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Abstract
Genome assembly is the problem of reconstructing a genome sequence from a set of reads from
a sequencing experiment. Typical formulations of the assembly problem admit in practice many
genomic reconstructions, and actual genome assemblers usually output contigs, namely substrings
that are promised to occur in the genome. To bridge the theory and practice, Tomescu and
Medvedev [RECOMB 2016] reformulated contig assembly as finding all substrings common to
all genomic reconstructions. They also gave a characterization of those walks (omnitigs) that
are common to all closed edge-covering walks of a (directed) graph, a typical notion of genomic
reconstruction. An algorithm for listing all maximal omnitigs was also proposed, by launching
an exhaustive visit from every edge.

In this paper, we prove new insights about the structure of omnitigs and solve several open
questions about them. We combine these to achieve an O(nm)-time algorithm for outputting all
the maximal omnitigs of a graph (with n nodes and m edges). This is also optimal, as we show
families of graphs whose total omnitig length is Ω(nm). We implement this algorithm and show
that it is 9-12 times faster in practice than the one of Tomescu and Medvedev [RECOMB 2016].
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1 Introduction

Genome assembly is the problem of reconstructing a genome sequence from a set of reads
from a sequencing experiment. It is one of the oldest problems in bioinformatics, but many
challenges remain. For example, assemblers for novel sequence technologies such as Oxford
nanopore are still only in development. Assembly of heterogeneous tumor data is also a
challenge. Many of these challenges can be met by building on top of existing assembly
algorithms. However, recent directions to improve the theoretical underpinning of assembly
have the potential to improve assembly across a wide breadth of scenarios.

Genome graphs have been the basis of most assembly algorithms. There is the edge-centric
de Bruijn graph [2, 15], where every k-mer (string of length k) of the reads becomes a node
and every (k + 1)-mer of the reads becomes an edge, or the node-centric de Bruijn graph,
where the nodes are the same but the edges are (k − 1)-overlaps between nodes. In a string
graph, every read becomes a node and large enough non-transitive overlaps between reads
are represented as edges [11, 16]. In a recent paper [17], these graphs were unified under
the “genome graph” model. Theoretical formulations of the assembly problem define what
a genome reconstruction is: typically, this is a walk in a genome graph, subject to some
constraints. For example, a genome reconstruction could be a closed (i.e., circular) walk
covering every edge of the genome graph exactly once [14, 8, 13] (to be called edge-covering
in the ongoing), or a closed Eulerian walk [9, 10, 12, 5].

However, algorithms to find an entire genome reconstruction are rarely implemented
in practice, because there is usually more than one valid genome reconstruction. When
assemblers have no way to distinguish different reconstructions, they instead output contigs,
which are stretches of DNA that are assumed to be in the genome. To bridge theory and
practice, Tomescu and Medvedev proposed in [17] an alternative formulation of the contig
assembly problem. A string is considered safe if it is guaranteed to occur in every valid genome
reconstruction. A contig assembly algorithm should ideally be safe (i.e., only outputting safe
strings) and complete (i.e., every safe string should be output by the algorithm).

Previous work. The notion of a safe and complete algorithm embodies several previous
results. Contig assembly was first approached by finding unitigs [6], namely those paths
whose internal nodes have in- and out-degree one. Later, some generalizations of unitigs have
been considered. For example, [15] considered paths whose internal nodes have out-degree
one, with no restriction on their in-degree; [10, 4, 7] considered the unitigs of a genome graph
simplified with the so-called Y-to-V transformation (we further discuss this at the end of
Section 4). Although no underlying notion of genomic reconstruction was explicit in these
studies, it can be shown that the resulting paths are safe for closed edge-covering walks.
However, as [17] notices, such approaches do not find all the safe strings. Other studies have
indeed given safe and complete algorithms for some reconstruction notions. Nagarajan and
Pop [12] attribute to [18] the characterization of the walks common to all closed Eulerian
walks. For edge-weighted genome graphs, [12] claims that a simple algorithm exists for
finding all those walks common to all shortest closed edge-covering walks.

