VOSYSmonitor, a Low Latency Monitor Layer for
Mixed-Criticality Systems on ARMv8-A*

Pierre Lucas!, Kevin Chappuis?, Michele Paolino®, Nicolas Dagieu?,
and Daniel Raho®

1 Virtual Open Systems, Grenoble, France
p.lucas@virtualopensystems.com

2 Virtual Open Systems, Grenoble, France
k.chappuis@virtualopensystems.com

3 Virtual Open Systems, Grenoble, France
m.paolino@virtualopensystems.com

4 Virtual Open Systems, Grenoble, France
n.dagieu@virtualopensystems.com

5 Virtual Open Systems, Grenoble, France
s.raho@virtualopensystems.com

—— Abstract

With the emergence of multicore embedded System on Chip (SoC), the integration of several
applications with different levels of criticality on the same platform is becoming increasingly pop-
ular. These platforms, known as mixed-criticality systems, need to meet numerous requirements
such as real-time constraints, Operating System (OS) scheduling, memory and OSes isolation.

To construct mixed-criticality systems, various solutions, based on virtualization extensions,
have been presented where OSes are contained in a Virtual Machine (VM) through the use
of a hypervisor. However, such implementations usually lack hardware features to ensure a
full isolation of other bus masters (e.g., Direct Memory Access (DMA) peripherals, Graphics
Processing Unit (GPU)) between OSes. Furthermore on multicore implementation, one core is
usually dedicated to one OS, causing CPU underutilization.

To address these issues, this paper presents VOSY Smonitor, a multi-core software layer, which
allows the co-execution of a safety-critical Real-Time Operating System (RTOS) and a non-
critical General Purpose Operating System (GPOS) on the same hardware ARMv8-A platform.
VOSYSmonitor main differentiation factors with the known solutions is the possibility for a
processor to switch between secure and non-secure code execution at runtime. The partitioning
is ensured by the ARM TrustZone technology, thus allowing to preserve the usage of virtualization
features for the GPOS.

VOSYSmonitor architecture will be detailed in this paper, while benchmarking its perform-
ance versus other known solutions.

1998 ACM Subject Classification C.3 Real-Time and Embedded Systems
Keywords and phrases VOSYSmonitor, ARM TrustZone, mixed criticality, real time

Digital Object Identifier 10.4230/LIPIcs. ECRTS.2017.6

* This research work has been supported by the FP7 DREAMS project under the grant agreement number
610640.

© Pierre Lucas, Kevin Chappuis, Michele Paolino, Nicolas Dagieu, and Daniel Raho;
37 licensed under Creative Commons License CC-BY

29th Euromicro Conference on Real-Time Systems (ECRTS 2017).

Editor: Marko Bertogna; Article No. 6; pp.6:1-6:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2

VOSYSmonitor, a Low Latency Monitor Layer for Mixed-Criticality Systems

1 Introduction

An important challenge in the design of embedded systems is the consolidation of software
applications with different levels of criticality on a common hardware platform. In the
automotive domain, a common practice to isolate safety critical applications is through the
proliferation of multiple hardware Engine Control Units (ECUs) [8], which are dedicated to
basic operations, such as lowering the windows, to critical tasks as Electronic Braking System
(EBS), engine control and digital dashboard applications. This is a highly inefficient way of
using the available processing power since many of these ECUs are typically not used at their
full potential. However, recent multi-core architectures with new hardware extensions (e.g.,
virtualization, TrustZone) enable the execution of multiple applications on the same platform
safely and securely, thus reducing costs and vehicle weight, helping to increase efficiency.

The consolidation of different OSes on the same platform implies the concurrent execution
of a critical OS with stringent real-time requirements [7] with non-critical applications. As a
matter of fact, connected cars are required to support safety-critical control functions, such
as EBS and Electric Power Assist Steering (EPAS) that have to be securely isolated from the
In-Vehicle Infotainment (IVI) system. Similarly in avionics, functions are usually classified
either as flight-critical (necessary for ensuring a safe flight) or mission-critical (essential for
business execution) [25]. In this context, the main challenges are to integrate real-time tasks
execution with software applications of a GPOS.

In the past, virtualization has been presented as a solution to isolate OSes in a VM.
This approach offers the advantages of reducing implementation costs by abstracting the
host platform. Additionally, features provided by hypervisors, such as memory partitioning,
CPU and interrupts abstraction help the OSes isolation. However, the use of a hypervisor
may cause performance overheads, and therefore the critical execution path of real-time
operations may not be ensured.

In this context, Virtual Open Systems has developed VOSYSmonitor, a software monitor
layer, which enables the native concurrent execution of a safety critical RTOS (or another
type of OS) along with a GPOS with the option to use virtualization extensions, such as
Linux/KVM, in order to instantiate a variety of different VMs. The monitor layer is the
highest secure operating mode available on ARM processors, designed with the hardware
security extension ARM TrustZone [16], which manages the interaction between two execution
worlds (see Section 2). In this context, VOSYSmonitor has been designed for the ARMv8-A
architecture by guaranteeing peripherals and memory isolation between both OSes with
ARM TrustZone. The main advantage of such a solution is to allow dynamically cores
sharing between both applications, thus offering a close to native performance. To achieve
this, VOSYSmonitor supports a context switch mechanism with a minimal overhead (see
Section 3.3).

The rest of this paper is organized as follows. In Section 2, there is a brief introduction
of the ARM TrustZone technology. Section 3 describes VOSYSmonitor architecture as well
as its main features. Section 4 outlines the works related to this paper and emphasizes the
advantages/drawbacks compared to VOSYSmonitor. Methods and benchmarks are explained
and detailed in Section 5. Finally, Section 6 summarizes this work findings and directions for
future works.

2 TrustZone

ARM TrustZone is a hardware security extension, which provides a system-wide security
approach by integrating protective measures into ARM processors, bus and system peripherals.

P. Lucas, K. Chappuis, M. Paolino, N. Dagieu, and D. Raho

N
4

\

(Appl Trusted Appl
Trusted App2

ELO

EL]

Vo
A
/
@

EL2 Hypervisor

EL3

Figure 1 ARMv8-A Execution Level overview.

