
Improving the Quality-of-Service for Scheduling
Mixed-Criticality Systems on Multiprocessors∗

Risat Mahmud Pathan

Chalmers University of Technology, Göteborg, Sweden
risat@chalmers.se

Abstract
The traditional Vestal’s model of Mixed-Criticality (MC) systems was recently extended to Im-
precise Mixed-Critical task model (IMC) to guarantee some minimum level of (degraded) service
to the low-critical tasks even after the system switches to the high-critical behavior. This paper
extends the IMC task model by associating specific Quality-of-Service (QoS) values with the
low-critical tasks and proposes a fluid-based scheduling algorithm, called MCFQ, for such task
model. The MCFQ algorithm allows some low-critical tasks to provide full service even during
the high-critical behavior so that the QoS of the overall system is increased. To the best of our
knowledge MCFQ is the first algorithm for IMC task sets considering multiprocessor platform
and QoS values.

By extending the recently proposed MC-Fluid and MCF fluid-based multiprocessor scheduling
algorithms for IMC task model, empirical results show that MCFQ algorithm can significantly
improve the QoS of the system in comparison to that of both MC-Fluid and MCF. In addition, the
schedulability performance of MCFQ is very close to the optimal MC-Fluid algorithm. Finally,
we prove that the MCFQ algorithm has a speedup bound of 4/3, which is optimal for IMC tasks.

1998 ACM Subject Classification C.3 Real-Time and Embedded Systems, D.4.1 Scheduling

Keywords and phrases mixed-criticality systems, real-time systems, multiprocessor scheduling,
quality of service, imprecise computation

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2017.19

1 Introduction

The computation power of multicore processors offers real-time embedded system designers
the opportunity to integrate multiple components with different levels of criticality on
a common hardware platform. Such Mixed-Criticality (MC) systems are often certified
by certification authorities (CAs). This paper proposes a new multiprocessor scheduling
algorithm for implicit-deadline dual-criticality sporadic tasks where a task is either high
critical (HI) or low critical (LO).

In a dual-criticality system, the correctness of the high-critical tasks needs to be demon-
strated under rigorous (often pessimistic) assumptions. Based on Vestal’s model for MC tasks
[21], the worst-case execution time (WCET) of each HI-critical task, according to the as-
sumptions of the CA, is larger than or equal to that considered by the system designer.
Each high-critical task τi has two different WCETs: CL

i and CH
i where CL

i ≤ CH
i and the

WCET of each LO-critical task τi is CL
i . Most of the earlier works on scheduling MC systems

[5, 4, 6, 17, 10, 8] consider that if some HI-critical task does not complete execution after

∗ This research has been funded by the MECCA project under the ERC grant ERC-2013-AdG 340328-
MECCA.

© Risat Mahmud Pathan;
licensed under Creative Commons License CC-BY

29th Euromicro Conference on Real-Time Systems (ECRTS 2017).
Editor: Marko Bertogna; Article No. 19; pp. 19:1–19:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


19:2 Improving the Quality-of-Service for Scheduling Mixed-Criticality Systems

executing for at most CL
i time units – the system is said to switch from LO- to HI-critical

behavior in such case – then all the LO-critical tasks are aborted (definition of critical behavior
is formally presented in Section 2). Such “abortion” of the LO critical tasks may not be
acceptable, for example, in many control applications as pointed out in [14]. Moreover, the
system designer considers the execution of the LO-critical tasks important to achieve the
mission of the system.

Some works addressed this limitation by allowing the LO-critical tasks to provide delayed
results, for example, by executing them less frequently after the system switches to HI-critical
behavior (e.g., weakly hard MC task model [9], elastic MC task model [20, 19, 11]). However,
such delayed results may not be acceptable for some applications that prefer to have results on
time even if such results are imprecise (e.g., degraded). Based on the imprecise computation
model [15, 16], some recent works [14, 7, 2] have proposed a new MC task model, called the
Imprecise Mixed-Critical (IMC) task model, in which each LO-critical task is also guaranteed
to provide some (degraded) service even after the system switches to the HI-critical behavior.
The IMC task model considers two different WCET for each task: CL

i and CH
i where CL

i ≤ CH
i

if τi is a HI-critical task or CL
i ≥ CH

i if τi is a LO-critical task. The works in [14, 7, 2] proposed
scheduling algorithms for IMC task model in which each LO-critical task executes at least
CH
i time units (i.e., it provides imprecise or degraded service rather than “no” service) during

the HI-critical behavior.
The motivation of the research presented in this paper is the observation that punishing

all the LO-critical IMC tasks by allowing them to provide only degraded service during the
HI-critical behavior may not be necessary if the computing platform has slack capacity during
the HI-critical behavior. No earlier work on scheduling IMC tasks considers the possibility
of executing any LO-critical task to provide full service also during the HI-critical behavior.
This paper proposes the Mixed-Criticality Fluid scheduling with QoS (MCFQ) algorithm for
multiprocessor platform, considering a set of implicit-deadline IMC sporadic tasks, in which
some (if possible all) LO-critical tasks can provide full service also during the HI-critical
behavior. Allowing some of the LO-critical tasks to always provide full service would improve
the overall Quality-of-Service (QoS) of the system – making the system designers “happy”.

Consider an airplane or car that switches to the HI-critical behavior during its mission
and all the LO-critical tasks start to provide degraded service. Such degraded service is
perceived by the pilot or the driver, for example, by observing some light blinking in the
cockpit/dashboard, the entertainment system being turned off, or some kind of performance
loss. The pilot or driver may be uncomfortable in such situation or could even be stressed.
The MCFQ algorithm considers improving such situations by allowing some LO-critical tasks
to provide full service also during the HI-critical behavior.

This paper extends the IMC task model [14, 7, 2] by associating with each LO-critical
task τi two QoS values V L

i and V H
i where V L

i ≥ V H
i . The QoS value V L

i is set to 100% based
on the interpretation that if a LO-critical task τi is guaranteed (e.g., based on the underlying
schedulability analysis) to provide full service in all possible criticality behaviors of the
system, the QoS value that task τi provides is 100%; otherwise, the QoS value of τi is V H

i ,
which is smaller than or equal to V L

i (the way the system designer sets these values will
be presented in Section 2). The QoS values of all the high-critical tasks are assumed to be
100% for all criticality behaviors since no degradation in terms of their service is acceptable
in any criticality behavior. Based on the outcome of the underlying schedulability analysis
for a given MC task set, the QoS contribution of each task can be determined which in turn
determines the QoS of the overall system.

The proposed MCFQ algorithm is based on a fluid-based scheduling model [12, 3, 2] in
which each task τi has two execution rates θL

i and θH
i for executing task τi during the LO- and



R.M. Pathan 19:3

HI-critical behaviors, respectively. If MCFQ is successful in determining θL
i and θH

i , then it is
guaranteed that each LO-critical task τi provides full and degraded service during the LO-
and HI-critical behaviors of the system, respectively.

The overall objective of the MCFQ algorithm (unlike other fluid-based algorithms [12, 3]) is
to maximize the sum of the LO-critical execution rates of all the tasks so that less computation
is required during the HI-critical behavior. This maximization potentially implies higher slack
capacity during the HI-critical behavior. Such slack is exploited to increase the HI-critical
execution rate θH

i of some LO-critical task so that this LO-critical task provides full service
also during the HI-critical behavior, and thereby, can increase the QoS of the LO-critical task
τi by (V L

i − V H
i ). Given an amount of slack, the LO-critical tasks for which the HI-critical

execution rates can be increased are determined based on Integer Linear Programming (ILP)
to maximize the overall QoS of the system while ensuring correctness. Although the proposed
MCFQ algorithm is based on a fluid-based scheduling model, there are some salient features of
MCFQ that make this algorithm novel with respect to the recently proposed MC-Fluid [12]
and MCF [3] algorithms. Neither the MC-Fluid [12] nor the MCF [3] algorithm considers the
IMC task model, and therefore, such algorithms do not allow any LO-critical task to provide
any (not even degraded) service during the HI-critical behavior. While the works in [2, 14]
consider the IMC task model to allow the LO-critical tasks to provide degraded service during
the HI-critical behavior, these works do not consider multiprocessors. Moreover, none of the
works in [2, 14] allows any LO-critical task to provide full service in HI-critical behavior even
if enough processing capacity is available. Common to all these works [12, 3, 2, 14] is that
none considers maximizing the utilization of the platform during the LO-critical behavior
in order to gain and exploit slack capacity during the HI-critical behavior to improve the
overall QoS of the system.

This paper has the following contributions.
First, we present an extension (i.e. generalization) of the IMC task model where each
LO-critical task has two QoS values depending on whether it can provide full service in all
criticality behaviors or not. This new model allows the system designers to set the values
of the QoS of the LO-critical tasks based on her level of “happiness” with the degraded or
full service of such tasks. Based on the QoS values of the tasks, the overall QoS of the
entire system can be determined.
Second, a new algorithm, called MCFQ, is proposed for scheduling traditional IMC task
systems on a multiprocessor platform. To the best of our knowledge, MCFQ is the first
multiprocessor scheduling algorithm that considers the IMC task model. The main idea
of developing the MCFQ scheduling algorithm, i.e., fully utilizing the processors during the
LO-critical behavior, has the potential to be applied to other MC scheduling algorithms
that are proposed in the literature to improve the overall QoS of the system.
Third, we formulate an ILP to select some (if possible all) LO-critical tasks such that these
tasks provide full service in all the criticality behaviors of the system while maximizing
the overall QoS of the system.
We compare the schedulability of MCFQ algorithm with the recently proposed MC-Fluid [12]
and MCF [3] algorithms, by extending MC-Fluid and MCF for IMC tasks, using randomly
generated task sets. It is found that the MCFQ scheduling algorithm has schedulability
performance very close to the optimal MC-Fluid algorithm and can significantly improve
the QoS of the system in comparison to both MC-Fluid and MCF algorithms.
Finally, we prove that MCFQ has a speedup bound of 4/3 which is optimal for IMC tasks.

