
Design and Implementation of a Time Predictable
Processor: Evaluation With a Space Case Study∗

Carles Hernández†1, Jaume Abella‡2, Francisco J. Cazorla3,
Alen Bardizbanyan4, Jan Andersson5, Fabrice Cros6, and
Franck Wartel7

1 Barcelona Supercomputing Center (BSC), Barcelona, Spain
carles.hernandez@bsc.es

2 Barcelona Supercomputing Center (BSC), Barcelona, Spain
jaume.abella@bsc.es

3 Barcelona Supercomputing Center (BSC) and IIIA-CSIC, Barcelona, Spain
francisco.cazorla@bsc.es

4 Cobham Gaisler, Gothenburg, Sweden
alen.bardizbanyan@gaisler.com

5 Cobham Gaisler, Gothenburg, Sweden
jan@gaisler.com

6 Airbus Defense and Space, Toulouse, France
fabrice.cros@airbus.com

7 Airbus Defense and Space, Toulouse, France
franck.wartel@airbus.com

Abstract
Embedded real-time systems like those found in automotive, rail and aerospace, steadily require
higher levels of guaranteed computing performance (and hence time predictability) motivated
by the increasing number of functionalities provided by software. However, high-performance
processor design is driven by the average-performance needs of mainstream market. To make
things worse, changing those designs is hard since the embedded real-time market is comparatively
a small market. A path to address this mismatch is designing low-complexity hardware features
that favor time predictability and can be enabled/disabled not to affect average performance when
performance guarantees are not required. In this line, we present the lessons learned designing and
implementing LEOPARD, a four-core processor facilitating measurement-based timing analysis
(widely used in most domains). LEOPARD has been designed adding low-overhead hardware
mechanisms to a LEON3 processor baseline that allow capturing the impact of jittery resources
(i.e. with variable latency) in the measurements performed at analysis time. In particular, at
core level we handle the jitter of caches, TLBs and variable-latency floating point units; and
at the chip level, we deal with contention so that time-composable timing guarantees can be
obtained. The result of our applied study with a Space application shows how per-resource jitter
is controlled facilitating the computation of high-quality WCET estimates.

1998 ACM Subject Classification C.3 Real-Time and Embedded Systems

∗ The research leading to these results has received funding from the European Community’s Seventh
Framework Programme [FP7/2007-2013] under the PROXIMA Project grant agreement no. 611085 (http:
//www.proxima-project.eu). This work has also been partially supported by the Spanish Ministry of
Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence.

† Carles Hernández is jointly funded by the Spanish Ministry of Economy and Competitiveness and
FEDER funds through grant TIN2014-60404-JIN.

‡ Jaume Abella has been partially supported by the Ministry of Economy and Competitiveness under
Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.

© Carles Hernández, Jaume Abella, Francisco J. Cazorla, Alen Bardizbanyan, Jan Andersson,
Fabrice Cros, and Franck Wartel;
licensed under Creative Commons License CC-BY

29th Euromicro Conference on Real-Time Systems (ECRTS 2017).
Editor: Marko Bertogna; Article No. 16; pp. 16:1–16:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.proxima-project.eu
http://www.proxima-project.eu
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


16:2 Design and Implementation of a Time Predictable Processor

Keywords and phrases processor design, performance guarantees, multicore, industrial case stud-
ies, application of real-time technology in realistic systems

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2017.16

1 Introduction

Software is becoming the main competitive advantage in embedded real-time products fuelled
by the goal of achieving autonomous (i.e. software-controlled) vehicles in market sectors
such as automotive, aerospace and railway. In this line, software increasingly implements
more complex functionalities with relentless demands for guaranteed computing power across
different domains [18, 22]. This has motivated high-performance processor chip manufacturers
(e.g. Intel, NVIDIA, and ARM) to start adding time-predictable features in their processor
designs [46, 16]. In the same line, processor companies already targeting the embedded
real-time domain, e.g. Infineon and Cobham Gaisler, have been motivated to evolve very
rapidly from simple micro-controllers to more advanced processor designs [23, 10].

The guaranteed performance requirements of real-time systems challenges the adoption of
advanced performance-improving hardware features: as resources become more statefull and
interact in more complex ways, deriving tight timing bounds is more difficult. Furthermore,
this complicates providing timing analysis techniques with information about hardware
behaviour. For static timing analysis this includes access delays of hardware resources which
are increasingly hard to derive from manuals, forcing practitioners to stick to measured
values [33]. For measurement-based timing analysis (MBTA) assessing whether the execution
scenarios captured at analysis effectively cover those bad (worst) conditions that can arise at
operation requires dealing with more and more hard-to-track low-level hardware details.

Overall, the quality of the Worst-Case Execution Time (WCET) estimates derived with
MBTA (the focus on of this paper and widely adopted in the real-time domain [48, 49])
depends on the ability of the user to build test scenarios at analysis time in which program’s
execution conditions are close to those that can lead to the WCET during operation. This
requires capturing the impact of the sources of jitter (SoJ) in the measurement observations
taken at the analysis phase. This ability had by users with simple hardware, diminishes with
the advent of more complex hardware: users are increasingly forced to deal with low-level
hardware SoJ (e.g. requests alignment and cache mapping), while their real focus is on
problems at higher levels of abstraction (e.g. algorithm and end-to-end models). Users
neither have the will, (and in many cases) nor the means to exercise this level of control
on low-level hardware. This is in contrast to other high-level SoJ, such as execution path
coverage, for which clear metrics are defined (e.g. DC and MC/DC) and tools exist to help
the user to reach a given target coverage. Hence, solutions that help increasing confidence on
measurements without requiring the user to deal with processor internals are fundamental to
enable the use of more complex processors in real-time embedded domains.

In this applied study, we present the lessons learned in the PROXIMA EU project [38]
designing and implementing LEOPARD (LEON-based probabilistically analyzable processor
design), a 4-core processor based on Cobham Gaisler’s LEON processor family (deployed in
the Space domain). LEOPARD’s design exposes the jitter of micro-architectural resources
so that the execution time measurements taken at analysis factor in the impact of those
resources. LEOPARD helps the user providing evidence, as needed for safety standards, that
analysis-time execution scenarios upperbound those that can arise during operation. This is
achieved by introducing several low-complexity features in the baseline processor that can be

http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.16


C. Hernández et al. 16:3

activated/deactivated to reduce impact on average performance. This helps the ultimate
goal of having (from the hardware point of view) one design that fits the requirements of
several domains and increasing the cost-effectiveness of MBTA since it reduces its application
costs while helps achieving the level of confidence required by the domain prescriptions [2].
LEOPARD identifies and attacks the following low-level SoJ.

The baseline floating-point unit takes variable latency for some operations depending on
the particular values operated. To control this SoJ with standard MBTA, the user would
need to control the particular values operated at analysis ensuring their representativeness
w.r.t. those that can appear during operation. Instead, in the LEOPARD design all
floating-point operations are made to work on their respective worst latency, making their
impact on execution time to be captured in the analysis-time measurements.
The use of cache-memory resources (i.e. the data and instruction cache and Translation
Lookaside Buffers, TLBs) requires the end user to control memory allocation of code/data,
and hence their cache layout at analysis, so that it is the same as during operation.
However, even small variations in the order in which the object files are linked together
and in other elements of the memory layout (e.g. environmental variables) may significantly
affect memory layout – which hence must be controlled by the user. LEOPARD removes
this requirement by implementing random placement (and enhancing already deployed
random replacement), breaking the dependence among memory allocation of data/code
and cache layout. As a result, by performing enough runs [31], the end user can
probabilistically assess the impact caches have on execution time.
At the chip level, we propose an AMBA-compatible time-composable random arbitration
to handle contention. To balance time-composability and WCET tightness, we implement
a credit-based random (permutation) arbitration policy that randomizes the impact of
contention on request’s timing behaviour while preserving fairness across cores.
For the shared L2, we (1) implement random placement and replacement; and (2) assign
different cache ways to the different cores (as supported in other architectures) to control
contention, while preserving the effective management of cache coherence in the L2 cache.
Further, we developed high-speed transparent Ethernet tracing features to simplify valid-
ation and verification and applicability of industrial timing analysis tools and methods.

Results with stressing applications and a space case-study from Airbus Defense and
Space show that LEOPARD’s performance guarantees are significantly better than those
that could be achieved with Commercial off-the-shelf (COTS) LEON processors. LEOPARD
also preserves average performance to the levels of the baseline design. Finally, implement-
ation results show that LEOPARD incurs low area and delay overheads to achieve timing
predictability and high-performance tracing capabilities.

The rest of the paper is organized as follows. Section 2 provides some background on
MBTA and hardware design favoring it. Section 3 and Section 4 describe the baseline
processor and the changes implemented to ease timing analyzability at core level and at
chip level, respectively, along with some tracing support enhancements. Section 5 evaluates
LEOPARD ability to control identified SoJ. Section 6 presents the most relevant related
works. Concluding remarks are presented in Section 7.

2 Background and MBPTA requirements

2.1 Safety Standards
Criticality originally emanates from functional safety, with several existing safety-related
standards in different domains: the generic IEC61508 and domain specific variants of it:

ECRTS 2017



16:4 Design and Implementation of a Time Predictable Processor

ISO26262 in automotive and EN-50126/50128/50129 in the rail domain; and others like
ECSS-Q-ST-80C in Space and DO-178C/DO254 for software/hardware aeronautics.