The security of the system is achieved by partitioning the hardware and software resources
in two compartments: the Secure and the Normal worlds. The Secure world is usually
used during the boot process in order to enforce a chain of trust. Indeed, starting with an
implicitly trusted component, every other runtime binaries can be authenticated before their
execution. In this context, some security specific configuration as well as sensitive data and
peripherals can be only accessible from the Secure world. On the other hand, the Non Secure
World is intended to host a rich operating system (e.g., Android or Linux). Security sensitive
operations, such as the access to a private key or the interaction with a real time task, are
provided to the non-secure application running in this compartment by the services run in
the Secure World. Moreover, TrustZone enables a single core to safely and efficiently execute
code from both worlds, allowing to save silicon area and power since a dedicated security
processor is not needed.

While TrustZone is present since ARMv6 architecture [11], ARMv8-A provides a new
architecture related to the TrustZone management. Indeed, a new highest Exception Level
(EL) called EL3 (i.e., secure monitor mode) manages the interaction between these two

compartments. This layer is always considered secure regardless of the current CPU state.

Moreover, it manages the context switch between both worlds by triggering hardware
exceptions, such as interrupts, synchronous and asynchronous events. The kernel level (EL1)
and user level (ELO) are available in both worlds. This allows the execution of Trusted
Execution Environment (TEE) in the Secure world, while the Normal world is expected to
run a rich OS with the option to use virtualization extension, such as Linux-KVM, since the
hypervisor mode (EL2) is only available in the Non-secure side.

The isolation provided by TrustZone is stronger than virtualization technology since this
latter is restricted to the processor through the implementation of a hypervisor. Any other
bus masters in the system, such as DMA peripherals or GPUs, can bypass the protections
provided by the virtualization layer. In fact, ARM processors supporting security extensions
along with TrustZone compliant Memory Management Unit (MMU) ensure the isolation
of CPU execution mode, interrupts, hardware peripherals, memory and caches. However,
the hypervisor can manage these peripherals for security reasons at the cost of introducing
overhead.

6:3

ECRTS 2017

6:4

VOSYSmonitor, a Low Latency Monitor Layer for Mixed-Criticality Systems

Normal world Secure world

Virtual Machines

[Critical applications

£ v

AUTOMITIVE
GRADELIN

Tizen’ ® |

[Linuxll(VM Hypew'sor] {Safety critical RTOSI

Figure 2 VOSYSmonitor overview.

3 VOSYSMonitor

In this section, VOSYSmonitor architecture as well as its interaction with the Secure/Normal
worlds are described.

3.1 Architecture overview

VOSYSmonitor is a firmware that runs in the Secure Monitor mode (EL3) of ARMv8-A
processors. As shown in Figure 2, it enables the native concurrent execution of two operating
systems, such as for example a safety critical RTOS and a GPOS with the option to use
virtualization extensions, such as Linux-KVM, in order to instantiate a variety of different
VMs. VOSYSmonitor is a 64-bit monitor layer, which allows the execution of both 32-bit
and 64-bit applications. Moreover, it ensures the isolation of each world by using the
hardware security extension called TrustZone and provides, at the same time, functions to
enable a safe and secure communication between them. Therefore the RTOS, running in
Secure world, is totally isolated from applications executing in the Normal world. Finally,
VOSYSmonitor manages the context switching between the two worlds by triggering a Secure
Monitor Call (SMC) instruction or by hardware exception mechanisms, such as interrupts.
VOSYSmonitor oversees these exceptions in order to ensure a correct operation for each
world. The implementation of VOSY Smonitor is based on TrustZone to run another secure
instance of an RTOS, while virtualization can be used as an additional option in the Normal
world, such as XEN or Linux-KVM, giving the possibility to implement an additional layer
of isolation between normal world applications.

It is important to note that VOSYSmonitor is not a boot loader. In this type of
architecture, the boot process is usually split in different boot stages. Usually, the first two
stages are platform specific and often provided by the board maker. As a matter of fact, the
boot flow seen on Figure 3 is defined as follows:
= Primary Boot Loader(1) is the first stone of the chain of trust. It is generally implemented

in the Read Only Memory (ROM), which is the only component that can not be modified

or replaced by simple reprogramming attacks. It is responsible for initializing critical
peripherals and authenticating the Secondary Boot loader located in external non-volatile
storage.

P. Lucas, K. Chappuis, M. Paolino, N. Dagieu, and D. Raho

™
8

====D> Load sequence
-

KlJ Initialization flow

N VS /7 /’)
@ @ (s

) == | Primary |, | Secondary -
O Boot Loader Boot Loader === | VOSYSmonitor

Power On —
-

\ (2
D N

Secure world OS

Normal world OS

Figure 3 Trusted boot and load sequence on an ARMv8 platform.

Secondary Boot Loader(2) is in charge to load and authenticate the different runtime
binaries (e.g., Normal/Secure world applications and VOSYSmonitor), then it switches
to VOSYSmonitor.

VOSYSmonitor(3) performs basic initialization operations, such as ARM EL3 configura-
tion, platform peripherals initialization and secure services setup, then, it gives the control
to the Secure world(4) application. Once the latter has finished its own initialization,
it requests a context switching through VOSYSmonitor in order to execute the Normal
world(5) firmware/software (e.g., u-boot, UEFI, etc.).

VOSYSmonitor is designed to ease the support of new hardware platforms, as well
as the integration of Trusted Operating Systems in the Secure world. Depending on the
hardware requirements, VOSYSmonitor can reuse software components, such as common
peripheral drivers, in order to minimize the integration effort. The top level architecture of
VOSYSmonitor is seen in Figure 4, where different sub-systems of the firmware are depicted,
including:

EL3 Monitor Layer, mostly coded in ARM assembly, is specifically implemented targeting

the ARMv8 architecture. It handles the world context switch operations triggered by

SMC instruction or hardware exception mechanisms.

Secure OS service layer is the interface between the Trusted OS, running in the Secure

world (S-EL1), and VOSYSmonitor. The Secure OS service layer is in charge of the

secure context initialization before jumping on the Trusted OS entry-point. Moreover, it
is responsible for dispatching SMC services as well as to route interrupts reserved for the

Trusted OS during its runtime.

The Platform API is designed to abstract driver function calls from the core part of the

monitor layer. Indeed, VOSYSmonitor requires access to peripherals, which can vary

according to the hardware platform. Therefore, for modularity reasons the EL3 monitor
layer uses these generic API functions, which, in turn, call specific driver functions.

