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Abstract
In a distributed computing environment, guaranteeing the hard deadline for real-time messages is
essential to ensure schedulability of real-time tasks. Since capabilities of the shared resources for
transmission are limited, e.g., the buffer size is limited on network devices, it becomes a challenge
to design an effective and feasible resource sharing policy based on both the demand of real-time
packet transmissions and the limitation of resource capabilities. We address this challenge in two
cooperative mechanisms. First, we design a static routing algorithm to find forwarding paths
for packets to guarantee their hard deadlines. The routing algorithm employs a validation-based
backtracking procedure capable of deriving the demand of a set of real-time packets on each
shared network device, and it checks whether this demand can be met on the device. Second,
we design a packet scheduler that runs on network devices to transmit messages according to
our routing requirements. We implement these mechanisms on virtual software-defined network
(SDN) switches and evaluate them on real hardware in a local cluster to demonstrate the feasibility
and effectiveness of our routing algorithm and packet scheduler.

1998 ACM Subject Classification C.3 Real-Time and Embedded Systems

Keywords and phrases real-time networks, packet scheduling, deadline guarantee

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2017.25

1 Introduction

In a distributed computing environment, multiple compute nodes share communication
resources to transmit data in order to collaborate with each other. In such systems, employing
an effective resource sharing mechanism is essential to meet the real-time requirements of
tasks. These mechanisms can be divided into two categories. First, the compute nodes control
their own behavior of how to utilize shared resources. Past research has studied mechanisms
of shaping the resource access pattern to increase timing predictability, e.g., memory sharing
based on limiting the memory bandwidth for different cores [31, 32] and network bandwidth
limitation on compute nodes connected via Ethernet [23]. These mechanisms are passive since
they can only reduce the probability of resource contention instead of preventing contention
in the first place. Thus, passive mechanisms usually guarantee probabilistic deadlines. The
second category includes active resource sharing mechanisms, which either assign the resource
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to exactly one task at a time to prevent contention (e.g., TDMA-based bus sharing on a
multiprocessor platform [25]), or provide mechanisms on the shared resources to control its
usage directly [1, 14]. One benefit of active mechanisms is that by controlling how resources
are shared, one can build up a mathematical model to estimate the resource access time. We
believe this model is a necessary condition to guarantee hard deadlines.

In our previous work, we implemented a cyclic executive based task scheduler on distrib-
uted nodes to guarantee probabilistic task deadlines [21] and a hybrid earliest-deadline-first
(EDF) task and packet scheduler to guarantee hard deadlines [23]. Furthermore, we have
implemented a real-time distributed hash table (RT-DHT) to support the scalability and
resilience requirements of distributed wide-area measurement systems, which estimate power
grid oscillation modes based on real-time power state data [22, 19]. A passive mechanism
(bandwidth limitation on DHT nodes) was adopted to reduce variations of the network
delay in order to increase the schedulability of our hybrid scheduler [23]. However, when
the RT-DHT has to share network resources with other systems whose network utilization
patterns are unpredictable, this passive mechanism is not enough since it cannot restrict
the network access of other systems. In this work, we actively control network devices
(e.g., switches) by enforcing a packet scheduling algorithm on the devices to guarantee hard
message transmission deadlines for real-time packets, even when these devices are subject to
unpredictable background traffic.

One of the challenges of adopting the active mechanism is to determine an accurate
resource sharing policy that considers both the demands of the real-time tasks and the
capacities of the shared resources. For example, an active memory controller needs to know
the bandwidth demands of the running tasks to proactively reserve bandwidth for each of
them. This challenge becomes even harder for a network since the topology of the network
can be complex (e.g., network devices have to collaborate in order to guarantee the deadline).
We need to derive an effective static routing algorithm to determine the forwarding paths for
all real-time packets so that the end-to-end delay for such a packet through the corresponding
path never exceeds its deadline. Without loss of generality, we use term packet and message
interchangeably in this paper.

One possible approach to address this problem is to express it as an integer linear
programming (ILP) problem if the objective function and constraints are linear. In our
case, each real-time message could have multiple forwarding paths with different costs for
each path. For example, one cost is the size of the buffer the message will occupy on every
network device along the path. Then the problem becomes to assign a forwarding path for
each real-time message under the condition that the constraints on each shared device can
be met (in this case, the total size of messages is no more than the buffer size of the shared
device at any time). The effectiveness of this model is based on the accuracy of the cost
function. However, for the routing problem, the cost function on each device is dependent on
the exact traffic that goes through that device (i.e., dependent on the assignment results).
This cyclic dependency makes this a hard problem. Previous work has proposed to utilize
different oracles to break the cyclic dependency [12]. For example, assuming an oracle that
determines the transmission time on any device for any message at any time exists, the
assignment problem then can be solved with ILP techniques. In this paper, we enforce an
active message scheduling algorithm on network devices so we can derive the cost function
for each message and each device on the path for all traffic that goes through the device. As
a result, we use a validation-based backtracking algorithm to determine the forwarding path
for each message (detailed in Section 2.3).

The objective of our scheduling algorithm is to avoid dropping real-time messages even
when network congestion occurs, e.g., due to too many real-time messages and background
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traffic (considered as non real-time). First, the routing algorithm needs to guarantee that
when multiple real-time messages share a device on their forwarding paths, the aggregate
message size does not exceed the buffer size of that device. Thus, the scheduling algorithm
needs to control the timing when a message is transmitted from one device to the next. The
transmission time is planned statically so that the aggregate size of real-time messages on a
device can be calculated in our static routing algorithm. Second, the scheduling algorithm
needs to drop background traffic when the available buffer on a device is insufficient for
real-time messages. In this way, our scheduling algorithm guarantees real-time message
deadlines while providing a best-effort service to background traffic.

In summary, the contributions of this work are: (1) We design a static routing algorithm
to find forwarding paths for multiple real-time messages to guarantee the hard deadlines of
messages. (2) We propose a deadline-based scheduling algorithm, which actively controls the
time at which real-time messages are processed at each device and only drops background
packets when the device is congested. (3) We implement the packet scheduler on virtual
SDN switches and conduct experiments to evaluate our approach.

The rest of paper is organized as follows. Section 2 presents the design of our static routing
algorithm and the active device scheduling algorithm. Section 3 presents the implementation
details of the scheduling algorithm on virtual switches. Section 4 discusses the evaluation
setup and results. Section 5 contrasts our work with related work. Section 6 presents the
conclusion and on-going research.

