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Abstract
Pattern matching on a set of similar texts has received much attention, especially recently, mainly
due to its application in cataloguing human genetic variation. In particular, many different
algorithms have been proposed for the off-line version of this problem; that is, constructing a
compressed index for a set of similar texts in order to answer pattern matching queries efficiently.
However, the on-line, more fundamental, version of this problem is a rather undeveloped topic.
Solutions to the on-line version can be beneficial for a number of reasons; for instance, efficient
on-line solutions can be used in combination with partial indexes as practical trade-offs. We
make here an attempt to close this gap via proposing two efficient algorithms for this problem.
Notably, one of the algorithms requires time linear in the size of the texts’ representation, for
short patterns. Furthermore, experimental results confirm our theoretical findings in practical
terms.
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1 Introduction

It is possible to represent closely related sequences that have been aligned using a multiple
sequence alignment (MSA) algorithm into one compacted form, that is able to represent the
non-polymorphic sites (columns) of the MSA, as well as the polymorphic ones [10]. This
representation compresses maximal sequences of non-polymorphic sites, while the polymorphic
ones, containing substitutions, insertions, and deletions of letters, are represented as a set
containing all possible variants observed at that location. Consider, for instance, the following:

ATGCAACGGGTA--TTTTA
ATGCAACGGGTATATTTTA
ATGCACCTGG----TTTTA

These sequences can be compacted into a single string T̃ containing some deterministic and
some non-deterministic segments. Note that a non-deterministic segment is a finite set of
deterministic strings and may contain an empty string ε corresponding to a deletion. The
total number of segments is the length of T̃ and the total number of letters is the size of T̃ .

T̃ =
{

ATGCA
}
·
{

A
C

}
·
{

C
}
·
{

G
T

}
·
{

GG
}
·


TA

TATA
ε

 · { TTTTA
}

This representation has been defined in [11] as an elastic-degenerate text. The natural
problem that arises is finding all matches of a deterministic pattern P in text T̃ . We call
this the Elastic-Degenerate String Matching (EDSM) problem. The simplest version
of this problem assumes that a degenerate segment can contain only single letters [9].

An elastic-degenerate text can represent, for example, a set of closely-related DNA
sequences. For instance, a pan-genome [18, 24, 12, 21] is a reference sequence which is not
just a single genome, but the result of an MSA of several of them that share large consensus
regions and also exhibit differences at some positions. Recently, various data structures
to store pan-genomes have been suggested [8, 4]. In particular, due to the application of
cataloguing human genetic variation [23], there has been ample work in the literature on the
off-line (indexing) version of the pattern matching problem [10, 14, 22, 15, 16]. In literature,
there are also algorithms and applications for the problem of inferring motifs from degenerate
input texts [20, 19]. However, to the best of our knowledge, the on-line, more fundamental,
version of the EDSM problem has not been studied as much as indexing approaches. Solutions
to the on-line version can be beneficial for a number of reasons: (a) efficient on-line solutions
can be used in combination with partial indexes as practical trade-offs; (b) efficient on-line
solutions for exact pattern matching can be applied for fast average-case approximate pattern
matching, similar to standard strings [3]; (c) on-line solutions can be useful when one wants
to search for a set of patterns in elastic-degenerate texts, similar to standard strings [1, 2].

Our Contributions. Let us denote by m the length of pattern P , by n the length of T̃ , and
by N > m the size of T̃ (see Section 2 for definitions). In [11], an algorithm for solving the
EDSM problem in time O(αγmn+N) and space O(N) was presented; where α and γ are
parameters, respectively representing the maximum number of strings in any degenerate
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segment of the text and the maximum number of degenerate segments spanned by any
occurrence of the pattern in the text. In this paper, we improve the state-of-the-art; we
present two new algorithms to solve the same problem in an on-line manner. The first
one requires time O(nm2 +N) after a preprocessing stage with time and space O(m); the
second algorithm requires time O(N · dm

w e) after a preprocessing stage with time and space
O(m · dm

w e), where w is the size of the computer word in the RAM model. Thus, the second
algorithm requires time linear in the size of the texts’ representation, for short patterns.
Finally, we present experiments confirming our theoretical findings in practical terms.

