
Incremental Low-High Orders of Directed Graphs
and Applications∗

Loukas Georgiadis1, Konstantinos Giannis2,
Aikaterini Karanasiou3, and Luigi Laura4

1 Department of Computer Science & Engineering, University of Ioannina,
Ioannina, Greece
loukas@cs.uoi.gr

2 Department of Computer Science & Engineering, University of Ioannina,
Ioannina, Greece
giannis_konstantinos@outlook.com

3 Università di Roma “Tor Vergata”, Rome, Italy
aikaranasiou@gmail.com

4 “Sapienza” Università di Roma, Rome, Italy
laura@dis.uniroma1.it

Abstract
A flow graph G = (V,E, s) is a directed graph with a distinguished start vertex s. The dominator
tree D of G is a tree rooted at s, such that a vertex v is an ancestor of a vertex w if and only if all
paths from s to w include v. The dominator tree is a central tool in program optimization and
code generation, and has many applications in other diverse areas including constraint program-
ming, circuit testing, biology, and in algorithms for graph connectivity problems. A low-high
order of G is a preorder δ of D that certifies the correctness of D, and has further applications
in connectivity and path-determination problems.

In this paper we consider how to maintain efficiently a low-high order of a flow graph in-
crementally under edge insertions. We present algorithms that run in O(mn) total time for a
sequence of edge insertions in a flow graph with n vertices, where m is the total number of edges
after all insertions. These immediately provide the first incremental certifying algorithms for
maintaining the dominator tree in O(mn) total time, and also imply incremental algorithms for
other problems. Hence, we provide a substantial improvement over the O(m2) straightforward
algorithms, which recompute the solution from scratch after each edge insertion. Furthermore,
we provide efficient implementations of our algorithms and conduct an extensive experimental
study on real-world graphs taken from a variety of application areas. The experimental results
show that our algorithms perform very well in practice.

1998 ACM Subject Classification E.1 [Data Structures] Graphs and Networks, Lists, Stacks,
and Queues, Trees, G.2.2 [Graph Theory] Graph Algorithms

Keywords and phrases connectivity, directed graphs, dominators, dynamic algorithms

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.27

1 Introduction

A flow graph G = (V,E, s) is a directed graph (digraph) with a distinguished start vertex
s ∈ V . A vertex v is reachable in G if there is a path from s to v; v is unreachable if no

∗ A full version of the paper is available at http://arxiv.org/abs/1608.06462.

© Loukas Georgiadis, Konstantinos Giannis, Aikaterini Karanasiou, and Luigi Laura;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 27; pp. 27:1–27:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.27
http://arxiv.org/abs/1608.06462
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 Incremental Low-High Orders of Directed Graphs and Applications

4

𝑠

𝑎 𝑏𝑐 𝑖

𝑔 ℎ𝑒𝑑 𝑓

𝐷

1

5

3

2

6 7

8

9

10

4

𝑠

𝑎 𝑏

𝑔 ℎ

𝑐

𝑓

𝑑 𝑒

𝑖

𝐺

1

9

10

5 7

3

8

2

6

4

𝑠

𝑎 𝑏

𝑔 ℎ

𝑐

𝑓

𝑑 𝑒

𝑖

𝐵

1

9

10

5 7

3

8

2

6

4

𝑠

𝑎 𝑏

𝑔 ℎ

𝑐

𝑓

𝑑 𝑒

𝑖

𝑅

1

9

10

5 7

3

8

2

6

Figure 1 A flow graph G, its dominator tree D, and two strongly divergent spanning trees B

and R. The numbers correspond to a preorder numbering of D that is a low-high order of G.

such path exists. The dominator relation in G is defined for the set of reachable vertices
as follows. A vertex v is a dominator of a vertex w (v dominates w) if every path from s

to w contains v; v is a proper dominator of w if v dominates w and v 6= w. The dominator
relation in G can be represented by a tree rooted at s, the dominator tree D, such that v
dominates w if and only if v is an ancestor of w in D. If w 6= s is reachable, we denote by
d(w) the parent of w in D. Lengauer and Tarjan [34] presented an algorithm for computing
dominators in O(mα(m,n)) time for a flow graph with n vertices and m edges, where α is a
functional inverse of Ackermann’s function [44]. Subsequently, several linear-time algorithms
were discovered [3, 10, 15, 16]. The dominator tree is a central tool in program optimization
and code generation [12], and it has applications in other diverse areas including constraint
programming [40], circuit testing [5], theoretical biology [2], memory profiling [36], the analysis
of diffusion networks [28], and in connectivity problems [18, 19, 21, 20, 23, 29, 30, 31, 32].

A low-high order δ of G [25] is a preorder of the dominator tree D such for all reachable
vertices v 6= s, (d(v), v) ∈ E or there are two edges (u, v) ∈ E, (w, v) ∈ E such that u
and w are reachable, u is less than v (u <δ v), v is less than w (v <δ w), and w is not a
descendant of v in D. See Figure 1. Every flow graph G has a low-high order, computable in
linear-time [25]. Low-high orders provide a correctness certificate for dominator trees that is
straightforward to verify [47]. By augmenting an algorithm that computes the dominator
tree D of a flow graph G so that it also computes a low-high order of G, one obtains a
certifying algorithm to compute D. (A certifying algorithm [37] outputs both the solution
and a correctness certificate, with the property that it is straightforward to use the certificate
to verify that the computed solution is correct.) Low-high orders also have applications in
path-determination problems [46] and in fault-tolerant network design [6, 7, 26].

L. Georgiadis, K. Giannis, A. Karanasiou, and L. Laura 27:3

𝑠

5

𝑐

𝐷′

1

𝑑

4

𝑎

𝑔3

2 𝑓

6

𝑒

7

𝑖

8

𝑏

ℎ

9

10

5

𝑠

𝑎 𝑏

𝑔 ℎ

𝑐

𝑓

𝑑 𝑒

𝑖

𝐺′

1

9

10

4 7

3

8

2

6

5

𝑠

𝑎 𝑏

𝑔 ℎ

𝑐

𝑓

𝑑 𝑒

𝑖

𝐵′

1

9

10

4 7

3

8

2

6

5

𝑠

𝑎 𝑏

𝑔 ℎ

𝑐

𝑓

𝑑 𝑒

𝑖

𝑅′

1

9

10

4 7

3

8

2

6

Figure 2 The flow graph of Figure 1 after the insertion of edge (g, d), and its updated dominator
tree D′ with a low-high order, and two strongly divergent spanning trees B′ and R′.

A notion closely related to low-high orders is that of divergent spanning trees [25]. Let
Vr be the set of reachable vertices, and let G[Vr] be the flow graph with start vertex s that
is induced by Vr. Two spanning trees B and R of G[Vr], rooted at s, are divergent if for all
v, the paths from s to v in B and R share only the dominators of v; B and R are strongly
divergent if for every pair of vertices v and w, either the path in B from s to v and the path
in R from s to w share only the common dominators of v and w, or the path in R from
s to v and the path in B from s to w share only the common dominators of v and w. In
order to simplify our notation, we will refer to B and R, with some abuse of terminology, as
strongly divergent spanning trees of G. Every flow graph has a pair of strongly divergent
spanning trees. Given a low-high order of G, it is straightforward to compute two strongly
divergent spanning trees of G in O(m) time [25]. Divergent spanning trees can be used in
data structures that compute pairs of vertex-disjoint s-t paths in 2-vertex connected digraphs
(for any two query vertices s and t) [18], in fast algorithms for approximating the smallest
2-vertex-connected spanning subgraph of a digraph [19], and in constructing sparse subgraphs
of a given digraph that maintain certain connectivity requirements [21, 31, 32].

In this paper we consider how to update a low-high order of a flow graph through a
sequence of edge insertions. See Figure 2. The difficulty in updating the dominator tree and a
low-high order is due to the following facts. An affected vertex can be arbitrarily far from the
inserted edge, and a single edge insertion may cause O(n) parent changes in D. Furthermore,
since a low-high order is a preorder of D, a single edge insertion may cause O(n) changes
in this order, even if there is only one vertex that is assigned a new parent in D after the
insertion. More generally, we note that the hardness of dynamic algorithms on digraphs

SEA 2017

27:4 Incremental Low-High Orders of Directed Graphs and Applications

has been recently supported also by conditional lower bounds [1]. Our first contribution is
to show that we can maintain a low-high order of a flow graph G with n vertices through
a sequence of edge insertions in O(mn) total time, where m is the total number of edges
after all insertions. Hence, we obtain a substantial improvement over the naive solution of
recomputing a low-high order from scratch after each edge insertion, which takes O(m2) total
time. Our result also implies the first incremental certifying algorithms [37] for computing
dominators in O(mn) total time, which answers an open question in [25]. We present two
algorithms that achieve this bound, a simple algorithm based on sparsification and a more
sophisticated algorithm. Both algorithms combine the incremental dominators algorithm
of [22] with the linear-time computation of two divergent spanning trees from [25]. Our
sophisticated algorithm also applies a slightly modified version of a static low-high algorithm
from [25] on an auxiliary graph. We remark that the incremental dominators problem arises
in various applications, such as incremental data flow analysis and compilation [11, 17, 41, 42],
distributed authorization [38], and in incremental algorithms for maintaining 2-connectivity
relations in directed graphs [23]. We present some applications of our result on incremental
low-high order maintenance to incremental connectivity problems in Appendix A.

