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Abstract
Important papers have appeared recently on the problem of indexing binary strings for jumbled
pattern matching, and further lowering the time bounds in terms of the input size would now be
a breakthrough with broad implications. We can still make progress on the problem, however, by
considering other natural parameters. Badkobeh et al. (IPL, 2013) and Amir et al. (TCS, 2016)
gave algorithms that index a binary string in O(n+ ρ2 log ρ) time, where n is the length and ρ is
the number of runs, and Giaquinta and Grabowski (IPL, 2013) gave one that runs in O(n+ ρ2)
time. In this paper we propose a new and very simple algorithm that also runs in O(n+ρ2) time
and can be extended either so that the index returns the position of a match (if there is one), or
so that the algorithm uses only O(n) bits of space instead of O(n) words.
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1 Introduction

Since its introduction at the 2009 Prague Stringology Conference [6, 8], the problem of
indexed binary jumbled pattern matching has been discussed in many top conferences and
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19:2 Fast and Simple Jumbled Indexing for Binary RLE Strings

journals. It asks us to preprocess a binary string such that later, given a number of 0s and a
number of 1s, we can quickly report whether there exists a substring with those numbers of
0s and 1s and, optionally, return the position of one such substring or possibly even all of
them. The naïve preprocessing algorithm takes quadratic time but researchers have reduced
that bound to O(n2/ logn) [5, 16], O(n2/ log2 n) [17], O(n2/2Ω(

√
logn/ log logn)) [4, 14] and

finally O(n1.859) with randomization or O(n1.864) without [7].
Researchers have also looked at indexing for approximate matching [9, 10], indexed

jumbled pattern matching over larger alphabets [2, 15], indexing labelled trees and other
structures [9, 11, 12], and how to index faster when the (binary) input string is compressible.
Gagie et al. [12] gave an algorithm that runs in O(g2/3n4/3) when the input is represented
as a straight-line program with g rules, and Badkobeh et al. [3] gave one that runs in
O(n+ ρ2 log ρ) time when the input consists of ρ runs, i.e., maximal unary substrings (we
will denote later as ρ the number of maximal substrings of 1s, for convenience). Giaquinta
and Grabowski [13] gave two algorithms: one runs in O(ρ2 log k + n/k) time, where k is
a parameter, and produces an index that uses O(n/k) extra space and answers queries in
O(log k) time; the other runs in O(n2 log2(w)/w) time, where w is the size of a machine
word. Amir et al. [1] gave an algorithm that runs in O(ρ2 log ρ) time when the input is a
run-length encoded binary string, or O(n+ ρ2 log ρ) time when it is a plain binary string; it
builds an index that takes O(ρ2) words and answers queries in O(log ρ) time, however. Very
recently, Sugimoto et al. [19] considered the related problems of finding Abelian squares,
Abelian periods and longest common Abelian factors, also on run-length encoded strings.

We first review some preliminary notions in Section 2. We present our main result in
Section 3: a new and very simple indexing algorithm that runs in O(n + ρ2) time, which
matches Giaquinta and Grabowski’s algorithm with the parameter k = 1 and is thus tied as
the fastest known when ρ = Ω(n0.5) ∩ o(n0.932) and the smallest straight-line program for
the input has ω(ρ3/n2) rules. For an input string of up to ten million bits, for example, if
the average run-length is three or more then ρ < n0.932. While Giaquinta and Grabowski
found an efficient way to construct the Corner Index of Badkobeh et al. [3], our algorithm
constructs a more direct index and takes only 17 lines of pseudocode, making it a promising
starting point for investigating other possible algorithmic features. In Section 4, for example,
we show how to extend our algorithm to store information that lets us report the position of
a match (if there is one). Finally, in Section 5, we show how we can alternatively adapt it to
use only O(n) bits of space.

2 Preliminaries

Consider a string s ∈ {0, 1}n. We denote by s[i · · · j] the substring of s consisting of the ith
through jth characters, for 1 ≤ i ≤ j ≤ n; if i = j, we can also write simply s[i]. Cicalese
et al. [6, 8] observed that, if we slide a window of length k over s, the number of 1s in the
window can change by at most 1 at each step. It follows that if s[i · · · i+ k − 1] contains x
copies of 1 and s[j · · · j + k− 1] contains z copies of 1 with i ≤ j then, for y between x and z
(notice x could be smaller than, larger than, or equal to z), there is a substring of length k in
s[i · · · j + k − 1] with exactly y copies of 1. This immediately implies the following theorem:

I Theorem 1. Let x and z be the minimum and maximum numbers of 1s in any substring
of length k. There is a substring of length k with y copies of 1 if and only if x ≤ y ≤ z.

