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Abstract
Graphs and network data are ubiquitous across a wide spectrum of scientific and application
domains. Often in practice, an input graph can be considered as an observed snapshot of a (po-
tentially continuous) hidden domain or process. Subsequent analysis, processing, and inferences
are then performed on this observed graph. In this paper we advocate the perspective that an
observed graph is often a noisy version of some discretized 1-skeleton of a hidden domain, and
specifically we will consider the following natural network model: We assume that there is a true
graph G∗ which is a certain proximity graph for points sampled from a hidden domain X ; while
the observed graph G is an Erdös-Rényi type perturbed version of G∗.

Our network model is related to, and slightly generalizes, the much-celebrated small-world
network model originally proposed by Watts and Strogatz. However, the main question we
aim to answer is orthogonal to the usual studies of network models (which often focuses on
characterizing / predicting behaviors and properties of real-world networks). Specifically, we
aim to recover the metric structure of G∗ (which reflects that of the hidden space X as we will
show) from the observed graph G. Our main result is that a simple filtering process based on the
Jaccard index can recover this metric within a multiplicative factor of 2 under our network model.
Our work makes one step towards the general question of inferring structure of a hidden space
from its observed noisy graph representation. In addition, our results also provide a theoretical
understanding for Jaccard-Index-based denoising approaches.
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1 Introduction

Graphs and networks are ubiquitous across a wide spectrum of scientific and application
domains. Analyzing various types of graphs and network data play a fundamental role in
modern data science. In the past several decades, there has been a large amount of research
studying various aspects of graphs, ranging from developing efficient algorithms to process
graphs, to information retrieval and inference based on graph data.

In many cases, we can view an input graph as an observed (discrete) 1-skeleton of a
(potentially continuous) hidden domain. Subsequent analysis, processing, and inferences
are then performed on this observed graph, with the ultimate goal being to understand the
hidden space where the graph is sampled from. Many beautiful generative models for graphs
have been proposed [9, 20], aiming to understand this transition process from a hidden space
to the observed 1-skeleton, and to facilitate further tasks performed on graphs.

One line of such generative graph models assumes that an observed network is obtained
by adding random perturbation to a specific type of underlying “structured graph” (such
as a grid or a ring). For example, the much-celebrated small-world model by Watts and
Strogatz [26] generates a graph by starting with a k-nearest neighbor graph spanned by nodes
regularly distributed along a ring. It then randomly “rewires” some of the edges connecting
neighboring points to instead connect nodes possibly far away. Watts and Strogatz showed
that this simple model can generate networks that possess features of both a random graph
and a proximity graph, and display two important characteristics often seen in real networks:
low diameter in shortest path metric and high clustering coefficients. There have since been
many variants of this model proposed so as to generate networks with different properties,
such as adding random edges in a distance-dependent manner [23, 15], or extending similar
ideas to incorporate hierarchical structures in networks; e.g, [16, 25]. There have also been
numerous studies on characterizing statistical summaries, such as the average path lengths
or the degree distributions, of small-world like networks; e.g [5, 11]; see [24, 6] for surveys.

Our work. In this paper, we take the perspective that an observed graph can be viewed as
a noisy snapshot of the discretized 1-skeleton of a hidden domain of interest, and propose
the following network model: Assume that the hidden space that generates data is a “nice”
measure µ supported on a compact metric space X = (X, dX) (e.g, the uniform measure
supported on an embedded smooth low-dimensional Riemannian manifold). Suppose that
the data points V are sampled i.i.d from this measure µ, and the “true graph” G∗r connecting
them is the r-neighborhood graph spanned by V (i.e, two points u, v are connected if their
distance dX(u, v) ≤ r). The observed graph G however is only a noisy version of the true
proximity graph G∗r , and we model this noise by an Erdös-Rényi (ER) type perturbation –
each edge in the true graph G∗r can be deleted with probability p, while a “short-cut” edge
between two unconnected nodes u, v could be inserted to G with probability q.

To motivate this model, imagine in a social network a person typically makes friends
with other persons that are close to herself in the unknown feature space modeled by our
metric space X . The distribution of people (graph nodes) is captured by the measure µ on X .
However, there are always (or may be even many) exceptions – friends could be established
by chance, and two seemingly similar persons (say, close geographically and in tastes) may
not develop friendship. Thus it is reasonable to model an observed social network G as an
ER-type perturbation of the proximity graph G∗r to account for such exceptions.

The general question we hope to address is how to recover various properties of the hidden
domain X from the observed graph G. In this paper we investigate a specific problem: how
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to recover the metric structure of G∗r (induced by the shortest path distances in G∗r) from the
noisy observation G. As we show in Theorem 5, the metric structure of G∗r “approximates”
that of the hidden domain X . Note that a few inserted “short-cuts” could significantly
change the shortest path metric, one potential factor leading to the small-world phenomenon.
Our main result is that a simple filtering procedure based on the so-called Jaccard index
can recover the shortest path metric of G∗r within a multiplicative factor of 2 (with high
probabilities). We also provide some preliminary experimental results.

Remarks and discussion. The problem of recovering G∗r from the observed graph G is
different and orthogonal to the usual studies on similar network models: Those studies often
focus on characterizing the graphs generated by such models and whether those characteristics
match with real networks. We instead aim to recover metric structure of a hidden true graph
G∗r from a given graph G. There are different motivations for this task. For example, it could
be that the true graph G∗r is the real object of interest, and we wish to “denoise” the observed
graph G to get a more accurate representation of G∗r . Indeed, in [12], Godberg and Roth
empirically show how to use small-world model to help remove false edges in protein-protein
interaction (PPI) networks. See [4] for more examples.

Furthermore, even if the observed graph G is of interest itself, we may still want to recover
information about the domain X where G is generated from. For example, suppose we are
given two networks G1 and G2 modeling say the collaboration networks from two different
disciplines, and our goal is to compare the hidden collaboration structures behind the two
disciplines. Comparing the precise graph structures of observed graphs G1 and G2 could be
misleading, as even if they are generated from the same hidden space X , they could still look
different due to the random generation process. It is more robust if we can compare the two
hidden spaces generating them instead.

