
Folding Free-Space Diagrams: Computing the
Fréchet Distance between 1-Dimensional Curves∗

Kevin Buchin1, Jinhee Chun2, Maarten Löffler3,
Aleksandar Markovic4, Wouter Meulemans5, Yoshio Okamoto6,
and Taichi Shiitada7

1 Eindhoven University of Technology, Eindhoven, The Netherlands
k.a.buchin@tue.nl

2 Tohoku University, Sendai, Japan
jinhee@dais.is.tohoku.ac.jp

3 Utrecht University, Utrecht, The Netherlands
m.loffler@uu.nl

4 Eindhoven University of Technology, Eindhoven, The Netherlands
a.markovic@tue.nl

5 Eindhoven University of Technology, Eindhoven, The Netherlands
w.meulemans@tue.nl

6 University of Electro-Communications, Chofu, Japan
okamotoy@uec.ac.jp

7 University of Electro-Communications, Chofu, Japan
shiitada@gmail.com

Abstract
By folding the free-space diagram for efficient preprocessing, we show that the Fréchet distance
between 1D curves can be computed in O(nk logn) time, assuming one curve has ply k.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Geometrical
Problems and Computations

Keywords and phrases Fréchet distance, ply, k-packed curves

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.64

Category Multimedia Contribution

1 Introduction

The Fréchet distance is a popular similarity metric in computational geometry. Computing this
distance between curves is mostly well understood: slightly super-quadratic time algorithms
for 2D (or higher) are known [1, 5], with a nearly matching conditional lower bound: a
O(n2−δ)-time algorithm with δ > 0 would imply that the strong exponential time hypothesis
(SETH) fails [2]. For the discrete variant in 1D, this same lower bound is also known [4].
However, in the continuous case in 1D, no non-trivial lower bound is known; the fastest
known algorithm runs in quadratic time [6]. A near-linear time algorithm is known [3] when
the curves are separated: essentially a greedy strategy works. Thus we ask: can we compute
the Fréchet distance in 1D in subquadratic time?
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Figure 1 (a) Two 1D curves, lifted to 2D for legibility. (b) The corresponding free-space diagram
F . (c–d) Folding up the last two columns. (e) The result of folding all rows and columns. (f) View of
each cell in F from the folded diagram. One orange cell is high-lighted to track through the process.

Contributions. While we leave the question open in general, we answer positively for the
case that the number k of times one of the curves revisits the same point on R is bounded;
no restrictions are posed on the other curve. This gives us a running time of O(nk logn).
The crucial ingredient is a structural insight in the free-space diagram for 1D curves: we can
fold it to find a simpler representation and solve the decision version in O(n(k + logn)) time.

In 1D, a k-packed curve has a ply of Θ(k), and vice versa. Near-linear approximation
algorithms for k-packed curves exist [3, 7], with matching conditional lower bounds in higher
dimensions [3]. Our results show that efficient exact algorithms exist for 1D k-packed curves.

Preliminaries. A 1D curve P is described by n+ 1 vertices 〈p0, . . . , pn〉, with pi ∈ R and
n edges pi−1pi. We assume that the direction of the curve changes at every vertex. |P |
denotes the geometric length of P ; we use |pi| =

∑i
j=1 |pj−1 − pj | to denote the length up to

vertex pi. Note that |p0| = 0 and |pn| = |P |. We also consider P as a continuous function
P : [0, |P |] → R with P (|pi|) = pi and linearly interpolated between vertices. The ply of a
curve P is maxr∈R |P−1(r)| = maxr∈R |{t | t ∈ [0, |P |] ∧ P (t) = r}|.

For a definition of the Fréchet distance dF, see [1]. The free-space diagram F represents
the parameter space of two curves [1]. It is a [0, |P |]× [0, |Q|] diagram and a point (s, t) ∈ F
represents a pair of curve points: P (s) and Q(t). (s, t) ∈ F is free if |P (s)−Q(t)| ≤ ε; the
union of free points is the free space of F (Fig. 1(b)). If a monotone path from (0, 0) to
(s, t) exists in the free space, (s, t) ∈ F is reachable. Then, dF(P,Q) ≤ ε holds if and only if
(|P |, |Q|) is reachable in F [1]. Each edge pi−1pi of P is a column of width |pi−1 − pi| in the
free-space diagram; edges of Q define rows. A combination of two edges defines a cell.

2 Folding free-space diagrams

The central idea for our results is that we can fold the free-space diagram, see Fig. 1. This
works for the following reason. First, pick a vertex pi of P and a point q on Q. Now, consider
points p on pi−1pi and p′ on pipi+1 that are equidistant to pi. Due to minimality, p = p′,
and thus |p− q| ≤ ε if and only if |p′ − q| ≤ ε. Considering the vertical line in F represents
pi, the free space before and after this line are thus a reflection of each other.
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Folding up all columns and rows (Fig. 1(c–d)), we find one basic “cell” with lines specifying
certain views that the edges of the curves give on this space (Fig. 1(e)). We can compose all
these views to recover F (Fig. 1(f)): assuming both curves start in a rightward direction, we
need to only reflect cells in even rows vertically and in even columns horizontally.

With a physical sheet of paper, the size of an unfolded free-space diagram, we only need
to fold each row and column, and cut along the two remaining boundaries of the free space.
If we unfold it, we have the free space of F . Computing this quadratically sized structure
can thus be done in a linear number of operations, using the “parallelism” of the cut.

3 One curve with bounded ply

Here, we sketch a proof for the decision algorithm, which uses folding, in the theorem below.