2 Design

This section first presents the system model and the objectives. It then contributes the
static routing algorithm that determines forwarding paths for multiple pairs of source and
destination of real-time messages. After that, it contributes the scheduling algorithm that
runs on network devices to guarantee that real-time messages are transmitted in a time
predictable fashion.

2.1 System Model and Objectives

Network Model: We use notation (V,E,B, Pr) to represent the underlying network utilized
by compute nodes in distributed real-time systems to exchange messages. V denotes a finite
set of compute nodes and the networking hardware, which forwards messages between
compute nodes. Without loss of generality, we use the term node to represent either a
networking device or a compute node. Let B be buffer sizes on nodes, i.e., the aggregate size
of messages that can be stored in the queue on each node. If a burst of messages arriving
at a node exceeds the buffer size, a fraction of these messages will be dropped. Thus, one
objective of our system is to guarantee that only background traffic (i.e., messages without
deadline requirements) can be dropped in such a case. Matrix E represents the real-time
links between nodes in the graph. Nodes v1 and v2 have a physical connection for real-time
traffic iff E[v1, v2] > 0, where E[v1, v2] is the interface speed. Matrix Pr represents the
propagation delays on these links. Table 1 summarizes the notation. When a network runs
in stable state, its nodes and links do not change over time. Thus, V , E, B, and Pr are
constant. We require that clock times on nodes are synchronized. This can be achieved
via the Network Time Protocol [18], running at system startup time and periodically as a
real-time task, or hardware support (e.g., GPS of phasor measurement units in the power
grid).
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Table 1 Notation.

Name Meaning
V set of nodes
B[v] buffer size on node v

E[v1, v2] constant interface speed matrix for real-time
traffic between nodes v1 and v2

Pr[v1, v2] constant propagation delay matrix on
links between v1 and v2

Dm relative deadlines of a message flow m

Tm periods of a message flow m

Sm size of messages in flow m

R[v] expected message response time on node v
A[v] latest message transmission time on node v
δ[v] runtime message response time variance on node v
∆[v] response time variance bound on node v,

determined by all message flows on the node

Node Architecture: We consider a store-and-forward node model. A packet arriving at a
node is first put into the input buffer. Then, the node processor (i.e., forwarding engine)
processes the packet to determine the forwarding rule for that packet (e.g., time to forward
the packet and output link) and forwards the packet to the corresponding output queue at
scheduled time (e.g., Cisco Calalyst Switches [6]). This is further detailed in Section 2.2.

Message Release Model: We consider two types of messages. First are messages due to
background traffic without deadlines. Second are real-time messages released periodically
by real-time tasks running on one end node, which are subsequently transmitted to another
node. These messages can be classified as message flows, where a flow contains all messages
released by the same real-time task. Thus, messages in the same flow have the same source
and destination nodes, same relative deadline, and are released periodically. We define a set
of message flows as M = (D,T, S), where D is the relative deadlines of the message flows, T
is the periods, and S is the sizes. The flow id and the release time of a message are embedded
in the message header upon transmission. Nodes use the flow id to look up the forwarding
policy for that flow from their routing table and use the release time to calculate the exact
forwarding time for a specific message in that flow.

Objectives: Given the configuration of real-time flows, our static routing algorithm shall
derive a forwarding path for each flow, such that (1) the transmission time of a real-time
message shall never exceed its relative deadline, (2) the aggregate size of real-time messages
on any network device shall never exceed the buffer size of that device, (3) when multiple
real-time messages share a network device on their paths, the network device shall have the
computing capability to process them before their local deadlines. To achieve these goals,
the static routing algorithm derives offline the expected response time R by which each
node must have processed a real-time message. The goal for the scheduler is to guarantee
end-to-end message deadlines by enforcing the expected response time on each node and
considering the runtime response time variance δ caused by the interference due to scheduling
and queueing at the output interface. Section 2.3 proves that the scheduler can adopt an
EDF-based algorithm that uses R as local deadlines to achieve this goal.
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Message Delay Model: We focus on real-time messages to be transmitted before their
deadlines. Thus, given any real-time message flow, the objective is to find a forwarding path
for which the end-to-end delay does not exceed the relative deadline for the flow. More
formally, let the forwarding path for a flow be (v0, v1, ..., vk), where k is the path length
and vi ∈ V (0 ≤ i ≤ k) are the nodes on the forwarding path. Let t[vi] be the time when
the message arrives at node vi. t[v0] is the message release time, which is determined by
the property of the corresponding message flow. t[vi], 0 < i ≤ k, can be formalized as
a function of the path and the underlying network as shown in Eq. 1, where R[vi] is the
expected message response time on node vi and δ[vi] is the runtime variance for the message
response time (i.e., node vi starts to transmit the message at time t[vi] +R[vi] and finishes
the transmission at time t[vi] + R[vi] + δ[vi]). The first sum in Eq. 1 is the accumulated
propagation delay on links from v0 to vi. The second sum is the accumulated message
response time on nodes v0 to vi−1. The subscript m for the message flow is abbreviated
when the equations are suitable for every message flow (e.g., R[vj ] instead of Rm[vj ]).

t[vi] = t[vi−1] +R[vi−1] + δ[vi−1] + Pr[vi−1, vi]

= t[v0] +
i−1∑
j=0

Pr[vj , vj+1] +
i−1∑
j=0

(R[vj ] + δ[vj ]). (1)

Let A[vi] be the worst case (i.e., the latest time) that node vi has to start the transmission.
On the first node, A[v0] = t[v0] +R[v0]. We assume that δ[vi] ≥ 0 on any node vi. δ[vi] can
be bounded by a value ∆[vi], which is determined by all message flows on node vi and is
the same for any individual message on this node. Then, the latest transmission time A[vi]
(0 < i ≤ k) occurs when the message transmissions on all nodes before vi have experienced
the worst variation, which is expressed in Eq. 2. Thus, A[vi] can be calculated for a message
once R and ∆ are derived. Sections 2.2 and 2.3 detail the approach to derive R and ∆ offline.

