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Abstract
Write-back caches are a popular choice in embedded microprocessors as they promise higher
performance than write-through caches. So far, however, their use in hard real-time systems has
been prohibited by the lack of adequate worst-case execution time (WCET) analysis support.

In this paper, we introduce a new approach to statically analyze the behavior of write-back
caches. Prior work took an “eviction-focussed perspective”, answering for each potential cache
miss: May this miss evict a dirty cache line and thus cause a write back? We complement this
approach by exploring a “store-focussed perspective”, answering for each store: May this store
dirtify a clean cache line and thus cause a write back later on?

Experimental evaluation demonstrates substantial precision improvements when both perspec-
tives are combined. For most benchmarks, write-back caches are then preferable to write-through
caches in terms of the computed WCET bounds.
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1 Introduction

The timely execution of programs is critical for hard real-time systems. Static worst-case
execution time (WCET) analysis provides upper bounds on programs’ execution times in all
possible execution scenarios. These upper bounds can then be used to verify that all timing
constraints of a given system are met prior to deployment in the field.

The execution time of a program heavily depends on the state of the underlying hardware
platform, in particular on the state of caches, which are intended to bridge the gap between
slow main memory and fast cores. WCET analysis has to precisely account for cache behavior
to obtain useful time bounds.

Multiple parameters affect a cache’s behavior and thus the latency of memory accesses,
e.g. its capacity, associativity, block size, and replacement policy. A parameter that has so
far received little attention in the literature is the write policy which determines the handling
of write memory accesses. There are two common choices for the write policy: write through
and write back. In a write-through cache, upon a store, the data is written to main memory
directly. In a write-back cache, the data is only written to the cache and the corresponding
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26:2 Write-Back Caches in WCET Analysis

cache line is marked dirty. Once a dirty cache line is evicted from the cache its data is
written back to main memory. In this way, multiple stores to the same cache line may be
consolidated into a single costly main-memory access. Due to the possible performance
benefits [17, 18], many embedded systems employ caches following the write-back policy, e.g.
in the MPC603e [10] and the ARM946 [3] processor.

Write-back caches are commonly considered hard to analyze because write backs are
decoupled in time from the corresponding stores in the program. Most literature on cache
analysis is targeted at caches following the write-through policy. We are aware of only two
exceptions: Alt et al. [1] and Sondag and Rajan [27] both introduce static analyses to safely
approximate the set of dirty cache lines at each program point. Upon a potential cache miss,
WCET analysis can use this information to determine whether or not the evicted cache line
may be dirty and thus trigger a write back. As this approach tries to exclude potential write
backs at cache evictions, we term this approach “eviction-focussed write-back analysis”.

In this paper, we identify a complementary approach, which we term “store-focussed
write-back analysis”. The approach is based on two simple observations:

each write back is preceded by a store to the cache line written back, and
stores to dirty cache lines do not increase the number of write backs.

Thus we introduce an analysis that identifies and bounds the number of “dirtifying stores”,
i.e. stores to previously clean cache lines. We demonstrate at the hand of examples and later
experimentally that the store-focussed approach is required to obtain good execution time
bounds for caches following the write-back policy.

Our main contributions are the following:
We introduce the “store-focussed write-back analysis” approach and the corresponding
dirtifying store analysis, which is essential to turn write-back caches into a favorable
choice for hard real-time systems.
We present the first experimental evaluation of both eviction- and store-focussed write-
back analyses. In particular, we demonstrate that with our new analysis write-back
caches are preferable to write-through caches in terms of WCET bounds.

2 Background: Write-back Caches

Caches are fast but small memories that store a subset of the main memory’s contents to
bridge the latency gap between the CPU and main memory. To profit from spatial locality
and to reduce management overhead, main memory is logically partitioned into a set of
memory blocks B. Each block is cached as a whole in a cache line of the same size.

When accessing a memory block, the cache logic has to determine whether the block is
stored in the cache (“cache hit”) or not (“cache miss”). For efficient look-up, each block can
only be stored in a small number of cache lines known as a cache set. A subset of the bits of
a memory block’s address determines the cache set it maps to. The cache is partitioned into
equally-sized cache sets. The size of a cache set in blocks is called the associativity k of the
cache.

Since the cache is much smaller than main memory, a replacement policy must decide
which memory block to replace upon a cache miss. Importantly, almost all replacement
policies treat sets independently, so that accesses to one set do not influence replacement
decisions in other sets. Well-known replacement policies are least-recently-used (LRU), used,
e.g., in various Freescale processors such as the MPC603e and the TriCore17xx; pseudo-LRU
(PLRU), a cost-efficient variant of LRU; and first-in first-out (FIFO). In this article we focus
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Listing 1 Motivation for Store-focussed Write-back Analysis
x = f(x);
sum = 0;
for (i=0; i<N; i++) {

sum += arr[ read_sensor ()];
}
...

exclusively on LRU. The application of our ideas to other policies is left as future work. As
the name suggests, LRU replaces the least-recently-used block upon misses.

LRU naturally gives rise to a notion of ages for memory blocks: The age of a block b is
the number of pairwise different blocks that map to the same cache set as b that have been
accessed since the last access to b. If a block has never been accessed, its age is k. Then, a
block is cached if and only if its age is less than the cache’s associativity k.

Given this notion of ages, the state of an LRU cache can be modeled by a mapping
that assigns to each memory block its age, where ages are truncated at k, i.e., we do not
distinguish ages of uncached blocks. So the set of cache states is age : B → {0, . . . , k}. Then,
the effect of an access to memory block x can be formalized as follows:

update(age, x) , λb.


0 if x = b

age(b) else if age(x) ≤ age(b) ∨ set(x) 6= set(b)
min(k, age(b) + 1) else if age(x) > age(b) ∧ set(x) = set(b)

(1)

where set(x) denotes the cache set that x maps to.
There are several choices regarding the implementation of stores, determined by the

answers to the following two questions:
1. When is the data written back to main memory?

One option, known as write through, is to perform any store immediately in main memory.
The other option, known as write back is to buffer the changes in the cache, marking
the modified cache line as dirty. Upon an eviction of a dirty cache line its data is then
written back to main memory.

2. What happens upon a write miss?
If the memory block being modified is not contained in the cache, one can either bypass
the cache and make the modification in main memory (no write allocate) or one can
allocate a cache line and write to that line (write allocate).

Write-back caches usually employ write allocate, and write-through caches usually employ
no write allocate. In the remainder of the paper we will only state whether a cache is write
through or write back and assume the usual allocation policy.

