
Revisiting the Parameterized Complexity of
Maximum-Duo Preservation String Mapping∗

Christian Komusiewicz1, Mateus de Oliveira Oliveira2, and
Meirav Zehavi3

1 Friedrich-Schiller-Universität Jena, Jena, Germany
christian.komusiewicz@uni-jena.de

2 University of Bergen, Bergen, Norway
mateus.oliveira@ii.uib.no

3 University of Bergen, Bergen, Norway
meirav.zehavi@ii.uib.no

Abstract
In the Maximum-Duo Preservation String Mapping (Max-Duo PSM) problem, the input
consists of two related strings A and B of length n and a nonnegative integer k. The objective
is to determine whether there exists a mapping m from the set of positions of A to the set of
positions of B that maps only to positions with the same character and preserves at least k duos,
which are pairs of adjacent positions. We develop a randomized algorithm that solves Max-
Duo PSM in time 4k · nO(1), and a deterministic algorithm that solves this problem in time
6.855k · nO(1). The previous best known (deterministic) algorithm for this problem has running
time (8e)2k+o(k) ·nO(1) [Beretta et al., Theor. Comput. Sci. 2016]. We also show that Max-Duo
PSM admits a problem kernel of size O(k3), improving upon the previous best known problem
kernel of size O(k6).

1998 ACM Subject Classification G.2.1 Combinatorics, F.2 Analysis of Algorithms and Problem
Complexity

Keywords and phrases comparative genomics, parameterized complexity, kernelization

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.11

1 Introduction

Computing distances between strings is a fundamental task in computer science. For many
distance measures, the distance between two strings A and B is defined as the minimum
number of local operations that are needed to transform A into B, for example the deletion or
insertion of a character. For these measures, the distance between two strings A and B can be
usually computed in polynomial time [13, 22]. In some applications, however, it is necessary
to consider nonlocal operations that transform one string into the other. In comparative
genomics, for example, genomes are modeled as strings with one character corresponding to
a complete gene and one is interested in determining the evolutionary distance between two
genomes. During biological evolution, genomes may be altered by large-scale mutations such
as the reversal or the transposition of larger parts of the genome [19].

One approach to approximate the distance between two strings A and B with respect
to many of these operations is to compute a smallest common string partition [11, 26].

∗ Christian Komusiewicz gratefully acknowledges support from the DFG, project MAGZ (KO 3669/4-1).
Mateus de Oliveira Oliveira gratefully acknowledges support from the Bergen Research Foundation.

© Christian Komusiewicz, Mateus de Oliveira Oliveira, and Meirav Zehavi;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 11; pp. 11:1–11:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Parameterized Complexity of Maximum-Duo Preservation String Mapping

Informally, a size-` common string partition of two strings A and B is a partition of A and B,
each into ` nonoverlapping substrings, such that the resulting two multisets of substrings
of A and B are the same. The problem to compute a smallest common string partition,
known as Minimum Common String Partition, is NP-hard [11, 21].

An alternative way of defining such a partition is to ask for a partition of A into `

nonoverlapping substrings such that permuting the order of these substrings and concatenating
them subsequently gives the string B. This second view implies a mapping m that (bijectively)
maps each position i of A to a position m(i) of B such that A[i] = B[m(i)]. The size of
the common string partition is then exactly the number of pairs of consecutive positions i

and i+1 such that m(i)+1 6= m(i+1); these positions are called duos. Therefore, computing
a mapping m that maps only positions with the same characters to each other and maximizes
the number k of consecutive positions for which m(i)+1 = m(i+1) directly yields a minimum
common string partition of A and B. The problem of computing such a mapping is known
as Maximum-Duo Preservation String Mapping (Max-Duo PSM). Since Max-Duo
PSM is simply a dual of the Minimum Common String Partition problem, it is NP-hard
as well. Motivated by this hardness, we study Max-Duo PSM from the viewpoint of
parameterized algorithmics. More precisely, our aim is to obtain efficient algorithms when
the parameter is k, the number of preserved duos. Before describing previous and our results,
we give a formal problem definition.

Formal Problem Definition. Let A and B be two strings over a finite set of symbols Σ.
Throughout this work, we assume that |A| = |B| = n and that A and B are related, that
is, B is a permutation of A. A mapping of A into B is a (bijective) function m : [n]→ [n]
where for each i ∈ [n],1 A[i] = B[m(i)]. A duo in A is a pair of consecutive positions (i, i + 1)
of A. We say that a mapping m preserves a duo (i, i + 1) if m(i) + 1 = m(i + 1). Accordingly,
the Max-Duo PSM problem is defined as follows.

Maximum-Duo Preservation String Mapping (Max-Duo PSM)
Input: Two related strings, A and B, and a nonnegative integer k.
Question: Does there exist a (bijective) mapping m of A into B such that the number
of preserved duos is at least k?

Previous Work. Initially, Max-Duo PSM has been proposed as an alternative possib-
ility of achieving approximation algorithms for Minimum Common String Partition
(MCSP) [10], because the best known polynomial-time approximation algorithm has an
approximation factor of O(log n log∗ n) [12]. Consequently, most work on Max-Duo PSM
focuses on approximation algorithms with the first constant-factor approximation algorithm
achieving an approximation factor of 4 [6]. This was subsequently improved to a factor of
3.5 [5] and then to a factor of 3.25 [7]. Recently further progress concerning the approximation
factor has been reported [18, 27].

Bretta et al. [2, 1] initiated the study of Max-Duo PSM from the viewpoint of para-
meterized algorithmics. They studied both the fixed-parameter tractability and the ker-
nelization complexity of Max-Duo PSM, showing that this problem can be solved in
time (8e)2k+o(k) · nO(1), and that it admits a kernel of size O(k6). Thus, Bretta et al. [2, 1]
were the first to show that Max-Duo PSM is FPT and that it admits a polynomial kernel.

1 We use [n] as shorthand for {1, 2, . . . , n}.

C. Komusiewicz, M. Oliveira, and M. Zehavi 11:3

The fixed-parameter algorithm of Bretta et al. [2, 1] is based on a combination of color coding
and dynamic programming.

In comparison with Max-Duo PSM, MCSP has been investigated more thoroughly
from the viewpoint of parameterized algorithms. Damaschke [15] presented the first fixed-
parameter algorithms for MCSP, for combined parameters such as “partition size ` plus
repetition number of the input strings”.2 Subsequently, MCSP was shown to be fixed-
parameter tractable with the single parameter partition size ` [9]. Jiang et al. [23] considered
the combined parameter “partition size ` plus maximum occurrence d of any character” and
showed that MCSP can be solved in time (d!)k · nO(1). Subsequently, this running time was
improved to O(d2k · kn) [8].

Our Contribution. We make two main contributions. First, we develop two algorithms
for the Max-Duo PSM problem that are substantially faster than the (deterministic)
algorithm by Bretta et al. [2, 1], which runs in time (8e)2k+o(k) · nO(1). Specifically, we
develop a randomized algorithm that solves Max-Duo PSM in time 4k · nO(1), as well as a
deterministic algorithm that solves this problem in time 6.855k · nO(1). Here, in the context
of our randomized algorithm, we mean that if we determine that the input is a yes-instance,
then this answer is necessarily correct, and if we determine that the input is a no-instance,
then this answer is correct with probability at least 9/10.3 For the purpose of developing our
algorithms, we present a reduction from Max-Duo PSM to a problem of finding paths in
an edge-colored graph, which might be of independent interest. This reduction lies at the
heart of our algorithms, since by employing advanced tools from the field of parameterized
algorithmics, namely, the methods of narrow sieves [4, 3] and representative sets [20], it is
possible to quickly solve the resulting graph problem.

Second, we prove that Max-Duo PSM admits a kernel of size O(k3), improving upon
the kernel of size O(k6) by Bretta et al. [2].