2 Definitions

We begin with a few definitions, generally following [5]. An alphabet Σ is a non-empty
finite set of letters of size |Σ|. A (deterministic) string on a given alphabet Σ is a finite
sequence of letters of Σ. For this work, we assume that the alphabet is fixed, i.e. |Σ| = O(1).
The length of a string x is denoted by |x|. For two positions i and j on x, we denote by
x[i . . j] = x[i] . . x[j] the factor (sometimes called substring) of x that starts at position i and
ends at position j (it is empty if j < i), and by ε we denote the empty string. The set of all
strings on an alphabet Σ (including the empty string ε) is denoted by Σ∗. For any string
y = uxv, where u and v are strings, if u = ε then x is a prefix of y. Similarly, if v = ε then
x is a suffix of y. We say that x is a proper factor (resp. prefix/suffix) of y if x is a factor
(resp. prefix/suffix) of y distinct from y. By Bu,v we denote the set containing all indices i,
such that the prefix u[0 . . i] of string u is also a suffix of string v.

I Example 1. Suppose we have two strings u = ATATG and v = CATAT. Then Bu,v = {1, 3}
because of prefix/suffix AT and prefix/suffix ATAT, respectively.

An elastic-degenerate string (ED string) X̃ = X̃[0]X̃[1] . . . X̃[n− 1], of length n, on an
alphabet Σ, is a finite sequence of n degenerate letters. Every degenerate letter X̃[i], for all
0 ≤ i < n, is a non-empty set of strings X̃[i][j], with 0 ≤ j < |X̃[i]|, where each X̃[i][j] is a
deterministic string on Σ. The total size of X̃ is defined as

N =
n−1∑
i=0

|X̃[i]|−1∑
j=0

|X̃[i][j]|.

Only for the purpose of computing N , |ε| = 1. We remark that, for an ED string X̃, the size
and the length are two distinct concepts (see Example 2).

We say that a string Y matches an ED string X̃ = X̃[0] . . . X̃[m′ − 1] of length m′ > 1,
denoted by Y ≈ X̃, if and only if string Y can be decomposed into y0 . . . ym′−1, yi ∈ Σ∗,
such that:
1. there exists a string s ∈ X̃[0] such that a suffix of s is y0 6= ε;
2. if m′ > 2, there exists s ∈ X̃[i], for all 1 ≤ i ≤ m′ − 2, such that s = yi;
3. there exists a string s ∈ X̃[m′ − 1] such that a prefix of s is ym′−1 6= ε.

Note that, in the above definition, we require that both y0 and ym′−1 are non-empty
to avoid spurious matches at the beginning or end of an occurrence. A string Y is said to
have an occurrence ending at position j in an ED string T̃ if there exist i < j such that
T̃ [i] . . . T̃ [j] ≈ Y , or, if there exists s ∈ T̃ [j] such that Y occurs in s.

I Example 2 (Running example). Suppose we have a pattern P = ACACA, of length m = 5,
and an ED string T̃ , of length n = 6 and size N = 18; the first occurrence of P starts at
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position 1 and ends at position 2 of T̃ ; and the second one starts at position 2 and ends at
position 4.

T̃ =
{

C
}
·
{

A
C

}
·


AC
ACC
CACA

 ·
{

C
ε

}
·
{

A
AC

}
·
{

C
}

We are now in a position to formally define the main problem of this paper.

Elastic-Degenerate String Matching (EDSM )
Input: a string P , of length m, and an ED string T̃ , of length n and size N ≥ m
Output: all positions j in T̃ where at least one occurrence of P ends

3 Algorithmic Tools

The suffix tree ST y of a string y, of length n > 0, is a compact trie representing all suffixes
of y. The nodes of the trie which become nodes of the suffix tree are called explicit nodes,
while the other nodes are called implicit. Each edge of the suffix tree can be viewed as an
upward maximal path of implicit nodes starting with an explicit node. Moreover, each node
belongs to a unique path of that kind. Thus, each node of the trie can be represented in the
suffix tree by the edge it belongs to and an index within the corresponding path. We let
P(v) denote the path-label of a node v, that is, the concatenation of the edge labels along
the path from the root to v. We say that v is path-labelled P(v). Node v is marked as a
terminal node if its path-label is a suffix of y, that is, P(v) = y[i . . n− 1] for some 0 ≤ i < n.
Note that v is also labelled with index i. Thus, each factor of y is uniquely represented by
an explicit or an implicit node of ST y. More details on suffix trees can be found in [7, 5].