Drivers include all necessary drivers related to peripherals (e.g., interrupt controller,

UART, power controller, etc.), which are used by the VOSYSmonitor runtime.

VOSYSmonitor is a low latency software monitor layer developed for the 64-bit ARMv8-A
architecture and it already supports the last generation of ARMv8 platforms such as:

ARM Juno Development board (2 Cortex-A57 + 4 Cortex A-53) [18],

Renesas R-CarH3 board (4 x A57 + 4 x A53) — ISO-26262 (ASIL-B) compliant [29],

Renesas R-CarM3 board (2 x A57 + 4 x A53) — ISO-26262 (ASIL-B) compliant [29],

NVIDIA Jetson TX1 board (4 x Cortex-A57 in big. LITTLE configuration) [27].

Moreover, VOSYSmonitor has been designed to be compliant with the stringent ISO-26262
certification as well as to meet the following requirements:

6:5

ECRTS 2017

6:6

VOSYSmonitor, a Low Latency Monitor Layer for Mixed-Criticality Systems

VOSYSmonitor

EL3 Monitor Layer

Figure 4 VOSY Smonitor top level architecture.

= Functional requirement. Safety critical OS (e.g., RTOS)/GPOS (e.g.,Linux-KVM) co-
execution on the same platform.

= Functional requirement. Isolation of safety critical OS resources (e.g., Memory, Peripherals,
etc.) from GPOS illegal access.

= Functional requirement. Preserve the context of each OS during a switching operation.

= Performance goal. A strong requirement for the RTOS in automotive is related to the
boot time, which must be limited even in a worst-case scenario. Since VOSYSmonitor
adds a software layer before the execution of RTOS, it directly impacts the RTOS boot
time. In this context, VOSYSmonitor setup must be achieved in less than 1% of the full
RTOS boot time. For instance, a RTOS boot time of 60 ms implies a VOSYSmonitor
setup which has to be performed in less than 600us regardless of the platform.

= Performance goal. The overhead added by the co-execution of software applications must
be optimized to meet real-time constraints. In this context, the overhead due to the
context switching in order to forward an interrupt to the RTOS, running in the Secure
world, has to be lower than lus. This requirement is self-imposed and concerns a standard
context switch where only the general-purpose registers and ARM systems registers are
saved (see Section 3.3 for more details). This overhead can also be used for estimating
the Worst Case Execution Time (WCET) of a task in the RTOS.

3.2 Secure/Normal world scheduling

On multi-core architectures, VOSYSmonitor is able to dynamically share a core between both
worlds by operating under the assumption that the Secure world tasks should be prioritized
over the Normal world execution. This means that once a core is assigned to the secure
RTOS tasks, the normal world applications can use it only if the RTOS, running in the
secure world, has decided to release the core resource; something that happens when there
is no real-time task to schedule. For this implementation, a minor update of the RTOS is
needed in order to call VOSYSmonitor service, to schedule the Normal world execution,
when the RTOS workload is null. Generally, this could be achieved through the creation of
an “idle task” with the lowest priority, which will be scheduled only if no other tasks need to
be executed.

While giving the full priority to the Secure world may seem simple and have too much
of an impact on the Normal world execution, VOSYSmonitor has been implemented under
the assumption that tasks performing in the Secure world take precedence over the Normal
world execution. If a task has no real-time requirement but requires to be isolated from
others tasks (e.g. data encryption), it should be executed in the Normal world which can use
the Virtualization Extensions to provide isolation.

P. Lucas, K. Chappuis, M. Paolino, N. Dagieu, and D. Raho

For instance, tasks whose failure to meet a real-time requirement could arise to a life-
critical situation (e.g. brakes control), should be executed in the Secure world. On the other
hand, tasks whose failure to meet a real-time requirement does not lead to a life-critical
situation (e.g. video decoding) should be performed in the Normal world.

Although multiple scheduling methods have been proposed for mixed-criticality systems
[25], such a design has several benefits related to the execution of the safety critical RTOS.
First of all, critical interrupts dedicated to the RTOS systematically preempt the Normal
world execution in order to be handled by the RTOS with a minimum overhead (see Section 5),
thus ensuring to meet real-time constraints. Moreover, there is no risk to preempt the RTOS
execution during a critical operation since the RTOS releases the core only when it wants
to. Finally, the core usage is optimized since VOSYSmonitor enables the scheduling of the
Normal world application when the RTOS has no operations to execute. Indeed, real-time
tasks are usually used to perform a brief action bounded in terms of time that could imply a
low workload of the RTOS depending on the use case. However, this solution could lead the
normal world to the impossibility to run its applications if the RTOS execution monopolizes
the core. This is mitigated through the assignment of other cores to the Normal world GPOS.

3.3 Context switch

As ARMv8-A CPU execution is split in two parts (i.e., Secure/Normal world) and some
registers are not banked, VOSYSmonitor has to preserve the world context during the
switching operation. This part is the most performance related function of the system, as
execution and RTOS interrupt latency are directly affected by the time consumed for the
context save/restore operations. For this reason, most of code executed during the context
switching is written in ARM assembly in order to reach the best performance. In the current
implementation, VOSYSmonitor only saves the vital registers, such as general-purpose
registers and some ARM system registers, needed for the correct RTOS/GPOS co-execution
in each CPU operating mode. Indeed, for the test purpose, RTOS does not use advanced
CPU features as the floating point context. However, a memory segment in the backup
context structure is reserved to save additional registers during the context switching in
order to extend VOSYSmonitor functionalities.

VOSYSmonitor periodically transfers the execution from one world to the other. As the
RTOS/GPOS shares only a specific core, the context switch is currently tied to this processor
and may take place in two main cases: an interrupt assigned to the Secure world is triggered
during the execution of the Normal world application; one world requests a context switch
(e.g., secure services, no RTOS workload, etc.) by calling VOSYSmonitor service through an
SMC. In this context, it first saves the current state of the world suspended, then restores
the state of the other world.

3.4 Interrupts management

ARMvS8-A architecture including the hardware security extension TrustZone has been designed
to support two interrupt types: the Fast Interrupt Request (FIQ) for low latency interrupt
handling, and the more general Interrupt Request (IRQ), which is commonly available also
in other architectures. The former has higher priority (IRQs are automatically masked by
the CPU core when an FIQ occurs) and can directly use some banked registers without the
overhead of saving/restoring them.