For a write-through cache, the LRU update defined in (1) does not cover the store miss
case; then the update is simply the identity function; assuming that the non write allocate
policy is applied in write-through caches.

3 Motivating Examples

Consider the example program in Listing 1. For the sake of readability, we use C-style
example programs, while the analysis is performed at the level of machine instructions.
Assume that all variables, i.e., x, sum, and i, are kept in separate memory blocks rather than
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Listing 2 Motivation for Eviction-focussed Write-back Analysis
if (...)

x = 0;
if (...)

x = 1;
b = c;

in registers, and that N is a constant held in a register. For simplicity, let us analyze the
write-back behavior of this example on a fully-associative cache of size 4.

The address accessed by arr[read_sensor()] cannot be predicted statically as it depends
on sensor readings, which only become available at runtime. In particular, it is impossible
to determine whether the accessed memory block is cached or not, assuming the array is
larger than the cache. Then, each of the array accesses may result in a miss and may thus
potentially trigger a write back.

After the first access to the array within the loop, the variable x is stored in the least-
recently-used cache line, as sum, i, and arr[read_sensor()] have been used more recently.
Due to the store x = f(x) the cache line holding x is dirty. Depending on whether the
following iterations access the same cache line as the first loop iteration, x is evicted or not.
Applying the eviction-focussed approach [1, 27] it is impossible to exclude a write back in
any of the loop’s iterations but the first. Such an analysis would thus have to assume at least
N− 1 write backs.

Now let us adopt a store-focussed view: x is written to only once, and so there may be
at most one corresponding write back. However, simply using the number of stores in the
example program is also not beneficial: including the assignments to i and sum in the loop,
there are 2N + 2 stores in the program, which is even greater than the number of write backs
an eviction-focussed analysis would derive. Besides, simply counting the number of stores
defeats the purpose of write-back caches, which is to consolidate multiple stores to the same
cache line before writing the data back to main memory.

To account for this mechanism, we introduce the notion of dirtifying stores. A dirtifying
store is a store to a clean cache line. The number of dirtifying stores is a bound on the
number of write backs. In the example, the variable sum is first written to in line 2, turning
its cache line dirty. All the stores to sum inside the loop are non-dirtifying: as sum is accessed
in every loop iteration, it may never be evicted and thus it remains dirty throughout the
entire loop execution. Similarly, the first store to i in the loop is dirtifying, but all subsequent
stores are non-dirtifying, as i remains cached throughout.

We therefore conclude that as a consequence of this program’s execution at most three
write backs may occur, namely of x (committing the store from line 1), i (committing the
stores in line 3) and sum (committing the stores in line 2 and 4). In Section 6, we introduce
an approach to bound the number of dirtifying stores.

Although the store-focussed approach often works very well, it is not always superior
to the eviction-focussed approach. Consider the example in Listing 2, which includes two
potentially dirtifying stores to variable x. Assuming a fully-associative cache of size 2,
an eviction-focussed approach may recognize that x can only be evicted when accessing b
(following the access to c) and can therefore safely account for a single write back. For
optimal results, both approaches should therefore be combined. In Section 5, we describe an
eviction-focussed write-back analysis, including a dirtiness analysis, which is also required to
precisely bound the number of dirtifying stores in Section 6.
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4 Background: Static WCET and Cache Analysis

4.1 Static WCET Analysis

In this section, we briefly present a state-of-the-art approach to WCET analysis, which
our write-back analysis is based upon. It consists of three phases: (1) value analysis,
(2) microarchitectural analysis, and (3) path analysis. All analyses are performed on binary-
level machine programs.

The first phase performs analyses that are independent of the underlying microarchitecture.
Examples are value analyses such as constant propagation or interval analysis. The main
purpose of this phase is to compute loop bounds and addresses of load and store instructions.
This information is used in the following phases.

The second phase analyzes the program at the microarchitectural level. The microarchi-
tectural analysis calculates a state graph. Each node in the state graph contains the state of
the microarchitecture including the pipeline and the cache. Nodes are connected via edges,
which represent the execution behavior of the system over time. Each edge is weighted with
its transition time in clock cycles, which we refer to as time(e). Additional weights may be
defined if required, e.g. modeling that a loop back edge is taken, which can be constrained
by a corresponding loop bound, or that a write back occurs when an edge is taken.

Unfortunately, enumerating all reachable concrete microarchitectural states is infeasible;
there are simply too many. It is therefore necessary to construct the state graph using
abstract states. Each abstract state corresponds to many concrete states at once, thereby
reducing the state space. Such an abstraction comes with two functions: the update function
and the join function.

The update function computes the successor of an abstract state. For a correct analysis,
this function has to be consistent with the concrete transition function.
The join function merges two abstract states into one. The resulting state must represent
all concrete states represented by its arguments, but it may contain more. The ensuing
imprecision is the price for the reduced state space.

Due to the uncertainty within the abstract states, there might be multiple successor
states, e.g. one for the cache hit case and one for the cache miss case. This uncertainty is
represented by nondeterministic choices inside the graph, i.e. multiple edges originating from
the same state.

Finally, in the path-analysis phase, the worst-case path through the state graph is
determined. To do so, the state graph is encoded via linear constraints and integer linear
programming (ILP) is used to determine the path through the state graph with the greatest
execution time. More precisely, a frequency variable fe is introduced for each edge e of
the state graph, modeling how often edge e is taken in an execution. The structure of the
graph is encoded via constraints, which restrict the valuations of the frequency variables to
those corresponding to valid paths through the state graph: in particular, the sum of the
frequencies of incoming edges needs to be equal to the sum of the frequencies of outgoing
edges at each node of the state graph. The results of the loop bound analysis in the first
phase are used to further restrict the possible paths via loop bound constraints. A bound
on the program’s execution time can then be obtained via the following objective function:
max

∑
edge e time(e) · fe.

Further constraints can be added to the ILP to exclude infeasible execution paths. We
use such constraints in the store-focussed write-back analysis introduced in Section 6.
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Listing 3 Motivation: Persistence analysis
for (int i=0; i<N; i++) {

k = read_sensor ();
sum[k] = sum[k] + arr[k];

}

4.2 Cache Analysis
The goal of cache analysis is to statically prove that a memory access hits or misses the
cache. Here, we limit our exposition to a brief summary of the cache analyses required in
order to understand our work. A more complete and detailed overview can be found in [22].