I Fact 3 ([6, 5]). Given a string y of length n, ST y can be constructed in time and space
O(n). Finding all Occx occurrences of a string x, of length m, in y can be performed in time
O(m+ Occx) using ST y.

A border of a non-empty string x is a proper factor of x that is both a prefix and a
suffix of x. We introduce the function border(x) defined for every non-empty string x as
the longest border of x. Let x be a string of length m ≥ 1. We define the border table B:
{0, 1, . . . ,m− 1} → {0, 1, . . . ,m− 1} by B[k] = |border(x[0 . . k])|, for k = 0, 1, . . . ,m− 1.

I Fact 4 ([13, 5]). Given a string x of length m, the border table of x can be computed
on-line in time O(m). All borders of x can be specified within the same time complexity using
the border table.

We remark that the border table and the notion of border refer to a proper prefix and a
proper suffix of the same string, whereas the indexes in set Bx,y refer to a string which is a
prefix of a string (x) and a suffix of another (y), and that is not necessarily proper.

I Lemma 5. Given a string x, of length m, and the suffix tree ST y of a string y, of length
n, Bx,y can be computed in time O(m).

Proof. By applying Fact 3, we traverse ST y to find the terminal node v corresponding to
the longest prefix of x, which is path-labelled P(v). While traversing ST y with x, we add
index n− i− 1 to Bx,y if we encounter a terminal node u, such that P(u) = y[i . . n− 1]. The
longest such prefix of x is of length at most m. No longer prefix of x can be a suffix of y as
it does not occur in y. J
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4 Algorithm

An ED string can always represent an exponential number of strings (per ending position),
where the exact number is the product of the number of deterministic strings at previous
positions. Searching a pattern in all these strings separately is thus not acceptable.

Main idea. Our algorithm has a preprocessing phase where we build the suffix tree of the
pattern P (Line 2 in pseudocode below). Then, in an on-line manner, we scan T̃ from left to
right and, for each T̃ [i], we:
1. memorise the prefixes of the pattern that occur as suffixes of some s ∈ T̃ [i] (Lines 5 & 12

in pseudocode);
2. check whether at T̃ [i] it is possible to extend a partial occurrence of the pattern which

has started earlier in the ED text (Lines 13− 16 in pseudocode);
3. in both previous cases we finally check whether a full occurrence of P actually also ends

in T̃ [i] (Lines 6− 8 & 17− 22 in pseudocode).
We perform these steps by computing and storing, for each 0 ≤ i < n, the list Li of the
rightmost positions of prefixes of P that occur at the end of T̃ [i]. Below, we formally present
Algorithm EDSM that solves the EDSM in an on-line manner. Note that by Insert(A,L),
we denote the operation that inserts the elements of a set A into a linked-list L.

1 Algorithm EDSM(P, m, T̃ , n)
2 Construct ST P ;
3 L0 ← EmptyList();
4 foreach S ∈ T̃ [0] do
5 Compute BP,S using the border table; Insert(BP,S ,L0);
6 if |S| ≥ m then
7 Search P in S using KMP and
8 report 0 if P occurs in S and CheckDuplicate(0);
9 foreach i ∈ [1, n− 1] do

10 Li ← EmptyList();
11 foreach S ∈ T̃ [i] do
12 Compute BP,S using the border table; Insert(BP,S ,Li);
13 if |S| < m then
14 Search S in P using ST P ; denote starting positions by A;
15 foreach (p ∈ Li−1, j ∈ A) such that p + 1 = j do
16 Insert({p + |S|},Li);
17 if |S| ≥ m then
18 Search P in S using KMP and
19 report i if P occurs in S and CheckDuplicate(i);
20 Compute BS,P using ST P ;
21 if there exists (p ∈ Li−1, j ∈ BS,P ) such that p + j + 2 = m

then
22 Report i if CheckDuplicate(i);

Example 6 shows Steps (1) and (2) on the running example. The border table shown in
Example 6 has to be computed for all text positions, leading to the overall complexity stated
in Lemma 7.