Tomescu and Medvedev [17] considered the genomic reconstruction notion of a closed
edge-covering walk. This model is strictly more general than the above two ones, and thus
safe strings for it are also safe for them. Moreover, it is also more realistic, because the
Eulerian notion assumes that all positions in the genome are sequenced exactly the same
number of times, while the minimality criterion from other notion may over-collapse repeated
regions. However, it still assumes that the reads are error-free, single-stranded, come from a
circular genome, and every position in the genome appears in some read.
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In [17] a characterization of those walks common to all such genomic reconstructions was
given. These walks were called omnitigs (see Definition 1), and an algorithm for finding all
maximal omnitigs was presented. We refer to [17] for further details on the practical merits
of omnitigs, as opposed to e.g., unitigs. The asymptotic running time of this algorithm was
not fully analyzed in [17] except to say it was polynomial time. However, it is based on
launching an exhaustive visit from every edge of the graph, and extending all such possible
walks as long as they are omnitigs. Its running time remained several orders of magnitude
slower than finding unitigs, and improving it was recognized as an important open problem.

Contributions and approach of this paper. The main result of this paper is an algorithm
(Algorithm 3) running in time O(nm) for outputting all maximal omnitigs of a graph (m is
the number of edges, n is the number of nodes, and in this paper all graphs are directed).
This algorithm is also optimal, in the sense that there are families of graphs for which the
total length of their omnitigs is Ω(nm) (see e.g., Figure 4).

This algorithm is based on three insights.
1. A structural result connecting branches of a graph (i.e., edges whose source node has

out-degree at least two) with left-maximal omnitigs (Theorem 8). In particular, there
can be only one left-maximal omnitig ending with a given branch, and the structure
of such omnitigs is almost fully characterizable. This also implies that the number of
maximal omnitigs is at most m and their individual lengths are bounded by 3n− 1. We
also give families of graphs that achieve these upper bounds, showing that they are tight.
Previously, only an upper bound of nm was known on the number of maximal omnitigs
and an upper bound of nm on their lengths [17]. This is encouraging also from a practical
point of view, because the popular (maximal) unitigs have the same tight asymptotic
bounds on their number and individual length (but not on their total length, which is m).

2. A partial order between branches, based on whether or not they are connected by “simple”
omnitigs (Definition 13), which we prove to be acyclic. This allows us to reuse computation
when recursively computing the left-maximal omnitig ending with a given branch.

3. A connection between omnitigs and strong bridges of a graph (i.e., those edges whose
removal disrupts strong connectivity [3]). In particular, omnitigs that do not start with a
strong bridge are easy to find (Lemma 17). Since there are at most O(n) strong bridges
in a graph, this implies that also the number of hard cases is O(n), and not O(m).

We also implement the new algorithm, and show in Section 5 that it is 9-12 times faster
in practice than the one of [17]. Finally, at the end of Section 4 we demonstrate that the
Y-to-V transformation, used as pre-processing step in the implementation of [17] to simplify
the input, can result in shorter maximal omnitigs. This transformation is a well-known
method (e.g. [10, 4, 7]) for reducing the genome graph, maintaining the property that its
unitigs spell safe strings.

2 Background and notation

In this paper, a graph is a tuple G = (V,E, s, t), where V is a finite set of nodes, E is a
finite set of edges, and s, t : E → V assign to each edge e ∈ E its source node s(e) and its
destination node t(e). Parallel edges and self-loops are allowed. We say that an edge e goes
from s(e) to t(e). The reverse graph of G is defined as GR = (V,E, t, s).

A walk on G is a sequence w = (v0, e1, v1, e2, . . . , v`−1, e`, v`), ` ≥ 0, where v0, v1, . . . , v` ∈
V are nodes and each ei is an edge from vi−1 to vi. We say that w goes from s(w) = v0
to t(w) = v` and has length |w| = `. A walk w is called empty if |w| = 0, and non-empty

CPM 2017



29:4 Optimal Omnitig Listing for Safe and Complete Contig Assembly

e1 e2 e3 e4 e5

f2f3f4f5

f1f6

e1 e2

f2

f1f3

e1 e2 e3 e4 e5

f

e1 e2

f

Figure 1 Examples of walks e1 · · · e` which are not omnitigs, due to the existence of a path p

satisfying the conditions of Definition 1. In the first row, p = f1 · · · f|p| with |p| > 1. In the second
row, p = f . In the left column, p is a non-empty open path. In the right column, p is a closed path.

otherwise. (There exists exactly one empty walk εv = (v) for every node v ∈ V , and
s(εv) = t(εv) = v.) A walk w is called closed if it is non-empty and s(w) = t(w), otherwise
it is open. A path is a walk whose nodes v0, v1, . . . , v` are all distinct, except that v` = v0
is allowed (in which case we have either a closed or an empty path). A graph is strongly
connected if there is a path (or, equivalently, a walk) from any node to any other node.