Preliminaries. We use [i, j] to denote the set {i, i + 1, . . . , j} of natural numbers between i

and j. Moreover, given a string A, we denote the substring starting at position i and ending
at position j by A[i, j]. For a (directed) graph G, let V (G) denote the vertex set of G

and E(G) the edge set of G.
The field of parameterized algorithmics studies parameterized problems, where each

problem instance is associated with a parameter k, usually a nonnegative integer. Given a
parameterized problem, the first question is whether the problem is fixed-parameter tractable
(FPT), that is, whether it can be solved in time f(k) · |X|O(1), where f is an arbitrary
function that depends only on k and |X| is the size of the input instance. In other words, the
notion of FPT signifies that the combinatorial explosion can be confined to the parameter k.
A second question is whether the problem also admits a polynomial kernelization. Here,
a problem Π is said to admit a polynomial kernelization if there exists a polynomial-time
algorithm that, given an instance (X, k) of Π, outputs an equivalent instance (X̂, k̂) of Π,
called a kernel, where |X̂| = k̂O(1) and k̂ ≤ k; kernelization is a mathematical concept that
aims to analyze preprocessing procedures in a formal, rigorous manner. For further details,
refer to [17, 14].

Due to lack of space, several proofs are deferred to an appendix.

2 The repetition number of a nonempty string x is defined as the largest i such that x = uviw where v is
nonempty.

3 Clearly, the probability of success can be improved by running the algorithm multiple times and
determining that the input is a yes-instance if and only if at least one of the calls determined so.

CPM 2017

11:4 Parameterized Complexity of Maximum-Duo Preservation String Mapping

2 Reduction to a Path Finding Problem

In this section, we present a reduction from Max-Duo PSM to the following graph problem.

Long Blue Path
Input: A directed acyclic graph (DAG) G, an edge-coloring c : E(G) → {R, B}, a
vertex-labeling ` : V (G)→ N, and nonnegative integers k and r.
Question: Does G contain a directed path P such that
|V (P)| ≤ r,
for all u, v ∈ V (P), `(u) 6= `(v), and
|{e ∈ E(P) : c(e) = B}| ≥ k.

Construction. Let (A, B, k) be an instance of Max-Duo PSM. We construct an instance
(G, c, `, k, r) of Long Blue Path as follows (here, the parameter k is the same). First, we
initialize G to be an empty graph. Now, for every pair of substrings A[i, j] of A and B[p, q]
of B such that j − i ≤ k and A[i, j] = B[p, q], we insert a directed path Pi,j,p,q on j − i + 1
new vertices into G whose edges are colored blue and such that the label of the dth vertex on
this path is (p + d− 1). The purpose of this path is to represent the possibility to preserve
all duos in A[i, j] by mapping this substring to B[p, q]. The labels of the vertices are meant
to ensure that every position in B is mapped only once. Now, a complete mapping of A to
B can be seen as a combination of mappings of substrings that are represented by the paths.
Thus, we next turn to connect the paths we have just constructed by adding new edges.

For every two paths Pi,j,p,q and Pi′,j′,p′,q′ such that j < i′, we add a red edge from the
last vertex of the path Pi,j,q,p to the first vertex of the path Pi′,j′,q′,p′ . Informally, the manner
in which we direct these edges is meant to ensure that every position in A is mapped only
once. Clearly, the resulting graph G is a DAG. Finally, we set r = 2k.

Correctness. We first note that the construction can be done in time O(|V (G)|+ |E(G)|).
Now, observe that the number of paths Pi,j,p,q that G contains is bounded by n2(k + 1) (as
the index q equals p + (j − i)), and that each path Pi,j,p,q consists of at most (k + 1) vertices.
Hence, it holds that |V (G)| ≤ n2(k + 1)2 which directly implies |E(G)| < n4(k + 1)2. Thus,
we have the following observation.

I Observation 1. The instance (G, c, `, k, r) can be constructed in time O(n4k2).

We prove the correctness by proving two lemmata that together imply that the instances
(A, B, k) and (G, c, `, k, r) are equivalent.

I Lemma 1. If (A, B, k) is a yes-instance of Max-Duo PSM, then (G, c, `, k, r) is a
yes-instance of Long Blue Path.

Proof. Let m be a mapping from A into B preserving at least k duos. Consider the
set {A1, . . . , Ar} of substrings of A containing exactly the first k preserved duos, where we
assume that Ai precedes Ai+1 in A. Consider any Az and let [iz, jz] be the set of positions
of Az in A. Since the mapping preserves the duos in Az, there is a substring B[qz, pz] such
that m(iz + s) = qz + s, 0 ≤ s ≤ j − i. This implies that A[iz, jz] = B[qz, pz]. Thus, G

contains the path Pz := Piz,jz,qz,pz
.

By the above, for each Az, G contains a path Pz containing |Az|−1 blue edges. Moreover,
for Ai and Aj , the vertices in Pi and Pj have different labels since the mapping m is injective.
Finally, there is a red edge from the last vertex of Pi to the first vertex of Pi+1 since the
last position of Ai is strictly smaller than the first position of Ai+1. Thus, the concatenation

C. Komusiewicz, M. Oliveira, and M. Zehavi 11:5

of P1, P2 until Pr gives a path in G. The number of blue edges in this path is exactly k, and
the number of vertices in this path is at most 2k, since every Pi contains at least one blue
edge. J

I Lemma 2. If (G, c, `, k) is a yes-instance of Long Blue Path, then (A, B, k) is a
yes-instance of Max-Duo PSM.

Proof. Let P be a solution of the Long Blue Pathinstance. That is, P is a path in G on at
most 2k vertices, all with different labels, containing at least k blue edges. Let {P1, . . . , Pr}
be the set of disjoint paths obtained from P by removing all red edges where we assume that
there is a red edge from Pi to Pi+1 for all i ∈ [r− 1]. Consider some Pz. By the construction
of G, Pz = Pi,j,q,p for some i < j and q < p. Hence, there is a substring A[i, j] of A and a
substring B[q, p] of B such that A[i, j] = B[q, p]. Call these two substrings the substrings
of A and B, respectively, that correspond to Pz. Observe that for Pi and Pj , i < j, the
substrings corresponding to Pi and Pj are disjoint: For the substrings in A this is due to
the fact that the indices of the corresponding substring for Pi are lower than those of the
substring of A corresponding to Pj . For the substrings in B this is due to the fact that the
vertices in Pi and Pj have different labels. Thus, there is a mapping from A into B that
maps the corresponding strings for each path Pi and maps all other positions arbitrarily.
The number of duos preserved by this mapping is at least k. J

Altogether, we arrive at the following.

I Lemma 3. Given an instance (A, B, k) of Max-Duo PSM, an equivalent instance
(G, c, `, k, r) of Long Blue Path where r = 2k can be constructed in time O(n4k2).

3 A Randomized Algorithm based on Narrow Sieves

In this section, we adapt the method of narrow sieves that was applied to solve the k-
Path problem [4] to solve Long Blue Path. More precisely, our objective is to provide a
constructive proof for the following result.

I Lemma 4. There exists a randomized algorithm that solves Long Blue Path in time
2r · rO(1) · |E(G)| and polynomial space.

In light of Lemma 3, once we have Lemma 4 at hand, we immediately obtain the following
theorem.

I Theorem 5. There exists a randomized algorithm that solves Max-Duo PSM in time
4k · kO(1) · n4 and polynomial space.

In the following, we focus on the proof of Lemma 4. To this end, let (G, c, `, k, r) be an
instance of Long Blue Path. Clearly, we can assume that |V (G)| ≤ |E(G)|. To be able to
rely on dynamic programming later, we need to define a notion of a partial solution:

I Definition 6. Let P be a directed path in G. Given a vertex v ∈ V (G), s ∈ [r] and
b ∈ [r] ∪ {0}, we say that P is a (v, s, b)-path if the last vertex of P is v, |V (P)| = s and
|{e ∈ E(P) : c(e) = B}| = b. If for all u, w ∈ V (P), it holds that `(u) 6= `(v), then we say
that P is a good path.