I Theorem 1. Let P and Q be two 1D curves of complexity n; let the ply of Q be k. There
is an algorithm to decide in O(n(k + logn)) time whether dF(P,Q) ≤ ε and an algorithm to
compute dF(P,Q) in O(nk logn) time.

We fold all columns (but not the rows) to obtain the free-space structure between the infinite
line and Q. Consider the points q on Q for which ‖q − r‖ ≤ ε for some r ∈ R: the free space
on the vertical line at r in the free-space structure. We focus on the maximal intervals of free
space along such a line. Each interval is bounded by two edges qi−1qi and qj−1qj such that
i < j, |qi−1 − r| > ε and |qj − r| > ε. Our algorithm consists of the following three steps.
1. Decompose the free-space structure into vertical slabs. Each slab has the same structure

of free space, that is, defined by the same edges of Q. (Lemma 3)
2. Precompute reachability information for the free-space structure. (Lemma 4)
3. Walk through the free-space diagram on a column-by-column basis, keeping track of

intervals on Q that are reachable at vertex pi. (Lemma 6)

I Lemma 2. There are at most k + 1 maximal intervals in Q for a given r ∈ R.

I Lemma 3 (Decomposition structure). We can compute in O(nk) time and space, a data
structure S such that: (1) each slab stores the O(k) edges of Q that bound the maximal
intervals in order; (2) we can find the slab that contains a point r ∈ R in O(logn) time.

Proof Sketch. We sort events (vertices of Q, ± ε) in O(nk) time using a linked list, starting
at the previous event. Then, a sweepline decomposes the structure into slabs; only the
maximal interval(s) at the event change. Query (2) is a binary search on the sorted events. J

I Lemma 4 (Reachability structure). In O(nk) time, we can determine for each edge qi−1qi
in Q the highest reachable point H(qi−1qi) in rightward direction in the free-space structure,
starting from any point (r, q) ∈ R× [0, |Q|] with |r − q| ≤ ε, |r − qi| > ε and q ∈ qi−1qi.

Proof Sketch. We do this by walking down the free-space structure, computing or using H
for the boundary that we hit when we shoot a vertical ray up from (r, q). Using S (Lemma 3),
we can answer such queries in constant time: we obtain a running time of O(nk). J

We need the reachability structure H (Lemma 4) also in leftward direction, for leftward
edges of P . For simplicity, we describe the algorithm only for rightward edges. For each
vertex pi of P , we compute the (maximal) reachable intervals: intervals reachable from
(0, 0) in F . As a maximal interval contains at most one reachable interval, a vertex has
O(k) reachable intervals (Lemma 2). Lemma 5 captures what is reachable at pi+1 from a
reachable interval at pi. We process F column by column, as formalized by Lemma 6 below.
Afterwards, dF(P,Q) ≤ ε if and only if qn is in a reachable interval of pn.
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I Lemma 5. Let (r, q) be a point in S; r′′ ≥ r; qi−1qi the edge corresponding to the boundary
of the free-space structure that we hit when shooting a ray up from (r, q); and (r′, q′) the highest
reachable point in the free-space structure from (r, q) with r′ ≤ r′′. Either (r′, q′) = H(qi−1qi)
or the boundary slope at (r′, q′) is positive and r′ = r′′.

Proof Sketch. We distinguish three cases for (r′, q′): (1) If (r′, q′) is not on the boundary of
the free space, this immediately contradicts the definition of (r′, q′); (2) if (r′, q′) is on an
upward-sloped boundary, either r′′ = r′ or we can find a higher reachable point; (3) if (r′, q′)
is on a downward-sloped boundary and monotonicity prevents us from going higher to the
left, (r′, q′) must actually be equal to H(qi−1qi). J

I Lemma 6. Given the decomposition structure S, the reachability structure H and the
sorted reachable intervals at pi, we can compute the sorted reachable intervals at pi+1 in
O(logn+ k) time.

Proof Sketch. We use the decomposition structure S to find the slab of pi+1 in O(logn)
time (Lemma 3). Let A denote the maximal intervals at pi+1, derived from the slab. Let
E be the reachable intervals at pi. We use H(E[j]) as the highest reachable point in the
free-space structure, stored in H (Lemma 4) with the edge defining the upper end of E[j].

We walk over E and A simultaneously, with indices j and x respectively, to find all
reachable intervals for pi+1. We repeatedly do one of the following, checking them in order.
(1) If the lower bound of E[j] is above the upper bound of A[x], we increment x by one. (2) If
H(E[j]) is below the lower bound of A[x], we increment j by one. (3) If |q− pj−1| ≤ ε where
q is the point on Q represented by the lower end of E[j], then we can cut across straight
from E[j] at q into interval A[x] and we record a reachable interval starting at q and ending
at A[x]. (4) Finally, if none of the previous cases apply, we can reach the lower end of A[x]
and A[x] is completely reachable. At the end of (3) and (4), we increment as follows: if the
upper bound of A[x] is upward sloped, we increment j until we find a value such that E[j] is
above A[x] (or run out of values in E). Then, we increment x by one.

Each case takes O(1) time, thus this runs in O(|A| + |E|) = O(k) time (Lemma 2).
Including the query in S, this results in a total time of O(logn + k). Correctness follows
from the invariant that we collected all reachable intervals before A[x], that intervals before
E[j] cannot reach up to A[x] or later intervals, and that intervals before A[x] do not limit
how high E[j] can reach (via Lemma 5). J
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