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Abstract
In this work, we study energy-aware real-time scheduling of a set of sporadic Directed Acyclic
Graph (DAG) tasks with implicit deadlines. While meeting all real-time constraints, we try to
identify the best task allocation and execution pattern such that the average power consumption
of the whole platform is minimized. To the best of our knowledge, this is the first work that ad-
dresses the power consumption issue in scheduling multiple DAG tasks on multi-cores and allows
intra-task processor sharing. We first adapt the decomposition-based framework for federated
scheduling and propose an energy-sub-optimal scheduler. Then we derive an approximation al-
gorithm to identify processors to be merged together for further improvements in energy-efficiency
and to prove the bound of the approximation ratio. We perform a simulation study to demon-
strate the effectiveness and efficiency of the proposed scheduling. The simulation results show
that our algorithms achieve an energy saving of 27% to 41% compared to existing DAG task
schedulers.
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1 Introduction

Energy consumption remains the cornerstone in designing embedded systems which are
mostly battery-operated. Energy-efficient and power-aware computing therefore are gaining
increasing attention in the embedded systems research. It is important due to the market
demand of increased battery life for portable devices. Moreover, reducing energy consumption
could lead to smaller power bills. Being motivated by this goal, there has been a trend in
embedded system design and development towards multi-core platforms. In order to better
utilize the capacity of multi-core platforms, parallel computation (where an individual task
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executes in multiple processors simultaneously) needs to be considered. For example, a recent
study [25] has shown that

the energy consumption of executing certain workload perfectly distributed in two cores
is significantly less than that of executing the same workload in one core at double frequency.

In this paper, we deal with tasks that are represented as DAGs – that are considered
to be the most generalized model of deterministic parallel tasks. For such task models,
several results are obtained on schedulability tests under various scheduling policies in [4]
[7] [2]. Bonifaci et al. [7] prove a speedup bound of 2 − 1/m for Earliest Deadline First
(EDF) and 3− 1/m for Deadline Monotonic (DM) respectively, where m is the number of
processors. For global EDF scheduling, these techniques are further generalized [2] with
an improved pseudo-polynomial time sufficient schedulability test. Analysis of federated
and global EDF scheduling is performed in [21] [22]. Processor-speed augmentation bounds
for both preemptive and non-preemptive real-time scheduling on multi-core processors is
derived in [30]. The work in [3] studies global EDF scheduling for conditional sporadic DAG
tasks, which is an extension to the normal sporadic DAG task model. Certain conditional
control-flow constructs (such as if-then-else constructs) can be modeled using the conditional
sporadic DAG task model. Despite of those nice preliminary work on the schedulability
analysis of parallel tasks, none of them addresses the energy/power consumption issue.

Energy-Aware Real-Time Scheduling. In the design of embedded systems, energy minim-
ization is a prime requirement. Much work has been done on minimizing the energy cost
with respect to sequential tasks for multi-core systems [14] [26] [25] [24]. Specifically, [25]
and [26] present an energy efficient task partitioning scheme, where the cores are grouped
in frequency islands. The authors in [1] considers both feasibility and energy-awareness
while partitioning periodic real-time tasks on a multi-core platform. For EDF scheduling,
they show that if the workload is balanced evenly among the processors, deriving optimal
energy consumption and finding a feasible partition is NP-Hard. Till date, only little work
has been done for energy-aware real-time scheduling of parallel task models. In general,
minimizing energy/power consumption of a real-time system is challenging due to the complex
(non-linear) relationship between frequency, energy consumption, and execution time of each
task.

In this paper, we study the scheduling of a set of sporadic DAG tasks with implicit
deadlines on a multi-core platform. To the best of our knowledge, this is the first work that
addresses the power consumption issue in scheduling multiple DAG tasks on multi-core. We
assume that all the cores that are assigned to a DAG task will always remain active which
may lead to a non-negligible power consumption. In order to reduce this effect, we also allow
intra-task processor sharing if any core is lightly loaded. First, it will balance the load among
the cores and reduce idle time. Second, the required number of cores to schedule a task can
be reduced. After merging the cores that are not required can be shut off completely. When
the average case execution times are typically small compared to the worst-case execution
time (WCET), the cores will remain idle (in that case the active power consumption will
be minimized, please see the Power/Energy model described at Section 2). Specifically, we
make the following key contributions in this paper.

We propose a multi-processor scheduling algorithm along with the power consumption
issues for sporadic DAG tasks with implicit deadlines.
Under the federated scheduling and task decomposition framework, our table-driven
scheduler is shown to be optimal in the sense of average power consumption (i.e., named
sub-optimal due to extra constraints included).
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We further allow merging of processors that have been assigned to the same DAG task. We
also propose an efficient processor merging technique that is widely applicable for energy-
efficiency improvements to most of the existing work on federated DAG task scheduling.
We formally prove the NP-completeness of the problem, propose an approximation
algorithm, and prove the upper bound of its approximation ratio.
Simulations are conducted to verify the theoretical results and demonstrate the effective-
ness of our algorithm.

The rest of this paper is organized as follows. Section 2 presents the system model and
formally defines our problem. Section 3 adapts the task decomposition scheme that transfers
parallel DAG tasks into sequential ones and describes our (sub-)optimal federated scheduler
based on segment extension and problem transformation (into a convex optimization with
linear inequality constraints). Section 4 presents and analyzes the techniques for intra-DAG
processor sharing. Section 5 implements gradient based solvers and compares the proposed
method with other state-of-the-art schedulers. Section 6 discusses related work and Section 7
concludes the paper.