To employ the method of narrow sieves, we need to associate labels with entities whose
uniqueness should be preserved. For this purpose, we have the following definition:

CPM 2017

11:6 Parameterized Complexity of Maximum-Duo Preservation String Mapping

I Definition 7. Let P be a (v, s, b)-path. Given f : V (P) → [r], we say that (P, f) is a
(v, s, b)-pair. If P is good, then we say that (P, f) is a good pair, and if f is an injective
function, then we say that (P, f) is an injective pair. Given L ⊆ [r] such that the image of f

is a subset of L, we say that (P, f) is an L-labeled pair.

Now, we define two central sets of labeled partial solutions. The first one, P, consists
of every pair (P, f) that is an injective (v, s, b)-pair for some v ∈ V (G) and s, b ∈ [r] such
that b ≥ k. The second one, Q, consists of every good pair (P, f) in P. Note that for every
pair (P, f) ∈ Q, it holds that P is a solution for Long Blue Path, and for every solution P

for Long Blue Path, by letting f be a function that assigns i to the ith vertex on P , we
obtain a pair (P, f) ∈ Q. Thus, we have the following observation.

I Observation 2. The instance (G, c, `, k, r) is a yes-instance if and only if Q 6= ∅.

With these definitions at hand, we may describe the rough idea of the approach. We represent
all labeled partial solutions of P by a polynomial in such a way that each labeled partial
solution corresponds to one monomial. We will ensure that the partial solutions of P \ Q
cancel each other out which will imply that the polynomial is not identically 0 if and only if
Q 6= ∅. To this end, we now describe how we represent labeled partial solutions by monomials.
For every label i ∈ image(`) and integer j ∈ [r], we introduce the variable xi,j , and for every
edge e ∈ E(G), we introduce the variable ye. This gives the following representation:

I Definition 8. Let (P, f) be a (v, s, b)-pair. Then, the monomial associated with (P, f) is
defined as follows.

mon(P, f) =
∏

v∈V (P)

x`(v),f(v) ·
∏

e∈E(P)

ye.

Accordingly, we define the following polynomial (which would be evaluated over a field of
characteristic 2).

I Definition 9. POL =
∑

(P,f)∈P

mon(P, f).

To analyze this polynomial, we first observe that given a monomial associated with a pair
(P, f) ∈ Q, we can uniquely recover the pair (P, f). To see this, consider some monomial
M that is associated with a pair (P, f) ∈ Q. Then, the variables ye of M specify exactly
which edges are used by P , and therefore the path P is recovered. Now, since the pair (P, f)
belongs to Q, we have that P is a good path. Hence, the variables xi,j of M specify exactly
how f labels the vertices of P . In other words, we have the following observation.

I Observation 3. For all (P, f) ∈ Q, there does not exist (P ′, f ′) ∈ P \ {(P, f)} such that
mon(P, f) = mon(P ′, f ′).

The following lemma will be used to show that the partial solutions of P \ Q cancel each
other out.

I Lemma 10. There exists a function g : P \Q → P \Q such that for all (P, f) ∈ P \Q, it
holds that mon(P, f) = mon(g(P, f)), g(P, f) 6= (P, f), and g(g(P, f)) = (P, f).

Proof. Let < be some order on {{u, v} : u, v ∈ V (P)}. Given (P, f) ∈ P \ Q, define
rep(P, f) = {{u, v} : u, v ∈ V (P), u 6= v, `(u) = `(v)}. Since P is not a good path, it holds
that rep(P, f) 6= ∅. Hence, it is well defined to let {u, v} be the smallest set in rep(P, f)
according to <. We let h be defined as f except that h(u) = f(v) and h(v) = f(u). Now, we

C. Komusiewicz, M. Oliveira, and M. Zehavi 11:7

set g(P, f) = (P, hP,f). Clearly, g(P, f) ∈ P. Note that rep(P, f) = rep(P, hP,f), and hence
g(P, f) /∈ Q and g(g(P, f)) = (P, f). Since (P, f) ∈ P , it holds that f is an injective function;
therefore f(v) 6= f(u), which implies that g(P, f) 6= (P, f). Finally, since `(u) = `(v), it holds
that mon(P, f) = mon(g(P, f)). J

Let F be a field of characteristic 2 (to be determined). From now on, we suppose that
POL is evaluated over F. Notice that

POL =
∑

(P,f)∈Q

mon(P, f) +
∑

(P,f)∈P\Q

mon(P, f).

Suppose that POL is evaluated over F. By Lemma 10, we have that POL =
∑

(P,f)∈Qmon(P, f).
Then, by Observation 3, we have that POL is not identically 0 if and only if Q is not empty.
Hence, by Observation 2, we have the following lemma.

I Lemma 11. The instance (G, c, `, k, r) is a yes-instance if and only if POL is not identic-
ally 0.

In light of Lemma 11, our task is to determine whether POL is identically 0. For this
purpose, we need the following notation. Given v ∈ V (G), s ∈ [r], b ∈ [r] ∪ {0} and
L ⊆ [r], let Pv,s,b,L denote the set of every L-labeled (v, s, b)-pair (P, f), and POLv,s,b,L =∑
(P,f)∈Pv,s,b,L

mon(P, f). Moreover, denote

PL =
⋃

v ∈ V (G), s, b ∈ [r], b ≥ k

Pv,s,b,L,

and POLL =
∑

(P,f)∈PL

mon(P, f). By the principle of inclusion-exclusion, we have that

POL =
∑

L⊆[r]

(−1)r−|L|POLL. Then, since F is a field of characteristic 2 (refer to [4] for further

details) we obtain the following.

I Observation 4. POL =
∑

L⊆[r]

POLL.

Hence, to determine whether POL is identically 0, it is sufficient to determine whether∑
L⊆[r] POLL is identically 0. To proceed, we need to recall the following well-known lemma.

I Lemma 12 ([24, 28, 16]). Let p(x1, x2, . . . , xn) be a nonzero polynomial of total degree
at most d over a finite field K. Then, for a1, a2, . . . , an ∈ K selected independently and
uniformly at random, Pr(p(a1, a2, . . . , an) 6= 0) ≥ 1− d/|K|.

Notice that POL is a polynomial of total degree at most 2r. Therefore, by setting
|F| = 2dlog(20r)e, from Lemma 11, Observation 4, and Lemma 12, we have that

I Lemma 13. For a random assignment to all variables xi,j and ye, if (G, c, `, k, r) is a
no-instance, then

∑
L⊆[r]

POLL evaluates to 0, and otherwise it does not evaluate to a 0 with

probability at least 9/10.

In light of Lemma 13, to conclude that Lemma 4 is correct, it is sufficient to prove the
following result.

CPM 2017

11:8 Parameterized Complexity of Maximum-Duo Preservation String Mapping

I Lemma 14. Given L ⊆ [r] and an assignment to all variables xi,j and ye, the polynomial
POLL can be evaluated in time rO(1) · |E(G)|.

Finally, we would like to remark that if one is interested in finding a mapping that is
a solution rather than just determining whether such a mapping exists, this goal can be
achieved by standard means of self-reduction. Briefly, if k is not positive, then we are done.
Else, if the algorithm determines that there exists a solution, then we may “guess” (i.e.,
perform exhaustive search) a longest substring A′ of A that is mapped by some solution
while preserving all duos in A′ as well as the substring B′ of B to which it is mapped. If our
guess is correct, then the symbol preceding A′ in A is not equal to the symbol preceding
B′ in B and the symbol after A′ in A is also not equal to the symbol after B′ in B (if such
symbols exist). Then, we may replace A′ and B′ in A and B, respectively, by some new
symbol, decrease k by |A′| − 1, and call the algorithm recursively. Notice that the length of
A′ should be at least 2, and hence the size of the input has decreased.