A[vi] = max{t[vi] +R[vi]} = max{t[vi]}+R[vi]

= t[v0] +
i−1∑
j=0

Pr[vj , vj+1] +
i∑

j=0
R[vj ] +

i−1∑
j=0

∆[vj ] . (2)

As a result, the static routing algorithm needs to find a forwarding path for every message
flow so that the end-to-end delay in the worst case is bounded by its relative deadline as
expressed in Eq. 3.

A[vk] + ∆[vk]− t[v0] ≤ D . (3)

2.2 Message Scheduler
A real-time message experiences three phases on one node. Fig. 1 illustrates these phases on
node v, where the message is sent by node v′ and received by node v, and then forwarded to
node v′′. Before the message is sent to node v, the processor on node v′ has calculated the
latest message transmission time for the next node (i.e., A[v]) from the forwarding table. In
the first phase, the message arrives from link 1 at time t[v] and is put in the input buffer. We
assume that the time for an interface to put a packet into the input buffer can be ignored.
In the second phase, the message is processed and moved to the intermediate queue. During
processing, the latest message transmission time for the next node (i.e., A[v′′]) is calculated
and the output interface for the message is determined according to the forwarding table.

ECRTS 2017
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A[v'] A[v'] + δ[v'] t* A[v] A[v] + δ[v]  

t[v] = A[v'] + δ[v'] + Pr[v', v] 

Phase 1

Phase 2

Phase 3

time

Link

1

Link

2

t[v'']

Figure 1 Message Phases on Node.

The message stays in the intermediate queue during the second phase. In the third phase, the
message is forwarded to the corresponding interface at time A[v] and then finally transmitted
via link 2 at time A[v] + δ[v]. The intuition of this design is to constrain the message arrival
time at each node v to a time interval (A[v′] +Pr[v′, v], A[v′] +Pr[v′, v] + ∆[v′]). In contrast,
a background traffic packet is moved from the input buffer to the corresponding interface
directly when no real-time messages need to be processed.

To guarantee that the processor can start the transmission in the third phase at time A[v],
the processor has to finish processing the message before A[v] in the second phase (at time t∗
in Fig. 1). Thus, our packet scheduler adopts an EDF-based algorithm to process the message
before its local relative deadline A[v] − t[v]. Since A[v] = A[v′] + Pr[v′, v] + ∆[v′] + R[v],
which is derived from Eq. 2, the local relative deadline A[v]− t[v] is no less than the expected
response time R[v] as derived in Eq. 4. If the processor has the computation capability to
process every real-time message before its expected response time R[v], the processor can
forward it on time.

A[v]− t[v] = (A[v′] + Pr[v′, v] + ∆[v′] +R[v])− t[v]
= (A[v′] + Pr[v′, v] + ∆[v′] +R[v])
− (A[v′] + Pr[v′, v] + δ[v′])

= R[v] + ∆[v′]− δ[v′]
≥ R[v]. (4)

Algorithm 1 depicts the packet scheduler. The input buffer is organized into a real-time
message section and a background traffic section. Each section maintains the front and tail
of the corresponding queue. These sections are stored in a circular fashion. The growing of
one end of a section can reach the other end of the other section. An incoming real-time
message is stored at any end with sufficient space in the real-time message section. If neither
ends have sufficient space, background packets at the tail of the background section are
dropped until space is sufficient for the real-time message. An incoming background packet is
dropped immediately if the input buffer has insufficient space. Otherwise, if the background
traffic section has insufficient space at its tail, real-time messages are moved from the head
to the tail of the real-time section. An incoming background packet is always stored at the
tail of the background traffic section to support an FCFS service. The scheduler scans the
real-time messages in the input buffer and processes the message with the smallest A[v] but
tcurrent ≥ A[v] − R[v]. The second condition is to guarantee that a message will not be
processed before its latest release time (see lines 4 to 31). In the algorithm, Ā represents the
earliest transmission time of all real-time messages in the intermediate queue. The scheduler
compares Ā with the current time to determine whether the transmission time of any message
has passed. The scheduler transmits all messages whose transmission times have passed (see
lines 32 to 36).
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1 Message Scheduler (node v)
Input :Packet Input Buffer Q

2 Ā←∞
3 while true do
4 tcurrent ← current time
5 target real message x← nil
6 target background packet y ← nil
7 for each packet m in Q do
8 if m is a real-time message then
9 if tcurrent ≥ Am[v]−Rm[v] then

10 if x = nil or Am[v] < Ax[v] then
11 x← m

12 end
13 end
14 else
15 if y = nil then
16 y ← m

17 end
18 end
19 end
20 if x 6= nil then
21 if Ā > Ax[v] then
22 Ā← Ax[v]
23 end
24 v′ ← next node for x
25 calculate latest transmission time for next node Ax[v′].
26 move message x into intermediate queue.
27 else
28 if y 6= nil then
29 move y into output queue
30 end
31 end
32 tcurrent ← current time
33 while tcurrent >= Ā do
34 forward message with transmission time Ā to output interface.
35 update Ā.
36 end
37 Ts ← Ā− tcurrent

38 if Q is empty then
39 sleep (Ts) or wake up by packet arrival interrupt.
40 end
41 end

Algorithm 1: Pseudocode for message scheduler.

ECRTS 2017
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Our scheduler belongs to the class of non-preemptive EDF scheduling algorithms. The
real-time messages can be considered as jobs of periodic tasks (i.e., real-time message flows)
and instructions (lines 20 to 36) can be considered as the non-preemptive execution of the
jobs. Since the expected response time R is not required to be equal to the message flow
period, we utilize existing processor-demand analysis [2, 13] to perform a schedulability test
for the message flows on each node to determine whether the real-time messages can be
transmitted on time with the corresponding expected response time. This schedulability
test is adopted by the static routing algorithm when deriving message forwarding paths in
Section 2.3.

The runtime response time variation, δ, for a particular message consists of two parts.
One part is the time to execute at most one iteration of the while loop (lines 4 to 31). The
other part is the time to transmit other messages that have earlier transmission times in the
intermediate queue than the transmission time of that particular message (lines 32 to 36).
Thus, the worst case variation, ∆, is expressed by Eq. 5, where c is the worst case execution
time in the first part, B[v] is the buffer size of node v, and E[v, v′] is the bandwidth of the
link that transmits any real-time messages from node v to node v′. The second part in Eq. 5
represents the time for the data to be transmitted on node v via the slowest link.