VOSYSmonitor takes advantage of the ARM architecture [20], which offers the ability
to trap IRQ and FIQ directly in its exception layer (EL3) without intervention of code in

6:7

ECRTS 2017

6:8

VOSYSmonitor, a Low Latency Monitor Layer for Mixed-Criticality Systems

Normal world . Secure world
: | AArch64 AArch32
i Application| |Application
Non-secure
Secure
interrupts taken
in ELL (FIQ)

Figure 5 Secure world execution.

either world, thus allowing for the creation of a flexible interrupt management for safety
critical RTOS tasks. Indeed, FIQs are considered as secure interrupts when TrustZone is
supported, meaning that the configuration of FIQ cannot be altered by normal world accesses.
Therefore, VOSYSmonitor sets the secure world (RTOS) to respond only to FIQs and the
normal world (GPOS) to handle IRQs. This design allows critical applications to benefit
from fast and high priority interrupts, while isolating them from the normal world.

3.4.1 Secure world interaction

During the Secure world execution, only FIQs are enabled in order to prevent the preemption
of critical RTOS tasks by normal interrupts (IRQ) dedicated to the non-secure world. Indeed,
on multi-core architecture, cores assigned only for Normal world applications can attempt
to send normal interrupts for synchronization purpose, whereas the shared core executes
RTOS tasks. This could generate untimely preemption of the RTOS during the critical
path execution. Therefore, VOSYSmonitor prevents this side effect by masking all normal
interrupts during the secure world execution.

FIQs are directly handled in the S-EL1 mode of the RTOS (see Figure 5. This minimizes
the interrupts latency during the secure world execution since these are directly caught in
the handler of the critical RTOS application, avoiding any context switch overhead. The
Normal world only executes upon an explicit request by the Secure World that is achieved
through an SMC instruction.

Although the execution of real-time tasks will not be impacted by non-critical applications,
the main drawback of this implementation concerns the fact that VOSYSmonitor relies on
the secure world application to induce a context switching. Indeed, VOSYSmonitor has no
means to take back the control in case of the RTOS does not generate an SMC to release the
core. With the current available ARMv8-A platforms equipped with the Generic Interrupt
Controller (GIC) version 2 (e.g., Renesas R-Car H3), scheduling policies can be implemented
(see Section 3.5) to allow the monitoring of the RTOS execution but such solutions either
weaken the isolation of the safety critical RTOS or add an overhead during the context
switch.

For these reasons, the current implementation depends on the safety critical RTOS to
decide when the context switching should be performed. Moreover, safety critical RTOSes
are generally compliant with the stringent requirements of an ISO standard (e.g., ISO-26262
Road vehicles — Functional safety [1, 2, 3]) in order to mitigate potential failures. However,
last GIC version [15] (e.g., GICv3) enables the system to isolate interrupts addressed to the
secure world from interrupts assigned to the monitor layer. In this context, VOSYSmonitor

P. Lucas, K. Chappuis, M. Paolino, N. Dagieu, and D. Raho

Normal world) Secure world

AArch64 AArch32
Application| |Application

Secure

Non-secure
interrupts taken
in EL1 (IRQ)

Secure interrupts
routed to EL3 (FIQ)

Figure 6 Normal world execution.

will be adapted and extended when platforms equipped with GICv3 will be available in order

to implement a monitoring feature without compromising isolation, security and performance.

3.4.2 Normal world interaction

By contrast with the secure world, both FIQs and IRQs are enabled during the execution
of the normal world: IRQs are directly handled in the NS-EL1 (see Figure 6) while FIQs
are routed to VOSYSmonitor, which operates in EL3. When an FIQ occurs, the non secure
OS is immediately preempted by VOSYSmonitor, which is responsible for an operating
mode switch to save the normal world context and to restore the secure world one as fast as

possible. This lowers latencies and helps the critical application to meet real time constraints.

During the FIQ propagation into VOSYSmonitor, all interrupts (i.e., FIQ and IRQ) are
masked in order to prevent any preemption by another FIQs having higher priority. Then,
once the execution control is given to the Secure world, the FIQ management is handled by
the trusted application. Therefore, the Secure world could decide to disable the FIQ mask
when the critical part is over.

Finally, the normal world can initiate a context switch by generating an SMC instruction
either to give back control to the secure world or to request a secure service.

3.5 Secure world failure handling

As mentioned in Section 3.2, the Secure world execution is always prioritized over the Normal
world. However in some scenarios, the Secure RTOS might crash because of an internal failure
and never giving the control back to the Normal world. To prevent such case, VOSYSmonitor
proposes a Secure world failure handler, based on the ARM Physical Secure Timer. The
handler execution is similar to a watchdog: if after a specific timeout the Secure world has

not given back the control, VOSYSmonitor preempts the core and restart the Secure world.

The handler timeout is reset at each context switch. However this feature is not present in

the upstream version of VOSYSmonitor, for two reasons:

= Huge overhead of the context switch: when performing a context switch from the Secure
world to the Normal world, the Secure Timer must be disabled. Likewise when returning
to the Secure world, the Timer must be enabled and the timeout value calculated. It has
been measured that adding the Secure Timer doubles the context switch latency.

= All interrupts in the Secure world are FIQs. Only the interrupt corresponding to the
Secure Timer is configured as an IRQ, so it can be trapped by VOSYSmonitor. However
this means IRQs are no longer masked during the Secure world execution.

6:9

ECRTS 2017

6:10

VOSYSmonitor, a Low Latency Monitor Layer for Mixed-Criticality Systems

When the system is mono-core, there are no issues as others IRQs can be disabled.
Nevertheless, if the Normal world is running on a multi-core system, secondaries cores
might forward IRQs to the primary core which is in the Secure world, causing undefined
behaviour and possibly a crash of the RTOS. This could be avoided by updating the
GPOS source code however this is against the policy of VOSYSmonitor which should
be able to run a GPOS with minimal modifications. Furthermore, this would create a
vulnerability exploitable from the Normal world.

In platforms supporting GICv3, interrupts are classified in three types, where one can
be reserved to the VOSYSmonitor execution. In this configuration, it is possible to use
the Secure Timer while retaining multi-core support for the Normal world. However
all platforms currently supported are using GICv2. Thus for the time being the Secure
Timer is only proposed as an optional feature.

3.6 ARM convention compliance

VOSYSmonitor is compliant with several ARM standards in order to ease the integration of
this software component in a full system.

