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Abstract
We apply the polynomial method – specifically, Chebyshev polynomials – to obtain a number of
new results on geometric approximation algorithms in low constant dimensions. For example, we
give an algorithm for constructing ε-kernels (coresets for approximate width and approximate
convex hull) in close to optimal time O(n + (1/ε)(d−1)/2), up to a small near-(1/ε)3/2 factor,
for any d-dimensional n-point set. We obtain an improved data structure for Euclidean ap-
proximate nearest neighbor search with close to O(n logn + (1/ε)d/4n) preprocessing time and
O((1/ε)d/4 logn) query time. We obtain improved approximation algorithms for discrete Voronoi
diagrams, diameter, and bichromatic closest pair in the Ls-metric for any even integer constant
s ≥ 2. The techniques are general and may have further applications.
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1 Introduction

This paper presents new results on a number of fundamental problems in low-dimensional
geometric approximation algorithms. Let P be a set of n points in d-dimensional Euclidean
space where d is a constant. Let ε > 0 be a user-specified parameter (not necessarily a
constant). As a shorthand, let E := d1/εe. Below, the O notation may hide factor that
depends on d but not ε. The notation O∗ will be used to suppress small factors of the form
Ec for some constant c independent of d.

Diameter. We present a new algorithm to compute a (1 + ε)-approximation of the diameter
of P (the farthest pair distance) in O∗(n+ Ed/2) time.

There have been a long series of prior results:

O∗(Ed/2n) time by Agarwal, Matoušek, and Suri [3] (’91);
O∗(n + E2d) by Barequet and Har-Peled [14] (SODA’99);
O∗(n + E3d/2) by combining the two algorithms [18];
O∗(n + Ed) by Chan [18] (SoCG’00);
O∗(n + Ed/2√n) by Arya and Chan [9] (SoCG’14).

Our new result is a substantial improvement, and provides a near Ed/4-factor speedup in the
case when n is near Ed/2, for example.
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ε-Kernels. We obtain an algorithm to compute an ε-kernel of P with worst-case optimal
size O(E(d−1)/2) in O∗(n+ Ed/2) expected time; ε-kernels [1] provide coresets for a variety
of problems such as diameter, width, minimum enclosing cylinder, minimum bounding box,
and convex hull.

This is again a substantial improvement in terms of ε-dependencies over prior results:
O∗(n + E3d/2) time by Agarwal, Har-Peled, and Varadarajan [1] (SODA’01/FOCS’01);
O∗(n + Ed) by Chan [18] (SoCG’00);
O∗(n + Ed/2√n) by Arya and Chan [9] (SoCG’14).

More importantly, since the size of the ε-kernel may be Ω(E(d−1)/2), our result for this problem
is near worst-case optimal, up to an O∗(1) factor (more precisely, an O(E3/2 logO(1) E) factor).

Bichromatic closest pair. Assuming each input point is colored red or blue, we present a
new algorithm to compute a (1 + ε)-approximation of the bichromatic closest pair of P in
O∗(Ed/4n) expected time.

This improves a series of prior results:
O∗(Edn log n) time by Arya et al. [8] (SODA’04);
O∗(Ed/2n log n) by Chan [22] (SoCG’97);
O∗(Ed/3n) by Arya and Chan [9] (SoCG’14).

Approximate nearest neighbors. More generally, we can preprocess P in O(n logn) +
O∗(Ed/4n) expected time so that (1 + ε)-factor approximate nearest neighbor queries can be
answered in O∗(Ed/4 logn) query time.

This improves prior results with:
O(n log n) preprocessing time & O∗(Ed log n) query time by Arya et al. [8] (SODA’04);
O∗(Ed/2n log n) O∗(Ed/2 log n) by Chan [22] (SoCG’97);
O(n log n) + O∗(Ed/3n) O∗(Ed/3 log n) by Arya and Chan [9] (SoCG’14).

There were more previous results by Arya et al. [7, 6, 13] giving space/query-time tradeoffs.
For example, one method already achieved O∗(Ed/4n) space and O∗(Ed/4 logn) query
time, but preprocessing time has large ε-dependencies, making the method unsuitable for
bichromatic closest pair, for example.

Streaming diameter. In the insertion-only streaming model, we can maintain a (1 + ε)-
approximation of the diameter with O(E(d−1)/2) space and O∗(Ed/4) time per insertion of
point.

This improves prior results with:
O(E(d−1)/2) space & O∗(Ed/2) time (folklore);
O(E(d−1)/2) O∗(Ed/3) by Arya and Chan [9] (SoCG’14).

Streaming ε-kernels. In the insertion-only streaming model, we can maintain an ε-kernel
of O(E(d−1)/2) size with O(E(d−1)/2) space and O∗(1) time per insertion of point.

This improves prior results with:
O(E(d−1)/2) space & O∗(Ed logd n) time by Agarwal, Har-Peled, and Varadarajan [1] (’01);
O∗(Ed) O(1) by Chan [19] (SoCG’04);
O(E(d−1)/2) O∗(Ed/2) by Zarrabi-Zadeh [31] (ESA’08);
O(E(d−1)/2) O∗(Ed/4) by Arya and Chan [9] (SoCG’14).

Since our result has O∗(1) time, it is near optimal (up to an O(E3/2 logO(1) E) factor).
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Discrete upper envelopes and discrete Voronoi diagrams. Most of the above results are
obtained by solving the following key subproblem of independent interest, called discrete
upper envelope (introduced in [19]): the problem is to find extreme points along various
uniformly spaced directions, or more precisely, find the point pξ ∈ P that maximizes pξ · ξ for
each ξ ∈ Ξ×{1}, where Ξ is the set of all points in a uniform grid of side length δ over [0, 1]d−1.
To explain the name, note that after dualization the problem corresponds to evaluating the
upper envelope of a set of hyperplanes (i.e., pointwise maximum of (d − 1)-variate linear
functions) at the vertical lines through all grid points in Ξ.

