structural differences
by encoding additional information about the hypergraph structure into the weights of the
bipartite graph edges.

Weighting Graph Edges. We propose three different weights for the edges (v, e) between
>-nodes v ∈ V and ⊥-nodes e ∈ E as shown in Eq. 3. The first scheme uses uniform
edge weights as a baseline. Giving each edge an equal weight is expected to provide good
clustering results for hypergraphs with d ≈ 1, since for these instances the number of >- and
⊥-nodes as well as their degrees are roughly comparable. The second and third schemes
account for the skew in low and high density hypergraphs. The weighting function ωe assigns
each edge a weight which is inversely proportional to the size of the net, i.e. smaller nets
get a higher influence on the community structure than larger nets. If many small nets
are contained within a community, the coarsening algorithm can successively reduce their
size and eventually remove them from the hypergraph (goals one and two). Furthermore,
this ensures that high-degree ⊥-nodes (i.e., large nets) do not dominate the community
structure by attracting to many >-nodes. This edge weight only affects the clustering
decisions of >-nodes, since from the perspective of ⊥-nodes each outgoing edge still has
uniform weight 1/|e|. In order to also influence the clustering decision of ⊥-nodes, the
third weighting function ωde additionally integrates the hypernode degree into the edge
weight. Strengthening the connection between ⊥-nodes and high-degree >-nodes facilitates
the formation of communities around high-degree vertices in the hypergraph. Note that it is
possible to efficiently choose an appropriate weighting scheme at runtime by calculating the
density of the hypergraph according to Eq. 2 and modifying the edge weights appropriately.

ω(v, e) := 1 ωe(v, e) := 1
|e|

ωde(v, e) := d(v)
|e|

(3)

4 Experimental Evaluation

We implemented modularity-based community detection using the Louvain method in the
n-level hypergraph partitioning framework KaHyPar (Karlsruhe Hypergraph Partitioning)
and modified the default coarsening algorithm [1] to respect the community structure.1
The code is written in C++ and compiled using g++-5.2 with flags -O3 -mtune=native
-march=native. We refer to the original algorithm as KaHyPar and to the community-aware
versions as CA(·), where · is replaced with the appropriate edge weight function. All versions
use the default configuration of KaHyPar.

Instances. We evaluate our algorithm on a large collection of 294 hypergraphs [1, 56],
which contains instances from three benchmark sets: the ISPD98 VLSI Circuit Benchmark
Suite [4], the University of Florida Sparse Matrix Collection [21], and the international
SAT Competition 2014 [11]. Sparse Matrices are translated into hypergraphs using the
row-net model [16], i.e. each row is treated as a net and each column as a vertex. For

1 Our implementation is available from https://github.com/SebastianSchlag/kahypar.
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Table 1 Summary of the hypergraph collection used in the experiments. Instances marked with
a ∗ are newly added and were not part of the collection used in [1, 56].

Application VLSI Sparse Matrix SAT Solving
Benchmark Set ISPD98 DAC2012 UF-SPM SAT14
Representation direct direct row-net literal primal dual
Density Class d ≈ 1 d ≈ 1 d� 1, d ≈ 1, d� 1 d� 1 d� 1 d� 1
Community Str. X X some instances 3 X X X

# Hypergraphs 18 10∗ 184 92 92∗ 92∗

# in Subset 10 5∗ 60 30 30∗ 30∗

SAT instances, each boolean literal is mapped to one vertex and each clause constitutes a
net [53]. In order to incorporate more recent VLSI circuits, we add the instances of the
DAC 2012 Routability-Driven Placement Contest [62] to the benchmark set. Furthermore,
each SAT instance is also converted into primal and dual representation [48], which are
more common in the SAT solving community than the literal model proposed in [53]. In the
primal model each variable is represented by a vertex and each clause is represented by a net,
whereas in the dual model the opposite is the case. While it is known that VLSI circuits and
complex networks like web graphs and social networks have a naturally existing clustering
structure [25, 27], recent work [7, 29] suggests the same for industrial SAT instances. The
complete benchmark set consists of 488 hypergraphs with unit vertex and net weights.2
It is used to compare our community-aware algorithm to KaHyPar and to other systems.
To study the effects of edge weights on the solution quality for hypergraphs with different
densities we use the representative subset of 100 hypergraphs proposed in [56] and add the
five smallest DAC2012 hypergraphs as well as the primal and dual representation of each
literal SAT hypergraph. In total, the subset therefore consists of 165 hypergraphs, which we
divide in three density classes. The class d� 1 is comprised of all hypergraphs with d < 0.75.
Hypergraphs with 0.75 ≤ d ≤ 1.25 form class d ≈ 1, while hypergraph with d > 1.25 are
assigned to class d� 1. An overview of our benchmark sets is given in Table 1. While VLSI
hypergraphs have |V | ' |E| and therefore d ' 1 [18, 53], SAT hypergraphs exhibit different
densities. A primal (or literal) hypergraph of a SAT formula with n variables and m ∈ O(n)
clauses has density d� 1, while its dual representation has d� 1. Instances derived from
sparse matrices cover all three cases.