SMC Calling Convention (SMCCC) [19] specifies the calling procedure (e.g., registers used
as parameters and return arguments, etc.) of the SMC instruction, used in the ARMv7 and
ARMvS8 architectures. This convention simplifies the integration between different software
layers, such as operating systems, hypervisor and secure monitor. Moreover, it categorizes
SMC service providers to allow the coexistence of services in the secure monitor firmware
(e.g., ARM, OEM, Trusted OS, etc.)

Power State Coordination Interface (PSCI) [17] defines a standard interface for power
management that can be used by software working at different ARM privilege levels. During
a power management operation, rich OS, hypervisor, VOSYSmonitor and Trusted OS must
not conflict each other. In this context, PSCI aims to standardize the communication between
supervisory software to arbitrate power management requests. As a matter of fact, Linux
kernel AArch64 relies on PSCI calls for powering up/down secondary cores avoiding the need
of platform dependent drivers.

VOSYSmonitor is compliant with the PSCI convention v1.0, which requests the support
of mandatory functions related to the power management such as power up/down a core,
suspend core execution, etc.

4 Related work

VOSYSmonitor is a TrustZone based monitor, which enables the consolidation of a non-
critical GPOS and a safety critical RT'OS. It guarantees the isolation of critical real-time
tasks, while minimizing the overhead on the global execution. Moreover, this software layer
has been designed to meet certification requirements [6] induced by mixed-criticality systems.

Among existing solutions, TrustZone-assisted hypervisor [28] is able to run an arbitrary
number of RTOSes in virtual machines. In this design, only one RTOS is executed at a
time in the Normal world, while the context of the other guests is preserved in the Secure
world. Therefore, if another RTOS needs to be scheduled, the current RTOS execution is
stopped and its context is saved in the Secure world, then, the TrustZone-assisted hypervisor
restores the second RTOS context in the Normal world. Real-time requirements of inactive
RTOSes are met by setting their interrupts as secure, thus allowing to preempt the running
RTOS, which uses normal interrupts. Such a implementation does not allow an efficient
cache management since all RTOSes are scheduled in the Normal world, which requires

P. Lucas, K. Chappuis, M. Paolino, N. Dagieu, and D. Raho

to clean/invalidate cache memory during context switches, thus increasing the overhead.
Moreover, at the time of writing, the TrustZone-assisted hypervisor only supports single-core
configuration. VOSYSmonitor is able to run on multi-core heterogeneous platform and take
benefit of cache memory to reduce the context switch overhead. Indeed, since OSes are
assigned to a specific world, VOSYSmonitor can rely on the isolation of caches lines provided
by ARM TrustZone, thus avoiding the need of cache operations during a context switch.

Other solutions enable the co-execution of two or more OSes using ARM virtualization
extensions. A design based on Erika OS [5] is executed along with Linux on top of XEN
hypervisor [9]. This solution has been implemented on a cubieboard2 by assigning each OS
on a different core. While it ensures the isolation, there is a risk of an inefficient use of
computing power if Erika OS has a low workload. To prevent such a case, VOSYSmonitor is
able to reallocate core resources to the GPOS if the RTOS has no real-time tasks to schedule.
Others solutions based on virtualization extensions are Xtratum [24] and NOVA [31].

Furthermore, the isolation of Virtual Machines (VMs) against the host is not guaranteed.
Indeed, some breach in the hypervisors can allow VMs to cause a denial service or access
data from the whole system. As a matter of fact, a security vulnerability named VENOM
[10], allows an attacker to escape from the isolation of a VM and get the access to the host
and the others VMs.

ARM Trusted Firmware [22] hereafter referenced as ATF is a software layer able to
host a Trusted Execution Environment alongside a Non-Trusted software. At the best of
our knowledge, the current implementation of ATF only supports a dispatcher to execute
OP-TEE OS [12] in the Secure world in order to provide trusted services to the Normal
world application. VOSYSmonitor overcomes this limitation by giving the possibility to
concurrently execute an RTOS and a rich OS. A further comparison between VOSYSmonitor
and ATF is highlighted on Section 5.

A different approach, such as FLexPRET [32], introduces a new multi-threaded processor
intended for mixed-criticality systems where threads are classified in two categories: hard real-
time thread (HRTT) where deadlines must be met and soft real-time thread (SRTT) where a
time constraint non-respected is acceptable. Another solution is IDAMC [26], which proposes
a platform where multiples nodes are interconnected by a network-on-chip. These nodes
includes processors based on the LEON3 technology connected through routers monitoring
access to shared resources. While these solutions have been created for mixed-criticality
systems, the main disadvantage is related to the new processor or cluster architecture, which
implies, for instance, a higher workload for developers and increases the risk of unknown
hardware/software bugs since the architecture is new and not widely used. On the other hand,
VOSYSmonitor is based on ARMv8-A, one of the most popular embedded architectures for
mobile, automotive, drone markets.

5 Evaluation

In this section, the performance of VOSYSmonitor is benchmarked with the ARM Trusted
Firmware. The evaluation uses the ARMv8 Performance Monitoring Unit (PMU) [21] The
tests have been performed on the ARM Juno board R1 and on the Renesas R-CarH3. Both
boards have a Cortex A-57 and a Cortex A-53 cluster. As results may vary depending on the
core where VOSYSmonitor is operating, all tests are performed on both A-53 and on A-57.

On top of VOSYSmonitor a bare-metal application is executed in the Normal world,
which constantly loops a NOP instruction in order to have a minimal impact on the test
execution. On the other hand, the Secure world is hosting a FreeRTOS version 8.2.3 modified

6:11

ECRTS 2017

6:12

VOSYSmonitor, a Low Latency Monitor Layer for Mixed-Criticality Systems

by Virtual Open Systems in order to use FIQ for interrupt processing. While it is not safety
compliant, FreeRTOS is a widely used real-time kernel and is the base for an ISO 26262
certified RTOS called SAFERTOS [23].

Since VOSYSmonitor targets the automotive market, the compiler used to create the
binary file should be qualified according to the ISO 26262 standard. For this reason, the ARM
Compiler [13] with compilation optimisation (-O2) is used since functional safety support
package [4, 14] will be provided by Q2 2017, thus avoiding further qualification activities
when the recommendations and conditions are respected. Similarly, the upstream version of
the ATF has been pulled from GitHub (v1.3) and also compiled with -O2 optimizations.