May and Must Analysis

In order to predict cache hits and misses LRU cache analyses compute upper and lower
bounds on the ages of memory blocks. The age of memory block b is the number of distinct
memory blocks mapping to the same cache set as b accessed since the last access to b. A
block is in the cache if and only if its age is less than the cache’s associativity k.

Thus, upper bounds on ages may be used to predict cache hits and lower bounds may be
used to predict cache misses. The two analyses computing upper and lower bounds on ages
are commonly known as must and may analysis [1]. Abstract states for both analyses map
blocks to their respective bounds: Smust = Smay = B → {0, . . . , k}.

The two functions updatemust and updatemay define the successor of an abstract cache
state when loading or storing to x. For reasons of brevity we only define updatemust here:

updatemust(must, x),λb.


0 if x = b

must(b) else if must(x) ≤ must(b) ∨ set(x) 6= set(b)
min(k,must(b) + 1) else if must(x) > must(b) ∧ set(x) = set(b)

where set(x) denotes the cache set that x maps to.
As in the concrete case, for a write-through cache, the above update does not cover

the store miss case; then the identity function is applied instead. Since the must analysis
maintains upper bounds, the join function takes the maximum of both bounds: join(S, T ) =
λb. max(S(b), T (b)). Similarly the join for the may analysis takes the point-wise minimum
of the bounds.

Persistence Analysis

May and must analysis try to classify memory accesses at a given program point as cache
hits or cache misses under all circumstances. In some cases, such a classification is impossible
even though the cache is highly effective. Consider the array sum in Listing 3. Assuming
all memory blocks accessed inside the loop completely fit into the cache, none of the cache
lines of sum can be evicted within this loop once they have been loaded. They persist in the
cache. However, must analysis is unable to prove this assuming each call of read_sensor
may deliver an arbitrary value within the bounds of the arrays: each access may be the first
to its cache line.

One approach to persistence analysis is the conflict-set analysis (also called conflict
counting in [6]). The conflict-set analysis simply accumulates all memory blocks that may
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have been accessed. If all of these blocks simultaneously fit into the cache, then all of them
can safely be classified as persistent. There are more sophisticated persistence analyses
described in [6], however, they offer little additional precision in practice, and thus we make
use of the simple conflict-set analysis in this work.

For the example above, the conflict-set analysis computes a conflict set containing all
blocks of sum and arr as well as i and k. Since this set fits entirely into the cache, all accesses
are classified as persistent.

If a memory block is persistent, accesses to this block may only result in a single cache
miss during program execution. This property can be encoded as a linear constraint, limiting
the execution paths explored to those in which the respective block causes at most one miss.
If an entire array is persistent, a similar constraint can be formulated to capture that the
sum of the misses upon accesses to the array is bounded by the number of cache lines the
array occupies.

Applying persistence analysis globally to large programs is bound to fail as memory blocks
are rarely persistent throughout the entire program execution. Instead, persistence analysis
is usually performed on smaller, contiguous parts of the program called persistence scopes.
A common choice for persistence scopes, which we adopt in our experiments, are loops –
they are executed more than once and they often reuse memory blocks across iterations.
Persistence scopes can be nested, such that a block might be persistent in an inner loop but
not persistent in the surrounding loop.

5 Eviction-focussed Write-back Analysis

In this section, we describe a simple eviction-focussed write-back analysis. The aim of this
analysis is to determine for each potential cache miss in the program whether the cache miss
may evict a dirty cache line and thus cause a write back.

Without further information, the analysis has to assume that every cache miss evicts
a dirty cache line. To provide useful bounds, the write-back analysis has to track which
memory blocks may be dirty. If the analysis can prove that all of the memory blocks that a
cache miss might evict are clean, then no write back may occur.

5.1 Formalizing the Behavior of Write-back Caches
Before defining an abstraction for tracking the dirtiness of memory blocks, let us formalize
the concrete behavior of a write-back cache. To this end, the dirtiness of memory block
is represented by a predicate dirty : B → {C,D}, where C stands for “clean” and D for
“dirty”. Concrete cache states S then are pairs consisting of S.age : B → {0, . . . , k} and
S.dirty : B → {C,D}, which together map each block to its age and its dirtiness status.

The update of ages has been defined in (1). The update of the dirtiness predicate depends
on whether the access is a load or a store. Let us first consider the load case:

updateload(S.dirty, x) , λb.

{
C if evicts(S.age, x, b)
S.dirty(b) otherwise

(2)

where evicts(S.age, x, b), defined below, captures that the access to x causes the eviction of
memory block b. If the access to x causes the eviction of block b (case 1), then b becomes
clean. Otherwise, b’s dirtiness remains the same (case 2).

The access to x evicts memory block b from the cache if they map to the same cache set,
the access to x causes a miss, and b is evicted:

evicts(S.age, x, b) , set(x) = set(b) ∧ S.age(x) = k ∧ S.age(b) = k − 1.
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>

C D

t C D >
C C > >
D > D >
> > > >

Figure 1 Hasse diagram of the partial order on dirtiness states and the corresponding join
function on dirtiness states.

In case of a store, the block that is written to becomes dirty. Other blocks may become
clean if they get evicted, as modeled by the load update:

updatestore(S.dirty, x) , λb.

{
D if x = b,

updateload(S.dirty, x)(b) otherwise .
(3)

An access to block x causes a write back if and only if it evicts a dirty block:

writeback(S, x) , ∃b ∈ B. S.dirty(b) = D ∧ evicts(S.age, x, b) .

5.2 Dirtiness Analysis

Dirtiness analysis [1, 27] tracks the dirtiness of memory blocks. During analysis, each block
can be in one of three dirtiness states:
1. clean (C), meaning the block is definitely clean,
2. dirty (D), meaning the block is definitely dirty, and
3. unknown (>), meaning the block might be either clean or dirty.

The three dirtiness states are partially ordered according to the Hasse diagram in Figure 1.
The domain of the overall dirtiness analysis is thus B → {C,D,>} mapping each block to
its dirtiness state.

To specify the abstract update function of the dirtiness analysis, we need to know when a
memory block might get evicted from the cache and when a block has definitely been evicted
from the cache. We define both predicates based on the information from the must and the
may cache analysis. The must analysis tells us the earliest point in time when a block may
be evicted, while the may analysis tells us the latest point in time when a block may be
evicted. If there is any uncertainty about a block’s exact age we obtain an interval of points
in time at which an eviction may happen.