We assess the merits of our algorithm in practical scenarios by conducting a thorough
experimental study with graphs taken from a variety of application areas. Although both the
sparsification algorithm and the sophisticated algorithm have the same worst-case running
time, our experimental results show that a carefully engineered implementation of the latter
is by far superior in practice.

For lack of space, some proofs are omitted from this extended abstract. They are provided
in the full version [24].

2 Preliminaries

Let G = (V,E, s) be a flow graph with start vertex s, and let D be the dominator tree of
G. A spanning tree T of G is a tree with root s that contains a path from s to v for all
reachable vertices v. We refer to a spanning subgraph F of T as a spanning forest of G.
Given a rooted tree T , we denote by T (v) the subtree of T rooted at v (we also view T (v) as
the set of descendants of v). Let T be a tree rooted at s with vertex set VT ⊆ V , and let t(v)
denote the parent of a vertex v ∈ VT in T . If v is an ancestor of w, T [v, w] is the path in T
from v to w. In particular, D[s, v] consists of the vertices that dominate v. If v is a proper
ancestor of w, T (v, w] is the path to w from the child of v that is an ancestor of w. Tree T is
flat if its root is the parent of every other vertex. Suppose now that the vertex set VT of T
consists of the vertices reachable from s. Tree T has the parent property if for all (v, w) ∈ E
with v and w reachable, v is a descendant of t(w) in T . If T has the parent property and
has a low-high order, then T = D [25]. For any vertex v ∈ V , we denote by C(v) the set of
children of v in D. A preorder of T is a total order of the vertices of T such that, for every
vertex v, the descendants of v are ordered consecutively, with v first. Let ζ be a preorder of
D. Consider a vertex v 6= s. We say that ζ is a low-high order for v in G, if (d(v), v) ∈ E
or there are two edges (u, v) ∈ E, (w, v) ∈ E such that u <ζ v and v <ζ w, and w is not a
descendant of v in D. Given a graph G = (V,E) and a set of edges S ⊆ V × V , we denote
by G ∪ S the graph obtained by inserting into G the edges of S.

3 Incremental low-high order

In this section we describe two algorithms to maintain a low-high order of a digraph through
a sequence of edge insertions. We first review some useful facts for updating a dominator

L. Georgiadis, K. Giannis, A. Karanasiou, and L. Laura 27:5

tree after an edge insertion [4, 22, 41]. Let (x, y) be the edge to be inserted. We consider
the effect of this insertion when both x and y are reachable. Let G′ be the flow graph that
results from G after inserting (x, y). Similarly, if D is the dominator tree of G before the
insertion, we let D′ be the dominator tree of G′. Also, for any function f on V , we let f ′
be the function after the update. We say that vertex v is affected by the update if d(v) (its
parent in D) changes, i.e., d′(v) 6= d(v). We let A denote the set of affected vertices. Note
that we can have D′[s, v] 6= D[s, v] even if v is not affected. We let nca(x, y) denote the
nearest common ancestor of x and y in the dominator tree D. We also denote by depth(v)
the depth of a reachable vertex v in D. There are affected vertices after the insertion of (x, y)
if and only if nca(x, y) is not a descendant of d(y) [41]. A characterization of the affected
vertices is provided by the following lemma, which is a refinement of a result in [4].

I Lemma 1 ([22]). Suppose x and y are reachable vertices in G. A vertex v is affected after
the insertion of edge (x, y) if and only if depth(nca(x, y)) < depth(d(v)) and there is a path
π in G from y to v such that depth(d(v)) < depth(w) for all w ∈ π. If v is affected, then it
becomes a child of nca(x, y) in D′, i.e., d′(v) = nca(x, y).

The algorithm (DBS) in [22] applies Lemma 1 to identify affected vertices by starting a
search from y (if y is not affected, then no other vertex is). To do this search for affected
vertices, it suffices to maintain the outgoing and incoming edges of each vertex. These sets
are organized as singly linked lists, so that a new edge can be inserted in O(1) time. The
dominator tree D is represented by the parent function d. We also maintain the depth in
D of each reachable vertex. We say that a vertex v is scanned, if the edges leaving v are
examined during the search for affected vertices, and that it is visited if there is a scanned
vertex u such that (u, v) is an edge in G. By Lemma 1, a visited vertex v is scanned if
depth(nca(x, y)) < depth(d(v)).

I Lemma 2 ([22]). Let v be a scanned vertex. Then v is a descendant of an affected vertex
in D.

3.1 Sparsification Algorithm
In this algorithm we maintain, after each insertion, a subgraph H = (V,EH) of G with O(n)
edges that has the same dominator tree as G. Then, we can compute a low-high order δ of
H in O(|EH |) = O(n) time. Note that by the definition of H, δ is also a valid low-high order
of G. An edge insertion is processed by the routine SparseInsertEdge, shown below. Subgraph
H is formed by the edges of two divergent spanning trees B and R of G. After the insertion
of an edge (x, y), where both x and y are reachable, we form a graph H ′ by inserting into H
a set of edges Last(A) found during the search for the set of affected vertices A. Specifically,
Last(A) contains edge (x, y) and, for each affected vertex v 6= y, the last edge on a path πyv
that satisfies Lemma 1. Then, we set H ′ = H ∪ Last(A). Finally, we compute a low-high
order and two divergent spanning trees of H ′, which are also valid for G′. We can show that
this algorithm runs in O(mn) total time.

3.2 Local Low-High Order Algorithm
Here we develop a more sophisticated and more practical algorithm that maintains a low-high
order δ of a flow graph G = (V,E, s) through a sequence of edge insertions. Our algorithm
uses the incremental dominators algorithm of [22] to update the dominator tree D of G after
each edge insertion. We describe a process to update δ based on the relation among vertices
in D that are affected by the insertion. This enables us to identify a subset of vertices for

SEA 2017

27:6 Incremental Low-High Orders of Directed Graphs and Applications

Algorithm 1: SparseInsertEdge(G,D, δ,B,R, e).
Input: Flow graph G = (V,E, s), its dominator tree D, a low-high order δ of G, two

divergent spanning trees B and R of G, and a new edge e = (x, y).
Output: Flow graph G′ = (V,E ∪ (x, y), s), its dominator tree D′, a low-high order

δ′ of G′, and two divergent spanning trees B′ and R′ of G′.
1 Insert e into G to obtain G′.
2 if x is unreachable in G then return (G′, D, δ, B,R)
3 else if y is unreachable in G then
4 Compute the dominator tree D′, two divergent spanning trees B′ and R′, and a

low-high order δ′ of G′.
5 return (G′, D′, δ′, B′, R′)
6 end
7 Let H = B ∪R.
8 Compute the updated dominator tree D′ of G′ and return a list A of the affected

vertices, and a list Last(A) of the last edge entering each v ∈ A in a path satisfying
Lemma 1.

9 Compute the subgraph H ′ = H ∪ Last(A) of G′.
10 Compute the dominator tree D′, two divergent spanning trees B′ and R′, and a

low-high order δ′ of H ′.
11 return (G′, D′, δ′, B′, R′)

which we can compute a “local” low-high order, that can be extended to a valid low-high
order of G after the update. We show that such a “local” low-high order can be computed
by a slightly modified version of an algorithm from [25]. We apply this algorithm on a
sufficiently small flow graph that is defined by the affected vertices, and is constructed using
the concept of derived edges [45].

3.2.1 Derived edges and derived flow graphs

Derived graphs, first defined in [45], reduce the problem of finding a low-high order to the
case of a flat dominator tree [25]. By the parent property of D, if (v, w) is an edge of G, the
parent d(w) of w is an ancestor of v in D. Let (v, w) be an edge of G, with w not an ancestor
of v in D. Then, the derived edge of (v, w) is the edge (v, w), where v = v if v = d(w), v is
the sibling of w that is an ancestor of v if v 6= d(w). If w is an ancestor of v in D, then the
derived edge of (v, w) is null. Note that a derived edge (v, w) may not be an original edge of
G. For any vertex w ∈ V such that C(w) 6= ∅, we define the derived flow graph of w, denoted
by Gw = (Vw, Ew, w), as the flow graph with start vertex w, vertex set Vw = C(w)∪{w}, and
edge set Ew = {(u, v) | v ∈ Vw and (u, v) is the non-null derived edge of some edge in E}.
By definition, Gw has flat dominator tree, that is, w is the only proper dominator of any
vertex v ∈ Vw \ {w}. We can compute a low-high order δ of G by computing a low-high
order δw in each derived flow graph Gw. Given these low-high orders δw, we can compute a
low-high order of G in O(n) time by a depth-first traversal of D. During this traversal, we
visit the children of each vertex w in their order in δw, and number the vertices from 1 to n
as they are visited. The resulting preorder of D is low-high on G. Our incremental algorithm
identifies, after each edge insertion, a specific derived flow graph Gw for which a low-high
order δw needs to be updated. Then, it uses δw to update the low-high order of the whole
flow graph G. Still, computing a low-high order of Gw can be too expensive to give us the

L. Georgiadis, K. Giannis, A. Karanasiou, and L. Laura 27:7

desired running time. Fortunately, we can overcome this obstacle by exploiting a relation
among the vertices that are affected by the insertion, as specified below. This allows us to
compute δw in a contracted version of Gw.