4 Deterministic Algorithm: Representative Sets

In this section, we adapt the approach in which the method of representative sets is applied
to solve the k-Path problem [20]. More precisely, our objective is to provide a constructive
proof for the following result.

I Lemma 15. There exists a deterministic algorithm that solves Long Blue Path in time
O((1+

√
5

2)r+o(r) · |E(G)| · log |E(G)|).

Combining Lemma 3 and 15 gives us the following.

I Theorem 16. There exists a deterministic algorithm that solves Max-Duo PSM in time
O((1+

√
5

2)2k+o(k) · n4 log n) = O(6.855k · n4 log n).

5 A Cubic Problem Kernel

In this section we will show that Max-Duo PSM admits a kernel of size O(k3). Let (A, B, k)
be an instance of Max-Duo PSM, and let S ∈ {A, B}. If S = A, then we let S = B.
Analogously, if S = B, then we let S = A.

Let m be a map of S into S, and let D be a set of duos. We denote by m(D) =
{(m(i), m(i + 1)) | (i, i + 1) ∈ D} the image of D under m. We say that m preserves D if m

preserves each duo in D. Let CA and CB be sets of duos. We say that the pair (CA, CB)
is complete for (A, B, k) if whenever there is a map m of A into B that preserves k duos,
then there is a subset D ⊆ CA with |D| = k and a map m′ such that m′ preserves D and
m′(D) ⊆ CB . The size of (CA, CB) is defined as |CA|+ |CB |. Let f : N→ N be a function. A
complete pair (CA, CB) of size f(k) for (A, B, k) can be used to construct a kernel (A′, B′, k)
of size O(f(k)) for (A, B, k).

I Theorem 17 ([2, Section 4.2]). Let (CA, CB) be a complete pair of size f(k) for (A, B, k).
Then one can construct in time O(f(k)) related strings A′ and B′, each of size O(f(k)) such
that (A, B, k) is a yes-instance of Max-Duo PSM if and only if (A′, B′, k) is a yes-instance
of Max-Duo PSM.

Using Theorem 17, it is sufficient to show that one can obtain in polynomial time a
complete pair (CA, CB) for (A, B, k) of size O(k3).

C. Komusiewicz, M. Oliveira, and M. Zehavi 11:9

A block of size s is a set X = {(i, i + 1), (i + 1, i + 2), ..., (i + s− 1, i + s)} consisting of
s consecutive duos. We say that (i, i + 1) is the root of X. If S is a string of length at least
i + s, then we let str(S, X) = S[i, i + s] be the substring of S corresponding to the positions
that occur in X. The following observation is immediate.

I Observation 5. Let (A, B, k) be an instance of Max-Duo PSM and let m be a map of
A into B that preserves a block X of size k. Then (A, B, k) is a yes-instance of Max-Duo
PSM. Additionally, the instance (A′, B′, k) where A′ = str(A, X) and B′ = str(B, m(X)) is
also yes-instance of Max-Duo PSM.

In the remainder of this section we assume that no map m of A into B preserves a block
of size k. Our algorithm is based on the notion of rare duo, which we define next. For each
two symbols a, b ∈ Σ, and each string S ∈ {A, B}, we let

n(S, a, b) := |{i : 1 ≤ i ≤ |S| − 1, S[i, i + 1] = ab}|

be the number of occurrences of the length-two string ab as a substring of S. We say
that a length-two string ab is rare for S if ab occurs as a sub-string of both S and S and
n(S, a, b) ≤ n(S, a, b). Observe that if ab occurs as many times in S as it occurs in S, then
ab is rare for both S and S. We say that a duo (i, i + 1) is rare for S if S[i, i + 1] is rare for
S. We let rare(S) be the set of duos that are rare for S.

I Lemma 18. If either |rare(A)| ≥ 4k or |rare(B)| ≥ 4k, then (A, B, k) is a yes-instance.

Proof. The duo graph associated with A and B is the bipartite graph G(A, B) = (VA∪̇VB , E)
defined as follows:

VA = {(i, i + 1) | 1 ≤ i ≤ n− 1} ,

VB = {(j, j + 1) | 1 ≤ j ≤ n− 1} ,

E = {[(i, i + 1), (j, j + 1)] | A[i] = B[j], A[i + 1] = B[j + 1]}.

Intuitively, each of the sets VA and VB contains all pairs of consecutive positions from
[n]. A duo (i, i + 1) in VA is connected to a duo (j, j + 1) in VB if and only if the length-two
string A[i]A[i + 1] is equal to B[j]B[j + 1].

If e = [(i, i + 1), (j, j + 1)] is an edge of G(A, B), then we say that (i, i + 1) is the left
endpoint of e and (j, j + 1) is the right endpoint of e. If M is a matching in G(A, B), then
we let MA be the set of duos in VA that are left endpoints of edges in M , and MB be the set
of duos in VB that are right endpoints of edges in M .

Assume that either |rare(A)| ≥ 4k or |rare(B)| ≥ 4k. Then G contains a matching of size
at least 4k. Let M be a maximum matching in G(A, B).

It has been shown in [6] that given a matching M of size at least 4k for the graph G(A, B),
one can construct a sub-matching M of M of size at least k such that M directly gives a
map preserving at least k duos. Therefore, the instance is a yes-instance in this case. J

In the remainder of this section we thus assume that there are less than 4k duos that are
rare for A, and less than 4k duos that are rare for B. This implies that we may add all rare
duos to the sets CA and CB without surpassing the desired size bound of O(k3).

Let S be a string in {A, B}. We say that a duo (j, j +1) is a match for a duo (i, i+1) in S

if there exists a map m of S into S that preserves (i, i + 1), and (m(i), m(i + 1)) = (j, j + 1).
If X and Y are blocks, then we say that Y is a match for X in S if there exists a map m of
S into S such that m preserves X, and m(X) = Y .

CPM 2017

11:10 Parameterized Complexity of Maximum-Duo Preservation String Mapping

Algorithm 1
1: procedure Roots(S, i, i + 1)
2: R = ∅
3: k′ ← size of the maximal block which is rooted at (i, i + 1), rare for S, and has a
4: match in S. Note that k′ ≤ k − 1.
5: for ` = k′ to 1 do
6: X ← unique block of size ` rooted at (i, i + 1)
7: for j = 1 to n− 1 do
8: if |R| < 2k − 1 and |j′ − j| > k ∀j′ ∈ R and
9: (j, j + 1) is a root for a match of X in S then
10: R← R ∪ {(j, j + 1)}
11: output R

I Observation 6. Let S ∈ {A, B} and let (j, j + 1) be a match for (i, i + 1) in S. Then if
(i, i + 1) is not rare for S, (j, j + 1) is rare for S.

Proof. Since (j, j + 1) is a match for (i, i + 1) in S, there is some length-two string ab such
that S[i]S[i + 1] = S[j]S[j + 1] = ab. Since (i, i + 1) is not rare for S, the string ab occurs
strictly more often in S than it occurs in S. In other words, n(S, a, b) > n(S, a, b). This
implies that (j, j + 1) is rare for S. J

This observation is useful because it tells us that for each match in a map, one of the two
duos is rare, so by adding all the rare duos to CA and CB , we essentially pick up one half of
each match. We now consider two types of matched blocks that may occur in the solution.
First, there may be pairs of matched blocks X and Y that both contain nonrare duos. We
can add all duos of these blocks by considering a sufficiently large neighborhood of all rare
duos. To this end, for each i ∈ {1, ..., n− 1}, let

Bk(i) = {(i′, i′ + 1) | i′ ∈ {1, ..., n− 1}, i− k ≤ i′ ≤ i + k}

denote the ball of radius k around the duo (i, i + 1)
The following lemma essentially implies that by adding the ball of radius k around each

rare duo, we add all pairs of matched blocks that both contain at least one nonrare duo.