2 Background and System Model

We consider a multi-core platform of m identical cores to schedule a set of sporadic parallel
tasks. The task set is denoted by τ = {τ1, τ2, · · · , τn}, where each task τi(1 ≤ i ≤ n)
is represented as a DAG with a minimum inter-arrival separation of Ti time units (often
referred as the period). The nodes in a DAG stand for different execution requirements
while the edges represent the dependencies among the corresponding execution requirements.
A parallel task τi contains a total of ni nodes, each denoted by N j

i (1 ≤ j ≤ ni). The
execution requirement of node N j

i is denoted by cji . A directed edge from node N j
i to node

N k
i (N j

i → N k
i ) implies that the execution of N k

i cannot start until N j
i finishes for every

instance (precedence constraints). N j
i , in this case, is called a parent of N k

i , while N k
i is a

child of N j
i . The degree of parallelism Mi of a DAG task τi is the number of nodes that can

be simultaneously executed.
Each DAG τi has an execution requirement (i.e., work) of Ci which is the sum of the

execution requirements of all of its nodes; i.e., Ci =
∑ni

j=1 c
j
i . A critical path of a DAG task is

a directed path with the maximum total execution requirements among all other paths in the
DAG. For τi, the critical path length, denoted by Li, is the sum of execution requirements of
the nodes on a critical path. Thus, Li is the minimum makespan of τi, meaning that it needs
at least Li time units even when the number of cores m is unlimited. Any two consecutive
instances of task τi is separated by at least Ti time units – Ti is also the relative deadline of
the task as we only consider implicit deadlines. Since Li is the minimum execution time of
task τi even on a machine with an infinite number of cores, the condition Ti ≥ Li must hold
for τi to be schedulable. A DAG task is heavy if it will miss its deadline when all nodes are
run sequentially on a processor. A schedule is said to be feasible when all sub-tasks (nodes)
receive enough execution (up to their execution requirements) within Ti time units from
their arrivals, while all precedence constraints are satisfied. The aforementioned terms are
illustrated in Figure 1.

Power/Energy Model. Let s(t) (we are assuming continuous frequency scheme) denote the
main frequency (speed) of a processor at a certain time t. Then its power consumption P (s)
can be modeled as:

P (s) = Ps + Pd(s) = β + αsγ , (1)

ECRTS 2017
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Figure 1 A DAG τi with total execution time Ci = 18 and minimum inter-arrival separation
Ti = 12. It is a heavy task since Ci > Ti. The path N 1

i → N 4
i → N 6

i is the critical path with
minimum makespan of Pi = 10 ≤ Ti. As a result, this task may meet its deadline provided enough
processors.

where Ps denotes the static power consumption which is introduced in the system due to the
leakage current and Pd(s) denotes the active power consumption. Pd(s) is introduced due to
the switching activities and it depends on the processor frequency. Pd(s) can be represented
as αsγ where the constant α > 0 depends on the effective switching capacitance [25], γ ∈ [2, 3]
is a fixed parameter determined by the hardware, and β > 0 represents the leakage power (i.e.,
the static part of power consumption whenever a processor remains on). Clearly, the power
consumption function is a convex-increasing function of the processor frequency. By means of
dynamic voltage and frequency scaling (DVFS), it is possible to reduce Pd(s) by reducing the
processor frequency. In this paper, we focus on minimizing the active energy consumption
(due to Pd(s)) by means of DVFS. We also target to minimize the static power consumption
(due to Ps) by reducing the number of processors by allowing intra-task processor sharing.

The energy consumption of any given period [b, f ] can be calculated as E =
∫ f
b
P (t) dt,

which is known as a nice approximation to the actual energy consumption of many known
systems. Specifically, given a fixed amount of workload C to be executed on a speed-s
processor, the total energy consumption is the integral of power over the period of length
C/s; i.e., E(C, s) = (β + αsγ)(C/s) = βC/s+ αCsγ−1. Figure 2 shows how different values
of γ (varying from 2 to 3) and processor speed s may affect the total energy consumption to
complete a certain amount of computation. It is obvious that execution under a speed much
lower than the critical frequencies [25] (the highlighted most energy efficient execution speed)
is extremely energy inefficient (as leakage power becomes the major “contribution”). The
power model we adapted complies with much existing (and recent) work in the community,
e.g., [1, 33, 32, 13, 25, 26].

Problem Statement. Given a set of implicit-deadline sporadic parallel tasks to be scheduled
on a multi-core platform consisting of enough1 number of identical cores, we want to determine
a feasible scheduling strategy, while minimizing the overall power consumption for the assigned
processors.

Energy-optimal scheduling of parallel tasks on multi-cores is NP-hard in the strong
sense [23]. Thus we do not expect to solve this energy optimization problem optimally in
this paper. Instead, we will tackle this problem in the following two steps:

First, we put additional constraints of federated scheduling and follow the existing task
decomposition framework [30] (Sec 3), such that the NP-hardness no longer holds. We
identify an energy-sub-optimal table-driven scheduler under those additional conditions.

1 By enough, we mean the number of available processors is no smaller than the sum of max degree of
parallelism of the DAG tasks.
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Figure 2 Energy consumption for executing a job with 109 computation cycles under various γ
values, where α = 1.76 Watts/GHzγ and β = 0.5 Watts.