∆[v] = c+ B[v]
min{E[v, v′]} , for all nodes v’ linked to v for real-time messages. (5)

2.3 Routing Algorithm
Two significant differences between the objectives of our routing algorithm and other routing
algorithms (see Section 5) are: (1) Our algorithm finds forwarding paths for multiple pairs of
source and destination, and (2) it bounds the end-to-end delay for every pair by a predefined
value (relative deadline of the flow) instead of minimizing the delay for a particular flow.
Thus, we want to increase the predictability of the node behavior so that the message response
time on each node is controlled and no real-time messages will be dropped.

Let us first describe the validation algorithm that checks if a set of real-time message flows
with their corresponding paths is schedulable. Given a set of flows, a set of corresponding
paths (one path for each flow) is schedulable if the following criteria can be met on every
node in the network: (1) When a real-time message arrives at node v, the node is able to
process it before time A[v] (i.e., latest message response time). In addition, the node is able
to transmit the message at a time in the range (A[v], A[v] + ∆[v]). This is to guarantee that
the message arrival time at the next node on the path can be modeled by Eq. 1 since this
criterion infers 0 ≤ δ[v] ≤ ∆[v], which is the assumption for Eq. 1. This criterion is checked
for the given message flows and the corresponding paths by the schedulability test described
in Section 2.2.

(2) The residual buffer size of every node (i.e., the node buffer size minus the aggregate
size of real-time messages that are resident on that node) cannot be negative at any time.
Let us first consider the worst case for one message flow m on any node v. The longest time
that any message in the flow is queued on this node is ∆[v′] +Rm[v] + ∆[v], where v′ is the
predecessor of node v on the path. Let ∆[v′] = 0 if v is the first node on the path. Thus, the
number of messages of this flow on node v in the worst case is d∆[v′]+Rm[v]+∆[v]

Tm
e. Then, the

aggregate size of all message flows in the worst case must not exceed the buffer size of node
v as expressed in Eq. 6. This buffer size limitation has to be validated on every node.∑

all flows m on v
d∆[v′] +Rm[v] + ∆[v]

Tm
e ∗ Sm ≤ B[v] . (6)
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With this validation algorithm, our routing algorithm derives the forwarding paths for
message flows with the following backtracking procedure. Assuming a schedulable forwarding
path set is found for the first i flows, the routing algorithm checks every path candidate for
flow i+ 1 until it finds a candidate that will result in a schedulable path set for all first i+ 1
flows according to the validation algorithm. If no such forwarding path is found for flow i+ 1,
the algorithm backtracks to flow i and continues the process with the next candidate for flow
i. A forwarding path candidate for a message flow is defined as a sequence of nodes that can
transmit this flow from its source node to its destination with the expected response time on
each node (i.e., (v0, R[v0]), (v1, R[v1]), ..., (vk, R[vk])). Section 2.4 describes the algorithm to
find path candidates for message flows.

This algorithm always finds a schedulable forwarding path for each message flow if such a
path exists since it checks all permutations. The complexity of this backtracking algorithm is
exponential with the number of message flows (i.e., the same as an ILP algorithm) but this
has no impact on real-time messaging as the calculations are performed offline. Nonetheless,
we reduce the actual search time by optimizing the path search order. When checking the
path candidates for flow i+ 1, the intuition is to give higher preference to the candidate that
results in a larger residual buffer on the path if that candidate is chosen to be the forwarding
path for flow i+ 1. The residual buffer size of a path is defined as the minimum residual
buffer size of all nodes on the path. Since the residual buffer size of a node determines the
size of background traffic that can be kept on the node, this strategy decreases the chance
that certain nodes become the bottleneck for the background traffic. If two candidates result
in the same residual buffer size, we give higher preference to the candidate with a shorter
length. Furthermore, we give higher preference to the candidate with a shorter end-to-end
delay if two candidates have the same length. The backtracking algorithm checks candidate
paths for flow i+ 1 from highest preference to lowest.

2.4 Forwarding Path Candidate
Our routing algorithm requires that forwarding path candidates for message flow i are known
when the algorithm attempts to find the path for that flow. A forwarding path candidate
includes the nodes on the path and the expected message response time R on each node.
First, we perform a breadth-first-search algorithm on the network graph to find all acyclic
paths that connect the source and destination of the message flow. Then, for each path, we
need to assign the expected message response time to each node based on the following three
considerations.

First, the buffer size restriction described in Eq. 6 must be met on every switch. Second,
the overall end-to-end delay in the worst case based on the expected message response time
assignment must not exceed the relative deadline of the message flow (as shown in Eq. 3),
which can also be expressed as:

k−1∑
j=0

Pr[vj , vj+1] +
k∑

j=0
R[vj ] +

k∑
j=0

∆[vj ] ≤ D.

Thus,
k∑

j=0
R[vj ] ≤ D −

k−1∑
j=0

Pr[vj , vj+1]−
k∑

j=0
∆[vj ]. (7)

Third, the assigned expected response time must be long enough on every node vj on the path
so that these messages can be processed with their local relative deadline R[vj ] as required
by the validation algorithm. Since the message scheduler is non-preemptive, we use the worst
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Figure 2 Message Header.

case execution time for the node to process one message (i.e., notation c as described in
Section 2.2) as the unit to calculate the expected response time. Thus, R[vj ] = c ∗ x, where
x is at least 1 and upper bounded by Eq. 6 and 7. The assignment algorithm enumerates all
values x in its range and performs processor-demand analysis for EDF scheduling to check
if the corresponding response time assignment for the chosen x can be met on the network
devices. As a result, multiple forwarding path candidates can be generated for each acyclic
path found by the breadth-first-search algorithm.

3 Implementation

To support the three-phases message transmission (see Fig. 1), this section first presents the
message structure and the extension to the Linux network stack on end nodes to specify the
flow id and release time of real-time messages. It then presents the structure of forwarding
tables on network devices and a scheduler implementation on virtual switches based on Open
vSwitch [20, 5], a software-defined network (SDN) simulation infrastructure.