We use S.may and S.must to refer to the state of the may and must analysis before
the current update. The predicate may-evict(S, x, b) determines whether accessing x might
evict b from cache state S:

may-evict(S, x, b) , set(x) = set(b) ∧ S.must(x) = k

∧ S.may(b) < k ∧ updatemust(S.must, x)(b) = k .

Paraphrasing the formula above, block b might be evicted, if the access to x may result in a
miss (S.must(x) = k) and b may have been cached prior to the access (S.may(b) < k), and b
may be out of the cache after the access (updatemust(S.must, x)(b) = k).



T. Blaß, S. Hahn, and J. Reineke 26:9

The predicate evicted(S, x, b) determines whether block b has definitely been evicted from
the cache after accessing x1:

evicted(S, x, b) , updatemay(S.may, x)(b) = k .

Using the above predicates, we can define the abstract dirtiness update function for loads:

̂updateload(S, x) , λb.


C if evicted(S, x, b),
S(b) t C else if may-evict(S, x, b),
S(b) otherwise .

(4)

If a block must have been evicted (case 1, above) it is definitely clean. If it may have been
evicted, it may be clean (case 2) after the access. If it was clean before S(b) t C = C,
otherwise S(b) t C = > and the dirtiness status of b is unknown. If b may not have been
evicted by the access to x, then its dirtiness status does not change (case 3).

Here, it becomes evident that the precision of the dirtiness analysis depends on the
precision of may and must analysis: The more uncertainty there is about when blocks are
evicted, due to uncertainty about blocks’ ages, the more uncertainty there is about their
dirtiness status.

Upon stores, dirtiness is updated as follows:

̂updatestore(S, x) , λb.

{
D if x = b,

̂updateload(S, x)(b) otherwise .
(5)

The block that is stored becomes dirty (case 1). The effect on other blocks is the same as
in case of a load, and thus the update function for loads can be applied for those blocks
(case 2). This closely matches the concrete update defined in (3).

Dirtiness analysis states are joined by applying the join depicted in Figure 1 to the
dirtiness of each memory block:

join(S.dirty, T.dirty) , λb. (S.dirty(b) t T.dirty(b)).

Based on a dirtiness analysis state we define the may-wb predicate, which determines
whether an access might induce a write back:

may-wb(S, x) , ∃b ∈ B. S.dirty(b) 6= C ∧may-evict(S, x, b) . (6)

This is the case, if a block may be evicted that is not guaranteed to be clean.

Initial State

The results produced by our WCET analysis may serve as inputs to a later schedulability
analysis that checks whether a set of tasks can be scheduled on a given platform. Such an
analysis for fixed-priority scheduling and platforms featuring write-back caches has recently
been proposed by Davis et al. [7]. The analysis by Davis et al. accounts for the effects of
initially dirty cache blocks and additional effects due to preemptions. Using this schedulability
analysis, the WCET analysis can safely assume an initially clean cache, i.e. the proposed
dirtiness analysis may start from the initial state λb. C. If required, a potentially dirty initial
cache can also be modeled by the initial state λb.>.

1 We do not call this predicate must-evict, because it also captures cases where b may have been evicted
earlier, and is thus not guaranteed to be evicted by the current access.
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s1

s2 s3

s4 s5

miss=0 miss=1

wb=1 wb=0

Figure 2 State graph upon cache-state uncertainty.

5.3 Integration into Microarchitectural Analysis
Microarchitectural analysis constructs the state graph that represents the cycle-level execution
behavior of a program, as described in Section 4.1. The nodes in the state graph are abstract
microarchitectural states. These abstract states encompass the state of the pipeline, the
state of the memory controller, and the state of the caches including the abstract dirtiness
state introduced above.

Assume memory block x is accessed during a cycle transition from abstract state S. If
the may and must analysis cannot classify the access as cache hit or miss the analysis creates
a successor state for both cases, one for the hit and one for the miss case. In general, both
cases need to be considered due to timing anomalies [21, 25].

If a write-back cache is employed, the cache line loaded upon the cache miss will evict
another cache line. The evicted cache line may be either dirty, which causes a write-back,
or clean. Naively, the microarchitectural analysis would follow both cases. However, the
analysis can use the may-wb predicate to rule out that a write back happens. If may-wb is
false, no write back can happen and only one case needs to be considered. If may-wb is true,
again both cases need to be considered due to the possibility of timing anomalies.

An excerpt of a state graph that arises due to cache and dirtiness uncertainty is depicted
in Figure 2. After a few cycle transitions, the successors of s2, s4, and s5 are likely to converge
to a similar state. In that case, these successor states are joined into a single analysis state
to keep the complexity of the microarchitectural analysis at an acceptable level.

6 Store-focussed Write-back Analysis

As we have shown by example in Section 3, it can be beneficial to bound the number of write
backs by analyzing the stores that may occur during program execution rather than the
evictions, which eventually trigger write backs. While stores are trivial to locate, the exact
position of the write back of a particular dirty memory block depends on the cache state and
thereby on the history of the program. Uncertainty about the program flow therefore affects
eviction-focussed analyses more than store-focussed ones.

The simplest store-focussed analysis only exploits the fact that a write-back cache defers
stores but never generate additional ones. The number of write backs is therefore bounded
by the number of stores.

This property, which we call the store bound, can be expressed in the path analysis ILP
formulation. As can be seen in Figure 2, microarchitectural analysis annotates transitions
in the state graph with multiple edge weights, including wb(e) and st(e). wb(e) denotes the
number of write backs on edge e in the state graph, and st(e) denotes the number of stores
on edge e. Usually, these edge weights are either 0 or 1 for a given edge, but in principle
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Listing 4 Listing 1 revisited. The dirtiness analysis state is shown on the right. Dirtifying stores
are underlined.
x = f(x); x 7→ D, sum 7→ C, i 7→ C

sum = 0; x 7→ D, sum 7→ D, i 7→ C

for (i=0; i<N; i++) {
sum += arr[ read_sensor ()]; x 7→ >, sum 7→ D, i 7→ D

}
...

they can be larger if several consecutive edges are merged for efficiency reasons. Given these
edge weights, the following linear constraint corresponds exactly to the fact that the number
of stores bounds the number of write backs:∑

edge e

wb(e) · fe ≤
∑

edge e

st(e) · fe, (7)

where fe is the frequency variable that captures how often edge e is taken.
With this constraint, path analysis implicitly only considers executions in which the

number of write backs is bounded by the number of stores. We note, however, that the
constraint does not exclude those infeasible executions in which write backs occur before
stores. This limitation appears difficult to eliminate without generating a much larger ILP.