All hypergraphs are partitioned into k ∈ {2, 4, 8, 16, 32, 64, 128} blocks with ε = 0.03. For
each value of k, a k-way partition is considered to be one test instance, resulting in a total of
1155 instances for experiments on the subset and 3416 instances for the full benchmark set.

System and Methodology. All experiments are performed on a single core of a machine
consisting of two Intel Xeon E5-2670 Octa-Core processors (Sandy Bridge) clocked at 2.6
GHz. The machine has 64 GB main memory, 20 MB L3- and 8x256 KB L2-Cache and is
running RHEL 7.2. To show the effect of community-aware coarsening on the performance of
KaHyPar relative to state-of-the-art HGP tools, we compare it with the k-way (hMetis-K) and
the recursive bisection variant (hMetis-R) of hMetis 2.0 (p1) [41, 42], and to PaToH 3.2 [16].
These HGP libraries were chosen because they provide the best solution quality [1]. hMetis

2 The complete benchmark set along with detailed statistics for each hypergraph is publicly available
from http://algo2.iti.kit.edu/schlag/sea2017/.

3 Our benchmark set includes hypergraphs derived from web crawls and social networks.

http://algo2.iti.kit.edu/schlag/sea2017/
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does not directly optimize the (λ−1) metric. Instead it optimizes the sum-of-external-degrees
(SOED), which is closely related to the connectivity metric: (λ− 1)(Π) = SOED(Π)− cut(Π)
for unweighted hypergraphs (i.e., each cut net contributes λ times its weight to the objective).
We therefore set both hMetis versions to optimize SOED and calculate the (λ− 1)-metric
accordingly. This approach is also used by the authors of hMetis-K [42]. hMetis-R defines
the maximum allowed imbalance of a partition differently [41]. An imbalance value of 5, for
example, allows each block to weigh between 0.45 · c(V ) and 0.55 · c(V ) at each bisection step.
We therefore translate our imbalance parameter ε to ε′ as described in Eq. (4) such that it
matches our balance constraint after log2(k) bisections:

ε′ := 100 ·

((1 + ε)
d c(V )

k e
c(V )

) 1
log2(k)

− 0.5

 . (4)

PaToH is configured to use a final imbalance ratio of ε to match our balance constraint.
Since PaToH ignores the random seed if configured to use the quality preset, we report both
the result of the quality preset (PaToH-Q) and the average over ten repetitions using the
default configuration (PaToH-D). All partitioners have a time limit of eight hours per test
instance. We perform ten repetitions with different seeds for each test instance and report
the arithmetic mean of the computed cut and running time as well as the best cut found.
When averaging over different instances, we use the geometric mean in order to give every
instance a comparable influence on the final result. In order to compare different algorithms
in terms of solution quality, we perform a more detailed analysis using the performance
plots introduced in [56]: For each algorithm, these plots relate the smallest minimum cut
of all algorithms to the corresponding cut produced by the algorithm on a per-instance
basis. For each algorithm, these ratios are sorted in increasing order. The plots use a cube
root scale for both axes to reduce right skewness [20] and show 1− (best/algorithm) on the
y-axis to highlight the instances were each partitioner performs badly. A point close to one
indicates that the partition produced by the corresponding algorithm was considerably worse
than the partition produced by the best algorithm. A value of zero therefore indicates that
the corresponding algorithm produced the best solution. Points above one correspond to
infeasible solutions that violated the balance constraint. Thus an algorithm is considered
to outperform another algorithm if its corresponding ratio values are below those of the
other algorithm. In order to include instances with a cut of zero into the results, we set the
corresponding cut values to one for ratio computations. Furthermore, we conduct Wilcoxon
matched pairs signed rank tests [64] (using a 1% significance level) to determine whether or
not the difference of KaHyPar-CA and the other algorithms is statistically significant. At a
1% significance level, a Z-score with |Z| > 2.58 is considered significant.