In the rest of this paper, a strongly connected graph G = (V,E, s, t) is given, with |V | = n

and |E| = m ≥ n. We adopt the following conventions. Letters u, v denote nodes, letters
e, f, g, h denote edges, which are identified with the corresponding length-1 walks, letters
p, q, r denote paths, and letters w, x, y, z denote generic walks (each letter possibly with
subscripts or superscripts). Juxtaposition ww′ denotes the concatenation of walks w and w′,
where t(w) = s(w′) is implicitly assumed. We start from the following definition of omnitigs
offered in [17].

I Definition 1 (Omnitig). A non-empty walk w = e1 · · · e` is an omnitig if, for every
1 ≤ i < j ≤ `, there is no non-empty path from s(ej) to t(ei), with first edge different from
ej , and last edge different from ei.

The main result from [17] is that those walks that are sub-walks of all closed edge-covering
walks of a strongly connected graph are precisely its omnitigs. Clearly every edge is an
omnitig and any proper subwalk of an omnitig is an omnitig. Figure 1 illustrates examples
of walks that are not omnitigs. An omnitig w is right-maximal (resp., left-maximal) if there
is no walk we (resp., ew) which is an omnitig. An omnitig is maximal if it is both left- and
right-maximal. We note that in [17] two types of omnitigs were considered, depending on
the genome model used. Here, we use omnitigs to refer the edge-centric omnitigs from [17].

3 Structure of maximal omnitigs

In this section we prove some structural properties of maximal omnitigs. To better understand
the ways in which omnitigs might possibly overlap, we propose the notion of branch and
univocal walk. A node u is called branching if its out-degree is more than one. In this
case, any edge e with s(e) = u is called a branch, and any two distinct edges e 6= e′ with
s(e) = s(e′) = u are called siblings. The set of all branches is denoted by B ⊆ E. An edge is
called an R-branch if it is a branch in GR. A walk is called univocal if none of its edges is a
branch and R-univocal if none of its edges is an R-branch.

We start by showing some facts about branches and univocal walks.

I Lemma 2. If G contains at least a branch, then every univocal walk is an open path.
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Proof. A minimal counterexample is a univocal closed path p. Since every path from s(p)
is a prefix of p, and G is strongly connected, then p contains every node in the graph, and
there are no branches. J

I Lemma 3. If w is an omnitig and q is a univocal path from t(w), then wq is an omnitig.

Proof. Let p be a path certifying that wq is not an omnitig by Definition 1. If s(p) is a node
of q, then a whole suffix of q is a prefix of p, since q is univocal; in this way, the property
that the first edge of p differs from ej would be contradicted. Therefore s(p) is a node of w,
but then p is a path actually certifying that w is not an omnitig, again a contradiction. J

I Lemma 4. Every left-maximal omnitig contains a branch.

Proof. Let w be a counterexample, i.e., a left-maximal omnitig which is univocal. Let e be
any edge with t(e) = s(w) (at least one exists since G is strongly connected). The edge e is
an omnitig, and thus by Lemma 3 ew is an omnitig, violating the left-maximality of w. J

The crucial observation underlying our algorithm is that any omnitig containing a branch
can be extended in an unique way to the left to obtain a left-maximal omnitig. This is
expressed in Theorem 8 below. To prove Theorem 8, we need the following lemmas.

I Lemma 5. Let fqe be an omnitig where q is an open path and e is a branch. Take any
sibling e′ of e and a closed path e′p starting with e′. Then, fq is a suffix of e′p.

Proof. Let fqe be a minimal counterexample. Then, fqe and qe are both omnitigs, and by
minimality q is a suffix of e′p, whereas fq is not. Since q is an open path, then q 6= e′p, so q
is actually a suffix of p. Thus we can regard e′p as obtained by concatenating its suffix q to
its remaining prefix r, i.e., e′p = rq. Here, r is a non-empty path and fulfills all conditions
stated in Definition 1: it starts with e′ 6= e, and ends with an edge f ′ 6= f (otherwise fq
would be a suffix of rq = e′p). This shows that fqe is not an omnitig: a contradiction. J

I Lemma 6. Let e′pe be a walk where e and e′ are siblings and e′p is a closed path. Then,
e′pe is an omnitig iff p is univocal and e′ is the only sibling of e.