The remainder of this paper is organized as follows: Section 2 presents the system model.
Section 3 presents an overview of the proposed MCFQ algorithm. The details of MCFQ algorithm

ECRTS 2017



19:4 Improving the Quality-of-Service for Scheduling Mixed-Criticality Systems

and the proof of its correctness are presented in Section 4. The formulation of the ILP to
improve the QoS of the system is presented in Section 5. Experimental results are presented
in Section 6 before concluding in Section 7.

2 System Model

This paper considers the scheduling of n implicit-deadline dual-criticality sporadic tasks in
set Γ = {τ1, . . . τn} on m processors. Each task τi ∈ Γ generates an infinite sequence of jobs.
Each task τi is represented using 4 parameters {Ti, Li, Ci,Vi} where1

Ti ∈ R+ is the minimum inter-arrival time of the jobs (also, called period) of the task.
The relative deadline of task τi is also Ti.
Li ∈ {HI, LO} is the criticality of the task: LO and HI respectively specifies low- and
high-critical task.
Ci = {CL

i , C
H
i } is a list of WCETs of task τi at different criticality levels. The WCET of

task τi at criticality level LO and HI are respectively CL
i and CH

i . If Li = HI, then CH
i ≥ CL

i

for a HI-critical task, whereas CH
i ≤ CL

i for a LO-critical task.
Vi = {V L

i , V
H
i } is a list of QoS values for each LO-critical task τi where V L

i ≥ V H
i . If all

the jobs of the LO-critical task τi are guaranteed to execute for CL
i time units (i.e., it

provides full service in all behaviors), then task τi’s QoS contribution is V L
i ; otherwise,

τi’s QoS contribution is V H
i . Although each LO-critical task has two different QoS values,

the contribution of each such task’s QoS to the overall QoS of the system is dependent
on the outcome of the schedulability analysis.

How are the QoS values assigned? The system designer sets the values of V L
i and V H

i for
each LO-critical task based on how “happy” she is with the full and degraded service of the
task, respectively. If each of the jobs of a LO-critical task τi executes for CL

i time units,
then task τi provides full service in all the criticality behaviors and the QoS value V L

i of
τi is 100%, i.e., V L

i = 1.0. On the other hand, the value of V H
i should reflect the level of

degradation of the LO-critical task τi if all the jobs of such a task cannot be guaranteed to
execute for CL

i time units in HI-critical behavior. Note that although the HI-critical behavior
does not necessarily require a LO-critical task to execute CL

i time units to ensure correctness
(definition of correctness will be presented shortly), this paper seeks the opportunity to do so
in order to improve the overall QoS of the system.

If the output quality of a LO-critical task τi depends on how long the task executes (i.e,
the longer a task executes, the better results it produces similar to the imprecise computation
models [15, 16]), then the system designer sets the QoS value V H

i of a LO-critical task τi as
V H
i = CH

i /C
L
i . Note that CH

i /C
L
i ≤ 1 for LO-critical task τi. On the other hand, if the output

quality of a task is not directly related to how long the task executes, then value of V H
i is

assigned by the system designer based on her own interpretation (i.e., happiness) regarding
the level of degradation of the LO-critical task τi. The system designer assigns V H

i = hpyi
where hpyi is her level of happiness with the degraded service of the LO-critical task τi where
V H
i = hpyi ≤ V L

i = 1.0.

Useful Definitions: The set of all the HI-critical tasks in Γ is denoted by ΓH where
ΓH = {τi | τi ∈ Γ and Li = HI}. Similarly, the set of all the LO-critical tasks in Γ is denoted

1 Each HI-critical task is represented using 3 parameters since the required QoS values for such tasks is
always 100%.



R.M. Pathan 19:5

by ΓL where ΓL = {τi | τi ∈ Γ and Li = LO}. The LO and HI-critical utilization of task
τi are defined as uL

i = CL
i /Ti and uH

i = CH
i /Ti. For all LO-critical tasks, the total LO- and

HI-critical utilizations are UL
L =

∑
∀τi∈ΓL u

L
i and UH

L =
∑
∀τi∈ΓL u

H
i , respectively. Similarly,

for all HI-critical tasks, the total LO- and HI-critical utilizations are UL
H =

∑
∀τi∈ΓH u

L
i and

UH
H =

∑
∀τi∈ΓH u

H
i , respectively.

Behavior: An MC sporadic task system shows different behaviors during different runs of
the system since different jobs may be released at different time instants and may have
different execution times. We assume, similar to [2], that the run-time environment budgets
the execution time of the jobs generated by the LO-critical tasks such that any such job will
be terminated once it consumes its budgeted amount of execution, regardless of whether it
has completed execution or not. The criticality level of a behavior is determined by how
much execution is needed by the HI-critical jobs to complete execution in that behavior.

If each HI-critical job of task τi signals completion after completing at most CL
i units of

execution, then the behavior of the system is defined to be a LO-critical behavior. If some
job of a HI-critical task τi does not signal completion after completing at most CL

i units of
execution at time t, then the system is said to switch from LO- to HI-critical behavior at time
t. If each job of a HI-critical task τi signals completion after completing at most CH

i units of
execution, then the behavior of the system is defined to be a HI-critical behavior. All other
behaviors are erroneous.

Correctness: We define an algorithm for scheduling an MC system to be correct if it is able
to schedule any system in such a manner that both the following properties are satisfied:

During all the LO-critical behaviors of the system, each HI-critical job receives enough
execution between its release time and deadline to complete, and each LO-critical job
either completes or receives at least its LO-critical WCET, between its release time and
deadline.
During all the HI-critical behaviors of the system, each HI-critical job receives enough
execution between its release time and deadline to complete, and each LO-critical job of a
LO-critical task either completes or receives at least its HI-critical WCET, between its
release time and deadline.

The proposed MCFQ algorithm first seeks to find execution rates of the tasks to ensure the
correctness of the system. As it is evident from the definition of correctness that if a system
is correct, then it is ensured that each LO-critical task provides degraded service during the
HI-critical behavior and contributes a QoS of V H

i to the overall QoS of the system. Given
that a system is correct, we exploit slack of the processors in HI-critical behavior to select
some LO-critical tasks so that these tasks are guaranteed to provide full service even during
the HI-critical behavior – improving the QoS of the LO-critical task τi from V H

i to V L
i .

3 An overview of MCFQ Scheduling Algorithm

The MCFQ algorithm is based on fluid-based scheduling [12, 3] in which a task may be assigned
a fraction ≤ 1 of a processor, called the execution rate of the task, at each time instant. The
MCFQ algorithm prior to runtime determines the LO- and HI-critical execution rates, denoted
respectively by θL

i and θH
i , for each task τi ∈ Γ. The execution rates θL

i and θH
i for each task τi

are computed such that the run-time scheduling strategy presented in Figure 1 constitutes a
correct scheduling strategy for task set Γ. According to the algorithm in Figure 1, each task

ECRTS 2017



19:6 Improving the Quality-of-Service for Scheduling Mixed-Criticality Systems

Each task τi initially executes at a constant rate θL
i . That is, at each time instant it is

executing upon θL
i fraction of a processor.

If a job of task τi ∈ ΓH does not complete despite having received CL
i units of execution

(equivalently, having executed for a duration CL
i /θ

L
i ), then each task τi executes at a

constant rate θH
i . That is, at each time instant it is executing upon θH

i fraction of a
processor.

Figure 1 Run-time scheduling strategy originally proposed in [2] for uniprocessor is also applicable
to multiprocessors.

τi is executed with execution rate θL
i during the LO-critical behavior of the system. Once the

system switches to HI-critical behavior, τi executes with execution rate θH
i .

The system can switch back (not considered in this paper) from HI- to LO-critical behavior
when there is an idle period and no job of any HI-critical task awaits for execution as is
proposed by Santy et al [18]. Transforming the fluid schedule generated by MCFQ algorithm
to construct a (non-fluid) schedule for real hardware can be done using the MC-DP-Fair
algorithm proposed in [12].

We present the execution-rate assignment strategy of MCFQ in Figure 2 in Section 4. It will
be proved in subsection 4.1 that if the MCFQ algorithm successfully determines the execution
rates θL

i and θH
i , then the system is correct. Given that an MC system is correct using the

execution rates determined by the MCFQ algorithm in Figure 2, we then consider increasing
the HI-critical execution rates θH

i of some LO-critical tasks to increase the QoS of the system
in Section 5. The following lemmas and definitions will be used in Section 4.

Lemma 1, derived in [12], states a necessary and sufficient schedulability condition of a
HI-critical task τk during the HI-critical behavior (including the particular scenario when the
system switches from LO- to HI-critical behavior) assuming that the task is schedulable in
LO-critical behavior. The condition in Eq. (1) is derived regardless of any parameters of the
LO-critical tasks and is thus also applicable to IMC task systems.

I Lemma 1 (From Lemma 5 in [12]). Given a HI-critical task τk satisfying task-schedulability
in LO-critical behavior, the task can meet its deadline if and only if

uL
k/θ

L
k + (uH

k − uL
k)/θH

k ≤ 1 (1)

Based on Lemma 1, a lower bound on θL
k for each HI-critical task τk ∈ ΓH is given in

Lemma 2.