CPM 2017



9:6 On-Line Pattern Matching on Similar Texts

I Example 6 (Running example). Let us consider again P = ACACA and T̃ of Example 2.
Assume we have already computed L0 and L1, and we move to position i = 2, where at T̃ [i]
we have three strings {S0, S1, S2}, with S0 = AC, S1 = ACC, and S2 = CACA. We generate the
string Xi = X2 = P$0S0$1S1$2S2 = ACACA$0AC$1ACC$2CACA and build its border table B
(Line 12 in pseudocode).

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
X2[k] A C A C A $0 A C $1 A C C $2 C A C A
B[k] 0 0 1 2 3 0 1 2 0 1 2 0 0 0 1 2 3

In order to compute BP,S (Line 12), we read B[7] = 2, which gives the length of the longest
string that is a prefix of P and a suffix of S0. To check if there exist borders of length shorter
than 2, we read B[2− 1] = 0, indicating that no shorter border exists. Therefore, we have
BP,S0 = {1}. We then read B[11] = 0, telling us that no prefix of P is a suffix of S1, and
hence BP,S1 = ∅. We read B[16] = 3, which gives the length of the longest string that is a
prefix of P and a suffix of S2. To check if there exist shorter borders, we read B[3− 1] = 1,
indicating that a shorter border of length 1 exists. Since B[1 − 1] = 0, no shorter border
exists. Therefore, we have BP,S2 = {0, 2}. This gives us a partial Li = {0, 1, 2} for position
i = 2 that concludes Step 1 for position i = 2 (Insert(BP,S ,Li), Line 12). Further on, at
Step 2, we will add position 4 to L2 by extending the occurrence of P that had started
at T̃ [1]. Putting everything together, we get L2 = {0, 1, 2, 4} (Insert({p+ |S|},Li), Lines
15− 16).

I Lemma 7. Given P , of length m, and T̃ , of length n and size N , the sets BP,S with
S ∈ T̃ [i], for all i ∈ [0, n− 1], can be computed in time O(N).

Proof. For each position i, we generate a string Xi = P$0S0$1S1$2S2 . . . $k−1Sk−1, where
Sj ∈ T̃ [i], 0 ≤ j < k, and $j ’s are distinct letters not in Σ. We build the border table B
of string Xi. By traversing B from left to right we can compute sets BP,Sj . Specifically,
for any string Sj , all borders that are suffixes of Sj and prefixes of P can be computed in
time O(|Sj |), since there exist at most |Sj | such borders. By Fact 4, we can build all border
tables, and hence compute all BP,Sj

, for all Sj ∈ T̃ [i], in time O(|P |+
∑k−1

j=0 |Sj |). Since the
length and the total size of T̃ are n and N , respectively, sets BP,Sj

can be computed in time
O(nm+N). By noting that the border table for P can be computed only once and that the
border table computation can be done on-line (Fact 4), the whole computation is bounded
by O(N). J

I Lemma 8. Given P , ST P , and T̃ of length n and size N , the sets BS,P , S ∈ T̃ [i], for all
i ∈ [1, n− 1], can be computed in time O(N).

Proof. By Lemma 5, for any S ∈ T̃ [i], |S| ≤ |P |, BS,P can be computed in time O(|S|) using
ST P . Since the total size of T̃ is N , sets BS,P can be computed in time O(N). J

I Lemma 9. Lists Li, for all i ∈ [0, n− 1], in Algorithm EDSM can be computed in time
O(nm2 +N).