I Lemma 19. Let S ∈ {A, B}, X be a block of size at most k − 1 containing a duo (i, i + 1)
that is not rare for S, and let m be a map of S into S such that X is preserved by m. Then
(m(i), m(i + 1)) is rare for S and m(X) ⊆ Bk(m(i)).

Proof. Since (i, i + 1) is preserved by m, (m(i), m(i + 1)) is a match for (i, i + 1) in S. Since
(i, i + 1) is not rare for S, by Observation 6, (m(i), m(i + 1)) is rare for S. Since m preserves
X and since |X| ≤ k − 1, m(X) is a block of size at most k − 1. Therefore, all duos in m(X)
must be in the ball of radius k around (m(i), m(i + 1)), that is, m(X) ⊆ Bk(m(i)). J

We now turn to the second type of matched pairs of blocks, those where one block X of S

has only rare duos for S; we call such a block X rare. Since X is rare, it is rooted at some
rare duo (i, i + 1). To obtain the complete set, we need to add duos in S. This is done by
the procedure Roots which receives as input a string S and a duo in S and returns a set of
duos Roots(S, i, i + 1).

Intuitively, for each block X that is rare for S and rooted at (i, i+1), the set Roots(S, i, i+
1) contains a selection of roots of matches for X in the string S. This selection is made

C. Komusiewicz, M. Oliveira, and M. Zehavi 11:11

according to two criteria. First, roots of matches for larger blocks are added first. Second,
the roots in Roots(S, i, i + 1) are sufficiently far apart from each other. Now consider the set

F (S, i, i + 1) =
⋃

(j,j+1)∈Roots(S,i,i+1)

Bk(j).

Intuitively, F (S, i, i+1) consists of all duos that are sufficiently close to duos in Roots(S, i, i+
1). The next lemma states that if some map m of S into S preserves some block X that is
rooted at (i, i + 1) and rare for S, then this map can be transformed into a map m′ that
preserves X, that sends X to F (S, i, i + 1), and that is equal to m on every duo outside X.

I Lemma 20. Let m be a map of S into S, D be a set of duos such that |D| = k, and X ⊆ D

be a block that is rooted at (i, i + 1), that is rare for S and that is preserved by m. Then there
is a map m′ of S into S such that X is preserved by m′, such that m′(X) ⊆ F (S, i, i + 1)
and such that (m′(i′), m′(i′ + 1)) = (m(i′), m(i′ + 1)) for each (i′, i′ + 1) ∈ D\X.

Proof. Let (j, j + 1) be the root of m(X) in S. Let n(S, X) be the number of duos in
Roots(S, i, i + 1) that are roots of matches for X in S. Suppose that n(S, X) < 2k − 1.
Then either (j, j + 1) ∈ Roots(S, i, i + 1) or (j, j + 1) does not belong to Roots(S, i, i + 1)
and there exists some duo (j′, j′ + 1) ∈ Roots(S, i, i + 1) with |j′ − j| < k. Note that if this
were not the case, the duo (j, j + 1) would have been added to Roots(S, i, i + 1), since all
three conditions of the ’If’ instruction of Algorithm 1 would have been satisfied. In any case,
m(X) ⊆ Bk(j′) ⊆ F (S, i, i + 1). Therefore, if n(S, X) < 2k − 1, we may simply set m′ = m.

Now assume that n(S, X) = 2k − 1. Note that for each duo (j, j + 1) there are no three
distinct j1, j2 and j3 such that (jl, jl + 1) ∈ Roots(S, i, i + 1) and (j, j + 1) ∈ B(jl) for
l ∈ {1, 2, 3}. In other words (j, j + 1) can intersect at most two balls of radius k rooted at
duos in Roots(S, i, i + 1). Therefore, since |D\X| ≤ k − 1, the set D\X intersects at most
2k − 2 balls of radius r rooted at duos in Roots(S, i, i + 1). In other words, there is at least
one (j′, j′ + 1) ∈ Roots(S, i, i + 1) that is the root of a match for X in S and such that
Bk(j′)∩ (D\X) = ∅. Therefore, we may set m′ as the map of S into S that preserves X, that
sends the root of X to (j′, j′+ 1), and that is equal to m on every duo (i′, i′+ 1) ∈ D\X. J

Now, for each S ∈ {A, B}, consider the following set CS of duos.

CS =

 ⋃
(i,i+1)∈rare(S)

Bk(i)

 ∪
 ⋃

(i,i+1)∈rare(S)

F (S, i, i + 1)

 . (1)

In other words, for each duo (i, i + 1) that is rare for S, CS contains all duos in the ball
of radius k around (i, i + 1). Moreover, for each duo (i, i + 1) that is rare for S, CS contains
all duos in the set F (S, i, i + 1). The following lemma states that if a map m of S into S

preserves a set D containing k duos, then there exists a map m′ that also preserves D in
such a way that m′(D) ⊆ CS .

I Lemma 21. Let D be a set of duos such that |D| = k. Let m be a map of S into S that
preserves all duos in D. Then there is a map m′ of S into S that preserves all duos in D,
and such that m′(D) ⊆ CS.

Proof. Let X1, ..., Xr be the set of rare blocks that are contained in D and that are maximal
with respect to set inclusion. In other words, for each j ∈ {1, ..., r} and each Y such that
Xj ⊆ Y ⊆ D, we have that Y is not a rare block. Note that since these blocks are rare and

CPM 2017

11:12 Parameterized Complexity of Maximum-Duo Preservation String Mapping

maximal, they are pairwise disjoint, i.e., Xj ∩Xj′ = ∅ for j 6= j′. For each j ∈ {1, ..., r} let
(ij , ij + 1) be the root of Xj and Dj = D\Xj . Additionally, let D′ = D\

⋃r
j=1 Xj . Note that

D′ ⊆ Dj for each j ∈ {1, ..., r}.
Let m0, m1, ..., mr be maps of S into S defined inductively as follows. First, we set

m0 = m. Now, for each j ∈ {1, ..., r}, we let mj be a map of S into S constructed
according to Lemma 20. More precisely, mj preserves Xj , mj(Xj) ⊆ F (S, ij , ij + 1), and
(mj(i), mj(i + 1)) = (mj−1(i), mj−1(i + 1)) for each duo (i, i + 1) ∈ Dj = D\Xj .

Using the maps m0, m1, ..., mr defined above, it follows by induction on j that for each
l ∈ {1, ..., j}, mj(Xl) ⊆ F (S, il, il + 1) ⊆ CS and (mj(i), mj(i + 1)) = (m(i), m(i + 1)) for
each (i, i + 1) ∈ D′. In particular, for each l ∈ {1, ..., r}, mr(Xl) ⊆ F (S, il, il + 1) ⊆ CS

and (mr(i), mr(i + 1)) = (m(i), m(i + 1)) for each (i, i + 1) ∈ D′ ⊆ Dj . This shows, that
mr preserves D, and sends

⋃r
j=1 Xj to a subset of CS and agrees with m in every duo in

D′ = D\
⋃r

j=1 Xj .
Let m′ = mr. It remains to show that m′ also sends blocks that are not rare for S to

subsets of CS . Let X ′1, ..., X ′s be the maximal blocks that are contained in D and that are
not rare for S. Note that these blocks are indeed contained in D′ and form a partition of
D′. Since for each j ∈ {1, ..., s}, X ′j has at least one duo (i, i + 1) that is not rare for S,
Lemma 19 implies that (m′(i), m′(i)) is rare for S and that m′(Xj) ⊆ Bk(m′(i)) ⊆ CS . Since
X ′1, ..., X ′s forms a partition of D′, m′(D′) ⊆ CS . Since by the discussion above, m′(

⋃r
j=1 Xj)

is also a subset of CS , we have that m′(D) ⊆ CS . J

Let CA and CB be sets of duos constructed according to Equation 1. We can show that
(CA, CB) is complete for (A, B, k) by applying Lemma 21 twice. More precisely, once with
respect to maps of A into B, and once with respect to maps of B into A.

