Lempel-Ziv Compression in a Sliding Window

Philip Bille*!, Patrick Hagge Cording?, Johannes Fischer®, and
Inge Li Ggrtzt*

1 Technical University of Denmark, DTU Compute, Lyngby, Denmark
phbi@dtu.dk

2 Technical University of Denmark, DTU Compute, Lyngby, Denmark
phaco@dtu.dk

3 Technische Universitit Dortmund, Department of Computer Science,
Dortmund, Germany
johannes.fischer@cs.tu-dortmund.de

4 Technical University of Denmark, DTU Compute, Lyngby, Denmark
inge@dtu.dk

—— Abstract

We present new algorithms for the sliding window Lempel-Ziv (LZ77) problem and the approx-
imate rightmost LZ77 parsing problem.

Our main result is a new and surprisingly simple algorithm that computes the sliding window
LZ77 parse in O(w) space and either O(n) expected time or O(nloglogw + zloglog o) determ-
inistic time. Here, w is the window size, n is the size of the input string, z is the number of
phrases in the parse, and o is the size of the alphabet. This matches the space and time bounds
of previous results while removing constant size restrictions on the alphabet size.

To achieve our result, we combine a simple modification and augmentation of the suffix tree
with periodicity properties of sliding windows. We also apply this new technique to obtain an
algorithm for the approximate rightmost LZ77 problem that uses O(n(log z +1loglogn)) time and
O(n) space and produces a (1 + €)-approximation of the rightmost parsing (any constant € > 0).
While this does not improve the best known time-space trade-offs for exact rightmost parsing,
our algorithm is significantly simpler and exposes a direct connection between sliding window
parsing and the approximate rightmost matching problem.

1998 ACM Subject Classification E.4 Coding and Information Theory, E.1 Data Structures,
F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Lempel-Ziv parsing, sliding window, rightmost matching

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.15

1 Introduction

The Lempel-Ziv parsing (LZ77) [36] of a string is a key component in data compression,
detecting regularities in strings, pattern matching, and string indexing. LZ77 is the basis
for several popular compression tools such as gzip and 7zip, and is shown to compress well
under certain measures of compressibility [21].

In general terms, given an input string S of length n, the LZ77 parsing divides S into
z substrings f1fa... f,, called phrases, in a greedy left-to-right order. The ith phrase f;

* Supported by the Danish Research Council (DFF — 4005-00267, DFF — 1323-00178).
t Supported by the Danish Research Council (DFF — 4005-00267).
¥ Supported by the Danish Research Council (DFF — 4005-00267, DFF — 1323-00178).

© Philip Bille, Patrick Hagge Cording, Johannes Fischer, and Inge Li Gortz;
37 licensed under Creative Commons License CC-BY
28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kérkkéinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 15; pp. 15:1-15:11

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2

Lempel-Ziv Compression in a Sliding Window

starting at position p; is either (a) the first occurrence of a character in S or (b) the longest
substring that has at least one occurrence starting to the left of p;. To compress S, we can
then replace each phrase f; of type (b) with a pair (r;,;) such that r; is the distance from
p; to the start of the previous occurrence, and [; is the length of the previous occurrence.
(This is actually the LZ77-variant of Storer and Szymanski [33]; the original one [36] adds a
character to each phrase so that it outputs t¢riples instead of tuples.)

Computing the LZ77 parse is a very well-studied problem. The simplest way to compute
the parse is to build an index for the input string, and scan the string left-to-right looking
for the longest prefix of the current suffix occurring to the left of the current position. Using
a suffix tree to index the string this yields O(n) time and space algorithm. Research on LZ77
parsing algorithms has since branched into practical and space-efficient computation [4, 12,
14, 16, 17, 19, 20, 22, 27, 30], parallel [31] and external computation [18], online parsing [28,
29, 32, 35|, approximation of the parse [10], and algorithms that find the rightmost occurrence
of a phrase [1, 8].

Almost all of the existing algorithms maintain an index of the entire input string, whereas
almost all practical solutions only maintain a short window of length w, for some parameter
w, of the input string near the current position in the string. This produces a sliding window
LZ77 parse [2, 33] that has the property that a previous occurrence of a phrase starts no
longer than w characters away from the current position. This limits the number of potential
longest matches of a phrase to at most w and also reduces the number of bits needed to
encode the reference to f;. Our main result is a new technique for indexing a sliding window.
Using the technique we obtain an algorithm for LZ77 sliding window parsing that improves
the previous best known time and space bounds for integer alphabets (and matches the
known bounds for constant alphabets). The algorithm is surprisingly simple.