Proof. List L0 consists of the elements of BP,S for position 0, which by Lemma 7 can be
done within time O(N). For pattern P of length m, there exist at most m(m+1)

2 factors. For
the strings Sj ∈ T̃ [i], |Sj | ≤ m, 0 ≤ j < k, we can find at most m(m+1)

2 = O(m2) occurrences
in pattern P . By Fact 3, finding all occurrences can be done in time

∑k−1
j=0 (|Sj |+ OccSj

),
and this is bounded by O(nm2 +N) for all positions i. This is because, by definition, no
Sj , Sj′ ∈ T̃ [i] exist such that Sj = Sj′ . Each occurrence can cause only one extension from
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Li−1 to Li. To avoid duplicates in Li, we need to check if there exist more than one prefix
extensions ending at the same position. Each check can be done in constant time using a
bit vector of size m, which we set on only once per position i. Therefore, we can extend the
prefixes in time O(m2) for each position i, and in time O(nm2) for the whole text T̃ of length
n. By Lemma 7, sets BP,S corresponding to new prefixes of pattern P which are suffixes
of {S0, S1, . . . , Sk−1} at position T̃ [i] can be found in time O(N). Merging new prefixes
with the prefixes extended from Li−1 can be done in time O(m), since both are at most m.
Therefore, lists Li, for all i ∈ [0, n− 1], in EDSM can be computed in time O(nm2 +N). J

Example 10 shows Step (3) on our running example.

I Example 10 (Running example). Let us consider again P = ACACA and T̃ of Example 2.
For position i = 4, we have L3 = {1, 3} and we have to compute L4. For S0 = A, we have
BA,ACACA = {0} (Line 20), so for 3 ∈ L3, we have that 3 + 0 + 2 = 5 = m (Line 21). Hence,
one occurrence of P has been found. Moreover, for S1 = AC, we have BAC,ACACA = {0, 1} (Line
20), so for 3 ∈ L3, we have that 3 + 0 + 2 = 5 = m (Line 21). Therefore, another occurrence
of P has been found at the same position.

Since Algorithm EDSM reports all positions i in T̃ where at least one occurrence of P ends,
and since more than one occurrence may end at the same position (as in Example 10), we
need to avoid duplications. To this end, we can use a simple operation to check whether the
current position i has already been reported (CheckDuplicate(i), Lines 8, 19, & 22).

I Theorem 11. Algorithm EDSM solves the EDSM problem in an on-line manner in time
O(nm2 +N). Algorithm EDSM requires preprocessing time and space O(m).

Proof. The correctness of the algorithm follows from the correctness of the KMP al-
gorithm [13] if |S| > m, S ∈ T̃ [i], and from the combination of Lemmas 8 and 9, if
|S| ≤ m. By definition, we cannot have any other type of (ending) occurrence.

By Fact 3, the suffix tree ST P can be computed in time and space O(m). By Lemma 9,
lists Li, for all i ∈ [0, n− 1], can be computed in time O(nm2 +N). By Lemma 8, sets BS,P

can be computed in time O(N). In case |S| < m, we use Li−1 and set BS,P to find and
report occurrence i in time O(m) using a bit vector of size m, which we initialise only once
per position i. Finally, searching P in S ∈ T̃ [i], in case |S| ≥ m, can be done in time O(|S|)
using the KMP algorithm [13], which is bounded by O(N) for T̃ of total size N .

The algorithm reads a position i and reports whether i is an ending position of some
occurrence of P , before reading position i+ 1. Therefore, Algorithm EDSM solves the EDSM
problem in an on-line manner in time O(nm2 + N), with preprocessing time and space
O(m). J

5 Bit-Vector Algorithm

We introduce here Algorithm EDSM-BV, a non-trivial bit-vector version of Algorithm EDSM.

Main idea. The main idea of this algorithm is to simulate the previous algorithm using
bit-level operations to maintain linked-lists L and do the matching. To this end, we also add
a further preprocessing step to the suffix tree of the pattern. This augmented suffix tree
allows us to retrieve a bit-vector representation of all occurrences of an S ∈ T̃ [i] in P in time
linear in |S|. With this structure, we can use bit-level operations to compute Li from Li−1.