Then, based on the “sub-optimal” solution, we propose heuristics for merging the assigned
processors (Sec 4) to further improve the overall energy efficiency when the unnecessary
restrictions are removed.

3 Energy-Sub-Optimal Federated Scheduling for DAG tasks

In this section, we restrict our focus on the federated scheduling of DAG tasks. Under
the federated approach to multi-core scheduling, each individual task is either restricted to
execute on a single processor (as in partitioned scheduling), or has exclusive access to all the
processors on which it may execute. Since each processor is dedicated to one DAG task, we
can consider each task individually, and try to minimize the energy consumption for a single
DAG task (which is the goal of this section).

Given a DAG task, we first apply the existing task decomposition [30] technique to
transform a parallel task into a set of sequential tasks with scheduling window 2 constraints
for each node (Subsection 3.1) – they are further relaxed into necessary conditions by
segment extension (Subsection 3.2). By variable substitution, we then transform the energy
minimization problem into a convex optimization problem with linear inequality constraints,
which can be solved optimally with gradient-based methods (Subsection 3.3).

3.1 Task Decomposition

Task decomposition is a well-known technique that simplifies the scheduling analysis of
parallel real-time tasks [30]. In our approach, we adopt task decomposition as the first step
that converts each node N l

i of the DAG task τi to an individual sub-task τ li with a release
offset (bli), deadline (f li ), and execution requirement (cli). The release time and deadlines are
assigned in a way that all dependencies (represented by edges in the DAG) are respected.
Thus the decomposition ensures that if all the sub-tasks are schedulable then the DAG is

2 Scheduling window for a specific node denotes the time frame from its release offset to its deadline.

ECRTS 2017
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also schedulable. For the sake of completeness, we briefly describe how task decomposition
works in this subsection with an example (Please refer to Section 4 of [30] for more details).

We adapt a slightly modified version of the approach used in [30]. First, we perform the
task decomposition using the techniques in [30] as described below. Assuming the execution
of the task is on an unlimited number of cores, we draw a vertical line at every time instant
where a node starts or ends for each node starting from the beginning. These vertical lines
split the DAG into segments, and each segment consists of an equal amount of execution
by the nodes that lie in the segment. Parts of different nodes in the same segment can now
be considered as threads of execution that run in parallel, and the threads in a segment
can start only after those in the preceding segment have finished their executions. Now we
will say that the resulting segmented structure of the task is converted into synchronous
form and will denote it as τsyni . We first allot time to the segments and then add all times
assigned to different segments of a node to calculate its allocated time.

Since Pi ≤ Ti, at the end of each period, there may be a slack where all processors are idle
(which is typically energy inefficient). We allocate such idle period uniformly by multiplying
each segment by a common factor of Ti/Pi for task τi.

Task decomposition provides its processor assignment Ml
i (i.e., a node-to-processor

mapping) and a scheduling window [bli, f li ) on top of it, in which each node N l
i of a task τi

will be scheduled. The following example demonstrates how task decomposition works.

I Example 1. Consider task τi shown in Figure 1. First of all, we assign all the nodes with
no parent (N 1

i and N 2
i ) to separate processors. Then we continue to consider nodes only

when all its parent node(s) are assigned. As a result, the beginning of the node will be the
latest finishing time of its parent(s) – these are boundaries of the segments, denoted by
vertical lines in Figure 3. Specifically, if a node has a single parent, we can start to consider
the node right after the finishing time of its parent. For example, when N 2

i is completed,
N 3
i is immediately assigned to the same processor (as N 2

i is the only parent).
When a node has multiple parents, we consider the parent that has the latest finishing

time. The child node may be assigned to the same processor assigned to its parent with the
latest finishing time. For example, N 4

i has two parents N 1
i and N 2

i where N 1
i completes

execution later. So N 4
i is assigned to the same processor of N 1

i . Please note that a node
may have multiple siblings such that it may not always share the same processor with its
latest finished parent node – under such scenario, a new processor is allocated to the node.
For example, the only parent of N 5

i is N 1
i which completes execution at t2i . So N 5

i would be
able to execute in the same processor starting from the third segment. But N 5

i is assigned
to a different processor as that specific processor at t3i is already “taken” by its sibling N 4

i .

3.2 Segment Extension
For a DAG task τi, the aforementioned task decomposition results in a mapping between a
node (N l

i ) and a processor (Ml
i). One of the key issues with the task decomposition process

is that the identified scheduling window constraints for the nodes may not be necessary.
Take the task described in Figure 3 as an example, where Node N 3

i may execute in the
4th segment. However, task decomposition requires that Node N 3

i must finish by the end
of Segment 3, which is unnecessary. In this subsection, we describe a systematic way of
eliminating such unnecessities so that the boundary constraints for all nodes (bli’s and f li ’s)
are both necessary and sufficient.

Each DAG τi is first converted to a synchronous form denoted by τsyni with techniques
described in Sec. 3.1. We use mk

i to denote the number of parallel threads in the k-th segment
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Figure 3 Scheduling window assignments to the nodes of τi (in Figure 1) after task decomposition,
where mk

i denotes the degrees of parallelism at k-th segment and the node-processor mapping is:
M̄i = {1, 2, 2, 1, 3, 1}, and scheduling windows for the nodes are [1, 2], [1, 1], [2, 3], [3, 3], [3, 3], [4, 4]
respectively. The average power consumption under such settings is 3.33 Watts after extending each
segment by a common factor of Ti/Pi = 1.2.

of τsyni . We then apply Algorithm 1 to greedily extend the deadlines f li of each node N l
i ,

following any topological order. Note that while performing task decomposition, a node
starts execution immediately when all of its predecessors finish execution. Thus the starting
time bli cannot be moved earlier – only fi’s have room to be relaxed.