Evaluation of Edge Weights. Figure 3 summarizes the results of our experiments on the
benchmark subset using different edge weights for the bipartite graph edges. For each density
class a box plot shows the improvement of KaHyPar-CA(·) over KaHyPar for initial cuts
(computed by the initial partitioning algorithm) and the final average and best cuts (after
uncoarsening and local search). Using uniform edge weights for low density hypergraphs
worsens the solution quality. However, although the initial cuts are significantly worse in
this case, the best cuts are only 2% worse on average than those of KaHyPar. This shows
the strength of the n level approach combined with strong local search heuristics. Weighting
schemes that encode structural information about the hypergraph into the edge weights
perform significantly better. Both CA(ωe) and CA(ωde) ensure that the community structure
of the bipartite graph is not dominated by high-degree ⊥-nodes (large nets) by incorporating
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Figure 3 Comparing the improvement of KaHyPar-CA(·) (using different edge weighting schemes)
over KaHyPar on the benchmark subset. Diamonds show the mean improvement.

Table 2 Improvement of KaHyPar-CA over KaHyPar on the benchmark subset. KaHyPar-CA
uses ω(v, e) for hypergraphs with medium and high density and ωde(v, e) for low-density hypergraphs.

Improvement [%] VLSI Sparse Matrix SAT14
DAC2012 ISPD98 All WebSocial Primal Literal Dual

initial cut 20.5 13.8 4.1 24.8 23.8 34.0 12.2
min cut 3.9 2.0 0.8 3.5 3.5 4.0 1.6
average cut 4.7 2.3 1.1 5.5 4.8 5.7 2.2
worst cut 5.5 2.9 1.5 7.2 6.5 8.0 3.1

the net sizes into the edge weight. However, we can see that CA(ωde) is more stable than
CA(ωe).

Its mean improvement is close to the median, always above zero, and always above the
mean improvement of CA(ωe), which shows that additionally strengthening the connection
between ⊥-nodes and high-degree >-nodes indeed has a positive impact on solution quality.
For hypergraphs with density d ≈ 1 uniform edge weights perform best. If the density of the
hypergraph is large, all three schemes give comparable results. This can be explained by
the fact that if d� 1, most nets are small. This translates to “small stars” in the bipartite
graph (or even paths for nets with |e| = 2), which do not distort the community structure of
>-nodes. Based on these results, we configure the final version of our algorithm to choose
the weighting scheme at runtime depending on the observed density. If d ≥ 0.75, it uses
uniform edge weights, otherwise ωde(v, e).4 In the following we will refer to this configuration
as KaHyPar-CA. As can be seen in Table 2 KaHyPar-CA significantly improves the initial

4 Figure 5 in Appendix A compares all three edge weighting schemes and validates this decision.
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Table 3 Comparing the average running times of KaHyPar-CA with KaHyPar and other tools.

Algorithm Running Time [s]
All DAC2012 ISPD98 Primal Literal Dual SPM WebSocial

KaHyPar 20.4 289.5 8.1 15.6 30.6 57.8 10.9 66.7
KaHyPar-CA 31.0 369.0 12.3 32.9 64.7 68.3 13.9 67.1
hMetis-R 79.2 446.4 29.0 66.2 142.1 200.4 41.8 89.7
hMetis-K 57.9 240.9 23.2 44.2 94.9 125.6 36.0 111.9
PaToH-Q 5.9 28.3 1.9 6.9 9.2 10.6 3.4 4.7
PaToH-D 1.2 6.5 0.4 1.1 1.6 2.9 0.8 0.9

cuts on all benchmark sets. The improvements in average cut (up to 5.7%) and min-cut
(up to 4.0%) indicate that KaHyPar-CA is indeed able to compute better solutions than
KaHyPar. Furthermore, the fact that the worst solutions of KaHyPar-CA are significantly
better (up to 8.0%) than those of KaHyPar shows that community-aware coarsening improves
the partitioner’s robustness.

Comparison with other Systems. In the following, we exclude 194 out of 3416 instances
because either PaToH-Q could not allocate enough memory or other partitioners did not
finish in time. Excluded instances are shown in Appendix B. The following comparison is
therefore based on the remaining 3222 instances.5 As can be seen in Figure 4 and Table 4,
KaHyPar-CA performs significantly better than KaHyPar on all benchmark sets. Looking at
the solution quality of all systems across all instances (top left), KaHyPar-CA produced the
best partitions for 1346 of the 3222 instances. It is followed by hMetis-R (882), KaHyPar
(734) and hMetis-K (460). PaToH-D and PaToH-Q computed the best partitions for 163
instances. Note that for some instances multiple partitioners computed the same solution.
Comparing the best solutions of KaHyPar-CA to each partitioner individually, KaHyPar-CA
produced better partitions than PaToH-D, PaToH-Q, hMetis-K, KaHyPar, hMetis-R in 2849,
2833, 2084, 1979, 1937 cases, respectively.