We maintain a bit vector B of size m initialised with 0’s, such that, for each position
0 ≤ k < m, B[k] = 1 if and only if P [0 . . k] has an occurrence ending at the current position

CPM 2017



9:8 On-Line Pattern Matching on Similar Texts

of T̃ . For each letter c ∈ Σ, we construct a bit vector Ic of size m initialised with 0’s, such
that for each position 0 < k < m− 1, Ic[k − 1] = 1, if and only if P [k] = c. We construct
the suffix tree of P , denoted by ST P , and augment it with bit vectors of size m initialised
with 0’s for each explicit node as follows: for node u, we create bit vector Mu such that
Mu[k − 1] = 1, if and only if the factor P(u) represented by node u occurs at position k in
P , 0 < k < m− 1. The occurrences of P(u) can be found at terminal nodes in the subtree
rooted at node u. We denote this augmented suffix tree of P by Occ-VectorP . We wish to
answer the following type of on-line queries: given a string α, if α is a factor of P , then
Occ-VectorP (α) finds the node w in ST P which represents α, and returns a pointer to the
bit vector Mu, where u is the first explicit node in the subtree rooted at w. Otherwise (if
α is not a factor of P ), Occ-VectorP (α) returns a pointer to a bit vector consisting of m
0’s. This operation can be trivially realised in time O(|α|). Note that both Ic and Mu are
shifted one bit to the left with respect to the pattern position they refer to; this is just an
optimisation that will save us a shift in the algorithm.

Below, we formally present Algorithm EDSM-BV that solves the EDSM problem in an
on-line manner.

1 Algorithm EDSM-BV(P, m, T̃ , n, Σ)
2 Construct Ic, for all c ∈ Σ, and Occ-VectorP ;
3 B[0 . . m− 1]← 0;
4 foreach S ∈ T̃ [0] do
5 Compute BP,S using the border table;
6 foreach b ∈ BP,S do
7 B[b]← 1;
8 if |S| ≥ m then
9 Search P in S using KMP and

10 report 0 if P occurs in S and CheckDuplicate(0);
11 foreach i ∈ [1, n− 1] do
12 B1[0 . . m− 1]← 0;
13 foreach S ∈ T̃ [i] do
14 Compute BP,S using the border table;
15 foreach b ∈ BP,S do
16 B1[b]← 1;
17 if |S| < m then
18 B2 ← B & Occ-VectorP (S);
19 B1 ← B1 | (B2 � |S|);
20 if |S| ≥ m then
21 Search P in S using KMP and
22 report i if P occurs in S and CheckDuplicate(i);
23 B3 ← B;
24 foreach j ∈ [0, min{|S|, m− 1} − 1] do
25 B3 ← B3 & IS[j];
26 B3 ← B3 � 1;
27 if B3[m− 1] = 1 then
28 Report i if CheckDuplicate(i);
29 B ← B1;

In Algorithm EDSM-BV, at each iteration i, T̃ [i] is processed (Lines 11− 29) and, at the end,
vector B stores indexes k such that P [0 . . k] ends at position i.
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I Lemma 12. Bit vectors Ic, for all c ∈ Σ, σ = |Σ|, can be constructed in time O(m+σ ·dm
w e)

and space O(σ · dm
w e). Occ-VectorP can be constructed in time and space O(m · dm

w e).

Proof. For the bit vectors Ic, we first read the alphabet and construct σ bit vectors of size
m initialised with 0’s. Then we only need to read the pattern once, and for each position
0 < k < m− 1 in the pattern such that P [k] = c, we set Ic[k − 1] = 1. Reading the pattern
once and setting Ic costs time O(m), so in total we need time O(m+ σ · dm

w e) for the bit
vectors Ic. The space for each bit vector of size m is O(dm

w e), so in total O(σ · dm
w e) space is

required.
By Fact 3, ST P can be constructed in time and space O(m). We traverse ST P and