A task overrun should never lead to an unsafe state of the system, which would mean a bad-
designed safety solution. Instead, a safety process is defined (according to the corresponding
standard) covering the definition of safety goals and requirements, and a safety strategy in
general, to mitigate the risk that hardware or software misbehaviour causes a system failure.
As the criticality of the software component under analysis increases, more mechanisms are
put in place (replication, online monitoring, watchdog) to detect and react to undesired
situations.

Many standards require hardware to provide means to demonstrate sufficient independence
between different software units. Partitioning mechanisms and monitors are the two preferred
means to reach these goals. The use of multicore processors, however, complicate this
approach since, although time and space partitioning is achieved 1 (i.e. each task/partition
is assigned slots in which only it can use the CPU and it cannot modify another partition’s
memory space and vice-versa), timing interference is not easily prevented. New requirements
are imposed on the hardware and software such as controlling sources of jitter (interference
channels in CAST32-A [9] for aerospace).

2.2 Timing
Predictability defines the ability of predicting (a priori) when an event or set of events will
occur. While in general in real-time systems predictability is understood as determinism, it
has been shown that predictability can be also achieved in probabilistic terms [8].

MBTA involves an operation phase in which the system is deployed, and a analysis
(pre-deployment) phase comprising several test campaigns in which the application is run on
the target hardware. The goal of MBTA is to derive WCET estimates from the execution
runs of the program performed at analysis and provide evidence that those estimates hold
valid during the operation of the system. This requires that the execution conditions
exercised experimentally at analysis capture those worst-case conditions that can occur
during operation. Interestingly, when evidence obtained is sufficient, MBTA can be used for
high-integrity software, e.g. DAL-A functions in avionics [28].

With MBTA, user’s ability to design stressful operation-representative test scenarios plays
a fundamental role in the reliability of the derived WCET estimates. High-level SoJ such as
path coverage can be tracked and controlled (as presented in the introduction). However, the
control the user has on hardware SoJ diminishes with the advent of more complex features
since the cost of controlling the entire design space of all hardware SoJ in such complex
designs is unaffordable. For instance, i) the impact of FPU jittery operations would require
the user to understand which operands result in longer latencies and software support to
track operated values (since hardware support does not exist for that); and ii) capturing the
execution time variability consequence of different cache layouts would require understanding
the impact of cache layout on WCET estimates. However, in general, it is hard for the user to
design experiments in which bad (worst) cache layouts are enforced when even small changes
in their memory layout may cause significant jitter in the observed timing behaviour [30].
Fixing the memory layout is only possible during very late phases of the development process,
going against the incremental software integration principle and the definition of a global
(best-) worst-case memory layout for an application comprising several tasks is a generally
intractable problem [30].

1 Partitioning is no yet achieved or within under specific conditions on multicores.



C. Hernández et al. 16:5

Time composability is another desired property for derived WCET estimates when
controlling the impact of SoJ. First, time composability across incremental software integra-
tion [30] ensures that early phase WCET estimates (ideally at the unit testing level) hold
across integration reducing the risk of costly late detection of timing violations. And second,
time composability at the multicore level ensures that the WCET estimate of a task does
not depend on its co-runners’ load on shared resources. This provides independence across
tasks, that can easily be developed by different software providers in integrated systems
(e.g. Integrated Modular Avionics, IMA), allowing parallel development and testing.

MBTA requires collecting execution time traces on the target platform. Transparent
trace collection also requires hardware support so that time (or performance monitoring
counter) readings can be collected without impact on programs execution. Furthermore,
code instrumentation can be performed with hardware [14], causing no overhead on program
execution time, but with high associated cost, or at software level. The latter, while it
is more generic and portable, it can cause the probe effect: instrumentation code create
discrepancies in terms of timing w.r.t. the non-instrumented code, complicating timing
Validation and Verification. A recent work [13] shows that nop operations can be used to
substitute instrumentation instructions in a way that simplifies qualification/certification
and at the same time reduces the impact of instrumentation.

2.3 Requirements
LEOPARD controls the jitter of the different SoJ in two different ways. First, with determin-
istic bounding by forcing resources to work on their worst (deterministic) latency. And second
with probabilistic upperbounding that makes resources have a randomized timing behaviour,
resulting in a probabilistic distribution of execution times that hold during operation [26].
Hence, when enough runs are performed probabilistic upperbounds to execution time [31] can
be derived. This principle emanates from probabilistic and statistics theory, where a random
variable can be modelled based on a sample of observations with increasing confidence and
accuracy as the size of the sample grows.

Probabilistic distributions are handled with a variant of MBTA, called measurement-based
probabilistic timing analysis (MBPTA). MBPTA, which builds on representative execution
time observations (obtained via the mechanisms to control jitter described above), deploys
statistical analysis through Extreme Value Theory (EVT) [27]. EVT enables deriving the
probability that bad behaviour of several hardware SoJ, whose impact has been captured in
the analysis time runs, are triggered in the same run. This is a powerful solution that reduces
MBTA application costs not needing the user to design experiments in which bad behaviour
of all SoJ (e.g. bus, cache, FPU) are simultaneously triggered. Overall, the requirements
to penetrate high-performance hardware designs while facilitating MBTA (in the form of
MBPTA) are:
1. Exposing the impact of SoJ so that (i) representative operation-phase execution time

measurements are collected during analysis without needing the end user to design
complex experiments to control them, and hence enabling deriving high-quality WCET
estimates at low cost; and (ii) derived time composable estimates hold across incremental
software integration [30] and are independent of contender’s load on the shared resources.

2. Incurring low-implementation overhead, specially in terms of processor complexity to
minimize the cost of verification.

3. Reducing the impact on average performance by making time-predictable features to be
activated/deactivated depending on the time predictability needs of the system instance.

4. Providing high-bandwidth transparent tracing with no interference on program’s execution
time. Enabling collecting traces from all cores simultaneously for increased observability,

ECRTS 2017



16:6 Design and Implementation of a Time Predictable Processor

Table 1 Input value examples triggering different latencies for FDIVD and FSQRTD.

Op. Lat Input 1 Input 2
hexa decimal hexa decimal

FDIVD 15 0xBFF0000000000000 −1.0 0x4000000000000000 2.0
FDIVD 18 0x001ABC0000000010 3.717(...) · 10−308 0x3FF000400A07610C 1.00006107(...)
FSQRTD 23 0x4030000000000000 16.0
FSQRTD 26 0x4008000000000000 3.0

.

3 Core Design

In this section we focus on the main SoJ at the core level, while we cover chip-level SoJ in
Section 4. Both sections first describe the baseline design and then the proposed changes.

3.1 Baseline Design
The baseline design corresponds to an enhanced implementation of a LEON3 [17] resembling
the NGMP processor [10], a multicore processor candidate for the European Space Agency
missions in the next years.

Pipeline. The processor implements a pipelined architecture comprising the following stages:
fetch (F), decode (D), register access (RA), execution of non-memory operations (Exe), DL1
access (M), Exceptions (Exc) and write back (WB). The execution units comprises an integer
and a floating-point unit (FPU).

1. The FPU takes a variable latency depending on the particular values operated for divisions
(FDIVD) and square roots (FSQRTD). Table 1 provides a summary of those jittery FP
operations and their associated jitter.

2. The core incorporates a static branch-always predictor that starts fetching instruction
from the branch target address. On a prediction hit, 1 or 2 clock cycles are saved. Under
a mispredicted branch, instruction hits in IL1 change LRU replacement history (also hits
in the L2), while misses in IL1 and the L2 pollute cache contents.

DL1 and IL1. The target processor comprises first level instruction (IL1) and data (DL1)
caches, with the DL1 implementing a write-through no write allocate policy. The bus
propagates DL1 and IL1 misses to the L2 cache (see Figure 3) is discussed in Section 4.
IL1 and DL1 are 16KB with 4-way set-associative caches with modulo placement and LRU
replacement. L1 caches also support cache freezing to ensure that the execution of the
interrupt handler will not evict any cache line and when control is returned to the interrupted
task, the cache state is identical to what it was before the interrupt.

TLBs and cache coherence support. To support memory translation (and space partition-
ing) the LEON processor is provided with a Memory Management Unit (MMU) comprising
TLBs of 64 entries for instructions and data deploying LRU replacement.

The LEON3 processor uses Virtually indexed, virtually tagged (VIVT) first level caches
so that virtual addresses are used for both the index and tag bits. This caching scheme results
in fast lookups, since the MMU does not need to be looked up first to determine the physical
address for a given virtual address. Since the LEON3 is a shared memory multiprocessor



C. Hernández et al. 16:7

Figure 1 Sketch of the implementation of the Random Modulo technique.

(SMP), on every access to the on-chip bus, the address is snooped by all the caches to check
if these data are present in the cache and, consequently, need to get invalidated. To speed up
this process, the LEON3 cache also includes the physical tags in a separate SRAM structure
so in every access to the on-chip memory, snoop hits are concurrently detected. In case of a
snoop hit – a write operation is performed to data stored in the cache – the corresponding
cache line is invalidated.