3.1 Message Structure and Construction
To support the scheduler in Algorithm 1, real-time messages need to carry the flow id, the
latest transmission time for the current node A[v], and the latest transmission time for the
next node A[vnext]. We utilize the Type of Service (ToS) field (i.e., bits 8–15) and Options
field in the standard IP Header to store them as illustrated in Fig. 2. For real-time messages,
bit 8 is set to 1 and bits 9–15 are set to the message flow id. Then, a 16-bytes option (bytes
20–35) is used to carry the two time values in milliseconds. The type of the option (byte
20) is set to a value that has not been used by other protocols to prevent conflicts. For non
real-time traffic, bit 8 is set to 0, which is the default value for the ToS field.

When a task running in user mode attempts to transmit a real-time message, it needs
to specify the flow id to the network stack of Linux. The network stack software of the
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node searches in the forwarding table to calculate the transmission times and determines the
network interface for the transmission. Below are the most significant changes we made to
Linux to support this functionality.

(1) We added a new field, fid, of type char in the kernel data structure sock so that the
flow id of a socket provided by the task can be stored.

(2) We extended function sock_setsockopt of the Linux kernel and added a new option
SO_FLOW so that the system call setsockopt assigns the message flow id when the task
attempts to transmit a real-time message. sock_setsockopt keeps the value of the flow id in
the fid field of the sock structure. The fid field is initialized to 0 when the sock structure
is created.

(3) When the application transmits the real-time message, the kernel creates instance(s)
of the sk_buff structure to store the data of the message. We added a new field, fid, in
sk_buff so that the flow id of the message can be copied and passed down to the network
layer. In addition, we added another field, release_time of type ktime_t in sk_buff , to
store the current system time as the message release time.

(4) When the network header structure network_header in sk_buff is constructed in the
network layer, we use fid to search in the forwarding table (see Section 3.2) and calculate
the latest transmission time for the current node and for the next node. Then, fid and the
transmission times are stored in the network header as shown in Fig. 2. Bit 8 is set to 1 to
indicate real-time messages. If fid is 0, bit 8 is set to 0.

(5) We implemented a delay queue, which provides the standard interfaces of the Linux
traffic control queue disciplines [11], so that real-time messages can be transmitted at its
latest transmission time as required by our routing algorithm. The delay queue contains two
components. The first one is a linked-list based FIFO queue to store non real-time packets.
For real-time packets, we utilize the cb field, the control buffer in sk_buff , to implement
a linked list-based min-heap. This linked list-based implementation does not have a limit
on the number of messages that can be queued in the min-heap, which an array-based
implementation of min-heap would have.

(6) When the clock reaches the latest transmission time of a real-time message, the queue
discipline moves the value of the latest transmission time for the next node (i.e., bytes 28−31)
to bytes 24− 27. Then, the message is forwarded to the network interface for transmission.
In this way, when the message arrives at the next node, bytes 24 − 27 denote the latest
transmission time for the new node.

3.2 Forwarding Table Structure
We utilize the default forwarding table for background traffic. The default forwarding table
contains the mapping between the destination network IDs (i.e., network destination and
network mask) and the local interfaces that reach the destinations. For real-time messages,
we use the flow IDs to indicate the destinations in the forwarding table. The forwarding
table contains the expected message response time (R[v]) on the current node v. In addition,
it contains the sum of the worst case message transmission variation ∆[v] on the current
node, the propagation delay (Pr[v, v′]) on the link to the next node v′, and the expected
message response time (R[v′]) on the next node. Table 2 depicts the table structure, where
Next Aggregate Delay is the sum of ∆[v], Pr[v, v′], and R[v′]. Interface is the interface to
forward messages in each flow.

As a result, the time variables of real-time messages required by the scheduler (see
Algorithm 1) can be calculated from the data carried in the header and stored in the
forwarding table. Table. 3 depicts these relations.
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Table 2 Forwarding Table.

fid Expected Response Time Next Aggregate Delay Interface
(ms) (ms)

1 7 10 eth0
2 12 16 eth1

Table 3 Message Scheduler Variables.

Variable Source
A[v] Message header (bytes 24 − 27)
R[v] Forwarding table
A[v′] A[v] + Next Aggregate Delay in forwarding table

3.3 Virtual Switch Implementation

We extend the traffic control [11] and the OpenFlow implementation in Open vSwitch [20, 5]
on Linux to implement our message scheduler. Our virtual switch implementation includes
three components: (1) An ingress queue based on the traffic control mechanism (i.e., the
input queue in our node model). When this queue is enabled, the incoming packets on related
interfaces are put into this queue. Meanwhile, the packet arrival events trigger the scheduler
to invoke the dequeue function if the scheduler is idle. The dequeue function finds the packet
with the earliest expected response time and sends it to the downstream OpenFlow actions
(lines 4 to 19 of Algorithm 1). (2) A new flow table structure (see Section 3.2) is constructed
for real-time messages based on the OpenFlow hierarchy and the corresponding forwarding
actions to execute (in lines 20 to 31). The scheduler invokes the forwarding actions for every
packet. It then forwards real-time messages to the downstream intermediate queue and
forwards background traffic to the corresponding interface. (3) A delay queue based on the
traffic control mechanism (i.e., the intermediate queue in our node model). This queue has
the same structure as the delay queue at the end nodes (see Section 3.1). The scheduler
forwards any real-time messages removed from the delay queue with the dequeue function
for the corresponding interface.

The buffer to store packets on a virtual switch is shared by the ingress queue and the
delay queue. When an interface attempts to put a background packet into the ingress
queue by invoking the enqueue function, we check if the available buffer is sufficient for the
packet. If it is not, that background packet is dropped. When an interface attempts to put
a real-time message into the ingress queue and the available buffer is insufficient for that
message, the enqueue function drops background packets that are already in the queue so
that the real-time message can be stored. In addition, as one of the objectives of our routing
algorithm (see the second criterion of the validation algorithm described in Section 2.3), the
algorithm guarantees that the buffer always has enough space to store real-time messages if
the forwarding path is schedulable. The size of the buffer is a configurable parameter in our
implementation, which is set to different values as part of our experimental assessment.

4 Evaluation

We evaluate our virtual switch on a local cluster. The experiments are conducted on 6 nodes,
each of which features a 2-way SMP with AMD Opteron 6128 (Magny Core) processors and
8 cores per socket (16 cores per node). Each node has 32GB DRAM and Gigabit Ethernet.
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Figure 3 Experiment Network Setup (1).