Finally, we remark that similar to the small-world network models, our model also overlays
a random perturbation over a “structured” network. Indeed, our network model in some
sense generalizes the small-world network model by Watts and Strogaz. Specifically, in the
model by Watts and Strogaz (and some later variants), the underlying “structured” network
is a ring (or lattice). In our case, we assume that graph nodes P are sampled from a measure
µ and using the r-neighborhood proximity graph G∗r to model this underlying “structured”
network. This setup adds generality to our model: For example, it allows us to produce
non-uniform and more complex degree distributions than those previously produced by
starting with lattice vertices. At the same time, by putting conditions on the measure µ, it
still gives us sufficient structure to relate G∗r and G, as we will show in this paper. We also
point out that the theoretical results hold for graphs across a range of density, where the
number of edges could range from Θ(n logn) to Θ(n2).

All missing proofs due to lack space can be found in the full version [19].

2 Model for Perturbed Network

We now introduce a general model to generate an observed network G. Suppose we are given
a compact geodesic metric space X = (X, dX) 1[7]. Intuitively, we view an observed graph
G = (V,E) as a noisy 1-skeleton of X , where graph nodes V of G are sampled from this

1 A geodesic metric space is a metric space where any two points in it are connected by a path whose
length equals the distance between them. Riemannian manifolds or compact sets in the Euclidean space
are all geodesic metric spaces.

SoCG 2017
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hidden metric space. More precisely, we will assume that V is sampled i.i.d. from a measure
µ : X → IR+ supported on X.

I Definition 1 (Measure). Given a topological space X, a measure µ on X is simply a
function that maps every Borel subset B of X to a non-negative number µ(B) which is
additive: that is the measure of a countable family of pairwise-disjoint Borel subsets of X
equals the sum of their respective measures.

In this paper, a measure is always a probability measure, meaning that µ(X) = 1. To provide
sufficient structure to the observed graph G so that it is not completely arbitrary, we want
to assert some reasonable conditions on µ. To this end, we consider doubling measures:

I Definition 2 (Doubling measure [13]). Given a metric space X = (X, dX), let B(x, r) ⊂ X
denotes the open metric ball B(x, r) = {y ∈ X | dX(x, y) < r}. A measure µ on X is said to
be doubling if balls have finite and positive measure and there is a constant L = L(µ) s.t.
for all x ∈ X and any r > 0, we have µ(B(x, 2r)) ≤ L · µ(B(x, r)). We call L the doubling
constant and say µ is an L-doubling measure.

These conditions on the measure also implies conditions on the underlying space X supporting
the measure. Specifically, it is known that any metric space supporting a doubling measure
has to be doubling as well, with its doubling constant depending on that of the measure [13].

Network model. We now describe our network model. Given a compact metric space X =
(X, dX) and an L-doubling measure µ : X → IR+ supported on X, let V be a set of n points
sampled i.i.d. from µ. We assume that the true graph G∗r = (V,E∗) is the r-neighborhood
graph for some parameter r > 0; that is, E(G∗) = E∗ = {(u, v) | dX(u, v) ≤ r, u, v ∈ V }.

I Definition 3. The observed graph G(r, p, q) = (V,E) is based on G∗r = (V,E∗), but with
the following two types of random perturbations:
p-deletion: For each edge (u, v) ∈ E∗, (u, v) is in the observed graph G(r, p, q) with
probability 1− p (that is, an edge in E∗ is deleted with probability p).

q-insertion: For any pair of nodes u, v ∈ V s.t. (u, v) /∈ E∗, we have that (u, v) ∈ E with
probability q.

Intuitively, in our model, the observed network G is a random geometric graph sampled from
the metric space X which then undergoes Erdös-Rényi type perturbation. In what follows,
we often omit the parameters r, p, q from the notations G∗r and G(r, p, q), when their choices
are clear from the context. Note that both G∗ and G are unweighted graphs (that is, all
edges have weight 1). We now equip each graph with its shortest path metric, and obtain
two discrete metric space (V, dG∗) and (V, dG) induced by G∗ and G, respectively.

Problem statement and main results. Adding short-cuts (via q-insertions) could signific-
antly distort the shortest path metric in G∗. Our ultimate goal is to infer information about
both X and µ where points are sampled from, through the study of the observed graph G.
In this paper we aim to recover the metric structure of G∗ (as a reflection of metric structure
of X ) from G. Specifically, we show that a simple filtering process based on the so-called
Jaccard index can remove sufficient “bad edges” in G so as to recover the shortest path
metric of G∗ up to a factor of 2 w.h.p.

I Definition 4 (Jaccard index). Given an arbitrary graph G, let NG(u) denote the set of
neighbors of u in G (i.e. nodes connected to u ∈ V (G) by edges in E(G)). Given any edge
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(u, v) ∈ E(G), the Jaccard index ρu,v of this edge is defined as

ρu,v(G) = |NG(u) ∩NG(v)|
|NG(u) ∪NG(v)| . (1)

We remark that Jaccard index is a popular way to measure similarity between a pair of
nodes connected by an edge in a graph [17], and has been commonly used in practice for
denoising and sparsification purposes [22, 21]. Our results provide a theoretical understanding
for such empirical Jaccard-based denoising approaches.

The main result is stated in Theorem 13. To show how this is established, we show two
results on the influence of the shortest path under the p-deletion (Theorem 9) and under the
q-insertion (Theorem 12), respectively. The proof for Theorem 13 combines the ideas for
proofs of these two results.

Metric structures for G∗r versus for X . Our main results recover the shortest path metric
for G∗r approximately. In some sense, the metric of a proximity graph provides an approxim-
ation of that of X, the domain where input graph nodes are sampled from; see e.g, [1, 8] for
the case where X is a smooth Riemannian manifold embedded in Euclidean space.

We make this relationship precise for our setting as follows. The proof of this result is
rather standard (see e.g, the proof of Theorem 5.2 of [8]) and can be found in the full version
[19].