I Lemma 2. If the execution rates θL
k and θH

k of a HI-critical task τk ∈ ΓH guarantees that
all the jobs of τk meet their deadlines in all the correct behaviors of the system, then the
following holds:

θL
k ≥ uL

k/(1− uH
k + uL

k) ≥ uL
k (2)

Proof. Since τk ∈ ΓH meets its deadline, the following (from Eq. (1) of Lemma 1) holds:

uL
k/θ

L
k + (uH

k − uL
k)/θH

i ≤ 1
⇒ uL

k/θ
L
k + (uH

k − uL
k) ≤ 1 (Since θH

k ≤ 1 for any execution rate to be valid)
⇔ θL

k ≥ uL
k/(1− uH

k + uL
k)

For a HI-critical task τk, we have 0 ≤ (1 − uH
k + uL

k) ≤ 1 because 1 ≥ uH
k ≥ uL

k. Therefore,
uL
i/(1− uH

k + uL
k) ≥ uL

k and we have θL
k ≥ uL

k/(1− uH
k + uL

k) ≥ uL
k. J



R.M. Pathan 19:7

Assumptions: (UL
H + UL

L ) ≤ m, (UH
H + UH

L ) ≤ m, max{uH
i , u

L
i} ≤ 1 for all τi ∈ Γ

1. θH
i = uH

i and θL
i = uL

i for all τi ∈ ΓL.
2. For i = 1 to h //Tasks in ΓH are indexed from 1 . . . h

θL
i = min{uH

i ,Fi−1 · uL
i} (5)

θH
i = (uH

i − uL
i )/(1−

uL
i

θL
i

) (6)

3. If ∑
τk∈Γ

θH
k ≤ m and

∑
τk∈Γ

θL
k ≤ m (7)

then declare success else declare failure.

Figure 2 Execution Rate Assignment.

Lemma 2 essentially states that if an MC task set is schedulable in all the correct behaviors
of the system based on the runtime scheduling strategy in Figure 1, then it is necessary
that the LO-critical execution rate θL

k for each HI-critical task τk ∈ ΓH must not be smaller
than uL

k

1−uH
k
+uL

k
. We denote by uL

k the lower bound on the LO-critical execution rate of the
HI-critical task τk ∈ ΓH :

uL
k = uL

k/(1− uH
k + uL

k) . (3)

We also define UL
H as follows:

U
L
H =

∑
τk∈ΓH

uL
k =

∑
τk∈ΓH

uL
k

1− uH
k + uL

k

. (4)

4 Execution Rate Assignment of MCFQ

If (UH
H + UH

L ) > m or (UL
L + U

L
H) > m or max{uH

k, u
L
k} > 1 for any task τk ∈ Γ, then no

algorithm can schedule such a task set. The MCFQ algorithm considers task sets where
(UH

H + UH
L ) ≤ m and (UL

L + U
L
H) ≤ m and max{uH

k, u
L
k} ≤ 1 for each task τk ∈ Γ.

The execution rate assignment algorithm of MCFQ is given in Figure 2. The LO- and
the HI-critical execution rates θL

i and θH
i of each LO-critical task is equal to its LO- and

HI-critical utilizations uL
i and uH

i , respectively. In Step 1 of the algorithm in Figure 2, we
assign θL

i = uL
i and θH

i = uH
i for each LO-critical task τi ∈ ΓL.

The LO- and HI-critical execution rates to each HI-critical task is assigned in Step 2
in Figure 2. Let the HI-critical tasks in set ΓH are indexed2 from 1 to h. The value of
the LO-critical execution rate θL

i of a HI-critical task τi ∈ ΓH is assigned in Eq. (5) such
that θL

i = min{uH
i ,Fi−1 · uL

i based on a threshold, denoted by Fi−1, which is defined in
Eq. (8). Notice that the value θL

i of the ith HI-critical task τi ∈ ΓH is assigned based on the

2 The execution rate-assignment algorithm in Figure 2 works for any arbitrary order of considering the
HI-critical tasks when assigning their execution rates in Step 2. However, sorting the HI-critical tasks in
increasing order of uH

i/u
L
i has schedulability performance very close to the optimal MC-Fluid algorithm

(shown in Section 6).

ECRTS 2017



19:8 Improving the Quality-of-Service for Scheduling Mixed-Criticality Systems

Table 1 An example dual-criticality IMC taskset.

τi Ti CL
i CH

i Li uL
i uH

i uL
i Fi−1 V H

i

τ1 20 7 13 HI 0.35 0.65 0.5 13/9 -
τ2 10 2 7 HI 0.2 0.7 0.4 13/8 -
τ3 40 8 5 LO 0.2 0.125 - - 0.6
τ4 60 30 12 LO 0.5 0.2 - - 0.4

(i− 1)th threshold (i.e, Fi−1) for i = 1, . . . h. After the value of θL
i is assigned using Eq. (5),

the HI-critical execution rate θH
i is assigned in Eq. (6) based on the value of θL

i such that
θH
i = (uH

i − uL
i )/(1− uL

i/θ
L
i ).

If
∑
τk∈Γ θ

H
k ≤ m and

∑
τk∈Γ θ

L
k ≤ m, we declare success; otherwise, we declare failure

in Step 3. We will prove in subsection 4.1 that if the algorithm declares success, then the
run-time scheduling strategy in Figure 1 constitutes a correct scheduling strategy.

Threshold Fi: The value of threshold Fi in Eq. (8) for task τi+1 is derived as follows.
Initially, F0 = (m − UL

L )/UL
H. Task τ1 ∈ ΓH in Eq. (5) uses F0. The value of Fi for task

τi+1 ∈ ΓH is recursively defined as follows for i = 1, . . . (h− 1):

Fi =


m−UL

L

U
L
H

if i = 0

max{Fi−1,
m−UL

L −
∑i

k=1
uH
k

(UL
H−
∑i

k=1
uL
k
)
} if i > 0

(8)

I Example 3. Consider the task set in Table 1 where m = 2. The last column shows the
V H
i values for the two LO-critical tasks τ3 and τ4 where V H

3 = hpy3 = 0.6 6= CH
3/C

L
3 and

V H
4 = 0.4 = CH

4/C
L
4 = 12/30. Note that V H

4 is assigned based on the imprecise computation
model while V H

3 is not assigned based on the imprecise computation model. The values of
uL
i and Fi−1 that are required to compute the execution rates of the HI-critical tasks are

shown in the eighth and ninth columns, respectively.
For the task set in Table 1, we have

UH
H = 0.65 + 0.7 = 1.35 UL

L = 0.2 + 0.5 = 0.7 UH
L = 0.125 + 0.2 = 0.325

U
L
H = 0.5 + 0.4 = 0.9 (UH

H + UH
L ) = 1.675 ≤ m (UL

L + U
L
H) = 1.6 ≤ m

Also note that (UL
L + UH

H ) = (1.35 + 0.7) = 2.05 > m, which implies such a task set cannot
allow both the LO-critical tasks to provide full service during the HI-critical behavior. Now
we present how the values of Fi−1 are computed for i = 1, 2 since there are two HI-critical
tasks (i.e, h = 2).
F0 = m−UL

L

U
L
H

= 2−0.7
0.9 = 13/9 and F1 = max{F0,

m−UL
L−u

H
1

U
L
H−uL

1
} = max{13/9, 2−0.7−0.65

0.9−0.5 } = 13/8
The LO-critical tasks τ3 and τ4 get values of θL

i and θH
i based on Step 1 in Figure 2 as

follows: θL
3=uL

3=0.2, θH
3=uH

3=0.125 and θL
4=uL

4=0.5, and θH
4=uH

4=0.2. The HI-critical tasks τ1
and τ2 get values of θL

i based on Eq. (5) as follows:
θL

1 = min{uH
1,F0 · uL

1} = min{0.65, 13/9× 0.5} = 0.65
θL

2 = min{uH
2,F1 · uL

2} = min{0.7, 13/8× 0.4} = 0.65
The HI-critical tasks τ1 and τ2 get values of θH

i based on Eq. (6) as follows:
θH

1 = uH
1−u

L
1

1−
uL

1
θL

1

= 0.65−0.35
1− 0.35

0.65
= 13/20 θH

2 = uH
2−u

L
2

1−
uL

2
θL

2

= 0.7−0.2
1− 0.2

0.65
= 13/18

Since
∑4
i=1 θ

L
i = 0.65+0.65+0.2+0.5 = 2 ≤ m and

∑4
i=1 θ

H
i = 13/20+13/18+0.125+0.2 =

1.6972 ≤ m, we conclude that the MCFQ algorithm returns success.
Note that the sum of the LO-critical execution rates is m (i.e., full capacity of the platform)

while the sum of the HI-critical execution rates is 1.6972. The slack capacity in HI-critical
behavior is (m− 1.6972) = 0.3027. J



R.M. Pathan 19:9

To prove the correctness of the MCFQ algorithm, the following lemmas will be used.

I Lemma 4. Consider the tasks in ΓH are indexed from 1 to h. If Γ is feasible, then

1 ≤ F0 ≤ F1 ≤ . . . ≤ Fh−1 . (9)

Proof. We prove this lemma using induction on i = 0, 1, . . . (h − 1). Since Γ is feasible,
it is necessary that (UL

L + U
L
H) ≤ m. In other words, F0 = m−UL

L

U
L
H
≥ 1. Now assume that

1 ≤ F0 ≤ F1 . . . ≤ Fi−1 for some i where i < (h− 1). From Eq. (8), we have

Fi = max{Fi−1,
m− UL

L −
∑i
k=1 u

H
k

(UL
H −

∑i
k=1 u

L
k)
} ≥ Fi−1 .