3.2.2 Affected vertices
Let (x, y) be the inserted vertex, where both x and y are reachable. Consider the execution of
algorithm DBS [22] that updates the dominator tree by applying Lemma 1. Suppose vertex
v is scanned, and let q be the nearest affected ancestor of v in D. Then, by Lemma 1, vertex
q is a child of nca(x, y) in D′, i.e., d′(q) = nca(x, y), and v remains a descendant of q in D′.

Our next lemma provides a key result about the relation of the affected vertices in D.

I Lemma 3. All vertices that are affected by the insertion of (x, y) are descendants of a
common child c of nca(x, y).

We shall apply Lemma 3 to construct a flow graph GA for the affected vertices. Then, we
shall use GA to compute a “local” low-high order that we extend to a valid low-high order of
G′.

3.2.3 Low-high order augmentation
Let δ be a low-high order of G, and let δ′ be a preorder of the dominator tree D′ of G′. We
say that δ′ agrees with δ if the following condition holds for any pair of siblings u, v in D that
are not affected by the insertion of (x, y): u <δ′ v if and only if u <δ v. We can show that
there is a low-high order δ′ of G′ that agrees with δ. Moreover, we have the following result:

I Lemma 4. Let δ′ be a preorder of D′ that agrees with δ. Let v be a vertex that is not a
child of nca(x, y) and is not affected by the insertion of (x, y). Then δ′ is a low-high order
for v in G′.

We can apply Lemmata 1 and 4 to show that in order to compute a low-high order of G′,
it suffices to compute a low-high order for the derived flow graph G′z, where z = nca(x, y).
Still, the computation of a low-high order of G′z is too expensive to give us the desired
running time. Fortunately, as we show next, we can limit these computations for a contracted
version of G′z, defined by the affected vertices.

Let δ be a low-high order of G before the insertion of (x, y). Also, let z = nca(x, y), and
let δz be a corresponding low-high order of the derived flow graph Gz. That is, δz is the
restriction of δ to z and its children in D. Consider the child c of z that, by Lemma 3, is
an ancestor of all the affected vertices. Let α and β, respectively, be the predecessor and
successor of c in δz. Note that α or β may be null. An augmentation of δz is an order δ′z of
C ′(z)∪{z} that results from δz by inserting the affected vertices arbitrarily around c, that is,
each affected vertex is placed in an arbitrary position between α and c or between c and β.

I Lemma 5. Let z = nca(x, y), and let δz be a low-high order of the derived flow graph Gz
before the insertion of (x, y). Also, let δ′z be an augmentation of δz, and let δ′ be a preorder
of D′ that extends δ′z. Then, for each child v of z in D, δ′ is a low-high order for v in G′.

3.2.4 Algorithm
Now we are ready to describe our incremental algorithm for maintaining a low-high order
δ of G. For each vertex v that is not a leaf in D, we maintain a list of its children C(v)
in D, ordered by δ. Also, for each vertex v 6= s, we keep two variables low(v) and high(v).

SEA 2017

27:8 Incremental Low-High Orders of Directed Graphs and Applications

Algorithm 2: LocalInsertEdge(G,D, δ,mark, low, high, e).
Input: Flow graph G = (V,E, s), its dominator tree D, a low-high order δ of G,

arrays mark, low and high, and a new edge e = (x, y).
Output: Flow graph G′ = (V,E ∪ (x, y), s), its dominator tree D′, a low-high order

δ′ of G′, and arrays mark ′, low′ and high′.
1 Insert e into G to obtain G′.
2 if x is unreachable in G then return (G′, D, δ,mark, low, high)
3 else if y is unreachable in G then
4 Compute the dominator tree D′ and a low-high order δ′ of G′, together with the

corresponding arrays mark ′, low′, and high′.
5 return (G′, D′, δ′,mark ′, low′, high′)
6 end
7 Compute the nearest common ancestor z of x and y in D.
8 Compute the updated dominator tree D′ of G′ and return a list A of the affected

vertices.
9 foreach vertex v ∈ A do mark ′(y)← false

10 if z = x then mark ′(y)← true
11 Compute a low-high order ζ of the derived affected flow graph GA.
12 Compute the updated low-high order δ′ of G′ by ordering the vertices in A ∪ {c}

according to ζ.
13 foreach vertex v ∈ A ∪ {c} do
14 find edges (u, v) and (w, v) such that u <δ′ v <δ′ w and w 6∈ D′(v)
15 set low′(v)← u and high′(v)← w

16 end
17 return (G′, D′, δ′,mark ′, low′, high′)

Variable low(v) stores an edge (u, v) such that u 6= d(v) and u <δ v; low(v) = null if no such
edge exists. Similarly, high(v) stores an edge (w, v) such that and v <δ w and w is not a
descendant of v in D; high(v) = null if no such edge exists. These variables are useful in
the applications that we mention in Appendix A. Finally, we mark each vertex v such that
(d(v), v) ∈ E. For simplicity, we assume that the vertices of G are numbered from 1 to n,
so we can store the above information in corresponding arrays low, high, and mark. Note
that for a reachable vertex v, we can have low(v) = null or high(v) = null (or both) only
if mark(v) = true. Before any edge insertion, all vertices are unmarked, and all entries in
arrays low and high are null. We initialize the algorithm and the associated data structures
by executing a linear-time algorithm to compute the dominator tree D of G [3, 10] and a
linear-time algorithm to compute a low-high order δ of G [25]. So, the initialization takes
O(m+ n) time for a digraph with n vertices and m edges.

Next, we describe the main routine, LocalInsertEdge, to handle an edge insertion. We
let (x, y) be the inserted edge. Also, if x and y are reachable before the insertion, we let
z = nca(x, y).

From Lemmata 4 and 5 it follows that our main task now is to order the affected
vertices according to a low-high order of D′. To do this, we use an auxiliary flow graph
GA = (VA, EA, z), with start vertex z, which we refer to as the derived affected flow graph.
Flow graph GA is essentially a contracted version of the derived flow graph G′z (i.e., the
derived graph of z after the insertion) as we explain later. The vertices of the derived affected
flow graph GA are z, the affected vertices of G, their common ancestor c in D that is a child

L. Georgiadis, K. Giannis, A. Karanasiou, and L. Laura 27:9

𝑠 = 𝑧

𝑐

𝐺𝐴

𝑑
𝛼∗ 𝑓 𝑒 𝛽∗

Figure 3 The derived affected flow graph GA that corresponds to the flow graph of Figure 1 after
the insertion of edge (g, d).

of z (from Lemma 3), and two auxiliary vertices α∗ and β∗. Vertex α∗ (resp., β∗) represents
vertices in C(z) with lower (resp., higher) order in δ than c. We include in GA the edges
(z, α∗) and (z, β∗). If c is marked then we include the edge (z, c) into GA, otherwise we add
the edges (α∗, c) and (β∗, c) into GA. Also, for each edge (u, c) such that u is a descendant
of an affected vertex v, we add in GA the edge (v, c). Now we specify the edges that enter
an affected vertex w in GA. We consider each edge (u,w) ∈ E entering w in G. We have the
following cases:
(a) If u is a descendant of an affected vertex v, we add in GA the edge (v, w).
(b) If u is a descendant of c but not a descendant of an affected vertex, then we add in GA

the edge (c, w).
(c) If u 6= z is not a descendant of c, then we add the edge (α∗, w) if u <δ c, or the edge

(β∗, w) if c <δ u.
(d) Finally, if u = z, then we add the edge (z, w). (In cases (c) and (d), u = x and w = y.)
Recall that α (resp., β) is the sibling of c in D immediately before (resp., after) c in δ, if
it exists. Then, we can obtain GA from G′z by contracting all vertices v with v <δ c into
α = α∗, and all vertices v with c <δ v into β = β∗.

I Lemma 6. The derived affected flow graph GA = (VA, EA, z) has flat dominator tree.

Proof. We claim that for any two distinct vertices v, w ∈ VA \ z, v does not dominate w.
The lemma follows immediately from this claim. The claim is obvious for w ∈ {α∗, β∗}, since
GA contains the edges (z, α∗) and (z, β∗). The same holds for w = c, since GA contains the
edge (z, c), or both the edges (α∗, c) and (β∗, c). Finally, suppose w ∈ VA \ {z, α∗, β∗}. Then,
by the construction of GA, vertex w is affected. By Lemma 3, w ∈ D(c), which implies that
there is a path in G from c to w that contains only vertices in D(c). Hence, by construction,
GA contains a path from c to w that avoids α∗ and β∗, so α∗ and β∗ do not dominate w. It
remains to show that w is not dominated in GA by c or another affected vertex v. Let (x, y)
be the inserted edge. Without loss of generality, assume that c <δ x. Since w is affected,
there is a path π in G from y to w that satisfies Lemma 1. Then π does not contain any
vertex in D[c, d(w)]. Also, by the construction of GA, π corresponds to a path πA in GA
from β∗ to y that avoids any vertex in A ∩D[c, d(w)]. Hence, w is not dominated by any
vertex in A ∩D[c, d(w)]. It remains to show that w is not dominated by any affected vertex
v in A \ D[c, d(w)]. Since both v and w are in D(c) and v is not an ancestor of w in D,
there is a path π′ in G from c to w that contains only vertices in D(c) \ {v}. Then, by the
construction of GA, π′ corresponds to a path π′A in GA from c to w that avoids v. Thus, v
does not dominate w in GA. J

SEA 2017

27:10 Incremental Low-High Orders of Directed Graphs and Applications

I Lemma 7. Let ν and µ, respectively, be the number of scanned vertices and their adjacent
edges. Then, the derived affected flow graph GA has ν + 4 vertices, at most µ+ 5 edges, and
can be constructed in O(ν + µ) time.