6.1 Dirtifying Stores
Simply bounding the number of write backs by the number of stores may yield unsatisfactory
results. In particular, the store bound never predicts fewer memory accesses than would
occur in a system with a write-through cache. The crucial advantage of write-back caches is
the ability to consolidate multiple stores into a single write back. An effective analysis has
to capture this behavior. Approaching the problem from a store-focussed perspective, this
means that a write-back analysis has to recognize whether a store targets a clean cache line.
We call such stores dirtifying, since they cause a cache line to become dirty.

The dirtifying store analysis is based on the observation that only dirtifying stores may
cause write backs. After the first store to a cache line, this line has to be written back no
matter what, so additional stores to the cache line do not increase the future number of write
backs. We use the dirtiness analysis described in Section 5.2 to identify definitely dirty cache
lines, and refine the st(e) weight to the dirtifying store weight dfs(e) defined as follows:

dfs(e) , |{b ∈ stores(e) | S.dirty(b) 6= D}|

where stores(e) is the set of memory blocks targeted by stores on e and S is the abstract
cache state at the source of e. By construction dfs(e) ≤ st(e). Given dfs(e), the constraint in
Equation 7 can then be improved as follows:∑

edge e

wb(e) · fe ≤
∑

edge e

dfs(e) · fe . (8)

To understand the effect of this analysis consider Listing 4. The dirtiness analysis classifies
x and sum as definitely dirty in the two lines leading up to the loop. Variable i is classified
as dirty following the loop initialization. Both i and sum are guaranteed to remain in the
cache, and so remain definitely dirty during the entire loop execution. Thus the stores to
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misssum = 0 misssum = 1

wb = 1 wb = 0

missarr = 0 missarr = 1

wb = 1 wb = 0

misssum = 0

dfssum = 1 dfssum = 0

Persistence constraints:∑
edge e

misssum(e) · fe ≤ #cachelinessum

∑
edge e

missarr(e) · fe ≤ #cachelinesarr

Write-back constraint:

∑
edge e

wb(e)·fe ≤
∑

edge e

( ∑
variable v

dfsv(e)
)
·fe

Persistent dirtifying store constraint:∑
edge e

dfssum(e) · fe ≤ #cachelinessum

Figure 3 Simplified state graph for Listing 3 and generated constraints.

i and sum inside the loop are non-dirtifying. The loop itself might evict x, so during the
loop x’s dirtiness is classified as >. Since all accesses to arr may evict x, each access to arr
generates a write-back edge. Enforcing the store bound yields a vacuous constraint, since
there are 2N + 2 stores in the program but only N potential write backs. The dirtifying store
analysis, however, recognizes three dirtifying stores (one each to x, sum, and i) and therefore
only allows for three write backs as a consequence of the code visible in the listing.

6.2 Stores to Persistent Blocks

The analysis of dirtifying store described above relies on the must-dirty information obtained
from the dirtiness analysis. Consequently, the approach suffers from the same shortcomings
as the must analysis does in predicting cache hits. Reconsider Listing 3, which motivated
persistence analysis. Since the precise blocks accessed by the store to sum are unknown at
analysis time, no block belonging to sum is guaranteed to be cached in any loop iteration
or to have been written to. Consequently, the analysis classifies the dirtiness of the array’s
memory blocks as > and therefore cannot exclude any of the stores to be dirtifying. As a
consequence, the analysis must account for N write backs due to the stores to sum.

Persistence analysis exists to remedy this shortcoming of the must analysis; assuming
that all blocks accessed in the loop together fit into the cache, persistence analysis proves
that sum and arr are never evicted and therefore cause at most one cache miss for each
cache line in sum and arr. A similar argument holds for the number of dirtifying stores: If
sum is never evicted, there can be at most one dirtifying store to each cache line of sum. For
every persistence constraint, we therefore also generate a corresponding constraint bounding
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the number of dirtifying stores. Instead of N potential write backs, the path analysis now
accounts for at most as many write backs as there are cache lines spanned by sum.

Implementing such a persistence-like bound requires dedicated edges for the dirtifying
and the non-dirtifying case within the state graph. Figure 3 shows a simplified version of the
state graph produced by the microarchitectural analysis for the program in Listing 3. For
the sake of readability, we only show the relevant abstract states and relevant, non-zero edge
weights. The edge weight missv(e) denotes the number of misses to variable v on edge e,
dfsv(e) the number of dirtifying stores to variable v, and wb(e) the number of dirty cache
lines written back on edge e. The constant #cachelinesv refers to the number of cache lines
that variable v maps to, which is 1 for basic types such as integers, and may be larger for
arrays, depending on the number of array elements and the size of the base type. Next to
the state graph, we give the linear constraints obtained from persistence analysis and our
store-focused write-back analysis.

Initial State

In the presented analysis, we again assumed an initially clean cache. The analysis can be
adjusted to correctly account for initial unknown dirtiness. In that case, one needs to add
the number of lines in the cache to the right-hand side of the constraint in Equations 7 and 8.

7 Experimental Evaluation

7.1 Executive Summary
In this section, we evaluate our write-back analysis. First, we determine its overall effectiveness
by comparing WCET bounds for a system with a write-back cache (WB) with those obtained
for an otherwise equivalent system featuring a write-through cache (WT). In many cases,
WCET bounds for the write-back cache are more than 15% lower, making write-back caches
not only a feasible but also a desirable choice in hard real-time systems.

Second, we evaluate the individual components of our write-back analysis. We demonstrate
that all components presented in this work improve the analysis. We also evaluate a pure
eviction-focussed analysis, following Alt et al.’s dirtiness analysis. We observe that it is
ineffective in most benchmarks. In the few cases in which it is effective, however, it yields
significant improvements over a pure store-focussed analysis.

Third, we evaluate the analysis cost of our analysis for write-back caches. We show that
the analysis comes at reasonable cost in terms of both analysis time and memory consumption.
Often it even turns out to be cheaper than an analysis for a write-through cache.

Finally, we evaluate how the memory latency affects write-back performance. Since a
write backs transfers a whole cache line, while a direct store to memory only transfers a
single word, write backs usually take slightly longer. We identify how much longer a write
back may take before write-back caches cease to be profitable.

7.2 Experimental Setup
We base our evaluation on the Mälardalen benchmark suite [11]. Due to restrictions of
our analyzer, we exclude those benchmarks that do not compile, have external function
calls, or use recursion. We additionally generated seven benchmarks with SCADE [26], an
industry-strength commercial model-based design tool.