By Theorem 1, if we compute and store, for 1 ≤ k ≤ n, the minimum and maximum
numbers of 1s in a substring of s of length k then later, given a number of 0s and a number
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of 1s, we can report in constant time whether there exists a substring with that many 0s
and 1s. For example, if s = 010101110011 then, as k goes from 1 to n = 12, the minimum
and maximum numbers of 1s are 0, 0, 1, 2, 2, 3, 4, 4, 5, 5, 6, 7 and 1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
respectively. Since the fifth numbers in these lists are 2 and 4, we know that there are
substrings of length 5 with exactly 2, 3 and 4 copies of 1, but none with 0, 1 or 5 (or more
than 5, obviously).

Cicalese et al. [9] noted that, if we also store the positions of the substrings with the
minimum and maximum numbers of 1s and a bitvector for s that supports constant time
rank queries, then via binary search in O(logn) time we can find an example of a substring
with any desired numbers of 0s and 1s, called a witness if such a substring exists. (The query
rank(i) returns the number of 1s in s[1 · · · i]; see, e.g., [18] for more details of rank queries
on bitvectors.) For example, suppose we want to find a substring of length 5 with exactly 3
copies of 1 in our example string s. We have stored that there are substrings of length 5 with
2 and 4 copies of 1 starting at positions 1 and 4, respectively, so we know there is a substring
of length 5 with exactly 3 copies of 1 starting in s[1 · · · 4]. We choose b(1 + 4)/2c = 2 and
check how many 1s there are in s[2 · · · 2 + 5− 1 = 6] via two rank queries. In this case, the
answer is 3, so we have found a witness in one step; otherwise, we would know there is a
witness starting in s[3 · · · 4] and we would recurse on that interval.

The same authors noted that in each step, the lists of minimum and maximum numbers
can only stay the same or increment, so we can represent each list as a bitvector of length n
and support access to it using rank queries. For example, the bitvector for the list of minimum
numbers in our example is 001101101011, so rank(i) returns the ith number in the list. Since
an n-bit bitvector takes O(n) bits of space, it follows that we can store our index in O(n) bits
and still support constant-time queries, if we do not want a witness. We note, however, that
even though the input s takes n bits and the resulting index takes O(n) bits, all previous
constructions have used Ω(n) words of workspace in the worst case.

A run in s is a maximal unary substring and the run-length encoding rle(s) is obtained
by replacing each run by a copy of the character it contains and its length. Although ρ is
usually used to denote the number of runs, for convenience, we use it to denote only the
number of runs of 1s – about half its normal value for binary strings – and consider s to
begin and end with (possibly empty) runs of 0s. For example, for our example string the
run-length encoding is 011101110113021200 and ρ = 4 (instead of 9). We denote the lengths
of the runs of 0s and 1s as z[0], . . . , z[ρ] and o[1], . . . , o[ρ], respectively.

3 Basic Indexing

Since finding substrings with the minimum numbers of 1s is symmetric to finding substrings
with the maximum numbers of 1s (e.g., by taking the complement of the string), we describe
how, given a binary run-length encoded string s[1 · · ·n], we can build a table T [1 · · ·n] such
that T [k] = f(k), where f(k) denotes the maximum number of 1s in a substring of s of
length k.

The complete pseudo-code of our algorithm – only 17 lines – is shown as Algorithm 1.
The starting point of our explanation and proof of correctness is the observation that, if
the bit immediately to the left of a substring is a 1, we can shift the substring one bit left
without decreasing the number of 1s; if the first bit of the substring is a 0, then we can
shift the substring one bit right (shortening it on the right if necessary) without decreasing
the number of 1s. It follows that, for 1 ≤ k ≤ n, there is a substring of length at most k
containing f(k) copies of 1 and starting at the beginning of a run of 1s. Since we can remove
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Algorithm 1: Building the index table T of string s.
1 for i = 1, . . . , n do
2 T [i] = 0
3 for i = 1, . . . , ρ do
4 ones = o[i]
5 zeros = 0
6 T [ones] = ones