We then turn our heads to rightmost LZ77 parsing. The greedy LZ77 parse is optimal
in terms of the number of phrases [6]. However, if we use variable length encoding of the
phrases we may reduce the number of bits needed to encode each phrase. By choosing to
reference the rightmost occurrence for each phrase we minimize the number of bits needed
to encode the greedy LZ77 parse. Though several efficient algorithms for computing the
rightmost parse are known, most require highly non-trivial algorithmic techniques. As
an interesting application of our technique for sliding window LZ77 parsing, we obtain a
very simple efficient approximate rightmost parsing algorithm. Interestingly, this algorithm
exposes a direct connection between sliding window parsing and the approximate rightmost
matching problem.

In the remainder of this section we will formally state the problems, our results, and
discuss previous work.

1.1 Sliding Window Parsing

Given a parameter w, the sliding window LZ77 parse (SWLZ77) of a string S is the LZ77
parse with the added requirement that the previous occurrence of a phrase f; starts within
distance at most w from the start of f;. To limit memory consumption, the SWLZ77 parse
is used in most compression tools based on LZ77 in practice.

Fiala and Greene [9] and Larsson [24] show how to efficiently maintain the suffix tree of a
sliding window of size w. This immediately leads to an algorithm for computing the SWLZ77
parse in O(n) time and O(w) space. However, the algorithms are based on McCreight’s [25]
and Ukkonen’s [34] suffix algorithms, respectively, and thus assume that the size of the
alphabet is constant. (The same restriction on the alphabet size holds for the w-truncated
suffiz tree by Na et al.[26].) Furthermore, the algorithms require non-trivial modifications of

P. Bille, P. H. Cording, J. Fischer, and I. L. Ggrtz

the classic suffix tree algorithms and are thus quite complicated. In practice, a hash table is
used for strings in the dictionary, often sacrificing optimality for speed (see e.g. [23] for a
survey on this).

In this paper we show the following result.

» Theorem 1. Let S be a string of length n over an alphabet of size o. Given a parameter
w, we can compute the sliding window Lempel-Ziv parse in

(i) O(w) space and O(n) expected time, or

(i) O(w) space and O(Zsort(w,o) + zloglogo) deterministic worst-case time.
Here, z is number of phrases in the parsing, and sort(w, o) is the time for sorting w characters
from an alphabet of size o.

Hence, compared to the previous bounds, Theorem 1(i) matches the previous space
bounds while achieving linear expected time and with no restrictions on the alphabet size. If
we require a deterministic bound, Theorem 1(ii) incurs a small overhead. Plugging in the
currently fastest deterministic sorting algorithm [15], which uses O(w loglogw) time to sort
w characters from an arbitrary alphabet, the bound becomes O(nloglogw + zloglog o). We
note that the additive overhead of O(zloglog o) is O(n) for most combinations of o, n, and
z.

The main technical challenges in the result are restricting the search for a previous
occurrence to a dynamic window and supporting searches for self-referential phrases of length
> w in O(w) space. To achieve this, we present a simple modification and augmentation of
suffix trees, which we call w-sliding window trees, that supports linear time searching within
a window and show how to exploit periodicity properties of windows to compactly search
for long phrases in O(w) space. However, any text indexing data structure that supports
basic suffix tree navigation operation can replace the w-sliding window tree in our solution if
different time-space trade-offs are required.

1.2 Approximate Rightmost Parsing

Let #; denote the smallest possible choice of reference r;, i.e., 7; is the distance to rightmost
substring matching p; that begins before p; in S. If r;, = 7#;, ¢ = 1,..., 2 the parsing is
rightmost and if 7; < r; < ¢ 7; for some ¢ > 1 the parsing is c-rightmost. The rightmost
parsing problem is to compute the rightmost parsing, and the approrimate rightmost parsing
problem is to compute a c-rightmost parsing for some ¢ > 1.

Ferragina et al. [8] present an algorithm for the rightmost parsing problem with running
time O(n(1+4 —2£2_)) and using O(n) space. Recently, this was improved to O(n(1+ —“22)

loglogn /log n

time and O(nlogo) bits of space by Belazzougui and Puglisi [1]. Prior to these results,
Crochemore et al. [5] presented, to the best of our knowledge, the only approximate rightmost

parsing algorithm. Their algorithm runs in O(nlogn) time and O(n) space and it finds the
rightmost equal-cost position (REP) for each phrase in the greedy LZ77 parse. The REP for
a phrase f; is some occurrence for which r; requires the same number of bits to encode as
7. If 7; is a power of 2 the algorithm finds an occurrence where r; < 27; — 1, i.e., roughly
speaking their algorithm is producing a 2-rightmost parsing.

All of the above solutions require several highly non-trivial components to achieve their
bounds. We show how our solution to the Lempel-Ziv sliding window problem immediately
leads to an efficient approximate rightmost parsing algorithm summarized in the following
theorem.