I Theorem 5. Let (X, dX) be a compact geodesic metric space and µ a doubling measure
supported on X. Let Vn be a set of n points sampled i.i.d. from µ, and G∗r the r-neighborhood
graph constructed on Vn (each edge in G∗r has equal weight 1) with the associated shortest
path metric dG∗r . For any sample Vn, consider the distance between r · dG∗r (dG∗r scaled by r)
and dX restricted to the sample Vn; that is,

‖r · dG∗r − dX |Vn‖∞ := max
v,v′∈Vn

|r · dG∗r (v, v′)− dX(v, v′)|.

Then we have that for a fixed r, lim supn→∞ ‖r · dG∗r − dX |Vn‖∞ ≤ r almost surely.

3 Recovering the shortest path metric of G∗

To illustrate the main idea, we first consider the deletion-only and insertion-only perturbation
of the true graph G∗ in Sections 3.1 and 3.2, respectively. As we will see below, the main
difficulty lies in handling insertions (short-cuts). We then combine the two cases and present
our main result, Theorem 13. First, we describe one (natural) assumption on r that we will
use later in all our statements.

Note that as r tends to 0, the corresponding r-neighborhood graph may be very sparse,
and a sparse graph G∗r is quite sensitive to random deletions and insertions. We would like
to consider r in a range where is meaningful. We make the following assumption, asserting a
lower-bound on the mass contained inside any metric ball of radius r/2:
[Assumption-R]: The parameter r is large enough such that for any x ∈ X, µ(B(x, r2 )) ≥ s
where s satisfies s ≥ 12 lnn

n−2 (= Ω( lnn
n )).

Intuitively, r is large enough such that with high probability each vertex v in G∗r has
degree Ω(lnn). Note that requiring r to be large enough to have an Ω(lnn/n) lower bound
on the measure of any metric ball is natural. For example, for a random geometric graph
G(r, n) constructed as the r-neighborhood graph for points i.i.d. sampled from a uniform

SoCG 2017
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measure on a Euclidean cube, asymptotically this is the same requirement so as to make
sure that the resulting r-neighborhood graph is connected with high probability [20].

The proof of the following observation is simple and can be found in [19].

I Lemma 6. Under Assumption-R, with probability at least 1−n−5/3, all vertices in G∗r have
more than s(n−1)

3 > 4 lnn neighbors.

Since µ is a doubling measure, any two neighbors (u, v) in the r-neighborhood graph G∗r
would share many neighbors. Specifically, if (u, v) is an edge in G∗r , that is, dX(u, v) ≤ r,
then B(u, r)∩B(v, r) must contain a metric ball of radius r/2 (say centered at midpoint z of
a shortest path connecting u to v in X; see Figure 1 (a)). Thus by a similar argument as
the proof of Lemma 6, we obtain the following bound on the number of common neighbors
between the nodes u, v if edge (u, v) ∈ G∗r .

I Corollary 7. Assume that the graph nodes V of G∗r are sampled i.i.d from an L-doubling
measure µ supported on a compact geodesic metric space (X, dX). Then under Assumption-R,
with probability at least 1−n−2/3, any two neighbors (u, v) ∈ G∗r have

s(n−1)
3 > 4 lnn = Ω(lnn)

number of common neighbors.

3.1 Deletion only
In this case, we assume that we remove each edge in G∗ independently with probability p to
obtain an observed empirical graph Ĝ. Our goal is to relate the shortest path metrics dG∗
of G∗ and d

Ĝ
of Ĝ respectively. Deletion-only means that shortest path distances in Ĝ are

larger than those in G∗. Since any two nodes u, v connected in G∗ share sufficient number
(Ω(lnn)) of common neighbors, intuitively, removing even a constant fraction of edges in G∗
can still guarantee that w.h.p. u and v will still have some common neighbors left, and thus
u and v can be connected through that common neighbor by a path of length 2 in Ĝ. Hence
overall, w.h.p. the distortion in shortest path distance is at most by a factor of 2.

I Definition 8. Let G and G′ be two graphs spanned on the same set of nodes V , and
equipped with graph shortest path metric dG and dG′ , respectively. By dG ≤ cdG′ , we mean
that for any two nodes u, v ∈ V , we have that dG(u, v) ≤ cdG′(u, v). We say that dG′ is a
c-approximation of dG if 1

cdG ≤ dG′ ≤ cdG.

I Theorem 9 (Random deletion). Let V be n points sampled i.i.d. from a probability measure
µ : X → IR+ supported on a compact metric space (X, dX). Let G∗ be the r-neighborhood
graph for V ; and Ĝ a graph obtained by removing each edge in G∗ independently with
probability p. Under Assumption-R and for p < 1

2e
− 9 lnn
s(n−1) , we have with probability at least

1− 1
nΩ(1) , the shortest path metric d

Ĝ
is a 2-approximation of the shortest path metric dG∗ .

Specifically, since s > 12 lnn
n−1 , the statement holds for p < 1

2e3/4 . As s becomes larger, the
upper bound on p gets closer to 1/2.

Proof. For a node u ∈ V , let NG∗(u) and N
Ĝ

(u) denote the set of neighbors of u in graph
G∗ and graph Ĝ, respectively.

Since deletion cannot decrease the length of shortest paths, we have dG∗ ≤ dĜ. We now
show that d

Ĝ
≤ 2dG∗ .

Consider (u, v) ∈ E(G∗): Assume that they share ku,v number of common neighbors;
that is, ku,v = |NG∗(u) ∩NG∗(v)|. The probability that N

Ĝ
(u) ∩N

Ĝ
(v) = ∅ (i.e, u and v

have no common neighbor in graph Ĝ) is thus (2p)ku,v .
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On the other hand, by Corollary 7, with probability at least 1 − n−2/3 we have that
ku,v ≥ s(n − 1)/3 for all (u, v) ∈ E(G∗). By applying the law of total probability, it then
follows that the probability that there exists any (u, v) ∈ E(G∗) with N

Ĝ
(u) ∩N

Ĝ
(v) = ∅ is

at most: n−2/3 + n2(2p)s(n−1)/3 < n−2/3 + n2(e−3 lnn) < n−1/3, where we plug in the bound
on p to derive the first inequality.