In the related (d− 1)-dimensional discrete Voronoi diagram problem [19] (also called the
“Euclidean distance transform” [17, 27]), we want to find the nearest neighbor p′ξ in P to
each grid point ξ ∈ Ξ× {0}.

In both problems, we allow approximation with an additive error of O(ε), given that
P ⊂ [0, 1]d. We present an algorithm with O∗(n+Ed/2 + F d) time where F := d1/δe. Since
the output size is Θ∗(F d), our algorithm is near-optimal up to O∗(1) factors if F ≥

√
E

(indeed, in applications, the main case of interest is when F =
√
E). This improves prior

results (assuming F ≤ E) with:

O∗(F dn) time (trivial);
O∗(n + Ed) by Chan [19] (SoCG’04);
O∗(mind

k=0 F d−k(n + Ek)) by Arya and Chan [9] (SoCG’14).

The last bound is O∗(n+Ed/2√n) in the case F =
√
E. Interestingly, these prior algorithms

actually solve the discrete upper envelope problem exactly after an initial rounding of P to a
uniform grid of side length ε (in other words, error solely comes from rounding). Our new
approach will make more powerful use of approximation.

Significance. For specific small constants d, our improvements may not be dramatic when
factors hidden in the O∗ notation are taken into account. On the other hand, for large
constants d, the time bound may become impractically large as E grows (not to mention that
hidden constant factors, of the form dO(d), may become an issue). For example, for diameter
with d = 15 and n = E7, the old bound [19] was O(E13 logE), the most recent previous
bound [9] was O(E9.5 logE), and the new bound is O(E8 logO(1) E). For bichromatic closest
pair with d = 25, the old bound [22] was O(E12n logn), the most recent previous bound [9]
was O(E7.5n logE), and the new bound is O(E5.75n logO(1) E). Also, for a problem such
as diameter, there are existing alternatives that do not necessarily have good worst-case
running time but performs much better on “realistic input” [24].

However, we believe that more significant than the results are the techniques. Surprisingly,
we bring in algebraic techniques – namely, the polynomial method – to tackle computational
geometry problems that have traditionally been solved using geometric techniques only.
Specifically, our algorithms use Chebyshev polynomials.

The polynomial method and Chebyshev polynomials have found applications before in
theoretical computer science, numerical analysis, and other areas. Two recent lines of research
are particularly relevant:

Andoni and Nguyen [5] (SODA’12) applied the polynomial method to obtain dynamic
streaming algorithms for the width problem. This was followed up by Chan [20] (SoCG’16)
for the ε-kernel problem. Chebyshev polynomials were not used. In regards to traditional
(or insertion-only streaming) algorithms, these ideas seem to give poorer results than
what is already known.

SoCG 2017
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Valiant [28] (FOCS’12) applied Chebyshev polynomials to obtain faster algorithms for
approximate bichromatic closest pair and offline approximate nearest neighbor search in
high dimensions. This was later improved by Alman, Chan, and Williams [4] (FOCS’16).
These ideas do not seem directly useful for low-dimensional nearest neighbor search, as
the target time bounds are vastly different in low vs. high dimensions.

Interestingly, our work will combine ideas from these two research threads, along with
existing geometric techniques on low-dimensional ε-kernels and approximate nearest neighbor
search. The connection may be simple in hindsight (none of our ideas are original in isolation),
but honestly the author did not anticipate that these threads could come together so neatly!

Although we draw on algebraic techniques, our algorithms for discrete upper envelopes
and diameter are easy to understand and do not require advanced background. Our first
algorithm does not even need fast Fourier transform or fast matrix multiplication, just simple
arithmetic on roughly

√
E-bit-long numbers (our time bounds already account for the bit

complexity of such operations). Section 2 giving a self-contained description of the first
algorithm is about two pages long. Our second algorithm for diameter, which uses fast
Fourier transform, as described in Section 4, is even shorter.

Note. After completing a preliminary draft of this paper, the author has learned that
Arya, de Fonseca, and Mount (personal communication, late Nov. 2016) have independently
obtained similar results [12]. In fact, their time bounds are a little better in the hidden O∗(1)
factors (for example, for diameter, we obtain O((n

√
E + E(d+1)/2) logO(1) E) time, whereas

they obtain O(n logE + E(d−1)/2+δ) time for an arbitrarily small constant δ > 0). The fact
that the techniques are completely different makes the independent discovery all the more
exciting. Arya et al.’s techniques build on a long series of their earlier work involving Macbeath
regions [6, 10, 11, 13], and the analysis in these previous papers appears complicated. In
contrast, our algorithms make minimal use of geometry, and are more general in some sense.
For instance, our second algorithm for diameter works in the Ls metric for any integer
constant s ≥ 2 (or other similarly behaved distance functions) with the same running time,
whereas the approach by Arya et al. does not appear to generalize because of its reliance on
a certain lifting transformation. The polynomial method is very powerful, and we anticipate
more applications will follow.

2 First Algorithm

Our first algorithm solves a generalization of the discrete upper envelope problem:

I Problem 1 (Generalized Discrete Upper Envelope). Let d be a constant and let ψ1, . . . , ψd−1
be bivariate O(1)-degree polynomials with integer coefficients. Given a set P of n points in
Zd, we want to compute

f(x1, . . . , xd−1) := max
(a1,...,ad)∈P

(ψ1(a1, x1) + · · ·+ ψd−1(ad−1, xd−1) + ad) (1)

for all1 (x1, . . . , xd−1) ∈ [F ]d−1, while allowing additive error O(εU), where U is a given
upper bound on |ψ1(a1, x1) + · · · + ψd−1(ad−1, xd−1) + ad| over all (a1, . . . , ad) ∈ P and
(x1, . . . , xd−1) ∈ [F ]d−1.