These nodes are connected via a single network switch in the physical network topology, and
we use different numbers of nodes as virtual SDN switch nodes in different experiments. Each
node runs a modified version of Linux 2.6.32 and Open vSwitch 2.3.2, which includes the
virtual switch implementation. The clocks on these nodes are synchronized with a centralized
NTP server when we conduct the experiments. In the first part of this section, we present
the experimental results to demonstrate the capabilities of the message scheduler in two
aspects: (1) Under intense network congestion, the message scheduler on a single node
can meet the hard deadline of every real-time message. (2) When the forwarding paths of
real-time messages consist of multiple switches, our message schedulers on these switches can
collaborate to guarantee end-to-end deadlines of all real-time messages. In the second part
of this section, we present a demonstration for the routing algorithms.

4.1 Single Virtual SDN Switch Result
Background: To demonstrate the effectiveness of the packet scheduler, we measures the
deadline miss rate for real-time messages and packet drop rate for background traffic on a
single virtual SDN switch with different configurations.

All 6 nodes (marked as A to F in Fig. 3) are connected via a single physical switch
(marked as S; physical links are indicated by solid lines). We use node A as the virtual
switch. The traffic is transmitted through node A via the virtual links (dashed lines). To
support this, a node generates test packets using the IP address of node A as the destination.
When a test packet arrives at virtual switch A via the physical links, A uses the flow id
carried in the packet header to determine its real destination. Thus, we add an extra column
in the forwarding table to indicate the real destination of a message flow. In addition, the
ToS field in background packets generated for test purposes is used to indicate their real
destination. Virtual switch A fills the real destination of any packet into the IP header of
the packet and then forwards it via the physical link to the central switch. In this way, test
packets are transmitted to its destination via the virtual switch. This modification is due to
the limitation of our experimental environment, which would be unnecessary if the virtual
switch were deployed directly onto a physical switch.

We use the network benchmark Sockperf to generate test workloads. A Sockperf client
transmits messages as UDP packets to the corresponding Sockperf server via the virtual
switch. The client generates a log record to indicate the transmission time of a message
while the server generates a log record to indicate the message arrival time. To simplify
measurements, the data section for a real-time message contains the flow id and the sequence
id of a particular message in that flow. The data section is padded by 0 s so that its total size
is 1000 bytes. A packet has been dropped by the virtual switch if no corresponding record
exists on the server side after the experiment. We assume that no packet drop occurs in
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Table 4 Test Workload in Single Switch Experiment.

fid Type Source Destination (mps, burst) Relative Deadline
1 Real Time B C (250, 1) 24ms
2 Real Time C D (200, 1) 24ms
3 Background D E (200, 400) NA
4 Background E F (200, 400) NA
5 Background F D (200, 400) NA

the network stack software of the end nodes or on the physical network links. Our platform
meets this assumption since we do not limit the buffer size on end nodes and the physical
network is reliable in our cluster.

Table 4 depicts the workload in the first experiment. The workload is controlled by
Sockperf parameters (mps, burst). mps indicates the number of frames per second, which
affects the frame size. burst defines the number of packets transmitted in each frame by the
client. For example, (250, 1) indicates 250 frames per second (i.e., a frame size of 4ms) with
1 message transmitted per frame. Real-time message flows have fixed parameters to make
them strictly periodic. The actual burst of a background flow is a random value uniformly
drawn from the interval [ burst

2 , burst] in each frame. If a real-time message does not arrive at
the server (i.e., no corresponding record exists in the server logs), we consider it a deadline
miss in this experiment. No re-transmission is performed. In addition, we calculate the
end-to-end delay for real-time messages even if they arrive at the server side. If the delay
of a message is longer than its deadline, we also consider it as a deadline miss. We set the
expected response time on the virtual switch to 20ms for both real-time flows, which is
the relative deadline of the message flows (24ms) minus the aggregate propagation delay
and expected response time variations on the path (estimated as 4ms). The case study in
Section 4.3 demonstrates this calculation.

Analysis: Fig. 4 depicts the result. We adjust the buffer size and compare both deadline
miss rate and packet drop rate when the message scheduler is turned on and off on the virtual
switch. When the message scheduler is turned off, the virtual switch does not differentiate
real-time packets from background packets and forwards them to the destination directly.
The x-axis in Fig. 4 is the buffer size on the virtual switch. The y-axis is the packet drop
rate for background traffic and the deadline miss rate for real-time flows.

The black and green lines depict the deadline miss rate for real-time messages when the
scheduler is turned off and on, respectively. With 20ms as the expected response time, the
message flows are schedulable under all buffer size configurations. Both message flows have a
0% deadline miss rate when the scheduler is on.

I Observation 1. The packet scheduler can meet the deadline requirements of all real-time
messages.

The black and blue lines depict the deadline miss rate and packet drop rate when the
scheduler is turned off. Since real-time packets and background packets are processed in
the same way by the switch, the deadline miss rate and packet drop rate are close for all
buffer size configurations. The virtual switch has an increasing tolerance to the burstiness
of packets with a larger buffer size. As a result, both rates decrease when the buffer size is
increased as depicted by the declining lines.

I Observation 2. When the scheduler is off, a larger buffer size can decrease both the
deadline miss rate for real-time messages and the packet drop rate for background traffic.
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Figure 4 Deadline Miss Rate and Message Drop Rate.

Table 5 Expected Response Time vs Message Drop Rate.

Expected Response Time (ms) Message Drop Rate (%)
10 10.80
20 10.89
40 11.05
80 11.46
160 11.81
320 12.33

When the scheduler is on, the expected message response time on the virtual switch is
20ms, which means every real-time message is delayed in the switch buffer for 20ms (no
delay is added in the end nodes where the real-time messages are released and received).
Due to this delay, the available buffer size for background traffic shrinks. As a result, the
packet drop rate for background traffic increases slightly, e.g., from 17.53% (blue line) to
18.53% (red line) for a buffer size of 0.6MB. Table 5 shows an overall trend of an increasing
drop rate for background traffic when the expected response time for real-time messages
is increased from 10ms to 320ms for a buffer size of 1.2MB. The results indicate that the
longer real-time messages are delayed in the switch buffer, the smaller the available buffer is
for background traffic. As a result, the packet drop rate increases when the delay time for
real-time messages is increased.

I Observation 3. Our scheduler increases the packet drop rate for background traffic.