allocate a bit vector Mu of size m initialised with 0’s for every explicit node u we visit. If u is
a terminal node representing suffix P [k . .m−1], we set Mu[k−1] = 1. If u is a non-terminal
node, we set Mu[k − 1] = 1 for all terminal nodes representing suffixes P [k . .m− 1] in the
subtree rooted at u, 0 < k < m− 1. This can be realised by using an Or bitwise operation
between the bit vectors of the children of node u. By applying this for all explicit nodes
of ST P , we build Occ-VectorP . We have exactly m terminal nodes, and no more than m
non-terminal nodes in ST P , thus, the bit vectors Mu for ST P can be constructed in time
O(m · dm

w e). The space required for Occ-VectorP is O(m · dm
w e) since we have O(m) bit

vectors and each bit vector requires space O(dm
w e). J

I Theorem 13. Algorithm EDSM-BV solves the EDSM problem in an on-line manner in
time O(N · dm

w e). Algorithm EDSM-BV requires preprocessing time and space O(m · dm
w e).

Proof. The correctness of the algorithm follows from the correctness of the KMP al-
gorithm [13] if |S| ≥ m,S ∈ T̃ [i]. By the definition of bit vectors Ic, we read each S ∈ T̃ [i],
letter by letter, and try to extend the prefixes of P , position by position, using Shift-And
bitwise operations [17]. When we reach the end of the bit vector B3, we may find an
occurrence. No other occurrences can be found since we extend position by position, which
means if we cannot reach the end of B3, we must have had at least one mismatch which
prevents the extension.

By Lemma 12, the time and space for the preprocessing of Algorithm EDSM-BV is
bounded by O(m · dm

w e). For each S ∈ T̃ [i], |S| ≥ m, searching P in S can be done in time
O(|S|) using the KMP algorithm [13], which is bounded by O(N) for all S. The Shift-And
bitwise operation can be done in time O(dm

w e) [17], and it is repeated |S| or m− 1 times for
each S to find an occurrence. Since we choose the minimum of |S| and m− 1, this time is
bounded by O(|S| · dm

w e), which is bounded by O(N · dm
w e) for T̃ . By Lemma 7, sets BP,S

can be computed in time O(N). Updating B for position i = 0 and updating B1 for each
position i > 0 using sets BP,S can be done in time O(N) for T̃ . For each S ∈ T̃ [i], |S| < m,
Occ-VectorP (S) requires time O(|S|) to return the corresponding bit vector, and updating
B1 requires time O(dm

w e) using bit-level operations. Note that B1 needs only to be updated
if B 6= 0. So for all T̃ [i], the total time of this step can be bounded by O(N + N ′ · dm

w e),
where N ′ is the number of strings S such that |S| < |P | and B 6= 0. Since N ′ ≤ N , this
time is bounded by O(N · dm

w e).
The algorithm reads a position i, and reports whether i is an ending position of some

occurrence of P , before reading position i+ 1. Therefore, Algorithm EDSM-BV solves the
EDSM problem in an on-line manner in time O(N · dm

w e), with preprocessing time and space
O(m · dm

w e). J
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6 Experimental Results

We have implemented Algorithms EDSM and EDSM-BV in the C++ programming language.
The implementation of the algorithm presented in [11], which we denote here by IKP, was
taken from https://github.com/Ritu-Kundu/ElDeS. Recall that Algorithm IKP solves the
EDSM problem in time O(αγmn + N) and space O(N); where α and γ are parameters,
respectively representing the maximum number of strings in any degenerate position of
the text and the maximum number of degenerate positions spanned by any occurrence of
the pattern in the text. Note that Algorithm IKP outputs both the starting and ending
positions of pattern occurrences, while the output of Algorithms EDSM and EDSM-BV is
only the ending positions. All three programs were compiled with g++ version 4.7.3 at
optimisation level 3 (-O3). The following experiments were conducted on a desktop computer
using one core of Intel® CoreTM i7-2600S CPU at 2.8GHz and 8GB of RAM under 64-bit
GNU/Linux. We compared the performance of EDSM, EDSM-BV, and IKP using synthetic
data; as well as the performance of EDSM-BV—shown to be the fastest—using real data.
The implementation of EDSM-BV is available at https://github.com/webmasterar/edsm
under the terms of the GNU General Public License. The synthetic datasets referred to in
this section are maintained at the same web-site.