Therefore, we have 1 ≤ F0 ≤ F1 . . . ≤ Fi−1 ≤ Fi. Consequently, Eq. (9) holds. J

I Lemma 5. Consider a LO-critical task τi ∈ ΓL. We have uL
i ≤ θL

i ≤ 1 and uH
i ≤ θH

i ≤ 1.

Proof. For each LO-critical task τi ∈ ΓL, we have θL
i = uL

i and θH
i = uH

i according to Step 1
in Figure 2. Since uH

i ≤ 1 and uL
i ≤ 1 (necessary conditions for schedulability), we also have

that uL
i ≤ θL

i ≤ 1 and uH
i ≤ θH

i ≤ 1 for all τi ∈ ΓL. J

I Lemma 6. Consider a HI-critical task τi ∈ ΓH . We have We have uL
i ≤ θL

i ≤ 1 and
uH
i ≤ θH

i ≤ 1.

Proof. From Eq. (5), we have θL
i = min{uH

i ,Fi−1 ·uL
i} for τi ∈ ΓH . We will prove this lemma

considering two cases: case (i) θL
i = uH

i , and case (ii) θL
i = Fi−1 · uL

i .

Case (i): θL
i = uH

i. In such case, from Eq. (6) we have

θH
i = (uH

i − uL
i )/(1−

uL
i

θL
i

) = (uH
i − uL

i )/(1−
uL
i

uH
i

) = uH
i . (10)

Therefore, θL
i = θH

i = uH
i . Since 1 ≥ uH

i ≥ uL
i for a HI-critical task τi ∈ ΓH , we have

1 ≥ θL
i ≥ uL

i and 1 ≥ θH
i ≥ uH

i .

Case (ii): θL
i = Fi−1 · uL

i. Since θL
i = min{uH

i ,Fi−1 · uL
i} in Eq. (5) and θL

i = uL
i · Fi−1 for

this case, it follows that θL
i = Fi−1 · uL

i ≤ uH
i ≤ 1. Because Fi−1 ≥ 1 according to Eq. (9),

we have θL
i = Fi−1 · uL

i ≥ uL
i . Consequently, the following holds

1 ≥ uH
i ≥ θL

i = (uL
i · Fi−1) ≥ uL

i . (11)

Since 0 < (1 − uH
i + uL

i ) ≤ 1 for a HI-critical task τi ∈ ΓH , from Eq. (3) we have uL
i =

uL
i/(1− uH

i + uL
i ) ≥ uL

i . Then from Eq. (11) and based on the fact that uL
i ≥ uL

i , it follows
that 1 ≥ θL

i ≥ uL
i for this case. Now we will show that 1 ≥ θH

i ≥ uH
i holds. From Eq. (6) we

ECRTS 2017



19:10 Improving the Quality-of-Service for Scheduling Mixed-Criticality Systems

have

θH
i = (uH

i − uL
i )/(1−

uL
i

θL
i

)

(From Eq. (11), uH
i ≥ θL

i ≥ uL
i for this case)

⇒ (uH
i − uL

i )/(1−
uL
i

uH
i

) ≤ θH
i ≤ (uH

i − uL
i )/(1−

uL
i

uL
i

)

⇔ uH
i ≤ θH

i ≤ (uH
i − uL

i )/(1−
uL
i

uL
i

)

(From Eq. (3), we have uL
i = uL

i/(1− uH
i + uL

i ))

⇔ uH
i ≤ θH

i ≤ (uH
i − uL

i )/(1−
uL
i

uL
i/(1− uH

i + uL
i )

)

⇔ uH
i ≤ θH

i ≤ (uH
i − uL

i )/(1−
1

1/(1− uH
i + uL

i )
)

⇔ uH
i ≤ θH

i ≤ 1 . J

4.1 Algorithm MCFQ: Proof of Correctness
In this subsection, Theorem 8 proves that the MCFQ algorithm presented in Figure 2 is correct.
Before presenting Theorem 8, we show in Lemma 7 that the execution rates θL

i and θH
i that

are computed by MCFQ in Figure 2 ensure the correctness in HI-critical behavior for both LO-
and HI-critical tasks by analyzing the special case in which during runtime it is detected
that some job of a HI-critical task has executed beyond its LO-critical execution time (i.e.,
criticality of the system is switched).

I Lemma 7. Assume that the system is schedulable in stable LO-critical behavior. Let to
denote the first time instant at which some job of a HI-critical task does not signal completion
despite having executed for its LO-critical WCET. Any LO or any HI critical task that is
active (has been released but not completed execution equal to its HI-critical execution) at
time instant to receives an amount of execution no smaller than its HI-critical WCET prior
to its deadline.

Proof. We will show that this lemma holds for both LO-critical tasks and HI-critical tasks.

LO-critical task. Suppose a job of a LO-critical task τi is active at time to. Recall from Step
1 of the algorithm in Figure 2 that the LO- and HI-critical execution rates are set as θL

i = uL
i

and θH
i = uH

i , where uH
i ≤ uL

i for each LO-critical task τi. Therefore, it is guaranteed that each
job of τi will receive at least execution rate uH

i from its release to its deadline. Consequently,
the LO-critical active job at time to is guaranteed to complete its CH

i units of execution by its
deadline.

HI-critical task. Suppose a job of a HI-critical task τi is active at time to. Lemma 1
(originally proved as Lemma 5 in [12]) states that if uL

i/θ
L
i + (uH

i − uL
i )/θH

i ≤ 1 and the
HI-critical task τi is schedulable in (stable) LO-critical behavior, then an active job of task
τi at time to also meets its deadline. The MCFQ algorithm in Eq. (6) assigns the HI-critical
execution rate θH

i of task τi based on the value of θL
i such that θH

i = (uH
i − uL

i )/(1 − uL
i/θ

L
i )

which implies uL
i/θ

L
i + (uH

i − uL
i )/θH

i ≤ 1. Therefore, any active job of the HI-critical task τi at
time to meets its deadline under MCFQ. J



R.M. Pathan 19:11

I Theorem 8. If the condition in Eq. (7) of the MCFQ algorithm in Figure 2 is satisfied, then
the execution rates assigned to the tasks constitute an MC-correct scheduling strategy.

Proof. Lemma 5 and Lemma 6 together show that the values of θL
i and θH

i for each task
τi ∈ Γ are larger than or equal to uL

i and uH
i , respectively. In addition, Eq. (7) ensures

that the individual sum of the LO- and HI-critical execution rates for all tasks is not larger
than the capacity of the platform. Therefore, the system is correct for both stable LO- and
HI-critical behaviors (i.e., when the system is not switching its criticality). Finally, Lemma 7
shows the correctness of the system upon transition from LO- to HI-critical behavior. J

The MCFQ algorithm has a speedup bound of 4/3 which is optimal for IMC task set. The
proof of the speedup bound is given in Theorem 11 in Appendix A.

5 QoS Oriented Scheduling

When the MCFQ algorithm in Figure 2 declares “success”, then the system is correct according
to Theorem 8 and each LO-critical task has enough execution budget to provide degraded
service during the HI-critical behavior of the system. In other words, each job of the LO-critical
task τi executes for at most CH

i time units during the HI-critical behavior and contributes a
QoS value of V H

i to the overall QoS of the system, where V H
i ≤ V L

i since CH
i ≤ CL

i .
The question we investigate in this section is the following: If the system designer is not

happy with the degraded service of the LO-critical tasks in HI-critical behavior, how can
we make them happier? To answer this question we investigate the possibility of allowing
some/all of the LO-critical tasks to provide full service during the HI-critical behavior of the
system while ensuring correctness. If (UH

H + UL
L ) ≤ m, then each LO- and HI-critical task

can be assigned θL
i = θH

i = max{uL
i , u

H
i} and 100% QoS is achieved in all possible behaviors.

Our proposed QoS-oriented scheduling in this section is applicable to task sets even when
(UH

H + UL
L ) > m.

If the algorithm in Figure 2 returns success, then slack in utilization during the HI-critical
behavior is defined as

S = (m−
∑
τi∈Γ

θH
i ) . (12)

Recall that MCFQ algorithm in Step 1 sets θH
i = uH

i where uH
i ≤ uL

i for each LO-critical task
τi ∈ ΓL. We will try to distribute the slack S to guarantee execution budget for some selected
LO-critical tasks such that these tasks provide full service (i.e., execute CL

i time units) also
during the HI-critical behavior. In other words, the execution rates assigned to the variables
θH
i for the selected LO-critical tasks will be set to uL

i rather than uH
i so that τi provides full

service during the HI-critical behavior. If some LO-critical tasks provides full service – due to
their execution rates θH

i being upgraded – such that the total increase in HI-critical execution
rates in comparison to that is computed by the MCFQ algorithm is not larger than slack S,
then the correctness of the system is not compromised. This is because the execution rate of
no HI-critical task is modified and the sum of HI-critical execution rates is still ≤ m.