7 for j = i+ 1, . . . , ρ do
8 ones += o[j]
9 zeros += z[j − 1]

10 if ones > T [ones+ zeros] then
11 T [ones+ zeros] = ones

12 for i = n− 1, . . . , 1 do
13 if T [i] < T [i+ 1]− 1 then
14 T [i] = T [i+ 1]− 1

15 for i = 2, . . . , n do
16 if T [i] < T [i− 1] then
17 T [i] = T [i− 1]

any trailing 0s from such a substring also without changing the number of 1s, there is such a
substring that also ends in a run of 1s. Therefore we have the following lemma:

I Lemma 2. For 1 ≤ k ≤ n, there is a substring of length at most k containing f(k) copies
of 1, starting at the beginning of a run of 1s and ending in a run of 1s.

Applying Lemma 2 immediately yields an O(nρ)-time algorithm: set T [1 · · ·n] to all 0s;
for each position i at the beginning of a run of 1s and each position j ≥ i in a run of 1s, set
T [j − i+ 1] = max(T [j − i+ 1], s[i] + · · ·+ s[j]); finally, because f is non-decreasing, make a
pass over T from T [2] to T [n] setting each T [i] = max(T [i], T [i− 1]). Computing the number
s[i] + · · · + s[j] of 1s in a substring s[i . . . j] starting at the beginning of a run of 1s and
ending in a run of 1s is easy to do from the run-length encoding in amortized constant time.

To speed this preliminary algorithm up to run in O(n+ ρ2) time, we first observe that,
if ` is the length of a substring starting at the beginning of a run of 1s, ending in a run of
1s and containing f(`) copies of 1, and d > ` is the length of a substring starting at the
beginning of a run of 1s and ending at the end of a run of 1s, then f(`) ≥ f(d)− d+ `. (In
fact this is true for any ` and d ≥ `, simply because f(x + 1) ≤ f(x) + 1 for all x.) We
then observe that, for some such d, we have f(`) = f(d)− d+ `. To see why, consider any
substring s[i · · · j] of length ` starting at the beginning of a run of 1s, ending within a run of
1s and containing f(`) copies of 1: let d be the length of the substring starting at s[i] and
ending at the end of the run of 1s containing s[i+ `− 1], so f(`) = f(d)− d+ `.

I Lemma 3. If ` is the length of a substring starting at the beginning of a run of 1s, ending
in a run of 1s and containing f(`) copies of 1, and d > ` is the length of a substring starting
at the beginning of a run of 1s and ending at the end of a run of 1s, then f(`) ≥ f(d)− d+ `.
Furthermore, for some such d, we have f(`) = f(d)− d+ `.

With Lemma 3, we can compute the number s[i]+ · · ·+s[j] of 1s in each substring s[i . . . j]
starting at the beginning of a run of 1s and ending in a run of 1s, in a total of O(n+ρ2) time:



L. Cunha, S. Dantas, T. Gagie, R. Wittler, L. Kowada, and J. Stoye 19:5

again, set T [1 · · ·n] to all 0s; for each position i at the beginning of a run of 1s and each
position j ≥ i at the end of a run of 1s, set T [j−i+1] = max(T [j−i+1], s[i]+· · ·+s[j]); make
a pass over T from T [n− 1] to T [1] setting each T [i] = max(T [i], T [i+ 1]− 1). Computing
the number s[i] + · · ·+ s[j] of 1s in a substring s[i · · · j] starting at the beginning of a run of
1s and ending at the end of a run of 1s is again easy to do from the run-length encoding in
amortized constant time.

Combining Lemmas 2 and 3, we have a complete algorithm for computing T in O(n+ ρ2)
time: set T [1 · · ·n] to all 0s; for each position i at the beginning of a run of 1s and each
position j ≥ i at the end of a run of 1s, set T [j − i+ 1] = max(T [j − i+ 1], s[i] + · · ·+ s[j]);
make a pass over T from T [n− 1] to T [1] setting each T [i] = max(T [i], T [i+ 1]− 1) (which
sets T [`] correctly for every length ` of a substring starting at the beginning of a run of 1s,
ending in a run of 1s and containing f(`) copies of 1); and make a pass over T from T [2] to
T [n] setting each T [i] = max(T [i], T [i− 1]) (which sets every entry in T correctly). Once we
have T , we can convert it into a bitvector in O(n) time. Summarizing our results so far, we
have the following theorem, which we adapt in later sections:

I Theorem 4. Given a binary string s of length n containing ρ runs of 1s, we can build an
O(n)-bit index for constant-time jumbled pattern matching in O(n+ ρ2) time.