We apply our analysis to a processor with a classic 5-stage in-order pipeline that supports
a subset of the ARM instruction set architecture. The modeled processor features separate
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data and instruction caches. Each of them is a 2-way LRU cache with 16-byte line size and
32 cache sets. As the benchmarks have a small memory footprint, we consequently choose
such a small cache size. Finally, the processor contains a single-entry write buffer that buffers
stores on their way to main memory. The processor therefore does not wait for stores to
complete unless another memory operation is already pending.

The parameters of main memory, such as the latency of an access, are an important
factor in our evaluation. While a write-through cache transfers one word (4 bytes) during a
store, a write-back cache writes back an entire cache line (in our case 16 bytes). Memory
chips support accesses in burst mode for this purpose: multiple words are transferred in a
single access, one word per cycle. Thus, a line-wide access is slightly more expensive than
a word-wide access, but a lot cheaper than accessing all words of a line individually. We
choose 10 cycles as the latency of the first word accessed and 1 cycle for each following word
in burst mode. These are realistic timings for DRAM chips, e.g. the Micron MT46V16M16
Automotive DDR SDRAM [24]. At the start of an access the previously open row is closed
(tRP = 15ns), the new row is opened (tRCD = 15ns), and the respective column is accessed
(CL = 3 cycles). For a clock rate of 200 MHz, this amounts to 9 cycles needed to setup
the access. Each consecutive word within the burst access is then transferred in one cycle,
resulting in the above timing.

All evaluations were performed using our own timing analyzer llvmta first used and
described in [16]. The analyzer operates on the binary-level program representation generated
by the LLVM compiler infrastructure. We employ trace partitioning [23] to perform context-
sensitive analyses. We choose contexts to distinguish different call sites of a function and to
peel the first iteration of each loop. This is necessary to obtain useful must- and may cache
information. Our address analysis determines intervals of potentially accessed addresses for
each load and store instruction. We make use of the LLVM-internal scalar evolution analysis
to obtain loop bounds.

Since our analyzer cannot handle some of the more involved features used by the LLVM
optimizer, all benchmarks are compiled without optimization. This is so far a common choice
for safety-critical systems [9]. However, the lack of efficient register allocation frequently
causes needless spills and reloads. While a write-back cache can handle both accesses inside
the cache, a write-through cache accesses memory on each register spill. Thus, it is not
obvious whether our evaluation results also apply to highly optimized machine code.

7.3 Write-through versus Write-back Caches
Table 1 shows the WCET bounds obtained for all benchmarks for a system with unblocked
stores (i.e. with a write buffer, which is the standard configuration) and for a system with
blocked stores. These results are summarized in Figure 4 via two histograms: both histograms
depict the number of benchmarks that fall into a particular bin of ratios between the WCET
under write through (WT) and write back (WB). The histogram on the left corresponds to
the case with unblocked stores, while the histogram on the right corresponds to the case
with blocked stores. Benchmarks on the left of the line at 1.0 have smaller WCET bounds
under WB than under WT, and vice versa benchmarks on the right of the line have larger
WCET bounds under WB than under WT. A logarithmic scale is applied on the x-axis as
the values are ratios, and so a ratio of 2.0 is at the same distance to 1.0 as a ratio of 0.5 is in
the opposite direction.

The first observation is that WB is preferable to WT on most benchmarks (32/36 and
34/36, respectively) in both cases. The second observation is that the ratio WB/WT is
usually smaller in case of blocked stores than it is in case of unblocked stores. A larger
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Table 1 WCET bounds (in 1000 cycles) for write-through and write-back caches with blocked
and unblocked stores and ratios between the WCET bounds in the two cases. The memory share is
an estimate on the time the write-back system spends accessing memory. WB free is the write-back
WCET assuming write backs take no time.

Blocked stores Unblocked stores Unblocked stores

Benchmark W T W B W B
W T

W T W B W B
W T

D-cache
misses

Mem.
share

W B free
W B

M
äl
ar
da

le
n

adpcm 1453 858 59% 1018 857 84% 1186 4% 99%
bs 2 2 67% 2 2 76% 13 31% 100%
bsort100 1911 1102 58% 1264 1102 87% 58 0% 100%
cnt 52 31 58% 40 30 76% 64 6% 98%
compress 360 341 95% 316 330 104% 6296 50% 83%
crc 767 464 61% 532 449 84% 1875 11% 95%
expint 270 170 63% 174 170 98% 9 0% 100%
fdct 10 11 114% 9 11 127% 325 82% 81%
fft1 78 37 46% 59 37 62% 39 3% 100%
fibcall 5 3 54% 4 3 76% 3 3% 100%
fir 3940 2738 69% 3437 2652 77% 79807 78% 89%
insertsort 8 5 57% 6 5 86% 4 2% 100%
janne-complex 19 12 63% 13 12 91% 4 1% 100%
jfdctint 17 15 90% 13 14 115% 287 54% 85%
lcdnum 4 3 79% 3 3 88% 23 23% 96%
lms 4818 3403 71% 3716 3376 91% 23990 18% 97%
ludcmp 110 96 87% 99 95 96% 3521 97% 88%
matmult 1543 1615 105% 1348 1547 115% 57213 96% 85%
minver 39 28 73% 32 28 87% 359 34% 89%
ndes 529 325 61% 414 319 77% 2796 23% 95%
ns 105 84 80% 86 84 98% 791 25% 100%
nsichneu 104 100 96% 99 97 98% 739 20% 92%
prime 82 56 68% 56 56 100% 5 0% 100%
qsort-exam 100 67 67% 67 67 100% 371 14% 96%
qurt 29 16 54% 22 16 70% 41 7% 100%
select 53 44 83% 47 43 93% 613 37% 91%
sqrt 9 7 71% 8 7 83% 6 3% 100%
statemate 21 17 82% 20 17 85% 26 4% 100%
ud 63 53 85% 53 53 100% 1468 73% 92%
geo. mean 71% 89% 95%

SC
A
D
E

cruise-control 162 122 75% 158 122 77% 94 2% 100%
digital-stopwatch 3031 1793 59% 2321 1772 76% 5354 8% 97%
es-lift 160 133 83% 155 132 85% 1773 35% 98%
flight-control 3608 2271 63% 2951 2257 76% 9216 11% 96%
pilot 226 192 85% 205 189 92% 3488 48% 89%
roboDog 440 407 93% 424 402 95% 6587 43% 90%
trolleybus 1150 1022 89% 1127 1005 89% 18736 48% 89%
geo. mean 77% 84% 94%
geo. mean (Mäl. + SCADE) 72% 88% 95%

number of store accesses to main memory makes write buffers more profitable. Thus, systems
with write-back caches profit less from the additional write buffer because they write less
often to main memory than write-through caches. As write buffers are common in modern
processors, this demonstrates that it is essential to account for their presence for a fair
comparison between the two write policies.