1 [m] denotes the integer set {0, 1, . . . , m− 1}.
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For example, for the discrete upper envelope problem as defined in the Introduction, we
can round the given point set P ⊂ [0, 1]d to a uniform grid of side length ε and then rescale
so that Ξ = [F ]d−1 and P ⊂ [E]d−1 × [EF ]. We then get an instance of Problem 1 with
ψi(ai, xi) = aixi. Here, U = O(EF ), and n ≤ (EF )O(1) after removing duplicates.

For the (d− 1)-dimensional discrete Voronoi diagram problem as defined in the Introduc-
tion, approximating the distance with additive error O(ε) is equivalent to approximating the
squared distance with additive error O(ε). We can round and rescale so that Ξ = [F ]d−1 and
P ⊂ [E]d. We then get an instance of Problem 1 with ψi(ai, xi) = (EF xi − ai)

2 (assuming
that F divides E). Here, U = O(E2), and n ≤ EO(1) after removing duplicates. We can also
take ψi(ai, xi) = (EF xi − ai)

s for the analogous problem under the Ls metric for any even
integer constant s.

We now solve Problem 1 using the polynomial method. We start with basic properties
about Chebyshev polynomials (e.g., see [28, 4] for quick proofs):

I Lemma 2. Let

Tq(x) :=
bq/2c∑
i=0

(
q

2i

)
(x2 − 1)ixq−2i

be the degree-q Chebyshev polynomial (of the first kind).
(i) If |x| ≤ 1, then |Tq(x)| ≤ 1.
(ii) If x > 1, then Tq(x) > 1.
(iii) If x ≥ 1 + ε, then Tq(x) > 1

2e
q
√
ε.

Set q :=
⌈√

E ln(4n)
⌉
and D := Uq. Let T (x) := D · Tq(1 + x

U ), which is a polynomial
with integer coefficients. Our main idea is to work with the following function instead of f :

f̃(x1, . . . , xd−1, t) :=
∑

(a1,...,ad)∈P

T (ψ1(a1, x1) + · · ·+ ψd−1(ad−1, xd−1) + ad − t) (2)

where x1, . . . , xd−1 ∈ [F ] and |t| ∈ [U ]. The function f̃ is “nicer” since it is a sum (instead of
a max) of polynomials, and is thus itself a polynomial. The following observations explain
the relationship between the two functions:

Case 1: f(x1, . . . , xd−1) ≤ t. Then −2U ≤ ψ1(a1, x1)+· · ·+ψd−1(ad−1, xd−1)+ad−t ≤ 0
for all (a1, . . . , ad) ∈ P . By Lemma 2(i), all n terms in the sum (2) are at most D, and
so f̃(x1, . . . , xd−1, t) ≤ Dn.

Case 2: f(x1, . . . , xd−1) ≥ t+εU . Then ψ1(a1, x1)+ · · ·+ψd−1(ad−1, xd−1)+ad− t ≥ εU
for at least one (a1, . . . , ad) ∈ P . By Lemma 2(iii), at least one term in the sum (2) exceeds
D · 1

2e
q
√
ε. By Lemma 2(i,ii), all other terms are at least −D. So, f̃(x1, . . . , xd−1, t) ≥

D( 1
2e
q
√
ε − (n− 1)) > Dn by our choice of q.

Thus, we can approximately compare f(x1, . . . , xd−1) against t with additive error εU ,
by evaluating f̃(x1, . . . , xd−1, t). So, we can approximately compute f(x1, . . . , xd−1) with
additive error O(εU) by binary search, using O(logE) evaluations of f̃ . The total number of
evaluations over all (x1, . . . , xd−1) ∈ [F ]d−1 is O(F d−1 logE).

To evaluate f̃ , one could expand the expression into monomials, as f̃ is a low-degree
multivariate polynomial, but this approach seems too costly. Instead, we use the Chinese
remainder theorem. In the stated domain, f̃ is upper-bounded by M := DnTq(3) ≤
Dn2O(q) ≤ 2O(

√
E logO(1)(nEU)). Let P be a set of primes whose product exceeds M ; by

known bounds, we can choose such a set so that |P| = O(logM/ log logM) and each prime in

SoCG 2017
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P is at most O(logM). We describe how to evaluate f̃(x1, . . . , xd−1, t) mod p for each p ∈ P .
Afterwards, we can reconstruct each value f̃(x1, . . . , xd−1, t) by the Chinese remainder
theorem, which takes at most O(log2 M) time by elementary methods (for example, by
repeated application of Euclid’s algorithm, although faster, more sophisticated methods are
possible). The total time of this step is O(F d−1 logE log2 M) = O(F d−1E logO(1)(nEU)).

Fix a prime p ∈ P. For each a1, . . . , ad ∈ [p], let wa1,...,ad
be the number of points

(a′1, . . . , a′d) ∈ P such that a′1 ≡ a1, . . . , a
′
d ≡ ad (mod p); we can precompute all these

counts by a linear scan over P , using O(n) arithmetic operations. Now,

f̃(x1, . . . , xd−1, t) ≡
∑

a1,...,ad∈[p]

wa1,...,ad
T (ψ1(a1, x1)+· · ·+ψd−1(ad−1, xd−1)+ad−t) (mod p).