5.1 Context switch latency using PMU

VOSYSmonitor aims at having small impact on the co-execution of the Normal and the
Secure worlds. The context switch is the most critical aspect in the VOSYSmonitor execution,
therefore it is of utmost importance to implement it in a performant way. To assess the time
induced by a context switch from the Normal world to the Secure, a timer in FreeRTOS is
configured to generate an FIQ every lus and then gives the control to the Non-Secure world.
On Juno, the timer used is the SP804 Dual-Timer, on R-CarH3 the Compare Match Timer.

The timer interrupt is triggered while the processor execution is in the Normal world and
thus it is trapped in VOSYSmonitor vector table. The PMU counter is started there and
stopped before giving the control back to FreeRTOS, then the number of clocks cycles is
displayed. The same test is performed with the ATF in order to compare the results. Adding
the PMU breaks the code execution, therefore, the board has to be manually powered on/off
after each measurement inducing a small sample size (< 10).

Although VOSYSmonitor includes the interrupt handler described in Section 3, the
context switch latency has also been measured without this handler in order to gain time
execution and assess the optimum value possible. This implementation makes that any FIQ
trapped, when the processor execution is in the Non-Secure world, causes a request for a
context switch. While lacking flexibility, this implementation may be of interest for scenarios
where the RTOS response must be as fast as possible.

Figure 7 shows the context latency expressed in microseconds on the Juno board and
Figure 8 for the Renesas R-CarH3 board. The results for the Juno board, shows that, in
the worst case (VOSYSmonitor with interrupt handler on Cortex-A57), VOSYSmonitor
is 118% faster than ATF and almost twice as fast if VOSYSmonitor without interrupt
handler is executed on an A-53 core. On the R-CarH3, the comparison is in favor again
of VOSYSmonitor, which can be more than thrice faster than ATF. However, it should be
noted than the ARM Trusted Firmware used here is a software updated by Renesas, and
thus may include features not present in the upstream version. VOSYSmonitor aims at
having a context switch faster than 1us. Although on Cortex-A53 the requirement is met on
VOSYSmonitor with or without an interrupt handler, a context switch on Cortex-A57 barely
misses the prerequisite on Juno.

In this measurement, the interrupt handler called by VOSYSmonitor is a minimal
implementation, which consists in fetching the pending interrupt ID, then after comparison,
jumps to the context switch macro. Therefore, a decrease in performance can be expected if
a more complex interrupt management is requested. However, the same can be said for ATF
and the latency difference between both ATF and VOSYSmonitor should remain as it is.

P. Lucas, K. Chappuis, M. Paolino, N. Dagieu, and D. Raho

6:13

= Cortex-A57
= Cortex-A53

VOSYSmonitor without interrupt handler | 0.52

| 1.01

[

| 0.66

VOSYSmonitor with interrupt handler

|1.18

[

| 1.03

ARM Trusted Firmware |

|14

0

Figure 7 Juno context switch latency.

04 06 08 1 12 14

Latency (us)

= Cortex-A57
= Cortex-A53

VOSYSmonitor without interrupt handler |:] 0.28

| 0.52

| 0.44

VOSYSmonitor with interrupt handler |

| 0.72

[

| 0.89

ARM Trusted Firmware |

| 0.88

Figure 8 R-CarH3 context switch latency.

0.2 0.4 0.6
Latency (us)

5.2 Context switch including the hardware latency

0.8

Although the previous measurement allows to measure the exact number of clock cycles
consumed during a context switch, a second test has been performed to overcome some
limitations of the first one. Indeed, VOSYSmonitor is running with both instructions and
data caches enabled, which drastically improve performance. However, caches misses can
cause a decrease in performance in worst-case scenarios, which can not be estimated unless

the sample size is big enough.

In this context, a second performance test has been performed in order to take into
account the FIQ latency induced by the hardware, i.e. the time between an FIQ triggering
and the beginning of its processing by the software, on an important sample size. To achieve
this, the ARM EL1 physical timer is used to trigger an FIQ while the core is in the Normal

World as in the previous test.

ECRTS 2017

6:14

VOSYSmonitor, a Low Latency Monitor Layer for Mixed-Criticality Systems

= Cortex-A57
= Cortex-A53

VOSYSmonitor without interrupt handler { | 0.86 11.24
VOSYSmonitor with interrupt handler { | 1.02 1.4
ARM Trusted Firmware estimated { | 157 | 1.63
0 0.5 1 1.5

Latency (us)

Figure 9 Juno board context switch with hardware latency.

Table 1 FreeRTOS FIQ latency.

Platform | Processor Average (ns) | Min (ns) | Max (ns)
Cortex-Ab3 | 220 180 280
Juno
Cortex-A57 | 220 200 260
R.CarH3 Cortex-A53 | 240 120 360
Cortex-A57 | 240 120 360

The ARM timer is composed of three registers:
CNTP__CTL_ELO used to enable/disable the timer.
CNTP_TVAL_ ELO contains the current value of the timer.

CNTP__CVAL_ ELO holds the compare value. When equal to CNTP_TVAL_ELOQ, the
interrupt is triggered.

When the context switch occurs, the timer interrupt trapped in VOSYSmonitor is forwarded
to the FreeRTOS vector table. There, the very first instruction consists in reading the
value of CNTP_TVAL_ ELOQ, the timer is disabled and we jump to FreeRTOS handling
routine. Finally, VOSYSmonitor latency between an FIQ triggering and the interrupt handler
can be deduced by subtracting from CNTP_ CVAL_ EL0. Since VOSYSmonitor code has
been untouched, we are able to run this test for as long as necessary and without any
instrumentation of the code execution.

As before VOSYSmonitor is tested with and without the interrupt handler. The results
with a sample size of 2048 contexts switch are presented on Figures 9 and 10. By taking
into account the FIQ latency, it confirms that VOSYSmonitor is still faster than the ATF
version in all scenarios. Moreover, it is better, in terms of performance, to have the RTOS
executing on an A-53 core since the context switch is at least twice as fast as an A-57
for VOSYSmonitor. In this test, an issue has been the inability to run FreeRTOS and a
Non-Secure OS in co-execution with ATF. However, the full context switch with hardware
latency has been extrapolated by adding the previous results of ATF measured in Section 5.1
and the FIQ hardware latency shown in Table 1.