Hence with probability at least 1−n−1/3, we have that for all edges (u, v) ∈ E(G∗), their
distance in Ĝ satisfies d

Ĝ
(u, v) ≤ 2 (via one of their common neighbor in N

Ĝ
(u) ∩N

Ĝ
(v)).

This in turn implies that with probability at least 1− n−1/3, for any path π = 〈v1, . . . , vm〉
in G∗ with length m, we can find a path of length at most 2m in Ĝ to connect v1 to vm
(as each edge (vi, vi+1) in π corresponds to a path of length at most 2 in Ĝ). If u and v

are disconnected in G∗, then obviously they are still disconnected in Ĝ. Hence, for any two
u, v ∈ V , d

Ĝ
(u, v) ≤ 2dG∗(u, v), and the theorem follows. J

3.2 Insertion only
Now assume that the observed graph Ĝ is generated from the true graph G∗ where all edges
in G∗ also exist in Ĝ, and for any u, v ∈ V with (u, v) 6= E(G∗), we have (u, v) ∈ E(Ĝ) with
probability q. In this case, the shortest path metric can be significantly altered in d

Ĝ
. Hence

to recover the metric dG∗ , instead of operating on Ĝ directly, we will construct another graph
G̃ from Ĝ, so that its shortest path metric dG̃ approximates dG∗ .

We propose the following Jaccard-Index-based filtering process, which we call a τ -Jaccard
filtering, as it uses a parameter τ . (Recall the definition of Jaccard index in Def. 4). We
represent the output filtered (denoised) graph as G̃τ :
τ -Jaccard filtering: Given graph Ĝ, for each edge (u, v) ∈ E(Ĝ), we insert the edge (u, v)
into E(G̃τ ) if and only if ρu,v(Ĝ) ≥ τ . That is, V (G̃τ ) = V (Ĝ) and E(G̃τ ) := {(u, v) ∈
E(Ĝ) | ρu,v(Ĝ) ≥ τ}.

Below we first show that w.h.p., all “good” edges in the true r-neighborhood graph G∗
will have a large Jaccard index, so that they will be kept in G̃τ after a τ -Jaccard filtering
procedure with appropriate τ .

I Lemma 10. Let V be a set of n points sampled i.i.d. from an L-doubling probability
measure µ supported on a compact geodesic metric space X = (X, dX). If Assumption-R holds
and q ≤ cs, then for ∀τ ≤ 1

(6+ 1
lnn+12c)L2 , we have with probability at least 1 − n−2/3, that

ρu,v(Ĝ) ≥ τ for all pairs of nodes u, v ∈ V with dX(u, v) ≤ r.
For example, if c = 1

2 (i.e, q ≤ s
2), then the bound on ρu,v holds for τ ≤ 1

13L2 . Note c
may not be a constant and can depend on n; as c increases, the upper bound on τ decreases.

Proof. Consider a fixed pair of nodes u, v ∈ V , and let F = F (u, v) be the event that
dX(u, v) ≤ r. Set α∗ = |NG∗(u) ∩NG∗(v)| to be the number of common neighbors of u and
v in G∗. Let β = |N

Ĝ
(u) ∪N

Ĝ
(v)| denote the total number of neighbors of u and v in the

perturbed graph Ĝ.
Since Ĝ can have only more edges than G∗, |N

Ĝ
(u) ∩N

Ĝ
(v)| ≥ |NG∗(u) ∩NG∗(v)| = α∗

and thus ρu,v(Ĝ) ≥ α∗
β . In what follows, we prove that α∗

β ≥ τ · IF (which implies that
ρu,v(Ĝ) ≥ τ · IF ) with probability at least 1 − 2n−8/3. (Here, we use IA to denote the
indicator random variable of the event A, and the conventions that ρu,v(Ĝ) = 0 if (u, v) /∈ Ĝ
and 0/0 = 0.)

Note that α∗ is a random variable, which equals the number of (i.i.d. sampled) points
from V − {u, v} that fall in the region B(u, r) ∩ B(v, r). That is, conditional on u and v, α∗

SoCG 2017
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Figure 1 In these figures, we draw metric balls as Euclidean balls just for illustration purpose.
(a) illustrates the bound pα∗ ≥ µ(B(z, r/2)) which follows from B(z, r/2) ⊆ B(u, r)∩B(v, r). (b) Key
observation for Lemma 11: as dX(u, v) > r, we have that the region [B(u, r) ∪B(v, r)] \ [B(u, r) ∩
B(v, r)] contains at least two metric balls, each of radius r/2.

is drawn from a binomial distribution Bin(n− 2, pα∗) with pα∗ = µ(B(u, r) ∩ B(v, r)), and
the conditional expectation of α∗ given u and v is δα∗ = (n− 2) · pα∗ .

Now observe that, conditional on u and v, the random variable β − 2 (see footnote2) has
distribution Bin(n−2, pβ) with pβ = pβ∗+(1−pβ∗)(2q−q2), where pβ∗ = µ(B(u, r)∪B(v, r)).
Indeed, observe that, conditional on u and v, points contributing to β can be generated
as follows. Let U = B(u, r) ∪ B(v, r). Independently, for each i = 1, . . . , n − 2, we draw
a point xi randomly from µ and we also perform an independent coin flip for this point,
with probability of heads equal to 1− (1− q)2 = 2q − q2. This quantity is the probability
for a point outside U to be connected to either u or v under edge-insertion probability q.
We set the indicator variable yi = 1 iff either xi ∈ U , or xi /∈ U and the ith coin flip is
heads. Conditional on u and v, the resulting n− 2 indicator random variables y1, . . . , yn−2
are i.i.d. with P[yi = 1 | u, v] = pβ∗ + (1− pβ∗)(2q − q2) = pβ . Therefore, given u and v, the
distribution of β − 2 =

∑
yi is Bin(n− 2, pβ). The conditional expectation of β given u and

v, denoted δβ , satisfies

(n− 2) · pβ∗ ≤ δβ = (n− 2) · pβ + 2 ≤ (n− 2) · pβ∗ + (n− 2) · 2q + 2. (2)

Let us for now assume that c1δα∗
c2δβ

≥ τIF a.s. for constants c1 = 1− σ1 and c2 = 1 + σ2
with 0 < σ1 < 1 and 0 < σ2 to be set shortly.