By using community-aware coarsening, KaHyPar-CA performs best on each of the
benchmark sets. As can be seen in Table 4, the difference in solution quality is statistically
significant for all benchmark sets except DAC2012, where KaHyPar-CA is on par with hMetis-
R. For hypergraphs derived from matrices of web graphs and social networks6, KaHyPar-CA
dominates all other systems by computing the best partitions for 86 of the 115 instances.
Table 3 compares the running times of all partitioners. Although community detection
using the Louvain method is itself a multilevel algorithm executed on the bipartite graph
representation, KaHyPar-CA remains on average faster than hMetis.

5 Conclusions and Future Work

We describe an improved coarsening scheme for hypergraph partitioning that incorporates
global information about the structure of the hypergraph by detecting communities in the

5 Interactive visualizations of the performance plots and detailed per-instance results can be found on
the website accompanying this publication: http://algo2.iti.kit.edu/schlag/sea2017/.

6 Based on the following matrices: webbase-1M, ca-CondMat, soc-sign-epinions, wb-edu, IMDB,
as-22july06, as-caida, astro-ph, HEP-th, Oregon-1, Reuters911, PGPgiantcompo, NotreDame_www,
NotreDame_actors, p2p-Gnutella25, Stanford, cnr-2000.
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Figure 4 Min-Cut performance plots comparing KaHyPar-CA with KaHyPar and other systems.
The y-axis shows the ratio between the smallest cut of all algorithms and the cut produced by the
corresponding algorithm.
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Table 4 Results of significance tests comparing KaHyPar-CA with KaHyPar and other systems
on the full benchmark set. We report the Z-scores and p-values of the Wilcoxon matched pairs
signed rank tests. At a 1% significance level, a Z-score with |Z| > 2.58 is considered significant.
Negative Z-scores hereby indicate that KaHyPar-CA performs better than the respective algorithm.
Note that hMetis-K has slight advantages in the following comparisons because we do not disqualify
imbalanced partitions in the statistical analysis.

Class Algorithm KaHyPar-CA
Z p

DAC2012

KaHyPar −6.168 6.907e-10
hMetis-R −1.484 0.1379
hMetis-K −6.487 8.748e-11
PaToH-D −7.271 3.559e-13
PaToH-Q −7.271 3.559e-13

ISPD98

KaHyPar −7.962 1.695e-15
hMetis-R −5.806 6.403e-09
hMetis-K −2.751 0.005935
PaToH-D −9.638 5.522e-22
PaToH-Q −9.636 5.655e-22

SAT14 Primal

KaHyPar −11.22 3.232e-29
hMetis-R −4.411 1.027e-05
hMetis-K −6.918 4.579e-12
PaToH-D −17.23 1.56e-66
PaToH-Q −17.69 5.403e-70

SAT14 Literal

KaHyPar −11.3 1.354e-29
hMetis-R −4.189 2.802e-05
hMetis-K −5.475 4.375e-08
PaToH-D −19.33 3.162e-83
PaToH-Q −19.56 3.12e-85

SAT14 Dual

KaHyPar −7.271 3.573e-13
hMetis-R −8.339 7.515e-17
hMetis-K −8.071 6.969e-16
PaToH-D −18.21 4.656e-74
PaToH-Q −16.04 6.727e-58

UF-SPM

KaHyPar −5.941 2.832e-09
hMetis-R −16.75 5.467e-63
hMetis-K −21.81 1.739e-105
PaToH-D −26.83 1.557e-158
PaToH-Q −25.39 3.612e-142

WebSocial

KaHyPar −7.164 7.839e-13
hMetis-R −8.776 1.7e-18
hMetis-K −9.151 5.647e-20
PaToH-D −8.721 2.755e-18
PaToH-Q −7.368 1.737e-13
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bipartite graph representation via modularity maximization using the Louvain method. We
make this approach suitable for a wide spectrum of instances by appropriately choosing
weights for the graph edges based on the density of the hypergraph. Experiments on a
large benchmark set demonstrate that community-aware coarsening significantly improves
the partitioning quality of KaHyPar on all instance classes, while having only a moderate
impact on the overall running time. On all but one class, KaHyPar-CA performs statistically
significantly better than KaHyPar, hMetis, and PaToH and is on par with the best partitioner
otherwise.