7.4 Analysis Precision: Decomposition into Contributions
We now evaluate the effects of the individual analysis components. Starting at the naive
analysis that assumes a write back on every cache miss, Figure 5 shows the incremental
improvement up to the final analysis.

As predicted in Section 6, the store bound has next to no effect on the WCET bound.
Recognizing dirtifying stores is required to achieve appreciable bound reductions, as can be

ECRTS 2017



26:16 Write-Back Caches in WCET Analysis

0.5 0.71 1 1.41 2
0

2

4

6

8
N
u
m
b
er

o
f
B
en
ch
m
ar
k
s

0.5 0.71 1 1.41 2
0

2

4

6

8

N
u
m
b
er

o
f
B
en
ch
m
ar
k
s

Figure 4 Histogram of ratios of WCET bounds compared to the write-through system. Left: Un-
blocked stores via a single-entry write buffer. Right: Blocked stores and thus no write buffer.
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(d) + Eviction analysis

Figure 5 Histogram of ratios of WCET bounds compared to the naive analysis that assumes a
write back on every cache miss.

observed in part (b) of Figure 5. Most benchmarks are still unaffected by the analysis, though.
We conjecture that non-dirtifying stores often occur in loops, where multiple iterations target
the same cache line. The regular dirtifying store analysis fails to recognize this unless the
accessed block is known precisely. We therefore developed store-persistence constraints,
which recognize stores to persistent blocks (which may be part of an array) and bound
the number of dirtifying stores appropriately. Figure 5(c) indicates that the conjecture
about non-dirtifying stores is correct; adding the persistence constraints improves the results
significantly and achieves the greatest speedup, e.g. reducing ludcmp’s bound by 15%.

With Figure 5(c) we have reached the the final result for a pure store-focussed analysis. We
propose to combine the store-focussed analysis with an eviction-focussed analysis. Figure 6
shows the reason: the two approaches are orthogonal, i.e. programs are usually either suited
to one or the other. This effect can also be observed in Figure 5(d): eviction-focussed analysis
yields crucial bound improvements on a few benchmarks but has no effect on the majority
of benchmarks. Since one needs a microarchitectural dirtiness analysis to implement the
dirtifying store bound anyway, performing an eviction-based analysis has only a negligible
effect on the analysis runtime.

Surprisingly, about half of the benchmarks in Figure 5(d) are not affected by either
analysis. One reason is that many benchmarks spend little time accessing memory; write-
back analysis therefore cannot possibly have a large effect on the overall WCET. We provide
an estimate of the amount of time a benchmarks spends accessing memory in the Memory
share column of Table 1. This amount of time is estimated by multiplying the number of
data cache misses with the latency of two memory accesses (i.e. a cache miss and a write
back). Dividing this time by the WCET yields the memory share.
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Figure 6 Comparison between the store-focussed analysis and the eviction-focussed analysis. The
WCETs are normalized to the naive write-back analysis.
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Figure 7 Histogram of ratio of runtimes (left) and memory consumptions (right) of the write-back
analysis relative to the write-through analysis.

Consider for example bsort100. As one can see in Table 1, it spends less than 0.5% of its
runtime accessing memory, even if all cache misses are write backs. This means that even a
perfect write-back analysis would have no noticeable impact on bsort100 ’s WCET bound. In
total 10 benchmarks spend ≤ 3% of their runtime accessing memory.

This property of benchmarks can also be observed by considering WCET bounds obtained
under the assumption that write backs are free (called “WB free” in the table). This value
represents a fundamental lower bound on what an analysis can achieve by proving write
backs impossible, if the number of cache misses accounted for remains constant. Table 1
shows that 13 benchmarks are already within 3% of this boundary. In total, our analysis
achieves 95% of this boundary on average. Significant further improvements can therefore
only stem from improving the underlying cache analysis, thereby reducing the number of
cache misses accounted for.

7.5 Analysis Performance
Although analysis performance has not been a major goal in this work, it is important that
the analysis is not prohibitively expensive. Figure 7 shows a histogram of the ratio of analysis
runtime and memory consumption for the analysis of the write-back cache compared to
the analysis of the write-through cache for each of the 36 benchmarks. The results vary
widely: some programs take half the analysis time, some double analysis time. This may be
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Figure 8 Geometric mean of WB/WT ratios for different latencies to access the first word of a
cacheline. Each consecutive word always requires one additional cycle.

explained by two opposing effects: (i) On the one hand, it seems natural that the analysis of
write-back caches is more expensive: Besides the increased size of abstract cache states due
to dirtiness information, the microarchitectural analysis performs additional splits due to
uncertainty about whether a write back happens or not. (ii) On the other hand, write-back
caches reduce execution times which manifest in smaller state graphs with fewer states to
explore for microarchitectural analysis whenever the eviction-focussed analysis is successful
in excluding writebacks. All in all, we conclude that the write-back analysis comes at a
reasonable cost.

7.6 Influence of Memory Latency on Write-back Execution Times
Recall our cache and memory parameters: cache line size of 16 bytes, i.e., 4 words of 4 bytes, a
10-cycle latency for the first word accessed, and a 1-cycle burst latency for consecutive words
within a burst access. A write back then costs 13

10 = 1.3 times as much as a write-through
store. On average, programs should therefore perform 0.3 stores on each dirty cache line
before its eviction to compensate for the increased cost.

Clearly the profitability of the write-back cache crucially depends on these memory timing
parameters. We therefore consider different latency scenarios to see how the picture might
change for a main memory with different latency characteristics. To this end, we vary the
initial latency, i.e. the latency to access the first word within a burst access from 1 to 11.
The burst latency, i.e. the latency to access additional consecutive words, is kept constant
at one additional cycle. An initial latency of 1 models the case of a pure random-access
memory, where the latency of each word is the same. The higher the initial latency, the
smaller the gap between the latency of a write back and the latency of a write-through store.
We used an initial latency of 10 in all other experiments in this paper because it is realistic
for modern embedded memory as discussed in Section 7.2.