If dX(u, v) ≤ r, then B(u, r) ∩ B(v, r) contains at least one metric ball of radius r/2 (say
B(z, r/2) with z being the mid-point of a shortest path between u and v in X ; see Figure 1
(a)).

Hence by Assumption-R, on the event dX(u, v) ≤ r, we have

δα∗ ≥ (n− 2) · µ(B(z, r/2)) ≥ (n− 2) · 12 lnn
n− 2 = 12 lnn.

Similarly, using (2), the conditional expectation of β satisfies

δβ ≥ (n− 2) · pβ∗ ≥ (n− 2) · µ(B(u, r)) ≥ 12 lnn. (3)

We now set σ1 = 2/3 and σ2 = 1. It then follows from Chernoff bounds that

P[α∗ < c1δα∗ | u, v, F ] + P[β > c2δβ | u, v] ≤ e−
σ2

1
2 δα∗ + e−

σ2
3 δβ ≤ n− 8

3 + n−4.

2 The subtraction of 2 in β − 2 accounts for points u and v, which are in N
Ĝ

(u) ∪N
Ĝ

(v). Similarly, in
the binomial distribution we will have only n− 2, accounting for points in V − {u, v}.
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Taking expectation of the above with respect to u and v gives

P[α∗ < c1δα∗ | F ] + P[β > c2δβ ] ≤ 2n− 8
3 . (4)

On the other hand, since α∗
β ≥ 0, we have

P[α∗
β
< τIF ] ≤ P[α∗

β
< τ | (α∗ ≥ c1δα∗) ∧ (β ≤ c2δβ) ∧ F ]

+ P[({α∗ < c1δα∗} ∨ {β > c2δβ}) ∧ F ].
(5)

Since we assumed that c1δα∗
c2δβ

≥ τIF , if α∗ ≥ c1δα∗ and β ≤ c2δβ and dX(u, v) ≤ r, then we
have α∗

β ≥
c1δα∗
c2δβ

≥ τ . This means that

P[α∗
β
< τ | (α∗ ≥ c1δα∗) ∧ (β ≤ c2δβ) ∧ F ] = 0.

Hence the first term in the right-hand side of (5) is 0. Together with (4), and recalling
ρu,v(Ĝ) ≥ α∗

β , we have

P[ρu,v(Ĝ) < τIF ] ≤ P[α∗
β
< τIF ] ≤ 2n− 8

3 .

By the union bound, the probability that ρu,v(Ĝ) ≥ τ for all pairs of nodes u, v ∈ V such
that dX(u, v) ≤ r is thus at least 1− 1

2n
2(2n− 8

3 ) = 1− n− 2
3 .

Finally, we need to verify that c1δα∗
c2δβ

= δα∗
6δβ ≥ τIF holds for a.e. u and v. This holds

automatically if dX(u, v) > r, so assume dX(u, v) ≤ r. Recall that δβ ≤ (n− 2) · pβ∗ + (n−
2) · 2q + 2 by (2). Since q ≤ cs, we have (n − 2)2q ≤ 2(n − 2)cs. On the other hand, by
Assumption-R, pβ∗ ≥ µ(B(u, r)) ≥ s, hence 2(n− 2)q ≤ 2(n− 2)c · pβ∗ . Combining this with
the fact that (n− 2)pβ∗ ≥ 12 lnn from (3) (which also implies that 2 ≤ (n−2)pβ∗

6 lnn ), it then
follows that

δα∗
6δβ
≥ δα∗

6((n− 2)(1 + 1
6 lnn )pβ∗ + 2(n− 2)c · pβ∗)

= pα∗
pβ∗
· 1

6 + 1
lnn + 12c

. (6)

Now let z be the midpoint of a geodesic connecting u and v; see Figure 1 (a). Observe
that pα∗ ≥ µ(B(z, r/2)), pβ∗ ≤ µ(B(z, 2r)) and since µ is L-doubling, we have:

pβ∗ ≤ µ(B(z, 2r)) ≤ Lµ(B(z, r)) ≤ L2µ(B(z, r/2)) ≤ L2pα∗ . (7)

Combining equations (6) and (7), we have that if τ ≤ 1
(6+ 1

lnn+12c)L2 , then
δα∗
6δβ ≥ τ is

satisfied. This proves the lemma. J

Discussion on the bounds of parameters. Lemma 10 implies that, with high probability,
we will not remove any good edges if the doubling constant L of the measure is at most
O( 1√

τ
) and the insertion probability is small (q ≤ cs). The requirement that L = O( 1√

τ
) is

rather mild; we now inspect the requirement q ≤ cs: Since sn lower-bounds the degree of a
node in the true graph G∗ (by Lemma 6), it is reasonable that the insertion probability q is
required to be small compared to s; as otherwise, the “noise” (inserted edges) will overwhelm
the signal (original edges). Furthermore, it is important to note that c is not necessarily a
constant – it can depend on n, but as c increases, the upper bound of the admissible range
for parameter τ decreases.
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The following result complements Lemma 10 by stating that for insertion probability
q ≤ cs, all “really bad” edges in Ĝ will have small Jaccard index, and thus will be removed
by our τ -filtering process.

In particular, we define an edge (u, v) ∈ E(Ĝ) \ E(G∗) in the observed graph Ĝ to be
really-bad if NG∗(u) ∩NG∗(v) = ∅. Note that (u, v) /∈ E(G∗) is equivalent to dX(u, v) > r.

I Lemma 11. Let V be a set of n points sampled i.i.d. from an L-doubling probability
measure µ supported on a compact geodesic metric space X = (X, dX). If Assumption-R holds
and q ≤ cs, then ∀τ ≥ (c+ 2)q + 2(c+ 2)

√
lnn

s(n−2) , we have with probability at least 1− n−2,

ρu,v(Ĝ) < τ for all pairs of nodes u, v ∈ V such that (u, v) is really-bad.
For example, if c = 1 and s · n = ω(lnn), then the condition on τ is that τ ≥ 3q + o(1).