15:3

CPM 2017

15:4

Lempel-Ziv Compression in a Sliding Window

..Jcbabcabdabcabca...

w %

(a) (b)

Figure 1 (a) The w-sliding window tree for window size w = 8. Text positions at the leaves are
relative to the end e of the previous sliding window, implying they must be incremented by e to get
absolute positions. (b) Parsing with w-sliding window trees 7" and T” for blocks b and b'.

» Theorem 2. Let S be a string of length n. For any ¢ > 0 we can compute a (1 + €)-
rightmost Lempel-Ziv parsing in O(nlog z 4+ nloglogn) time and O(n) space, where z is the
number of phrases in the parse.

While our result does not improve the best known trade-offs for rightmost parsing, the
algorithm is significantly simpler. It applies our new technique of combining w-sliding window
trees and periodicity properties and thereby exposes a direct connection between sliding
windows and approximate rightmost matching problems.

2 Lempel-Ziv in a Sliding Window

We now show Theorem 1. Throughout the paper, let S be a string of length n over an
alphabet of size 0. We partition S into blocks of size w and parse S from left to right. For
these blocks we store a special suffix tree, which we call a w-sliding window tree.

» Definition 3 (The w-sliding window tree). The w-sliding window tree of a block is the
compact trie of all length w strings starting in the block. Each leaf stores all starting positions
of the substring it represents. For each edge e in the w-sliding window trees we store the
minimum starting position, min(e), and the maximum starting position, max(e), stored in
all leaves below it. The w-sliding window tree at position ¢ is the w-sliding window tree for
the block starting at position i.

See Figure 1(a) for an example of a w-sliding window tree. We have that the w-sliding
window uses O(w) space. Also, given the suffix tree of the string of length 2w starting at
position 4, we can easily build w-sliding window tree starting at position 7 in O(w) time by
truncating all suffixes to length w.

While showing Theorem 1 in the following sections, we will also show the following Lemma
that we will need for our approximate rightmost matching algorithm. Given two indices 4
and j in S, let lep(i, 7) denote the length of the longest common prefix of S[i, n| and S[j, n].

» Lemma 4. Given two w-sliding window trees at position x and x + w, respectively, we
can find ¢ = max;_,<j<ilep(i,j) for any i € [vr + w,x + 2w) in O(L) time (assuming the
suffiz-trees support constant-time top-down-traversals).

P. Bille, P. H. Cording, J. Fischer, and I. L. Ggrtz

For simplicity, we first consider the case where the length of each phrase is at most w,
and then extend the result to handle arbitrary length phrases.

2.1 Bounded Phrase Length

We first show how to find longest matches if the length of each phrase is at most w. We
partition S into blocks of size w and parse S from left-to-right. We only maintain the last
two blocks in memory.

2.1.1 Parsing

We implement the sliding window parsing using the w-sliding window trees as follows. See
also Figure 1(b). Suppose we have parsed the first i — 1 characters of .S and currently have
the w-sliding window trees T' and T’ for the last two blocks b and b’ stored. To compute
the phrase starting at position ¢, we traverse T and 7" top-down according to the substring
starting at position ¢. In T', we compare ¢ to max(e) each time we follow edge e. If max(e) is
within the window (if max(e) > ¢ — w) we continue the search and otherwise we stop the
search. If we reach a leaf we also stop. When the search stops, we output max(e) of the
previous edge e as the starting position of the longest match in T. In 7" we compare with
min(e) in the same fashion. That is, we only continue the search if min(e) is smaller than
i. We output min(e) of the previous edge e as the starting position of the longest match in
T’. We return the maximum of the longest matching path found in 7" and 7" as the longest
matching substring within the window.

2.1.2 Correctness

We argue that the algorithm correctly finds a longest match. A longest match within the
window must start in one of the two blocks b or &’. Since we only continue the search in T as

long as max(e) is in the window, the match that we found starts at a position in the window.

Similarly for 7".

2.2 Unbounded Phrase Length

We now consider the general case of unbounded phrase length and show how to extend the
solution from the previous section to handle this case by exploiting a periodicity property of
the sliding window [3].

Given a w-sliding window tree we now might reach a leaf, from where we need to continue
the matching further. If there is only one substring stored at the leaf we can simply continue
matching the corresponding substrings in S until the phrase ends. Unfortunately, we may
have multiple strings stored at a leaf and thus we cannot afford naively matching against
these.

We modify searching for longest match starting at position ¢ as follows. We match in the
w-sliding window trees T and T” just as before. If we reach a leaf in T we pick the maximum
starting position z stored in the leaf (x = max(e) if e is the incoming edge) and continue
matching from position ¢ +w and x + w until we get a mismatch. If we reach a leaf in 77 we
pick the minimum starting position stored in the leaf (using min(e)) and continue matching
in the same fashion.