Proof. ( ⇐= ) The only path satisfying Definition 1 must start with e′, and hence be a
prefix of e′p. ( =⇒ ). First we show that e′ is the only sibling of e. Let e′′ be any sibling
of e, and take any closed path e′′p′. Then, e′p is a suffix of e′′p′ by Lemma 5. Being both
closed paths, we have e′p = e′′p′ and in particular e′′ = e′.

We now prove that p is univocal. Assume not, and write p = qfr where f is any branch.
Let f ′ be a sibling of f , and f ′p′ a closed path. Clearly, s(f ′) = s(f) 6= s(e), hence f ′ does
not appear in the closed path e′p = e′qfr. Let q′ be the shortest prefix of p′ where t(q′) is a
node of p. Observe that q′ exists since t(p′) = s(f ′) = s(f) is a node of p. Moreover, the last
edge of q′, if any, does not appear in e′p. Notice that t(q′) is either a node of q or a node of
r. If t(q′) is a node of q, then the path f ′q′ shows that e′qf is not an omnitig. Otherwise, if
t(q′) is a node of r, then the path e′qf ′q′ shows that fre is not an omnitig. In either case
e′pe = e′qfre is not an omnitig: a contradiction. J

I Lemma 7. There is no omnitig of the form fqrqe where qr is a closed path, r is non-empty,
e is a branch, and f is an R-branch.

Proof. Assume for a contradiction that fqrqe is an omnitig violating the claim of the lemma.
Let e′ be the first edge of r. We will prove that e′ 6= e. Write r = e′r′ and observe that r′q
is an open path, so e′r′qe satisfies the hypothesis of Lemma 5. Let e′′ 6= e be a sibling of e,

CPM 2017
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f1 f2 e
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e0
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2

Figure 2 Example of graphs where the two cases of Theorem 8 occur, for p = g1g2f1f2 and
p′ = f1f2. In the first case (left), p is univocal and the left-maximal omnitig is we = p′e′pe =
f1f2e′g1g2f1f2e. In the second case (right) p is not univocal due to the edge f ′

2, and the left-maximal
omnitig is we = g1g2f1f2e. Omnitigs we are shown in red and have solid edges.

and e′′p a closed path. Then, by Lemma 5, e′r′q is a suffix of e′′p. In fact, since both e′r′q
and e′′p are closed paths, then e′r′q = e′′p and e′ = e′′ 6= e, as claimed.

The very same argument applies on the reverse graph, since the notion of omnitig is
symmetric, as well as the statement of the lemma. Therefore, also the last edge f ′ of r is
distinct from f . Now, r is a non-empty path with first edge e′ 6= e and last edge f ′ 6= f .
Hence, r satisfies the conditions of Definition 1, showing that fqrqe is not an omnitig. J

I Theorem 8. There exists a unique left-maximal omnitig we, ending with a given branch e.
Moreover, for any sibling e′ of e and a closed path e′p, either:

we = p′e′pe, where p′ is the longest R-univocal path to s(e), or
we is a suffix of pe,

where the first case occurs iff e′ is the only sibling of e and p is univocal.

Proof. Consider any omnitig we. We show that we is either a suffix of pe or of the form
we = p′′e′pe, where p′′ is an R-univocal path. This suffices to show that there is a unique
left-maximal omnitig we, and that one of the two cases occurs.

If w is an open path then we is a suffix of pe by Lemma 5. Otherwise, take the shortest
suffix e′′p of w which is not an open path. Since p is an open path (e′′p is the shortest suffix
of w which is not), then e′′ = e′ by Lemma 5.

Hence, a minimal counterexample for our claim is an omnitig of the form we = fqe′pe

where q is R-univocal (hence an open path by Lemma 2 applied to the reversed graph) and
f is an R-branch. Since t(q) = t(p) and q is R-univocal, then q is a suffix of e′p. In fact, q
is a suffix of p, since it is open. Hence, we can write e′p = rq, where r is non empty, and
we = fqrqe, violating Lemma 7.