Proof. Consider a fixed pair of nodes u, v ∈ V , and let F = F (u, v) be the event that
NG∗(u) ∩NG∗(v) = ∅ and dX(u, v) > r. Let α = |N

Ĝ
(u) ∩N

Ĝ
(v)|,

αI =
∣∣{x ∈ NG∗(u) ∪NG∗(v) : x is connected to both u and v in Ĝ}

∣∣, and
αo =

∣∣{x /∈ NG∗(u) ∪NG∗(v) : x is connected to both u and v in Ĝ}
∣∣.

Then we have α = αI + αo. Set β∗ = |NG∗(u) ∪ NG∗(v)|, so we have |N
Ĝ

(u) ∪ N
Ĝ

(v)| ≥
β∗ + αo =: β. It is easy to see that

ρu,v(Ĝ) = α

|N
Ĝ

(u) ∪N
Ĝ

(v)| ≤
α

β∗ + αo
= α

β
.

We aim to show that with very high probability α
β IF < τ , which implies that ρu,v(Ĝ)IF < τ .

First, we claim that, conditional on the locations of u and v and the event F , the
distribution of α is Bin(n − 2, pα) with pα = pβ∗−p

′

1−p′ q + 1−pβ∗
1−p′ q

2, where pβ∗ = µ(B(u, r) ∪
B(v, r)) and p′ = µ(B(u, r) ∩B(v, r)). We also claim that the conditional distribution of β
given u, v and F is Bin(n− 2, pβ) with pβ = pβ∗−p

′

1−p′ + 1−pβ∗
1−p′ q

2. Details in [19].
If dX(u, v) > r, the region [B(u, r) ∪ B(v, r)] \ [B(u, r) ∩ B(v, r)] contains at least two

disjoint metric balls of radius r/2; see Figure 1(b). Therefore, pβ∗ − p′ ≥ 2µ(B( r2 )) ≥ 2s.
The conditional expectation of α given u, v and F , denoted by δα(= (n− 2)pα), satisfies:

(n− 2)pβ∗ − p
′

1− p′ q ≤ δα = (n− 2)[pβ∗ − p
′

1− p′ q + 1− pβ∗
1− p′ q

2] ≤ (1 + c

2)(n− 2)pβ∗ − p
′

1− p′ q, (8)

where the last inequality follows from q ≤ cs ≤ c · pβ∗−p
′

2 . The conditional expectation of β
given u, v and F , denoted δβ , satisfies

δβ = (n− 2)pβ ≥ (n− 2)pβ∗ − p
′

1− p′ . (9)

Let us now assume that c1δα
c2δβ

IF ≤ τ a.s. for c1 = 1 + ε and some constant c2 = 1− σ with

ε = 2
q

√
lnn

s(n−2) and some 0 < σ < 1 to be set later.

If q ≤ 2
√

lnn
s(n−2) , then we have ε ≥ 1. In this case, combining Chernoff bounds with (8)

and the fact that pβ∗ − p′ ≥ 2µ(B( r2 )) ≥ 2s obtained earlier, we have

P[α ≥ (1 + ε)δα | u, v, F ] ≤ e− ε3 δα = e
− 2

3q

√
lnn

s(n−2) δα ≤ e−
2
3q

√
lnn

s(n−2) (n−2)
pβ∗−p

′

1−p′ q

≤ e− 4
3

√
(n−2)(lnn)s ≤ e−

4
3

√
(n−2)(lnn) 12 lnn

n−2 ≤ n−4. (10)
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Otherwise, we have q > 2
√

lnn
s(n−2) , so 0 < ε < 1. In this case, by Chernoff bounds

P[α ≥ (1 + ε)δα | u, v, F ] ≤ e− 1
2 ε

2δα ≤ e−2 lnn
s(n−2)

1
q2

(n−2)
pβ∗−p

′

1−p′ q

= e−2
lnn(pβ∗−p

′)
sq ≤ e−2 lnn· 2s

sq ≤ n−4. (11)

On the other hand, by Chernoff bounds, we have P[β ≤ c2δβ | u, v, F ] ≤ e−
σ2
2 δβ . Note

that δβ ≥ (n− 2) · pβ∗−p
′

1−p′ ≥ (n− 2) · 2s ≥ 24 lnn. We now set σ = 1/2 so c2 = 1− σ = 1/2.
By taking expectation with respect to u and v, we have

P[α ≥ c1δα | F ] + P[β ≤ c2δβ | F ] ≤ 2n−4. (12)

Since τ > 0, we have that

P[α
β
IF ≥ τ ] ≤ P[α

β
≥ τ | (α < c1δα) ∧ (β > c2δβ) ∧ F ] P[{(α ≥ c1δα) ∨ (β ≤ c2δβ)} ∧ F ].

(13)

Under our assumption that c1δα
c2δβ

IF ≤ τ a.s., if α < c1δα, β > c2δβ and dX(u, v) > r, then
α
β < c1δα

c2δB
≤ τ . Therefore, the first term on the right side of (13) is P[αβ ≥ τ | (α <

c1δα) ∧ (β > c2δβ) ∧ F ] = 0. It then follows from (12) that:

P[α
β
IF ≥ τ ] ≤ P[(α ≥ c1δα) ∨ (β ≤ c2δβ) | F ] ≤ 2n−4

Since ρu,v(Ĝ) ≤ α
β , we have P[ρu,v(Ĝ)IF ≥ τ ] ≤ P[αβ IF ≥ τ ] ≤ 2n−4. By union bound,

the probability that ρu,v(Ĝ) < τ for all pairs of nodes u, v ∈ V satisfying the required
conditions is thus at least 1− 1

2n
2(2n−4) = 1− n−2.