Figure 8 shows the geometric mean of the WB/WT ratios for different initial latencies.
We consider three cache configurations: (1) the standard two-way set-associative 1 KiB cache
configuration described in Section 7.2 (“Associativity 2” in the figure), (2) an eight-way
set-associative 4 KiB cache (“Associativity 8”), and (3) a two-way set-associative 4 KiB
cache with a line size of 64 bytes (“Line size: 64”).
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It is informative to check where the curves reach a ratio of 1, the break-even point between
write back and write through. In the standard configuration write back is profitable for
initial latencies above around 3.7. A slightly lower value is obtained for the larger cache with
higher associativity (beneficial above 2.4). In case of a line size of 64 bytes the break-even
point is around 5.8. Modern memories should lie well to the right of each of these points,
rendering write-back caches profitable.

8 Related Work

In this section, we discuss related work on WCET and response-time analysis for systems with
instruction and data caches; in particular work targeting write-back caches. All approaches
described below assume caches with LRU replacement.

Analysis for write-back caches inherits all the challenges imposed by data-cache analysis
compared with instruction-cache analysis. The main additional difficulty of data-cache
analysis is obtaining information about the accessed addresses. While addresses of instructions
inside a binary are easy to obtain, the addresses of data accesses can often not be pinned
down to a single value. Examples include array accesses within a loop or input-dependent
accesses resulting in a range of possibly accessed addresses.

Alt et al. [1] first introduced cache analysis based on abstract interpretation. They
proposed must and may analysis to classify accesses as always hit/miss. They considered
data cache analysis only for scalar accesses whose addresses could be precisely determined.
For write-back caches, they extend the may analysis to track whether a block may be dirty.
Based on this may-dirtiness information they locally exclude a write back if only clean blocks
may get evicted. No experimental results concerning the proposed write-back analysis are
given in Alt et al. [1] nor in the subsequent journal paper by Ferdinand and Wilhelm [8].

In [28], White et al. extend their prior work on static cache simulation to data caches.
In cache simulation, they use abstract cache states, comparable to may-cache states, and
(post-)dominator information to derive always hit/miss and first hit/miss classifications.

Ferdinand and Wilhelm [8] present a persistence analysis to improve the analysis of data
caches. A memory block is deemed persistent if it cannot be evicted once it is loaded into
the cache. The persistence analysis can handle ranges of possibly accessed addresses.

Huynh et al. [15] introduce the notion of temporal scope to improve data cache persistence
analysis. The temporal scope of a memory block denotes the loop iterations in which the
block might be accessed. Memory blocks with non-overlapping temporal scopes can thus not
conflict within the persistence analysis. Their persistence analysis could be used to further
increase the precision of our approach. It is, however, not obvious how widely applicable it
is. In addition, Huynh et al. fix a problem in the original persistence analysis by Ferdinand
and Wilhelm. In the same year, Cullmann [5] also provided a corrected persistence analysis.
Later, Cullmann [6] describes the conflict-set analysis (termed “conflict counting” analysis
there), which we use as a persistence analysis in this paper.

Sondag and Rajan [27] propose an analysis of multi-level caches and contribute the notion
of live caches to reason about cache blocks that must be in one of the cache levels but are
not guaranteed to be in any particular one. Analyzing write backs from the L1 cache to
the L2 cache is necessary to correctly model the behavior of the L2 cache. Their eviction-
focussed analysis uses a must/may-dirty analysis, similar to our dirtiness analysis. However,
it remains unclear how their analysis works exactly; for instance, their update function does
not distinguish between loads and stores. They do not use the must-dirty information to
derive a set of dirtifying stores which we consider essential to precise write-back analysis.
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They evaluate the impact of the live caches on the provable multi-level cache performance,
but they give no results concerning their write-back analysis.

Lesage et al. [20] also consider the analysis of multi-level data caches. However, they
limit themselves to the analysis of a write-through and write-no-allocate policy to avoid the
complications induced by write-back caches.

Hahn and Grund [12] present relational cache analysis to overcome the necessity of exact
absolute address information. Instead of using absolute addresses, they use relations between
referenced addresses, such as same block or different set, to analyze a task’s cache behavior.
With such a relational analysis consecutive accesses to the same but unknown address can
be classified as hits. Such an analysis could be used to derive sharper bounds on the number
of dirtifying stores.

A detailed survey on cache analysis is given by Lv et al. [22].
The work discussed above targets the timing and cache analysis of individual tasks. Based

on per-task characteristics, schedulability analyses determines whether a set of tasks can
be scheduled together on a hardware platform. Some work on schedulability analysis takes
platform-induced overheads into account, such as the effects of preemptive scheduling on the
cache behavior [4, 19, 2].

Davis et al. [7] consider the effect of write-back caches on a preemptively scheduled
fixed-priority system. Their response-time analysis uses a per-task characterization of dirty
cache blocks (DCBs) and final dirty cache blocks (FDCBs). The evaluation is based on
simulated execution traces of the tasks, because no WCET analysis accounting for write-back
caches was available at the time of publication. Basing the analysis on simulation results,
however, avoids any uncertainty that arises within static analysis. The analysis techniques
presented in this paper could be used to provide the needed per-task WCET characterization
by static analysis. With some further effort, the dirtiness analysis could also be used to
extract DCBs and FDCBs. Davis et al. and other approaches to response-time analysis rely
on timing compositionality [14]. As an example, Davis et al. assume that the cost of each
additional write back is bounded by the memory latency. Due to amplifying timing anomalies,
this assumption does not hold for most hardware platforms rendering naive compositional
analysis unsound. However, the approach introduced in [13] to enable compositional timing
analysis even in the presence of anomalies, is applicable also to the WCET analysis presented
in this paper.

9 Conclusions and Perspectives

We have discussed and fleshed out the existing eviction-focussed approach to write-back
analysis. We have also introduced a new store-focussed approach. As both approaches are
beneficial on almost disjoint sets of tasks it is beneficial to combine both in a single analysis,
as we have done.

To the best of our knowledge, we have conducted the first experimental evaluation of
any WCET analysis for write-back caches. It shows that write-back caches are preferable to
write-through caches from a WCET perspective for most benchmarks. The evaluation also
demonstrates that write buffers are much more valuable in conjunction with write-through
caches than with write-back caches. As write buffers are common in modern processors, it is
essential to account for their presence for a fair comparison between the two write policies.
It is future work to evaluate whether larger write buffers further shift results in favor of
write-through caches.
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