Synthetic data. Synthetic ED texts were created randomly (uniform distribution over the
DNA alphabet) with n ranging from 100, 000 to 1, 600, 000; and the percentage of degenerate
positions was set to 10%. For each degenerate position within the synthetic ED texts, the
number of strings was chosen randomly, with an upper bound set to 10. The length of each
string of a degenerate position was chosen randomly, with an upper bound again set to 10.
Every non-degenerate position within the synthetic ED texts contained a single letter. Four
different patterns of length m = 8, 16, 32, or 64 were given as input to all three programs,
along with the aforementioned synthetic ED texts, resulting in four sets of output.

Our theoretical findings showing that Algorithms EDSM and EDSM-BV are asymptotically
faster than Algorithm IKP are validated in practice by the results illustrated in Figure 1. Note
that the axes are in log2 scale. In particular, the results confirm that Algorithm EDSM-BV,
which is asymptotically the fastest for short patterns, is also the fastest in practice by up to
two orders of magnitude. As for Algorithm EDSM, not surprisingly, we observe that, as m
grows, the m2 factor in its time complexity becomes more and more significant overall. Note
that searching for much longer patterns exactly is not relevant in applications of interest,
where errors (substitutions, insertions, and deletions) must be accommodated as m grows.

Real data. EDSM-BV was tested further using real-world datasets. Human genomic data
was obtained from the 1, 000 Genomes Project [23]. Specifically, data was obtained from Phase
3 of the project, in which the genomes of 2, 504 individuals from 26 different populations were
sequenced and aligned, producing a dataset which summarises the variation in the sample
population. Files in Variant Call Format (VCF) include information about variations at each
position in the reference genome, which makes the format ideal for our purposes. EDSM-BV
was given a reference sequence (in FASTA format) and variation data (in VCF) for each of the
ten smallest chromosomes as input, as well as synthetic patterns of length m = 8, 16, 32, or 64.
The average percentage of degenerate positions across these chromosomes was approximately
3%; the average number of strings at degenerate positions was 2; and the average length of
strings at degenerate positions was 1. The processing time of EDSM-BV was recorded; with
processing we refer only to the actual CPU time used in executing the process—excluding the

https://github.com/Ritu-Kundu/ElDeS
https://github.com/webmasterar/edsm
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(c) Pattern of length m = 32
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Figure 1 Elapsed time of EDSM, EDSM-BV, and IKP for synthetic ED texts of length n.

time to read the data in memory on-line. Chromosome 21, which is the smallest in length,
has a VCF file of size 11.2GB. The results of this experiment are displayed in Figure 2.

The graphs in Figure 2 show, for the ten smallest chromosomes, a very clear linear
relationship between the time taken for EDSM-BV to run and N ′, the total number of strings
S ∈ T̃ [i] such that |S| < |P | and B 6= 0, per chromosome. Recall that the total time required
by EDSM-BV for updating bit vector B1 from B is O(N + N ′ · dm

w e). This is the most
time-consuming operation in practice as it searches for S in the suffix tree of P and then
updates B1 using bit-level operations. Note that, the total time to process strings S ∈ T̃ [i],
with |S| > |P |, using KMP is O(N), which becomes insignificant overall in practice.

7 Final Remarks

We have presented two efficient algorithms for on-line pattern matching on a set of similar texts.
Notably, one of the algorithms requires time linear in the size of the texts’ representation,
for short patterns, that is O(N · dm

w e). The presented experimental results confirm our
theoretical findings in practical terms.

Our immediate target is to apply these on-line solutions for fast average-case approximate
pattern matching or for multiple pattern matching on a set of similar texts. An open problem
is to either improve on the O(nm2 +N)-time algorithm or show conditional lower bounds.

CPM 2017
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(c) Pattern of length m = 32
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Figure 2 Processing time of EDSM-BV for real ED texts (Human chromosomes and variants).
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