Consider the Example 3 in Section 4. The sum of the HI-critical execution rates is 1.6972
and the slack is 0.3027 where m = 2. The LO-critical task τ3 is assigned execution rate
θH

3 = uH
3 = 0.125 by algorithm MCFQ and provides degraded service during the HI-critical

behavior. By increasing θH
3 from 0.125 to uL

3 = 0.2, we can guarantee that τ3 provides full
service in all behaviors. In such case, the total increase in HI-critical execution rates is
(0.2− 0.125) = 0.075. Since we have a slack of 0.3027, the increase in execution rate of θH

3 by

ECRTS 2017



19:12 Improving the Quality-of-Service for Scheduling Mixed-Criticality Systems

0.075 will not violate the correctness. In such case, the QoS of the system is increased by
V L

3 − V H
3 = 1− 0.6 = 0.4 where V L

3 = 1.0.
Similarly, the LO-critical task τ4’s execution rate θH

4 = uH
4 = 0.2 can also be increased to

θH
4 = uL

4 = 0.5. In such case, the HI-critical execution rate is increased by (0.5− 0.2) = 0.3
which is less than the slack 0.3027 and the correctness of the system is not violated. In
such case, the QoS of the system will be increased by V L

4 − V H
4 = 1 − 0.4 = 0.6. However,

we cannot increase both θH
3 and θH

4 respectively to 0.2 and 0.5 because the total HI-critical
execution rate will be increased by (0.075 + 0.3) = 0.375, which is larger than the slack 0.3027
and the system is not guaranteed to remain correct. To maximize the increase in overall
system’s QoS while ensuing correctness, at most one LO-critical task can be selected: task τ4
is selected since it increases the QoS by 0.6 which is larger than that of task τ3.

Given a correct system, we formulate an ILP to determine which LO-critical tasks are
to be selected to maximize the increase in overall system’s QoS while ensuring correctness.
Let xi ∈ {0, 1} denote a decision variable whether the LO-critical task τi can be guaranteed
to provide full service or not. The solution of the ILP determines the values of xi for each
LO-critical task. If xi = 1, then the increase in HI-critical execution rate of the LO-critical
task τi is xi · (uL

i − uH
i ) and the increase in QoS is xi · (V L

i − V H
i ).

The purpose of the ILP is to find the value of xi for each LO-critical task τi such that (i)
the total increase in QoS is maximized (i.e.,

∑
τi∈ΓL xi · (V

L
i − V H

i ) is maximized), and (ii)
the total increase in the HI-critical execution rates for all the LO-critical tasks is not larger
than the slack S to ensure correctness (i.e.,

∑
τi∈ΓL xi · (u

L
i − uH

i ) ≤ S). The LO-critical task
τi for which xi = 1 provides full service in all possible criticality behaviors. The value of the
decision variable xi for each τi ∈ ΓL is determined using the following ILP:

maximize
xi

∑
τi∈ΓL

xi · (V L
i − V H

i )

subject to
∑
τi∈ΓL

xi · (uL
i − uH

i ) ≤ S

and xi = 0 or xi = 1

(13)

Given the values of xi for all the LO-critical tasks in ΓL, the total increase in QoS of the
system is normalized by the number of LO-critical tasks. The normalized QoS, denoted by
V normtask , is given in Eq. (14). We set V normtask = 0 if |ΓL| = 0. Note that 0 ≤ V normtask ≤ 1.

V normtask =
∑
τi∈ΓL xi · (V

L
i − V H

i )
|ΓL|

(14)

6 Empirical Results

This section presents the results on the effectiveness of MCFQ algorithm both in terms of
schedulability and improving the system-level QoS using randomly generated implicit-deadline
sporadic IMC task sets. The proposed MCFQ algorithm is compared against the MC-Fluid [12]
and MCF [3] algorithms. However, the MC-Fluid and MCF algorithms do not consider IMC
task models (i.e., all the LO-critical tasks are aborted once the system switches to HI-critical
behavior). Baruah et al. [2] extended the MC-Fluid algorithm for uniprocessor considering
IMC task model. We extended the MC-Fluid and MCF algorithms for multiprocessors based
on a similar approach in [2] for IMC tasks (details of this extension are in Appendix B).
Before we present our results, we present the task set generation algorithm.



R.M. Pathan 19:13

6.1 Task Set Generation Algorithm
Random implicit-deadline sporadic MC tasksets are generated using an approach similar to
those in [12, 3, 13]. Let UB = max{(UH

H +UH
L )/m, (UL

H +UL
L )/m} denotes the upper bound on

normalized total system utilization in both LO- and HI-critical behaviors. The number of tasks
in a randomly generated task set is controlled using an upper bound on the individual task’s
utilization (umax). The proportion of HI-critical tasks is controlled using probability (ph).
The ratio of HI- and LO-critical utilizations of each task τi is controlled using a parameter
(Rmax) such that 1 ≤ uL

i /u
H
i ≤ Rmax for a LO-critical task and 1 ≤ uH

i /u
L
i ≤ Rmax for a

HI-critical task. The following set of values are considered in our experiments for the task
set parameters:

Number of processors: m ∈ {2, 4, 8, 16}.
Normalized utilization bound: UB ∈ {0.1, 0.15, . . . 1.0}.
Probability of tasks to be of HI-critical: ph ∈ {0.0, 0.1, 0.2, . . . 1.0}.
Maximum individual task utilization: umax ∈ {0.1, 0.2, 0.3, . . . 1.0}.
Maximum ratio of individual task’s utilizations: Rmax ∈ {1.0, 1.4, 1.8, . . . 4.0}.

We consider 75,240 different combinations of the above parameters to generate the tasksets.
For each combination, we generate 1000 task sets where each task set is generated as follows
where each parameter is selected from an uniform distribution.

A real number Pi is drawn from the range [0, 1]. If Pi < ph, then Li = HI; otherwise
Li = LO.
Task period Ti is drawn from the range [10, 1000].
Task utilization ui is drawn from the range [0.02, umax].
A real number Ri is drawn from the range [1, Rmax].
If Li = LO, then uL

i = ui and uH
i = (ui/Ri). Otherwise, uH

i = ui and uL
i = (ui/Ri). The

value of CL
i = duL

i · Tie and CH
i = duH

i · Tie.
If Li = LO, then V L

i = 1.0 and V H
i = CH

i /C
L
i , i.e., the QoS value is set by the system

designer based on imprecise computation model [15, 16].
Repeat the above steps as long as max{(UH

H + UH
L )/m, (UL

H + UL
L )/m} ≤ UB. Once the

condition is violated, discard the task that was generated the last.
If the resulting task set satisfies the condition max{(UH

H + UH
L )/m, (UL

H + UL
L )/m} >

UB − 0.05, then accept the task set and stop the procedure. Otherwise, discard the
taskset and the repeat the above steps.

6.2 Results: Schedulability Tests
We compare the effectiveness of the MCFQ algorithm in terms of schedulability of randomly
generated task sets with the (extended) MC-Fluid and MCF algorithms applicable to IMC
task sets. For a specific scheduling algorithm, and m, UB , ph, Rmax values, let the acceptance
ratio denote the fraction of task sets out of 1000 task sets that are deemed schedulable by
the algorithm.

The HI-critical tasks are considered in increasing order of uH
i/u

L
i when assigning the

execution rates based on the MCFQ algorithm. Figure 3 presents the acceptance ratio for
each scheduling algorithm against various values of m and UB with ph = 0.5, umax = 0.9
and Rmax = 2. All the algorithms have acceptance ratio 100% when UB < 0.70 and we plot
results for UB > 0.7.

We have the following observations. The MCFQ algorithm outperforms the MCF algorithm
for task sets with large utilization. The performance of the MCFQ algorithm is very close to

ECRTS 2017



19:14 Improving the Quality-of-Service for Scheduling Mixed-Criticality Systems

0.7 0.8 0.9 1

Normalized Utilization Bound (U
B

)

0

0.2

0.4

0.6

0.8

1
A

cc
ep

ta
nc

e 
R

at
io

MCFQ

MCF

MC-Fluid

(a) m = 2

0.7 0.8 0.9 1

Normalized Utilization Bound (U
B

)

0

0.2

0.4

0.6

0.8

1

A
cc

ep
ta

nc
e 

R
at

io

MCFQ

MCF

MC-Fluid

(b) m = 4

0.7 0.8 0.9 1

Normalized Utilization Bound (U
B

)

0

0.2

0.4

0.6

0.8

1

A
cc

ep
ta

nc
e 

R
at

io

MCFQ

MCF

MC-Fluid

(c) m = 8

0.7 0.8 0.9 1

Normalized Utilization Bound (U
B

)

0

0.2

0.4

0.6

0.8

1

A
cc

ep
ta

nc
e 

R
at

io
MCFQ

MCF

MC-Fluid

(d) m = 16

Figure 3 Comparison of acceptance ratios for different number of processors.

the optimal MC-Fluid algorithm. For larger UB , the acceptance ratio of MCF drops sharply
while the performance of MCFQ remains very close to the optimal MC-Fluid algorithm.

For comparison of the acceptance ratios of different algorithms for varying values of ph,
umax and Rmax, we also computed the weighted acceptance ratios in Figure 4. This metric
denotes the fraction of schedulable task sets weighted by the normalized utilization bound UB .
If AR(UB) denotes the acceptance ratio of a scheduling algorithm for normalized utilization
bound UB for some given values of ph, umax, Rmax and m, then the weighted acceptance

ratio for a set S of UB values is given as W (S) =
(∑

UB∈S(AR(UB)× UB)
)
/
∑
UB∈S UB .

In Figure 4a, we plot the weighted acceptance ratio of the algorithms for different values
of ph for umax = 0.9 and Rmax = 2. The performance of the algorithms is better when the
value of ph is either very small or very large since at these extremes the task sets behaves more
like non-MC task systems and the effect of switching the criticality behavior has less impact
on schedulability. In Figure 4b, we plot the weighted acceptance ratio of the algorithms for
different values of umax for ph = 0.5 and Rmax = 2. The performance of the algorithms is
independent of the variation in umax (which is also observed in [3] for non-IMC task sets).