To generate all f̃ mod p values, we use dynamic programming. For each i ∈ {1, . . . , d}
and each a1, . . . , ai−1, xi, . . . , xd−1, t ∈ [p], define

g(i)
a1,...,ai−1

(xi, . . . , xd−1, t) :=
∑

ai,...,ad∈[p]

wa1,...,ad
T (ψi(ai, xi) + · · ·+ ψd−1(ad−1, xd−1) + ad−t)

(mod p).

Then g(1) gives us f̃ mod p.
For the base case, we can compute g(d) using the formula

g(d)
a1,...,ad−1

(t) ≡
∑
ad∈[p]

wa1,...,ad
T (ad − t) (mod p) (3)

for all a1, . . . , ad−1, t ∈ [p]. For i = d − 1, . . . , 1, we can compute g(i) using the recursive
formula

g(i)
a1,...,ai−1

(xi, . . . , xd−1, t) ≡
∑
ai∈[p]

g(i+1)
a1,...,ai

(xi+1, . . . , xd−1, t− ψi(ai, xi)) (mod p) (4)

for all a1, . . . , ai−1, xi, . . . , xd−1, t ∈ [p].
The resulting dynamic program requires O(pd) table entries, each computed using O(p)

arithmetic operations by (3) and (4). This assumes that we have precomputed T (x) for
all x ∈ [p] (which straightforwardly requires O(pq) arithmetic operations). All arithmetic
operations are done modulo p, each costing at most O(log2 p) by elementary methods. Thus,
the running time of the dynamic program is O(pd+1 log2 p) = O(logd+1 M log2 logM) =
O(E(d+1)/2 logO(1)(nEU)).

Including the cost of computing the counts, the running time is
O((n+E(d+1)/2) logO(1)(nEU)) for each fixed prime p. The total over all O(logM/ log logM)
= O(

√
E logO(1)(nEU)) primes p ∈ P becomes O((n

√
E + Ed/2+1) logO(1)(nEU)).

I Theorem 3. Problem 1 can be solved in O((n
√
E+Ed/2+1 +F d−1E) logO(1)(nEU)) time,

where E = d1/εe.

In the case F =
√
E, the bound is O((n

√
E + Ed/2+1) logO(1)(nEU)), which nearly

matches the lower bound Ω(n+ E(d−1)/2) up to a factor of about E3/2.
Note that the above method actually solves a data structure version of Problem 1: after

preprocessing in O((n
√
E+Ed/2+1) logO(1)(nEU)) time, we can approximate f(x1, . . . , xd−1)

for any query point (x1, . . . , xd−1) ∈ [F ]d−1 in O(E logO(1)(nEU)) time. This data structure
problem is similar to the approximate polytope membership problem studied by Arya et
al. [6, 10, 11, 13, 12].

Appendix B describes one small improvement of the Ed/2+1 term to a bound approaching
E(d+1)/2 as d gets large. This improvement requires fast rectangular matrix multiplication,
however.
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3 Applications

We now sketch how our new algorithm for discrete upper envelopes and discrete Voronoi
diagrams automatically leads to better algorithms for various problems, by combining with
existing techniques from computational geometry.

Diameter. Given a set P of n points in d dimensions, we consider the problem of computing
a (1 +O(ε))-factor approximation of the diameter, i.e, the distance of the farthest pair of
points.

We can adopt the following standard algorithm, described in [19] (see also [3, 18]): First
compute a constant-factor approximation in O(n) time (e.g., by picking any arbitrary point
of P and taking the farthest neighbor distance from that point). By translation and scaling,
we may assume that the diameter is Θ(1) and P ⊂ [0, 1]d. Let Ξ be the set of all grid points
over ∂[−1, 1]d with side length δ :=

√
ε. For each ξ ∈ Ξ, find a point pξ ∈ P that maximizes

pξ · ξ and a point qξ ∈ P that maximizes −qξ · ξ, while allowing additive error O(ε). Return
the maximum of pξ · ξ − qξ · ξ over all ξ ∈ Ξ. See [19] for the correctness proof.

Observe that computing all the pξ’s and qξ’s corresponds to O(1) instances of the discrete
upper envelope problem (one per facet of ∂[−1, 1]d). By applying Theorem 3 with F =

√
E,

U = O(EF ), and n ≤ EO(1), we immediately obtain:

I Corollary 4. Given n points in constant dimension d, we can compute a (1+ε)-approximation
of the diameter in O((n

√
E + Ed/2+1) logO(1) E) time, where E = d1/εe.

ε-kernels. Given a set P of n points in d dimensions, an ε-kernel is, roughly speaking, a
subset Q ⊂ P whose width approximates the width of P to within a factor of 1 + ε along
every direction simultaneously. Alternatively, it can be viewed as a “coreset” for approximate
convex hulls. The concept was introduced by Agarwal, Har-Peled, and Varadarajan [1] and
has a plethora of applications; see [1, 2] for the precise definition and background.

Previous work [19, 30] suggested the following algorithm which computes an ε-kernel of
worst-case optimal size O((1/ε)(d−1)/2): First find an affine transformation that makes P
“fat” and lie in [−1, 1]d; this is known to be doable in O(n) time. Let Ξ be the set of all grid
points over ∂[−2, 2]d with side length

√
ε. For each ξ ∈ Ξ, find a nearest neighbor pξ ∈ P

to ξ, while allowing additive error O(ε). Return the subset {pξ : ξ ∈ Ξ}. See [19] for the
correctness proof.

Observe that computing all the pξ’s reduces to O(1) instances of the (d− 1)-dimensional
discrete Voronoi diagram problem. (Technically, we need witness finding; see Appendix A
for a solution, requiring Las Vegas randomization.) By Theorem 3, we immediately obtain:

I Corollary 5. Given n points in constant dimension d, we can compute an ε-kernel of size
O(E(d−1)/2) in O((n

√
E + Ed/2+1) logO(1) E) expected time, where E = d1/εe.