I Lemma 22. The pair (CA, CB) is complete for (A, B, k).

Proof. Let D1 be a set of duos of size k. Let m1 be a map of A into B which preserves all
duos in D1. Then by Lemma 21 there is a map m2 of A into B which also preserves all duos
in D1, but with the property that m2(D1) ⊆ CB. Now let D2 = m2(D1), and m3 = m−1

2
be the inverse of m2. In other words, m3 is a map of B into A such that for each i ∈ [n],
m2(i) = j if and only if m3(j) = i. Then m3 preserves all duos in D2. By Lemma 21 there
is a map m4 of B into A that also preserves all duos in D2 but with the additional property
that m4(D2) ⊆ CA.

Let D3 = m4(D2), and let m5 = m−1
4 be the inverse of m4. Then m5 is a map of A into

B that preserves D3 ⊆ CA and such that m5(D3) = D2 ⊆ CB. Since |D3| = |D2| = k, the
pair (CA, CB) is complete for (A, B, k). J

Now, we can upper-bound the size of CS and the time needed to construct CS , thus
arriving at our main theorem.

I Theorem 23. Given an instance I = (A, B, k) of Max-Duo PSM, one can construct in
time O(|Σ|2 · n + k3 · n) an instance I ′ = (A′, B′, k) of Max-Duo PSM with |A′| and |B′|
bounded by O(k3) such that I is a yes-instance if and only if I ′ is a yes-instance.

References
1 Stefano Beretta, Mauro Castelli, and Riccardo Dondi. Corrigendum to “Parameterized

tractability of the maximum-duo preservation string mapping problem” [Theoret. Comput.
Sci. 646 (2016) 16–25]. Theor. Comput. Sci., 653:108–110, 2016. doi:10.1016/j.tcs.2016.
09.015.

http://dx.doi.org/10.1016/j.tcs.2016.09.015
http://dx.doi.org/10.1016/j.tcs.2016.09.015

C. Komusiewicz, M. Oliveira, and M. Zehavi 11:13

2 Stefano Beretta, Mauro Castelli, and Riccardo Dondi. Parameterized tractability of the
maximum-duo preservation string mapping problem. Theor. Comput. Sci., 646:16–25, 2016.
doi:10.1016/j.tcs.2016.07.011.

3 Andreas Björklund. Determinant sums for undirected Hamiltonicity. SIAM J. Comput.,
43(1):280–299, 2014. doi:10.1137/110839229.

4 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves
for parameterized paths and packings. J. Comput. Syst. Sci., 87:119–139, 2017. arXiv:
1007.1161, doi:10.1016/J.JCSS.2017.03.003.

5 Nicolas Boria, Gianpiero Cabodi, Paolo Camurati, Marco Palena, Paolo Pasini, and Stefano
Quer. A 7/2-approximation algorithm for the maximum duo-preservation string mapping
problem. In Roberto Grossi and Moshe Lewenstein, editors, Proceedings of the 27th Annual
Symposium on Combinatorial Pattern Matching (CPM 2016), volume 54 of LIPIcs, pages
11:1–11:8. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
CPM.2016.11.

6 Nicolas Boria, Adam Kurpisz, Samuli Leppänen, and Monaldo Mastrolilli. Improved ap-
proximation for the maximum duo-preservation string mapping problem. In Daniel G.
Brown and Burkhard Morgenstern, editors, Proceedings of the 14th International Work-
shop on Algorithms in Bioinformatics (WABI 2014), volume 8701 of LNCS, pages 14–25.
Springer, 2014. doi:10.1007/978-3-662-44753-6_2.

7 Brian Brubach. Further improvement in approximating the maximum duo-preservation
string mapping problem. In Martin C. Frith and Christian Nørgaard Storm Pedersen,
editors, Proceedings of the 16th International Workshop on Algorithms in Bioinformat-
ics (WABI 2016), volume 9838 of LNCS, pages 52–64. Springer, 2016. doi:10.1007/
978-3-319-43681-4_5.

8 Laurent Bulteau, Guillaume Fertin, Christian Komusiewicz, and Irena Rusu. A fixed-
parameter algorithm for minimum common string partition with few duplications. In
Aaron E. Darling and Jens Stoye, editors, Proceedings of the 13th International Work-
shop on Algorithms in Bioinformatics (WABI 2013), volume 8126 of LNCS, pages 244–258.
Springer, 2013. doi:10.1007/978-3-642-40453-5_19.

9 Laurent Bulteau and Christian Komusiewicz. Minimum common string partition parameter-
ized by partition size is fixed-parameter tractable. In Chandra Chekuri, editor, Proceedings
of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2014), pages
102–121. SIAM, 2014. doi:10.1137/1.9781611973402.8.

10 Wenbin Chen, Zhengzhang Chen, Nagiza F. Samatova, Lingxi Peng, Jianxiong Wang, and
Maobin Tang. Solving the maximum duo-preservation string mapping problem with linear
programming. Theor. Comput. Sci., 530:1–11, 2014. doi:10.1016/j.tcs.2014.02.017.

11 Xin Chen, Jie Zheng, Zheng Fu, Peng Nan, Yang Zhong, Stefano Lonardi, and Tao Jiang.
Assignment of orthologous genes via genome rearrangement. IEEE/ACM Trans. Comput.
Biol. Bioinform., 2(4):302–315, 2005. doi:10.1109/TCBB.2005.48.

12 Graham Cormode and S. Muthukrishnan. The string edit distance matching problem with
moves. ACM Trans. Algorithms, 3(1):2:1–2:19, 2007. doi:10.1145/1219944.1219947.

13 Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on strings.
Cambridge University Press, 2007. doi:10.1017/CBO9780511546853.

14 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

15 Peter Damaschke. Minimum common string partition parameterized. In Keith A. Crandall
and Jens Lagergren, editors, Proceedings of the 8th International Workshop on Algorithms
in Bioinformatics (WABI 2008), volume 5251 of LNCS, pages 87–98. Springer, 2008. doi:
10.1007/978-3-540-87361-7_8.

CPM 2017

http://dx.doi.org/10.1016/j.tcs.2016.07.011
http://dx.doi.org/10.1137/110839229
http://arxiv.org/abs/1007.1161
http://arxiv.org/abs/1007.1161
http://dx.doi.org/10.1016/J.JCSS.2017.03.003
http://dx.doi.org/10.4230/LIPIcs.CPM.2016.11
http://dx.doi.org/10.4230/LIPIcs.CPM.2016.11
http://dx.doi.org/10.1007/978-3-662-44753-6_2
http://dx.doi.org/10.1007/978-3-319-43681-4_5
http://dx.doi.org/10.1007/978-3-319-43681-4_5
http://dx.doi.org/10.1007/978-3-642-40453-5_19
http://dx.doi.org/10.1137/1.9781611973402.8
http://dx.doi.org/10.1016/j.tcs.2014.02.017
http://dx.doi.org/10.1109/TCBB.2005.48
http://dx.doi.org/10.1145/1219944.1219947
http://dx.doi.org/10.1017/CBO9780511546853
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-3-540-87361-7_8
http://dx.doi.org/10.1007/978-3-540-87361-7_8

11:14 Parameterized Complexity of Maximum-Duo Preservation String Mapping

16 Richard A. DeMillo and Richard J. Lipton. A probabilistic remark on algebraic program
testing. Inf. Process. Lett., 7(4):193–195, 1978. doi:10.1016/0020-0190(78)90067-4.

17 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

18 Bartłomiej Dudek, Paweł Gawrychowski, and Piotr Ostropolski-Nalewaja. A family of
approximation algorithms for the maximum duo-preservation string mapping problem. In
Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter, editors, Proceedings of the
28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017), volume 78 of
LIPIcs, pages 10:1–10:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. arXiv:
1702.02405, doi:10.4230/LIPIcs.CPM.2017.10.