Proof. The bound on the number of vertices and edges in GA follows from the definition of
the derived affected flow graph. Next, we consider the construction time of GA. Consider
the edges entering the affected vertices. Let w be an affected vertex, and let (u,w) 6= (x, y)
be an edge of G′. Let q be nearest ancestor u in C ′(z). We distinguish two cases:

u is not scanned. In this case, we argue that q = c. Indeed, it follows from the parent
property of D and Lemma 3 that both u and w are descendants of c in D. Since u is not
scanned, no ancestor of u in D is affected, so u remains a descendant of c in D′. Thus,
q = c.
u is scanned. Then, by Lemma 2, q is the nearest affected ancestor of u in D.

So we can construct the edges entering the affected vertices in GA in two phases. In the first
phase we traverse the descendants of each affected vertex q in D′. At each descendant u of q,
we examine the edges leaving u. When we find an edge (u,w) with w affected, then we insert
into GA the edge (q, w). In the second phase we examine the edges entering each affected
vertex w. When we find an edge (u,w) with u not visited during the first phase (i.e., u was
not scanned during the update of D), we insert into GA the edge (c, w). Note that during
this construction we may insert the same edge multiple times, but this does not affect the
correctness or running time of our overall algorithm. Since the descendants of an affected
vertex are scanned, it follows that each phase runs in O(ν + µ) time.

Finally, we need to consider the inserted edge (x, y). Let f be the nearest ancestor of x
that is in C(z). Since y is affected, c 6= f . Hence, we insert into GA the edge (β∗, y) if c <δ f ,
and the edge (α∗, y) if f <δ c. Note that f is found during the computation of z = nca(x, y),
so this test takes constant time. J

Next, we order the vertices in C ′(z) according to a low-high order of ζ of GA as follows.
After computing GA, we construct two divergent spanning trees BA and RA of GA. For
each vertex v 6= z, if (z, v) is an edge of GA, we replace the parent of v in BA and in RA,
denoted by bA(v) and rA(v), respectively, by z. We can compute a low-high order ζ of GA
by applying a slightly modified version of a linear-time algorithm of [25, Section 6.1] to
compute a low-high order. Our modified version computes a low-high order ζ of GA that
is an augmentation of δz. To obtain such a low-high order, we need to assign to α∗ the
lowest number in ζ and to β∗ the highest number in ζ. The algorithm works as follows.
While GA contains at least four vertices, we choose a vertex v 6∈ {α∗, β∗} whose in-degree in
GA exceeds its number of children in BA plus its number of children in RA and remove it
from GA. (From this choice of v we also have that v 6= z.) Then we compute recursively a
low-high order for the resulting flow graph, and insert v in an appropriate location, defined
by bA(v) and rA(v).

The correctness of algorithm LocalInsertEdge follows from Lemmata 4, 5 and 6. Also, by
using Lemma 7, we can show that the total running time of the algorithm is bounded by
O(mn).

3.3 Representation of a low-high order
We consider two main options for representing a low-high order. The most straightforward
is to maintain it as a preorder numbering of D, by assigning a preorder number from 1
to n to each vertex. Another option is to use a data structure for the dynamic list order
problem [8, 14]. We experimented with various implementations of dynamic list order

L. Georgiadis, K. Giannis, A. Karanasiou, and L. Laura 27:11

Table 1 Real-world graphs with timestamped edges, from the Koblenz Network Collection [33].

Graph nodes reachable nodes edges avg. degree type
temporalGraph 2029 1281 5517 2.72 Democratic National Council emails
opsahl-ucsocial 1899 1854 20296 10.69 UC Irvine messages
chess 7301 6312 60046 8.22 Chess games
munmun_digg_reply 30398 13471 85247 2.8 Digg replies
elec 7115 2316 103617 14.56 Wikipedia elections
slashdot-threads 51083 18851 130370 2.55 Slashdot threads

data structures, and in our experiments the best performance was achieved by a two-level
numbering scheme that supports insertions, deletions and order queries in constant amortized
time [8]. We remark that these operations suffice in all applications of our incremental
algorithm that we mention in Appendix A.

Both of the above options suffices to have an implementation of the sparsification
algorithm and of the local low-high order algorithm that run in total O(mn) time. Since
the sparsification algorithm computes the complete low-high order of a sparse subgraph of
G after each update, there is no gain in using the more sophisticated numbering scheme
that the dynamic list order data structure applies. For our local low-high order algorithm,
however, the representation we choose is crucial for the practical performance of the algorithm.
Specifically, using a dynamic list order data structure allows us to update the low-high order
in amortized time proportional to the number of scanned vertices. The simple preorder
numbering scheme, on the other hand, may need to renumber O(n) vertices after a single
update. Indeed, our preliminary experimental results confirmed that that the implementation
that employs a dynamic list order data structure has superior performance.

3.4 Handling unreachable vertices

Now we provide some details on how our algorithms handle insertions of edges (x, y) when
x ∈ Vr and y 6∈ Vr, i.e., when only x is reachable from s before the insertion. In order to
achieve O(mn) total running time, we can simply recompute a low-high order from scratch
after each such an insertion. This follows from the fact that there are at most n− 1 such
insertions, and that we can recompute a low-high order in linear time when this type of an
insertion occurs.

An alternative method, that performs much better in practice, is to compute the dominator
tree and a low-high order for the vertices that were reachable from y but not from s before
the insertion. Specifically, let Y be this set of vertices, and let G[Y] be the flow graph with
start vertex y that is induced by Y . Then, to handle the insertion of (x, y) we execute the
following steps:
1. Compute the dominator tree DY of G[Y] and a low-high order of it.
2. Link the dominator tree D of G with DY by making y a child of x in D, and merge

appropriately the corresponding low-high orders.
3. Compute the set of edges EY from Y to Vr. Process each such edge as a regular insertion.
Note that after Step 2, D is the correct dominator tree for G \ EY and we also have a valid
low-high order of it. The insertion of the edges (u, v) ∈ EY is handled as a regular insertion
since both u and v are reachable from s after Step 2. In terms of running time, Steps 1 and
2 take O(m) time. Also, since in Step 3 we have regular insertions, the total running time
remains O(mn).

SEA 2017

27:12 Incremental Low-High Orders of Directed Graphs and Applications

Table 2 Real-world graphs used in the experiments, sorted by the file size of their largest strongly
connected component (SCC). In our experiments we used both the largest SCC and the some of the
2-vertex-connected subgraphs (2VCSs), found inside the largest SCC.

Graph Largest SCC 2VCSs Type
n m avg. degree n m avg. degree

rome99 3352 8855 2.64 2249 6467 2.88 road network [13]
twitter-higgs-retweet 13086 63537 4.86 1099 9290 8.45 twitter [35]
enron 8271 147353 17.82 4441 123527 27.82 enron mails [35]
web-NotreDame 48715 267647 5.49 1409 6856 4.87 web [35]

1462 7279 4.98
1416 13226 9.34

soc-Epinions1 32220 442768 13.74 17117 395183 23.09 trust network [35]
Amazon-302 241761 1131217 4.68 55414 241663 4.36 co-purchase [35]
WikiTalk 111878 1477665 13.21 49430 1254898 25.39 Wiki communications [35]
web-Stanford 150475 1576157 10.47 5179 129897 25.08 web [35]

10893 162295 14.90
web-Google 434818 3419124 7.86 77480 840829 10.85 web [35]
Amazon-601 395230 3301051 8.35 276049 2461072 8.92 co-purchase [35]
web-BerkStan 334857 4523232 13.51 1106 8206 7.42 web [35]

4927 28142 5.71
12795 347465 27.16
29145 439148 15.07

4 Empirical Analysis

We wrote our implementations in C++, using g++ v.4.6.4 with full optimization (flag -O3)
to compile the code. We report the running times on a GNU/Linux machine, with Ubuntu
(12.04LTS): a Dell PowerEdge R715 server 64-bit NUMA machine with four AMD Opteron
6376 processors and 128GB of RAM memory. Each processor has 8 cores sharing a 16MB L3
cache, and each core has a 2MB private L2 cache and 2300MHz speed. In our experiments
we did not use any parallelization, and each algorithm ran on a single core. We report CPU
times measured with the getrusage function, averaged over ten different runs. In Tables 1
and 2 we can see some statistics about the real-world graphs we used in our experimental
evaluation. In all test instances we select the first vertex of the graph as the start vertex.
(Choosing a random start vertex produces similar results.) Note that the graphs in Table 1
are not strongly connected so we also report the number of vertices that are reachable from
the start vertex.