15:5

CPM 2017

15:6

Lempel-Ziv Compression in a Sliding Window

2.2.1 Correctness and Analysis

To show that the modification works correctly we will show the following. Let f; be a phrase
of length > w starting at position p;. If there are multiple strings in the w-sliding window
tree that start in the window S[p; — w, p; — 1] and match the first w characters of f;, then
all of these strings can be extended to longest matches with f;. In particular, since the
algorithm chooses one of these string to compare against (the maximum or minimum such
string) this implies that the algorithm is correct.

We need the following lemma.

» Lemma 5 (Breslauer and Galil [3], Lemma 3.1). Let P and S be strings such that S contains
at least three occurrences of P. Let t1 < to < --- <ty be the locations of all occurrences of P
in S and assume that tiyo —t; < |P|, fori=1,...,h—2 and h > 3. Then, this sequence
forms an arithmetic progression with difference d = t;41 —t;, fori=1,...,h —1, that is
equal to the period length of P.

Using Lemma 5 we show the following result.

» Lemma 6. Assume we reach a leaf in the w-sliding window tree T (or T') when matching
the phrase starting at p;, and that there are k > 2 strings that are associated with the leaf
and start in the window S[p; — w,p; — 1]. Let t; < --- <t} be the starting positions of the
strings. Then lcp(ps,t;) =1 forall j=1,... k.

Proof. The starting positions ¢, ..., ¢ correspond to starting positions of occurrences of
the w-length substring S[p;, p; + w — 1]. Since they all start in the window S[p; — w, p; — 1]
we have p; —w <t; <p; forall j =1,... k. Therefore tj;o —t; <wforall 1 <j<k—2
and also p; — tx_1 < w, and it follows from Lemma 5 that the sequence ty,ts,...,tk, p;

forms an arithmetic progression, i.e., the substring S[p;, p; + w — 1] is periodic with period
length d = p; — tx. The suffix S[p;,n] starts with » > 1 whole repetitions of the period
followed by possibly a prefix of the period of length r’ < d. Let I; = rd + 7’. All the suffixes
S[t1,n], ... S[tk,n] start with strictly more than r repetitions of the period. Therefore, they
all match with S[p;, n] up to position p; +I; — 1. Thus, continuing matching from any of
these when we reach the leaf in T will give us the correct answer. The proof for the case
where we reach a leaf in 7" is similar. |

In summary, this proves that the algorithm finds the longest match and thus correctly
computes the SWLZ77 parse.

2.3 Implementation and Analysis

The total space for the two w-sliding window trees stored at any time is O(w). Building
the w-sliding window trees requires building a suffix tree of size 2w. If the alphabet size is
polynomial (o = n°M) we can build all [n/w] suffix trees in total O(n) worst-case time [7].
If the alphabet size is larger we first hash to a polynomial sized alphabet and then build the
suffix trees. This takes O(n) expected time. Given the suffix tree for a 2w length substring we
construct the w-sliding window tree in O(w) time and use perfect hashing at each node [13]
to index the first characters of outgoing edges and thus enable linear time matching (building
the perfect hash tables takes expected O(w) time). This concludes the proof of Lemma 4.

In total we get O(n) expected time for constructing all w-sliding window trees, and O(n)
time for searching for all phrases. This sums to O(n) expected time as desired. This proves
Theorem 1(i).

P. Bille, P. H. Cording, J. Fischer, and I. L. Ggrtz

To get deterministic bounds of Theorem 1(ii), we can instead build the suffix trees using
Fischer and Gawrychowski [11]. These build suffix trees in sorting time complexity and
support searches for a pattern of length m in O(m + loglog o) time. We search for z phrases
of total length n, and hence in total we use O(Zsort(w, o) 4 zloglog o) time. In summary,
this proves Theorem 1.

3 Approximate Rightmost Matching

We now show Theorem 2.

3.1 Algorithm

We assume that we have the leftmost LZ77 parse (defined analogously to the rightmost parse,
see beginning of Section 1.2) of the input string. If not we can easily compute it within the
bounds of Theorem 2. Our algorithm updates the references of the phrases in a left-to-right
order.

For levels i = 1,...,log(;n we build the w-sliding window trees for S+ e (5 +
DA +e)forj=0,..., 775
trees of size (1 + ¢€)? spaced by (1 + ¢€)? characters (remember € > 0 is an arbitrary constant).

— 1. That is, for a fixed ¢, we compute all the w-sliding window

» Definition 7 (Covering w-sliding window tree). Given a position k in S such that j(1+¢€)* <
k< (j+1)(1+) for some i and j, we say that the w-sliding window tree of the substring
S[H(1+¢€), (j+1)(1+ €)] is covering k on level i. We denote this tree by T; k.

We maintain references to the w-sliding window trees such that given k and 7 we can find
the w-sliding window tree on level i covering k in constant time.