Since VIVT caches suffer from aliasing, the LEON3 fixes the cache way size to match
(MMU) page size (4KB). With this restriction, that is imposed by hardware, synonyms
are enforced to be placed in the same set with modulo placement and thus, can be safely
invalidated when a snoop hit is detected. The MMU provides address translation of both
instructions and data via page tables stored in memory. When needed, the MMU accesses
the page tables to calculate the correct physical address. The latest translations are stored in
TLBs. The MMU also provides access control, making it possible to “sandbox” unprivileged
code from accessing the rest of the system.

3.2 LEOPARD design
The design presented in this section builds on the design we presented in [20] that focused on
single core sources of jitter and included only the implementation of random placement [26]
instead of random modulo placement in the L1 caches.

Cache resources. Random replacement has been implemented in IL1 and DL1 caches and
TLBs (ITLB and DTLB) building on the random seeds provided by the pseudo-random
number generator (PRNG) described later in this section. DL1 and IL1 also deploy random
placement to release the user from controlling the placement of all programs and memory
objects at analysis and during operation. For that purpose we have implemented random mod-
ulo (RM ) [21], fitting the requirements of the specific processor implementation (e.g. number
of cache sets, delay constraints).

RM placement performs a random permutation of the bits used to index the cache set
(see Figure 1). By doing so, like modulo, RM retains spatial locality properties. Let W be
the way size and A and address such that (A mod W ) = 0. With RM any pair of cache
line addresses in the range [A, A + W ), which are said to belong to the same segment, are
prevented from conflicting into the same cache set. For instance, if addresses A and B belong
to the same cache segment (i.e. bA/W c = bB/W c) and with modulo are mapped to different
sets (kA and kB respectively), RM randomizes the index bits such that (in every run) with a
seed seedi, A is mapped to any (random) set lA = setseedi

rm (A) and B to lB = setseedi
rm (B) and

lA and lB are necessarily different. Hence, RM removes the dependence between memory
mapping and cache layout by ensuring that the index permutation covers cache conflicts
probabilistically during the analysis phase. During the analysis phase a different seed is
employed to cover the cache conflicts that can occur during operation.

ECRTS 2017



16:8 Design and Implementation of a Time Predictable Processor

W0 W1 W2 W3

Da
ta

 S
et

s

W0 W1 W2 W3

Virtual Tags

VA1 PA

Shared Bus

=

In
va

lid
at

e

Snoop

YesVA1

Physical Tags

Random
 Index

PA PA PA

W0 W1 W2 W3

1

1

Cache Data

Figure 2 Randomised LEON3 cache configuration. General approach for invalidation.

In the baseline processor, we have detected a single source of timing anomalies. It arises
when an instruction i that would has missed in DL1 and hit in L2, actually misses in L2
because before it accesses L2, a younger instruction j misses in both IL1 and L2 and evicts
the L2 line where i would hit. Hence, delaying j would allow i to hit in L2 and execute faster.
With cache randomization j can evict i line in L2 with a probability 1/SL2, where SL2 stands
for the number of L2 cache sets. Hence, if enough runs are performed the impact of this
situation would be captured in the measurements. It is part of our future work enforcing IL1
misses to wait for accessing the bus until all older instructions have been resolved in DL1 to
avoid any reordering. Users stick to their current practice to handle this situation.

Cache Coherence. The support for cache coherence in a randomised cache design using
a MMU introduces some complexities in the cache configuration. In a cache with random
placement the index does not only depend on the modulo operation, like in a regular cache
with modulo, but also on the upper bits of the address. Then, since virtual and physical
addresses referring to the same data have different upper bits (e.g. PA=0x40000004 and
VA=0x00000004) the index computed for the virtual address using the random placement
function will not necessarily correspond to the one where the physical tag is located. This leads
to a conflict for resolving the invalidation of the data affected by snoop hits. Furthermore,
the mismatch between indexes makes that synonyms, i.e. two virtual addresses that are
mapped to the same physical address, are placed at arbitrary locations in the cache rather
than in the same cache set.

To solve this, we have designed a software/hardware solution that requires on one hand,
moderate hardware changes in the cache configuration and on the other hand, forcing the
OS to flush caches on every context switch. Hardware modifications of the generic solution
consist of extending cache contents to keep the randomised index bits that are required
to identify the cache set that needs to be evicted in case of a snoop hit. Figure 2 shows
the required hardware changes. The randomised index bits are written in the same SRAM
structure where the physical tag is and are updated every time new data are fetched into the
cache. Finally, the flush on context switch functionality has to be implemented by the OS to
ensure that only one address space is present in the cache at a time2.

Branches. The default configuration of the processor allows issuing fetch requests to the
L2 cache on a IL1 miss under branch speculation. As explained before, if the branch is
mispredicted, this may pollute IL1 and L2 cache contents, and their replacement history even

2 Flush on context switch is also a common way to solve the synonym problem in regular cache designs
where page size does not match cache way size.



C. Hernández et al. 16:9

on hits. By using random replacement, replacement becomes stateless and hence, cache hits
do not change its state. On the other hand, in order to avoid any cache state modification
due to mispredicted branches, we have modified the bitstream to forbid cache misses to
be served under speculated branches. This is done by programming the appropriate bit of
the ASR17 configuration register. Note that jitter caused by different paths is handled by
timing analysis techniques, and hence it is not covered in this hardware paper. An example
of one of those techniques is Extended Path Coverage [50] that derives upper bounds of
the probabilistic execution time of the complete program under analysis even when the
user-provided input vectors do not exercise the worst-case path.

Worst-latency FPU. The implementation of FDIV/FSQRT operations for double precision
has been modified so that during the analysis phase, they exhibit a fixed latency that matches
their highest latency. In particular, those operations are non-pipelined and iterate in some
internal stages of the FPU until the result is produced, thus allowing early termination of
some operations. In analysis mode, the early termination signal is inhibited, thus enforcing
all those operations to experience their highest latency regardless of the input values operated.
At operation time, those operations are allowed to take a variable time depending on the
values operated. The net result is that their jitterless timing behaviour at analysis time
upper-bounds that during operation, thus releasing the end user from having to control the
impact on execution time of the particular values involved. Note that the same approach
of delaying execution until its worst case have been used to handle contention in shared
resources [36][4].

Creating a source of randomization. A SIL-3 IEC-61508 pseudo-random number generator
(PRNG) [3] has been incorporated in the design to feed appropriately the components requiring
time-randomized behaviour. The PRNG is based on linear feedback shift registers [6] and
consists of a pool of programmable random numbers. In general, the sequence of numbers
provided by the PRNG must be long enough to ensure repetition occurs after a period long
enough for any potential correlation between the outcomes of the system at different time
instants to be probabilistically irrelevant. The degree of randomness of the used PRNG was
validated statistically by checking the lack of meaningful patterns, repetitions, imbalance
between different values, etc. for a number of bit sequences generated. This was measured
with the tests provided by the US National Institute of Standards and Technology [40]. The
PRNG provides randomised bits for random replacement: 2 for DL1 (4-way), 2 for IL1
(4-way), and 6 for DTLB and 6 for ITLB (64-entry fully-associative both of them), so 16 bits
per core plus few extra bits for the random arbitration in the bus.

4 Chip Design

4.1 Baseline Design
At the chip level the components with the highest jitter impact are the L2 cache controller,
the on-chip bus, and the memory controller.

On-chip Bus. An AMBA AHB compatible bus is included in the processor to handle
concurrent requests to the different slaves included in the system. The arbiter employs
a round-robin arbitration between the different masters, including the processor cores, to
determine the one that gets access to the bus. In the baseline design, round-robin is
implemented by rotating the priority after every bus transfer.

ECRTS 2017



16:10 Design and Implementation of a Time Predictable Processor

Figure 3 LEOPARD processor block diagram.

Figure 4 Example of high contention caused by the original scheme with random permutations.

Shared L2 cache. The baseline processor includes a 4-way shared L2 cache. The replacement
policy can be configured as LRU (least-recently-used) or master-index (the way in which
the replacement occurs is determined by the master index). The cache way is 32KB with a
cache line size of 64 bytes. Requests from the cores to the shared L2 cache are arbitrated at
the on-chip bus and the bus is kept locked, i.e. no further request are accepted, until the
current request is processed by the L2.

Shared Memory Controller. The memory controller included in the baseline design is a
DDR2 SDRAM controller with AMBA AHB back-end. The controller interfaces a 64-bit
wide DDR2 memory with the L2 and acts as a slave on the AHB bus where it occupies a
configurable range of the address space for DDR2 SDRAM access. The memory implements
a FIFO with room for two write bursts to maximize throughput, since the second write can
be written into the FIFO while the first write is being written to the DDR memory.

IOMMU. To ensure global spatial partitioning is provided efficiently, the baseline LEON3
COTS design already implements an IOMMU. This is significantly important for properly
handling direct memory access (DMA) transfers and interrupts [32]. The IOMMU func-
tionality of the core implemented in this processor provides address translation and access
protection on the full 4GiB AMBA address space.