In Figure 4c, we plot the weighted acceptance ratio of the algorithms for different values
of Rmax for ph = 0.5 and umax = 0.9. The performance of the algorithms decreases with
increasing values of Rmax. When Rmax increases, the total HI-critical utilization of the
HI-critical tasks also increases and the total HI-critical utilization of the LO-critical tasks
decreases. As it is already shown in [3] for non-IMC tasks (i.e., LO-critical tasks are dropped
at criticality switch), the weighted acceptance ratio decreases with larger Rmax. For IMC
task sets in which the LO-critical tasks execute in HI-critical behavior with degraded service,
it is even more difficult to schedule such task sets as Rmax increases.



R.M. Pathan 19:15

0 0.2 0.4 0.6 0.8 1

Varying prob for a task to be HI-criticality (p
h
)

0

0.2

0.4

0.6

0.8

1

W
e
ig

h
te

d
 A

c
c
e
p
ta

n
c
e
 R

a
ti
o

MCFQ

MCF

MC-Fluid

(a) Varying ph

0.2 0.4 0.6 0.8 1

Varying upper bound for max. task utiliation (u
max

)

0

0.2

0.4

0.6

0.8

1

W
e
ig

h
te

d
 A

c
c
e
p
ta

n
c
e
 R

a
ti
o

MCFQ

MCF

MC-Fluid

(b) varying umax

1 2 3 4

Varying upper bound for max utilization ratio (R
max

0

0.2

0.4

0.6

0.8

1

W
e
ig

h
te

d
 A

c
c
e
p
ta

n
c
e
 R

a
ti
o

MCFQ

MCF

MC-Fluid

(c) Varying Rmax

Figure 4 Comparison of weighted acceptance ratios for different number of processors.

Considering the plots in Figure 4a–4c, it is evident that the performance of MCFQ algorithm
is much better than the MCF algorithm and is very close to the optimal MC-Fluid algorithm
for varying values of umax, ph, and Rmax for IMC task sets.

6.3 Results: System’s QoS
In this section, we present the effectiveness of MCFQ algorithm in increasing the overall QoS
value of the system (defined as V normtask in Eq. (14)) in comparison to MC-Fluid and MCF
algorithms.

If a task set is not schedulable using a particular algorithm, then such a task set is not
subjected to QoS evaluation. This is because the system designer’s first concern is ensuring MC-
correctness (i.e., schedulability). If more than one algorithm guarantee the MC-correctness of
a given task system, then the system designer’s second concern is which algorithm maximizes
the QoS of the system. Therefore, we consider only those task sets that are schedulable using
all the three algorithms for QoS evaluation based on the approach presented in Section 5.
For each such randomly-generated task set and each particular algorithm, we determine
V normtask by solving the ILP given in Eq. (13) using Matlab’s intlinprog function. If K out
of 1000 tasksets for a particular configuration are deemed to be schedulable using all three
algorithms, then the average V normtask , denoted by V QoS , of these K task sets is computed for
each algorithm.

Figure 5 presents the average increase in overall QoS of the system (i.e., value of V QoS)
for each scheduling algorithm against various values of m and UB with ph = 0.5, umax = 0.9
and Rmax = 2. The MCFQ algorithm outperforms both MC-Fluid and MCF. This is because
the amount of slack available during the HI-critical behavior, based on the execution rates
determined by algorithm MCFQ in Figure 2, is much larger than that of both MC-Fluid and
MCF algorithms. Such slack allows more LO-critical tasks to provide full service. When the
utilization of the system is very large, the MCFQ algorithm provides much higher QoS than
both MC-Fluid and MCF.

Figure 6 presents the average number of LO-critical tasks (among all the LO-critical tasks
of all the K schedulable task sets at each utilization point) that provide full service during the
HI-critical behavior of the system for various values of m and UB with ph = 0.5, umax = 0.9,
and Rmax = 2.

It is evident from Figure 6 that when the utilization of the system is low, then all the
algorithms allow almost all the LO-critical tasks to provide full service in all behaviors. Earlier
approaches do not consider such QoS improvement for systems with (UH

H + UL
L ) > m, i.e.,

the LO-critical tasks are either aborted (non-IMC task model) or only guaranteed to provide
degraded (IMC task model) service.

ECRTS 2017



19:16 Improving the Quality-of-Service for Scheduling Mixed-Criticality Systems

0 0.2 0.4 0.6 0.8 1

Normalized Utilization Bound (U
B

)

0

0.2

0.4

0.6

0.8

1
A

vr
. I

nc
re

as
e 

in
 V

Q
oS

MCFQ

MCF

MC-Fluid

(a) m=2

0 0.2 0.4 0.6 0.8 1

Normalized Utilization Bound (U
B

)

0

0.2

0.4

0.6

0.8

1

A
vr

. I
nc

re
as

e 
in

 V
Q

oS

MCFQ

MCF

MC-Fluid

(b) m=4

0 0.2 0.4 0.6 0.8 1

Normalized Utilization Bound (U
B

)

0

0.2

0.4

0.6

0.8

1

A
vr

. I
nc

re
as

e 
in

 V
Q

oS

MCFQ

MCF

MC-Fluid

(c) m=8

0 0.2 0.4 0.6 0.8 1

Normalized Utilization Bound (U
B

)

0

0.2

0.4

0.6

0.8

1

A
vr

. I
nc

re
as

e 
in

 V
Q

oS
MCFQ

MCF

MC-Fluid

(d) m=16

Figure 5 Average increase in QoS of the system (V QoS)

0 0.2 0.4 0.6 0.8 1

Normalized Utilization Bound (U
B

)

0

0.2

0.4

0.6

0.8

1

A
vr

. f
ra

c.
 o

f L
O

-c
rit

 ta
sk

s 
w

ith
 fu

ll 
se

rv
ic

e

MCFQ

MCF

MC-Fluid

(a) m=2

0 0.2 0.4 0.6 0.8 1

Normalized Utilization Bound (U
B

)

0

0.2

0.4

0.6

0.8

1

A
vr

. f
ra

c.
 o

f L
O

-c
rit

 ta
sk

s 
w

ith
 fu

ll 
se

rv
ic

e

MCFQ

MCF

MC-Fluid

(b) m=4

0 0.2 0.4 0.6 0.8 1

Normalized Utilization Bound (U
B

)

0

0.2

0.4

0.6

0.8

1

A
vr

. f
ra

c.
 o

f L
O

-c
rit

 ta
sk

s 
w

ith
 fu

ll 
se

rv
ic

e

MCFQ

MCF

MC-Fluid

(c) m=8

0 0.2 0.4 0.6 0.8 1

Normalized Utilization Bound (U
B

)

0

0.2

0.4

0.6

0.8

1

A
vr

. f
ra

c.
 o

f L
O

-c
rit

 ta
sk

s 
w

ith
 fu

ll 
se

rv
ic

e

MCFQ

MCF

MC-Fluid

(d) m=16

Figure 6 Average fraction of LO-critical tasks providing full service in both criticality behaviors



R.M. Pathan 19:17

The MCFQ algorithm allows almost 100% of all the LO-critical tasks to provide full service
up to very high utilization (UB ≈ 0.8) in comparison to both MC-Fluid and MCF algorithms
for different number of processors. The MCFQ algorithm allows much larger fraction of the
LO-critical tasks to provide full service in comparison to both MC-Fluid and MCF when the
utilization is higher than 0.8.

7 Conclusion

This paper proposes the MCFQ algorithm based on the fluid scheduling model and determines
the execution rates for a set of implicit-deadline IMC sporadic tasks considering multiprocessor
platform. The recently proposed IMC task model is extended with two QoS values for each
LO-critical task. The system designer can assign these QoS values and determine the QoS of
the overall system.

The design of the execution rate assignment algorithm of MCFQ ensures that the system is
fully utilized during the LO-critical behavior so that the system may have some slack capacity
during the HI-critical behavior. The slack, if available, is distributed to the LO-critical tasks
such that some of these tasks continue to provide full service after the system switches to
HI-critical behavior. The LO-critical tasks that provide full service improve the QoS of the
system – making the system designers happier.

References
1 S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-Spaccamela, S. Van Der Ster, and

L. Stougie. The Preemptive Uniprocessor Scheduling of Mixed-Criticality Implicit-Deadline
Sporadic Task Systems. In Proc. of ECRTS, 2012. doi:10.1109/ECRTS.2012.42.

2 S. Baruah, A. Burns, and Z. Guo. Scheduling mixed-criticality systems to guarantee some
service under all non-erroneous behaviors. In Proc. of ECRTS, 2016. doi:10.1109/ECRTS.
2016.12.

3 S. Baruah, A. Eswaran, and Z. Guo. MC-Fluid: Simplified and Optimally Quantified. In
Proc. of RTSS, 2015. doi:10.1109/RTSS.2015.38.

4 S. Baruah, Haohan Li, and L. Stougie. Towards the Design of Certifiable Mixed-criticality
Systems. In Proc. of RTAS, 2010. doi:10.1109/RTAS.2010.10.

5 S. Baruah and S. Vestal. Schedulability Analysis of Sporadic Tasks with Multiple Criticality
Specifications. In Proc. of ECRTS, 2008. doi:10.1109/ECRTS.2008.26.

6 Sanjoy Baruah, Alan Burns, and Robert Davis. Response-time analysis for mixed criticality
systems. In Proc. of RTSS, 2011. doi:10.1109/RTSS.2011.12.

7 A. Burns and S. Baruah. Towards a more practical model for mixed criticality systems.
In Proc. of WMC, RTSS, 2013. http://www-users.cs.york.ac.uk/~robdavis/wmc2013/
paper3.pdf.