P. Lucas, K. Chappuis, M. Paolino, N. Dagieu, and D. Raho

= Cortex-A57
= Cortex-A53

VOSYSmonitor without interrupt handler | 0.48 10.84

l 10.6
| | 0.96

VOSYSmonitor with interrupt handler

. . l | 0.96
ARM Trusted Firmware estimated |

| 1.29

0 02 04 06 08 1 1.2 14
Latency (us)

Figure 10 R-CarH3 board context switch with hardware latency.

Table 2 VOSYSmonitor and ATF setup time.

Platform | Processor ARM Trusted Firmware (us) | VOSYSmonitor (us)
Cortex-Ab3 | 853.480 17.746

Juno
Cortex-A57 | 1119.815 31.004

R-CarH3 Cortex-Ab3 | 1661.806 44.493
Cortex-A57 | 1119.815 31.004

5.3 VOSYSmonitor and ATF booting time

The performance analysis also compared the setup time of VOSYSmonitor and ATF. The
setup time corresponds to the time consumed between VOSYSmonitor/ATF entry point
and the first jump to the Secure world. In this test, PMU has been used since the GIC and
the timers are not yet configured. As for the previous tests, the measurements have been
performed on both A-53 and A-57 cores. Table 2 shows that on Juno VOSYSmonitor is able
to achieve its setup configuration within 18us, while ARM Trusted Firmware needs around
870us on Cortex-A53 and 920us on Cortex-A57. VOSYSmonitor is able to outperform ATF
because the page tables, used by the Memory Management Unit, are defined by the developer
and included statically during the compilation, whereas ATF generates the pages during the
setup time.

Although it requires more effort and reduce flexibility, it is worth the trade-off since
VOSYSmonitor impact is significantly reduced during the setup and meets the 600us boot
time requirement presented in Section 3.1.

5.4 OSes co-execution workload and multicore support

RTOS/GPOS co-execution is ensured by sharing a core between these two OSes. The full
priority is given to the RTOS, running in the Secure world, in order to meet real-time
requirements. With this implementation, the GPOS execution can be impacted depending
on the RTOS workload. In order to measure this impact, the hackbench [30] benchmark has
been used in three scenarios:

6:15

ECRTS 2017

6:16 VOSYSmonitor, a Low Latency Monitor Layer for Mixed-Criticality Systems

Table 3 Juno board VOSYSmonitor hackbench result.

Linux one core

Hackbench (s)

Linux standalone

Linux + FreeRTOS
low workload

Linux + FreeRTOS
60% workload

3.411

3.431

14.251

Linux multicore

Hackbench (s)

Linux standalone

Linux + FreeRTOS
low workload

Linux + FreeRTOS
60% workload

0.500

0.498

0.596

Linux standalone.

Linux + FreeRTOS low workload. FreeRTOS requests a context switch every lus and
gives back the control immediately after.

Linux + FreeRTOS 60% workload. The CPU will spend around 60% of the runtime
executing FreeRTOS code.

Table 3 shows that adding FreeTOS with a low workload has no impact on the performance,
whether using one or more cores. However, a deterioration can be noticed when FreeRTOS
is executing 60% of the time on a core. By executing the test on a multi-core configuration
(four Cortex-A53 and two Cortex-A57), we observe that the performance degradation is
minimal between the Linux standalone and the 60% workload scenarios. Although a core is
busy executing Secure world application, the others cores are nonetheless able to continue
performing.

6 Conclusion

This paper presents VOSYSmonitor, a low latency monitor layer for mixed-criticality sys-
tems on multicore heterogeneous ARMvS-A platforms, providing architecture details and a
performance analysis. VOSYSmonitor offers a strong isolation based on the ARM TrustZone
technology, which gives the full priority to the safety critical RTOS, thus meeting real-time
constraints as well as ensuring the execution of critical tasks.

The benefits of VOSYSmonitor are its modular and scalable architecture, which allows
the system evolution according to the requirements. Indeed, it is possible to run, on top of
VOSYSmonitor, a hypervisor in order to instantiate a variety of different VMs for multi-OS
support (e.g., Linux, Android, etc.) in the Normal world. Moreover, the isolation provided
by VOSYSmonitor is stronger than virtualization technology since this latter is restricted
to the processor through the implementation of a hypervisor, whereas TrustZone can be
extended to other master peripherals (e.g., DMA, GPU, etc.). Finally, the small footprint of
VOSYSmonitor allows to mitigate the certification effort, thus reducing costs.

As for the analysis of the overhead introduced by the proposed solution, it is possible to
claim that VOSYSmonitor is a perfect solution for the consolidation of real-time applications
along with a rich OS whithout compromising hard real-time requirements. While it is not
possible to compare with all technologies presented in Section 4, it has been proven that
VOSYSmonitor is better than ARM Trusted Firmware in terms of setup time and context
switching latency.

Finally, the future work includes the ASIL-C certification of VOSYSmonitor according to
the stringent automotive standard ISO 26262. This will enable the usage of VOSYSmonitor
technology in automotive use cases, such as the consolidation of Infotainment In-Vehicle

P. Lucas, K. Chappuis, M. Paolino, N. Dagieu, and D. Raho

system along with safety vehicle cluster applications. With this in mind a full fledged software
stack including VOSYSmonitor, an ASIL certified RTOS and GPU sharing support will be
developed, tested and benchmarked. Related to the safety critical RT'OS support, this work
has given us the possibility to ensure the isolation of this software layer along with non-critical
applications. However, only one safety critical RTOS can be executed with the current
implementation. This problem will be investigated in future works, exploring design methods
to overcome this limitation of the TrustZone hardware implementation. Regarding the world
scheduling policy, the current architecture relies on the Secure world OS to initiate a context
switch. Although this implementation ensures the execution of critical tasks without any
preemption from another software layer, VOSYSmonitor lacks of a way to take back the
control if the Secure world OS does not release the core resource. Software methods and new
interrupt controller architecture, such as GICv3, will be explored to overcome this limitation
due to the interrupt management.

—— References

1 International Standard ISO 26262-4. Road vehicles — functional safety — part 4: Product
development at the system level. Standard, International Organization for Standardization,
November 2011.

2 International Standard ISO 26262-6. Road vehicles — functional safety — part 6: Product de-
velopment at the software level. Standard, International Organization for Standardization,
November 2011.