The graphs in Table 1 have timestamps that indicate the moment that each edge was
inserted into the graph. Thus, in our experiments, the edges are inserted according to these
timestamps. The number of edges that are actually inserted is controlled by a parameter
i ∈ [0, 1] as follows. Let m be the total number of edges in the graph. Then the flow graph
initially has m − i ·m edges, and i ·m edges are inserted one at a time. The algorithms
compute (in static mode) the dominator tree and a low-high order for the first m − i ·m
edges in the original graph file and then they run in incremental mode. Note that during the
execution of the algorithms some vertices may be unreachable at first and become reachable
after some insertions.

We use the graphs in Table 2 to create different types of inputs by extracting their
largest strongly connected component and some large 2-vertex-connected subgraphs. (A
2-vertex-connected graph remains strongly connected after the deletion of any single vertex.)
We use strongly connected graphs to guarantee that all vertices are reachable from any
arbitrary start vertex. Also, the 2-vertex-connected graphs are interesting because they
have flat dominator trees, so inserting their edges may cause the incremental algorithms to

L. Georgiadis, K. Giannis, A. Karanasiou, and L. Laura 27:13

0.001

0.01

0.1

1

10

100

1.000

1+e4 1+e5

SLT-NCA
SPARSIFICATION

LOCAL
DBS

0.001

0.01

0.1

1

10

100

1.000

1+e4 1+e5 1+e6

SLT-NCA
SPARSIFICATION

LOCAL
DBS

0.001

0.01

0.1

1

10

100

1.000

1+e4 1+e5 1+e6

SLT-NCA
SPARSIFICATION

LOCAL
DBS

Figure 4 Incremental low-high order: timestamped graphs of Table 1 (top), random edge
permutation of 2-vertex-connected graphs of Table 2 (middle), and random edge insertion in strongly
connected graphs of Table 2 (bottom). Running times, in seconds, and number of edges both shown
in logarithmic scale. For each input graph and each algorithm, we show the running times for
inserting 5%, 10%, 20%, 40%, 80% and 100% of the edges.

perform a lot of work. We note that the graphs in Table 2 do not have timestamps, so we
consider two different methods to produce dynamic graphs.

Random permutation: We perform a random permutation of the edges and use the
resulting order as timestamps.
Random insertions: We insert i ·m random edges in the original graph. The endpoints
of each new edge are selected uniformly at random, and the edge is inserted if it is not a
loop and is not already present in the current graph. Hence, the final graph has m+ i ·m
edges.

We apply the first method to the 2-vertex-connected graphs, and the second method to the
strongly connected graphs of Table 2. Note that in the case of random insertions the graph is
strongly connected throughout the execution of the incremental algorithms. We do not apply
the random insertions method to 2-vertex-connected graphs, since any edge insertion in such
a graph has no effect on the dominator tree (so also the low-high order does not change).

We compare the performance of four algorithms. As a baseline, we use a static low-high
order algorithm from [25] based on an efficient implementation of the Lengauer-Tarjan
algorithm for computing dominators [34] from [27]. Our baseline algorithm, SLT-NCA,
constructs, as intermediary, two divergent spanning trees. After each insertion of an edge
(x, y), SLT-NCA tests if the insertion of (x, y) affects the dominator tree by computing the
nearest common ancestor of x and y. If this is the case, then it recomputes a low-high order.
The other two algorithms are the ones we presented in Section 3. For our sparsification

SEA 2017

27:14 Incremental Low-High Orders of Directed Graphs and Applications

Table 3 Running times of the plot shown in Figure 4 (top): timestamped graphs of Table 1.

Graph nodes starting edges final edges SLT-NCA SPARSIFICATION LOCAL DBS
temporalGraph05 2029 5241 5517 0.04 0.012 0.004 0.004
temporalGraph10 2029 4965 5517 0.072 0.016 0.004 0.004
temporalGraph20 2029 4414 5517 0.14 0.04 0.004 0.004
temporalGraph40 2029 3310 5517 0.296 0.076 0.004 0.004
temporalGraph80 2029 1103 5517 0.504 0.132 0.004 0.004
temporalGraph100 2029 0 5517 0.524 0.136 0.004 0.004
opsahl-ucsocial05 1899 19281 20296 0.312 0.048 0.004 0.004
opsahl-ucsocial10 1899 18266 20296 0.48 0.08 0.004 0.004
opsahl-ucsocial20 1899 16237 20296 0.812 0.152 0.004 0.004
opsahl-ucsocial40 1899 12178 20296 1.64 0.36 0.004 0.004
opsahl-ucsocial80 1899 4059 20296 2.68 0.64 0.008 0.004
opsahl-ucsocial100 1899 0 20296 2.796 0.576 0.004 0.004
chess05 7301 57044 60046 2.304 0.668 0.012 0.008
chess10 7301 54041 60046 6.14 1.456 0.016 0.008
chess20 7301 48037 60046 12.984 3.244 0.016 0.008
chess40 7301 36028 60046 23.28 3.64 0.024 0.004
chess80 7301 12009 60046 32.956 8.376 0.024 0.004
chess100 7301 0 60046 35.744 9.336 0.032 0.004
munmun_digg_reply05 30398 80985 85247 10.428 3.436 0.032 0.008
munmun_digg_reply10 30398 76722 85247 22.048 7.508 0.032 0.016
munmun_digg_reply20 30398 68198 85247 41.928 14.048 0.032 0.008
munmun_digg_reply40 30398 51148 85247 72.28 25.408 0.048 0.012
munmun_digg_reply80 30398 17049 85247 100.56 21.964 0.072 0.012
munmun_digg_reply100 30398 0 85247 100.98 37.156 0.076 0.016
elec05 7115 98436 103617 1.408 0.124 0.012 0.008
elec10 7115 93255 103617 2.62 0.292 0.012 0.004
elec20 7115 82894 103617 4.732 0.508 0.008 0.008
elec40 7115 62170 103617 8.08 0.812 0.012 0.004
elec80 7115 20723 103617 11.52 1.364 0.02 0.008
elec100 7115 0 103617 12.068 1.096 0.02 0.004
slashdot-threads05 51083 123852 130370 29.412 3.2 0.056 0.02
slashdot-threads10 51083 117333 130370 56.112 10.184 0.06 0.02
slashdot-threads20 51083 104296 130370 106.772 20.144 0.06 0.02
slashdot-threads40 51083 78222 130370 189.712 37.996 0.064 0.016
slashdot-threads80 51083 26074 130370 287.912 62.66 0.092 0.02
slashdot-threads100 51083 0 130370 270.356 62.532 0.104 0.016

algorithm of Section 3.1, denoted as SPARSIFICATION, we extend the incremental dominators
algorithm DBS of [22] with the computation of two divergent spanning trees and a low-high
order. Algorithm SPARSIFICATION applies these computations on a sparse subgraph of the
input digraph that maintains the same dominators. Finally, we tested an implementation of
our more efficient algorithm of Section 3.2, denoted as LOCAL, that updates the low-high
order by computing a local low-high order of an auxiliary graph. We include also the original
DBS of [22] in the experiments, to provide a more complete picture of the effectiveness of
these approaches.

We compared the above incremental low-high order algorithms in three different field
tests, as mentioned above. The first one, shown in Figure 4 (top) and Table 3, compares the
running times of the algorithms against the dataset detailed in Table 1, i.e. the timestamped
graphs. The algorithms are well distinguished: our more efficient algorithm, LOCAL, performs
very well. Indeed, its running time is very close to DBS that only updates the dominator
tree. Algorithm SPARSIFICATION is not competitive with LOCAL, despite the fact that it
exhibits a substantial improvement over our baseline algorithm SLT-NCA.

The second experiment, shown in Figure 4 (middle) and Table 4, deals with the random
permutations of the edges of 2-vertex-connected graphs. (Refer to Table 2.) As with the
timestamped graphs, during the execution of the algorithms some vertices may be unreachable
at first, but here all vertices become reachable in the end. Also, at the end of all insertions,
the final graph has flat dominator tree. Here we can see that, as before, the algorithms are
still distinguished, but in this case the two couples SPARSIFICATION and SLT-NCA, and
LOCAL and DBS, are closer.

L. Georgiadis, K. Giannis, A. Karanasiou, and L. Laura 27:15

Table 4 Running times of the plot shown in Figure 4 (middle): random edge permutation of
2-vertex-connected graphs of Table 2.