There exist several ideas for future work. Given the significantly improved initial cuts, it
might be feasible to equip KaHyPar with faster (and less strong) local search algorithms to
narrow the gap between the running time of KaHyPar and PaToH. Modularity maximization
is widely used to detect community structure but also known to exhibit a certain scaling
behavior and resolution limit [26]. Future work therefore includes the analysis of whether these
limitations negatively affect the coarsening process and if multi-resolution modularity [44] can
be used as a remedy. Furthermore, there exist several alternative approaches to community
detection such as Infomap [54] and Surprise [2] that could also be evaluated in our community-
aware coarsening framework.
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Figure 5 Min-Cut performance plots comparing the different edge weighting schemes of KaHyPar-
CA on the benchmark subset.
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B Excluded Test Instances

Out of 3416 test instances, we excluded the following 194 instances either because PaToH-Q
could not allocate enough memory or one of the other partitioners could not partition the
instances in the given time limit. The table is split into two groups: SAT instances and
sparse matrix instances. Note that whenever KaHyPar or KaHyPar-CA exceeded the time
limit, it was due to the long running time of local search.

Table 5 Instances excluded from the full benchmark set evaluation.

Hypergraph 2 4 8 16 32 64 128
10pipe-q0-k.dual 4 4 4 m4

10pipe-q0-k.primal � � � � � � �

11pipe-k.dual 4 m4 m4 m4 m4 m4 m4

11pipe-k m m m m

11pipe-k.primal � � � � � � m�

11pipe-q0-k.dual 4 m4 m4

11pipe-q0-k.primal � � � � � � �

9dlx-vliw-at-b-iq3.dual 4

9dlx-vliw-at-b-iq3.primal � � � � � � �

9vliw-m-9stages-iq3-C1-bug7.dual 4 lm4 lm4 lm4 lm4 lm4 lm4

9vliw-m-9stages-iq3-C1-bug7 4 4 lm4 lm4 lm4 lm�4 lm�4

Hypergraph 2 4 8 16 32 64 128
9vliw-m-9stages-iq3-C1-
bug7.primal

4 4 4 m4 m4 m4

9vliw-m-9stages-iq3-C1-bug8.dual 4 lm4 lm4 lm4 lm4 lm4 lm4

9vliw-m-9stages-iq3-C1-bug8 4 4 lm4 lm4 lm4 lm�4 lm�4

9vliw-m-9stages-iq3-C1-
bug8.primal

4 4 4 m4 m4 m4

blocks-blocks-37-1.130-
NOTKNOWN.dual

m lm lm lm lm lm4

blocks-blocks-37-1.130-
NOTKNOWN

� � � � � �

blocks-blocks-37-1.130-
NOTKNOWN.primal

� � � � � � �

E02F20.dual m

E02F22.dual m m

openstacks-p30-3.085-SAT.primal � � � � � � �

openstacks-sequencedstrips-nonadl-
nonnegated-os-sequencedstrips-
p30-3.025-NOTKNOWN.primal

� � � � � � �

openstacks-sequencedstrips-nonadl-
nonnegated-os-sequencedstrips-
p30-3.085-SAT.primal

� � � � � � �

transport-transport-city-
sequential-25nodes-1000size-
3degree-100mindistance-3trucks-
10packages-2008seed.030-
NOTKNOWN.dual

4
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transport-transport-city-
sequential-25nodes-1000size-
3degree-100mindistance-3trucks-
10packages-2008seed.050-
NOTKNOWN.primal

� � �

q-query-3-L100-coli.sat.dual 4

q-query-3-L150-coli.sat.dual 4 4

q-query-3-L200-coli.sat.dual 4 4 4

q-query-3-L80-coli.sat.dual 4

velev-vliw-uns-2.0-uq5.dual 4 4 4 4 4

velev-vliw-uns-2.0-uq5.primal � � � � � � �

velev-vliw-uns-4.0-9.dual 4 4 4

velev-vliw-uns-4.0-9.primal � � � � � � �

192bit � �

appu m m

ESOC � � � m� �

human-gene2 m m m

IMDB 4 4 4 4

on-g500-logn16 4 4 4 4 m4 m4

Rucci1 �

sls � � � m� m� m� m�

Trec14 m

4 : KaHyPar/KaHyPar-CA exceeded time limit
l : hMetis-R exceeded time limit
m : hMetis-K exceeded time limit
� : PaToH-Q memory allocation error
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