Please note that we have considered table-driven schedulers which usually pre-compute
which task would run when. This schedule is stored in a table at the time the system is
designed or configured. So what would be the size of the scheduling table for a given set
of real-time tasks to be run on a system? The answer is when a set of n tasks is to be
scheduled, then the entries in the table will replicate themselves after LCM (T1, T2 · · ·Tn),
where LCM (T1, T2 · · ·Tn) is the hyper-period for the tasks. However, while considering
energy consumption we did not consider the space complexity of the scheduling solutions.

Algorithm 1 Segment Extension
1: Input: A DAG task τi, scheduling windows after decomposition [bli, f li ] for any node
N l
i ∈ τi.

2: Output: Extended segment window [bli, f li ) for each node N l
i ∈ τi.

3: Assume that all nodes N l
i are ordered topologically, such that predecessor constraint

may only occur between N l
i −→ N l′

i when l < l′.
4: for each node N l

i ∈ τi do
5: if node N l

i has successor node(s); i.e., ∃l′,N l
i −→ N l′

i

6: then f li ← minl′|N l
i
−→N l′

i
{bl′i } − 1;

7: else f li ← last segment of τsyni ;
8: end for
9: return [bli, f li ] for each node N l

i .

I Example 2. Consider again the DAG task τi shown in Figure 1. Our algorithm greedily
extends the ending segment f li of the nodes as much as possible in the topological order (i.e.,
increasing l). Using this approach, Node N 3

i can now execute in Segment 4 (dashed rectangle
at Figure 4) and the execution window for all the other nodes remain unchanged. Please
note that the processor assignmentMl

i for any node N l
i of a task τi remains unchanged in

the segment extension process.

ECRTS 2017
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Figure 4 The segment-node mapping for τi (in Figure 1) after segment extension. Scheduling
windows for the nodes become [1, 2], [1, 1], [2,4], [3, 3], [3, 3], [4, 4] respectively, which results in an
average power consumption of 3.08 Watts. The height of each block represents the speed of the
processor during each segment.

I Lemma 3. Under the task decomposition and scheduling framework, after running Al-
gorithm 1 (Segment Extension), the timing constraints we set for each node in a DAG become
necessary and sufficient.

Proof. The sufficient part is trivial. The scheduling window satisfies all predecessor con-
straints, while the deadline of the DAG task does not change.

Assume the window after modification [bli, f li ] for some node N l
i is not necessary; i.e., it

can be further extended. Then it must be one of the following two cases:
An earlier bli still satisfies all predecessor constraints, which is impossible since it is the
time all parents are finished.
A later f li is possible, which contradicts with Lines 5 - 7 of Algorithm 1 as it is already
the starting point of its child, or the deadline of the whole DAG. J

3.3 Problem Transformation

After task decomposition and segment extension, we have identified the scheduling window
[bli, f li ] for each node N l

i , and there is no overlap for any two windows (for different nodes)
on the same processor. A natural question arises: Given a specific node (job) with a pre-
determined scheduling window on a dedicated processor, what is the most energy-efficient
execution (speed) pattern?

I Theorem 4. The total energy consumption (assuming processor remains on)
∫ a+∆
a

s(t)γ dt
is minimized in any scheduling window [a, a+ ∆] of length ∆ when execution speed remains
the same; i.e., s(t) ≡ C/∆, where C =

∫ a+∆
a

s(t) dt is the (given) task demand in the
window.

Proof. We define p(x) = s(t)/C, then p(x) is a probability density function (PDF) over
[a, a+ ∆]; i.e.,∫ a+∆

a

p(t) dt = 1. (2)
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As a result,∫ a+∆

a

s(t)γ dt =
∫ a+∆

a

(C · p(t))γ dt

{re-arranging}

= Cγ

∆γ−1 ·

(
1
∆

∫ a+∆

a

(∆ · p(t))γ dt

)
{Jensen’s Inequality [9], the convexity of function xγ

when 2 ≤ γ ≤ 3 and x ≥ 0, and p(x) being a PDF}

≥ Cγ

∆γ−1

(∫ a+∆

a

p(t) dt
)γ

{From (2)}

= Cγ

∆γ−1

{Definition of integrating a constant function}

=
∫ a+∆

a

(
C

∆

)γ
dt.

(3)

Thus, the minimal total energy consumption in the specified interval
∫ a+∆
a

s(t)γ dt can be
achieved when speed s(t) remains constant (C/∆) throughout the interval [a, a+ ∆]. J

According to Theorem 4, executing all segments with a uniform speed yields minimum
possible power consumption under such framework. Hence we can assume that the speed
of any processor does not change within a segment. Let Skj denote the speed of processor
j in the k-th segment (executing node N l

i ), and tki denote the length of the segment. The
objective is to determine the length of each segment tki (≥ 0) and its execution speed Skj (≥ 0)
such that total power consumption is minimized.