Finally, the conditions in which the first case occurs are stated in Lemma 6, noticing that
p′e′pe is an omnitig iff e′pe is an omnitig, by Lemma 3 applied in the reverse graph. J

I Corollary 9. There are at most m maximal omnitigs.

Proof. Any maximal omnitig has a branch by Lemma 4; hence it has the form w = w′er,
where e is its last branch and r is univocal. By Theorem 8, w′ is uniquely determined by e,
and, by Lemma 3, r is the longest univocal path from t(e), also uniquely determined by e.
In conclusion, every omnitig has a last branch and every branch is the last branch of at most
one maximal omnitig. J

I Corollary 10. Every maximal omnitig traverses any node at most three times, and thus
has length at most 3n− 1.
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Figure 3 A family of graphs parametrized by k ≥ 0 where the bound given in Corollary 10 is
tight. Let p = f1 · · · fk. The maximal omnitigs are pepe′p and pe′pep: both traverse each node
exactly three times; pepe′p is marked in red.

f1 f2 e
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f1 f1f2 f2fk�1 fk�1fk fk

· · · · · ·

Figure 4 A family of sparse graphs Gk parametrized by k ≥ 1 where there are Θ(k) nodes and
edges, and the total length of maximal omnitigs is Θ(k2). This shows that the bound given in
Corollary 11 is tight, in the sparse case. Indeed, the walk wi = eiei+1 · · · ei+kei+k is a maximal
omnitig, for 1 ≤ i ≤ k − 1, and has length k + 1; walk w1 is marked in red.

Proof. Any maximal omnitig has the form w = w′er where e is its last branch. By Theorem 8,
either w′ is an open path, or w = p′e′per where p′, p, r are univocal, and hence open paths
by Lemma 2. Consider that open paths visit each node at most once. J

I Corollary 11. The total length of maximal omnitigs is O(nm).

In a complete graph with node set V , |V | ≥ 3, and edge set V × V every single edge is a
maximal omnitig, hence the bound given in Corollary 9 is tight. Figures 3 and 4 demonstrate
graph families showing that the bounds of Corollary 10 and Corollary 11 are also tight. That
is, they contain maximal omnitigs of length 3n − 1, and the total length of the maximal
omnitigs can be Ω(nm).

4 The algorithm

We start by considering a procedure LongestSuffix that takes an omnitig w′ and an edge e
with s(e) = t(w′), and computes the longest suffix of w = w′e that is still an omnitig. A
pseudo-code for such a procedure is shown in Algorithm 1, and it is an adaptation of the
ideas given in [17].

I Lemma 12. The function LongestSuffix can be implemented in O(m).

The strategy of our algorithm is to first pick a branch e, since by Lemma 4 every maximal
omnitig contains one, and then construct the only left-maximal omnitig ending with e,
according to Theorem 8. To this end, we may need to compute the longest suffix of e′p which
is an omnitig; however, this could require quadratic time to output a single left-maximal
omnitig. Instead, we show that it is possible to recycle the computational effort among
different branches, in order to pay linear time per-branch. We introduce the following notion
of order between branches.

I Definition 13. For any two distinct non-sibling branches e, f ∈ B, write f ≺ e if there
exists an omnitig fpe where p is univocal.

CPM 2017
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Algorithm 1: Function LongestSuffix.
1 Function LongestSuffix(w)

Input :A non-empty walk w = w′e where w′ is an omnitig and e is a branch.
Returns :The longest suffix of w which is an omnitig.

2 Denote w = w′e = f1 · · · f`e.
3 Compute the set Se ⊆ V of nodes reachable from s(e) without using e.
4 Let ı̂ be the largest index i ∈ {1, . . . , `} such that there exists an edge g /∈ {e, fi}

with s(g) ∈ Se and t(g) = t(fi), taking ı̂ = 0 if no such index exists.

5 return fı̂+1 · · · f`e

I Lemma 14. For any e ∈ B there is at most one f ∈ B such that f ≺ e.