To update a reference of a phrase f; beginning at position p; to be the (1 + €)-rightmost,
we search the w-sliding window trees T}, _(11¢): and Tjp,, ¢ = 1,...,log . n, for the
occurrence of f; closest to (but not after) p;. We then update the phrase f;. The search is
done as described in Lemma 4.

The order in which the w-sliding window trees are searched is a binary search over the
levels. If an occurrence is found at level ¢ we continue the search on the smaller levels. If
not, we continue the search on the bigger levels.

We assumed that all w-sliding window trees were built as the first step of the algorithm,
but we can restrict the algorithm to only build the w-sliding window trees that are in fact
needed and then discard them again when the algorithm progresses to a position not covered
by it. In the proof of Theorem 2 we show that this improves the total time used to construct
the w-sliding window trees from O(nlogn) to O(nlog z) and the space usage to O(n).

3.2 Analysis

In this section we prove Theorem 2. We start by showing the approximation guarantees of
our algorithm and then we analyze its space and time complexity.

3.2.1 Approximation

Here we prove that our algorithm produces a (1 + €)-rightmost parsing.

» Lemma 8. Let f1,..., [, = (r1,l1),...,(rs, 1) be the parsing produced by our algorithm.
For k=1,...,z we have that v, < (1 + €)fg, i.e., our algorithm produces a (1 + €)-rightmost
parsing.

15:7

CPM 2017

15:8

Lempel-Ziv Compression in a Sliding Window

Level log; . n

Level log; . n —logy, . 2

Level 1

Figure 2 Suppose the hierarchy of w-sliding window trees is represented by a (1 + €)-ary tree

n

as shown in this figure. Consider the case where all phrases are exactly of size Z. In this case

all w-sliding window trees of size (1 + ¢)'°81+¢ " ~1%814+<* = (represented by the nodes on level
log, . n —log, . z) have to be built. Furthermore, all trees represented by ancestor nodes (in the
shaded part of the tree) are also built. The total time to do this is O(nlog z). Now suppose that all
w-sliding window trees built on the levels from 1 to log, . n —log, . z — 1 form disjoint paths in
the tree as shown in the figure. We then have to build each tree represented by each node, but the
sizes of these are exponentially decreasing as the levels decrease, and the total work therefore sums

to O(n).

Proof. Consider a phrase fj starting at position pi. Suppose the search for an occurrence of
fr terminates on level . This means that there is an occurrence in 7} ,,, but not in T;_; ,, .
Since the algorithm disregards matches starting before pj, — (1 + €)* we therefore have that
(14 €)'t < <7k < (1+¢€)" from which it follows that rp < (1 + €)7y. <

3.2.2 Space

The space used by our algorithm is dominated by the w-sliding window trees we construct.
Once we are done using a w-sliding window tree we can discard it. When processing f; we
only need the w-sliding window trees covering p; and p; — (1 + €)* for every level i. So at

point in time the total size of the maintained w-sliding window trees is bounded by

an
S8+ O((1 4 €)%) = O(n), hence the space usage by our algorithm is O(n).

3.2.3 Time

First we analyze the time required for constructing the w-sliding window trees. Recall that a
suffix tree is only constructed if we actually need to access it. For each phrase beginning we
may have to access loglog; , . n w-sliding window trees, however some of these may be reused.
Our algorithm parses the string left to right, so if a w-sliding window tree is covering both
p; and p;+1 we only need to construct it once since we process f;11 immediately after f;.
In the worst case, we may be required to build all w-sliding window trees on level
log, . n —logy . z, meaning that all possible w-sliding window trees on level 1 +log;, n —
log; ;. z to log; . n will also have to be built. This requires O(nlog z) time since the total
size of the w-sliding window trees on any level is O(n) and the number of levels is log; , 2.
In the worst case the w-sliding window trees on the remaining levels are not subject to reuse.
On level log; . n — log, . z the total size of the w-sliding window trees is O(n). On the
previous level we also need to build at most z w-sliding window trees but the total size of
these will be O(n/(1 + €)). Therefore the total size of the w-sliding window trees on the

P. Bille, P. H. Cording, J. Fischer, and I. L. Ggrtz

lower levels is at most Ziozgl” 0B 2 n/(1+ ¢€)® = O(n). The total time for building the
the w-sliding window trees is thus O(nlogz + n) = O(nlog z) time. See also Figure 2.

We now look at the time it takes to search the w-sliding window trees. Consider phrase
fi and assume that we have all the w-sliding window trees covering p;. We binary search for
the w-sliding window tree having an occurrence of f; as close to p; as possible. Since there
are log; . n levels this takes O(| f|loglogn) time, resulting in a total of >°7_, | fi|loglogn =
O(nloglogn) time for this step. In total our algorithm uses O(n(log z + loglogn)) time.
This concludes the proof of Theorem 2.