4.2 LEOPARD design
On-chip Bus. We modify the arbiter to implement random permutations [25]. Interestingly
AMBA standard does not specify any arbitration policy for AHB buses, so our bus is fully
AMBA compliant. Further, while the baseline platform we use builds on the AMB AHB
specification [7], the modifications we have implemented in the bus can also be applied to
more recent bus protocols like the AXI [7]. The random permutation arbiter defines windows
with as many slots as arbitrated cores, Nc, with all slots having the same duration. Slots are
allocated randomly to cores in each window so each core has exactly one slot per window and
it can access the bus only during its assigned slots. This allows obtaining time-composable
pWCET estimates since no assumption is made on the number and duration of the requests
of the other contenders. With random permutations each core gets on average 1

Nc
of the

slots and the maximum waiting time due to contention is shorter than 2 arbitration windows:
MaxContention < L · (2 ×Nc − 1), where L stands for the slot duration. The maximum



C. Hernández et al. 16:11

contention occurs when one core is allocated the first slot in one window and the last slot in
the following window, since all remaining cores are arbitrated twice in between.

Random permutations is fair granting cores access to the bus with the same frequency.
However, it is not fair in terms of the bus time granted to each core. This is so because to
achieve composable bounds, slot duration (L) must be large enough to allow the longest
potential request to be served. For instance, if the maximum duration of a request is 56
cycles, then L ≥ 56, otherwise, the longest requests could not be granted access to the bus
without using slots belonging to other cores. However, using a long, fixed slot may cause a
significant impact in the performance of tasks with requests whose duration is much lower
than L. This is better illustrated with the example in Figure 4 that shows how a program
with 1-cycle requests runs for 15 cycles in isolation and takes 193 cycles when Nc = 4 and
L = 10: when a given software Unit of Analysis (UoA) accesses the bus, it may have to wait
for (Nc − 1 = 3) slots assigned to the contenders. Let assume that the UoA accesses the bus
in cycle 30 and releases it in cycle 31; further from 31 to 33 it performs some computations
and eventually, at cycle 33 the UoA needs to access the bus again. However since it has only
7 cycles remaining in its slot and the duration of the requests is unknown a priori (e.g. it
could be 1 cycle for a L2 hit and 10 for a L2 miss in this example), the request is not allowed
to proceed and has to wait until the beginning of its next slot in cycle 70. The same scenario
repeats for each request so that the last one is granted access in cycle 190, served in 191 and
the program completes in cycle 193. As we can see, even if the UoA is granted access during
25% of the time to the bus, its slowdown is 12.9x in a 4-core setup. Note that for the sake of
this example we have assumed that slots are allocated homogeneously in time to the core
of the UoA. Randomly allocating slots to tasks would bring the very same results as in the
example on average.

In order to mitigate the impact that dealing with long requests may have on the quality
of time-composable WCET estimates we modify the arbiter to implement a credit-based
arbitration (CBA) scheme [43], fitting it to the particular characteristics of the LEON3
multicore and its bus arbiter. CBA allocates each core a given credit (budget) matching
MaxL – the longest time a request can occupy the bus, and which can be derived either
analytically or by measurements. Then, arbitration is performed across all cores with pending
requests and an available budget of exactly MaxL cycles. When a request is granted access
to the bus, the budget of the corresponding core is decreased by the bus hold time. For
instance, this is implemented by decreasing by 1 the budget of the core using the bus. In
parallel, every cycle all cores get their budget increased as shown in Equation 1, where
Budgeti(t) stands for the credits (cycles) of core i in cycle t

Budgeti(t + 1) = min(Budgeti(t) + 1/Nc, MaxL) . (1)

The budget assigned to each core saturates at MaxL to prevent the case in which one
core spends long time not using the bus and then it hogs the bus during a long time period.
This approach reduces the maximum contention experienced by a given core but at the
expense of wasting some bandwidth (cores cannot accumulate budget beyond MaxL). A
similar approach that allows cores to go beyond MaxL was proposed in [5]. Note also that
although conceptually the budget is increased by a fraction, this can be implemented by
multiplying all factors in Equation 1 by Nc. In that case, when using the bus, the budget
should also be decreased by Nc every cycle instead of by 1.

CBA operation is illustrated in Figure 5 where each core always has requests ready and
the random permutation generated by the arbiter are as follows: [A, B, C, D], [B, A, D, C],
[D, B, C, A], [B, C, A, D], [A, C, B, D], [A, B, C, D]. Requests from cores A, B and C

ECRTS 2017



16:12 Design and Implementation of a Time Predictable Processor

Figure 5 Chronogram showing requests arbitrated with and without CBA. The time scale at the
bottom is only approximate since time intervals in the chronogram are not exactly proportional to
the time they take for the sake of readability.

take 28 cycles and from D take 6 cycles. We focus in the first 336 cycles (the time needed to
hypothetically send 3 28-cycles requests from each core). As shown, without CBA only 3
requests from core D are served in 336 cycles. However, with CBA, in this time frame core
D gets 7 requests arbitrated. In the example, the arbiter grants access to a core if it has
enough budget. Otherwise, the random list of core ides is searched until a core with enough
budget is found. For instance, after the first request of D is served (cycle 90) no core has
MaxL budget. At that point the one recovering its budget earlier is D (in cycle 108), so in
cycle 108 D is granted access and we skip B and A in the sequence (and also D since it is
arbitrated).

Shared L2. The shared L2 has been configured to implement per-way partitioning (master-
index replacement). With this configuration each core is provided with one out of the 4 ways
available. As for L1 caches, we implement random placement to make WCET estimates
hold regardless of the actual memory layout that will be at system deployment. However,
unlike for L1 caches, we use hash-based random placement [26] in the L2. The reason is that
random modulo [21] forces memory objects to preserve the cache way alignment. For the L1
cache the way size is equal to the OS page size (4KB) and thus, keeping such restriction is
not only doable but preserved by default in the general case. However, imposing such way
alignment for L2 caches is not realistic since L2 cache ways are generally much bigger than
the page size. Finally, we have also implemented random replacement, but when the L2 is
fully partitioned, random replacement is not required since each core is only entitled to evict
lines from its (single) corresponding way.

Shared Memory Controller. The access latency to shared resources needs to be determin-
istic upperbounded or randomized to control jitter, relieving the end-user from the burden
of controlling how requests from the different tasks align. In our design, no modification
was required since the L2 included in the design does not allow any further request to be
sent to memory while another request is being served. Also, response time of the memory
controller needs to be made constant for each request type to remove dependencies across
requests from different cores. This feature was implemented following the same principle
as for the FPU unit in the core: delaying requests so that they experience the maximum
latency allowed. We are currently in the process of enabling split requests in the bus to
increase memory-level parallelism. Besides the functional technicalities, this feature is an
important SoJ with potential side effects: at least it is required to use separated request
queues for each core in the memory controller. Further, a suitable arbitration mechanism
(e.g. random permutations in our case) across cores (so across queues) is also required in the
memory controller. Using separate queues, prevents one core to clog the others, despite they
have independent cache partitions, as it has been shown for some ARM architectures [45].



C. Hernández et al. 16:13

High-Speed Tracing. We extended the baseline tracing capabilities to support powerful
timing analyses minimizing (or eliminating) timing interferences. In particular, all instructions
can be dumped into the corresponding trace buffers in the cores, and sent immediately to a
separate DRAM region through a dedicated memory controller using the Debug Support
Unit (DSU) interface, thus not interfering with the AMBA bus used for L2 cache and memory
accesses. Once instructions information (including instruction and data addresses) is placed
in that DRAM memory region, an ad-hoc trace controller reads those traces and sends them
asynchronously through the Ethernet interface to the host. In this setup, execution time can
only be interfered if the DRAM region is filled in before the trace controller can send the data
to the host. However, this allows plenty of room for collecting large traces without creating
any interference since the DRAM region is typically large (e.g. 512MB in our experiments),
thus allowing tracing full programs or large regions of them.

5 Evaluation

We present LEOPARD evaluation results with benchmarks and a representative space
application from Airbus Defense and Space. Hardware overheads numbers for the baseline
and LEOPARD configuration are also provided.

Note that the goal of this paper is not to provide a fair comparison of different timing
analysis techniques that has been shown a complex task [1]. The the effort required to tailor
a static timing analysis tool to the our target platform (e.g. including TLBs, unified caches
and shared buses) and the space case study (e.g. to provide flow-facts) is significant. Our goal
instead is showing that high-quality performance guarantees can be achieved with relatively
small hardware overhead for our relatively complex processor with little impact on average
performance and without increasing analysis cost w.r.t. simpler architectures.

5.1 Methodology

MBPTA application. We use MBPTA to derive WCET estimates [47]. The number of
measurements of the unit of analysis (UoA) required to apply MBPTA (1) has to guarantee
that the events with highest impact are effectively captured in the measurements and (2) has
to allow the correct application of EVT [27]. For the experiments conducted in this paper
we base on [31, 11].

The common practice for MBTA approaches is to collect end-to-end execution time
measurements of the UoA when it is fed with a set of user defined input vectors. An inherent
limitation of this approach is that the resulting WCET bounds are only valid for the set of
paths for which observations are collected. To overcome this issue, timing analysis techniques,
like Extended Path Coverage (EPC) [50], derive upper bounds of the probabilistic execution
time of the complete program under analysis even when the user-provided input vectors do
not exercise the worst-case path. However, despite that LEOPARD allows deriving pWCET
estimates with EPC, in this paper we stick to single-path case results rather than on the
software application of EPC since our focus is on the hardware platform.