Proof. Take a sibling e′ of e and a closed path e′p. Let f be the last branch on e′p (it exists
since its first edge e′ is a branch) and let fq be the suffix of e′p starting with f , where q is
univocal. Assume f̃ ≺ e and let f̃ q̃e be an omnitig with q̃ univocal. By Lemma 2, q̃ is an
open path, and by Lemma 5, f̃ q̃e is a suffix of e′pe, thus f̃ = f and q̃ = q. J

Our algorithm for computing the left-maximal omnitig ending with a given branch e

works as follows. We first check whether the first case of Theorem 8 occurs, by verifying the
condition provided therein. If not, then we consider the suffix fq of e′p defined as in the
proof of Lemma 14. We have two cases.

fqe is not an omnitig. Then, an invocation of LongestSuffix(fqe) yields the only left-
maximal omnitig ending with e.
fqe is an omnitig. Then, s(f) 6= s(e) since fq is open, thus f ≺ e. In this case, we
apply the procedure recursively to the branch f , obtaining an omnitig w′′. Then, the
left-maximal omnitig ending with e must be a suffix of w′′qe, and can be obtained as
LongestSuffix(w′′qe).

Lemma 15 is crucial in showing that the recursion is well-founded. As we will show later,
thanks to memoization, this recursive application allows to reuse the computational effort
and leads to a faster worst-case running time.

I Lemma 15. The relation ≺ is acyclic.

To achieve the claimed O(nm) running time, we need a further improvement. We recall
the definition of strong bridge in a strongly connected graph [3].

I Definition 16. An edge e is a strong bridge if, by removing e, the graph is no longer
strongly connected. Equivalently, there is a pair of nodes u, v, such that every path from u

to v contains e.

The lemma below states that omnitigs containing non-strong-bridges have a simpler structure.

I Lemma 17. If fq is an omnitig and an open path, and f is not a strong bridge, then q is
univocal.

Proof. A minimal counterexample is an omnitig fqe, where fqe is an open path and e is
a branch. Fix a sibling e′ of e, and take a closed path e′p such that p does not contain f ,
which exists since f is not a strong bridge. By Theorem 8, fq is a suffix of p: a contradiction
since p does not contain f . J
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Algorithm 2: Computing the only left-maximal omnitig ending with a branch e.
1 Function OmnitigEndingWith(e)

Input :A branch e.
Returns :The only left-maximal omnitig we.

2 Let e′ be any sibling of e and e′p be any closed path starting with e′.
3 Let f be the last branch of e′p (possibly f = e′) and fq the suffix of e′p starting

with f .
4 Let p′ be the longest R-univocal path to s(e).

5 if e has only one sibling e′ and p is univocal then return p′e′pe

6 if e is not a strong bridge then return p′e

7 w′ ← LongestSuffix(fqe)
8 if w′ 6= fqe then return w′

9 w′′ ← OmnitigEndingWith(f) . OmnitigEndingWith is memoized
10 return LongestSuffix(w′′qe)

Algorithm 3: Computing all the maximal omnitigs.
1 W ← ∅
2 for e ∈ B do
3 w ← OmnitigEndingWith(e)
4 Let p be the longest univocal path from t(e).

5 W ←W ∪ {wp}
6 end
7 Remove from W the non-right-maximal walks.
8 return W

It is known that there are at most 2n− 2 = O(n) strong bridges in a given graph, and
they can be computed in O(m) time [3, 1]. The observation of Lemma 17 allows to handle
those branches e which are not strong bridges is a special way, and apply the full algorithm
only on the O(n) strong bridges. The procedure just described is illustrated in Algorithm 2.

I Lemma 18. The function OmnitigEndingWith in Algorithm 2 is correct.

The full algorithm (Algorithm 3) amounts to computing, for each branch e ∈ B, the
left-maximal omnitig ending with e, and then appending the longest possible univocal suffix.

I Theorem 19. Algorithm 3 is correct and can be implemented to run in time O(nm).

Proof. It is clear from Lemma 18 and Lemma 3 that Algorithm 3 terminates and returns a
set W containing only left-maximal omnitigs. For correctness, we only need to show that,
after the for-loop, W contains all the maximal omnitigs. Consider any maximal omnitig
w. By Lemma 4, w contains a branch. Let e be the last branch of w, and write w = w′ep

where p is univocal. By Lemma 3, w′e is left-maximal (otherwise also w = w′ep is not
left-maximal), and p is the longest univocal path from t(e), (otherwise w = w′ep is not
right-maximal). By Lemma 18, in the iteration of the for-loop, relative to the branch e ∈ B,
the call OmnitigEndingWith(e) returns w′e, and w′ep is added to W .