—— References

1 Djamal Belazzougui and Simon J. Puglisi. Range predecessor and Lempel-Ziv parsing.
In Robert Krauthgamer, editor, Proceedings of the 27th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2016), pages 2053-2071. SIAM, 2016. doi:10.1137/1.
9781611974331.ch143.

2 Timothy C. Bell. Better OPM/L text compression. IEEE Trans. Commun., 34(12):1176—
1182, 1986. doi:10.1109/TCOM. 1986.1096485.

3 Dany Breslauer and Zvi Galil. Real-time streaming string-matching. ACM Trans. Al-
gorithms, 10(4):22:1-22:12, 2014. doi:10.1145/2635814.

4 Maxime Crochemore, Lucian Ilie, and William F. Smyth. A simple algorithm for comput-
ing the Lempel Ziv factorization. In James A. Storer and Michael W. Marcellin, editors,
Proceedings of the 2008 Data Compression Conference (DCC 2008), pages 482-488. IEEE
Computer Society, 2008. doi:10.1109/DCC.2008.36.

5 Maxime Crochemore, Alessio Langiu, and Filippo Mignosi. The rightmost equal-cost po-
sition problem. In Ali Bilgin, Michael W. Marcellin, Joan Serra-Sagrista, and James A.
Storer, editors, Proceedings of the 2013 Data Compression Conference (DCC 2013), pages
421-430. IEEE, 2013. doi:10.1109/DCC.2013.50.

6 Maxime Crochemore, Alessio Langiu, and Filippo Mignosi. Note on the greedy parsing
optimality for dictionary-based text compression. Theor. Comput. Sci., 525:55-59, 2014.
doi:10.1016/j.tcs.2014.01.013.

7 Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the sorting-complexity
of suffix tree construction. J. ACM, 47(6):987-1011, 2000. doi:10.1145/355541.355547.

8 Paolo Ferragina, Igor Nitto, and Rossano Venturini. On the bit-complexity of Lempel-Ziv
compression. SIAM J. Comput., 42(4):1521-1541, 2013. doi:10.1137/120869511.

9 Edward R. Fiala and Daniel H. Greene. Data compression with finite windows. Commun.
ACM, 32(4):490-505, 1989. doi:10.1145/63334.63341.

10 Johannes Fischer, Travis Gagie, Pawel Gawrychowski, and Tomasz Kociumaka. Approxim-
ating LZ77 via small-space multiple-pattern matching. In Nikhil Bansal and Irene Finocchi,
editors, Proc. of the 23rd Annual European Symposium on Algorithms (ESA 2015), volume
9294 of LNCS, pages 533-544. Springer, 2015. doi:10.1007/978-3-662-48350-3_45.

11 Johannes Fischer and Pawel Gawrychowski. Alphabet-dependent string searching with
wexponential search trees. In Ferdinando Cicalese, Ely Porat, and Ugo Vaccaro, editors,
Proc. of the 26th Annual Symp. on Combinatorial Pattern Matching (CPM 2015), volume
9133 of LNCS, pages 160—-171. Springer, 2015. doi:10.1007/978-3-319-19929-0_14.

12 Johannes Fischer, Tomohiro I, and Dominik Koéppl. Lempel-Ziv computation in small
space (LZ-CISS). In Ferdinando Cicalese, Ely Porat, and Ugo Vaccaro, editors, Proc. of
the 26th Annual Symposium on Combinatorial Pattern Matching (CPM 2015), volume 9133
of LNCS, pages 172-184. Springer, 2015. doi:10.1007/978-3-319-19929-0_15.

13 Michael L. Fredman, Jdnos Komlds, and Endre Szemerédi. Storing a sparse table with O(1)
worst case access time. J. ACM, 31(3):538-544, 1984. doi:10.1145/828.1884.

15:9

CPM 2017

http://dx.doi.org/10.1137/1.9781611974331.ch143
http://dx.doi.org/10.1137/1.9781611974331.ch143
http://dx.doi.org/10.1109/TCOM.1986.1096485
http://dx.doi.org/10.1145/2635814
http://dx.doi.org/10.1109/DCC.2008.36
http://dx.doi.org/10.1109/DCC.2013.50
http://dx.doi.org/10.1016/j.tcs.2014.01.013
http://dx.doi.org/10.1145/355541.355547
http://dx.doi.org/10.1137/120869511
http://dx.doi.org/10.1145/63334.63341
http://dx.doi.org/10.1007/978-3-662-48350-3_45
http://dx.doi.org/10.1007/978-3-319-19929-0_14
http://dx.doi.org/10.1007/978-3-319-19929-0_15
http://dx.doi.org/10.1145/828.1884

15:10

Lempel-Ziv Compression in a Sliding Window

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Keisuke Goto and Hideo Bannai. Space efficient linear time Lempel-Ziv factorization for
small alphabets. In Ali Bilgin, Michael W. Marcellin, Joan Serra-Sagrista, and James A.
Storer, editors, Proceedings of the 2014 Data Compression Conference (DCC 2014), pages
163-172. IEEE, 2014. doi:10.1109/DCC.2014.62.