8 A. Burns and R. Davis. Mixed-criticality systems: A review. In (available online), Eighth
Edition, July, 2016. http://www-users.cs.york.ac.uk/~burns/review.pdf.

9 Oliver Gettings, Sophie Quinton, and Robert I. Davis. Mixed criticality systems with
weakly-hard constraints. In Proc. of RTNS, 2015. doi:10.1145/2834848.2834850.

10 Nan Guan, Pontus Ekberg, Martin Stigge, and Wang Yi. Effective and Efficient Scheduling
of Certifiable Mixed-Criticality Sporadic Task Systems. In Proc. of RTSS, 2011. doi:
10.1109/RTSS.2011.10.

11 Mathieu Jan, Lilia Zaourar, and Maurice Pitel. Maximizing the execution rate of low-
criticality tasks in mixed criticality systems. In Proc. of WMC, RTSS, 2013. http://
www-users.cs.york.ac.uk/~robdavis/wmc2013/paper6.pdf.

ECRTS 2017

http://dx.doi.org/10.1109/ECRTS.2012.42
http://dx.doi.org/10.1109/ECRTS.2016.12
http://dx.doi.org/10.1109/ECRTS.2016.12
http://dx.doi.org/10.1109/RTSS.2015.38
http://dx.doi.org/10.1109/RTAS.2010.10
http://dx.doi.org/10.1109/ECRTS.2008.26
http://dx.doi.org/10.1109/RTSS.2011.12
http://www-users.cs.york.ac.uk/~robdavis/wmc2013/paper3.pdf
http://www-users.cs.york.ac.uk/~robdavis/wmc2013/paper3.pdf
http://www-users.cs.york.ac.uk/~burns/review.pdf
http://dx.doi.org/10.1145/2834848.2834850
http://dx.doi.org/10.1109/RTSS.2011.10
http://dx.doi.org/10.1109/RTSS.2011.10
http://www-users.cs.york.ac.uk/~robdavis/wmc2013/paper6.pdf
http://www-users.cs.york.ac.uk/~robdavis/wmc2013/paper6.pdf


19:18 Improving the Quality-of-Service for Scheduling Mixed-Criticality Systems

12 J. Lee, K. M. Phan, X. Gu, J. Lee, A. Easwaran, I. Shin, and I. Lee. MC-Fluid: Fluid
Model-Based Mixed-Criticality Scheduling on Multiprocessors. In Proc. of RTSS, 2014.
doi:10.1109/RTSS.2014.32.

13 Haohan Li and Sanjoy Baruah. Global mixed-criticality scheduling on multiprocessors. In
Proc of ECRTS, 2012. doi:10.1109/ECRTS.2012.41.

14 Di Liu, Jelena Spasic, Gang Chen, Nan Guan, Songran Liu, Todor Stefanov, and Wang Yi.
EDF-VD Scheduling of Mixed-Criticality Systems with Degraded Quality Guarantees. In
Proc. of RTSS, 2016. doi:10.1109/RTSS.2016.013.

15 Jane W. S. Liu, Kwei-Jay Lin, Wei-Kuan Shih, Albert Chuang-shi Yu, Jen-Yao Chung, and
Wei Zhao. Algorithms for scheduling imprecise computations. Computer, 24(5):58–68, May
1991. doi:10.1007/978-1-4615-3956-8_8.

16 J.W. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung. Imprecise computations.
Proceedings of the IEEE, 82(1):83–94, 1994. doi:10.1109/5.259428.

17 Risat Mahmud Pathan. Fault-tolerant and real-time scheduling for mixed-criticality sys-
tems. Real-Time Systems, 50(4):509–547, 2014. doi:10.1007/s11241-014-9202-z.

18 F. Santy, L. George, P. Thierry, and J. Goossens. Relaxing Mixed-Criticality Scheduling
Strictness for Task Sets Scheduled with FP. In Proc. of ECRTS, 2012. doi:10.1109/
ECRTS.2012.39.

19 H. Su, N. Guan, and D. Zhu. Service guarantee exploration for mixed-criticality systems.
In Proc. of RTCSA, 2014. doi:10.1109/RTCSA.2014.6910499.

20 H. Su and D. Zhu. An elastic mixed-criticality task model and its scheduling algorithm. In
Proc. of DATE, 2013. doi:10.7873/DATE.2013.043.

21 S. Vestal. Preemptive Scheduling of Multi-criticality Systems with Varying Degrees of
Execution Time Assurance. In Proc. of RTSS, pages 239–243, 2007. doi:10.1109/RTSS.
2007.47.

A Speed Up Bound

The MCFQ algorithm has a speed-up bound of 4/3: if a given dual-criticality implicit-deadline
IMC sporadic task system can be scheduled upon a particular multiprocessor platform in
an MC-correct manner by any algorithm (including an optimal, clairvoyant, one), then it
can be scheduled by MCFQ upon a platform in which each processor is faster by a factor 4/3.
It is already shown (in Theorem 5 in [1]) that no non-clairvoyant algorithm for scheduling
dual-criticality implicit-deadline non-IMC sporadic task systems can have a speedup factor
smaller than 4/3 even on uniprocessor (i.e., for m = 1). Therefore, the speed-up bound of
4/3 for MCFQ is optimal since IMC task model is a generalization of non-IMC task model.

To prove the speed-up of 4/3 in Theorem 11, we use Lemma 9 and Lemma 10. Lemma 9
shows that the sum of the LO-critical execution rates that are determined by the MCFQ al-
gorithm in Figure 2 does not exceeds the capacity of the platform.

I Lemma 9. The MCFQ algorithm in Figure 2 ensures that
∑
τi∈Γ θ

L
i ≤ m.

Proof. Each LO-critical task τi ∈ ΓL is assigned LO-critical execution rate θL
i = uL

i in Step 1
of the algorithm in Figure 2. Therefore,

∑
τi∈ΓL θ

L
i =

∑
τi∈ΓL u

L
i = UL

L . Since Γ = ΓH ∪ ΓL,
this lemma is proved by showing that

∑
τi∈ΓH θ

L
i ≤ m− UL

L .
Let the tasks in ΓH = {τ1, τ2, . . . τh} are indexed (in an arbitrary order) such that there

are h = |ΓH | tasks in set ΓH . Since θL
i = min{uH

i ,Fi−1 · uL
i} in Eq. (5) for τi ∈ ΓH , we have

θL
i = min{uH

i ,Fi−1 · uL
i} ≤ uH

i (15)
θL
i = min{uH

i ,Fi−1 · uL
i} ≤ Fi−1 · uL

i (16)

http://dx.doi.org/10.1109/RTSS.2014.32
http://dx.doi.org/10.1109/ECRTS.2012.41
http://dx.doi.org/10.1109/RTSS.2016.013
http://dx.doi.org/10.1007/978-1-4615-3956-8_8
http://dx.doi.org/10.1109/5.259428
http://dx.doi.org/10.1007/s11241-014-9202-z
http://dx.doi.org/10.1109/ECRTS.2012.39
http://dx.doi.org/10.1109/ECRTS.2012.39
http://dx.doi.org/10.1109/RTCSA.2014.6910499
http://dx.doi.org/10.7873/DATE.2013.043
http://dx.doi.org/10.1109/RTSS.2007.47
http://dx.doi.org/10.1109/RTSS.2007.47


R.M. Pathan 19:19

Recall from Eq. (9) that 1 ≤ F0 ≤ F1 ≤ . . . ≤ Fh−1. We prove this lemma by considering
two cases: case (i) F0 = F1 = . . . = Fh−1, and case (ii) Fk−1 < Fk for some k, 1 ≤ k ≤ h−1.

Case (i): From Eq. (8), we have F0 ·
∑h
i=1 u

L
i = F0 · U

L
H = (m− UL

L ). From Eq. (16), we
have ∑

τi∈ΓH

θL
i =

h∑
i=1

θL
i ≤

h∑
i=1
Fi−1 · uL

i

(For this case Fi = F0 for i = 0, 1 . . . (h− 1))

⇔
∑
τi∈ΓH

θL
i =

h∑
i=1

θL
i ≤

h∑
i=1
Fi−1 · uL

i =
h∑
i=1
F0 · uL

i = m− UL
L

Case (ii): Let q is the largest index in the range [1, 2, . . . (h− 1)] such that Fq−1 < Fq where
1 ≤ q ≤ h− 1. Such a q must exist for this case. Since q is largest index, we have based on
Eq. (9)

Fq−1 < Fq = Fq+1 = . . . = Fh−1 (17)

Since Fq = max{Fq−1,
m−UL

L−
∑q

i=1
uH
i

U
L
H−
∑q

i=1
uL
i

} according to Eq. (8) and Fq−1 < Fq for this case, we
have

Fq =
m− UL

L −
∑q
i=1 u

H
i

U
L
H −

∑q
i=1 u

L
i

> Fq−1 (18)

To prove this lemma we show that

∑
τi∈ΓH

θL
i =

h∑
i=1

θL
i =

q∑
i=1

θL
i +

h∑
i=q+1

θL
i ≤ m− UL

L

(From Eq. (15) and Eq. (16))

⇐
q∑
i=1

uH
i +

h∑
i=q+1

Fi−1 · uL
i ≤ m− UL

L

(From Eq. (17), Fq = Fi−1 for i = q + 1, q + 2, . . . h))

⇔
q∑
i=1

uH
i + Fq ·

h∑
i=q+1

uL
i ≤ m− UL

L

⇔
q∑
i=1

uH
i + Fq · (U

L
H −

q∑
i=1

uL
i ) ≤ m− UL

L

(From Eq. (18))

⇔
q∑
i=1

uH
i +

m− UL
L −

∑q
i=1 u

H
i

(UL
H −

∑q
i=1 u

L
i )
· (UL

H −
q∑
i=1

uL
i ) ≤ m− UL

L

⇔ m− UL
L ≤ m− UL

L

Therefore, the sum of the LO-critical execution rates of all the tasks is not larger than m. J

I Lemma 10. Consider the following function f(x) where

f(x) = x · ((2s− 1)m− x)

for 0 ≤ x ≤ (2s− 1) ·m. The maximum value of function f(x) is (2sm−m)2

4 .