19 Guillaume Fertin, Anthony Labarre, Irena Rusu, Eric Tannier, and Stéphane Vialette.
Combinatorics of Genome Rearrangements. Computational molecular biology. MIT Press,
2009. doi:10.7551/mitpress/9780262062824.001.0001.

20 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient compu-
tation of representative families with applications in parameterized and exact algorithms.
J. ACM, 63(4):29:1–29:60, 2016. doi:10.1145/2886094.

21 Avraham Goldstein, Petr Kolman, and Jie Zheng. Minimum common string partition
problem: Hardness and approximations. Electron. J. Comb., 12, 2005. URL: http://www.
combinatorics.org/Volume_12/Abstracts/v12i1r50.html.

22 Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, 1997. doi:10.1017/CBO9780511574931.

23 Haitao Jiang, Binhai Zhu, Daming Zhu, and Hong Zhu. Minimum common string partition
revisited. J. Comb. Optim., 23(4):519–527, 2012. doi:10.1007/s10878-010-9370-2.

24 Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701–717, 1980. doi:10.1145/322217.322225.

25 Hadas Shachnai and Meirav Zehavi. Representative families: A unified tradeoff-based
approach. J. Comput. Syst. Sci., 82(3):488–502, 2016. doi:10.1016/j.jcss.2015.11.008.

26 Krister M. Swenson, Mark Marron, Joel V. Earnest-DeYoung, and Bernard M. E. Moret.
Approximating the true evolutionary distance between two genomes. ACM J. Exp. Al-
gorithmics, 12, 2008. doi:10.1145/1227161.1402297.

27 Yao Xu, Yong Chen, Taibo Luo, and Guohui Lin. A local search 2.917-approximation
algorithm for duo-preservation string mapping, 2017. arXiv:1702.01877.

28 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Edward W. Ng,
editor, Proceedings of an International Symposiumon on Symbolic and Algebraic Manip-
ulation (EUROSAM 1979), volume 72 of LNCS, pages 216–226. Springer, 1979. doi:
10.1007/3-540-09519-5_73.

A Proofs of Section 3

I Lemma 14. Given L ⊆ [r] and an assignment to all variables xi,j and ye, the polynomial
POLL can be evaluated in time O(rO(1) · |E(G)|).

Proof Sketch. The evaluation can be performed by a simple procedure based on dynamic
programming. For the sake of completeness, we present the base cases and recursive formula
below. For simplicity, we abuse notation by using the symbols xi,j and ye to refer to the
values assigned to the variables xi,j and ye, respectively.

The procedure uses a table M , which has an entry M [v, s, b] for all v ∈ V (G), s ∈ [r] and
b ∈ [r] ∪ {0}. The purpose of this entry is to store the evaluation of POLv,s,b,L. Then, the

http://dx.doi.org/10.1016/0020-0190(78)90067-4
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://arxiv.org/abs/1702.02405
http://arxiv.org/abs/1702.02405
http://dx.doi.org/10.4230/LIPIcs.CPM.2017.10
http://dx.doi.org/10.7551/mitpress/9780262062824.001.0001
http://dx.doi.org/10.1145/2886094
http://www.combinatorics.org/Volume_12/Abstracts/v12i1r50.html
http://www.combinatorics.org/Volume_12/Abstracts/v12i1r50.html
http://dx.doi.org/10.1017/CBO9780511574931
http://dx.doi.org/10.1007/s10878-010-9370-2
http://dx.doi.org/10.1145/322217.322225
http://dx.doi.org/10.1016/j.jcss.2015.11.008
http://dx.doi.org/10.1145/1227161.1402297
http://arxiv.org/abs/1702.01877
http://dx.doi.org/10.1007/3-540-09519-5_73
http://dx.doi.org/10.1007/3-540-09519-5_73

C. Komusiewicz, M. Oliveira, and M. Zehavi 11:15

evaluation of POLL is given by
∑

v ∈ V (G),
s, b ∈ [r], b ≥ k

M [v, s, b].

The basis consists of the following cases:
If b ≥ s, then M [v, s, b] = 0.
Else if s = 1, then M [v, s, b] =

∑
i∈L

x`(v),i.

Now, consider an entry M [v, s, b] not computed in the basis. We assume that a reference
to an undefined entry returns 0. Then,

M [v, s, b] =
∑

(u, v) ∈ E(G),
c(u, v) = R

(
(
∑
i∈L

x`(v),i) · y(u,v) ·M [u, s− 1, b]
)

+
∑

(u, v) ∈ E(G),
c(u, v) = B

(
(
∑
i∈L

x`(v),i) · y(u,v) ·M [u, s− 1, b− 1]
)

. J

B Proofs of Section 4

In this section, we adapt the approach in which the method of representative sets is applied
to solve the k-Path problem [20]. More precisely, our objective is to provide a constructive
proof for the following result.

I Lemma 15. There exists a deterministic algorithm that solves Long Blue Path in time
O((1+

√
5

2)r+o(r) · |E(G)| log |E(G)|).

In light of Lemma 3, once we have Lemma 15 at hand, we directly obtain the following
theorem.

I Theorem 16. There exists a deterministic algorithm that solves Max-Duo PSM in time
O((1+

√
5

2)2k+o(k) · n4 log n) = O(6.855k · n4 log n).

Next, we focus on the proof of Lemma 15. To this end, let (G, c, `, k, r) be an instance
of Long Blue Path. Without loss of generality, we can assume that the image of ` is a
subset of [|V (G)|] and that |V (G)| ≤ |E(G)|. Here, a p-set is a set of size p. To describe our
algorithm, we need to present the definition of a representative family.

I Definition 27 ([20]). Given a universe U and a family S of p-subsets of U , we say that a
subfamily Ŝ ⊆ S t-represents S if for every pair of sets X ∈ S, and Y ⊆ U \X of size t− p,
there exists a set X̂ ∈ Ŝ such that X̂ ∩ Y = ∅.

The papers [20] and [25] present an algorithm, to which we refer as RepAlg, that given a
universe U and a family S of p-subsets of U , computes a subfamily Ŝ ⊆ S of size S(|U |, t, p)
that t-represents S in time |S| · T (|U |, t, p), such that the following condition is satisfied:

t∑
p=1
|U | · S(|U |, t, p− 1) · T (|U |, t, p) = (1 +

√
5

2)t+o(t) · |U | log |U |.

We proceed by presenting a procedure that is based on a combination of dynamic
programming and calls to RepAlg. For this purpose, we use a table M that has an entry

CPM 2017

11:16 Parameterized Complexity of Maximum-Duo Preservation String Mapping

M [v, s, b] for all v ∈ V (G), s ∈ [r] and b ∈ [r] ∪ {0}. Let Pv,s,b denote the set of all good
(v, s, b)-paths (see Definition 6). Give a (v, s, b)-path, define `(P) = {`(v) : v ∈ V (P)}.
Moreover, define Sv,s,b = {`(P) : P ∈ Pv,s,b}. The purpose of the entry M [v, s, b] would be
to store a subfamily of Sv,s,b that r-represents it. Next, we show how to compute the entries
of M . Here, the calls to RepAlg correspond to the universe [|E(G)|] and with t = r.

The basis consists of the following cases:
If s = 1 but b 6= 0, then M [v, s, b] = ∅.
Else if s = 1, then M [v, s, b] = {{`(v)}}.

Now, consider an entry M [v, s, b] not computed in the basis. We assume that a reference
to an undefined entry returns an empty set. Then, we first compute the two following
families.
Av,s,b = {X ∪ {`(v)} : (u, v) ∈ E(G), c(u, v) = R, X ∈M [u, s− 1, b], `(v) /∈ X}.
Bv,s,b = {X ∪ {`(v)} : (u, v) ∈ E(G), c(u, v) = B, X ∈M [u, s− 1, b− 1], `(v) /∈ X}.