The first set of constraints guarantees the real-time correctness that each node N l
i receives

enough execution within its designated window [bli, f li ) on its assigned processorMl
i; i.e.,

∀l,N l
i ∈ τi :

f l
i∑

k=bl
i

tki S
k
Ml

i
≥ ci,l. (4)

We need one more set of inequalities to bound the total length for all segments of each
DAG by its period:

∀i,
∑
k

tki ≤ Ti. (5)

Any non-negative speed assignment and segment length setting that satisfy the constraints
described in (4) and (5) yield a correct schedule that all nodes receive enough execution in
their specified scheduling windows (that satisfy all predecessor constraints). Based on these
constraints, we would like to add our objective for minimizing average energy consumption
per period:

Minimize{tk
i
,Sk

j
} MiβTi +

ni∑
l=1

f l
i∑

k=bl
i

tki α(SkMl
i
)γ ,

ECRTS 2017
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where Mi is the degree of parallelism (and also the number of processors assigned to the
task) and ni is the total number of segments assigned to DAG task τi (determined in the
previous step).

Since the constraints represented in (4) are non-convex quadratic inequalities, it is in
general computationally intractable to solve in polynomial time. We transform this problem
into a convex optimization by substituting some variables.

I Remark. According to Theorem 4, executing all segments with a uniform speed yields
minimum possible power consumption. If any segment of any core remains idle (scheduling
window for any node does not fall at that segment), we simply consider that the execution
speed for that segment is 0.

I Remark. In this paper, we are assuming that the time required to finish a task is exactly
equaled to their worst-case execution time (WCET). However, it may happen that some of the
tasks may finish early than their WCET. In that case, some of the cores (that are assigned to
that tasks) may remain idle for some time. It would lead to the further minimization of the
active power consumption (please see the Power/Energy model described at Section 2). So
our model actually provides the upper bound of the energy consumption.

Replacing speed with period lengths and executions. Fortunately, Theorem 4 provides
us the basis to get rid of part of the variables. Since all nodes are executed at constant
speeds within their scheduling windows, given the total length of each assigned segments (i.e.,
scheduling window), the execution speed of any given node can be determined. As a result,
the energy consumption to finish this node can also be calculated. I.e., given a node N l

i with
total execution requirement of cli, to be executed on segments between bli and f li , we have:

∀k ∈ [bli, f li ], SkMl
i

= cli/(
f l

i∑
j=bl

i

tji ), (6)

which means although a node may be executed in consecutive segments ∀k ∈ [bli, f li ], the
speed remains constant throughout the scheduling window and can be represented by a
function of executions cli and segment lengths tji . Substituting Equation (6) into the second
term of the objective function, we have:

ni∑
l=1

f l
i∑

k=bl
i

tki α(SkMl
i
)γ =

ni∑
l=1

 f l
i∑

k=bl
i

tki α(cli)γ(
f l

i∑
j=bl

i

tji )
−γ


{moving unrelated terms out of the summations}

= α

ni∑
l=1

(
f l

i∑
j=bl

i

tji )
−γ(

f l
i∑

k=bl
i

tki )(cli)γ


{combining similar terms}

= α
∑

l|Ml
i
=j

cγl (
f l

i∑
k=bl

i

tki )1−γ .

(7)
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Figure 5 The sub-optimal segment length assignment for power efficiency of the sample task τi
(in Figure 1), with an average power consumption of 2.94 Watts. The height of each block represents
the speed of the processor during each segment.

Thus, the original optimization problem can be equivalently transformed into the following
one with only tki as variables.

Minimize{tk
i
} MiβTi + α

∑
l|Ml

i
=j c

γ
l (
∑f l

i

k=bl
i

tki )1−γ

Subject to ∀i,
∑
k t
k
i ≤ Ti,

∀i, tki ≥ 0.

I Theorem 5. Any gradient based method (e.g., fmincon [15] in Matlab) would lead to
sub-optimal power consumption under federated scheduling scheme with task decomposition.

Proof. The sub-optimality comes from three facts:
The objective function is convex as it is a sum of several convex (including linear) functions
of the variables tki (detailed proof in Appendix A).
The linear equality constraints are necessary and sufficient (Lemma 3) for real-time
schedulability and predecessor conditions from the input DAG task.
The variables tki are sufficient to represent a possible optimal scheduler regarding power
consumption; i.e., it is safe to assume uniform speed during each segment (Theorem 4). J

Figure 5 shows the sub-optimal segment length assignment for the given task τi.

4 Processor Sharing: Efficiency Improvement

Task decomposition transforms the parallel task into a set of sequential tasks. The process
tries to maximize the degree of parallelism (i.e., assigning as many processors to each DAG
task as possible). However, some of these processors may be lightly loaded with poor energy
efficiency as the leakage power consumption becomes the majority cost (as demonstrated in
Figure 2). Thus the solution derived in Sec 3 is only sub-optimal and can be further improved
if we allow merging the lightly loaded processors into a single one, such that leakage power
is reduced – see Figure 6 as an example.

In this section, we try to deal with this issue and further improve the overall energy
efficiency of our scheduler by merging the workloads assigned to different processors onto a
single one.

Specifically, in Subsection 4.1, we merge processors that have been assigned to the
same DAG task. In this step, each DAG task is handled individually and the resulting
processor-node/DAG assignment remains in the federated scheduling framework.
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Figure 6 The execution pattern for τi (in Fig. 1) after merging Processors 2 and 3, where Nodes
N 3
i and N 5

i will share Processor 2 (i.e., execute under EDF) within time window [4.81, 7.59) at a
higher execution speed. The average power consumption is further reduced to 2.80 Watts. The
height of each block represents the speed of the processor during each segment.