ECRTS 2017



19:20 Improving the Quality-of-Service for Scheduling Mixed-Criticality Systems

Proof. The first derivative of f(x) with respect to x is f ′(x) = ((2s − 1)m − 2x). The
derivative is zero for x = (2s − 1)m/2. Considering the two end-points of the interval
[0, (2s− 1)m], function f(x) reaches its maximum for some x ∈ {0, (2s− 1)m/2, (2s− 1)m}.
We have f(x) = 0 when either x = 0 or x = (2s − 1)m. We have f(x) = (2sm−m)2

4 when
x = (2s− 1)m/2. Therefore, the maximum of f(x) within [0, (2s− 1)m] is (2sm−m)2

4 . J

In addition to Lemma 9–10, we need Eq. (19) to show that MCFQ has a speed-up bound 4/3.

θH
i = (uH

i − uL
i )

(1− uL
i

θL
i
)

= uH
i +

uH
i − uL

i − uH
i (1−

uL
i

θL
i
)

1− uL
i

θL
i

= uH
i + uL

i ·
uH
i − θL

i

θL
i − uL

i

(19)

I Theorem 11. The speedup bound of MCFQ is 4/3.

Proof. Consider an IMC task set that is feasible using an algorithm (including an optimal,
clairvoyant, one) on m speed-s processors where s ≤ 3/4. We will now show that the
MCFQ algorithm in Figure 2 also declares success (i.e., the condition in Eq. (7) is satisfied) for
this task set for m speed-1 processors. Since 1/(3/4) = 4/3, the MCFQ algorithm has speedup
bound 4/3.

If a task system is feasible upon m speed-s processors, it is necessary that the following
three conditions hold:

(UH
H + UH

L ) ≤ m · s (20)

(UL
L + U

L
H) ≤ m · s (21)

∀i : max{uL
i , u

H
i} ≤ s (22)

We assume that UH
H + UL

L > m since a task set with UH
H + UL

L ≤ m is trivially schedulable by
setting θL

i = θH
i = max{uL

i , u
H
i} for each task τi ∈ Γ. From Eq. (20) and Eq. (21), we have

0 ≤ (UL
L + UH

H ) + (UH
L + U

L
H) ≤ 2 ·m · s

⇒ 0 ≤ (UL
L + UH

H ) ≤ 2 ·m · s− UL
H (23)

(Since we assume task sets where UL
L + UH

H > m)

⇒ 0 ≤ UL
H ≤ 2 ·m · s−m = (2s− 1) ·m (24)

Since Eq. (20)–(22) hold, the assumptions for applying the MCFQ algorithm in Figure 2 are
true. Therefore, it follows from Lemma 9 that

∑
τi∈Γ θ

L
i ≤ m for MCFQ algorithm. To prove

this theorem, we now show that
∑
τi∈Γ θ

H
i ≤ m, which implies that the condition in Step 3 in

Figure 2 will be true..
From Step 1 in Figure 2, we have

∑
τi∈ΓL θ

H
i =

∑
τi∈ΓL u

H
i = UH

L . Since Γ = ΓH ∪ ΓL, we
only need to show that

∑
τi∈ΓH θ

H
i ≤ m− UH

L to prove this theorem. From Eq. (6), the value
θH
i for τi ∈ ΓH is

θH
i = (uH

i − uL
i )/(1−

uL
i

θL
i

) .

It is evident from the above equation that θH
i increases as θL

i decreases. Recall from Eq. (5)
that the maximum value of θL

i is uH
i for which the value of θH

i is minimized. According to
Eq. (10), the minimum value of θH

i is uH
i given that θL

i is also equal to uH
i .

For any feasible task set, the value of θH
i must be at least equal to uH

i for each HI-critical
task τi in order to ensure that the system is correct during stable HI-critical behavior. The



R.M. Pathan 19:21

value of θH
i is larger than uH

i when θL
i is smaller than uH

i . Therefore, the sum of the HI-critical
execution rates of the HI-critical tasks is maximized when each of the LO-critical execution
rate θL

i for τi ∈ ΓH is smaller than uH
i . According to Eq. (5), the value of θL

i is smaller than
uH
i only if uH

i ≥ Fi−1 · uL
i . Therefore, the sum of θH

i for all the HI-critical tasks is maximized
when θL

i = Fi−1 · uL
i ≤ uH

i for all τi ∈ ΓH . To prove this theorem we only need to consider
the worst-case where θL

i = Fi−1 · uL
i for each task τi ∈ ΓH because the sum of the HI-critical

execution rates of the HI-critical tasks is maximized under this worst-case.
We will show that if s ≤ 4/3, then the following holds even under the worst-case

assumption that θL
i = Fi−1 · uL

i ≤ uH
i for all τi ∈ ΓH :∑

τi∈ΓH

θH
i ≤ m− UH

L

(Since θH
i = uH

i + uL
i ·
uH
i − θL

i

θL
i − uL

i

from Eq. (19))

⇔
∑
τi∈ΓH

(uH
i + uL

i ·
uH
i − θL

i

θL
i − uL

i

) ≤ m− UH
L

⇔ UH
H +

∑
τi∈ΓH

uL
i ·
uH
i − θL

i

θL
i − uL

i

≤ m− UH
L

(Since θL
i = Fi−1 · uL

i under the worst-case and Fi−1 ≥ F0 from Eq. (9) and
uL
i ≥ uL

i from Eq. (2), we have θL
i = Fi−1 · uL

i ≥ F0 · uL
i ≥ F0 · uL

i )

⇐ UH
H +

∑
τi∈ΓH

uL
i ·

uH
i −F0 · uL

i

F0 · uL
i − uL

i

≤ m− UH
L

⇔
∑
τi∈ΓH u

H
i −F0 ·

∑
τi∈ΓH u

L
i

F0 − 1 ≤ m− UH
L − UH

H

⇔ UH
H −F0 · U

L
H

F0 − 1 ≤ m− UH
L − UH

H

(Since F0 = m− UL
L

U
L
H

from Eq. (8))

⇔ U
L
H · UH

H − (m− UL
L ) · UL

H

m− UL
L − U

L
H

≤ m− UH
L − UH

H

⇔ U
L
H · (UH

H + UL
L −m)

m− UL
L − U

L
H

≤ m− UH
L − UH

H

(Since ms ≥ (UH
H + UH

L ) and ms ≥ (UL
L + U

L
H) from Eq. (20)–(21))

⇐ U
L
H · (UH

H + UL
L −m) ≤ (m−ms)2

(Since Eq. (23) holds, we have (UL
L + UH

H ) ≤ 2 ·m · s− UL
H)

⇐ U
L
H · (2 ·m · s− U

L
H −m) ≤ (m−ms)2

⇔ U
L
H · ((2s− 1)m− UL

H) ≤ (m−ms)2

(Since UL
H · ((2s− 1)m− UL

H)) ≤ ((2s− 1)m/2)2 from Lemma 10)
⇐ ((2s− 1)m/2)2 ≤ (m−ms)2

⇐ (2s− 1)m/2) ≤ (m−ms)
⇔ (2s− 1)/2) ≤ (1− s)
⇔ (2s− 1) ≤ (2− 2s) ⇔ 4s ≤ 3 ⇔ s ≤ 3/4

ECRTS 2017



19:22 Improving the Quality-of-Service for Scheduling Mixed-Criticality Systems

Therefore, if s ≤ 3/4, the sum of the HI-critical execution rates is not larger than m and
MCFQ algorithm in Figure 2 returns success. J

B Extension of MC-Fluid and MCF for IMC tasks

The IMC task set Γ is transformed to a non-IMC task set Γ in which all the original
parameters of each of the tasks in Γ remains the same in Γ except that the LO- and HI-critical
execution time CL

i and CH
i of each LO-critical task τi ∈ Γ is reduced by CH

i . In other words,
each LO-critical task in Γ has CL

i = CL
i − CH

i and CH
i = 0. We use the MC-Fluid/MCF

algorithm to find the execution rates θL
i and θ

H
i considering a multiprocessor platform with

total capacity m = (m− UH
L ) using the non-IMC task set Γ.

The execution rates θL
i and θH

i for the original IMC tasks in set Γ are set as follows: if τi
is a LO-critical task, then θL

i = θ
L
i + uH

i and θH
i = θ

H
i + uH

i ; otherwise, (τi is a HI-critical task)
θL
i = θ

L
i and θH

i = θ
H
i . It can be proved (based on the same proof technique in [2]) that this

extension is correct for scheduling IMC task sets.


	Introduction
	System Model
	An overview of MCFQ Scheduling Algorithm
	Execution Rate Assignment of MCFQ
	Algorithm MCFQ: Proof of Correctness

	QoS Oriented Scheduling
	Empirical Results
	Task Set Generation Algorithm
	Results: Schedulability Tests
	Results: System's QoS

	Conclusion
	Speed Up Bound
	Extension of MC-Fluid and MCF for IMC tasks