Now we examine how our algorithm works on our example s = 010101110011. First we
set all entries of T to 0, then we loop through the runs of 1s and, for each, loop through the
runs of 1s not earlier, computing distance from the start of the first to the end of the second
and the number of 1s between those positions. While doing this, we set T [1] = 1, the number
of 1s from the start to the end of the first run of 1s; T [3] = 2, the number of 1s from the start
of the first run of 1s to the end of the second run of 1s; T [7] = 5, the number of 1s from the
start of the first run of 1s to the end of the third run of 1s; T [11] = 7, the number of 1s from
the start of the first run of 1s to the end of the fourth run of 1s; T [5] = 4, the number of 1s
from the start of the second run of 1s to the end of the third run; etc. When we have finished
this stage, T = [1, 2, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0]. We then make a pass over T from right to left,
setting each T [i] = max(T [i], T [i+ 1]− 1). After this stage, T = [1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 0].
Finally, we make a pass over T from left to right, setting each T [i] = max(T [i], T [i − 1]).
This fills in T [12] and leaves T correctly computed as T = [1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7].

4 Witnessing Index

As described in Section 2, if together with computing the minimum and maximum number
of 1s in a substring of length k for 1 ≤ k ≤ n, we also store the positions of substrings of
length k with those numbers of 1s, and a single bitvector for s, then, together with confirming
that s contains a substring with a given number of 0s and 1s (if it does), we can give the
starting position of such a substring, still in constant time.

In this section, we show how to modify our algorithm from Section 3 to build also a
table P [1..n] such that P [k] is the starting position of a substring of length k containing f(k)
copies of 1s. Computing and storing the starting position of a substring of length k with the
minimum number of 1s is symmetric.

First, notice that during the first stage of Algorithm 1, whenever we set T [k] = f(k), we
have found a substring of length k containing f(k) copies of 1, so we can set P [k] at the
same time. Now consider the second stage of the algorithm, in which we make a right-to-left
pass over T setting T [i] = max(T [i], T [i + 1] − 1) for 1 ≤ i ≤ n − 1. When we start this
stage, for every positive entry in T we have set the corresponding entry in P . Therefore, by
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induction, whenever we set T [i] = T [i+ 1]− 1, we have P [i+ 1] set to the starting position of
a substring of length i+ 1 containing T [i+ 1] copies of 1. The substring of length i starting
at P [i+ 1] contains at least T [i+ 1]− 1 copies of 1, so we can set P [i] = P [i+ 1]. In the
last stage of the algorithm, in which we make a left-to-right pass over T , we can almost use
the same kind of argument and simply copy P values when we copy T values, except that
we must ensure the starting positions we copy are far enough to the left of the end of the
string (i.e., that the substrings have the correct lengths). Our modified algorithm is shown
as Algorithm 2 – still only 25 lines – and we now have the following theorem:

I Theorem 5. Given a binary string s of length n containing ρ runs of 1s, we can build an
O(n)-word index for constant-time jumbled pattern matching with O(logn) time witnessing
in O(n+ ρ2) time.

Running our modified algorithm on our example s = 010101110011, in the first stage we set
T = [1, 2, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0] and, simultaneously, P = [2, 11, 6, 0, 4, 0, 2, 0, 4, 0, 2, 0], where
0 indicates an unset value in P . In the second stage, we set T = [1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 0]
and P = [2, 11, 6, 4, 4, 2, 2, 4, 4, 2, 2, 0]. Finally, in the third stage, we fill in T [12] = T [11], but
we cannot just set P [12] = P [11] = 2 because s[2 · · ·n = 12] has length only 11, so we set
P [12] = 1.

5 Reducing Workspace

It is frustrating that both s and the index described in Theorem 4 take O(n) bits, but we
use O(n) words to build the index. In this section, we show how to reduce this workspace to
O(n) bits also, without increasing the time bound for construction by more than a constant
factor.