I Remark. In practice we have found that once a merge is performed, it is very likely that
the new processor becomes quite heavily loaded. As a result, merging a third processor into
any merged pair rarely leads to further energy saving. Thus we only allow the combination of
two processors that have never been part of any merging previously. We plan to consider
merging 3 or more processors into one in future work.

I Remark. In this paper we allow each processor to be merged only once. So the number
of context switches is at most 1 per segments. If there are total ni nodes in task τi then
the number of context switches is at most ni/2. Normally, the effect of task migrations and
context switches is not considered while deriving schedulability test for real time tasks. We
are also not considering the effects of these phenomena.

4.1 Merging Processors Assigned to the Same DAG
Federated scheduling of DAG tasks provides isolation among tasks during execution, such
that inter-task interference as well as context switch delays remain small during run-time. In
this subsection, we stay in the federated scheduling framework and only consider potential
merges among processors of the same DAG.

Given a DAG task τi with a federated task-to-processor assignment j =Mk
i , the processor

execution speeds Skj for each segment, segment lengths tki , and the period Ti. For any processor
j assigned to this DAG, its original power consumption can be calculated as

Pj = β +
∑
k

tki
Ti

(Skj )γ . (8)

Any pair of processors {j, j′} share the same period and segment information as they
are assigned to the same DAG task. As a result, the new execution speed for each segment
(when merged together) will simply be the sum of the two old ones; i.e., Slj + Slj′ , and the
average power consumption for this new processor can be calculated as:

Pj,j′ = β +
∑
k

tki
Ti

(Skj + Skj′)γ . (9)

The pairwise potential power saving can be calculated directly by:

Pj,j′ = Pj + Pj′ − Pj,j′ . (10)
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Figure 7 The equivalence of the MPS problem and the MIS problem, where (a) shows a DAG of
four processor assignments with potential power savings for merging each pair of the processors, and
(b) shows its alternative (equivalent) expression with vertices representing all edges in (a), and edges
representing the mutual exclusive constraints.

With the pairwise potential power saving, the Maximization of Power Saving (MPS)
problem we are dealing with in the section can be described as follows:

Given the potential power savings (PMi×Mi
) for merging each pair of theMi processors, we

wish to find a list of mutual exclusive processor-pairs {(p1, p
′
1), ..., (pN , p′N )}(N ≤Mi/2),

such that the total power saving Pi =
∑N
j=1 Ppj ,p′

j
is maximized.

I Theorem 6. The MPS problem is NP-Complete.

Proof. MPS is in NP as it takes linear time to verify whether a given solution satisfies the
mutual exclusion constraints.

The NP-Hardness comes from the reduction from a well known NP-Complete problem:
Maximum Independent Set (MIS). An independent set is a set of (weighted) vertices in a
graph that no two of which are adjacent. For each vertex in the graph of MIS, we can
construct an edge with the same weight in the graph of MPS, and the adjacency of those
edges (whether or not they share a common vertex) in MPS can be determined by the
adjacency of the edges in the graph of MIS; i.e., each edge in MIS corresponds to a vertex in
MPS (see Figure 7 for an illustration). Since this polynomial (linear)-time mapping maintains
the adjacency relationship of weighted vertices (in MIS) or edges (in MPS), a solution of
MIS (a subset of nm non-adjacent vertices with maximum total weight) will correspond to a
solution of MPS (nm non-adjacent edges with maximum total weight), and vice versa. J

I Example 7. Take the processor assignment in Figure 7 as an example, where four processors
are assigned to a DAG task. The weight Pi,j for each edge represents the potential power
saving when merging processors i and j, calculated from (10). The edge {2, 4} is missing
since merging these two processors will lead to higher power consumption (i.e., P2,4 < 0).

For each vertex in Figure 7 (b), there is a corresponding edge with the same weight in
Figure 7 (a), and vice versa. A feasible subset of edges in Figure 7 (a) (e.g., {1, 4} and {2, 3})
corresponds to a subset of vertices in Figure 7 (b) (e.g., E1,4 and E2,3) that none of the two
are directly connected by an edge.

For this example, we could choose to merge Processors 1&2 and 3&4 (with a gain of
1.1 Watts), 1&4 and 2&3 (with a gain of 1.7 Watts), or 1&3 (with a gain of 0.1 Watts).
Although obviously the second option is leading to the optimal solution, we need to explore
all combinations to find that out (Theorem 6 already shows the intractability). As a result,
instead of seeking for the global optimal solution for merging, here we choose to greedily
select (see Step 2 below) the pair with the maximum gain in each step.
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Now we describe the key steps of our proposed processor merging method:
1. For each pair of processors {j, j′} of the (same) DAG, calculate the potential power

savings Pj,j′ for merging them together according to (10).
2. Greedily choose the pair {j, j′} of processors with the maximum power saving Pj,j′ , and

merge them together by updating P ′ value(s) of the nodes on j′ to j. The merged nodes
will be executed on processor j under EDF, with given per-segment (fixed) speed settings.
Note that EDF is an optimal uni-processor scheduler for sporadic task systems, and thus
will guarantee temporal correctness as far as cumulative capacity remains the same.