In order to ensure that in each run the UoA is analyzed under the same initial conditions,
which upper bound those during operation, we empty the caches right before UoA execution.
To do this, we configure the scheduling to ensure that the UoA starts its execution right
after a time partition switch and we configure the hypervisor to flush the caches on that
time partition switch. When experiments are executed in bare-metal, i.e. without operating
system support, we perform this process manually.

ECRTS 2017



16:14 Design and Implementation of a Time Predictable Processor

For multicore evaluation we use two setups. In the first one, LEOPARD is instructed not
to provide time-composable contention bounds (referred to as non-TC mode), see Section 2.2.
The second one does force time-composable contention bounds (referred to as TC mode).

5.2 Complexity of LEOPARD features

The different modifications required to achieve MBPTA compliance have been shown to
involve little hardware overheads. In terms of complexity, for the FPGA implementation the
maximum operating frequency on an Altera DE4 board (100MHz) has been preserved despite
the latency overhead introduced by the random placement implementation in the access to
the caches. For LEOPARD the RM placement [21] effectively minimizes this overhead and
facilitates keeping the maximum operating frequency. However, frequency preservation is not
guaranteed for different technology libraries and/or different processors implementations, and
such evaluation is out of the scope of this paper. Modifications did not have any effect on the
most critical path of the different components except for cache memories. First level caches
implementing random modulo [21] only increased their delay by a XOR gate to combine
address and random seed bits. In the case of the L2 cache, hash-based random placement had
a larger impact on critical path due to the higher complexity of its design (few XOR gates
and a bit rotator) [26]. Still, impact was not enough to decrease the maximum operating
frequency.

In terms of hardware resources occupancy, the baseline design occupied 70% of the
resources in the FPGA, whereas LEOPARD occupies 72%, thus showing that all modifications
required to achieve MBPTA-compliance and high-speed tracing incur very low overheads.

5.3 Evaluating LEOPARD features

Average performance. Our results show no performance degradation when LEOPARD
features are deactivated on the modified RTL based prototype w.r.t. the original unmodified
RTL design not containing LEOPARD modifications. Hence LEOPARD does not affect the
average performance of applications requiring no performance guarantees.

FPU. To test the effectiveness of the worst-latency FPU unit we have designed four micro-
benchmarks (DIVshort, DIVlong, SQRTshort, SQRTlong) that respectively execute short
and long latency divisions and square roots. They are executed on two configurations:
one with variable-latency FPU operations (labelled COTS) and another with fixed-latency
FPU operations (labelled LEOPARD). Execution times when running these benchmarks in
isolation (non TC mode) are shown in Figure 6. As shown, under the original setup DIVshort
executes faster than DIVlong. Analogously, SQRTshort executes faster than SQRTlong.
Therefore, it can be concluded that input values operated impact execution time in the
original setup. Conversely, DIVshort and DIVlong have exactly the same execution time on
top of the LEOPARD setup. Such execution time matches the execution time of DIVlong
on top of the original setup. Results for SQRTshort and SQRTlong show exactly the same
behaviour. In fact, the execution time variation between DIVshort and DIVlong corresponds
exactly to the number of FDIVD instructions multiplied by 3, which is the difference between
short (15 cycles) and long (18 cycles) latencies. The situation for SQRTshort and SQRTlong
is analogous. Overall, this experiment validates that modifications in the FPU remove jitter
due to the input data operated.



C. Hernández et al. 16:15

Figure 6 Tests to assess the control of the FPU jitter.

Cache Set

Fr
eq

ue
nc

y

0 20 40 60 80 100 120

0
20

0
40

0
60

0
80

0

Figure 7 Randomized cache tests.

Cache. To evaluate randomized cache designs in LEOPARD, we test the ability of the
cache placement function to cover different memory layouts and thus, capture different cache
conflicts associated with the different arrangement of objects in memory. Figure 7 shows
how an arbitrary address is mapped to different cache sets across 10,000 different runs in
the LEOPARD IL1 (128 sets). Hence, the random placement function maps a given address
uniformly across the different cache sets which benefits the application of MBPTA [26].

Multicore contention. To test the LEOPARD bus arbitration we assess whether (1) the
measured multicore contention with LEOPARD under TC mode effectively upperbounds the
highest contention scenario we can create at software level; and (2) whether the slowdown
due to bus contention with LEOPARD CBA design is lower than the one of the COTS
platform. To do so, we have developed several micro-benchmarks consisting in loads that
always miss or hit in the L2 (respectively called l2m and l2h); and stores that always miss or
hit in the l2 (respectively called s2m and s2h).

Figure 8 (a) shows the results we obtain when running benchmarks s2h and s2m (the
UoA) under three scenarios. Under the former two, the UoA runs in non-TC mode, against
3 copies of l2m and s2m, respectively. In the third setup s2h and s2m run under TC mode.
We observe that measurements in TC mode upperbound those of the former two scenarios.
Interestingly, the second scenario is the worst case we can create in software with each request
of the UoA suffering the delay of two requests due to a dirty miss eviction (56 cycles): note
that l2m generates non-dirty misses and s2m dirty misses. We observe the the worst case
generated by software matches the time-composable bounds generated by LEOPARD.

Figure 8 (b) shows the benefits brought by the CBA to handle variable latency requests.
To that end we show the maximum slowdown due to multicore contention for different
benchmarks on the baseline platform and on LEOPARD with TC-mode. For example
s2h.vs.3xs2m represents the case where the UoA is the s2h benchmark when it runs against
3 cores executing the s2m benchmark. As shown, in all cases except one, LEOPARD
significantly reduces the bus contention. For instance, for the s2h.vs.3xl2m case, contention
is reduced from 5.96X to 1.12X. However, for the s2h.vs.3xl2m case, LEOPARD contention
is slightly worse. The reason is that despite CBA is effective to control the interference, it
also has a side effect on the UoA preventing it to access the bus when the budget is exhausted.
However, we have observed that this only occurs in very extreme cases like in this one, where
all instructions from the UoA perform two memory operations, one to write the current data
and one to evict data stored in the L2. In this case the budget of the UoA is exhausted in
every bus access and the CBA scheme provides no benefit.

ECRTS 2017



16:16 Design and Implementation of a Time Predictable Processor

(a) Contention upperbound (b) Slowdown

Figure 8 Results of the experiments carried out to assess LEOPARD’s on-chip bus design.

Tracing. Our results show that the maximum achievable I-point frequency in terms of
cycles between I-points is 24 cycles if just 1 core is traced, 51 for 2 cores, 75 for 3 cores and
100 cycles for 4 cores. For the values in which more than one processor is traced, the value
corresponds to traces from each available processor. This test has been accomplished by
using an infinite loop in which I-points arrive at a constant frequency. This might not be
exactly representative of a real application since there might be different phases in a real
application and if there is enough space between phases to empty the buffers it might be
possible to trace more frequent I-points for short periods of time. But if the application
has loops with very high number of iterations which contain I-points, then those results are
representative as the I-points will arrive at a constant frequency. As expected, with the
increasing number of cores the rate at which I-points can be traced reduces linearly. This can
be explained with the fact that the amount of data that needs to be read from the external
DRAM increases linearly with the increasing number of cores.

Since the tracing scheme with external DRAM depends on shared resources (Ethernet
link speed, AHB bus, and the host) there is a limitation on the frequency of I-points that can
be traced real-time. Our evaluations showed that the main bottleneck in the trace bandwidth
are GRMON reads and partly the AHB BUS architecture. Increasing the Ethernet buffer
size from 4kB to 64kB allowed to increase the read speed from GRMON significantly which
resulted in increased bandwidth. But since the FIFOs from the processors compete with the
Ethernet reads on the same bus, the read speed during tracing is slower compared to reading
the DRAM while there are no traces written to the DRAM. This reduces the potential
maximum bandwidth that can be achieved with the available Ethernet link speed. For
example, while it is possible to reach on average 550Mbit/s read speed while reading 64MB
of data from the external DRAM through GRMON, the read speed reduces to 470Mbit/s
when processor(s) create very frequent I-points. Also a more dedicated software for large
data reads on the host side can improve the bandwidth.

5.4 Space Case-study
The space case study we have used consists of a payload application with a high criticality
application, a control loop applying deformations on mirrors, and a low criticality application,
responsible of processing images coming from 3 detectors and that requires performance. To
fulfill mixed-criticality isolation requirements, applications from this case study run on top of
PikeOS hypervisor [44]. The goal of the application is to get better images on the detectors
by applying deformations on the mirrors. The output of the image processing is used as an
input to compute the displacement of the mirrors; however the control loop of the mirrors



C. Hernández et al. 16:17

Figure 9 Sketch of the Space App. Figure 10 Single-core measured execution times.

can work for some cycles without the input value (with degraded performance). A general
view of the application is given Figure 9.

Image processing partition. The image processing application consists is 3 different tasks
each of them pinned to a core. The input data of the image processing partition is
preloaded in the memory of the platform to avoid I/O interference during the experiments.
This simplifies the observations. The image processing application runs at a higher
frequency than the control application. It generates 10 values that are merged by the
control partition. The control loop needs to compute the voltage to apply to the mirror
motors in order to compensate thermal effects on the main mirror. The image processing
has no real-time deadline and thus does not need to be periodic.
Control partition. The control partition is the destination of the queuing port shared
with the image processing partition and corresponds to the UoA of this case study. The
control partition uses 10 values to compute the new matrix of voltages to apply to the
mirrors. In the case study, there is no mirror to command but these output values are
logged to verify the functional behaviour of the application. In the absence of values in
the queue or if less than 10 values have been computed by the image processing partition,
the control partition reuses old values. Thus, it is tolerant to errors coming from the
image processing partition. The control partition runs in isolation in one core.