Bichromatic closest pair. Given a set P of n red points and Q of n blue points in d

dimensions, we next examine the problem of finding a (1 +O(ε))-factor approximation of
the closest red-blue pair.

We first consider the “well-separated” case, where by translation, rotation, and scaling,
we can make P ⊂ [−1, 1]d−1 × [−2,−1] and Q ⊂ [−1, 1]d−1 × [1, 2]. Arya and Chan [9]
suggested the following algorithm to solve this case: Let Ξ be the set of all grid points over
[−1, 1]d−1 × {0} with side length δ :=

√
ε. For each ξ ∈ Ξ, find a nearest neighbor pξ ∈ P to

ξ and a nearest neighbor qξ ∈ Q to ξ, while allowing additive error O(ε). Return the closest
pair (pξ, qξ) over all ξ ∈ Ξ. See [9] for the correctness proof.

SoCG 2017
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Observe that computing all the pξ’s reduces to O(1) instances of the (d−1)-dimensional dis-
crete Voronoi diagram problem. (Technically, we again need witness finding.) By Theorem 3,
the running time is O((n

√
E +Ed/2+1) logO(1) E). An alternative upper bound is O(n2), by

brute-force search. The smaller of the two bounds is always at most O(nEd/4+1/2 logO(1) E).
As observed by Arya and Chan [9], a simple grid approach can reduce the general problem

to a number of well-separated instances whose input sizes sum to O(n). Thus, the total time
is at most O(nEd/4+1/2 logO(1) E).

I Corollary 6. Given n red and blue points in constant dimension d, we can compute a
(1 + ε)-approximate bichromatic closest pair in O(nEd/4+1/2 logO(1) E) expected time, where
E = d1/εe.

Approximate nearest neighbor search. The result for bichromatic closest pair can be
extended to (offline or online) approximate nearest neighbor search, by following Arya and
Chan [9]. The techniques are more involved, requiring balanced box decomposition trees and
ideas from earlier papers of Arya, da Fonseca, Malamatos, and Mount [7, 6]. We omit the
details, but by reexamining [9] closely and incorporating our new time bound for discrete
Voronoi diagrams, we obtain:

I Corollary 7. We can preprocess n points in a constant dimension d in O(n logn) +
O∗(nEd/4) expected time so that we can find a (1 + ε)-approximate nearest neighbor to any
query point in O∗(Ed/4 logn) time, where E = d1/εe.

Streaming diameter and ε-kernels. The same paper [9] also described an application to
insertion-only streaming algorithms for approximating the diameter. Their solution requires
first designing a data structure for approximate farthest neighbor queries using techniques
similar to [7, 6], and then combining with Bentley and Saxe’s logarithmic method (or “merge-
and-reduce”) [15]. We omit the details, but by examining [9] closely and incorporating our
new time bound for discrete Voronoi diagrams, we obtain:

I Corollary 8. Given a stream of n points in constant dimension d, we can maintain a
(1 + ε)-approximation of the diameter using O(E(d−1)/2) space and supporting insertions in
O∗(Ed/4) expected time, where E = d1/εe.

The paper [9] also studied the insertion-only streaming algorithms for ε-kernels. Here,
the solution is easier. We first consider the special case where the point set P is promised
to be fat and lie in [0, 1]d at all times. If we insist on O(E(d−1)/2) space, we can handle
insertions lazily until a block of E(d−1)/2 points is read. Then following Section 3, we
can recompute all the pξ’s and qξ’s by running our discrete upper envelope algorithm
on E(d−1)/2 points, taking O(Ed/2+1 logO(1) E) time. The amortized insertion time is
O(Ed/2+1 logO(1) E)/E(d−1)/2 = O(E3/2 logO(1) E). (Deamortization is straightforward.)

Building on an earlier streaming algorithm in [19], Zarrabi-Zadeh [31] has given a reduction
of the general problem to the above special case that does not increase the processing time
or space in the insertion-only streaming model. As a result, we obtain:

I Corollary 9. Given a stream of n points in constant dimension d, we can maintain an
ε-kernel using O(E(d−1)/2) space and supporting insertions in O(E3/2 logO(1) E) expected
time, where E = d1/εe.
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4 Second Algorithm

We now present an alternative algorithm for the diameter problem, which is also based on
Chebyshev polynomials, but bypasses dynamic programming, instead using fast Fourier
transform. It is slightly faster (the Ed/2+1 term in the time bound is reduced to E(d+1)/2).
It is also more direct, without going through discrete upper envelopes. The algorithm can
also be applied to the bichromatic closest pair problem. An advantage is that it can be
generalized to the Ls metric for any even integer constant s (although the algorithm for
discrete Voronoi diagrams in Section 2 works also for Ls, the reductions from diameter and
bichromatic closest pair in Section 3 rely on properties of Euclidean space).

I Problem 10 (Generalized Diameter). Let d be a constant and ϕ be a d-variate O(1)-degree
polynomial with integer coefficients. Given two sets P and Q of n points in Zd, we want to
compute

Z := max
(a1,...,ad)∈P, (b1,...,bd)∈Q

ϕ(a1 − b1, . . . , ad − bd)

while allowing additive error O(εU), where U is a known upper bound on |ϕ(a1− b1, . . . , ad−
bd)| over all (a1, . . . , ad) ∈ P, (b1, . . . , bd) ∈ Q.