Graph nodes starting edges final edges SLT-NCA SPARSIFICATION LOCAL DBS
rome05 2249 6467 6790 0.224 0.06 0.004 0.004
rome10 2249 6467 7114 0.428 0.128 0.004 0.004
rome20 2249 6467 7760 0.784 0.292 0.004 0.004
rome40 2249 6467 9054 1.348 0.656 0.004 0.004
rome80 2249 6467 11641 1.868 0.896 0.008 0.004
rome100 2249 6467 12934 1.992 0.92 0.008 0.004
twitter05 1099 9290 9755 0.048 0.02 0.004 0.004
twitter10 1099 9290 10219 0.08 0.04 0.004 0.004
twitter20 1099 9290 11148 0.196 0.104 0.004 0.004
twitter40 1099 9290 13006 0.432 0.228 0.004 0.004
twitter80 1099 9290 16722 0.796 0.412 0.004 0.004
twitter100 1099 9290 18580 0.812 0.436 0.004 0.004
NotreDame05 1416 13226 13887 0.008 0.004 0.008 0.004
NotreDame10 1416 13226 14549 0.012 0.004 0.004 0.004
NotreDame20 1416 13226 15871 0.012 0.004 0.004 0.004
NotreDame40 1416 13226 18516 0.012 0.004 0.008 0.004
NotreDame80 1416 13226 23807 0.012 0.004 0.008 0.004
NotreDame100 1416 13226 26452 0.012 0.004 0.008 0.004
enron05 4441 123527 129703 0.808 0.188 0.016 0.012
enron10 4441 123527 135880 1.504 0.344 0.012 0.004
enron20 4441 123527 148232 3.744 0.748 0.016 0.008
enron40 4441 123527 172938 5.584 1.28 0.016 0.008
enron80 4441 123527 222349 14.744 3.836 0.028 0.008
enron100 4441 123527 247054 15.076 3.828 0.028 0.008
webStanford05 5179 129897 136392 0.856 0.212 0.016 0.008
webStanford10 5179 129897 142887 0.992 0.228 0.032 0.008
webStanford20 5179 129897 155876 0.964 0.24 0.036 0.016
webStanford40 5179 129897 181856 0.98 0.236 0.036 0.016
webStanford80 5179 129897 233815 0.968 0.244 0.036 0.016
webStanford100 5179 129897 259794 0.988 0.24 0.036 0.016
Amazon05 55414 241663 253746 24.528 14.592 0.268 0.032
Amazon10 55414 241663 265829 44.392 11.88 0.264 0.048
Amazon20 55414 241663 289996 44.356 14.704 0.272 0.052
Amazon40 55414 241663 338328 45.792 12.628 0.252 0.032
Amazon80 55414 241663 434993 24.22 11.82 0.272 0.052
Amazon100 55414 241663 483326 24.856 18.096 0.276 0.056
WikiTalk05 49430 1254898 1317643 91.808 16.344 0.144 0.188
WikiTalk10 49430 1254898 1380388 190.616 20.42 0.236 0.164
WikiTalk20 49430 1254898 1505878 374.292 73.252 0.116 0.08
WikiTalk40 49430 1254898 1756857 766.28 172.064 0.104 0.108
WikiTalk80 49430 1254898 2258816 2868.28 349.632 0.136 0.068
WikiTalk100 49430 1254898 2509796 > 3600 837.728 0.208 0.052

The last experiment, detailed in Figure 4 (bottom) and Table 5, concerns the random
edge insertion in strongly connected graphs of Table 2. The ranking of the algorithms does
not change, as we can see in Figure 4 (bottom), but the difference is bigger: we note a bigger
gap of more than two orders of magnitude, in particular, between LOCAL and the couple
SLT-NCA and SPARSIFICATION.

From all the above experimental results, it is evident that a careful implementation of
our efficient algorithm LOCAL has excellent performance in practice. Indeed, its running
time is very close to the running time of an efficient incremental algorithm for updating the
dominator tree.

SEA 2017

27:16 Incremental Low-High Orders of Directed Graphs and Applications

Table 5 Running times of the plot shown in Figure 4 (bottom): random edge insertion in strongly
connected graphs of Table 2.

Graph nodes starting edges final edges SLT-NCA SPARSIFICATION LOCAL DBS
rome05 3352 8855 9298 0.104 0.16 0.004 0.004
rome10 3352 8855 9741 0.352 0.296 0.004 0.004
rome20 3352 8855 10626 0.624 0.528 0.004 0.004
rome40 3352 8855 12397 0.98 0.78 0.004 0.004
rome80 3352 8855 15939 1.372 1 0.004 0.004
rome100 3352 8855 17710 1.48 1.088 0.004 0.004
twitter05 13086 63537 65444 9.252 8.74 0.028 0.008
twitter10 13086 63537 67344 25.716 16.452 0.016 0.012
twitter20 13086 63537 70544 44.148 27.124 0.012 0.012
twitter40 13086 63537 88952 72.732 57.828 0.024 0.012
twitter80 13086 63537 114367 116.452 68.1 0.064 0.016
twitter100 13086 63537 127074 119.152 54.624 0.056 0.012
enron05 8271 147353 154721 10.52 5.928 0.024 0.012
enron10 8271 147353 162088 26.512 4.712 0.028 0.012
enron20 8271 147353 176824 17.652 9.4 0.028 0.016
enron40 8271 147353 206294 33.724 10.044 0.028 0.016
enron80 8271 147353 265235 30.34 10.02 0.032 0.02
enron100 8271 147353 294706 34.496 10.012 0.036 0.024
NotreDame05 48715 267647 281029 409.072 169.168 0.104 0.032
NotreDame10 48715 267647 294412 550.444 259.42 0.144 0.028
NotreDame20 48715 267647 321176 1093.96 447.44 0.172 0.032
NotreDame40 48715 267647 374706 1575.83 356.588 0.192 0.048
NotreDame80 48715 267647 481765 1563.68 544.748 0.164 0.052
NotreDame100 48715 267647 535294 1753.4 597.776 0.208 0.048
Amazon05 241761 1131217 1187778 > 3600 3098.83 0.652 0.264
Amazon10 241761 1131217 1244339 > 3600 > 3600 0.732 0.284
Amazon20 241761 1131217 1357460 > 3600 > 3600 0.804 0.18
Amazon40 241761 1131217 1583704 > 3600 > 3600 0.936 0.2
Amazon80 241761 1131217 2036191 > 3600 > 3600 0.992 0.36
Amazon100 241761 1131217 2262434 > 3600 > 3600 1.032 0.368
WikiTalk05 111878 1477665 1551548 > 3600 1096.12 0.44 0.16
WikiTalk10 111878 1477665 1625432 > 3600 1619.04 0.28 0.264
WikiTalk20 111878 1477665 1773198 > 3600 1831.12 0.544 0.264
WikiTalk40 111878 1477665 2068731 > 3600 1932.21 0.36 0.304
WikiTalk80 111878 1477665 2659797 > 3600 1947 0.576 0.312
WikiTalk100 111878 1477665 2955330 > 3600 2207.42 0.62 0.212
webStanford05 150475 1576157 1654965 > 3600 2208.26 0.648 0.268
webStanford10 150475 1576157 1733773 > 3600 > 3600 0.676 0.356
webStanford20 150475 1576157 1891388 > 3600 > 3600 0.732 0.372
webStanford40 150475 1576157 2206620 > 3600 > 3600 0.768 0.404
webStanford80 150475 1576157 2837083 > 3600 > 3600 1.288 0.444
webStanford100 150475 1576157 3152314 > 3600 > 3600 1.324 0.464

L. Georgiadis, K. Giannis, A. Karanasiou, and L. Laura 27:17

References
1 A. Abboud and V. Vassilevska Williams. Popular conjectures imply strong lower bounds for

dynamic problems. In Proc. 55th IEEE Symposium on Foundations of Computer Science,
FOCS, pages 434–443, 2014. doi:10.1109/FOCS.2014.53.

2 S. Allesina and A. Bodini. Who dominates whom in the ecosystem? Energy flow bottlenecks
and cascading extinctions. Journal of Theoretical Biology, 230(3):351–358, 2004.

3 S. Alstrup, D. Harel, P.W. Lauridsen, and M. Thorup. Dominators in linear time. SIAM
Journal on Computing, 28(6):2117–32, 1999.

4 S. Alstrup and P.W. Lauridsen. A simple dynamic algorithm for maintaining a dominator
tree. Technical Report 96-3, Department of Computer Science, University of Copenhagen,
1996.

5 M.E. Amyeen, W.K. Fuchs, I. Pomeranz, and V. Boppana. Fault equivalence identification
using redundancy information and static and dynamic extraction. In Proceedings of the 19th
IEEE VLSI Test Symposium, March 2001.

6 S. Baswana, K. Choudhary, and L. Roditty. Fault tolerant reachability for directed
graphs. In Yoram Moses, editor, Distributed Computing, volume 9363 of Lecture Notes
in Computer Science, pages 528–543. Springer Berlin Heidelberg, 2015. doi:10.1007/
978-3-662-48653-5_35.

7 S. Baswana, K. Choudhary, and L. Roditty. Fault tolerant reachability subgraph: Generic
and optimal. In Proc. 48th ACM Symp. on Theory of Computing, pages 509–518, 2016.
doi:10.1145/2897518.2897648.

8 M.A. Bender, R. Cole, E.D. Demaine, M. Farach-Colton, and J. Zito. Two simplified al-
gorithms for maintaining order in a list. In Proceedings of the 10th Annual European Sym-
posium on Algorithms, pages 152–164, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.
doi:10.1007/3-540-45749-6_17.

9 M.A. Bender, J. T. Fineman, S. Gilbert, and R.E. Tarjan. A new approach to incremental
cycle detection and related problems. ACM Transactions on Algorithms, 12(2):14:1–14:22,
December 2015. doi:10.1145/2756553.

10 A.L. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers, R. E. Tarjan, and J.R. Westbrook.
Linear-time algorithms for dominators and other path-evaluation problems. SIAM Journal
on Computing, 38(4):1533–1573, 2008.