We first compare single-core performance of the COTS platform and the LEOPARD
processor that must not be confused with average performance, for which LEOPARD provides
no degradation. In the measurements for the COTS platform, see Figure 10, the impact of
SoJ (e.g. FPU and cache jitter) are not factored in the measurements, while the measurements
obtained on top of the LEOPARD design expose this jitter to the measurements. For the
space case study used in this paper, LEOPARD single-core measurements show that the
impact of SoJ on the control application is 12% on average, 10% for the minimum observed
execution time and 31% for the maximum observed execution time (MOET).

Figure 11 compares the execution time results of the control application (the highly critical)
when is run in three different configurations: (1) isolation, (2) with the image processing
application, referred as mixed criticality or MC scenario, and (3) time-composable estimates
that are derived in the worst contention scenario. We observe that when the high critical
control application runs with the 3-core low critical image processing application, its execution
time increases w.r.t. its execution time in isolation (first column). Still measurements collected
in TC mode effectively upperbound them (second column).

In Figure 12, where all values are normalized to the MOET of the COTS processor when
the control application runs in isolation, we observe that the MOET for LEOPARD with the
3-core image processing application (LEOPARD MC) is 1.87. This value is smaller than that

ECRTS 2017



16:18 Design and Implementation of a Time Predictable Processor

Figure 11 Multicore measured execution times. Figure 12 Mixed-criticality execution
times and pWCET estimates.

for the same experiment on the COTS platform (COTS MC) that is 2.09. This confirms that
the credit-based arbitration allows increasing the performance of the UoA in the presence of
inter-core (contention) interference.

The MOET in the highest contention scenario (LEOPARD TC mode) is 2.31x showing
that is close to the actual observed values (1.87). These TC values are used as input to
MBPTA that results in tight pWCET estimates for exceedance probabilities (per activation
of the image processing algorithm) at 10−9 and 10−12 (considered relevant in previous case
studies [47]). Reported pWCET estimate results are in the range 2.6x-2.7x, which are
reasonable bounds for a 4-core architecture.

6 Related Work

The timing requirements across different domains (or different systems in the same domain)
change and so do the processor designs that have been proposed to support them. In this
section we review several research efforts aiming at achieving time-predictability with different
processor implementations. Note that we have opted to provide system-level descriptions
of related works rather than focusing on related work for each technique, which we have
presented in previous sections.

Patmos [42] is a statically scheduled, dual-issue RISC processor specifically designed
to facilitate deriving tight WCET estimates with static timing analysis. As both, static
timing analysis (STA) and MBTA, are used by industry to derive WCET estimates, having
processor designs capturing STA requirements is of interest for both academia and industry.
Unlike Patmos that favors WCET over average-performance, i.e. the latter is considered a
secondary goal, LEOPARD is designed to incur minimum impact on average performance.
LEOPARD also aims at injecting minimum changes on the baseline platform rather than to
make a design specifically oriented to WCET.

CompSOC [19] platform offers a virtual platform (resource partition) per application so
that applications cannot cause any interference on other co-running applications. LEOPARD,
instead, focuses on applications domains for which having bounded interference (rather than
no interference) suffices to satisfy timing isolation requirements [37]. In LEOPARD, instead
of preventing any interaction among applications – so that one application is forbidden to
generate even a single-cycle delay on others – applications are allowed to interfere each other
as long as that interference can be bounded.

The FlexPRET [51] processor balances WCET and average performance by designing an
specific simultaneous multi-threaded (SMT) architecture that simultaneously executes both
’hard’ real-time tasks and ’soft’ real-time tasks. Hardware changes (e.g. avoiding data hazards
via specific forwarding paths) and a smart instruction scheduler make the execution of soft



C. Hernández et al. 16:19

real-time tasks transparent, so not affecting hard real-time tasks execution. This is similar
to parMERASA core architecture [35] that also aims at transparent execution of low-critical
SMT threads by for instance preventing non-preemtable multi-cycle operations. FlexPRET
also makes other important hardware changes like adding new timing instructions to the
baseline RISC-V ISA, while LEOPARD sticks to SPARC v8+ ISA. Further, in PRET caches
are replaced by scratchpads to provide more predictability. Overall, different approaches are
pursued by FlexPRET that introduce non-negligible real-time specific hardware components
to support WCET analysis. Conversely, LEOPARD focuses on MBTA requirements and
aims at introducing minimum changes on the baseline architecture.

Other recent approaches have focused on understanding the analysability properties of
complex COTS multicore processors. A summary of some of these works can be found in [15]
and [37]. Some works suggest a separate analysis approach [41, 12]: they propose a separate
analysis for contention and, frequently, rely on splitting tasks into sub-tasks or phases so that
worst-case alignment in (typically) TDMA-based arbiters can be reasonably computed. In
[24] authors derive a model to handle multicore contention based on resource stressing kernels
and performance monitoring counters for deriving both, the access latencies to resources
and the impact that tasks can suffer in the access to hardware shared resources. For static
timing analysis, the work in [34] proposes an approach to factor in contention in single-core
execution times by considering the interference (number of parallel contender requests) the
requests of the task under analysis need to be arbitrated against, instead of considering the
worst latency. Also, an enforcing mechanism (safety net) is put in place to ensure that tasks
do not try to use more than its assigned budget in terms of request count.

Another software approach for time predictability is the WCET (m) [29]. It creates, via
OS support, resource partitions: private cache partitions for the last level cache; memory
bandwidth partitioning by controlling and enforcing a maximum number of access counts
considering worst-case memory latency Lmax; and bank partitioning to further reduce memory
latency. As a result, each core receives a resource partition and the WCET of each task
depends on the number of active cores, m. Despite each task receives a hardware partition
of resources, those resources can be jittery such as multi-level caches and FPU, and handling
this intra-partition jitter complicates deriving WCET estimates as summarized in Section 2.
LEOPARD hardware designs simplify providing evidence that measurements taken for a
given task (under a resource partition) are representative and capture the impact of the
jittery resources. LEOPARD support for multicore, e.g. the on-chip bus not covered in [29],
contention has been shown to improve the baseline ones and further is compatible with the
WCET(m) approach.

Overall, a commonality in these software models is that they assume that execution times
are representative. For example, these works consider the task under analysis suffers no jitter
either in time or access counts due to memory mapping (cache layout), or the particular values
operated in the floating-point unit. However, as we have shown in this paper, both factors
can create jitter. This assumption of representative measurements also holds in the typical
worst-case analysis approach [39]. LEOPARD, by deploying deterministic and probabilistic
jitter bounding, helps all these software approaches to increase the representativeness on the
observations without requiring additional testing efforts.

7 Conclusions

We have shown the design of hardware support for easing MBPTA and its implementation
resulting in an-RTL based prototype. While hardware concepts are simple and their im-

ECRTS 2017



16:20 Design and Implementation of a Time Predictable Processor

plementation has low or moderate complexity in a simulator, their real integration with
other hardware elements such as virtual/physical address management and cache flushing
has been challenging. Moreover, during their integration and test we have discovered per-
formance limitations that have been addressed proposing, implementing and integrating
more efficient designs. Also, tracing capabilities needed by the timing analysis tools were
not powerful enough in the baseline FPGA prototype. The net results is that we have
successfully implemented all features required to make the FPGA prototype be MBPTA
compliant, i.e. controlling on-core and on-chip sources of jitter. We have further designed
and integrated a new high-speed tracing feature able to dump traces through the Ethernet
port at high speed and without affecting normal execution of programs. Overall, LEOPARD
benefits hardware designers to better understand how MBTA compliance can be achieved
with low overhead and no impact on average performance while allowing to reach a growing
market with time predictability needs. We also expect LEOPARD to motivate embedded
system practitioners to push for those small changes to be implemented in other designs,
increasing the effectiveness of existing software approaches to control jitter.

References
1 Jaume Abella, Damien Hardy, Isabelle Puaut, Eduardo Quiñones, and Francisco J. Cazorla.

On the comparison of deterministic and probabilistic WCET estimation techniques. In 26th
Euromicro Conference on Real-Time Systems, ECRTS 2014, Madrid, Spain, July 8-11,
2014, 2014. doi:10.1109/ECRTS.2014.16.

2 Jaume Abella, Carles Hernández, Eduardo Quiñones, Francisco J. Cazorla, Philippa Ryan
Conmy, Mikel Azkarate-askasua, Jon Perez, Enrico Mezzetti, and Tullio Vardanega. WCET
analysis methods: Pitfalls and challenges on their trustworthiness. In 10th IEEE Interna-
tional Symposium on Industrial Embedded Systems, SIES 2015, Siegen, Germany, June
8-10, 2015, 2015. doi:10.1109/SIES.2015.7185039.

3 Irune Agirre, Mikel Azkarate-askasua, Carles Hernández, Jaume Abella, Jon Perez, Tullio
Vardanega, and Francisco J. Cazorla. IEC-61508 SIL 3 compliant pseudo-random number
generators for probabilistic timing analysis. In 2015 Euromicro Conference on Digital
System Design, DSD 2015, Madeira, Portugal, August 26-28, 2015, 2015. doi:10.1109/
DSD.2015.26.