To prove our bound on the running time, we observe that, when the function
OmnitigEndingWith returns before line 7, then it takes O(n) time only. Indeed, the length of
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e2 e3 e4

f 0

f

e1

u Y to V����!
e2 e3

e4kf 0

e4kf

e1

Figure 5 Left: the walk e1e2e3e4 is a maximal omnitig. Right: after applying the Y-to-V
reduction to node u, only the omnitig e1e2e3 is maximal, and e3e4 does not appear in any omnitig.

the open paths p and p′ is O(n). Moreover, when the condition at line 5 occurs, then the
path p is univocal, and its construction can be performed in O(n) time, without running a
full visit of the graph. These executions of OmnitigEndingWith account for an overall running
time O(nm), due to memoization, since there are O(m) branches.

The execution continues after line 7 only O(n) times, since the number of strong bridges
is O(n). In this case, the running time is dominated by the calls to LongestSuffix, which
take O(m) time each by Lemma 12. Again, due to memoization, the overall running time is
O(nm). The set of strong bridges is computed once at the beginning, in linear time.

It remains to show how to implement line 7 in time O(nm). First, the total length of the
walks in W is O(nm), because to each of the O(m) walks returned by OmnitigEndingWith,
each of length O(n) (by Corollary 10), we append a path, thus having length O(n). One way
to remove the non-right-maximal omnitigs from W is to regard each walk in W as a string
over the alphabet E, construct a trie containing them, in time O(nm), and remove those
ending in an internal node. J

Finally, we would like to remark on the Y-to-V reduction. Let v be a node that has exactly
one in-neighbor u and more than one out-neighbors w1, . . . , wd. The Y-to-V reduction applied
to v removes v and its incident edges and adds an edge from u to wi, for all 1 ≤ i ≤ d. The
Y-to-V reduction was suggested as a pre-processing step to the omnitig algorithm in [17] to
improve the running time. However, this reduction can destroy some omnitigs, see Figure 5.

5 Experimental results

We implemented Algorithm 3 using the code base of [17].1 We focused our experiments on
measuring the running time improvements, since the practical merits of omnitigs for genome
assembly were discussed in [17]. The algorithms were run on a machine with Intel Xeon
2.10GHz CPUs. Because the Y-to-V transformation is not omnitig-preserving, we disabled it
from the code of [17]. We circularized three reference sequences of human chromosomes 2,
10, and 14. Each had a length of 243, 136 and 107 million nucleotides, respectively. We built
the edge-centric de Bruijn graph for each, using k = 55. This is a typical genome graph on
which contig assembly is performed.

As shown in Table 1, our algorithm was 9–12 times faster on a single thread, suggesting
that our theoretical improvements indeed translate into faster running times. For the largest
dataset, our algorithm took just over 2 hours, while [17] took over 22 hours. We also observe,
as expected, that the running time depends on the size of the graph and the number of
omnitigs, and not on their length.

1 Available at https://github.com/alexandrutomescu/complete-contigs.

https://github.com/alexandrutomescu/complete-contigs
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Table 1 Wall-clock running time comparison between the omnitig algorithm of [17] and our
Algorithm 3.For fairness of comparison, the algorithms were run on a single thread, though we note
that [17] supports parallelization.

# nodes # edges time by [17] time by Algorithm 3 # omnitigs avg len (bp)
chr2 696,209 887,295 1,342 min 138 min 304,760 838
chr10 369,448 467,517 433 min 36 min 158,396 887
chr14 223,694 283,798 137 min 11 min 96,434 968

6 Conclusion

Apart from its application to genome assembly, the problem addressed in this paper is
a fundamental graph theoretical one. It also fits into a line of research for finding all
partial solutions common to natural notions of walks in graphs, such as Eulerian walks [18]
or shortest edge-covering walks [12]. We presented here an optimal O(nm) algorithm for
finding all maximal omnitigs and showed that it can be an order of magnitude faster than a
previous one based on exhaustive visits. When applied to genome assembly, our algorithm
remains significantly slower than finding unitigs. However, we believe that an embarrassingly
parallel implementation is possible, and that it will improve running time by another order
of magnitude in practice.
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