11 S. Cicerone, D. Frigioni, U. Nanni, and F. Pugliese. A uniform approach to semi-dynamic
problems on digraphs. Theor. Comput. Sci., 203:69–90, August 1998.

12 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck. Efficiently comput-
ing static single assignment form and the control dependence graph. ACM Transactions on
Programming Languages and Systems, 13(4):451–490, 1991. doi:10.1145/115372.115320.

13 C. Demetrescu, A.V. Goldberg, and D. S. Johnson. 9th DIMACS Implementation Chal-
lenge: Shortest Paths. 2007. URL: http://www.diag.uniroma1.it/challenge9/.

14 P. Dietz and D. Sleator. Two algorithms for maintaining order in a list. In Proc. 19th ACM
Symp. on Theory of Computing, pages 365–372, 1987.

15 W. Fraczak, L. Georgiadis, A. Miller, and R.E. Tarjan. Finding dominators via disjoint set
union. Journal of Discrete Algorithms, 23:2–20, 2013. doi:http://dx.doi.org/10.1016/
j.jda.2013.10.003.

16 H.N. Gabow. The minset-poset approach to representations of graph connectivity. ACM
Transactions on Algorithms, 12(2):24:1–24:73, February 2016. doi:10.1145/2764909.

17 K. Gargi. A sparse algorithm for predicated global value numbering. SIGPLAN Not.,
37(5):45–56, May 2002. doi:10.1145/543552.512536.

18 L. Georgiadis. Testing 2-vertex connectivity and computing pairs of vertex-disjoint s-t
paths in digraphs. In Proc. 37th Int’l. Coll. on Automata, Languages, and Programming,
pages 738–749, 2010.

SEA 2017

http://dx.doi.org/10.1109/FOCS.2014.53
http://dx.doi.org/10.1007/978-3-662-48653-5_35
http://dx.doi.org/10.1007/978-3-662-48653-5_35
http://dx.doi.org/10.1145/2897518.2897648
http://dx.doi.org/10.1007/3-540-45749-6_17
http://dx.doi.org/10.1145/2756553
http://dx.doi.org/10.1145/115372.115320
http://www.diag.uniroma1.it/challenge9/
http://dx.doi.org/http://dx.doi.org/10.1016/j.jda.2013.10.003
http://dx.doi.org/http://dx.doi.org/10.1016/j.jda.2013.10.003
http://dx.doi.org/10.1145/2764909
http://dx.doi.org/10.1145/543552.512536

27:18 Incremental Low-High Orders of Directed Graphs and Applications

19 L. Georgiadis. Approximating the smallest 2-vertex connected spanning subgraph of a
directed graph. In Proc. 19th European Symposium on Algorithms, pages 13–24, 2011.

20 L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-vertex connectivity in directed
graphs. In Proc. 42nd Int’l. Coll. on Automata, Languages, and Programming, pages 605–
616, 2015. doi:10.1007/978-3-662-47672-7_49.

21 L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2edgee connectivity in directed
graphs. ACM Trans. Algorithms, 13(1):9:1–9:24, October 2016. doi:10.1145/2968448.

22 L. Georgiadis, G. F. Italiano, L. Laura, and F. Santaroni. An experimental study of dynamic
dominators. In Proc. 20th European Symposium on Algorithms, pages 491–502, 2012. Full
version: CoRR, abs/1604.02711.

23 L. Georgiadis, G. F. Italiano, and N. Parotsidis. Incremental 2-edge-connectivity in directed
graphs. In Proc. 43rd Int’l. Coll. on Automata, Languages, and Programming, pages 49:1–
49:15, 2016. doi:10.4230/LIPIcs.ICALP.2016.49.

24 L. Georgiadis, A. Karanasiou, G. Konstantinos, and L. Laura. On low-high orders of
directed graphs: Incremental algorithms and applications. CoRR, abs/1608.06462, 2016.
URL: http://arxiv.org/abs/1608.06462.

25 L. Georgiadis and R.E. Tarjan. Dominator tree certification and divergent spanning
trees. ACM Transactions on Algorithms, 12(1):11:1–11:42, November 2015. doi:10.1145/
2764913.

26 L. Georgiadis and R.E. Tarjan. Addendum to “Dominator tree certification and divergent
spanning trees”. ACM Transactions on Algorithms, 12(4):56:1–56:3, August 2016. doi:
10.1145/2928271.

27 L. Georgiadis, R. E. Tarjan, and R.F. Werneck. Finding dominators in practice. Journal
of Graph Algorithms and Applications (JGAA), 10(1):69–94, 2006.

28 M. Gomez-Rodriguez and B. Schölkopf. Influence maximization in continuous time diffusion
networks. In 29th International Conference on Machine Learning (ICML), 2012.

29 M. Henzinger, S. Krinninger, and V. Loitzenbauer. Finding 2-edge and 2-vertex strongly
connected components in quadratic time. In Proc. 42nd Int’l. Coll. on Automata, Lan-
guages, and Programming, pages 713–724, 2015. doi:10.1007/978-3-662-47672-7_58.

30 G.F. Italiano, L. Laura, and F. Santaroni. Finding strong bridges and strong articulation
points in linear time. Theoretical Computer Science, 447:74–84, 2012. doi:10.1016/j.tcs.
2011.11.011.

31 R. Jaberi. Computing the 2-blocks of directed graphs. RAIRO-Theor. Inf. Appl., 49(2):93–
119, 2015. doi:10.1051/ita/2015001.

32 R. Jaberi. On computing the 2-vertex-connected components of directed graphs. Discrete
Applied Mathematics, 204:164–172, 2016. doi:10.1016/j.dam.2015.10.001.

33 J. Kunegis. KONECT: the Koblenz network collection. In 22nd International World Wide
Web Conference, WWW’13, Rio de Janeiro, Brazil, May 13-17, 2013, Companion Volume,
pages 1343–1350, 2013.

34 T. Lengauer and R.E. Tarjan. A fast algorithm for finding dominators in a flowgraph.
ACM Transactions on Programming Languages and Systems, 1(1):121–41, 1979.

35 J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection, June
2014. URL: http://snap.stanford.edu/data.

36 E.K. Maxwell, G. Back, and N. Ramakrishnan. Diagnosing memory leaks using graph
mining on heap dumps. In Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining, KDD’10, pages 115–124, 2010.

37 R.M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. Certifying algorithms. Com-
puter Science Review, 5(2):119–161, 2011.

http://dx.doi.org/10.1007/978-3-662-47672-7_49
http://dx.doi.org/10.1145/2968448
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.49
http://arxiv.org/abs/1608.06462
http://dx.doi.org/10.1145/2764913
http://dx.doi.org/10.1145/2764913
http://dx.doi.org/10.1145/2928271
http://dx.doi.org/10.1145/2928271
http://dx.doi.org/10.1007/978-3-662-47672-7_58
http://dx.doi.org/10.1016/j.tcs.2011.11.011
http://dx.doi.org/10.1016/j.tcs.2011.11.011
http://dx.doi.org/10.1051/ita/2015001
http://dx.doi.org/10.1016/j.dam.2015.10.001
http://snap.stanford.edu/data

L. Georgiadis, K. Giannis, A. Karanasiou, and L. Laura 27:19

38 M. Mowbray and A. Lain. Dominator-tree analysis for distributed authorization. In Pro-
ceedings of the Third ACM SIGPLAN Workshop on Programming Languages and Ana-
lysis for Security, PLAS’08, pages 101–112, New York, NY, USA, 2008. ACM. doi:
10.1145/1375696.1375709.

39 H. Nagamochi and T. Ibaraki. A linear-time algorithm for finding a sparse k-connected
spanning subgraph of a k-connected graph. Algorithmica, 7:583–596, 1992.

40 L. Quesada, P. Van Roy, Y. Deville, and R. Collet. Using dominators for solving constrained
path problems. In Proc. 8th International Conference on Practical Aspects of Declarative
Languages, pages 73–87, 2006.

41 G. Ramalingam and T. Reps. An incremental algorithm for maintaining the dominator
tree of a reducible flowgraph. In Proc. 21st ACM SIGPLAN-SIGACT Symp. on Principles
of Programming Languages, pages 287–296, 1994.

42 V.C. Sreedhar, G.R. Gao, and Y. Lee. Incremental computation of dominator trees. ACM
Transactions on Programming Languages and Systems, 19:239–252, 1997.

43 R.E. Tarjan. Finding dominators in directed graphs. SIAM Journal on Computing, 3(1):62–
89, 1974.

44 R.E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the ACM,
22(2):215–225, 1975.

45 R.E. Tarjan. Fast algorithms for solving path problems. Journal of the ACM, 28(3):594–
614, 1981.

46 T. Tholey. Linear time algorithms for two disjoint paths problems on directed acyclic graphs.
Theoretical Computer Science, 465:35–48, 2012. doi:10.1016/j.tcs.2012.09.025.

47 J. Zhao and S. Zdancewic. Mechanized verification of computing dominators for formalizing
compilers. In Proc. 2nd International Conference on Certified Programs and Proofs, pages
27–42. Springer, 2012. doi:10.1007/978-3-642-35308-6_6.