3. Remove the two processors (and also the new one, see Remark 4) from the candidate
pool, by updating elements in the jth row, the j′-th row, the jth column, and the j′-th
column of the power saving matrix P into 0.

4. If there is no positive elements in P, return the updated mapping P ′, else go to Step 2
(i.e., merging two un-touched processors may lead to further energy savings).

Although the MIS problem in general cannot be approximated to any constant factor in
polynomial time (unless P = NP) [5], fortunately, each edge in the original figure can be
joint with at most 2(Mi − 2) other edges, which indicates that the degree of each vertex in
the graph after problem transformation is upper bounded by 2(Mi − 2). Thus we have the
following approximation ratio bound.

I Theorem 8. The greedy approach has an approximation ratio no greater than (2Mi− 2)/3,
where Mi ≥ 3 is the total number of processors3 before merging of DAG task τi; i.e., the
degree of parallelism of the task.

Proof. Since we only allow a processor to be considered in one pair in each round, the graph
resulted from the reduction in Theorem 6 is a (2Mi − 4)-regular graph; i.e., the degree of
each vertex cannot exceed 2Mi − 4. According to Theorem 5 in [18], the greedy algorithm
achieves an approximation ratio of (2Mi − 2)/3. J

5 Simulation Study

In this section, we use experiments to evaluate the power efficiency of the proposed mechan-
isms, and compare them with existing algorithms for DAG task systems.

Generation of workloads. Our DAG generator follows the Erdos-Renyi method [12] with a
given number of nodes. For the harmonic period case, the periods are multiples of each other
[30] by enforcing them to be powers of 2. Specifically, we find the smallest value α such that
Li ≤ 2α and set Ti to be 2α. Regarding the arbitrary period case, we use Gamma distribution
[16] to generate a random parameter, and set the period as Ti = Li + 2(ci/m)(1 + Γ(2, 1)/4)
(according to [30]).

We compare the power consumption by varying two parameters: (i) task periods (densities)
(Sec. 5.1) and (ii) number of nodes in each DAG task (Sec. 5.2). Under each parameter
setting, we randomly generate 100 different DAG task sets, each consisting of 5 DAG tasks,
and compare the average power consumption of the following scheduling algorithms:

Federated scheduling with task decomposition, where each node is executed as soon as
possible under full speed [30];

3 Note that when Mi = 2, there are only two processors in the candidate pool, and the decision is
straightforward – based on whether merging them can lead to lower power consumption.
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Figure 8 Comparison of power consumption with different approaches for DAG tasks with a
fixed number of nodes as 30.

Federated scheduling with task decomposition, where length of each segment is further
extended uniformly (according to their loads) [30];
Federated scheduling with task decomposition, where lengths of segments are determined
by the proposed convex optimization (Sec. 3.3);
Energy-sub-optimal federated scheduling with task decomposition, where lengths of
segments are determined by convex optimization (Sec. 3.3) after performing segment
extension (Sec. 3.2);
Federated scheduling with intra-DAG processor merging (Sec. 4.1);

5.1 Varying Task Periods (Densities)
Here we vary the minimum inter-arrival separation for each task, such that the average
density of a set is controlled. We vary the period in an allowable range (Pi ≤ Ti ≤ Ci) by
assigning Ti as Pi + (1− k)(Ci − Pi), where k ∈ [0, 1] is named as the density of the task –
note that this is different from the normal density definition for sequential tasks. We fix the
number of nodes within each DAG task as 30, and show the average power consumption in
Figure 8.

The first thing we notice from Figure 8 is that the average energy consumption increases
as the average density of the set increases (due to decreasing of the period). This phenomenon
makes sense as higher density would lead to tighter real-time restrictions, which lead to less
room for our segment length optimization.

As shown in Figure 8, stretching each segment would lead to significant power savings
compared to finishing them at full speed and leaving the processor idle for some portion of
time (matching Theorem 2). Comparing to the existing uniform stretching for all segments
of each DAG task, our convex optimization based methods would find a better execution
pattern in terms of power efficiency. We also found that segment extension is helpful in
removing unnecessary constraints for finding better execution patterns.
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Figure 9 Comparison of average power consumption per task set with different approaches for
tasks with harmonic periods.

It is easy to tell that the improvements to the average power consumption are huge when
applying the processor merging techniques described in Sec. 4. The improvement is larger
when density of the task is high. On average, our proposed methods (including segment
extension and intra-DAG merging) are leading to a reduction of the power consumption
ranging from 29.2% to 40.5%.

5.2 Different Numbers of Nodes in a DAG Task
Now we vary the number of nodes within each DAG task without changing the period Ti.
In this set of comparisons, we consider both harmonic (reported in Figure 9) and arbitrary
periods (reported in Figure 10) for a set. For each setting of parameters, we randomly
generate 100 task sets with various number of nodes (from 10 to 55, with an increment of 5)
and report the average performances of the power consumption over the 100 sets for each
case.

First of all, we observe similar improvements in energy efficiency with the proposed
techniques when the number of nodes vary, comparing to the previous set of experiments
(with fixed number of nodes and varying task density). Specifically, the intra-DAG merging
techniques discussed in Subsections 4.1 lead to a reduction in the power consumption for at
least 27.29% and 34.27% for harmonic and arbitrary periods, respectively (compared to the
result of convex optimization with segment extension discussed in Section 3.3), while the
average power savings are 28.23% and 37.80%.