For example, for diameter in the Ls metric for an even integer constant s, we can first
compute a constant-factor approximation in O(n) time. By translation, scaling, and rounding,
we may assume that the diameter is Θ(E) and P ⊂ [E]d. Approximating the diameter with
additive error O(εE) is equivalent to approximate the s-th power of the diameter with additive
error O(εEs). We then get an instance of Problem 10 with ϕ(x1, . . . , xd) = xs1 + · · ·+ xsd.
Here, U = O(Es), and n ≤ EO(1) after removing duplicates.

We now solve Problem 10 using the polynomial method. It suffices to solve the decision
problem, of deciding whether the maximum is at least a given value t (with additive error
O(εU)), since the original problem can then be solved by binary search with O(logE) calls
to the decision algorithm.

Reset q :=
⌈√

E ln(4n2)
⌉
and let D and the degree-q polynomial T be as in Section 2.

Define

Z̃ :=
∑

(a1,...,ad)∈P, (b1,...,bd)∈Q

T (ϕ(a1 − b1, . . . , ad − bd)− t).

By a similar analysis as in Section 2, we have:
Case 1: Z ≤ t. Then Z̃ ≤ Dn2.
Case 2: Z ≥ t+ εU . Then Z̃ > D( 1

2e
q
√
ε − (n2 − 1)) > Dn2 by our choice of q.

It suffices to compute Z̃. At first Z̃ appears expensive to compute, since we are summing
n2 polynomials. We follow the approach in Section 2 and use the Chinese remainder theorem.
Define the set P of primes as before, withM := Dn2Tq(3) ≤ 2O(

√
E logO(1)(nEU)). We describe

how to compute Z̃ mod p for each p ∈ P. Afterwards, we can reconstruct Z̃ as before in at
most O(log2 M) = O(E logO(1)(nEU)) time.

Fix a prime p ∈ P . As before, for each a1, . . . , ad ∈ [p], let wa1,...,ad
be the number of points

(a′1, . . . , a′d) ∈ P such that a′1 ≡ a1, . . . , a
′
d ≡ ad (mod p). Similarly, for each b1, . . . , bd ∈ [p],

let vb1,...,bd
be the number of points (b′1, . . . , b′d) ∈ Q such that b′1 ≡ b1, . . . , b

′
d ≡ bd (mod p).

We can precompute all these counts by a linear scan over P and Q, using O(n) arithmetic
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operations. Then

Z̃ ≡
∑

a1,...,ad,b1,...,bd∈[p]

wa1,...,ad
vb1,...,bd

T (ϕ(a1 − b1, . . . , ad − bd)− t) (mod p) (5)

≡
∑

c1,...,cd∈[p]

uc1,...,cd
T (ϕ(c1, . . . , cd)− t) (mod p), (6)

where

uc1,...,cd
:=

∑
a1,...,ad∈[p]

wa1,...,ad
v(a1−c1) mod p,...,(ad−cd) mod p (mod p).

The key is to recognize this expression as a d-dimensional convolution (with wraparound
indices modulo p). This can be converted to standard 1-dimensional convolution as follows:
Initialize arrays A[0, . . . , (2p)d] and B[0, . . . , (2p)d] to 0. For each a1, . . . , ad ∈ [p], set
A[a1(2p)d−1 + a2(2p)d−2 + · · · + ad] = wa1,...,ad

. For each b1, . . . , bd ∈ [p], set B[(p −
b1)(2p)d−1+(p−b2)(2p)d−2+· · ·+(p−bd)] = vb1,...,bd

. Compute the convolution C[0, . . . , (2p)d]
where C[i] :=

∑i
k=0 A[k]B[i − k] (mod p). Then for each c1, . . . , cd ∈ [p], set uc1,...,cd

=∑
j1,...,jd∈{0,1} C[(c1 + j1p)(2p)d−1 + (c2 + jdp)(2p)d−2 + · · ·+ (cd + jdp)] (mod p).
By fast Fourier transform, we can compute all uc1,...,cd

values using O(pd log p) arithmetic
operations. Afterwards, we can compute Z̃ mod p by (6) using O(pd) arithmetic operations.
This assumes that we have precomputed T (x) for all x ∈ [p] (which straightforwardly requires
O(pq) arithmetic operations). All arithmetic operations are done modulo p, each costing
at most O(log2 p) time. The running time is thus O(pd log3 p) = O(logdM log3 logM) =
O(Ed/2 logO(1)(nEU)).

Including the cost of computing the counts, the running time is O((n+Ed/2) logO(1)(nEU))
for each fixed prime p. The total over all O(logM/ log logM) = O(

√
E logO(1)(nEU)) primes

p ∈ P is O((n
√
E + E(d+1)/2) logO(1)(nEU)).

I Theorem 11. Problem 10 can be solved in O((n
√
E+E(d+1)/2) logO(1)(nEU)) time, where

E = d1/εe.

5 Applications

Ls-diameter. The algorithm in Section 4 can immediately be applied to approximate the
diameter in the Ls metric for any even integer constant s. For the case of odd s, we can use
standard range-tree divide-and-conquer to reduce to bichromatic instances (P,Q) such that
P and Q are separated along all d axis directions, in which case the preceding algorithm
can be applied. The divide-and-conquer increases the running time by a factor of O(logd n),
which is O(logdE) since n ≤ EO(1) (after initial rounding and removal of duplicates).

I Corollary 12. Given n points in constant dimension d and any integer constant s ≥ 2, we
can compute a (1 + ε)-approximation of the Ls-diameter in O((n

√
E + E(d+1)/2) logO(1) E)

time, where E = d1/εe.