Yijie Han. Deterministic sorting in O(nloglogn) time and linear space. In John H. Reif],
editor, Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC
2002), pages 602-608. ACM, 2002. doi:10.1145/509907.509993.

Juha Kérkkédinen, Dominik Kempa, and Simon J. Puglisi. Lightweight Lempel-Ziv parsing.
In Vincenzo Bonifaci, Camil Demetrescu, and Alberto Marchetti-Spaccamela, editors, Proc.
of the 12th International Symposium on Ezperimental Algorithms (SEA 2013), volume 7933
of LNCS, pages 139-150. Springer, 2013. doi:10.1007/978-3-642-38527-8_14.

Juha Kérkkéainen, Dominik Kempa, and Simon J. Puglisi. Linear time Lempel-Ziv factor-
ization: Simple, fast, small. In Johannes Fischer and Peter Sanders, editors, Proceedings
of the 24th Annual Symposium on Combinatorial Pattern Matching (CPM 2013), volume
7922 of LNCS, pages 189-200. Springer, 2013. doi:10.1007/978-3-642-38905-4_19.
Juha Kérkkéinen, Dominik Kempa, and Simon J. Puglisi. Lempel-Ziv parsing in external
memory. In Ali Bilgin, Michael W. Marcellin, Joan Serra-Sagrista, and James A. Storer,
editors, Proceedings of the 2014 Data Compression Conference (DCC 2014), pages 153-162.
IEEE, 2014. doi:10.1109/DCC.2014.78.

Dominik Kempa and Simon J. Puglisi. Lempel-Ziv factorization: Simple, fast, practical.
In Peter Sanders and Norbert Zeh, editors, Proceedings of the 15th Meeting on Algorithm
Engineering and Experiments (ALENEX 2013), pages 103-112. STAM, 2013. doi:10.1137/
1.9781611972931.9.

Dominik Képpl and Kunihiko Sadakane. Lempel-Ziv computation in compressed space
(LZ-CICS). In Ali Bilgin, Michael W. Marcellin, Joan Serra-Sagrista, and James A. Storer,
editors, Proceedings of the 2016 Data Compression Conference (DCC 2016), pages 3—12.
IEEE, 2016. doi:10.1109/DCC.2016.38.

S. Rao Kosaraju and Giovanni Manzini. Compression of low entropy strings with
Lempel-Ziv algorithms. SIAM J. Comput., 29(3):893-911, 1999. doi:10.1137/
S0097539797331105.

Dmitry Kosolobov. Faster lightweight Lempel-Ziv parsing. In Giuseppe F. Italiano, Gio-
vanni Pighizzini, and Donald Sannella, editors, Proceedings of the 40th International Sym-
posium on Mathematical Foundations of Computer Science (MFCS 2015), volume 9235 of
LNCS, pages 432-444. Springer, 2015. doi:10.1007/978-3-662-48054-0_36.

Alessio Langiu. On parsing optimality for dictionary-based text compression — the Zip case.
J. Discrete Algorithms, 20:65-70, 2013. doi:10.1016/j.jda.2013.04.001.

N. Jesper Larsson. Extended application of suffix trees to data compression. In James A.
Storer and Martin Cohn, editors, Proceedings of the 1996 Data Compression Conference
(DCC 1996), pages 190-199. IEEE Computer Society, 1996. doi:10.1109/DCC.1996.
488324.

Edward M. McCreight. A space-economical suffix tree construction algorithm. J. ACM,
23(2):262-272, 1976. doi:10.1145/321941.321946.

Joong Chae Na, Alberto Apostolico, Costas S. Iliopoulos, and Kunsoo Park. Truncated
suffix trees and their application to data compression. Theor. Comput. Sci., 1-3(304):87—
101, 2003. doi:10.1016/50304-3975(03)00053-7.