The measurement of end-to-end delays for real-time messages indicates that the message
scheduler does not introduce a significant variation to the message transmission time (∆ is

ECRTS 2017



25:16 A Linux Real-Time Packet Scheduler for Reliable Static SDN Routing

CA D

F

B

E

1,2,3,4

1

2,3,4

2

3,4 4

3
4

Figure 5 Experiment Network Setup (2).

small). The end-to-end delay includes the latency due to transmission from the source node
to the virtual switch, the time the message spent on the virtual switch, and the transmission
latency from the virtual switch to the destination node. When we set the buffer size to
1.2MB and the expected response time to 10ms, the shortest end-to-end delay is 10.9ms
and the longest is 12.1ms (the median value is 11.6ms), of which 10ms are due to the
software-induced delay on the virtual switch. Since messages are transmitted via a physical
switch (and not via direct links in our system model), the physical switch also contributes to
the delay variation.

4.2 Multiple Virtual Switches Result
Background: In the second experiment, we construct a virtual switch chain to transmit
real-time messages. Nodes A −D are configured as virtual switches with a buffer size of
1.2MB. Node E uses a Sockperf client to transmit four message flows to the Sockperf server
on node F . Fig. 5 depicts the forwarding path for each message flow. The periods of message
flows are 1ms. The expected response time is 5ms and the next aggregate delay is 7ms
for each flow on these virtual switches. This setup suggests that the sum of the worst case
response time variation, ∆, and the propagation delay, Pr, on the link between two virtual
switches (i.e., two physical links connected via the central physical switch) is 2ms. We
measure the end-to-end delay for each message.

Our experimental results show that messages in all four flows experience a similar end-to-
end delay variation ([0.8ms, 1.8ms]). The value of next aggregate delay includes the worst
case response time variance on the previous node (as described in Eq. 3.2). The scheduler
only considers a real-time message once the current time is greater or equal to the worst case
response time (see line 9 in Algorithm 1). As a result, only the response time variation on
the last virtual switch (plus the propagation delay variation on the physical link from the
last virtual switch to the receiver in our experiment) contributes to the measured variation
of the end-to-end delays even though the forwarding path has multiple virtual switches. This
indicates the effectiveness of the message scheduler in terms of variance control.

I Observation 4. Real-time messages do not accumulate response time variation (jitter)
when forwarded by a chain of virtual switches.

4.3 Routing Algorithm Demonstration
We demonstrate our routing algorithm to find forwarding paths for real-time message flows.
Three message flows with attributes indicated in Table 6 are considered. These flows can
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Figure 6 Routing Algorithm Demonstration.

Table 6 Real-time Message Flows in Demonstration.

fid Source Destination Period Relative Deadline Message Size
(T) (D) (S)

1 S1 R1 12 11 1
2 S2 R2 1 15 1
3 S3 R3 12 12 9

be either forwarded via intermediate switch B or switches C and D as depicted in Fig. 6,
where the numbers in the switch circles are the buffer size of that switch. For simplicity, we
consider that it takes 1ms for the message scheduler on every switch to process one message
(i.e., c = 1ms in Eq. 5). We consider a response time variation of 2ms on every node or
switch and a propagation delay of 1ms (Pr = 1ms) on every link (i.e., ∆ = 2ms, Pr = 1ms).

We use the same notation as described in Section 2.3 to express forwarding path candidates.
For example, candidate ((S1, 1), (B, 1), (R1, 1)) for flow 1 means that a real-time message of
flow 1 is forwarded via nodes S1, B, and R1 with expected message response times of 1ms,
1ms, and 1ms on each node. We determine the schedulable routing paths for this setup in
the following steps.

(1) Consider forwarding path candidate ((S1, 1), (B, 1), (R1, 1)) for flow 1 (see 1st row
in of Table 7). The worst case end-to-end delay of this path candidate is R[S1] + ∆[S1] +
Pr[S1, B] + R[B] + ∆[B] + Pr[B,R1] + R[R1] + ∆[R1] = 11ms. Thus, this is the only
forwarding path candidate for flow 1 according to the deadline constraint of Eq. 7. If the
expected response time on any node of the path were increased, the end-to-end delay would
exceed the relative deadline of flow 1, which is 11ms.

The size of messages in flow 1 is 1. The maximum number of messages in flow 1 that
could be on switch B at any time is d∆[S1]+R[B]+∆[B]

T1
e = 1. As a result, the residual buffer

size of node B becomes 9, which is the buffer size of node B (10) minus the maximum buffer
that could be occupied by messages in flow 1.

(2) The forwarding path candidates for flow 2 are shown with ID 2-6 in Table 7, where
columns B, C, and D depict the residual buffer size on the corresponding nodes if flow 2
is forwarded. Candidates 2, 3, and 4 are considered first since the residual buffer size on
these paths is 4 (i.e., B − d∆[S2]+R[B]+∆[B]

T2
e ∗ S2 = 9− 5 = 4) if flow 2 is scheduled, which

is larger than the candidates 5 and 6. However, switch B cannot schedule both flow 1 and
flow 2, since the utilization of flow 2 is c

T2
= 100%. Other path candidates for flow 2 with

R[B] = 1ms, which are not shown in Table 7, are rejected for the same reason.
(3) Candidate 5 is considered next for flow 2 since it is a shorter path compared to

candidate 6 even though they have the same residual buffer size on their paths. However, if
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Table 7 Forwarding Path Candidates.

Forwarding Path End-to-end Residual Buffer1)

ID Flow Candidate Delay B C D Result
1 1 (S1, 1), (B, 1), (R1, 1) 11 9 8 8 4

2 2 (S2, 1), (B, 1), (R2, 1) 11 4 8 8 5

3 2 (S2, 2), (B, 1), (R2, 1) 12 4 8 8 5

4 2 (S2, 1), (B, 1), (R2, 2) 12 4 8 8 5

5 2 (S2, 1), (B, 2), (R2, 1) 12 3 8 8 5

(S2, 1), (C, 1), (D, 1),
6 2 (R2, 1) 15 9 3 3 4

7 3 (S3, 1), (B, 1), (R3, 1) 11 0 3 3 4

8 3 (S3, 1), (B, 2), (R3, 1) 12 0 3 3 5

9 3 (S3, 2), (B, 1), (R3, 1) 12 0 3 3 5

10 3 (S3, 1), (B, 1), (R3, 2) 12 0 3 3 5

1) After the corresponding flow is scheduled on the path.

flow 2 is transmitted via candidate 5, the residual buffer size of node B becomes 3. In this
case, flow 3 has no forwarding path candidate since flow 3 requires that the buffer size of any
node on the path is at least 9, the size of the message in flow 3, since the other forwarding
path (via switches C and D) only has a residual buffer size of 8. Other path candidates for
flow 2 with R[B] ≥ 2ms, which are not shown in Table 7, are rejected for the same reason.
Thus, the algorithm has to consider candidate 6 in Table 7, which is chosen.