Bichromatic Ls-closest pair. For bichromatic closest pair in the Ls metric for any even
integer constant s, it suffices to solve the well-separated case, as noted in Section 3, where
P ⊂ BP and Q ⊂ BQ for two unit hypercubes BP and BQ of distance Θ(1) apart. (Note
that we can no longer rotate.) Approximating the closest pair distance with additive error
O(ε) is equivalent to approximating the s-th power of the closest pair distance with additive
error O(ε). We can round and rescale so that P,Q ⊂ [E]d. We then get an instance of
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Problem 10 with ϕ(x1, . . . , xd) = −(xs1 + · · ·+ xsd). Here, U = O(Es), and n ≤ EO(1) after
removing duplicates. The rest of the analysis is as in Section 3. The case of odd s can again
be handled by incorporating range-tree divide-and-conquer.

I Corollary 13. Given n red and blue points in constant dimension d and any integer
constant s ≥ 2, we can compute a (1 + ε)-approximate bichromatic Ls-closest pair in
O(nE(d+1)/4 logO(1) E) time, where E = d1/εe.

6 Final Remarks

We now reveal the origins of the ideas behind our first algorithm in Section 2.

The application of the polynomial method to approximately find extreme points along
arbitrary directions was first proposed by Andoni and Nguyen [5], specifically for the
dynamic streaming model. This line of work was continued in [20] for the ε-kernel problem;
in fact, the idea of applying the Chinese remainder theorem and keeping the counts
wa1,...,ad

(which are easy to maintain in the dynamic streaming setting) is taken from [20].
However, it has not been realized before that the approach could give better algorithms
in the standard nonstreaming setting. Also, these previous algorithms [5, 20] constructed
polynomials by summing q-th powers rather than degree-q Chebyshev polynomials, which
caused a larger degree bound on q (of the order E instead of

√
E) and thus larger

ε-dependencies in time and space complexity.
The theoretical computer science literature contains a number of earlier applications of
Chebyshev polynomials. The closest to our work are perhaps the papers by Valiant [28]
and Alman, Chan, and Williams [4] on approximate closest pair and offline nearest
neighbor search in high dimensions. The latter paper also played with sums of Cheby-
shev polynomials, but the algorithms were put together quite differently. For example,
they dealt primarily with polynomials with Boolean variables, they needed to expand
polynomials into monomials, and they relied on fast matrix multiplication rather than
dynamic programming.
Related is another polynomial-method-based algorithm for #SAT by Chan andWilliams [21].
There, a multivariate polynomial is evaluated over all points in {0, 1}m in near 2m time,
without fast matrix multiplication. This subproblem in Boolean space reduces to comput-
ing a Möbius or zeta transform, for which a standard dynamic programming algorithm
by Yates can be invoked [29, 16]. Our dynamic programming algorithm, to evaluate a
polynomial over all points in the space [E]d, is not entirely “original” and can be viewed
as a variant of Yates’ algorithm.

Our second algorithm in Section 4 which exploits fast Fourier transform seems more
original, although the idea is simple in hindsight.

The main advantage of the polynomial method is its generality. For example, the approach
in our second algorithm might potentially be applicable to kinetic variants of the diameter
decision problem where points are moving according to O(1)-degree polynomial functions in
time.

We can consider a still more general version of the diameter problem than Problem 10,
where ϕ can be any (2d)-variate polynomial with integer coefficients and we seek Z :=
max(a1,...,ad)∈P, (b1,...,bd)∈Q ϕ(a1, . . . , ad, b1, . . . , bd). Fast Fourier transform does not seem
applicable here, and we have to adapt (5):

Z̃ ≡
∑

a1,...,ad,b1,...,bd∈[p]

wa1,...,ad
vb1,...,bd

T (ϕ(a1, . . . , ad, b1, . . . , bd)− t) (mod p),
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which can be evaluated using O(p2d) arithmetic operations by brute force (instead of
O(pd log p)). This yields a slower (but still new) running time ofO((n

√
E+Ed+(1/2)) logO(1) E)

= O∗(n+ Ed).
To close, we mention two specific open problems:
Can we approximate the width of a point set in O∗(n+ Ed/2) time? The issue is that
knowing an ε-kernel, we still need to compute the width of the kernel efficiently.
Can we approximate the diameter in O∗(n + Eαd) time for some absolute constant
α < 1/2?
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sampling to isolate witnesses [26]. In the approximate setting, the details are trickier, but
have been worked out in the previous paper [20]. Although that paper dealt with q-th powers
instead of degree-q Chebyshev polynomials, the same ideas can be applied, as we now explain.
(In fact, the details get a little simpler when we are not working in the streaming model.)

We assume that P ⊂ [U ]d (which is true in all our applications). First let `(a1, . . . , ad) =
a1U

d−1 + a2U
d−2 + · · ·+ ad + 1 denote the label of a point (a1, . . . , ad) ∈ P .

Let k := dlogne. For each j ∈ [k], draw a random sample Rj ⊂ P where each point is
chosen with probability 1/2j .

Reset q :=
⌈√

kE ln(10nU2d)
⌉
. Define the polynomial functions

f̃j(x1, . . . , xd−1, t) :=
∑

(a1,...,ad)∈Rj

T (ψ1(a1, x1) + · · ·+ ψd−1(ad−1, xd−1) + ad − t)

f∗j (x1, . . . , xd−1, t) :=
∑

(a1,...,ad)∈Rj

`(a1, . . . , ad)T (ψ1(a1, x1) + · · ·+ ψd−1(ad−1, xd−1) + ad−t)

where x1, . . . , xd−1 ∈ [F ] and |t| ∈ [U ]. We can evaluate f̃j and f∗j by the same approach as
in Section 2 (after resetting M := Ud ·DnTq(3)). The running time remains the same up to
polylogarithmic factors, since the number of choices for j is k = O(logn), and the degree q
increases only by a polylogarithmic factor.