Finally, for the above argument to hold, we need the assumption c1δα
c2δβ

IF ≤ τ to be satisfied
uniformly for all u and v. This comes from the choices and conditions of our parameters; see
[19] for details. The lemma then follows. J

The above result implies that after Jaccard filtering, although there still may be some extra
edges remaining in G̃τ , each such edge (u, v) is not really-bad. In fact, NG∗(u)∩NG∗(v) 6= ∅
for each such extra remaining edge (u, v), implying that dG∗(u, v) ≤ 2. This, combined with
Lemma 10, essentially leads to the following result. To simplify our statement, we assume
sn = ω(lnn) in the following result; a more complicated form can be obtained without this
assumption (similar to the statement in Lemma 11).

I Theorem 12 (Random Insertion). Let V be a set of n points sampled i.i.d. from an L-
doubling measure µ : X → IR+ supported on a compact metric space (X, dX). Let G∗ be the
resulting r-neighborhood graph for V ; and Ĝ a graph obtained by inserting each edge not in
G∗ independently with probability q. Let G̃τ be the graph after τ -Jaccard filtering of Ĝ. Then,
if Assumption-R holds, q ≤ cs and sn = ω(lnn), then for ∀ 1

(6+ 1
lnn 12c)L2 ≥ τ ≥ (c+ 2)q+ o(1),

with high probability the shortest path distance metric dG̃τ satisfies: 1
2dG∗ ≤ dG̃τ ≤ dG∗ ; that

is, dG̃τ is a 2-approximation for dG∗ with high probability.

Proof. Define E1 to be the event when all the edges in G∗ are present in G̃τ . By Lemma 10,
event E1 happens with probability at least 1− n−2/3. Hence with at least this probability,
dG̃τ ≤ dG∗ . We now prove the lower bound for dG̃τ .
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Let E2 be the event where for all edges (u, v) ∈ E(G̃τ ) \ E(G∗), (u, v) is not really-
bad. Lemma 11 says that event E2 happens with probability at least 1 − n−2. To this
end, observe that if an edge (u, v) is not really-bad, then we have that dG∗(u, v) ≤ 2 as
NG∗(u) ∩NG∗(v) 6= ∅; specifically, there is a path u→ w → v connecting u and v through
some w ∈ NG∗(u) ∩NG∗(v).

In what follows, assume both events E1 and E2 happen – as discussed above, this
assumption holds with high probability due to Lemmas 10 and 11.

Now consider two points u, v ∈ V . First, suppose that u, v are connected in G̃τ . Let
π = 〈u0 = u, u1, . . . , us = v〉 be a shortest path between them in G̃τ . Consider each edge
(ui, ui+1) in the shortest path π in G̃τ . Either (ui, ui+1) ∈ E(G∗), in which case we set
π̂(ui, ui+1) = (ui, ui+1). Otherwise if (ui, ui+1) /∈ E(G∗), then (ui, ui+1) is not really-bad
due to event E2, meaning that dG∗(ui, ui+1) ≤ 2. Hence we can find a path π̂(ui, ui+1) ⊂ G∗
of length at most two to connect ui and ui+1 in G∗. Putting these two together, we can
construct a path π̂ = π̂(u0, u1) ◦ π̂(u1, u2) ◦ · · · ◦ π̂(us−1, us) connecting u = u0 to v = us
in G∗. Clearly, this path has length at most 2s. Hence, for any u, v ∈ V , we have that
dG∗(u, v) ≤ 2dG̃τ (u, v) if (u, v) is connected in G̃τ .

If u and v are not connected in G̃τ , then they are not connected in G∗ either; because
if there is a path connecting them in G∗, then the same path is present in G̃τ as event E1
holds. Putting everything together, we then have that with high probability, for any u, v ∈ V ,
dG∗(u, v) ≤ 2dG̃τ (u, v); that is dG̃τ ≥

1
2dG∗ . The theorem then follows. J

4 Combined case

The arguments used in Sections 3.1 and 3.2 can be modified to prove our main result when the
observed graph Ĝ = G(r, p, q) is generated via the network model described in Definition 3
that includes both edge deletion and insertion. The proof can be found in [19].

I Theorem 13. Let V be a set of n points sampled i.i.d. from an L-doubling measure
µ : X → IR+ supported on a compact metric space (X, dX). Let G∗ be the resulting r-
neighborhood graph for V ; and Ĝ a graph obtained by the network model G(r, p, q) described in
Definition 3. Let G̃τ be the graph after τ -Jaccard filtering of Ĝ. Then, if Assumption-R holds,
p ≤ 1

4 , q ≤ min{ 1
8 , cs} and sn = ω(lnn), then for any τ such that (1−p)2

(10+ 5
3 lnn+20c)L2 ≥ τ ≥

(c+2)q
1−p +o(1), with high probability the shortest path distance metric dG̃τ is a 2-approximation

of the shortest path metric dG∗ of the true graph G∗.

Extension to local doubling measure. We can relax the L-doubling condition of the measure
µ where points are sampled from to a local doubling condition, where the L-doubling property
is only required to hold for metric balls of small radius. Specifically,

I Definition 14 ((R0, LR0)-doubling measure). Given a metric space X = (X, dX), a measure
µ on X is said to be (R0, LR0)-doubling if balls have finite and positive measure and there is a
constant LR0 s.t. for all x ∈ X and any 0 < R ≤ R0, we have µ(B(x, 2R)) ≤ LR0 ·µ(B(x,R)).

All our results hold for (R0, LR0)-doubling measure, as long as the parameter r generating
the true graph G∗r satisfies r < R0. The proofs follow the same argument as those for
L-doubling measure almost verbatim, and thus are omitted.
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(a) (b) (c)

Figure 2 (a) 2.5K points sampled from a hyperboloid surface and 24K points sampled from
mother-child model. (b) Comparison of 2-approximation rate R2approx as insertion probability
(x-axis) increases. Top curve is after Jaccard-filtering, while bottom one is for perturbed graph
without filtering. (c) Normalized L2-average error with top curve being the one without filtering,
and the bottom one (with significantly lower error) for after Jaccard-filtering. These plots are for
hyperboloid case.