Accordingly, we compute M [v, s, b] as follows.

M [v, s, b] = RepAlg(Av,s,b ∪ Bv,s,b).

First, note that the entire computation can be performed in time

O(
∑

v∈V (G)

r∑
s=1

r∑
b=0

∑
(u,v)∈E(G)

S(|E(G)|, r, s) · T (|E(G)|, r, s))

= O(
r∑

s=1
r|E(G)| · S(|E(G)|, r, s) · T (|E(G)|, r, s)).

Thus, we have the following observation.

I Observation 7. The table M is computed in time O((1+
√

5
2)r+o(r) · |E(G)| log |E(G)|).

Next, we prove that the computation of M is correct.

I Lemma 28. The computation of M ensures that for all v ∈ V (G), s ∈ [r] and b ∈ [r]∪{0},
M [v, s, b] r-represents Sv,s,b.

Proof. We prove the statement by induction on s. In the basis, where s = 1, it is clear that
M [v, s, b] is simply assigned Sv,s,b, and therefore it also 1-represents Sv,s,b. Now, fix some
s ≥ 2, and suppose that the statement is correct for s− 1. To prove that the statement is
correct for s, choose some v ∈ V (G), b ∈ [r]∪{0}, X ∈ Sv,s,b and Y ⊆ [|E(G)|] \X such that
|Y | = r − s. We need to show that there exists X̂ ∈ M [v, s, b] such that X̂ ∩ Y = ∅. Note
that M [v, s, b] r-represents Av,s,b ∪ Bv,s,b, and therefore is Av,s,b ∪ Bv,s,b contains a set that
is disjoint from Y , so does M [v, s, b]. Thus, it is sufficient that we show that there exists
X̂ ∈ Av,s,b ∪ Bv,s,b such that X̂ ∩ Y = ∅.

Since X ∈ Sv,s,b, there exists a good (v, s, b)-path P such that `(P) = X. Let u be
the vertex on P that precedes v, and let Q be the path obtained by removing v from P .
Note that `(Q) = X \ {`(v)}. Thus, if c(u, v) = R, then Q is a good (u, s− 1, b)-path and
therefore X \ {`(v)} ∈ Su,s−1,b, and otherwise Q is a good (u, s− 1, b− 1)-path and therefore
X \ {`(v)} ∈ Su,s−1,b−1. First, let us assume that X \ {`(v)} ∈ Su,s−1,b. By the inductive
hypothesis, M [u, s − 1, b] r-represents Su,s−1,b, and therefore M [u, s − 1, b] contains a set
Z such that Z ∩ (Y ∪ {`(v)}) = ∅. Thus, Z ∪ {`(v)} ∈ Av,s,b, and we conclude that the
statement is correct. Now, let us assume that X \ {`(v)} ∈ Su,s−1,b−1. By the inductive
hypothesis, M [u, s− 1, b− 1] r-represents Su,s−1,b−1, and therefore M [u, s− 1, b− 1] contains
a set Z such that Z ∩ (Y ∪ {`(v)}) = ∅. Thus, Z ∪ {`(v)} ∈ Bv,s,b, and again we conclude
that the statement is correct. J

C. Komusiewicz, M. Oliveira, and M. Zehavi 11:17

With these lemmas at hand, we are ready to prove Lemma 15.

Proof. By Observation 7 and Lemma 28, we first compute M , ensuring that the condition in
Lemma 28 is satisfied, in time O((1+

√
5

2)r+o(r) · |E(G)| log |E(G)|). Then, we determine that
the input instance is a yes-instance if and only if there exist v ∈ V (G), s ∈ [r] and b ∈ [r] such
that b ≥ k and M [v, s, b] 6= ∅. On the one hand, since for all v ∈ V (G), s ∈ [r] and b ∈ [r],
M [v, s, b] ⊆ Sv,s,b, it is clear that if we accept, the input instance is indeed a yes-instance.
On the other hand, if the input instance is a yes-instance, then there exist v ∈ V (G), s ∈ [r]
and b ∈ [r] such that b ≥ k and Sv,s,b 6= ∅. Then, since M [v, s, b] 0-represents Sv,s,b, it holds
that M [v, s, b] 6= ∅, and therefore we accept. J

C Proofs of Section 5

Proof of Theorem 23. We first show the running time to construct the kernel.

I Proposition 29. For each S ∈ {A, B}, |CS | = O(k3) and CS can be constructed in time
O(|Σ|2 · n) + O(k3n).

Proof. By assumption |rare(S)| ≤ 4k. Additionally, for each i, the ball Bk(i) has size at
most 2k + 1. Finally, for each duo (i, i + 1) that is rare for S, the set F (S, i, i + 1) has at
most (2k − 1)(2k + 1) duos. Therefore, |CS | ≤ 4k(2k + 1) + 4k(2k − 1)(2k + 1) = O(k3).

Now let us analyze the time to construct CS . First, the construction of the sets rare(S)
and rare(S) takes time O(|Σ|2 · n), since we just need to count for each length-two string
ab ∈ Σ × Σ, the number of times n(S, a, b) that ab occurs in S and the number of times
n(S, a, b) that ab occurs in S. Now, for each position i ∈ {1, ..., n − 1}, we add (i, i + 1)
to rare(S) if S[i]S[i + 1] = ab and n(S, a, b) ≤ n(S, a, b). Analogously, we add (i, i + 1) to
rare(S) if S[i]S[i + 1] = ab and n(S, a, b) ≤ n(S, a, b).

Now, the construction of the set Roots(S, i, i + 1) according to Algorithm 1 takes
time O(k2 · n). Since Roots(S, i, i + 1) ≤ 2k − 1, and by assumption |rare(S)| ≤ 4k, the
construction of F (S, i, i + 1) also takes time O(k2 · n). Analogously, the construction of
F (S, i, i + 1) takes time O(k2 · n). Therefore, the construction of CS takes time at most
O(|Σ|2 · n) + O(k3 · n). J

I Theorem 23. Given an instance I = (A, B, k) of Max-Duo PSM, one can construct
in time O(|Σ|2 · n + k3 · n) an instance I ′(A′, B′, k) of Max-Duo PSM with |A′| and |B′|
bounded by O(k3) such that I is a yes-instance if and only if I ′ is a yes-instance.

Proof. First, if some map m of A into B preserves a block X of size k, then (A, B, k) is a
yes-instance for Max-Duo PSM and we can output in O(1) time an equivalent instance of
constant size. Note that this condition can be verified in time O(n) by solving the Longest
Common Substring problem for A and B.

Second, if rare(A) ≥ 4k or rare(B) ≥ 4k, then (A, B, k) is a yes-instance for Max-Duo
PSM, and we can output in O(1) time an equivalent instance of constant size.

Now since no map preserves a block of size k, and if both rare(A) < 4k and rare(B) < 4k,
then by Lemma 22, the pair (CA, CB) constructed according to Equation 1 is complete for
(A, B, k). Additionally, by Proposition 29, |CA| = |CB | = O(k3), and both CA and CB can
be constructed in time O(|Σ| · n + k3 · n).

Since the complete pair (CA, CB) constructed has size at most O(k3), we can apply
Theorem 17 to construct in time O(k3) an instance (A′, B′, k) for Max-Duo PSM of size
O(k3) such that (A′, B′, k) is a yes-instance if and only if (A, B, k) is a yes-instance. Therefore,
the overall time to construct (A′, B′, k) is upper-bounded by O(|Σ|2 · n + k3 · n). J

CPM 2017

	Introduction
	Reduction to a Path Finding Problem
	A Randomized Algorithm based on Narrow Sieves
	Deterministic Algorithm: Representative Sets
	A Cubic Problem Kernel
	Proofs of Section 3
	Proofs of Section 4
	Proofs of Section 5