3 International Standard ISO 26262-8. Road vehicles — functional safety — part 8: Supporting
processes. Standard, International Organization for Standardization, November 2011.

4 Hopkins Andrew. The functional safety imperative in automotive design. Standard, ARM
Ltd, September 2016.

5 Avanzini Arianna. Integrating Linux and the real-time ERIKA OS through the Xen hyper-
visor. Industrial Embedded Systems (SIES), 2015. doi:10.1109/SIES.2015.7185063.

6 Sanjoy Baruah, Haohan Li, and Leen Stougie. Towards the design of certifiable mixed-
criticality systems. In 2010 16th IEEE Real-Time and Embedded Technology and Applica-
tions Symposium, pages 13-22. IEEE, 2010.

7 Alan Burns and Rob Davis. Mixed criticality systems-a review. Department of Computer
Science, University of York, Tech. Rep, 2013.

8 Helmut Fennel, Stefan Bunzel, Harald Heinecke, Jiirgen Bielefeld, Simon Fiirst, Klaus-
Peter Schnelle, Walter Grote, Nico Maldener, Thomas Weber, Florian Wohlgemuth, et al.
Achievements and exploitation of the AUTOSAR development partnership. Convergence,
2006:10, 2006.

9 Linux Foundation. The Xen Project, the powerful open source industry standard for virtu-
alization. URL: https://www.xenproject.org/.

10 Jason Geffner. VENOM Virtualized Environment Neglected Operations Manipulation.
URL: http://venom.crowdstrike.com/.

11 Richard Grisenthwaite. ARMv8 Technology Preview. In IEEE Conference, 2011.

12 Linaro. Op-tee. URL: https://wiki.linaro.org/WorkingGroups/Security/0P-TEE.

13 ARM Ltd. ARM Compiler 6. URL: https://developer.arm.com/products/
software-development-tools/compilers/arm-compiler-6.

14 ARM Ltd. ARM Compiler Safety Package. URL: https://developer.arm.com/
products/software-development-tools/compilers/arm-compiler/safety.

15 ARM Ltd. Programmable Interrupt Controllers: A New Architec-
ture. URL: https://www.community.arm.com/processors/b/blog/posts/
programmable-interrupt-controllers-a-new-architecture.

6:17

ECRTS 2017

http://dx.doi.org/10.1109/SIES.2015.7185063
https://www.xenproject.org/
http://venom.crowdstrike.com/
https://wiki.linaro.org/WorkingGroups/Security/OP-TEE
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-6
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-6
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler/safety
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler/safety
https://www.community.arm.com/processors/b/blog/posts/programmable-interrupt-controllers-a-new-architecture
https://www.community.arm.com/processors/b/blog/posts/programmable-interrupt-controllers-a-new-architecture

6:18

VOSYSmonitor, a Low Latency Monitor Layer for Mixed-Criticality Systems

16
17
18
19
20
21
22
23

24

25

26

27

28

29

30

31

32

ARM Ltd. TrustZone. URL: https://developer.arm.com/technologies/trustzone.
ARM Ltd. Power State Coordination Interface, August 2012.

ARM Ltd. Juno ARM Development Platform SoC, r1p0 edition, June 2013.

ARM Ltd. SMC Calling Convention, June 2013.

ARM Ltd. ARM Cortex — A Series, March 2015. Programmer’s Guide for ARMvS8-A.
ARM Ltd. ARM Architecture Reference Manual, January 2016. ARMvS8, for ARMvS8-A
architecture profile.

ARM Ltd. Github repository. https://github.com/ARM-software/
arm-trusted-firmware, 2016.

HighIntegritySystems Ltd. SAFERTOS Safety Certified RTOS. URL: https://www.
highintegritysystems.com/safertos/.

Miguel Masmano, Ismael Ripoll, Alfons Crespo, and J. Metge. Xtratum: a hypervisor
for safety critical embedded systems. In 11th Real-Time Linux Workshop, pages 263-272.
Citeseer, 2009.

Malcolm S. Mollison, Jeremy P. Erickson, James H. Anderson, Sanjoy K. Baruah, and
John A. Scoredos. Mixed-criticality real-time scheduling for multicore systems. In Computer
and Information Technology (CIT), 2010 IEEE 10th International Conference on, pages
1864-1871. IEEE, 2010.

Boris Motruk, Jonas Diemer, Rainer Buchty, Rolf Ernst, and Mladen Berekovic. Idamc:
A many-core platform with run-time monitoring for mixed-criticality. In High-Assurance
Systems Engineering (HASE), 2012 IEEE 14th International Symposium on, pages 24-31.
IEEE, 2012.

NVIDIA. NVIDIA Tegra X1 Mobile Processor Technical Reference Manual, November
2015.

Sandro Pinto, Jorge Pereira, Tiago Gomes, Mongkol Ekpanyapong, and Adriano Tavares.
Towards a TrustZone-assisted Hypervisor for Real Time Embedded Systems. IEEE Com-
puter Architecture Letters, 2016.

Renesas. R-Car Series, 3rd Generation User’s Manual: Hardware, February 2016.

Russell Rusty. Ubuntu Manpage: hackbench — scheduler benchmark/stress test. URL:
http://manpages.ubuntu.com/manpages/precise/man8/hackbench.8.html.

Udo Steinberg and Bernhard Kauer. NOVA: a microhypervisor-based secure virtualization
architecture. In Proceedings of the 5th European conference on Computer systems, pages
209-222. ACM, 2010.

Michael Zimmer, David Broman, Chris Shaver, and Edward A. Lee. PFlexPRET: A pro-
cessor platform for mixed-criticality systems. In 2014 IEEE 19th Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 101-110. IEEE, 2014.

https://developer.arm.com/technologies/trustzone
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
https://www.highintegritysystems.com/safertos/
https://www.highintegritysystems.com/safertos/
http://manpages.ubuntu.com/manpages/precise/man8/hackbench.8.html

	Introduction
	TrustZone
	VOSYSMonitor
	Architecture overview
	Secure/Normal world scheduling
	Context switch
	Interrupts management
	Secure world interaction
	Normal world interaction

	Secure world failure handling
	ARM convention compliance

	Related work
	Evaluation
	Context switch latency using PMU
	Context switch including the hardware latency
	VOSYSmonitor and ATF booting time
	OSes co-execution workload and multicore support

	Conclusion