4 Benny Akesson, Andreas Hansson, and Kees Goossens. Composable resource sharing
based on latency-rate servers. In 12th Euromicro Conference on Digital System Design,
Architectures, Methods and Tools, DSD 2009, 27-29 August 2009, Patras, Greece, 2009.
doi:10.1109/DSD.2009.167.

5 Benny Akesson, Liesbeth Steffens, and Kees Goossens. Efficient service allocation in hard-
ware using credit-controlled static-priority arbitration. In 15th IEEE International Con-
ference on Embedded and Real-Time Computing Systems and Applications, RTCSA 2009,
Beijing, China, 24-26 August 2009, 2009. doi:10.1109/RTCSA.2009.13.

6 Peter Alfke. Efficient Shift Registers, LFSR Counters, and Long Pseudo-Random Sequence
Generators. Xilinx, 1996.

7 ARM. Amba bus specification. URL: http://www.arm.com/products/system-ip/amba/
amba-open-specifications.php.

8 Francisco J. Cazorla, Eduardo Quiñones, Tullio Vardanega, Liliana Cucu, Benoit Triquet,
Guillem Bernat, Emery D. Berger, Jaume Abella, Franck Wartel, Michael Houston, Luca
Santinelli, Leonidas Kosmidis, Code Lo, and Dorin Maxim. PROARTIS: probabilistically
analyzable real-time systems. ACM Trans. Embedded Comput. Syst., 12(2s), 2013. doi:
10.1145/2465787.2465796.

9 Certification Authorities Software Team. CAST-32A Multi-core Processors, 2016.
10 Cobham Gaisler. Quad Core LEON4 SPARC V8 Processor – GR740-UM-DS-D1 – Data

Sheet and Users Manual, 2015.

http://dx.doi.org/10.1109/ECRTS.2014.16
http://dx.doi.org/10.1109/SIES.2015.7185039
http://dx.doi.org/10.1109/DSD.2015.26
http://dx.doi.org/10.1109/DSD.2015.26
http://dx.doi.org/10.1109/DSD.2009.167
http://dx.doi.org/10.1109/RTCSA.2009.13
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://dx.doi.org/10.1145/2465787.2465796
http://dx.doi.org/10.1145/2465787.2465796


C. Hernández et al. 16:21

11 Liliana Cucu-Grosjean, Luca Santinelli, Michael Houston, Code Lo, Tullio Vardanega, Le-
onidas Kosmidis, Jaume Abella, Enrico Mezzetti, Eduardo Quiñones, and Francisco J.
Cazorla. Measurement-based probabilistic timing analysis for multi-path programs. In
24th Euromicro Conference on Real-Time Systems, ECRTS 2012, Pisa, Italy, July 11-13,
2012, 2012. doi:10.1109/ECRTS.2012.31.

12 Dakshina Dasari, Vincent Nélis, and Benny Akesson. A framework for memory conten-
tion analysis in multi-core platforms. Real-Time Systems, 52(3), 2016. doi:10.1007/
s11241-015-9229-9.

13 Enrique Díaz, Jaume Abella, Enrico Mezzetti, Irune Agirre, Mikel Azkarate-Askasua, Tullio
Vardanega, and Francisco J. Cazorla. Mitigating software-instrumentation cache effects
in measurement-based timing analysis. In 16th International Workshop on Worst-Case
Execution Time Analysis, WCET 2016, July 5, 2016, Toulouse, France, 2016. doi:10.
4230/OASIcs.WCET.2016.1.

14 Boris Dreyer, Christian Hochberger, Alexander Lange, Simon Wegener, and Alexander
Weiss. Continuous non-intrusive hybrid WCET estimation using waypoint graphs. In 16th
International Workshop on Worst-Case Execution Time Analysis, WCET 2016, July 5,
2016, Toulouse, France, 2016. doi:10.4230/OASIcs.WCET.2016.4.

15 Gabriel Fernandez, Jaume Abella, Eduardo Quiñones, Christine Rochange, Tullio Vard-
anega, and Francisco J. Cazorla. Contention in multicore hardware shared resources: Un-
derstanding of the state of the art. In 14th International Workshop on Worst-Case Exe-
cution Time Analysis, WCET 2014, July 8, 2014, Ulm, Germany, 2014. doi:10.4230/
OASIcs.WCET.2014.31.

16 E. Francis. Autonomous cars: no longer just science fiction. Automotive Industries, 2014.
17 Cobham Gaisler. Leon3 Processor. http://www.gaisler.com/cms/index.php?option=

com_content&task=view&id=13&Itemid=53.
18 Sylvain Girbal, Miquel Moretó, Arnaud Grasset, Jaume Abella, Eduardo Quiñones, Fran-

cisco J. Cazorla, and Sami Yehia. On the convergence of mainstream and mission-critical
markets. In The 50th Annual Design Automation Conference 2013, DAC’13, Austin, TX,
USA, May 29 – June 07, 2013, 2013. doi:10.1145/2463209.2488962.

19 Andreas Hansson, Kees Goossens, Marco Bekooij, and Jos Huisken. Compsoc: A template
for composable and predictable multi-processor system on chips. ACM Trans. Design
Autom. Electr. Syst., 14(1), 2009. doi:10.1145/1455229.1455231.

20 Carles Hernandez, Jaume Abella, Francisco J. Cazorla, Jan Andersson, and Andrea Gi-
anarro. Towards making a LEON3 multicore compatible with probabilistic timing analysis.
In Proceedings of the 20th Data Systems In Aerospace Conference, DASIA, 2015, Barcelona,
Spain, 2015.

21 Carles Hernández, Jaume Abella, Andrea Gianarro, Jan Andersson, and Francisco J.
Cazorla. Random modulo: a new processor cache design for real-time critical systems.
In Proceedings of the 53rd Annual Design Automation Conference, DAC 2016, Austin, TX,
USA, June 5-9, 2016, 2016. doi:10.1145/2897937.2898076.

22 HiPEAC. hiPEAC vision, 2017. https://www.hipeac.net/publications/vision/.
23 Infineon. AURIX – TriCore datasheet. highly integrated and performance optimized 32-bit

microcontrollers for automotive and industrial applications, 2012.
24 Javier Jalle, Mikel Fernandez, Jaume Abella, Jan Andersson, Mathieu Patte, Luca Fossati,

Marco Zulianello, and Francisco Cazorla. Bounding Resource Contention Interference in
the Next-Generation Microprocessor (NGMP). In 8th ERTS, 2016.

25 Javier Jalle, Leonidas Kosmidis, Jaume Abella, Eduardo Quiñones, and Francisco J.
Cazorla. Bus designs for time-probabilistic multicore processors. In Design, Automation
& Test in Europe Conference & Exhibition, DATE 2014, Dresden, Germany, March 24-28,
2014, 2014. doi:10.7873/DATE.2014.063.

ECRTS 2017

http://dx.doi.org/10.1109/ECRTS.2012.31
http://dx.doi.org/10.1007/s11241-015-9229-9
http://dx.doi.org/10.1007/s11241-015-9229-9
http://dx.doi.org/10.4230/OASIcs.WCET.2016.1
http://dx.doi.org/10.4230/OASIcs.WCET.2016.1
http://dx.doi.org/10.4230/OASIcs.WCET.2016.4
http://dx.doi.org/10.4230/OASIcs.WCET.2014.31
http://dx.doi.org/10.4230/OASIcs.WCET.2014.31
http://www.gaisler.com/cms/index.php?option=com_content&task=view&id=13&Itemid=53
http://www.gaisler.com/cms/index.php?option=com_content&task=view&id=13&Itemid=53
http://dx.doi.org/10.1145/2463209.2488962
http://dx.doi.org/10.1145/1455229.1455231
http://dx.doi.org/10.1145/2897937.2898076
https://www.hipeac.net/publications/vision/
http://dx.doi.org/10.7873/DATE.2014.063


16:22 Design and Implementation of a Time Predictable Processor

26 Leonidas Kosmidis, Jaume Abella, Eduardo Quiñones, and Francisco J. Cazorla. A cache
design for probabilistically analysable real-time systems. In Design, Automation and Test
in Europe, DATE 13, Grenoble, France, March 18-22, 2013, 2013. doi:10.7873/DATE.
2013.116.

27 Samuel Kotz and Saralees Nadarajah. Extreme value distributions: theory and applications.
World Scientific, 2000.

28 Stephen Law and Iain Bate. Achieving appropriate test coverage for reliable measurement-
based timing analysis. In 28th Euromicro Conference on Real-Time Systems, ECRTS 2016,
Toulouse, France, July 5-8, 2016, 2016. doi:10.1109/ECRTS.2016.21.

29 Renato Mancuso, Rodolfo Pellizzoni, Marco Caccamo, Lui Sha, and Heechul Yun. Wcet(m)
estimation in multi-core systems using single core equivalence. In 27th Euromicro Con-
ference on Real-Time Systems, ECRTS 2015, Lund, Sweden, July 8-10, 2015, 2015.
doi:10.1109/ECRTS.2015.23.