5 Some empirical results

We provide some proof-of-principle results to show the effectiveness of the Jaccard filtering
process. See [19] for a complete version. There are two sets of experiments.

Synthetic datasets with ground truth. In this experiment we seek to demonstrate that the
Jaccard filtering approach works in a robust manner as predicted by our theoretical results.
In particular, we start with the following two measures: µ1 : S1 → IR+ is the “quasi-uniform”
measure on the hyperboloid S1 specified by x2 + y2 − z2 = 1 [2]; and µ2 : S2 → IR+ is a
non-uniform measure on the mother-and-child geometric model S2, where the measure is
proportional to the local feature size at each point. For each µi, we sample n points V i.i.d
and build an r-neighborhood graph (we will specify choice of r later). See Figure 2 (a) for
illustration of input samples. This gives rise to a ground-truth neighborhood graph G∗r . We
next generate a set of observed graph Gp,q, varying the deletion probability (p) and insertion
probability (q). Using a fixed parameter τ , we perform τ -Jaccard filtering for each Gp,q to
obtain a filtered graph Ĝτp,q. To measure the difference between two metrics D and D′, we
use two types of error to be introduced shortly. But first, note that since we delete edges,
the connectivity of the graph may change. Assume that Di,j =∞ if the two corresponding
points pi and pj are not connected in the graph. Note that if Di,j =∞ and D′i,j =∞, the
relationship 1

2Di,j ≤ D′i,j ≤ 2Di,j still hold.

2-approximation rate R2approx is defined by

R2approx(D,D′) =
|{(i, j), 1 ≤ i < j ≤ n | 1

2Di,j ≤ D′i,j ≤ 2Di,j}|
n(n− 1)/2 .

In other words, R2approx is the ratio of “good” pairwise distances from D′ that 2-
approximate those in D.

We also consider L2 type error. To avoid the cases that Di,j is not comparable with D′i,j , we
collect the following good-index set
Igood(D,D′) = {(i, j), 1 ≤ i < j ≤ n | either (Di,j <∞)∧ (D′i,j <∞); or (Di,j =∞)∧ (D′i,j =∞)}.

Normalized L2-average error δN (D,D′) is intuitively the root-mean-squared (RMS)
error δ(D,D′) normalized by the normalized L2-norm of D. More specifically,
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Figure 3 “O vs. P” is the error rate between DG and DGq ; while “DP vs. FAP” is between DGτ
and DGτq .

δ(D,D′) =

√∑
(i,j)∈Igood(Di,j −D′i,j)2

|Igood|
; δN (D,D′) = δ(D,D′)√

1
|{i<j,Di,j<∞}|

∑
i<j,Di,j<∞D2

i,j

.

Let DG denote the shortest path metric induced by a graph G. In Figure 2 (b), we
compare the 2-approximation rate R2approx(DG∗ , DGq ) for the sequence of observed graphs
Gq for increasing insertion probability q, with R2approx(DG∗ , DĜτq

)s for the sequence of

filtered graph Ĝτq ; while the comparison of the normalized L2 error δN (DG∗ , DGq) versus
δN (DG∗ , DĜτq

)s for increasing qs is shown in Figure 2 (c). These plots are for the hyperboloid
model; those for mother-child model are in [19]. The deletion probability is fixed at p = 0,
as our experiments show (also matching our theoretical results) that the shortest path
metric is rather stable against deletion for a large range of deletion probability. As we can
see, randomly inserting edges distorts the shortest path metrics (with low 2-approximation
rate and high normalized L2 error for Gqs). However, our Jaccard-index filtering process
restores the metric not only w.r.t 2-approximation rate (which is predicted by our theoretical
results), but also w.r.t normalized L2 error. In this experiment, we choose r (to build the
r-neighborhood graph) to be twice of the average distance from a point to its 10-th nearest
neighbor in P . The resulting graph for hyperboloid has about 2.5K nodes and 38K edges.
Examples where the graphs are much denser are given in [19].

Real network without ground truth. For a given real network G, we can consider it as an
observed graph. However, we do not know how this network is generated and there is no
ground truth graph G∗. Nevertheless, we carry out the following experiments to indirectly
infer the effectiveness of Jaccard-filtering.

Specifically, given G, we gradually add random (p = 0, q)-perturbation to it, and compare
the shortest path metric DGq of the perturbed graph Gq with the metric DG of input
network G; q is the insertion probability. Next, we perform τ -Jaccard filtering for all these
graphs G and Gqs to obtain Gτ and Gτq respectively, and then compare the shortest path
metric DGτq

for filtered graphs Gτq with DGτ of Gτ . See Figure 3, where the input is a
protein-protein interaction network [14] (6327 nodes and 147547 edges). The distance metric
becomes more stable after Jaccard-filtering. More discussions and experiments are in [19],
including an example of co-authorships network [18] where Jaccard-filtering shows even
bigger improvement.
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6 Concluding remarks

Our paper represents one step towards unraveling the structure of the space where data
are sampled from. There are many interesting problems along this direction, including how
to generalize our network model to better model real networks. We describe one direction
here: Our current work recovers the shortest path metric of the hidden graph G. However,
there are other common metrics induced from G, such as the diffusion distance metric.
In fact, for dense random graphs, say graphs generated from a graphon [10] (including
stochastic block models), the spectral structure of such random graphs are stable. This
may imply that diffusion distances could also be stable against random perturbations even
without any filtering process. Note that such graphs have Θ(n2) number edges asymptotically.
However, for sparse graphs (which our model could generate), empirically we observe that
diffusion distances are not stable under random perturbations. It would be interesting to see
whether the Jaccard filtering process (or other filtering procedure) could recover diffusion
distances with theoretical guarantees. (Interestingly, we have observed that empirically,
Jaccard filtering can recover diffusion distance as well in our experiments.) Finally, it would
be interesting to explore whether the analysis and ideas for network models from our paper
could be used to create a practical wormhole detector in wireless networks, akin to Ban et
al’s local connectivity tests based on [α, β]-rings [3].

Acknowledgement. The authors thank Samory Kpotufe for the pointer to the local version
of L-doubling measure.
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