Suppose we want to find a witness for a given (x1, . . . , xd−1) ∈ [F ]d−1. We first find
an approximation t to the maximum, with t ≤ f(x1, . . . , xd−1) ≤ t+ dεUe, by the method
in Section 2. Intuitively, if the number of witnesses is near 2j , then with good probability
exactly one witness is in Rj and the ratio f∗

j (x1,...,xd−1,t)
f̃j(x1,...,xd−1,t)

rounded to the nearest integer
should give us the label to a witness, because the sums in the numerator and denominator
are both dominated by a single term which corresponds to the witness. More care is needed
in the approximate setting, however.

Let ∆ := ddεUe /ke. More precisely, we claim that with probability Ω(1), the label of a
witness can be found among the following ratios after rounding:

f∗j (x1, . . . , xd−1, t− i∆)
f̃j(x1, . . . , xd−1, t− i∆)

(i, j ∈ [k]).

To prove the claim, let Pi = {(a1, . . . , ad) ∈ P : ψ1(a1, x1)+ · · ·+ψd−1(ad−1, xd−1)+ad ≥
t − i∆}. Any point in Pi for any i ≤ k may be used as a witness with additive error
O(k∆) = O(εU). Since |P0| ≥ 1, there exists i ≤ k such that |Pi| ≤ 2|Pi−1| (for otherwise,
|Pk| > 2k ≥ n, a contradiction). Suppose 2j ≤ |Pi−1| ≤ 2j+1. Then |Pi| ≤ 2j+2. Let E be
the event that exactly one point of Pi−1 is chosen to be in Rj and no point of Pi \ Pi−1 is
chosen to be in Rj . Then Pr(E) ≥ |Pi−1| 1

2j (1 − 1
2j )|Pi|−1 ≥ (1 − 1

2j )2j+2 ≥ Ω(1). Suppose
that E is true. Let (a1, . . . , ad) ∈ P be the unique point of Pi−1 that is chosen to be in Rj .
Let ` = `(a1, . . . , ad) and T = T (ψ1(a1, x1) + · · ·+ ψd−1(ad−1, xd−1) + ad − (t− i∆)). Since
ψ1(a1, x1) + · · ·+ ψd−1(ad−1, xd−1) + ad − (t− i∆) ≥ ∆, by Lemma 2, T ≥ D · 1

2e
√
ε/kq ≥

5DnU2d ≥ 5nUdD`; in other words, nUdD ≤ T/(5`). Thus,

f∗j (x1, . . . , xd−1, t− i∆)
f̃j(x1, . . . , xd−1, t− i∆)

∈
[
`T − (n− 1)UdD
T + (n− 1)D ,

`T + (n− 1)UdD
T − (n− 1)D

]
⊂

[
`− 1/(5`)
1 + 1/(5`) ,

`+ 1/(5`)
1− 1/(5`)

]
⊂
(
`− 1

2 , `+ 1
2

)
,

as desired.
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Since each division costs at most O(log2 M), each witness can be found in O(log2 M log2 n)
time with success probability Ω(1). The total time for all (x1, . . . , xd−1) ∈ [F ]d−1 is
O(F d−1 log2 M log2 n) = O(F d−1E logO(1)(nEU)). We can find all witnesses correctly by
repeating the algorithm an expected O(log(F d−1)) number of times (since verifying a given
witness is easy). Thus, the total time of the entire randomized (Las Vegas) algorithm remains
the same in expectation, up to polylogarithmic factors.

B Small Improvement

In this appendix, we note a small speedup to the algorithm in Section 2 by exploiting fast
Fourier transform and fast matrix multiplication. This improvement is mainly of theoretical
interest.

For the base case of the dynamic program, observe that when a1, . . . , ad−1 are fixed,
equation (3) can be rewritten as a convolution of two p-dimensional vectors: letting A[ad] :=
wa1,...,ad

and B[x] = T (−x), we have g(d)
a1,...,ad−1(t) ≡

∑
ad∈[p] A[ad]B[t− ad]. By fast Fourier

transform, the O(pd−1) convolutions require O(pd−1 · p log p) arithmetic operations.
For the main dynamic program, observe that equation (4) can be rewritten as a product

of a pd−2 × p2 matrix and a p2 × p2 matrix: letting

C[(a1, . . . , ai−1, xi+1, . . . , xd−1), (xi, t)] := g(i)
a1,...,ai−1

(xi, . . . , xd−1, t)

A[(a1, . . . , ai−1, xi+1, . . . , xd−1), (ai, z)] := g(i+1)
a1,...,ai

(xi+1, . . . , xd−1, z)

B[(ai, z), (xi, t)] :=
{

1 if z ≡ t− ψi(ai, xi) (mod p)
0 else,

we have C[ξ, η] ≡
∑
ζ A[ξ, ζ]B[ζ, η]. The computation requires O(pω(d−2,2,2)) arithmetic

operations, where ω(α, β, γ) denotes the matrix multiplication exponent for multiplying an
nα × nβ and an nβ × nγ matrix. All arithmetic operations are done modulo p. The running
time of the dynamic program is then O(pω(d−2,2,2) log2 p) = O(Eω(d/2−1,1,1) logO(1) E). The
total over all O(

√
E logO(1) E) primes p ∈ P gives O(Eω(d/2−1,1,1)+1/2 logO(1) E).

I Theorem 14. Problem 1 can be solved in O((n
√
E+Eω(d/2−1,1,1)+1/2 +F d−1E) logO(1) E)

time, where E = d1/εe.

Note that as d grows, ω(d/2−1, 1, 1)−d/2 approaches 0, by known results on rectangular
matrix multiplication [23, 25].
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