Secondly, when comparing curves in Figures 9 and 10, we observe that task sets with
harmonic periods typically result in lower energy consumption compared to arbitrary periods
(under same task density and number of nodes per task).

Finally, from the reported performances, we did not observe significant dependencies
between the power consumption and the number of nodes for the DAG tasks. This indicates
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Figure 10 Comparison of average power consumption per task set with different approaches for
tasks with arbitrary periods.

that the proposed methods are robust to various settings of parameters and combination of
DAG tasks.

6 Related Work

The work that deals with schedulability tests for various scheduling policies on parallel
task model is already mentioned in Section 1. None of them has considered power/energy
consumption issues. In addition, much work has been done in energy/power consumption
minimization for sequential tasks. Bini et al. discuss the problem of finding an optimal
solution for a system with discrete speed levels for a set of periodic/sporadic tasks [6].
They have considered both EDF and Fixed-Priority (FP) scheduling policies. Jejurikar
has considered non-preemptive tasks in order to deal with shared resources [19]. Chen et
al. presents an energy-efficient design for heterogeneous multiprocessor platform [11]. No
previous work considers parallel task model.

Actually, intra-task parallelization and power consumption issues have not yet received
sufficient attention. Zhu et al. have considered power-aware scheduling for graph-tasks [34].
For dependent tasks, [10] provides techniques that combine dynamic voltage and frequency
scaling (DVFS) and dynamic power management, where each core in the platform can be
switched on and off individually. For block-partitioned multi-core processors (where cores
are grouped into blocks and each block has a common power supply scaled by DVFS),
energy efficiency is investigated in [29]. The authors in [28] consider power-aware policy for
scheduling parallel hard real-time systems, where the multi-thread processing is used. [27]
considers dealing with parallel tasks under Gang scheduling policy, where all parallel instances
of a task use a processor in the same window. Based on level-packing, an efficient scheduling
algorithm is proposed [20] [31]. The authors in [31] have considered energy minimization
for frame-based tasks (i.e., same arrival time and a common deadline for all the tasks)
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with implicit deadlines. Similar frame based model is considered in [17], where precedence
constraints can be specified among the tasks. As mentioned previously, no existing work
allows intra-task processor sharing, and considers the (more general) DAG task workload
model.

7 Conclusion

This paper studies the scheduling of a set of sporadic DAG tasks with implicit deadlines.
Upon guaranteeing real-time correctness, we try to minimize the overall power consumption
of the whole platform. A power-sub-optimal scheduler is proposed under the condition of
federated scheduling and task decomposition. Achieving the optimal solution for the more
general (non-federated) case is shown to be NP-Complete. Based on the solution under
federated scheduling, a greedy heuristic is proposed to further improve the power efficiency,
with proved upper bound of the approximation ratio.

To our knowledge, this is the first work in the real-time systems community that (i) con-
siders power issues for scheduling recurrent DAG tasks and (ii) allows intra-Task processor
sharing. Still, our work has its restrictions: (i) during the processor merging process, we allow
each processor to be merged only once – two or more merging may further reduce the power
consumption; (ii) we only considered implicit deadlines, and the extension to constrained
deadline case is not trivial; (iii) we have shown the evaluation through simulation. In the
future, we plan to validate our algorithm in modern-generation processor to show how much
the predicted energy savings correlate to the measurements on a real-life system.
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A The Convexity of the Dynamic Energy Consumption

Since leakage power consumption remains constant (which is convex), we will prove that the
dynamic part of the energy consumption function is convex:

E(τ) =
∑

1≤i≤n
Cγi (< αi, τ >)1−γ . (11)

Here τ refers to a k-dimension positive vector, in which each element is positive and
refers to the length of a specific segment of a DAG task. αi is a binary vector, in which each
element αi,j ∈ {0, 1} identifies if the node is selected for the segment. |αi| ≥ 1 since at least
one segment must be assigned). < αi, τ > refers to the inner-product of the two vectors, Ci
refers to a non-negative constant, and γ ∈ [2, 3]. Thus the energy consumption is modeled as
E(τ) – a function over the time-allocation τ ∈ Rk+.

We prove the convexity of E(τ) when τ ∈ Rk+ with the following four steps:
1. We name f(τ) =< α, τ > as a function of inner-product of τ with any binary vector

α and |α| ≥ 1. Obviously, this function is a linear function over τ and should be both
convex and concave. Further, given τ ∈ Rk+, we have f(τ) > 0. Thus we can conclude
f(τ) is a positive concave function.

2. According to page 3-3 of [8], xp is convex when x > 0 and p ≤ 0. Thus, when γ ∈ [2, 3]
(i.e., −2 ≤ 1− γ ≤ −1) and x > 0, the function g(x) = x1−γ should be a non-increasing
convex function.

3. According to page 3-17 of [8], if g(x) is a non-increasing convex function and f(τ) is a
concave function over ∀τ ∈ Rk+, then g(f(τ)) should be a convex function over ∀τ ∈ Rk+.
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4. The function E(τ) and fi(τ) could be written as:

E(τ) =
∑

1≤i≤n
Cγi g(fi(τ)) (12)

fi(τ) = (< αi, τ >) (13)

As Cγi is non-negative, E(τ) could be considered as the non-negative-weighted sum of
convex functions (i.e., g(fi(τ))), and E(τ) should be a convex function.
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