Suppose we divide T into blocks of size lg(n)/2 and modify our algorithm such that,
whenever we set a value T [i], we ensure that each value T [j] in the same block with j < i is
at least T [i]− i+ j and each value T [j] in the same block with i < j is at least T [i]. Since we
would eventually set each such T [j] to a value at least as great during the normal execution
of the algorithm, this does not change its correctness, apart from perhaps slowing it down by
an O(logn) factor.

For any two consecutive values T [i] and T [i + 1] in the same block now, however, we
have T [i] ≤ T [i+ 1] ≤ T [i] + 1. We can thus store each block by storing its first value and a
binary string of length lg(n)/2 whose bits indicate where the values in the block increase.
Therefore, we need a total of only O(n) bits to store all the blocks.

Notice that, if we increase a value T [i] by more than lg(n)/2, we reset the first value T [h]
of the block to be T [i]− i+h, set the leading bits of the block to 1s to indicate that the values
increase until reaching T [i], and set the later bits of the block to 0s to indicate that the values
remain equal to T [i] until the end of the block. Therefore, we can speed the algorithm up to
run in O(n+ ρ2) time again, by using a universal table of size 2lg(n)/2 logO(1) n = o(n1/2+ε)
to decide how to update blocks when we set values in them.

I Theorem 6. Given a binary string s of length n containing ρ runs of 1s, we can build an
O(n)-bit index for constant-time jumbled pattern matching in O(n+ ρ2) time using O(n) bits
of workspace.

In fact, it seems possible to make the algorithm run in O(n+ ρ2) time and O(n) bits of
space even without a universal table, using AC0 operations on words that are available on
standard architectures.
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Algorithm 2: Building the tables T and P for s.
1 for i = 1, . . . , n do
2 T [i] = 0
3 p = z[0]
4 for i = 1, . . . , ρ do
5 ones = o[i]
6 zeros = 0
7 T [ones] = ones

8 P [ones] = p

9 for j = i+ 1, . . . , ρ do
10 ones += o[j]
11 zeros += z[j − 1]
12 if ones > T [ones+ zeros] then
13 T [ones+ zeros] = ones

14 P [ones+ zeros] = p

15 p += ones[i] + zeros[i]
16 for i = n− 1, . . . , 1 do
17 if T [i] < T [i+ 1]− 1 then
18 T [i] = T [i+ 1]− 1
19 P [i] = P [i+ 1]

20 for i = 2, . . . , n do
21 if T [i] < T [i− 1] then
22 T [i] = T [i− 1]
23 P [i] = P [i− 1]
24 if P [i] + i > n then
25 P [i] = n− i

This workspace reduction makes little sense for a string as small as our example s =
010101110011 but, for the sake of argument, suppose we partition our array T for it into
three blocks of length 4 each. We keep T [1], T [5] and T [9] stored explicitly and represent
the other entries of T implicitly with three 3-bit binary strings B1, B2 and B3. Initially we
set T [1] = T [5] = T [9] = 0 and B1 = B2 = B3 = 000. Recall from Section 3 that we first set
T [1] = 1, the number of 1s from the start to the end of the first run of 1s. At this point, we
do not need to change B1. We then set T [3] = 2 – the number of 1s from the start of the first
run of 1s to the end of the second run of 1s – by setting B1 = 010: starting from T [1] = 1,
this encodes T [2] = T [1] + 0 = 1, T [3] = T [1] + 0 + 1 = 2 and T [4] = T [1] + 0 + 1 + 0 = 2.
Next we set T [7] = 5 – the number of 1s from the start of the first run of 1s to the end of
the third run of 1s – by setting T [5] = 3 and B2 = 110: starting from T [5] = 3, this encodes
T [6] = T [5] + 1 = 4, T [7] = T [5] + 1 + 1 = 5 and T [8] = T [5] + 1 + 1 + 0 = 5. Continuing
like this, we set T [11] = 7 by setting T [9] = 5 and B3 = 110; set T [5] = 4 and B2 = 010; etc.
When we are finished this stage, T [1] = 1, T [5] = 4 and T [9] = 6, and B1 = 110, B2 = 010
and B3 = 010, encoding T = [1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7]. In this case the final right-to-left
and left-to-right passes have no effect, but there are cases (e.g., when we do not set any
values in a certain block) when they are still necessary.
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