A Applications of incremental low-high orders

In this section we show how our result on incremental low-high order maintenance implies
the following incremental algorithms that also run in O(mn) total time for a sequence of m
edge insertions.

First, we give an algorithm that maintains, after each edge insertion, two strongly
divergent spanning trees of G, and answers the following queries in constant time: (i) For
any two query vertices v and w, find a path πsv from s to v and a path πsw from s to w,
such that πsv and πsw share only the common dominators of v and w. We can output
these paths in O(|πsv|+ |πsw|) time. (ii) For any two query vertices v and w, find a path
πsv from s to v that avoids w, if such a path exists. We can output this path in O(|πsv|)
time.
Then we provide an algorithm for an incremental version of the fault-tolerant reachability
problem [6, 7]. We maintain a flow graph G = (V,E, s) with n vertices through a sequence
of m edge insertions, so that we can answer the following query in O(n) time. Given a
spanning forest F = (V,EF) of G rooted at s, find a set of edges E′ ⊆ E \EF of minimum
cardinality, such that the subgraph G′ = (V,EF ∪E′, s) of G has the same dominators as
G.
Finally, given a digraph G, we consider how to maintain incrementally a spanning
subgraph of G with O(n) edges that preserves the 2-edge-connectivity relations in G.

SEA 2017

http://dx.doi.org/10.1145/1375696.1375709
http://dx.doi.org/10.1145/1375696.1375709
http://dx.doi.org/10.1016/j.tcs.2012.09.025
http://dx.doi.org/10.1007/978-3-642-35308-6_6

27:20 Incremental Low-High Orders of Directed Graphs and Applications

A.1 Strongly divergent spanning trees and path queries

We can use the arrays mark, low, and high to maintain a pair of strongly divergent spanning
trees, B and R, of G after each update. Recall that B and R are strongly divergent if for every
pair of vertices v and w, we have B[s, v] ∩R[s, w] = D[s, v] ∩D[s, w] or R[s, v] ∩B[s, w] =
D[s, v] ∩D[s, w]. Moreover, we can construct B and R so that they are also edge-disjoint
except for the bridges of G. A bridge of G is an edge (u, v) that is contained in every path
from s to v. Let b(v) (resp., r(v)) denote the parent of a vertex v in B (resp., R). To update
B and R after the insertion of an edge (x, y), we only need to update b(v) and r(v) for the
affected vertices v, and possibly for their common ancestor c that is a child of z = nca(x, y)
from Lemma 3. We can update b(v) and r(v) of each vertex v ∈ A ∪ {c} as follows: set
b(v) ← d(v) if low(v) = null, b(v) ← low(v) otherwise; set r(v) ← d(v) if high(v) = null,
r(v) ← high(v) otherwise. If the insertion of (x, y) does not affect y, then A = ∅ but we
may still need to update b(y) and r(y) if x 6∈ D(y) in order to make B and R maximally
edge-disjoint. Note that in this case z = d(y), so we only need to check if both low(y) and
high(y) are null. If they are, then we set low(y)← x if x <δ y, and set high(y)← x otherwise.
Then, we can update b(y) and r(y) as above.

Now consider a query that, given two vertices v and w, asks for two maximally vertex-
disjoint paths, πsv and πsw, from s to v and from s to w, respectively. Such queries were
used in [46] to give a linear-time algorithm for the 2-disjoint paths problem on a directed
acyclic graph. If v <δ w, then we select πsv ← B[s, v] and πsw ← R[s, w]; otherwise, we
select πsv ← R[s, v] and πsw ← B[s, w]. Therefore, we can find such paths in constant time,
and output them in O(|πsv|+ |πsw|) time. Similarly, for any two query vertices v and w, we
can report a path πsv from s to v that avoids w. Such a path exists if and only if w does
not dominate v, which we can test in constant time using the ancestor-descendant relation
in D [43]. If w does not dominate v, then we select πsv ← B[s, v] if v <δ w, and select
πsv ← R[s, v] if w <δ v.

A.2 Fault tolerant reachability

Baswana et al. [6] study the following reachability problem. We are given a flow graph
G = (V,E, s) and a spanning tree T = (V,ET) rooted at s. We call a set of edges E′ valid if
the subgraph G′ = (V,ET ∪E′, s) of G has the same dominators as G. The goal is to find a
valid set of minimum cardinality. As shown in [26], we can compute a minimum-size valid set
in O(m) time, given the dominator tree D and a low-high order of δ of it. We can combine
the above construction with our incremental low-high algorithm to solve the incremental
version of the fault tolerant reachability problem, where G is modified by edge insertions
and we wish to compute efficiently a valid set for any query spanning tree T . Let t(v) be the
parent of v in T . Our algorithm maintains, after each edge insertion, a low-high order δ of
G, together with the mark, low, and high arrays. Given a query spanning tree T = (V,ET),
we can compute a valid set of minimum cardinality E′ as follows. For each vertex v 6= s, we
apply the appropriate one of the following cases: (a) If t(v) = d(v) then we do not insert into
E′ any edge entering v. (b) If t(v) 6= d(v) and v is marked then we insert (d(v), v) into E′.
(c) If v is not marked then we consider the following subcases: If t(v) >δ v, then we insert
into E′ the edge (x, v) with x = low(v). Otherwise, if t(v) <δ v, then we insert into E′ the
edge (x, v) with x = high(v). Hence, can update the minimum valid set in O(mn) total time.

We note that the above construction can be easily generalized for the case where T is
forest, i.e., when ET is a subset of the edges of some spanning tree of G. In this case, t(v)
can be null for some vertices v 6= s. To answer a query for such a T , we apply the previous

L. Georgiadis, K. Giannis, A. Karanasiou, and L. Laura 27:21

construction with the following modification when t(v) is null. If v is marked then we insert
(d(v), v) into E′, as in case (b). Otherwise, we insert both edges entering v from low(v)
and high(v). In particular, when ET = ∅, we compute a subgraph G′ = (V,E′, s) of G with
minimum number of edges that has the same dominators as G. This corresponds to the case
k = 1 in [7].

A.3 Sparse certificate for 2-edge-connectivity
Let G = (V,E) be a strongly connected digraph. We say that vertices u, v ∈ V are 2-edge-
connected if there are two edge-disjoint directed paths from u to v and two edge-disjoint
directed paths from v to u. (A path from u to v and a path from v to u need not be
edge-disjoint.) A 2-edge-connected block of a digraph G = (V,E) is defined as a maximal
subset B ⊆ V such that every two vertices in B are 2-edge-connected. If G is not strongly
connected, then its 2-edge-connected blocks are the 2-edge-connected blocks of each strongly
connected component of G. A sparse certificate for the 2-edge-connected blocks of G is a
spanning subgraph C(G) of G that has O(n) edges and maintains the same 2-edge-connected
blocks as G. Sparse certificates of this kind allow us to speed up computations, such as
finding the actual edge-disjoint paths that connect a pair of vertices (see, e.g., [39]). The
2-edge-connected blocks and a corresponding sparse certificate can be computed in O(m+ n)
time [21]. An incremental algorithm for maintaining the 2-edge-connected blocks is presented
in [23]. This algorithm maintains the dominator tree of G, with respect to an arbitrary
start vertex s, and of its reversal GR, together with the auxiliary components of G and GR,
defined next.

Recall that an edge (u, v) is a bridge of a flow graph G with start vertex s if all paths
from s to v include (u, v). After deleting from the dominator tree D the bridges of G, we
obtain the bridge decomposition of D into a forest D. For each root r of a tree in the bridge
decomposition D we define the auxiliary graph Gr = (Vr, Er) of r as follows. The vertex
set Vr of Gr consists of all the vertices in Dr. The edge set Er contains all the edges of G
among the vertices of Vr, referred to as ordinary edges, and a set of auxiliary edges, which
are obtained by contracting vertices in V \ Vr, as follows. Let v be a vertex in Vr that has a
child w in V \ Vr. Note that w is a root in the bridge decomposition D of D. For each such
child w of v, we contract w and all its descendants in D into v. The auxiliary components of
G are the strongly connected components of each auxiliary graph Gr.

We sketch how to extend the incremental algorithm of [23] so that it also maintains a
sparse certificate C(G) for the 2-edge-connected components of G, in O(mn) total time. It
suffices to maintain the auxiliary components in G and GR, and two maximally edge-disjoint
divergent spanning trees for each of G and GR. We can maintain these divergent spanning
trees as described in Section A.1. To identify the auxiliary components, the algorithm of [23]
uses, for each auxiliary graph, an incremental algorithm for maintaining strongly connected
components [9]. It is easy to extend this algorithm so that it also computes O(n) edges that
define these strongly connected components. The union of these edges and of the edges in
the divergent spanning trees are the edges of C(G).

SEA 2017

	Introduction
	Preliminaries
	Incremental low-high order
	Sparsification Algorithm
	Local Low-High Order Algorithm
	Derived edges and derived flow graphs
	Affected vertices
	Low-high order augmentation
	Algorithm

	Representation of a low-high order
	Handling unreachable vertices

	Empirical Analysis
	Applications of incremental low-high orders
	Strongly divergent spanning trees and path queries
	Fault tolerant reachability
	Sparse certificate for 2-edge-connectivity