30 Enrico Mezzetti and Tullio Vardanega. A rapid cache-aware procedure positioning optimiz-
ation to favor incremental development. In 19th IEEE Real-Time and Embedded Technology
and Applications Symposium, RTAS 2013, Philadelphia, PA, USA, April 9-11, 2013, 2013.
doi:10.1109/RTAS.2013.6531084.

31 Suzana Milutinovic, Jaume Abella, and Francisco J. Cazorla. Modelling probabilistic cache
representativeness in the presence of arbitrary access patterns. In 19th IEEE International
Symposium on Real-Time Distributed Computing, ISORC 2016, York, United Kingdom,
May 17-20, 2016, 2016. doi:10.1109/ISORC.2016.28.

32 Kevin Mueller, Georg Sigl, Benoit Triquet, and Michael Paulitsch. On MILS I/O sharing
targeting avionic systems. In 2014 Tenth European Dependable Computing Conference,
Newcastle, United Kingdom, May 13-16, 2014, 2014. doi:10.1109/EDCC.2014.35.

33 Jan Nowotsch, Michael Paulitsch, Daniel Buhler, Henrik Theiling, Simon Wegener, and
Michael Schmidt. Multi-core interference-sensitive WCET analysis leveraging runtime re-
source capacity enforcement. In 26th Euromicro Conference on Real-Time Systems, ECRTS
2014, Madrid, Spain, July 8-11, 2014, 2014. doi:10.1109/ECRTS.2014.20.

34 Jan Nowotsch, Michael Paulitsch, Arne Henrichsen, Werner Pongratz, and Andreas Schacht.
Monitoring and WCET analysis in COTS multi-core-soc-based mixed-criticality systems.
In Design, Automation & Test in Europe Conference & Exhibition, DATE 2014, Dresden,
Germany, March 24-28, 2014, 2014. doi:10.7873/DATE.2014.080.

35 Marco Paolieri, Jörg Mische, Stefan Metzlaff, Mike Gerdes, Eduardo Quiñones, Sascha
Uhrig, Theo Ungerer, and Francisco J. Cazorla. A hard real-time capable multi-core SMT
processor. ACM Trans. Embedded Comput. Syst., 12(3):79:1–79:26, 2013. doi:10.1145/
2442116.2442129.

36 Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, Guillem Bernat, and Mateo
Valero. Hardware support for WCET analysis of hard real-time multicore systems. In
36th International Symposium on Computer Architecture (ISCA 2009), June 20-24, 2009,
Austin, TX, USA, 2009. doi:10.1145/1555754.1555764.

37 Michael Paulitsch, Oscar Medina Duarte, Hassen Karray, Kevin Mueller, Daniel Münch,
and Jan Nowotsch. Mixed-criticality embedded systems – A balance ensuring partitioning
and performance. In 2015 Euromicro Conference on Digital System Design, DSD 2015,
Madeira, Portugal, August 26-28, 2015, 2015. doi:10.1109/DSD.2015.100.

38 PROXIMA. Probabilistic real-time control of mixed-criticality multicore and manycore
systems, oct 2014. URL: http://www.proxima-project.eu/.

39 Sophie Quinton, Torsten T. Bone, Julien Hennig, Moritz Neukirchner, Mircea Negrean, and
Rolf Ernst. Typical worst case response-time analysis and its use in automotive network
design. In The 51st Annual Design Automation Conference 2014, DAC’14, San Francisco,
CA, USA, June 1-5, 2014, 2014. doi:10.1145/2593069.2602977.

http://dx.doi.org/10.7873/DATE.2013.116
http://dx.doi.org/10.7873/DATE.2013.116
http://dx.doi.org/10.1109/ECRTS.2016.21
http://dx.doi.org/10.1109/ECRTS.2015.23
http://dx.doi.org/10.1109/RTAS.2013.6531084
http://dx.doi.org/10.1109/ISORC.2016.28
http://dx.doi.org/10.1109/EDCC.2014.35
http://dx.doi.org/10.1109/ECRTS.2014.20
http://dx.doi.org/10.7873/DATE.2014.080
http://dx.doi.org/10.1145/2442116.2442129
http://dx.doi.org/10.1145/2442116.2442129
http://dx.doi.org/10.1145/1555754.1555764
http://dx.doi.org/10.1109/DSD.2015.100
http://www.proxima-project.eu/
http://dx.doi.org/10.1145/2593069.2602977


C. Hernández et al. 16:23

40 Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker, Stefan Leigh,
Mark Levenson, Mark Vangel, David Banks, Alan Heckert, James Dray, and San Vo. A
statistical test suite for the validation of random number generators and pseudo random
number generators for cryptographic applications. Special publication 800-22rev1a, US
National Institute of Standards and Technology (NIST), 2010.

41 Simon Schliecker, Mircea Negrean, Gabriela Nicolescu, Pierre G. Paulin, and Rolf Ernst.
Reliable performance analysis of a multicore multithreaded system-on-chip. In Proceed-
ings of the 6th International Conference on Hardware/Software Codesign and System
Synthesis, CODES+ISSS 2008, Atlanta, GA, USA, October 19-24, 2008, 2008. doi:
10.1145/1450135.1450172.

42 Martin Schoeberl, Pascal Schleuniger, Wolfgang Puffitsch, Florian Brandner, and Chris-
tian W. Probst. Towards a time-predictable dual-issue microprocessor: The patmos
approach. In Bringing Theory to Practice: Predictability and Performance in Embed-
ded Systems, DATE Workshop PPES 2011, March 18, 2011, Grenoble, France., 2011.
doi:10.4230/OASIcs.PPES.2011.11.

43 Mladen Slijepcevic, Carles Hernandez, Jaume Abella, and Francisco J. Cazorla. Design
and implementation of a fair credit-based bandwidth sharing scheme for buses. In DATE
conference, 2017.

44 Sysgo. PikeOS Safe and Secure Virtualization, 2010.
45 Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi. Taming non-blocking caches to

improve isolation in multicore real-time systems. In 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), Vienna, Austria, April 11-14, 2016, 2016.
doi:10.1109/RTAS.2016.7461361.

46 Augusto Vega, Chung-Ching Lin, Karthik Swaminathan, Alper Buyuktosunoglu,
Sharathchandra Pankanti, and Pradip Bose. Resilient, uav-embedded real-time comput-
ing. In 33rd IEEE International Conference on Computer Design, ICCD 2015, New York
City, NY, USA, October 18-21, 2015, 2015. doi:10.1109/ICCD.2015.7357189.

47 Franck Wartel, Leonidas Kosmidis, Code Lo, Benoit Triquet, Eduardo Quiñones, Jaume
Abella, Adriana Gogonel, Andrea Baldovin, Enrico Mezzetti, Liliana Cucu, Tullio Vard-
anega, and Francisco J. Cazorla. Measurement-based probabilistic timing analysis: Lessons
from an integrated-modular avionics case study. In 8th IEEE International Symposium
on Industrial Embedded Systems, SIES 2013, Porto, Portugal, June 19-21, 2013, 2013.
doi:10.1109/SIES.2013.6601497.

48 Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and Peter P. Puschner. Measurement-
based timing analysis. In Leveraging Applications of Formal Methods, Verification and
Validation, Third International Symposium, ISoLA 2008, Porto Sani, Greece, October 13-
15, 2008. Proceedings, 2008. doi:10.1007/978-3-540-88479-8_30.

49 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David B. Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra,
Frank Mueller, Isabelle Puaut, Peter P. Puschner, Jan Staschulat, and Per Stenström. The
worst-case execution-time problem – overview of methods and survey of tools. ACM Trans.
Embedded Comput. Syst., 7(3), 2008. doi:10.1145/1347375.1347389.

50 Marco Ziccardi, Enrico Mezzetti, Tullio Vardanega, Jaume Abella, and Francisco Javier
Cazorla. EPC: extended path coverage for measurement-based probabilistic timing analysis.
In 2015 IEEE Real-Time Systems Symposium, RTSS 2015, San Antonio, Texas, USA,
December 1-4, 2015, 2015. doi:10.1109/RTSS.2015.39.

51 Michael Zimmer, David Broman, Chris Shaver, and Edward A. Lee. Flexpret: A processor
platform for mixed-criticality systems. In 20th IEEE Real-Time and Embedded Technology
and Applications Symposium, RTAS 2014, Berlin, Germany, April 15-17, 2014, 2014. doi:
10.1109/RTAS.2014.6925994.

ECRTS 2017

http://dx.doi.org/10.1145/1450135.1450172
http://dx.doi.org/10.1145/1450135.1450172
http://dx.doi.org/10.4230/OASIcs.PPES.2011.11
http://dx.doi.org/10.1109/RTAS.2016.7461361
http://dx.doi.org/10.1109/ICCD.2015.7357189
http://dx.doi.org/10.1109/SIES.2013.6601497
http://dx.doi.org/10.1007/978-3-540-88479-8_30
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1109/RTSS.2015.39
http://dx.doi.org/10.1109/RTAS.2014.6925994
http://dx.doi.org/10.1109/RTAS.2014.6925994

	Introduction
	Background and MBPTA requirements
	Safety Standards
	Timing
	Requirements

	Core Design
	Baseline Design
	LEOPARD design

	Chip Design
	Baseline Design
	LEOPARD design

	Evaluation
	Methodology
	Complexity of LEOPARD features
	Evaluating LEOPARD features
	Space Case-study

	Related Work
	Conclusions