(4) Candidates 7–10 for flow 3 meet the buffer size requirement and the relative deadline
of flow 3. Candidate 7 has a higher preference since it has a shorter end-to-end delay. In
addition, node B can schedule both flow 1 and 3, both with an expected response times of
1ms. In summary, we found paths for all three flows.

5 Related Work

Our packet scheduler adopts per-node traffic control to guarantee transmission deadlines
similar to other switched real-time Ethernet mechanisms, e.g., rate-controlled service dis-
ciplines (RCS) [8, 33], token-bucket traffic shaping [17], and EDF scheduling [9, 34]. Unlike
these mechanisms, our scheduler considers multiple constraints imposed by network devices,
namely link speed, computation speed, and buffer capacity. Table 8 details the comparison of
the assumptions of these mechanisms. defined in the table indicates that the corresponding
mechanism considers the restriction in its model. Our work does not assume infinite buffer
capacity and computation capacity. Our assumptions are more realistic on commodity
switches connected by modern high speed links.

Past work has proposed different mechanisms to establish communication channels that
recognize real-time requirements of packet flows at run time [7, 9, 26, 17]. In contrast, our
work focuses on forwarding path planning (via a static routing algorithm) and forwarding
policy enforcement (via packet scheduling). Other mechanisms guarantee soft deadlines of
real-time packets while providing high throughput to other traffic [28], or adopt congestion
avoidance algorithms when network contention occurs (e.g., buffer occupancy exceeds a
certain threshold) [29]. Our work guarantees hard deadlines by dropping only non-realtime
packets upon network congestion.

Our schedulability model does not depend on statistics as metrics of the network, e.g.,
bandwidth. Such metrics are dependent on multiple primitive factors of the switch: the
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Table 8 Assumptions Comparison for Real-time Packet Schedulers.

Mechanism Buffer Computation Link Speed
Capacity Capability

RCS [8, 33] infinite infinite defined
EDF [9, 34] infinite infinite defined

Traffic shaping [17] defined infinite defined
D3 [29], D2TCP [28] defined infinite defined

Our work defined defined defined

packet scheduling algorithm, buffer size, computing capability, and the state of other flows
on the switch [10]. Instead, we have specifically considered these factors in two ways: (1) We
formalize the dynamics of the network delay by introducing response time variations (δ) in our
analysis and we aggressively control the variation by the message scheduler. (2) Our routing
algorithm considers multiple constraints on switches and links when finding forwarding paths.

In contrast to TDMA-based real-time Ethernet channel implementations [4, 15], which
rely on custom hardware to respond to control data frames, our scheduler is designed and
implemented on Linux-compatible virtual switches and can be deployed on modern commodity
SDN-compatible switches, which is more suitable for wide-area deployment.

Past work has studied routing algorithms to find packet forwarding paths with QoS
support in different situations. This includes Dijkstra’s algorithm to find the single-source
path with shortest end-to-end delay under the assumption that per switch delay is known as
priori [12], Suurballe’s algorithm to find multiple disjoint paths with minimal total end-to-end
delay [27], and methods to find multiple disjoint paths with the minimized delay of the
shortest path [30]. Others have studied the routings to find an optimal forwarding path for
one particular message flow under certain network assumptions [12]. Past work has also
proposed to transmit messages over multiple paths simultaneously while the total time of the
flow is constrained under the assumption that actual bandwidths are known [24]. Network
Calculus has also been adopted to derive the forwarding path for a particular flow under the
additional assumptions that no cross-over traffic exists or the pattern of cross-over traffic is
known as priori [3]. Our work differs as follows from these prior work. It derives forwarding
paths for multiple message flows to guarantee the hard deadline of every message. Our
analysis depends on the link speed matrix, E, as described in Section 2. However, when the
implementation is deployed on physical switches, E can be quantified by the medium speed,
which is independent of the network traffic and scheduling algorithms. In addition, our
routing algorithm belongs to the class of constraint-based path selection algorithms, where
multiple constraints are considered on the transmission links [16]. We extend that by adding
the constraint of switch buffers and formalizing the cost and evaluation functions for switch
buffers and message scheduling, which are essential when applying any constraint-based path
selection algorithm.

To find forwarding paths for multiple packets, past work has proposed to minimize the
average packet delay [12]. However, the objective of real-time message transmission is to
meet the deadline of each message flow (i.e., not to minimize the average delay). Our routing
algorithm considers the hard deadline of every real-time flow when assigning a forwarding
path.
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6 Conclusion

We have presented a routing algorithm to determine forwarding paths for real-time message
flows in a distributed computing environment and a scheduler to actively enforce a message
forwarding policy on network devices. Our routing algorithm considers both the deadlines
and the network resource demands of real-time messages. As a result, no real-time messages
can be dropped due to network contention when handled by our message scheduler and
no real-time messages miss their deadlines. We have implemented the scheduler on virtual
switches and conducted experiments on a local cluster to prove the effectiveness of the
scheduler. Our experimental results showed that deadline misses of real-time messages
dropped to 0 when the message scheduler was turned on.

Future work includes porting the message scheduler implementation to physical network
devices (e.g., physical switches). Modern SDN-compatible switches support customized
packet forwarding protocols (e.g., OpenFlow), which could be utilized to run our virtual
switch implementation based on Open vSwitch. Since physical switches have hardware that
is dedicated to packet processing, we expect a better performance than the virtual switches.
In addition, in the case where a set of real-time message flows cannot be scheduled on a
network environment due to hardware limitations, we plan to extend our routing algorithm
to produce suggestive information, e.g., the required increase in buffer size of a switch before
the set of flows becomes schedulable. Furthermore, we plan to extend the routing algorithm
to find disjoint forwarding paths for real-time messages to handle network device failures.
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