Enno Ohlebusch and Simon Gog. Lempel-Ziv factorization revisited. In Raffaele Giancarlo
and Giovanni Manzini, editors, Proceedings of the 22nd Annual Symposium on Combinat-
orial Pattern Matching (CPM 2011), volume 6661 of LNCS, pages 15-26. Springer, 2011.
doi:10.1007/978-3-642-21458-5_4.

http://dx.doi.org/10.1109/DCC.2014.62
http://dx.doi.org/10.1145/509907.509993
http://dx.doi.org/10.1007/978-3-642-38527-8_14
http://dx.doi.org/10.1007/978-3-642-38905-4_19
http://dx.doi.org/10.1109/DCC.2014.78
http://dx.doi.org/10.1137/1.9781611972931.9
http://dx.doi.org/10.1137/1.9781611972931.9
http://dx.doi.org/10.1109/DCC.2016.38
http://dx.doi.org/10.1137/S0097539797331105
http://dx.doi.org/10.1137/S0097539797331105
http://dx.doi.org/10.1007/978-3-662-48054-0_36
http://dx.doi.org/10.1016/j.jda.2013.04.001
http://dx.doi.org/10.1109/DCC.1996.488324
http://dx.doi.org/10.1109/DCC.1996.488324
http://dx.doi.org/10.1145/321941.321946
http://dx.doi.org/10.1016/S0304-3975(03)00053-7
http://dx.doi.org/10.1007/978-3-642-21458-5_4

P. Bille, P. H. Cording, J. Fischer, and I. L. Ggrtz

28

29

30

31

32

33

34

35

36

Daisuke Okanohara and Kunihiko Sadakane. An online algorithm for finding the longest
previous factors. In Dan Halperin and Kurt Mehlhorn, editors, Proceedings of the 16th
Annual European Symposium on Algorithms (ESA 2008), volume 5193 of LNCS, pages
696-707. Springer, 2008. doi:10.1007/978-3-540-87744-8_58.

Alberto Policriti and Nicola Prezza. Fast online Lempel-Ziv factorization in compressed
space. In Costas S. Iliopoulos, Simon J. Puglisi, and Emine Yilmaz, editors, Proceed-
ings of the 22nd International Symposium on String Processing and Information Re-
trieval (SPIRE 2015), volume 9309 of LNCS, pages 13-20. Springer, 2015. doi:10.1007/
978-3-319-23826-5_2.

Alberto Policriti and Nicola Prezza. Computing LZ77 in run-compressed space. In Ali
Bilgin, Michael W. Marcellin, Joan Serra-Sagrista, and James A. Storer, editors, Proceed-
ings of the 2016 Data Compression Conference (DCC 2016), pages 23-32. IEEE, 2016.
doi:10.1109/DCC.2016.30.

Julian Shun and Fuyao Zhao. Practical parallel Lempel-Ziv factorization. In Ali Bilgin,
Michael W. Marcellin, Joan Serra-Sagrista, and James A. Storer, editors, Proceedings of
the 2018 Data Compression Conference (DCC 2013), pages 123-132. IEEE, 2013. doi:
10.1109/DCC.2013.20.

Tatiana Starikovskaya. Computing Lempel-Ziv factorization online. In Branislav Rovan,
Vladimiro Sassone, and Peter Widmayer, editors, Proceedings of the 37th International
Symposium on Mathematical Foundations of Computer Science (MFCS 2012), volume 7464
of LNCS, pages 789-799. Springer, 2012. doi:10.1007/978-3-642-32589-2_68.

James A. Storer and Thomas G. Szymanski. Data compression via textural substitution.
J. ACM, 29(4):92879517 1982. doi:10.1145/322344.322346.

Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260, 1995.
doi:10.1007/BF01206331.

Jun-ichi Yamamoto, Tomohiro I, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda.
Faster compact on-line Lempel-Ziv factorization. In Ernst W. Mayr and Natacha Por-
tier, editors, Proceedings of the 31st International Symposium on Theoretical Aspects of
Computer Science (STACS 2014), volume 25 of LIPIcs, pages 675-686. Schloss Dagstuhl —
Leibniz-Zentrum fuer Informatik, 2014. doi:10.4230/LIPIcs.STACS.2014.675.

Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression.
IEEE Trans. Inf. Theory, 23(3):337-343, 1977. doi:10.1109/TIT.1977.1055714.

15:11

CPM 2017

http://dx.doi.org/10.1007/978-3-540-87744-8_58
http://dx.doi.org/10.1007/978-3-319-23826-5_2
http://dx.doi.org/10.1007/978-3-319-23826-5_2
http://dx.doi.org/10.1109/DCC.2016.30
http://dx.doi.org/10.1109/DCC.2013.20
http://dx.doi.org/10.1109/DCC.2013.20
http://dx.doi.org/10.1007/978-3-642-32589-2_68
http://dx.doi.org/10.1145/322344.322346
http://dx.doi.org/10.1007/BF01206331
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.675
http://dx.doi.org/10.1109/TIT.1977.1055714

	Introduction
	Sliding Window Parsing
	Approximate Rightmost Parsing

	Lempel-Ziv in a Sliding Window
	Bounded Phrase Length
	Parsing
	Correctness

	Unbounded Phrase Length
	Correctness and Analysis

	Implementation and Analysis

	Approximate Rightmost Matching
	Algorithm
	Analysis
	Approximation
	Space
	Time

